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Abstract

The programming language ALGOL 60 has been used to illustrate several dif-
ferent styles of formal semantic description. This paper identifies the main chal-
lenges in providing a formal semantics for imperative programming languages and
reviews the responses to these challenges in four relatively complete formal de-
scriptions of ALGOL 60. The aim is to identify the key concepts rather than get
bogged down in the minutiae of notational conventions adopted by their authors.
As well as providing historical pointers and comparisons, the paper attempts to
draw some general conclusions about semantic description styles.
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1 Introduction

Research on providing formal descriptions1 of the semantics of programming lan-
guages began in the 1960s and remains active. This paper draws on some clear docu-
mentary evidence to examine the period up to the mid 1980s.

Several research groups have chosen to use ALGOL 602 to illustrate their way of for-
mally describing the semantics of programming languages. The availability of seman-
tic descriptions of broadly the same object language makes for an interesting compar-
ison of various aspects of the approaches. It is also helpful that the authors of the
descriptions have often been careful to provide context for their research.

There are some fundamental differences between the proposed approaches but there
are also some almost accidental differences (such as the house style on the length of
identifiers). This paper emphasises the deeper issues.

This version of the paper follows a broadly historical path. In the introduction, a defi-
nition of “semantics” is offered and the reasons for attempting a formal semantics are
considered. The importance of ALGOL is discussed along with examples of how its
semantics are described informally in the defining Report. A key early reference is
identified and finally the dimensions of comparison for each full semantic description
are also given.

Then follows a section on each of four complete descriptions, presented in chronologi-
cal order; in each, a historical background and context is given before deeper semantic
points are discussed. Two of the descriptions follow an operational style, and two a
denotational approach.

Finally, in the conclusions section, some direct comparisons are made between the se-
mantic approaches covered and some other important semantic descriptions and styles
not discussed in the body of the paper are mentioned.

One brief note on citations: some appear as custom cite keys in place of the stan-
dard author abbreviation-year. This is to aid in identification of certain key documents
whose authors may not be well-known and to ensure grouping of similar items in the
bibliography.

1.1 Why it is crucial to be precise about semantics

It is worth briefly reviewing the advantages that a formal semantics brings to give
some motivation to the subject of the paper. Computers execute machine code which,
although detailed, is relatively easy to understand. The state of the hardware is simple,
typically consisting of a huge linear vector of bytes and a small collection of registers.
This makes the semantics of individual instructions of machine code fairly easy to fol-
low3 but programming directly in machine code has long been seen as time-consuming

1Many authors use the phase “formal definition”; following Peter Mosses, we reserve “definition” for a
document that is an established standard; most formal semantic descriptions are separate from and written
after any standard is set.

Jones heard John Reynolds wish that “formal methods should be the midwives of language design rather
than the morticians”. Section 6.6 lists disappointingly few cases where this has happened.

2Henceforth, unqualified references to “ALGOL” are to be taken to refer to ALGOL 60.
3Recent explorations of relaxed or weak memory machines have made this much harder, however.
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and short sighted. High-level programming languages make the job of the programmer
easier4 but programs written in these languages require translation into machine code
before they can be run. This task is typically performed by a compiler or interpreter.

The introduction of new languages does however introduce challenges and these have
become more and more onerous as the level of abstraction in programming languages
has increased. How can we be sure that the object code into which a program is trans-
lated has the meaning of the high level program both in the sense of being a good
translation and also an expression of the programmer’s wishes? Given that different
machines have different low-level instruction sets, how can we be sure that different
implementations of the same program perform the same task? Further, if we want to be
certain of the effects of a program, we want to be able to perform some reasoning: how
do we enable tractable reasoning at the higher-level of abstraction? If the specification
or user manual of a programming language is written in natural language, how do we
eliminate the ambiguity inherent in long strings of words? And how do we clearly
communicate the meanings of the various language constructs between the language
designer, programmer and compiler writer? One way to address these concerns is with
formal semantics.

One person interested in formal semantics at its inception was Peter Landin; in his pair
of papers [Lan65a; Lan65b] in which he draws a correspondence between ALGOL and
λ-calculus, he notes:

The attempt to fit ALGOL 60 into the AE/SECD framework can be
considered from two sides. On the one hand, for someone familiar with
ALGOL 60 it may clarify some of the features of AEs. [. . . ] On the other
hand, AEs illuminate the structure of ALGOL 60.

— [Lan65a]

1.2 What do we mean by “semantics”?

Most dictionaries define “semantics” as something like “meaning”, but this only pro-
vides an alternative noun; what is needed is a test that characterises the acceptability of
approaches to describing semantics.

This paper is concerned with imperative programming languages (in fact, principally,
one particular imperative language) and it is reasonable to think of programs in such
languages as having an effect either on an internal machine state or externally visible
entities such as files or databases. A semantic description should provide the ability to
reason about the effect of a program. This is in contrast to the syntax which defines the
texts of a language which are of semantic interest.5

There must, in any semantic description, be a given set of basic notions. In order to
illustrate this, consider the simple example of giving meaning to the string of characters

4A panel at the Mathematical Foundations of Programming Language Semantics held at CMU in 2004,
on which Jones sat, was asked an interesting two-part question by Vaughan Pratt: 1) How much money have
high-level programming languages saved the world? 2) Is there a Nobel Prize in Economics for answering
1)?

5The further distinction between concrete and abstract syntax is made below; furthermore, the fact that
either syntactic description is likely to be context free means that context dependencies have to be recorded
separately. Some approaches handle such constraints statically in “context conditions” whereas others detect
inconsistent uses of declared variables only dynamically (i.e. in the semantic rules).
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111. It is tempting to read this as the decimal representation of “one hundred and
eleven”; but it could equally be a string of binary digits and correspond to the decimal
number seven; as octal it would have seventy three as its decimal equivalent. For each
of these choices, it is straightforward to write a recursive function that takes a string of
digits and computes its mathematical value. Such a function defines the semantics of
the strings of digits.

To clarify the issue of base concepts, however, it is useful to be careful about two
things. First, it is necessary to agree that there is a shared (between reader and writer)
notion of interpreting descriptions of functions. Fortunately, the concept of functions,
even recursive functions, is widely understood and notations tend to vary only in details
of syntax.

The other issue might appear to be overly pedantic but it is important to understand it
on a simple example. The base cases of the recursive function need to identify math-
ematically understood objects for the meaning of the digits. The need is to say that
the mathematical concepts of zero, one etc. can be used in the calculation of the value
of a string of what are only symbols. (There is, after all, no fundamental reason why
one could not reverse the normal notational convention and say that the binary string
101 denotes the decimal value two.) Fortunately, natural numbers can be based on the
primitive concepts of zero and the successor function. Moreover, recursive functions
can be written for all of the arithmetic operators and Peano’s axioms provide a way to
prove results about these functions.

The issues above present challenges when defining the semantics of more complicated
languages. There will, for example, be a need to be more careful when a single text in
language admits more than one effect: a function from the language to its denotations
is no longer adequate.

Sections 4 and 5 use denotational semantics and it is a key property of such descriptions
that there is a way of reasoning about the objects to which programs are mapped.
Without at this point being precise about how it is determined, the requirement is that
the denotations are “tractable” in the same way that Peano induction makes it possible
to reason about natural numbers.

There are many issues that make it more challenging to define the semantics of pro-
gramming languages than, say, those of logic. One quintessential issue is the lack of
“referential transparency” in programming languages: an identifier denotes different
values as a computation proceeds. Moreover, in languages that offer parameter passing
by location, the value of one variable can be changed by an assignment to a variable
with a different name. Finding suitable techniques to describe the semantics of pro-
gramming languages requires addressing a whole series of issues of this nature.

Perhaps the most obvious way to describe the effect of a program is to construct an
interpreter that takes a program and a starting state and computes (or judges to be
acceptable6) a final state. This is the essence of the operational approach to semantic
description. It is however unlikely to be easy to reason about an interpreter written in
the machine code of some particular computer. McCarthy (see Section 1.5) used the
term “abstract interpreter” for one which is written in a tractable, functional, notation.
Section 1.6 outlines issues that make it difficult to achieve ease of reasoning but the

6See the discussion in Section 6.1 about non-deterministic languages that require a way of saying that
there is more than one valid result to a computation.
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basic idea remains that of a mathematically tractable interpretation function.

Central to an operational semantic description is the notion of the (abstract) states that
can be changed by the imperative statements of the language being described. In this
sense, the term “model-oriented” can be applied to operational semantics. It is also the
case that denotational semantics are given in terms of states and such descriptions are
in the same sense model-oriented (in contrast to “axiomatic semantics”; see Section 6.7
below). In all model-oriented descriptions, it is desirable to make the states as abstract
as possible as every state component brings extra complication in transition functions
and makes reasoning more complex.

The key distinction between operational and denotational descriptions is that those
in the latter class map programs, or their constituent parts, to functions from states
to states. Where an operational semantics requires a program and an initial state, a
denotational semantics maps just a program into a mathematical function. The mapping
should be homomorphic from the (nested) structure of program components to the
space of denotations.7 It might be argued that this structural requirement encourages
the use of smaller, cleaner, states. This argument is evaluated in Section 6.1.

One obvious reservation about operational semantics is the lack of abstraction inher-
ent in interpreting programs statement-by-statement. For example, in the absence of
concurrency, a program which adds one twice (in successive assignments) to a specific
variable is functionally indistinguishable from one that adds two to the same variable
in a single assignment. Since these two program fragments bring about the same state
to state transition, a denotational semantics provides a way of reasoning about their
equivalence in an established mathematical field: that of functions. The search for “full
abstraction” has however proved rather difficult and is still unresolved for concurrent
programs.

It is also debatable just how much abstraction is a good thing: to what extent are the
two adding programs actually identical? Where is the line drawn between programs
such that they become semantically different? In the case of the addition program
mentioned above, the equivalence of the two programs seems clear, but must one then
also consider two sorting algorithms to be equivalent as they both transform an unsorted
array into a sorted one? The desired use of the program semantics may influence the
answer to this question and an appropriate level of abstraction employed.

Two approaches to giving the semantics of programming languages attempt to distance
themselves from the notion of state. Axiomatic semantics in the style of [Hoa69] pro-
vides rules of inference that facilitate proving properties about programs. Programming
languages may also be given meaning by defining the equivalences between programs.
Both of these approaches might be termed “property oriented” descriptions of seman-
tics and are discussed further in Section 6.7.

All language descriptions ultimately need a universal “meta-language”, as named by
Fraser Duncan in an after-dinner speech at the Formal Language Description Lan-
guages conference discussed in Section 1.5 [Dun66] and this must be natural language,
typically English. It is, of course, possible to describe the semantics of a programming
language only in natural language and this is exactly what is done in the ALGOL Re-
ports (see discussion in Section 1.4). What marks a description as formal is taking a

7Language constructs such as goto statements make this rather difficult!
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very small collection of basic notions and then using these to provide the semantics of
descriptions of one or more large and complicated languages.

It is also clear that any formal description approach must take a certain collection of
basic objects as given (and presumably described in natural language); furthermore,
both operational and denotational semantic descriptions rely on the notion of functions
(or relations). These “building blocks” are reviewed in Section 6.3.

1.3 Why ALGOL is interesting

ALGOL was designed by the members of IFIP Working Group 2.1; a good account of
the process is contained in History of Programming Languages [Per81; Nau81b].8 The
resulting ALGOL 60 language is powerful yet clean and it introduced many concepts
that have been adopted in other languages. As Tony Hoare has commented [Hoa73]:

Here is a language so far ahead of its time, that it was not only an improve-
ment on its predecessors, but also on nearly all its successors.

The grammar of ALGOL is regular in that it allows, for example, blocks to contain
statements and those statements can be blocks. Since blocks define their own name
spaces, the same identifier can denote different variables in different scopes.

So-called “strong typing” means that no type errors can occur at run-time. The sup-
porters of strong typing argue that the redundancy inherent in stating the intended way
in which any variable is to be used is a key safeguard against minor slips resulting in
either latent bugs or wasted time in debugging. ALGOL is very nearly strongly typed:
all variables must be declared, but there is no requirement for constrained array or
procedure parameter types.

A further challenge is present in ALGOL as defined by the Reports: the ability to
declare variables as “own” adds an extra layer of complexity. Upon exit of a phrase
(block or procedure), the values of variables are lost9 and, if the phrase is re-entered,
these variables are re-initialised. In contrast, in the case of “own” variables, their value
is maintained after phrase exit so that if the phrase is re-entered, the previous value
is available. This feature proved rather contentious (e.g. own arrays with dynamic
bounds) and many subsets and revisions of ALGOL omit it, as do some of the descrip-
tions discussed below.

Parameters to procedures or functions can be passed “by value” or “by name”. The
first of these is fairly conventional. In the case where a single identifier is provided as
an argument,10 “by name” parameters behave as what is now normally called “by ref-
erence” or “by location”. The general form (in which an expression is passed to a “by
name” parameter) essentially requires that a closure is formed so that the expression
is evaluated as though it was in the calling context. Even the simple “by reference”
mode introduces the problem that different identifiers can denote the same variable (or
location).

8Perlis [HOPL, p91] quips “ALGOL deserves our affection and appreciation. It was a noble begin but
never intended to be a satisfactory end.”.

9Precisely how this is handled depends on implementation and definition, but the essential idea of these
values being non-accessible remains.

10The ALGOL literature tends to refer to arguments as “actual parameters” and to parameters as “formal
parameters”.
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This presents a challenge for any semantic model: identifiers with the same name but
different values (allowed if they occur in different phrases) must not end up clashing,
with some values lost or overwritten. This is avoided in the ALGOL Reports by use of
the “copy rule”. The idea is fundamentally simple and had been used by mathemati-
cians for decades in any situation involving bound variables: copy the identifiers from
their various locations into the target phrase and, if there is an identical name found,
simply rename one of the variables. The intuitiveness of the idea belies the complexity
underlying it and thus, while some of the descriptions discussed apply this principle,
most avoid it by using other methods.

Procedures and functions can be defined by recursion. Although this is now common
in languages, it required the invention of implementation techniques such as Dijkstra’s
“display mechanism”. The story of recursion in ALGOL is not wholly straightforward
and is presented clearly in [Hov14]. van den Hove argues that, although it seems
recursion was sneaked into the language at the last minute, in fact the recursive nature
of the language syntax and the substitution rules of procedure semantics make recursion
innate in the language.

Furthermore, procedures can be passed as parameters. As is explained in Section 4,
this decision presented particular difficulties for denotational semantic descriptions.

Explicit sequencing of execution by goto statements gave rise to considerable contro-
versy after Dijkstra wrote his letter “goto statements considered harmful” [Dij68] (met
with Knuth’s defence in [KF71]). For better or worse, ALGOL allows label parame-
ters, goto statements to close either blocks or procedures and even introduces further
embellishments with switch variables. Modelling this collection of ideas presents in-
teresting problems for the formal descriptions. In an unpublished note Jumping into
and out of Expressions Christopher Strachey writes:

Full jumps . . . introduce an entirely new feature in programming lan-
guages (and one which increases considerably their referential opacity).

Goto statements may be local hops within a phrase, or may be full jumps which cause
phrase structures to be closed if the target label is in a containing context. In the latter
case, it is necessary to perform and cleanup housekeeping that would have occurred
had the phrases (which are abnormally terminated) terminated normally. In ALGOL,
such phrases can be either blocks or procedures.

The language makes the situation more complicated because labels can be passed as
actual parameters to procedures. With the dubious argument of “orthogonality”,11 AL-
GOL also allows switch variables to which the programmer can assign labels.

Chris Wadsworth (see Section 4.5.3 on continuations) wrote to his supervisor Christo-
pher Strachey (see Section 4 on denotational semantics)12 that “Peter’s Algol 60 paper
. . . I must admit I still feel a little surprised it’s as long as it is —- I guess Algol 60’s
just not nearly as ‘well-behaved’ as one tends to think it is.”

ALGOL initially contained no input/output statements but these were added in [MHW76].
A small collection of “standard” functions are defined for ALGOL, such as a square
root function.

11Some people argue that, because values of, say, type integer can be assigned to variables, there should
be variables to which one can assign label values.

12Letter dated 1974-03-26 from Syracuse University (USA) held in the Bodleian archive of Strachey’s
papers.
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1.4 Describing semantics without a formal semantic notation

There are a number of definition documents produced for the various versions of AL-
GOL, but our main reference is the 1963 ‘Revised Report on the Algorithmic Lanugage
ALGOL 60’ [Revised Report]. This was the most modern source at the time of the ear-
liest of the descriptions below (that of Peter Lauer [Lau68]) and is the version upon
which he based his semantic description.

1.4.1 Syntax

ALGOL 60 was the first language to be described with a formal, concrete, context-free
syntax; this was primarily devised by John Backus and first used in the 1960 ‘Re-
port’ [ALGOL Report]. Note that ALGOL 58 (or International Algorithmic Language,
as it was then called) did not have its syntax defined formally, but rather in natural
language with examples. It was subjected to some improvements and additions when
it was used by Peter Naur in the [Revised Report], as reported by Knuth in [Knu64].

The syntax of the language is defined formally using BNF (Backus–Naur or Backus
Normal Form). A full discussion of this method is beyond the scope of the current
paper, but represents a way to break down syntactic constructs, defined as their string
literals, into their constituent parts. Recursion is used in BNF to express the nested
phrase structure of ALGOL.

1.4.2 Context conditions

The grammars of the syntax are context-free, which means that they cannot define
errors which are caused by syntactically valid structures used in the wrong context.
Bob Floyd proved this in a short and neat article [Flo62], indicating that extra concepts
are needed to rule out these errors. They are carefully described in natural English in
the ‘Revised Report’; some examples are shown below.

Dynamically this implies the following: at the time of an entry into
a block (through the begin since the labels inside are local and therefore
inaccessible from outside) all identifiers declared for the block assume the
significance implied by the nature of the declarations given. If these iden-
tifiers had already been defined by other declarations outside they are for
the time being given a new significance. Identifiers which are not declared
for the block, on the other hand, retain their old meaning.

— [Revised Report, §5]

The type associated with all variables and procedure identifiers of a
left part list must be the same. If the type is Boolean, the expression must
likewise be Boolean. If the type is real or integer, the expression must be
arithmetic.

— [Revised Report, §4.2.4]

A label separated by a colon from a statement, i.e. labelling that state-
ment, behaves as though declared in the head of the smallest embracing
block, i.e. the smallest block whose brackets begin and end enclose that
statement.
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— [Revised Report, §4.1.3]

The use of careful wording like this does help to elucidate some of the common con-
textual errors and how to avoid them, but the lack of any kind of formalisation would
have made the task of automatically checking for them, or proving their absence, rather
tricky. For this to be possible, a more rigorous approach to context conditions is re-
quired; an example of an approach to this is discussed in Section 5.3 of this document.13

1.4.3 Semantics

Similar to the definition of context conditions, carefully-crafted English is used to pro-
vide semantics for the language. This section contains some representative examples.

Statements are supported by declarations which are not themselves
computing instructions, but inform the translator of the existence and cer-
tain properties of objects appearing in statements, such as . . .

— [Revised Report, §1]

In this way the meanings of the language are described as carefully as possible, but this
necessity makes the definition a little convoluted at times.14

Another method the Report uses for semantics is to describe equivalences:

The operations 〈term〉/〈factor〉 and 〈term〉 ÷ 〈factor〉 both denote
division, to be understood as a multiplication of the term by the reciprocal
of the factor. — [Revised Report, §3.3.4.2]

When the language construct to which meaning is to be given is complicated, this is
often broken down iteratively into smaller parts, each of which is then subsequently
defined. A good example of this is the for statement, [Revised Report, §4.6.3], in
which the statement is first defined via a simple diagram as: ‘Initialize; test; statement
S; advance; successor’. Shortly following the diagram is an explanation for each of
these terms and following that is a further expansion of terms used.

The semantic meanings are also separated on occasion by different cases; for exam-
ple, in §4.7.3 the semantics of procedure invocation is given by different explanatory
paragraphs depending on whether the statement is call by name or call by value. One
example is given below; this serves to illustrate the version of the copy rule (see Sec-
tion 1.3) used in the Report.

Name replacement (call by name). Any formal parameter not quoted
in the value list is replaced, throughout the procedure body, by the corre-
sponding actual parameter, after enclosing this latter in parentheses wher-
ever syntactically possible. Possible conflicts between identifiers inserted
through this process and other identifiers already present within the proce-
dure body will be avoided by suitable systematic changes of the formal or
local identifiers involved. — [Revised Report, §4.7.3.2]

13Some authors use the term “static semantics” for these context conditions (and “dynamic semantics” for
what below is called simply “semantics”). These terms are not employed in this paper.

14That said, Peter Naur attacked Henhapl and Jones in [Nau81a] after publication of [HJ78], comparing
the complicated mathematics of the formal model unfavourably to the structured English of the [Modified
Report].
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It can be seen that while this description leaves the reader fairly sure of how the name
replacement system works, it provides no opportunity to use a formal reasoning system,
or any indication of how these “systematic changes” ought to be accomplished. This
may be compared with the function described in Section 3.5.1.

1.5 McCarthy’s “Micro-ALGOL” description

The 1964 IFIP Working Conference held in Baden-bei-Wien, entitled “Formal Lan-
guage Description Languages for Computer Programming”, brought together most of
the European researchers who were interested in semantic description approaches. The
conference was organised by Heinz Zemanek and partially funded by IBM thanks to
his influence [Utm64, p. 11.3]. This was the first ever IFIP Working Conference, and
was sandwiched between two halves of the fourth meeting of IFIP Working Group 2.1
(concerning “ALGOL x” and “ALGOL y”, names used at that time for proposed 1965
and 1970 versions of ALGOL respectively) [ALGOL Bulletin, No. 18]. As a result,
the conference was well-attended by most members of WG2.1 and also non-members
who had an interest in semantics: thus both the theory of programming languages and
its application were well represented.15 In the The proceedings [FLDL] only appeared
in 1966 but are particularly valuable because of the effort that was made by members
of the Vienna team to record and transcribe the discussions that followed the presenta-
tions.16

The first paper in the proceedings was written by John McCarthy: in [McC66] he pro-
vides an operational description of a subset of ALGOL that he dubs ‘Micro-ALGOL’.
This paper is a stimulus to much of the subsequent work on semantics in general and
operational descriptions in particular (its influence on the IBM Vienna Lab’s “VDL”
approach is discussed in Section 2). McCarthy’s use of the term ‘abstract interpreter’
is very useful in explaining the semantic approach.

One interesting observation is McCarthy’s choice of subset for “micro-ALGOL”: he
doesn’t take the obvious selection of assignments, conditionals and while statements
but does include goto statements. This decision actually forces him to look at retaining
the whole text (for backwards gotos) and, in a sense, can be seen as the germ of the
ULD “control tree” (see Section 2.5.4).

The authors of the ALGOL report had shown how BNF could be used to define the
concrete syntax of a language: the production rules defined a set of strings of charac-
ters that were to be considered as valid inputs to an ALGOL compiler. With some care
in their formulation, such syntactic rules could also be used by a parser or parser gen-
erator. In contrast, McCarthy introduced the idea of basing a semantic description on
an “abstract syntax” that omits the syntactic marks that are there only to help parsing.
He distinguishes: “synthetic syntax”, which describes the constructors of the syntax
classes and “analytic syntax”, which describes their composition. A few items from
McCarthy’s table of abstract (analytical) syntax are shown in Table 1. He did not in-
clude any synthetic syntax in the conference paper; examples can be found in [McC62].

15In the Preface to [FLDL], Steel observes “Attendance was limited by invitation to recognised experts
in one or more of the various disciplines of linguistics, logic, mathematics, philosophy, and programming
whose frontiers converge around the subject of the meeting. The resulting group — 51 individuals from 12
nations — was ideal in size, breadth of experience, and commitment to the enterprise.”

16Of course, there must have been many informal exchanges that were not captured.
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Objects which belong to an abstract syntax class are recognised as such by applying
predicates (e.g. isvar in the example) and their components can be accessed by selector
functions (e.g. left , right in the example). McCarthy writes specific axioms to relate
these functions/predicates.

Predicate Associated functions Examples

isvar(τ ) x

isprod(τ ) multiplier(τ ) multiplicand(τ ) x × (a + b)

assignment(s) left(s) right(s) s is “root := 0.5× (root + x/root)”

left(s) is “root”

right(s) is “0.5× (root + x/root)

Table 1: Selection of McCarthy’s abstract syntax.

The case for McCarthy’s use of an abstract syntax for micro-ALGOL is perhaps less
compelling than when one is faced with a language such as PL/I or Java in which there
are many different ways of writing semantically equivalent texts.

The semantic function in [McC66] takes a program, a store and a program counter as
arguments and delivers a store as a result:17

micro: Program × Store × N→ Store

This signature is compared with those of other semantic approaches in Section 6.1.1
(see Fig. 7). The fact that this can be a functional relationship follows from the absence
of non-determinism in Micro-ALGOL. The most compelling case for non-determinism
in programming languages comes from concurrency but, even in full ALGOL, non-
determinism arises from the order of expression evaluation (coupled with the presence
of side-effects). The VDL description of ALGOL discussed in Section 2 has to provide
a way to model such non-determinism; Section 6.1 explains how the more modern SOS
rules define the set of permissible final states of a computation.

1.6 Dimensions of comparison

The intention is that this paper draws attention to the ways in which each of four dif-
ferent formal descriptions of ALGOL tackle the issues raised by the semantics of the
language. For each of the approaches covered in Sections 2–5, the following items are
discussed:

• the context of the work

• which version of ALGOL was taken as a basis for the description and whether
any features were omitted

• syntactic issues (including the choice between concrete and abstract syntax and
the handling of context dependant issues)

• the overall semantic style

17Strictly, the program counter is Curried but no essential use is made of this higher order idea.
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• specific modelling issues (including how jumps are modelled)

• a postscript (including other descriptions in the same style and how the descrip-
tion might have been extended to cope with concurrency)

2 Vienna operational description

Peter Lauer worked at the IBM Laboratory in Vienna until 1972 and was regarded as
the specialist logician, according to his colleague Wolfgang Henhapl. During Lauer’s
time at the Laboratory, he co-authored a number of publications including the guide
for use of VDL version 2 [ULD-IIIvII-Meth] and some theoretical work on algo-
rithms [Lau67]. Subsequent to working on the ALGOL description, Lauer obtained
a PhD18 under the supervision of Tony Hoare, who was at that time professor of com-
puting science at Queen’s University Belfast. Lauer spent only part of the time in
Belfast and finished writing his thesis back in the IBM Vienna Lab. Following his
time at IBM, Lauer obtained a lectureship at the University of Newcastle upon Tyne in
1972 and then a professorship at McMaster University in Canada in 1985; he continued
to work in the field of theoretical computer science, including programming language
design and implementation, until his retirement.

2.1 Background: A brief history of VDL

The story of VDL really starts with IBM’s development of the PL/I programming lan-
guage, described by Fred Brooks as “a universal programming language that would
meld and displace FORTRAN and COBOL” [Shu15]. This was an ambitious objective
in several ways. Some in IBM assumed that one universal language would free them
from the need to maintain two compilers!

Furthermore, an objective of universality, compounded by design by committee, was
almost bound to yield something akin to a tower of Babel. (A photograph of Pieter
Bruegel’s Tower of Babel covered an entire wall of the conference room of the IBM Vi-
enna laboratory. At various different points in time, the figures in the bottom left corner
were identified with people involved in IBM projects. Figure 1 shows key early mem-
bers of the Vienna Lab in front of this wall.) The official definition of PL/I was written
in natural language and given to the IBM Laboratory in Hursley, England, whose task
was to develop a compiler.19 This specification was initially referred to as “Universal
Language Document” [Luc81], but quickly became known as solely as “ULD” without
expansion, even in official documents.

At this time, the Vienna Laboratory under Heinz Zemanek was interested in formal
definitions of programming languages, energised by the Formal Language Description
Languages conference [Luc81]. The conference was organised by IFIP TC 2, of which
Zemanek was chair, although interestingly the suggestion to make formal languages
the topic of the symposium appears to have been made by Peter Naur [Utm63, p. 7].

18Zemanek consistently encouraged his staff to obtain their PhD qualification.
19There was a parallel activity in the IBM Böblingen Laboratory to develop a PL/I compiler for smaller

IBM/360 machines; see [End13].
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Figure 1: From left to right: (standing) Peter Lucas; George Leser; Viktor Kudielka;
Kurt Walk; seated: Rutishauser; Kurt Bandat; Heinz Zemanek; Norbert Teufelhart

The IBM Vienna Lab had already implemented an ALGOL 60 compiler for the transis-
torised Mailüfterl computer that Zemanek’s group had designed and built in the Vienna
Technical University in 1962 so the group had experience in the area of compiler de-
velopment.

Zemanek’s prescient decision to move the Lab’s focus from hardware to software co-
incided with IBM’s development of the PL/I programming language.20 The PL/I lan-
guage was considerably more complex than ALGOL and the Vienna group argued for
a formal description both to clarify the language and to record its semantics in a precise
way.

There was a parallel activity in the IBM UK Lab at Hursley (Hampshire) that led to
ULD-II [ULD-II-CS; ULD-II-AS; ULD-II-Trans; ULD-II-Sem] that is described as a
semi-formal description. The different motivations of the two teams and their interac-
tion are interesting. The Hursley team was led by David Beech who was a Cambridge
trained mathematician.21 The aim of the Hursley effort was to create a description that
was precise but readable by compiler developers. This resulted in (an abstract syntax
and) a formally defined state but with most state transitions described in careful prose.

As the Vienna group began the process of understanding the new language, they sent a
series of numbered “LDV” notes that contained questions and requests for clarification
to colleagues in Hursley who replied with a similarly numbered sequence of “LDH”

20As recorded in HOPL, this language was to have been called “New Programming Language” or NPL
until the (UK) National Physical Laboratory pointed out their prior use of the abbreviation.

21The material here was reinforced by a discussion with Beech when he visited Newcastle on 2016-08-12.
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notes. Over time, the technical depth of these questions and answers increased and
both groups turned inexorably to formalism as the only way to pin down the decisions
adequately. There were also visits between the two groups and Beech recalled having
made seven trips to Vienna in one year.

This led to the Vienna Lab taking over the job of formally defining PL/I and devel-
oping a method for doing so, which became ULD-III. This description went through
three major versions and was, confusingly, often referred to internally as ULD-version,
although it really ought to have been ULD-III-version. The name Vienna Definition
Language was coined by the American computer scientist J.A.N. Lee [LD69] and the
tag VDL stuck. Peter Wegner’s survey article [Weg72] might have played a part in
cementing the name VDL.22

In the mid-60s, the Vienna group was small. Although the origins of the group were
in hardware development at the Technical University of Vienna, Heinz Zemanek was
far-sighted enough to insist that the future direction of their scientific work must shift
to software. A fuller history can be found in [Luc81] and [Rad81], but it is worth listing
here a few of the key steps towards the formal description of PL/I:

• In [Bek64] Hans Bekič discussed giving the semantics of “mechanical languages”
by reducing them to elementary terms.23 The initial focus is on expression lan-
guages but [Bek64, §4] addresses “programming languages” (i.e. those contain-
ing “statements”) and includes the prescient comment that “a statement can be
interpreted as a function mapping states into states”.

• The involvement of members of the Vienna group in the September 1964 Baden-
bei-Wien IFIP Working conference is mentioned above in Section 1.5.24

• Lucas [Luc81] states that “Work on the formal definition of PL/I started in
September 1965.” but already in July of that year, Kurt Bandat edited a col-
lection of four papers [Ban65] that set out much of the VDL approach.25

• ULD-II [ULD-II-CS; ULD-II-AS; ULD-II-Trans; ULD-II-Sem]

• The first version of the complete PL/I description [ULD-IIIvI] appeared in 1966;
the cover of the report attributes it to “PL/I – Definition Group of the Vienna Lab-
oratory”. The actual authors and their contributions are listed inside the report.
See Figures 2 and 3.

• A second version appeared as multiple reports [ULD-IIIvII-Intro; ULD-IIIvII-
Meth; ULD-IIIvII-Sem; ULD-IIIvII-CS; ULD-IIIvII-Trans; ULD-IIIvII-CT] in
1968. This version first introduced the axiomatic definition of storage; for a
detailed description of this work see [BW71] since it does not relate to ALGOL.

• The final version (which postdates Lauer’s ALGOL description) also appeared
as a collection of reports [ULD-IIIvIII-Intro; ULD-IIIvIII-Sem; ULD-IIIvIII-CS;
ULD-IIIvIII-Trans; ULD-IIIvIII-CT] in 1969.

22This survey also puts an emphasis on the notion of (VDL) “objects” that might surprise a current reader
of the material.

23It is interesting to compare this to the idea that is discussed in Section 6.7 of giving semantics by defining
equivalences.

24Lucas in [Luc81] notes “Members of the IBM Vienna Laboratory, involved in the preparation of the
conference, had the opportunity to become acquainted with the subject and the leading scientists.”

25Peter Lucas also presented a paper at the IBM (Internal) Programming Symposium at Skytop, Pennsyl-
vania but this basically reiterates the material in [Ban65, §3].
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Figure 2: Copy of the cover of [ULD-IIIvI]
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I:s:,l L..ZI.B VIENNA -:1,- TR 25.071 

P?..EFACE 

This report is thc result of a common effort in the Vienna 
based on all previous interest and engagement in program-

::-.ing languages and, in particular, in PL/I since its first docu-
:::ents. 

i:ethod 

The mcthod of definition and the basic notions of the presented 
of PL/I-definition have essentially been developed by P. LUCAS 

c..nd I<. 

The authors and their contributions 

In the following, the authors are listed according to their main 
contributions by chapters. 

Method and Notation 
K. : 1 I 2 • 8 I 3 • 2 
P. LUCAS: 1, 2.1 to 2.7, 3.1 (except 3.1.35 and 3.1.7) 

Expression Evaluation, Assignment, Storage Allocation 
K. 4 ( except .4. 3, 4. 8, 4. 10, and 4 .11) , 5. 3, 5. 7, 5 • 8 
G. CHROUST: 4. 3 
H. BEKIC: 4.8, 5.11 

Flow of Control Statements, Prepass 
P. LUCAS: 4.10, 4.11, 5.1, 5.2, 5.4, 5.5, 5.9, 5.10 

Conditions, Tasks 
K. BANDAT: 3.1.35, 5.6, 5.12, 7 

Input, Output 
P. OLIVA: 6.1 to 6.3, 6.5, 3.1.7 
V. KUDIELKA: 6.4 

i\.bstract Syntax 
K. ALBER: Appendix I 

- - . - . 

Figure 3: Copy of the author list of [ULD-IIIvI]

By the time Lauer initiated work on the ALGOL description [Lau68], VDL had been
used successfully to define the entirety of PL/I, a considerably larger language. The
second version of ULD-III was available, indicating that the technique was quite ma-
ture by this stage. It is interesting to note that Zemanek was very keen on ALGOL 6026

and a strong critic of ALGOL 68, so it is perhaps not unrelated that the description of
ALGOL 60 came out the same year as ALGOL 68 and both around the end of the year.

It is likely that Lauer was chosen for the task of defining ALGOL in order to help him
familiarise himself with VDL.27 ALGOL was probably chosen for description due to
its simplicity and elegance (particularly compared to PL/I) and to fight back against the
critics of the VDL descriptions of PL/I who had claimed that they were too large and
unwieldy.

2.2 Extent of ALGOL described

The VDL description of ALGOL covers all essential features of the language, as de-
scribed in more detail below, including ‘own’ variables and non-determinacy of ex-
pression evaluation. The version of ALGOL defined is that of the ‘Revised Report’
[Revised Report].

26As evidenced by his choice of an ALGOL 60 compiler for Mailüfterl as a demonstration of its capability
of handling high-level languages.

27Lauer acknowledges scientific contributions from P. Lucas, K. Alber, H. Bekič, and M. Fleck.
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2.3 Syntactic issues

2.3.1 Concrete vs. abstract syntax

See [Lau68, §2 & 5]

As with the other languages defined in VDL, the semantic description is based on an
abstract syntax which is given via a series of recursively defined identity predicates
(beginning is-). For example, declarations are defined as variables, procedures, labels,
or switches (see p. 2-3, equation 2.4).28

The notation for more complex syntactic constructs is based on the Vienna notion of
objects: everything is either an elementary object (typically represented in upper case),
or a composite object, with selectors to other objects (which may be elementary or
composite themselves). A fuller explanation may be found in [ULD-IIIvII-Meth].

The VDL style of abstract syntax follows on from McCarthy’s (see Section 1.5) by
defining the compositional and constructional aspects separately; however, rather than
having a separate constructor for each syntactic construction, the universal µ0 function
can create any object. Another change from McCarthy’s explicit approach to abstract
syntax is in the selection functions: where McCarthy states which selections are present
for each syntactic construct, the VDL approach implicitly allows the use of any selector
in a composite object to be applied to that object.

Abstract syntactic objects which comprise multiple parts are represented as a list of
<selector:type> pairs. See, for example, p. 2-4, equation 2.17, in which an array is
defined as the combination of a lower bound type expression, an upper bound type
expression and a data attribute list of elements. This can be compared with the more
straightforward notation of such composite objects in VDM; see Section 5.

A system for the translation of the abstract syntax into a concrete string representation
is given in the final chapter of Lauer’s report. Mapping in this direction works for
ALGOL given its relative paucity of syntactic redundancy; for more complex languages
a homomorphism from the larger set of concrete strings to the smaller set of abstract
objects is more natural.

2.3.2 Handling context dependencies

All error checking in the description is performed dynamically at ‘run-time’ via the
semantic rules; there is no attempt to catch any context dependancy errors statically.
This is partially due to the abstracted nature of the syntax description preventing easy
symbol checking; but compare with Section 3.3.3 which follows a similar system but
does have some static checking.

During interpretation statements, errors are typically produced by distinguished cases,
often default cases, and some explanatory English sentences are often written under-
neath the formulae.

28Page numbers in the report are split by chapter.
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2.4 Overall semantic style

VDL uses a small-step operational semantics described in terms of the actions of an ab-
stract interpreting machine. Control flows via the abstract concept of a control tree. At
any point in time, the leaves of the control tree are (equally valid) candidates for execu-
tion at the next step. In ALGOL this makes it possible to define the non-determinism
involved in expression evaluation; it would have a larger role in a language that offered
concurrency (as, of course, was the case in PL/I).

The structure of VDL descriptions uses objects to represent all values: either elemen-
tary objects (the base types and Ω for the ‘empty object’) or composed of named selec-
tors to other objects. Interpretation is performed by a series of nested functions, often
defined by cases. Strictly, the non-determinism means that the semantics has to allow
a set of possible results:29

int-program: AP × Ξ→ Ξ-set

but, in common with other VDL definitions, the description tends towards “non-deterministic
functions”. This signature is illustrated in Figure 8 and contrasted with other ap-
proaches in Section 6.1.1. In particular, Plotkin’s “Structural Operational Semantics”
(SOS) makes explicit the recognition of the semantics as a relation (see Fig. 10).

Following standard VDL style, Lauer does not indicate the types of any of his func-
tions, which makes the reading somewhat difficult.

The semantics of each language construct is given by an abstract interpretation or eval-
uation function. These are commonly split by cases and either modify state objects
directly or call on other interpretation or evaluation functions.

2.5 Specific points

2.5.1 Environment/State

See [Lau68, §3].

The environment and store of the abstract interpreting machine are separate in the de-
scription; a stack of environments is, however, one component of the overall state, for
it is a very large state.30 The state (Lauer’s report uses ξ for members of Ξ) is split
into six components: the denotation directory DN, the environment E, the dump D, the
unique name counter UN, the control C, and the control information CI.

Environments link program text identifiers with globally-unique names; only one envi-
ronment is active at any given time.

The dump is a stack of environments for phrases (blocks and procedures) which have
been entered but not terminated. The first step in the interpretation of a block or pro-
cedure statement is to push the current environment onto the dump and create a new

29In contrast to the signature for McCarthy’s which used Σ for the set of all possible stores, Ξ is used here
to emphasise that VDL states contain much more than the store (see below).

30This approach is often referred to within semantics literature as ‘grand state’ and is discussed further in
Section 3.
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environment; the final step is to make the top element of the dump the current environ-
ment. (Clearly, there need to be special actions where a construct ends abnormally.)

The denotation directory links global unique names with the values (for variables) or
declarations (for procedures) which they denote. Associated type information is also
included. Note that no values are ever removed from the DN; old values no longer
present in the E or D are simply inaccessible.

The unique name counter is an integer value which increments every time a new iden-
tifier is detected and thus handles assigning unique names to all identifiers globally.

The control part of the state contains the set of source statements that are to be exe-
cuted by the interpreting machine, which can be considered as an abstract tree. Each
instruction may have a set of successor instructions and leaf nodes are candidates for
execution. Interpretation of certain instructions may cause changes to the state of the
machine, including the control tree.

Finally, the control information contains three parts: the whole program text; an index
part which is either an integer pointing to the particular part of the program text which
is next to be executed or a special constant when the active text part is a for statement;
and a control dump which operates similarly to D but handles the return control parts
for nested expressions such as procedure calls embedded within expressions.

Documents on the VDL method (e.g. [Luc81; ULD-IIIvII-Meth]) often cite the in-
fluence of Peter Landin, and this can be clearly seen in the composition of the state.
Landin’s SECD machine [Lan64] bears a strong similarity to Ξ. The environment and
dump have essentially identical functionality in both Landin’s machine and the VDL
state and the combination of the control and control information in VDL share func-
tions with the stack and control in Landin’s approach. It is interesting to note, however,
that despite this similarity in data structures the essential approach to semantics is quite
different in that Landin is giving a semantics to “imperative applicative expressions”
which are used as the denotations of ALGOL programs (see Figure 5 and discussion in
Section 6).

2.5.2 Shared name space

The DN component of the state contains the value (as well as the typing information) of
every variable declared in the program up to the current execution point, and the texts
and parameter information of procedures. It is global to the whole program regardless
of environment. This enables sharing of values between environments as long as ids
are passed.

2.5.3 “Own” variables

See [Lau68, §4.2].

“Own” variables (see Section 1.3) are handled in Lauer’s ALGOL description. A pre-
pass executed before program interpretation replaces all instances of “own” variable
identifiers with uniquely generated integer identifiers (see p. 4-3, equation 4.1). This
ensures there are no name clashes between “own” variables.
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“Own” variables are not interpreted or evaluated any differently from normal variables.
The difference in the evaluation occurs at the block interpretation level, where the
update-env function has separate cases for “own” and non-own variables. Normal
variables are assigned a new unique name each time the block is entered, but “own”
variables keep the same id they were assigned by the pre-pass. This allows access to
the previous value of the “own” variable still stored in the DN.

2.5.4 Handling of jumps

See [Lau68, §4.5]

The handling of jumps in the control tree context is the cause of a lot of the complexity
in VDL descriptions. It is also the necessity of handling jumps which leads to the
placing of a stack of environments in the state. The germ of the idea is conceptually
the same as the way in which [McC66] interprets jumps, but complicated by the phrase
structure of ALGOL.

There are four parts to the interpretation of jumps (see p. 4-19, equation 4.44–53):

• Close environments in the dump until the environment containing the id for the
destination label is found.

• Close control dump elements until the labelled statement is found.

• Advance control information index pointer to labelled part (number, FOR, or
conditional).

• Update control information with index and resume sequential interpretation.

2.5.5 Procedure value handling

See [Lau68, §4.4.2].

In operational descriptions such as Lauer’s, procedures are simply represented by their
texts so there is none of the complexity about higher-order functions that has to be faced
in denotational semantics. The returning of values from type procedure execution en-
vironments to their calling environments is not handled during the procedure execution
interpretation (int-proc-st; p. 4-9, equation 4.17) but instead during the evaluation of
the procedure call (p. 4-26, equation 4.68). At this point a unique name is created as an
identifier for the value to be returned and stored in the calling environment. It is passed
into the interpretation function as a parameter and when the value is calculated during
the procedure call it is stored in that environment under the same id. As the value has
the same id in both the calling and procedure environments, it is accessible by both in
the DN.

2.6 Postscript on VDL

This description of ALGOL has no problem with higher order functions; procedure de-
notations are simply a text and an environment and so it is simple to pass one procedure
as a parameter to another with its denotation text being operated upon.
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Although there is no concurrency in ALGOL, the control tree model can be used to
handle non-determinism, as had been shown in the definition for PL/I. Each leaf in the
control tree is an equally valid candidate for next execution and so these can be picked
in any arbitrary order to model concurrency.

Lauer’s PhD [Lau71], under the supervision of Tony Hoare, followed the ALGOL
description and showed the fundamental consistency of various semantic methods.
These were classified into constructive (such as VDL) and implicit (such as Hoare’s
axiomatic) approaches.

In addition to the descriptions of PL/I, ALGOL and large parts of FORTRAN [Zim69],
J.A.N. Lee published a description of BASIC in 1972 in classic VDL style [Lee72] and
a semantics of Prolog is given in [AB87].

3 Vienna functional description

Cliff Jones went on assignment for two years to the IBM Vienna laboratory in August
1968 with the aim of seeing whether the difficulties seen in the development of the
PL/I F compiler could be avoided by basing compiler design on a formal description.
Peter Lucas had already written the twin machine report [Luc68] linking the models
used in the IBM Hursley definition of PL/I (worked on by Dave Allen, an author on
this ALGOL description) with the Vienna definition. One of Jones’ first activities was
to read Lauer’s ALGOL description prior to its printing, so he had a good degree of
familiarity with the style and approach used in Vienna. Jones also worked on the notion
of objects, as in for example abstract syntax (see Section 6.3).

More relevant to the ALGOL description was the paper from Jones and Lucas on prov-
ing implementation correctness. The proof of Lemma 10 of [JL71]31 was gratuitously
difficult: it stated that the environment was unchanged over the execution of a single
statement; this is complicated by the fact that the statement could be a block or a proce-
dure call. It was thus clear, even in operational semantics, that a ‘small state’ approach
would be preferable to the traditional VDL ‘grand state’.

After finishing his first period in Vienna, Jones returned to IBM Hursley to take over the
Ad Tech group, amongst whom were the Dave Allen mentioned above, Dave Chapman
and Peter Gershon. Jones was, at this time, pushing the ‘exit’ concept mentioned below,
and the Ad Tech group’s first project was this ALGOL description using that idea.
Later, they worked on an early “Formal Development Support System”32 before Jones
returned to Vienna in early 1973.

3.1 Background: Why ‘functional’

An important motivation for this shift in definition style was to move away from
the messy control tree hacking for explicit sequencing; Jones’ view was that jumps
shouldn’t “take the interpretation by surprise.” [ACJ72, §2.1]

31First available as a Vienna Lab technical report (TR25.110) in August 1970 immediately before Jones
moved back to the UK. Another relevant report is [HJ70b].

32FDSS was an attempt to build support for program verification using proof obligations for relational
post conditions that eventually crystallised in program development aspects of VDM.
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The exit idea was to pre-plan a way of capturing abnormal termination: it was first
published in a report by Henhapl and Jones [HJ70a]. This concept also played a major
part in the VDM style of denotational semantics (see Section 5), but in the current
description it was presented in a rather verbose form.

The main aim of the exit approach was to address gotos without breaking the inherent
stack nature of the phrase structure of ALGOL. This provided the main impetus for the
new description and a number of changes percolate through based on this, such as the
inclusion of sets and the ability to handle non-determinism in expression evaluation.

The functional semantics discussed here also differ from previous VDL practice by
using a small state, although this is less obvious than in [BBHJL74; HJ78] because
of the use here of the “copy rule” (see Section 3.5.1 below). To a large extent, the
decision to move to a small state was a reaction to the difficulty of proving the difficult
twin machine lemma.

3.2 Extent of ALGOL described

The language defined was the ECMA Subset of ALGOL, which was described in
1963 [Dun63] and published in April 1965 by the European Computer Manufactur-
ers’ Association [ECM65].

This is a smaller version of ALGOL 60, designed to be simpler and easier to imple-
ment across multiple computers. Many of the more contentious elements of ALGOL
are removed, such as “own” variables and recursion (See Section 1.3). Although this
description does omit “own” variables, recursion is kept in: the stated aim is to avoid
some of the less clearly-defined features, while defining a language more oriented to
static compilation [ACJ72, §1]. Standard functions are included.

Non-determinism in expression evaluation is handled, though the fundamental part of
this process is left undefined and there is no cohesive story of how this fits with a
functional view of semantics (see Section 3.5.4). The remaining two descriptions also
duck non-determinism to some extent.

3.3 Syntactic issues

3.3.1 Concrete vs. abstract syntax

See [ACJ72, §5.1.1]

As with the previous VDL description, an abstract syntax is used. Rather than a func-
tion to turn abstract syntax into concrete, as presented in [Lau68], there is a translation
function discussed which takes concrete syntax strings and translates them into abstract
objects. There are a number of comments about this translator scattered through the de-
scription but the translator itself is not defined. Any string of correct syntax, as defined
by the ALGOL Report, will translate into an abstract object defined by is-program .

See [ACJ72, §3]

The same notation style for abstract syntax from the previous VDL description is main-
tained (see Section 2.3). Essentially, syntax is described by a series of nested identity
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predicates. These are actually used in the definitions of some of the semantic func-
tions, providing a type signature, which makes them considerably easier to follow. In-
terestingly, the description includes a large section on notation, which essentially just
duplicates the information in [ULD-IIIvII-Meth].

Once again, the essential building blocks of the description are objects, although the
view is shifted somewhat by the inclusion of sets.

3.3.2 Inclusion of sets

See [ACJ72, §3.7–8]

The move to the exit approach requires the keeping of labels with their statements,
rather than the use of abstract index pointers as used in Lauer’s description (see Sec-
tion 2.5.4). There can be multiple labels associated with one statement and they can
change dynamically due to switch variables, so to cover this the definition language
is extended to include sets. This brings the non-deterministic for some construction
which picks an arbitrary member of a set and also path-els which are ‘selectors’ for
any given set element. path-els are composed into paths, which represent the unique
location of any given part within the program as a whole. Neither of these is defined
fully but are presumed to exist.

3.3.3 Handling context dependencies

See [ACJ72, §2.4 & 4.3]

Unlike in the previous VDL description, where all error checking was performed dy-
namically, this description begins the process of static error checking which leads to
the context conditions seen in the VDM Denotational description (see Section 5.3). As
many type errors as possible are trapped before the semantic function is applied; the
document observes that the aim was “basically to check those things which rely only on
symbol matching and omit those checks which, in general, rely on values of symbols”.

Some of this error checking is presumed to be done by the translator (see Section 3.3.1).
Notes are given by some constructs for the translation process: these are typically in
the form of predicates featuring implications and state some of the syntactically-valid
programs to which it is not possible to give semantics.

Static error checking is aided by the use of the desc function, which, given a path
to an id and the text containing that id, provides contextual information: specifier,
description or label description.

3.4 Overall semantic style

The main semantic style is an operational, small state approach. The functional signa-
ture is roughly Program×Σ→ Σ, where Σ contains the state-like components vl , dn ,
and Abn . In this way, it is most similar to the simplicity of McCarthy’s semantics (see
Figure 7 in Section 6.1.1). Laying aside notational differences and some specific points
(as below), the semantic style is not much changed from Lauer’s description. Meaning
is given by a series of recursive interpreter functions, nested down from int-program .
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This function only has an effect if there is a block which starts the program, reflecting
the ALGOL procedural approach.

The layout of the document is unusual: it is printed on landscape oriented paper in
order to accommodate long formulae, and has large vertical gaps. This is so that the
description can be placed alongside the ALGOL Report and the formula will match the
sections of the Report. This also means that, unlike in Lauer’s description, abstract syn-
tax and semantic functions for each construct are grouped together, rather than being
separated into different sections. Important functions are provided with type signatures
and there is a cross reference of functions and abstract syntax provided at the end of
the document, linking the declaration of each entry with its uses.

3.5 Specific points

3.5.1 Environment/state

See [ACJ72, §2.2–2.3 & 4.4–4.5]

The issue of state vs. environment is actually rather hidden in this description. The
semantics for the phrases of the grammar (such as blocks) work in a similar way to
how mathematicians describe the lambda calculus’ bound variables. The “copy rule”
as described in the ALGOL Report (See Section 1.3) is followed here: variables carried
into phrases (parameters into procedures and existing values into blocks) are simply
kept with their current identifiers, unless clashes are detected, in which case name
changes are made as appropriate using the change-text function (see [ACJ72, §5.4.7]).
This makes it difficult to make a direct comparison with descriptions which use an
environment.

So there is no broad, globally accessible state as such. Instead, two variables dn and
vl act as state-like components. The dn is a set of pairs between ids and denotations
(which are either types, or meta-components like labels, arrays, and procedures) and
the vl is a set of pairs between ids and values. The same ids are used in both dn and vl
and thus information on each variable is preserved.

3.5.2 Shared name space

The dn and vl are passed around most of the semantic functions and so are accessible
wherever needed. The key idea is to restrict these state components to only the parts
needed at any given. Thus, while most statement interpretation functions take both
dn and vl , they only return a vl because the meta information on variables will be
unchanged. Smaller and auxiliary functions tend to use only specific parts of these
components.33

The “copy rule” described in the previous section prevents clashing of ids in the shared
name space; it is applied whenever blocks are entered or procedures activated.

33This is precisely the reaction to the problems discussed above with respect to the proofs in [JL71].
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3.5.3 Handling of jumps

See [ACJ72, §2.1, 4.1, & 5.4]

The exit mechanism, as first proposed in [HJ70a], is used. The essential idea is that
functions Σ→ Σ become functions Σ→ Σ×Abn , where Abn represents an abnormal
exit. It is Ω (the null object) if none are encountered and it contains the label of the
statement to be jumped to when a goto is encountered.

The abnormal component is checked for and handled by many of the interpreting func-
tions but, without any “combinators” to hide this away (see Section 5.4), the approach
seems clumsy and long-winded. Nevertheless, the description serves as a good proof
of concept: the exit idea works for a real language.

The interpretation of goto statements is very simple: when one is encountered, the label
of the destination statement is placed into the abnormal part and simply returned from
the function where the calling int-st function can handle it. The only catch is that
if a label already exists in the abnormal part (as may happen if a goto occurs during
expression evaluation) it stays there.

The int-st function handles the majority of the work: first, it checks the ‘locality’
of the label in the abnormal part, determining whether the destination is within the
current phrase. If the label is not local, the current phrase’s interpretation is simply
halted and the current vl and existing abnormal part are returned to the calling int-st
function, where locality can be checked again. In ALGOL, jumps can only be made
to destinations in the current phrase or a containing phrase, so this approach allows all
allowable localities to be checked.

Once the locality of the label in the abnormal part is reached, the cue-int-st function
checks whether the current statement has the label in question; if it does, int-st is called
and interpretation proceeds as normal. Otherwise, cue-int-unlab-st checks through
the rest of the phrase’s statement list for the id of the label in question and passes it
back to cue-int-st .

3.5.4 Non-determinism in expression evaluation

See [ACJ72, §4.2 & 5.3]

Although the expression evaluation order is well-defined in ALGOL for numerical op-
erations, there are certain subexpression evaluation orders which are not defined. These
include the evaluation order of actual parameter (argument) lists to procedures. Some
of these, conditional and especially switch expressions, can have side effects and so
their order matters. The function for evaluation of expressions, therefore, has some
non-determinism which uses the for some construction from a ‘ready set’ of sub-
expression parts. Further complication comes from the potential inclusion of labels
here and so the expression evaluation also has to return an abnormal part.

3.5.5 Procedure value handling

See [ACJ72, §4.2, 4.4, & 5.3]
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As mentioned in Section 3.5.1, a version of the ALGOL “copy rule” is used to model
the movement of variables into and out of procedures. The decision to use this ap-
proach, rather than the shared denotation directory and environment of classic VDL, is
due to both the desire for a smaller state and an attempt to follow the ALGOL Report
more closely.

The process for handling procedures is a little involved and is worth breaking down in
some detail.

1. All actual parameters are evaluated, including those which require procedure
evaluation (the process may be recursive but ultimately simple values will be
obtained).

2. The match between formal and actual parameters is tested for type errors.

3. Pairs are built up of local formal parameter id and evaluated actual parameter (in
the case of by value parameters) or local formal parameter id and external id (in
the case of by name parameters).

4. If the procedure is typed, a declaration for the return value is inserted into the
program text.

5. A modified version of the procedure text is created with the actual parameters
inserted, which is then interpreted and the resulting vl passed back out.

After this process, an id exists outside the phrase of the procedure for the returned value
and the vl contains the value of this id and thus the procedure’s result can be accessed.

Once the procedure is completed, an epilogue function deletes all variables used in
the procedure from both vl and dn , so only the returned value from type procedures is
kept. This also applies to closed blocks and is another part of the general effort to make
the state smaller. By contrast, in Lauer’s description, values are never deleted and thus
contribute to the grandness of state. If at any time during procedure evaluation a label
appears in the abnormal portion (which is passed between all procedure evaluation
functions), the epilogue function is called early and the jump interpretation starts.

3.6 Postscript on Functional Semantics

The later use in VDM of the exit “combinator” (see Section 5) avoids the heaviness of
the many case distinctions in [ACJ72].

4 Oxford denotational description

One approach to semantics not explored in the preceding sections is the denotational
method, developed in Oxford in 1969 primarily by Christopher Strachey and Dana
Scott. In 1974, a PhD student under Strachey, Peter Mosses, took on the task of pro-
viding a denotational semantics of ALGOL in the Oxford style. It is interesting to note
that Strachey’s opinion of ALGOL was not high (indeed, he went so far as to co-write
with Wilkes a paper [SW61] outlining the many faults he perceived in the language)
which prompts the question of why this language was chosen. One clue comes from
Mosses’ acknowledgements in [Mos74] which start with:
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The original inspiration for this report came from reading [1] (=[ACJ72])
and [2] (=[Lan65a; Lan65b]), as it was felt that a shorter and less algorith-
mic description of ALGOL 60 could be formulated in the Scott-Strachey
semantics.

So ALGOL was already being seen as a standard on which language description meth-
ods could be demonstrated and compared. As the system for using continuations to
handle jumps had just been worked out, there was a desire amongst the Programming
Research Group (PRG) community in Oxford to provide a full semantics of a language
with jumps and ALGOL was an obvious choice.

Another contextual comment is that Mosses’ actual thesis topic [Mos75a] was the de-
sign of a system that would enable the generation of compilers from a semantic lan-
guage description; this required formalising the syntax and grammar of the semantic
metalanguage. Although the ALGOL description was written in this MSL style (also
presented in [Mos75b]), and used somewhat as a proof-of-concept, it was never ac-
tually run on this “semantics implementation system” (personal communication June
2016). It is noted in Section 4.1 below that a denotational description of the Sal lan-
guage must have been largely worked out (by Strachey and Milne in their Adams Essay,
finished in 1973) before Mosses wrote his PRG monograph on ALGOL but the latter
presented much the most ambitious description task tackled by the PRG group at that
point in time or, in fact, thereafter.

4.1 Background: Brief history of ‘denotational’ concept

This is not the place to attempt a full history of the development of what is variously
referred to as Scott-Strachey, Mathematical or Denotational Semantics. The current au-
thors consider that, for the current purposes, the beautifully clear exposition in [Sto77]
and [Sto80], Campbell-Kelly’s insightful [CK85] and the issue of Higher-Order and
Symbolic Computation dedicated to Strachey (Volume 13, Issue 1) absolve them of the
need to attempt such a history. However, to facilitate merging the time sequence of the
evolution of ideas, it is worth noting the following events and their dates:

• both Scott [Sco00] and Penrose [Pen00]34 record that Roger Penrose suggested
to Strachey in around 1958 looking at Church’s Lambda Calculus.

• It is widely claimed that Lisp 1.5 was based on the Lambda Calculus. This is
not, of course, the same as arguing that McCarthy envisioned using the Lambda
Calculus in giving semantics and the evidence in his approach described in Sec-
tion 1.5 is certainly to the contrary.35

34Penrose records “I cannot clearly remember at what stage I tried to persuade Christopher Strachey of the
virtues on the Lambda Calculus. As I recall it, my own ideas were along the lines that that the operations of
the Lambda Calculus should somehow be ‘hard-wired’ into the computer itself, rather than that the calculus
should feature importantly in a programming language. In any case, my recollections are that Strachey was
initially rather cool about the whole idea. However, at some point his interest must have picked up, because
he borrowed my copy of Church’s book and did not return it for a long time, perhaps even years later.
When I eventually learnt that he and Dana Scott had picked up on the ideas of Lambda Calculus, it came as
something of a surprise to me, as I do not recall his mentioning to me that he had taken a serious interest in
Church’s procedures.”

35Furthermore, McCarthy frankly writes in [McC81] “And so, the way in which to do that was to borrow
from Church’s Lambda Calculus, to borrow the lambda notation. Now, having borrowed this notation, one
of the myths concerning LISP that people think up or invent for themselves becomes apparent, and that is
that LISP is somehow a realization of the Lambda Calculus, or that was the intention. The truth is that I
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• Peter Landin noted the “correspondence” between fragments of ALGOL and
Lambda Calculus in [Lan65a; Lan65b].

• In [Lan66] (recall the conference was 1964), Landin gives a mapping from AL-
GOL to “imperative applicative expressions”, a modified form of Lambda Calcu-
lus notation which uses an SECD machine [Lan64] to give semantics (see Fig. 5
in Section 6.1).

• Strachey’s paper [Str66] at the 1964 conference36 discussed how an early version
of this approach (as presented in [Lan64]) could be applied to CPL (a language
developed by Strachey and others [BBHS63]).

• Scott and Strachey first met at the April 1969 meeting of IFIP WG 2.2 in Vienna
and Scott was immediately “struck by Strachey’s striving to isolate clear-cut gen-
eral principles” and found his approach “the most sympathetic of the members
of the group” [Sco00].

• Scott visited the IBM Vienna lab in August of the same year and presented the
work [BS69] that he had been doing at the Mathematisch Centrum in Amsterdam
(now Centrum Wiskunde & Informatica).

• Scott spent one semester in Oxford (around October 1969–January 1970): ini-
tially, he believed that it was impossible to construct a mathematical model of
the type-free Lambda Calculus [Sco69]37 but after a sudden inspiration a succes-
sion of foundational papers were written initially as PRG monographs [Sco70;
Sco71b; Sco71a; Sco73]. In [ST15] Scott says this about his inspiration: “If
when you go from a space to the function space it seems more complicated,
maybe there’s a space such that when you go to the function space it isn’t more
complicated, so a space can be isomorphic to its function space.”

• Strachey visits Scott in Princeton [SS70].

• Scott accepted the new Professor of Mathematical Logic chair and returns to
Oxford in 1972; sadly, Strachey and Scott (in Scott’s words) “had so many obli-
gations and duties as new professors at Oxford that [their] joint work could never
again be so concentrated” [as it was in 1969].

• Scott continued to refine models for the untyped Lambda Calculus e.g. [Sco73].

• The technical concept of “continuations” as a way to handle abnormal termi-
nation was invented by Chris Wadsworth at the PRG38 and published in a joint
paper with Strachey [SW74].

• Robert Milne and Strachey wrote their submission [MS74] to the Cambridge
Adams prize competition in the period from early 1973 right up until the sub-

didn’t understand the Lambda Calculus, really.” (There is a specific discussion in the same article (P.180) on
getting the binding rules wrong.)

36A draft of this paper is contained in the archive of Strachey’s papers in the Bodleian Library and it is
clear that it was completely written prior to the meeting in 1964.

37One major issue is the “cardinality problem”: the number of functions N → N must have a higher
cardinality than that of N. Thus, there are more procedures over N than ℵ0. If one associates an untyped
lamda-defined function with procedures that can be passed as arguments to themselves a paradox is likely.
Scott resolved the problem by posing suitable restrictions on functions so that domains could be constructed
that can be viewed as partially ordered lattices.

38Most denotational semantics publications (e.g. [Sto77]) credit Wadsworth and also Lockwood Morris
independently; the story is, however, slightly more complicated: see [Rey93] for a fuller history.
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mission deadline in December 1974. This was intended as a comprehensive
account of the fundamental concepts in programming languages, how they may
be modelled using a denotational semantics, illustrated by a full denotational
definition of a significant language, SAL, and a method for giving implementa-
tions of languages from the semantics, together with proofs of equivalence and
correctness.

• Strachey died suddenly of hepatitis in May 1975, shortly after hearing that his
Adams Essay submission was unsuccessful.

• Milne completed his (Cambridge) PhD [Mil74].

• Milne rewrote the Adams essay in book form as [MS76a; MS76b].

• Joe Stoy, a lecturer at the PRG who worked closely with Strachey and was the
internal examiner for Mosses’ DPhil, published a textbook on the denotational
semantics style intended as an easier-to-read alternative to the Milne-Strachey
book in 1977 [Sto77].

4.2 Extent of ALGOL described

See [Mos74, p.3 & C9]

Mosses declined to model own variables claiming (with justification) that they were
ill-thought out at that time. He does mention (and indicate where to add) standard
functions.

4.3 Syntactic issues

See [Mos74, p.5 & C2]

Mosses bases his semantic description on a concrete syntax of ALGOL using “an-
notated deduction trees” in the words of [SS71], which are tagged with labels that
correspond with fragments of concrete syntax. This has some of the advantages that
are claimed for using an abstract syntax. Whether one likes or dislikes the inclusion of
syntactic parsing clues such as begin/end/if/then/else, or prefers distinct records such
as Block , If ,Assign as proposed by McCarthy and deployed by the Vienna group, is
probably just a matter of taste. Interestingly, Mosses does use constructed objects such
as makeArray ,makeBounds (and their associated implicit selectors) but not for the
syntactic classes.

Mosses also makes the point about not needing to worry about parsing. One could
argue that using an abstract syntax fits Strachey’s dictum “that one should work out
what one wants to say before fixing on how to say it”.

There are no context conditions in [Mos74]; so the semantics has to trap type errors
dynamically that could have been detected statically.
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4.4 Overall semantic style

By 1974, it was accepted that the basic space of denotations should be functions from
stores to stores and Mosses employs these as the basic type. The situation is some-
what complicated by the use of “continuations” to handle abnormal exit from phrase
structures (see Section 4.5.3 below).

The semantic function is, as far as possible, a homomorphic mapping from phrases
of ALGOL to the aforementioned denotations. The store-to-store denotations are, of
necessity, unnamed functions and have to be defined by lambda expressions. In Fig. 9
in Section 6.1.1, this is suggested by showing λ creating functions out of the basic set
Σ.

The great advantage of making the basic semantic blocks functions in the purely mathe-
matical sense is that they are well-known mathematical objects with well-known prop-
erties. This tends to make reasoning about them more straightforward and tractable
than in an operational semantics where reasoning has to be performed over the steps of
the interpreting machine.

There are two parts to the monograph: the first contains a brief introduction and refer-
ences plus 30 pages of formulae constituting the formal description itself; the second
provides a 20 page commentary thereon.

Perhaps abiding by Strachey’s comment that one can do much more with an equation
that fits on one line, Mosses uses identifiers for functions and their arguments that
are often single Greek letters. Although he provides a decoding of these names in
his commentary, these offer little intuition to the reader. It might be argued that this
approach to brevity would not scale to a larger language description and one might
even ask whether the decision was optimal for that of ALGOL.

The semantic functions are represented in the description with cursive capital letters,
and the fragments of deduction tree upon which they operate are enclosed within “Stra-
chey” brackets: A[[t ]]ρθ. These functions take multiple arguments (a term, an environ-
ment and a continuation) but, rather than having a tuple, the arguments are Curried.
[Sto77] argues that this allows varying levels of detail to be supplied for a slightly dif-
ferent meaning:
A[[t ]] is the meaning of a command in vacuo;
A[[t ]]ρ instantiates the variables by adding in an environment;
A[[t ]]ρθ adds a continuation, making the command “ready to go”;
A[[t ]]ρθσ is a particular execution of the command in a particular state.

4.5 Specific technical points

4.5.1 Environment/Store

See [Mos74, p.9, C4 & C18]

The store (Map) is a “small state” object which associates locations with values; in
addition there is an Area that indicates which locations are in use. The Area would
appear to be needed because Map is a general function from the entire infinite set of
locations and Area tracks the busy locations.
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An environment associates identifiers with their denotations. In the case of simple
scalar variables, the denotations are locations (Locn). For arrays, the denotations
(Array) are sequences of bounds and of locations. This decision is again presumably
because finite mappings are not considered to be basic objects.

Other sorts of denotations are discussed below.

4.5.2 Procedure values

See [Mos74, p.14 & C12]

As one would expect, the denotations of functions and procedures are full-blown func-
tions (again somewhat complicated by continuations). Thus, there is no need to add a
mechanism for returning parameters, as the denotations of type procedures are func-
tions which return a value (and optionally modify the state, if the procedure has side-
effects), or simply modify the state, for non-type procedures.

4.5.3 Handling of jumps

See [Mos74, p.13, 24, C18 & C19]

The story of continuations deserves a separate historical account. Fortunately, this has
been provided by Reynolds in [Rey93] who updated this somewhat in his December
2004 talk at the Computer Conservation Society in London.39 For the current purposes,
the joint paper by Wadsworth and Strachey [SW74] is used as the reference point.

Providing a homomorphic model of the goto statement is a key issue in denotational
semantics precisely because the content of such a statement is just a label and there is no
obvious way in which its meaning is contained in something derived from that content.
The idea of the continuations method is to say that the denotation of such a label is
the computation that will arise if computation begins at that label. Unfortunately, this
means that all of the obvious denotations for statements need to take their potential
completions as an extra argument.

These “potential completions” are referred to as continuations and are arguments to
(almost) every semantic function. Typically they are referred to with θ in denotational
semantics and Mosses’ ALGOL description follows suit. The continuation is the de-
notation of the semantically-following statement and, as that contains its own contin-
uation, the continuation of the first statement in a program contains the denotations of
every statement up until the end of the program.

Thus, in a small example taken from [Sto77] (any example taken from the actual AL-
GOL description would be somewhat larger):

L[[Γ1; Γ2]]ρθ = L[[Γ1]]ρ{L[[Γ2]]θ}

Commands are supplied with continuations simply so they have the option of being
ignored should an abnormal termination occur.

39Video recordings exist of this event and the earlier one organised in the same way in June 2001.
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In the ALGOL description, the denotation of goto statements involves determining
whether the label is within the current phrase and using the appropriate auxiliary Hop
or Jump function (following Strachey’s names for gotos within and outside the current
phrase respectively). Both functions alter the continuation to become the meaning of
the labelled statement; Jump uses another auxiliary function to modify the environ-
ment as appropriate first.

4.5.4 Non-determinism in expression evaluation

See [Mos74, p.C14 & C16]

Because denotations are functional, Mosses’ description (like that from Vienna which
is discussed in Section 5) cannot handle the non-determinism permitted for expression
evaluation in ALGOL within the denotations. Instead, in some places the semantic
evaluation functions force a left-to-right order and, in others, the order is simply left
unspecified.

4.6 Postscript on Oxford Denotational Semantics

ALGOL offered no way of writing concurrent programs. Any attempt to tackle con-
currency would bring with it non-determinism and neither the version of denotational
semantics in use in Oxford at the time of Mosses’ description nor that used by the Vi-
enna group in the 1970s would have a way of modelling concurrency. One way forward
that evolved later was the use of power domains; Bekič also made suggestions before
his tragic death [Bek71].

A clear description of denotational semantics is given in [Ten76] which also contains a
formal description of Reynolds’ Gadanken language.

Mosses has continued to work in the field of formal semantics throughout his career,
going on to devise, for example, a form of SOS called “Modular Operational Seman-
tics” [Mos04], and “Action Semantics” . . . [Mos05] based on Gul Agha’s actor systems
for concurrency. Recently, Mosses has been working on a “Funkons” approach [MV14]
to mechanising formal semantic descriptions based on defining a small set of “funda-
mental concepts” and providing mappings from language constructs into these.

5 VDM denotational description

The technical arguments for moving away from ‘grand state’ semantics were clear in
1970 (see Section 3 above); the evolving ‘denotational’ ideas were understood; what
was needed was the opportunity for the Vienna Lab to tackle a significant language
description to try out their own combination of these ideas. This came about in 1973.

5.1 Background: Vienna denotational semantics

Roughly corresponding to the period 1971–72, the Lab had been asked to work on
finding automatic ways of detecting potential parallelism in sequential FORTRAN pro-
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grams. But, in 1972, IBM began an ambitious plan to design a machine architecture
that was radically different from that of the 360 range that had dominated the 1960s.
The aim of the ‘Future System’ (FS) project was to make computers far easier to use
and included concepts such as a one-level address space, unforgeable pointers and in-
built support for what were essentially procedure calls. Because the project to build FS
machines was eventually cancelled, little is published about it but [RS76] gives some
hint of the novelty of the ideas that were explored. The Vienna Lab was asked to de-
sign a PL/I compiler for FS. Furthermore, there were no constraints put on the design
methods to be used. Unsurprisingly the Lab decided that the first task was to write a
formal description of the version of PL/I that they were to support: the ECMA/ANSI
version of PL/I.

As regards the approach to description, there had been an exchange of letters between
Bekič, Lucas and Jones during 1972 that explored how to fit some of their own ideas
into a denotational mould.40 Jones moved back to Vienna on a ‘permanent transfer’ in
early 1973. Much of the technical detail about ‘VDM’41 is covered in [Jon99] but it
is worth adding that the task of designing a compiler for a machine whose architecture
was both novel and evolving presented considerable challenges.42

Overall control of the PL/I for FS project was by Kurt Walk. Initially there were two
sub-groups with Viktor Kudielka managing the front-end and Peter Lucas the back-
end. When Lucas transferred to IBM Research in Yorktown Heights, Kudielka became
manager of the project and Jones became ‘Chief Programmer’ around April 1974. (By
this time, Zemanek had been made an IBM Fellow and Walk was Lab director.) The
project occupied most of the 20 or so professional members of the Lab.

In 1974, a full VDM denotational description of the ECMA/ANSI subset of PL/I had
been constructed and was printed as a Technical Report [BBHJL74]; a collection of
further reports discussing aspects of developing compilers from such descriptions were
written (see Section 5.6). The authors listed for TR25.139 are Hans Bekič, Dines
Bjørner, Wolfgang Henhapl, Cliff Jones and Peter Lucas (ten further colleagues are
acknowledged for contributions including detailed reviews).

On St Valentine’s day 1975 the FS machine project was cancelled [Gra06] and it be-
came clear that the next mission of the Vienna Lab would be the development of con-
ventional IBM products. Many of the key researchers began to leave the Lab: Bjørner
back to a chair at the Technical University of Denmark, Henhapl to a chair in Darm-
stadt, Germany and Jones moved to IBM’s European System Research Centre in La

40Bekič had spent the academic year 1978/9 with Landin at Queen Mary College London and Jones had
attended some of Strachey’s Oxford lectures in 1971/2.

41The name “Vienna Development Method” was actually coined rather late in the project. There is also a
certain ambigutiy: to many people, VDM refers to a development method for all forms of computer system
(this aspect is placed in a historical context in [Jon03]); in the current paper, VDM is taken to refer specifi-
cally to the technique for language description that evolved in the Vienna Lab between 1972 and 1976.

42An interesting cautionary tale about formal descriptions relates to that of the FS architecture itself. As
indicated, the machine was intended to have one-level store addressing, novel call/return instructions, un-
forgeable pointers etc. Clearly, to design a compiler, it was necessary to have a clear description of the
(evolving) architecture. A small team in the IBM Lab in Poughkeepsie (New York State) wrote a formal de-
scription that initially used rather abstract types and implicit definitions. This was not, of course, executable.
Management suggested that since this had involved a lot of work (and thus expense) it would be better if it
could execute FS instructions. The team laboured to achieve this and then to respond to a subsequent request
that it should be optimised to run at a more acceptable speed. At the end of this process, the description was
of little use to the Vienna Lab as a basis for understanding the machine and Hans Bekič had to write a short
formal description to guide the code generation work.
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Hulpe, Belgium.

Papers are often cited more than they are read ([Flo67] is almost certainly an example);
technical reports are perhaps more read than cited. Certainly [BBHJL74] has had more
influence than its relatively low citation count would suggest. After the cancellation
of FS and thus the PL/I compiler project, Bjørner and Jones agreed to try to preserve
and promulgate the VDM denotational style by cajoling their former colleagues to con-
tribute to [BJ78] which includes the description [HJ78] of ALGOL that is the subject
of this section. The Table of Contents of [BJ78] is reproduced in Figure 4.43

So, here again, the description of ALGOL followed that of the larger PL/I language;
the simpler task being undertaken so as to illustrate the method on a language whose
description would fit in a chapter of a book.

Just as Mosses in [Mos74] provides a slightly backhanded acknowledgement to [ACJ72],
[HJ78] has in its acknowledgement:

Returning the compliment to Peter Mosses, one of the authors would like
to acknowledge that a part of the incentive to write this definition was the
hope to provide an equally abstract but more readable definition than that
in [Mos74].

5.2 Extent of ALGOL described

The authors of [HJ78] claim to cover all of ALGOL as given in [MHW76] that cleared
up obscurities in the [Revised Report]. In particular, the VDM description does handle
“own” variables, input/output and the so-called “standard functions” (See Section 1.3).
A few comments are offered in the introduction to [HJ78] that suggest yet further im-
provements to ALGOL itself.

As made clear in the introduction, non-determinism in expression evaluation is not
described. It is stated:

As has been discussed elsewhere in this volume, the definition of arbitrary
order of evaluation has not been addressed . . .

5.3 Syntactic issues

5.3.1 Concrete vs. abstract syntax

The semantic description is based on an abstract syntax; some comments on the transla-
tion from concrete to abstract syntax are given but not a full description of the process.
The movement away from the purely object-based view of the world in the classic
VDL style (see Section 2.3) that is seen with the inclusion of sets as first-class objects
in [ACJ72] had by this time developed into the rich VDM notation. Now, there were

43There is a coda to this story. At that time, Springer Verlag appeared to take the attitude that once
an LNCS volume had sold its initial print run that their task was complete. When they declined to reprint
LNCS 61, Tony Hoare came to the rescue and offered to have a suitably updated collection of papers reprinted
in his prestigious ‘red and white’ Prentice-Hall series: [BJ82] contains among other contributions a revised
description of ALGOL [HJ82]. The revision differs mainly in the order of presentation as discussed in
Section 5.6 below.
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Figure 4: Copy of the Table of Contents of [BJ78]
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a number of different types which were all equally fundamental and linked by a se-
ries of known operators. VDM includes sets, sequences, maps and records as basic
types, which allows sophisticated abstract constructs to be described rather succinctly.
Each type comes with a set of functions to construct, select and transform them. These
associated functions are implicitly included in the definition of the type, in contrast
with the explicit use of constructors and selectors in McCarthy’s style or the universal
construction and modification operator seen in VDL.

For example, the abstract syntax for prefix operators is as follows:

Prefixexpr :: s-opr : Prefixopr
s-op : Expr

Objects of this type can then be constructed with the function mk -Prefixexpr(a, b),
and the operand can be selected with s-op(E ). The real power comes in the equiva-
lence of a mk - expression with an object constructed in this way, which allows the easy
naming of components in a function.

5.3.2 Handling context dependencies

In common with other VDM descriptions (particularly [BBHJL74]), as many mean-
ingless programs as possible are eliminated by defining ‘context conditions’: a family
of predicates is-wf -θ for each syntactic class θ that determines if it makes sense with
respect to the declared types of variables. In ALGOL, these checks cannot be totally
static because of array parameter bounds and procedure parameters. The PL/I Subset
definition cited above appears to be the first published used of a completely formalised
static error checking system.

As an example, the predicate for prefix operators checks that for expressions prefixed
with NOT the type of the expression is Boolean and for other prefix operators, the type
is arithmetic.

5.4 Overall semantic style

Vienna had moved completely to a denotational approach to semantics but the appear-
ance of their descriptions differs greatly from those from Oxford denotational descrip-
tions. One reason for this is not of any depth: faced with a large language like PL/I, it
was completely clear that single (Greek) letters would not be useful for the names of
either functions or their parameters.This decision is however about the surface appear-
ance and does not signify a difference in approach to semantics.

Much the most significant difference between Oxford and Vienna denotational descrip-
tions can be termed “exits versus continuations”. Section 4.4 explains how continua-
tions are used to model exceptional sequencing such as is required by goto statements.
The Vienna group chose to pick up the exit idea described in Section 3 as a simpler
mechanism for describing exceptional termination of phrase structures.

For languages without exceptional sequencing such as goto statements, functions from
states to states (Σ → Σ) can be used for the space of denotations. The denotation
of the sequential composition of statements in the object language is mapped into the
composition of the denotations of the separate constructs; fixed points can be used to
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define (homomorphically) the denotation of repetition in terms of the denotation of the
body of the repetition.

The exit idea is used in a denotational setting by making the basic denotations functions
from states to pairs of states and an optional abnormal component (Σ→ Σ×

[
Abn

]
).

The denotation of say s1; s2 is now derived in a slightly more complicated way from
their separate denotations:

• when the abnormal part of the pair for the denotation of s1 is nil the denotation
of composition passes the state part of the denotation of s1 to the denotation of
s2.

• if however the abnormal part of the denotation of s1 is non-nil, the pair from s1
is the result of the composition of s1; s2 — thus effectively ignoring s2

This slightly complicated form of composition is made readable in semantic descrip-
tions by defining a “combinator” whose representation was chosen to be a semicolon.
Had the Vienna group tried to emulate the compactness of the Oxford descriptions,
they could have written something like:44

M [[s1; s2]] 4 M [[s1]]; M [[s2]]

In fact, rather more readable names (e.g. i -stmt , i -block ) were used for semantic func-
tions in [HJ78] but the essential point is the use of exits and making them palatable by
defining appropriate combinators.

The denotation of a goto statement makes no change to the state but defines an abnor-
mal value which is defined using an exit combinator. The propagation of abnormal
values has to be caught somewhere and this requires one more combinator for which
the name was chosen by writing “exit” backwards (tixe). Further details of how the
exit concept was used in modelling ALGOL are given in Section 5.5.3 below.

One of the Vienna reservations about continuations is that they are too powerful for
the task of modelling exceptional exits from phrases of an object language; so it is
not claimed that exits and continuations are equivalent. It is however possible to show
that, for a language similar to ALGOL, an exit model gives the same semantics as one
using continuations; such a proof is given in [Jon78] and this is one of the chapters that
was significantly revised in the 1982 volume giving [Jon82]. The proofs are interesting
because they tease apart different aspects of how labels are modelled.

One last observation is worth making about combinators and that is that it is possible
to read them operationally: although the semicolon above is defined as a combinator
of functions, it can be interpreted as an operational definition that first performs the
computation before the semicolon followed by that after it.

Peter Mosses in [Mos11] points out that the use of combinators in VDM is similar to
the later development of Moggi’s “monads” [Mog89]. The use of combinators also
makes denotational descriptions in VDM look different from those written in Oxford
where arguments (with very short names) are passed to Curried functions.

The overall semantic function of this approach is very similar to that of the Oxford ap-
proach: the signature can be seen as AP → (Σ→ Σ×

[
Abn

]
). As in the Oxford style,

the denotations are formed from λ-expressions on Σ. See Figure 9 in Section 6.1.1.

44This is close to the style of [HJ82] but [HJ78] used a more long-winded notation.
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5.5 Specific points

As mentioned above, the discussion here revolves around [HJ78]; the basic model
in [HJ82] is the same but the description in the latter paper is organised by language
construct (as in the Functional description; see 3.4) rather than collecting all of the
abstract syntax for all constructs following that with all of the context conditions and
finishing with all of the semantic descriptions. However, direct pointers in this section
are made to [HJ82] as it is probably easier for the reader to obtain.

5.5.1 Environment/State

See [HJ82, §6.0].

As is normal in small state descriptions, there is a clear separation between environ-
ments and states. In the simplest case, the Env maps identifiers corresponding to scalar
identifiers to internally generated scalar locations (Sc-loc) and the Storage maps scalar
locations to scalar values which are values of the elementary types (Booleans, integers
and reals). The model of arrays is straightforward: a dense mapping from indices to
scalar locations.

Statements can change the store but their denotations depend on environments which
are not then shown as results. This makes immediately apparent the property that the
environment of s2 in [[s1; s2]] is identical with that of s1; this property required a non-
trivial proof of a lemma in grand state descriptions. Unfortunately, for any language
that allows side effects (including ALGOL), expression evaluation can also change the
state.

Following this line of what can be changed on statement evaluation, the overall state
(Σ) has to contain the current values of every Channel for the model of ALGOL’s
input/output statements.

5.5.2 “Own” variables

See [HJ82, §6.0.4].

As mentioned above, “own” variables are handled by having a separate mapping from
their identifiers to additional unique locations. This is held in a separate environment
component named own-env which is only used in the denotations of “own” variables.
Furthermore, internal unique names are generated to avoid name clashes. As discussed
in [HJ78, p 307], this model is given in detail because the topic of own variables had
been a subject of controversy.

5.5.3 Handling of jumps

See [HJ82, §6.4.4 & 6.1.1].

The overall idea of the exit mechanism is explained above in Section 5.4. Denotations
of labels obviously contain the label identifier but, to make them unique, an “activation
identifier” is appended. The semantics of a goto statement is then simple: evaluate the
denotation corresponding to the label expression (if any) and perform an exit . As each
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phrase structure is closed, a tixe operation catches an abnormal part when present and
uses Mcue functions to determine the correct place to resume giving meaning to the
program.

5.5.4 Procedure denotations

See [HJ82, §6.2.2].

As one would expect from a denotational description, procedures are denoted by func-
tions that are ultimately of type Σ → Σ ×

[
Sc-val

]
. They are Curried to require the

denotations of the actual parameters (arguments) and a set of activation identifiers (see
Section 5.5.3). The Sc-val is present in the case of functions and nil in the case of
procedures.

5.6 Postscript on VDM

As in any functional or denotational semantics, non-determinism cannot be handled.
This means that this description, in common with those in Sections 3, 4 and 5, fails to
describe the option to evaluate expressions in arbitrary order.

The differences between the models in [HJ78] and [HJ82] are minor; the main organ-
isational difference is in the order of presentation. In the earlier paper, all the abstract
syntax is grouped together, followed by the context conditions and then finally the
semantics; in the later paper, these are grouped by language construct.

The description in [HJ82] employs constructor functions in parameters to overloaded
function names. This pattern matching idea makes the description easier to read.

Connected with the PL/I for FS compiler project, other than formal description of PL/I
itself [BBHJL74], a number of other technical reports (e.g. [Wei75; Izb75; BIJW75;
Jon76]) describe aspects of compiler development from VDM language descriptions.

There are a number of language descriptions in the same VDM style including:

• PRTV (essentially SQL) [Han76].

• Database programming languages [Wel82; Wel84].

• Smalltalk [Wol88]

• In the description of Pascal in the same style [AH82], an interesting issue that
significantly complicates the model of Pascal is the modelling of so-called vari-
ant records. This was a feature of Wirth’s Pascal language that supported unions
in a type description. Tagged variant records contained information recording
the option and these are fairly easy to model. There is the possibility, however,
of having untagged variant records. Furthermore, variant records can be passed
as parameters. The amount of extra checking that has to be put into the formal
model to distinguish incorrect handling of untagged variant records is consider-
able.

• The Modula-II standard (and for once, this is really the defining document) is
given in [AGLP88].
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Figure 5: Landin’s figure ( [FLDL, p.290]) “categorization chart”

• The PL/I standard [ANS76] uses the concepts of a VDM model but makes the
unfortunate choice to present all but the abstract syntax and state in words rather
than formulae; furthermore the authors took the position that while sequences
would be familiar to their readers, sets might be too abstract. Mathematically
literate readers are faced with having to scan the whole description to ascertain
whether the order of elements in a sequence actually influences the semantics
and reading hundreds of pages of “English” that tries, but fails, to be as precise
as conventional function notation.

6 Conclusions

Sections 6.1–6.4 offer a more explicit comparison between distinctions made in the
major Sections 2–5 above; Section 6.5 reviews the (limited) tool support used in the
creation of the ALGOL descriptions; Section 6.6 lists some other significant formal
language descriptions in the model-oriented camp; finally, Section 6.7 briefly discusses
property-oriented descriptions.

6.1 Operational vs. denotational

The general inclusion of the discussions in [FLDL] has been praised above. It is how-
ever worth drawing attention to one specific figure: Landin prepared a “categorization
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chart” for the final discussion and this is printed in the proceedings and reproduced here
as Figure 5. The categorisation choices made here do not necessarily reflect the views
of the current authors (in particular, it seems that Strachey is not at all ‘interpreting’ in
the same way as McCarthy or Landin) but it is included as an interesting comparison.
In particular, it is clear that there is a two-step process in Landin’s work, one half of
which (the translation) goes on to influence denotational semantics and the other half
(interpreting) operational semantics.

An obvious distinction between the four ALGOL descriptions in the current paper is
that Lauer (Section 2) and Allen et al. (in Section 3) use an operational semantics
approach whereas Mosses (Section 4) and Henhapl et al. (in Section 5) are denota-
tional. It is however worth adding that the move to a small state semantics makes
a radical difference to both the readability and tractability of a semantic description.
Lauer’s VDL description followed nearly all of the decisions that had been made in
the VDL descriptions of PL/I (ULD-III versions I–III). In particular, almost anything
which could affect the computation was placed in the grand state. As a consequence,
it is unclear when such items can be changed in the evolution of the state. In contrast,
small state descriptions attempt to show things such as environments (mapping iden-
tifiers to their locations) as arguments to the semantic description and make the major
transitions from stores (mapping locations to values) to stores. Allen et al., as outlined
in Section 3, is a small state description. This observation is important if one consid-
ers how a “Structural Operational Semantics” (SOS) [Plo81] (reprinted as [Plo04a]) of
ALGOL would be presented.

One reason for raising the issue of SOS is that the denotational approach does in-
flict some rather heavy foundational lifting on both writer and reader. The load be-
comes particularly heavy for languages that allow concurrency. Plotkin had published
the fundamental contribution that proposed power domains as a model for concur-
rency [Plo76] but made the decision to teach an operational approach in his Aarhus
course in 1981. His reflections [Plo04b] that accompany the republication [Plo04a] of
his Aarhus lecture notes [Plo81] offer a useful perspective.

He writes:45

I remember attending a seminar at Edinburgh where the intricacies of
their PL/I abstract machine were explained. The states of these machines
are tuples of various kinds of complex trees and there is also a stack of
environments; the transition rules involve much tree traversal to access
syntactical control points, handle jumps, and to manage concurrency. I
recall not much liking this way of doing operational semantics. It seemed
far too complex, burying essential semantical ideas in masses of detail;
further, the machine states were too big.

Advocates of denotational semantics also make much of the rule that the mapping from
syntax to semantic objects should be homomorphic in the sense that the denotation of
a composite object should be some function of the semantics of its components. It
has been seen above that this rule can be problematic with constructs such as goto

45Interestingly, also in [Plo04b] he writes: “I recall Dana was sceptical regarding the latter point and, in
that connection, he asked a good question: why call it operational semantics? What is operational about it?
It would be interesting to know the origins of the term ‘operational semantics’; an early use is in a paper of
Dana’s [. . . ] written in the context of discussions with Christopher Strachey where they came up with the
denotational/operational distinction. The Vienna group did discuss operations in their publications, meaning
the operations of the abstract interpreting machine, but do not seem to have used the term itself.”
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statements. It is also worth observing that a guideline suggesting that there should
be one SOS rule per composite object has a similar effect.46 Of course, the difficult
cases such as abnormal termination remain. Furthermore, it is often useful to make
case distinctions in SOS by providing different hypotheses (e.g. the two cases for the
evaluation of the conditional expression in an if statement). Finally, SOS does cope
naturally with non-determinacy by moving from functions to relations and this can
result in the hypotheses of multiple rules matching a given configuration. Despite
these caveats, much of the structural clarity of the homomorphic rule can be preserved
in SOS description.

6.1.1 ADJ diagrams

The differences between the various approaches can be presented by moving beyond
simple signatures and employing a more graphic presentation. ADJ diagrams47 are
a way to picture the signatures of functions by drawing arcs between their domain
and range sets. They are used in this paper because their comparison emphasises the
differences in the approaches better than mere signatures. Meaning is given typically to
abstract programs (AP) although in the Oxford style concrete programs are used. The
diagram in Figure 6 simply indicates that abstract programs are derived from actual
programs, which are strings of tokens, in some usually-unspecified way which may be
thought of as a translator.

The Greek letter Σ is used in the remaining figures to indicate a store, a smaller state
which is essentially little more than a mapping between identifiers (or their surrogates
such as locations) and values. Similarly, Ξ is used in Figure 8 for classic VDL and
is a much larger state with more components (some of which do not change as fre-
quently as the store). More information is given in the ‘Overall semantic style’ in each
description’s section.

6.2 Modelling decisions

All three of the descriptions in Sections 2, 3 and 5 base the descriptions on an ab-
stract syntax; the description in Section 4 presents the semantic rules being applied
to concrete ALGOL phrases. That having been said, Mosses achieves some of the
advantages of an abstract syntax by reducing the grammar for ALGOL to a (highly
ambiguous) normal form.

It is also worth noting that the notion of abstraction in an abstract syntax is not absolute.
For example, an abstract syntax in VDM might well represent integer constants as N;
perhaps more questionably, floating point numbers might be shown as R. In either

46Again from [Plo04b]: “A realisation struck me around then. I, and others, were writing papers on
denotational semantics, proving adequacy relative to an operational semantics. But the rule-based oper-
ational semantics was both simple and given by elementary mathematical means. So why not consider
dropping denotational semantics and, once again, take operational semantics seriously as a specification
method for the semantics of programming languages?”

And again: “The second idea was that the rules should be syntax-directed; this is reflected in the title of
the Aarhus notes: the operational semantics is structural, not, as some took it, structured. In denotational
semantics one follows an ideal of compositionality, where the meaning of a compound phrase is given as a
function of the meaning of its parts. ”

47Named after the ADJ group (Thatcher, Wagner and Wright) who first used them.
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case, there is of course a translation problem from sequences of digits. Although this
translation is non-trivial in the case of floating point numbers, it is possible to argue
that it is a problem that is usefully separated from the main semantic description.

The use of static checking of context dependencies, as hinted at in [ACJ72] and fully
exploited in [HJ78], provides a significant advantage in the process of giving semantic
meaning to programs by limiting the set of texts for which it is worth trying to give
meaning. Separating out the context conditions from semantics facilitates shorter, eas-
ier to read semantic functions and groups together error checks that compiler-writers
should emulate.

The denotational descriptions of ALGOL from Oxford and Vienna take different ap-
proaches to modelling goto constructs: Mosses uses the continuation concept most of
whose “discoveries” (see [Rey93]) have an Oxford connection; the “exit” approach
originated in the Vienna Lab and is deployed in [HJ78]. This can be viewed as a
modelling decision because either route fits with the overall denotational approach. In-
deed, [Jon78] establishes the equivalence of the approaches on a language fragment
that presents the essential challenges of ALGOL.

“Own” variables were always a contentious subject in ALGOL and two of the descrip-
tions decline to cover them at all. It is quite clear that doing so removes a good deal
of complication from the modelling process: in [Lau68] a pass of the entire program is
required and in [HJ78] an entirely separate environment is created.

6.3 Fundamental objects

An interesting dimension for comparison of semantic approaches is in their choice of
fundamental abstract objects. The evolution of richness in Vienna semantics can be
seen starting from their inspiration with McCarthy, through the use of purely objects
in VDL, the addition of sets in [ACJ72] and finally the rich collection of basic types in
VDM. The Oxford story is different, as no abstract syntax is used and the whole issue
is somewhat side-stepped.48 McCarthy’s approach to abstract syntax uses explicitly-
defined constructor and selector functions (see Section 1.5 for some examples), with
predicates describing language constructs as the basic types of the metalanguage.

In classic VDL, as seen in Section 2, this concept is expanded somewhat and used along
with the Vienna concept of objects. All fundamental blocks in the VDL style are such
objects and they come with selector functions implicit in the construction of composite
objects. There are explicitly-defined construction and modification functions which
operate over these objects.

[ACJ72] maintains the objects focus but the addition of sets as basic components adds
an extra layer of richness to the notation. This also brings requisite non-determinacy in
selectors, which is co-opted in the non-deterministic expression evaluation.

The Oxford focus is essentially on functions, which are organised in the mathematically
complex lattices and retracts. The use of these objects allows the use of a number of
their useful properties in proofs, but brings complications in the combining of types.

During the development of VDM, one suggestion for improvement of the VDL method
by Jones concerned abstract objects. In contrast to McCarthy’s explicit relation be-

48But this issue actually goes beyond abstract syntax.
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tween constructor functions, predicates and selectors, the Vienna group henceforth took
a definition such as

X :: a : TypeA
b : TypeB

to define implicitly the constructor and selector functions:

mk -X : TypeA× TypeB → X
a: X → TypeA
b: X → TypeB

and x ∈ X could only be true if x was built with mk -X . This proposal is contained
in [Jon69, §1].

One useful direct comparison that can be made is in the treatment of maps: construc-
tions associating keys with values. These form the central part of the store or state of
most semantics descriptions, those in this paper included, as they associate variables
with their current values.

The VDL approach is to use sets of simple pair objects. An example is in the denotation
directory, which is defined as follows:

is-dn = ({< n: is-den >|| is-n(n)})

Thus a set is built up of simple composite objects comprising a selector with an ele-
mentary name pointing to a denotation part. Selection uses a simple application-like
syntax n(dn) which returns the object where n corresponds to the selector part. This
is not fully defined anywhere in the description nor its associated method and nota-
tion guide [ULD-IIIvII-Meth]. In fact, rather heavy weather is made of the concept
of “abstract objects” in [Zem68; Oll71]. A comparison with a modern (e.g. VDM)
view of records with constructors, selectors and predicates is however somewhat unfair
because in VDL so much of the work had to be done using “composite selectors” to
locate things in trees and to prune those trees.

In the VDL Functional description, the basic idea is somewhat similar: a set of pairs is
used.

is-dn = ({< is-id , is-den >})

However, rather than composite objects in the VDL style, they are more akin to tuples
in classical mathematics. Selection from these is performed implicitly with auxiliary
functions such as firsts:

firsts(pr -set) 4 {ob-1 |< ob-l , ob-2 >∈ pr -set}

In the Oxford denotational description, Mosses skips the issue entirely, simply stating:

Map (associating locations with values)

In the commentary, he does note that a model for storage could be formulated with
Map = N → V (where N is the integer domain and V the domain of ALGOL-
allowable values). This would then presumably be a partial function allowing the se-
lection of values by the passing of identifiers.
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The VDM approach allows maps as powerful fundamental objects in their own right.
The environment thus is:

ENV = Id
m−→ DEN

This comes implicitly with application for selection, thus ENV (x ) would return the
DEN associated with x , as well as the auxiliary functions dom and rng returning sets
of the domain and range of the map respectively. Thus, dom ENV would be of type
Id -set, and rng ENV would be DEN -set.

6.4 Superficial differences

An obvious superficial difference between the descriptions in Sections 4 and 5 is the
notation style. In the former, the semantics of ALGOL assignments begins:

def C[[t:Sta]]   = switch label of t in
§
case"begin DecL DefL StaL end":

let < *1, *1> = (I*dec[[DecL]] , T * dec[[DecL]]> in
let < *2, *2> = <I*def[[DefL]]> T *def[[DefL]]> in 
let <  *3, *3> = <I*lab[[StaL]], T *lab[[StaL]]> in 
Indistinct ( *1 cat  *2 cat  *3)   ?,

Area ||
  l . D*[[DecL]] [?/ ?/  *1 cat  *2 cat  *3] ||
  *1. Area ||
  2 . let  1 =  [ *1/ *1/ *1] in

let  1 = SetArea( 1){ } in

C *[[StaL]] l(fix  *.let  2= 1 [ */ *2 cat  *3/ *2 cat  *3] in 
H *[[DefL]] 2 cat G *[[StaL]] 2 2 1 )

/  *2 cat  *3 /  *2 cat  *3] ||  1 

case"begin StaL end": C*[[StaL]]  

case"if Exp then Sta1 else Sta2" :
R[[Exp]]  "boolean" {  .     C [[Sta1]]  , C[Sta2]]  }

case"Ide:Sta": let < , > =  [[Ide]] in Hop( )

case"goto Exp": J [[Exp]|  "l abel" ||   . Jump( )

case"Var := AssL":
let   = Main(T var[[Var]] ) in A[[t]]  <> ||  

case"for Var := ForL do Sta":
let   =  T var[[Var]]  in Main  = "boolean"   ?,
F *[[ForL]] (Main )(V[[Var]]  )(P[[Sta]] ) ||  

case"Ide(ExpL)":
Coerce( [[Ide]])(MakeTyp("rt",?))"ev" ||
  . ApplyRt ( ) (U*[[ExpL] ){ }

case"∧ ":  

$

13

in the latter:

324 

cue-i-stmt(lab,mk-stmt(labs,sp)jstenv) = 

i_~ ~abElabs then i-unlab-etmt(sp,stenv) 

else cue-i-unlab-stmt(lab,sp, stenv) 

type: Id Stmt Stm.t-env 

pre: is-contnd(lab,mk-stmt(labs,sp)) 

cue-i-unlab-stmt: Id Unlab-stmt Stmt-env 

cue-l-cond-stmt(lab,mk-cond-stmt(,th, el),stenv) = 

if is-contnd(lab,th) then cue-i-etmt(lab,th,etenv) 

else cue-~-stmt(lab,el,stenv) 

pre: is-contnd(lab,th) v is-con.tnd(lab, el) 

cue-i-comp-~tmt(lab,mk-comp-stmt(stl),stenv) = 

cue-i-stmt-liet(lab,etl, stenv) 

i-unlab-stmt: Unlab-stmt Stmt-env 

i-comp-stmt(mk-comp-stmt(etl),stenv) = 

~.or i~I to lenstl d_~o i-unlab-stmt(s-sp(stl(i)),stenv) 

i-assign-stmt(mk-assign-stmt(dl, e),<,env, cas>) = 

let dl:<e-left-part(s-tg(dl(i)),<env,cas>)ll<i<lendl>; 

let v: e-expr(e,<env, cae>); 

for i=I to lendl d_~o 

(let vc:conv(v,s-tp(dl(i))); 

aseiEn(va,dl(i))) 

e-left-part: Left-part Expr-env ~ Sc-loc 

e-atv-proc-id(mk-atv-proc-id(id),<env,>) = env(id) 

The shorter identifiers and function names in the Oxford style make for a more com-
pact semantics, but the use of single (often Greek) letters can make it harder to follow
quickly.

6.5 Tool support

Each of the ALGOL descriptions contain a significant number of formulae. In none of
the four cases were these subjected to significant checking by tools that today might be
thought of as standard. The preparation of the early VDL descriptions49 used a system
called “Formula/360” [SZ66] that was driven from a concrete syntax and thus checked
for simple errors. It also had a simple but extremely useful formatting algorithm that
makes line breaks in long formulae by cutting at the highest point in the parse tree.

The one description that could have been processed by a tool that did more than syntax
checking is that from Mosses who was at that time working on his Semantics Imple-
mentation System [Mos75a]. SIS would have not only type checked the description

49The decision not to record the types of the semantic functions makes checking VDL definitions more
tedious that it needed to be.
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but could also have provided a prototype implementation. Mosses however informed
the current authors50 that his description of ALGOL was never processed by SIS.

6.6 Other significant formal descriptions of semantics

This section maintains the emphasis on procedural programming languages. In partic-
ular, the authors of this paper are aware that they have omitted mention of extensive
work on the semantics of process algebras.

Other descriptions of ALGOL include:

• Landin’s [Lan66] (remember: presented in 1964) is an introduction to his later
pair of papers [Lan65a; Lan65b] which present a correspondence between AL-
GOL and lambda notation. This is achieved by way of an abstract object lan-
guage into which both a lambda-based model and ALGOL are mapped to ‘ap-
plicative expressions’. The interpretation of these AEs is given by a machine
referred to as the Stack-Environment-Control-Dump machine. This machine is
cited in [LW69] as an inspiration for the state of VDL.

• [Bak65]

• Rod Burstall’s [Bur70] “set of sentences in first order logic” describes a major
part51 of ALGOL 60. Burstall acknowledges the (largely program verification)
work of Floyd, Hoare, Manna and others and generalises this approach to giving
the semantics of whole programming languages. The method is to describe the
rules that translate ALGOL commands into these sentences. One advantage of
this method, the author claims, is that the resulting sentences can be fed into
theorem provers and thus be used both to debug programs written in the language
more easily and indeed even to debug the language itself.

In addition to the semantic descriptions listed in “Postscript” sections (2.6, 3.6, 4.6,
5.6) and without wishing to claim that they are the earliest or most important, other
significant early formal descriptions of programming languages include:52

• CLU [Sch78]

• CHILL semantic description [HB80] 1980 denotational style in VDM with exit
mechanism and parallel processes modelled in abstract formulae. Context con-
ditions also used.

• Veronique Donzeau-Gouge’s semantics [DGKL80; INR80] of the sequential parts

50Personal communication June 2016.
51The description omits call by name, procedures and arrays as parameters, own variables and switches.
52The authors would be grateful to hear of other early semantic descriptions that are not listed here.
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• Ada in VDM but including concurrency by using SMoLCS [BO80]

• SML [MTH90]

• Actors [HBS73] and their semantics [AMST97]

• SPARK Ada was given a formal definition [O’N94] because of the intention to
use the language in the development of safety critical systems.

• COLD-K [FJ87]

6.7 Property-oriented descriptions

The ALGOL descriptions discussed above can all be viewed as being based on a model.
In particular, whether operational or denotational, the concept of a state or store is
central to fixing the semantics. In contrast, it is possible to attempt to fix the semantics
of a language by defining properties without such an explicit notion of state.

Much the better known property-oriented approach is to give ways of reasoning about
assertions that should hold of a program. Furthermore, Hoare’s “axiomatic basis”,
[Hoa69] the most widely cited reference on reasoning about valid assertions,55 specif-
ically mentions the technique’s suitability for defining the semantics of programming
languages.56

Hoare and Wirth claim to provide a description of Pascal in the style in [HW73] but it
is difficult to understand how this copes with parameter passing “by variable” (in other
words “by location”); a clearer way forward with this feature might be [AB77]. The
only language designed around an axiomatic description is “Turing” [HMRC88].

As Bertrand Russell observes, there are dangers of writing inconsistent postulates

53There was a series of requirements (Woodman, Tinman, Ironman) from the DoD for language proposals.
The Tinman version contains the following text (VI.C.2) for Unambiguous Definition:

A complete and unambiguous definition of a common language is essential. Otherwise,
each translator will resolve the ambiguities and fill in the gaps in its own unique way. There
are currently a variety of methods for formal specification of programming language semantics,
but it remains a major effort to produce a rigorous formal description, and the resulting products
are of questionable practical value. The real value in attempting a formal definition is that it
reveals incomplete and ambiguous specification. An attempt will be made to provide a formal
definition of any language selected, but success in that effort should not be requisite to its
selection. Formal specification of the language might take the form of an axiomatic definition,
use of the Vienna Definition Language, definition by an interpreter (à la Lisp), or use of some
other formal semantic system.

54The story of Ada and the formal semantics from INRIA is itself interesting. In the Foreword to [INR80],
it is stated that the formal definition using denotational semantics had a deep influence on the language. From
his dismissive comments at the PhD jury of Donzeau-Gouge, it was obvious that Jean Ichbiah who was the
leader of the team that developed the chosen contender (Green) was far less positive about formal semantics.

55Extensive historical notes on program verification are given in [Jon03].
56Hoare, in an interview recorded in 2015 for the ACM Turing Award series, stated “Well, I had the idea

that it would be a good idea to define programming languages in a way that didnt say too much about what the
computer actually did, because in those days anyway all computers were doing things slightly differently, but
gave enough information to the user of a programming language to be able to predict whether the computer
would do what the programmer wanted it to do.”
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what we want has many advantages; they are the same as the advantages
of theft over honest toil

Two papers that establish the consistency of axiomatic descriptions with respect to
model-oriented descriptions are [Lau71; Don76].

Another model-oriented approach to semantic language description is to define equiv-
alences over texts of a language. This idea was considered very early in the history
of semantics. Bekič calls this “defining a language in its own terms” in [Bek64];
Mike Patterson’s PhD thesis [Pat67] examines the power of program schemas57 (see
also [LPP70]).

The idea of pinning down the semantics of a language by defining equivalences over the
language has been given new life by research on “(Concurrent) Kleene Algebras”. In,
for example, [Hoa69; HMSW09; HMSW11], equivalences are shown to fit Kleene Al-
gebras. Hoare in his video for the ACM Turing Laureate series goes so far as to suggest
that this is a more profound link than his axiomatic semantics and in recent seminars
has shown how axiomatic, operational and denotational views can all be derived from
this algebraic view.
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