

COMPUTING
SCIENCE

Possible values: exploring a concept for concurrency

Cliff B. Jones and Ian J. Hayes

TECHNICAL REPORT SERIES

No. CS-TR-1483 September 2015

TECHNICAL REPORT SERIES

No. CS-TR-1483 September, 2015

Possible values: exploring a concept for concurrency

Cliff B. Jones; Ian J. Hayes

Abstract

An important issue in concurrency is interference. This issue manifests itself in both
shared-variable and communication based concurrency - this paper focusses on the
former case where interference is caused by the environment of a process changing the
values of shared variables. Rely/guarantee approaches have been shown to be useful in
specifying and reasoning compositionally about concurrent programs. This paper
explores the use of "possible values" for reasoning about variables whose values can
be changed multiple times by interference. Apart from the value of this concept in
providing clear specifications, it offers a principled way of avoiding the need for some
auxiliary (or ghost) variables whose unwise use can destroy compositionality. The
possible values concept also helps sharpen some issues around atomicity.

© 2015 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

JONES, C. B; HAYES, I. J.

An Empirical Study Comparing the PEPA Eclipse Plug-in and GPA Tools
[By] C. B Jones and I. J Hayes

Newcastle upon Tyne: Newcastle University: Computing Science, 2015.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1483)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1483

Abstract

An important issue in concurrency is interference. This issue manifests itself in both shared-variable
and communication based concurrency - this paper focusses on the former case where interference is
caused by the environment of a process changing the values of shared variables. Rely/guarantee
approaches have been shown to be useful in specifying and reasoning compositionally about
concurrent programs. This paper explores the use of "possible values" for reasoning about variables
whose values can be changed multiple times by interference. Apart from the value of this concept in
providing clear specifications, it offers a principled way of avoiding the need for some auxiliary (or
ghost) variables whose unwise use can destroy compositionality. The possible values concept also
helps sharpen some issues around atomicity.

About the authors

Cliff Jones is Professor of Computing Science at Newcastle University. He is best known for his
research into "formal methods" for the design and verification of computer systems; under this
heading, current topics of research include concurrency, support systems and logics. He is also
currently applying research on formal methods to wider issues of dependability.

Prof. Ian J. Hayes has spent several periods at the School of Computing Science and these have
resulted in joint publications (including several with Prof. Cliff Jones). He is now pursuing joint
research which will result in further papers. Prof. Hayes also gives seminars at the School. He has
given keynote presentations at five conferences in the last ten years including: the International
Conference on Theoretical Aspects of Computing 2010 and the International Symposium on Unifying
Theories of Programming 2006. He also won the best paper (joint with Dr. R. Colvin) at the
7th International Conference on Integrated Formal Methods in 2009.

Suggested keywords

CONCURRENT PROGRAMMING
RELY-GUARANTEE CONDITIONS
POSSIBLE VALUES

Possible values: exploring a concept for
concurrency

As for José Nuno Oliveira’s Festschrift

Cliff B. Jones and Ian J. Hayes

September 29, 2015

Abstract

An important issue in concurrency is interference. This issue manifests itself in
both shared-variable and communication based concurrency — this paper focusses
on the former case where interference is caused by the environment of a process
changing the values of shared variables. Rely/guarantee approaches have been
shown to be useful in specifying and reasoning compositionally about concurrent
programs. This paper explores the use of “possible values” for reasoning about
variables whose values can be changed multiple times by interference. Apart from
the value of this concept in providing clear specifications, it offers a principled way
of avoiding the need for some auxiliary (or ghost) variables whose unwise use can
destroy compositionality. The possible values concept also helps sharpen some
issues around atomicity.

1 Introduction
High on the list of issues that make the design of concurrent programs difficult to get
right is ‘interference’. Reproducing a situation that exhibited a ‘bug’ can be frustrat-
ing; attempting to reason informally about all possible interleavings of interference
can be exasperating; and designing formal approaches to the verification of concurrent
programs is challenging.

Recording post conditions for sequential programs applies the only real tool that we
have: abstraction is achieved by winnowing out what is inessential in the relationship
between the initial and final states of a computation. Post conditions record the required
relationship without fixing an algorithm to bring about the transformation; furthermore,
they record required properties only of those variables which the environment will
use. The rely/guarantee approach (cf. Section 1.1) uses abstraction in the same way to
provide specifications of concurrent software components that are more abstract than
their implementations: for any component, rely conditions are relations that record
interference that the component must tolerate and guarantee conditions document the
interference that the environment of the component must accept.

1

This paper explores a concept that fits well with rely/guarantee reasoning but prob-
ably has wider applicability. In relational post conditions, it is necessary to be able to
refer to the initial value x and final value x ′ of a variable x (e.g. x ≤ x ′ ≤ x + 9). If
however it is necessary to record something as simple as the fact that a local vari-
able x captures one of the values of a shared variable y , it is inadequate to write
x ′ = y ∨ x ′ = y ′ in the case where y might be changed many times by the en-
vironment. Enter ‘possible values’: the suggested notation is that Ûy denotes the set
of values which variable y contains during the execution of the operation in whose
specification Ûy is written. So:

post-Op: x ′ ∈ Ûy
is satisfied by a simple assignment of y to x (assuming the access to read the value of
y is atomic).

1.1 Rely/Guarantee thinking
Before going into more detail on the possible values notation (cf. Section 2), a brief
overview of background work is offered. The specifications given in Section 3 are
written in the notation of VDM [Jon80, Jon90]. It is unlikely that they will present
difficulties even to readers unfamiliar with that notation because similar ideas for se-
quential programs are present in Z [Hay93], B [Abr96] and Event-B [Abr10]. The
basic idea is of state-based specifications with operations (or events) transforming the
state and being specified by something like pre and post conditions. Pre conditions
are predicates over states that indicate what can be assumed about states in which an
operation can be initiated. Post conditions are relations over initial and final states that
specify any required relations between the initial and final values of state components.
Good sequential specifications eschew any details of implementation algorithms: they
do not specify anything about intermediate states; in fact an implementation might use
a state with more components. At first sight, it might appear surprising that there is
not a precise functional requirement on the final state but using non-determinism in
specifications turns out to be an extremely useful way of postponing design decisions.

The use of abstract objects in specifications is a crucial tool for larger applica-
tions. Moreover, datatype invariants can make specifications clearer: restricting types
by predicates simplifies pre/post conditions and also offers a way for the specifier to
record the intention of a specification. Another useful aspect of VDM is the ability to
define more tightly the ‘frame’ of an operation by recording whether access to state
components is for (only) reading or for both reading and writing.1

The basic rely/guarantee [Jon81, Jon83]2 idea is simple: interference is docu-
mented and proof rules are given which support reasoning about interference in con-
current threads. Just as in sequential specifications, the role of a state is central to

1Much of the literature on rely/guarantee conditions is limited to normal (or ‘scoped’) variables; [JY15]
discusses ‘heap’ variables.

2The literature on Rely/Guarantee approaches continues to expand; see [JHC15, HJC14] for further ref-
erences. For a reader who is completely unfamiliar with rely/guarantee concepts, a useful brief presentation
can be found in [Jon96].

2

recording specifications. For concurrency, it is accepted that the environment of a pro-
cess can change values in the state during execution of an operation.3 Such changes are
however assumed to be constrained by a rely condition. In order to reason about the
combined effect of operations, the interference that a process can inflict on its environ-
ment is also recorded; this is done in a guarantee condition. Both rely and guarantee
conditions are, for obvious reasons, relations over states. In the original form –and
after many experiments– both conditions are reflexive and transitive covering the pos-
sibility of zero or many steps. Such relations often indicate monotonic evolution of
variables including the case that the environment will change the polarity of a flag in
one direction and the specified process in the reverse way.

It is useful to compare the roles of the two new conditions with the better known
pre/post conditions. Pre conditions are essentially an invitation to the designer of a
specified component to ignore some starting states; in the same way, the developer can
ignore the possibility that interference will make state changes that do not satisfy the
rely condition. In neither case should a developer include code to test these assump-
tions; there is an implicit requirement to prove that the component is only used in an
appropriate context. In contrast, post conditions and guarantee conditions are obli-
gations on the running code that the developer has to create; these conditions record
properties on which the deployer can depend.

It is important to appreciate how rely relations abstract from the detail of the actual
environmental interference of an operation. Obviously, the most detailed information
about an environment is the actual state changes it makes. But designing to such con-
crete detail will create a component that is not robust to change. Just as post conditions
deliberately omit implementation details of a specified operation, it is useful to strive
for a more abstract documentation of interference. It is clear that relations cannot
record certain sorts of information but, if they are adequate for a given task, their use
will yield a more compositional development than the detail of the environment. (This
topic is returned to in Section 1.2.)

The extended example in Section 3 shows the importance of linking rely/guarantee
ideas with data abstraction and reification. Specification using abstract mathematical
objects and the process of stepwise introduction of more concrete (i.e. closer to hard-
ware) objects is well established for sequential programs and for significant applica-
tions is often more telling than the abstraction that comes from post conditions — see,
for example, [Jon90]. In addition to layering design decisions, careful use of abstract
objects in the development of concurrent programs offers other advantages. In partic-
ular, developments can appear to allow data races at an abstract level that are removed
by careful choice of a concrete representation — this is discussed in [Jon07]. One
reason that this is interesting is Peter O’Hearn’s suggested dichotomy in [O’H07] that
separation logic is appropriate for reasoning about race avoidance whilst rely/guarantee
methods fit ‘racy’ programs. The distinction between abstract and concrete data races
is perfectly illustrated in Section 3 but the example is not easy to summarise. A sim-
pler example is searching an array to find the lowest index of an element that satisfies a
predicate P by means of two parallel processes that search the elements with, respec-

3Notice that there is an essential difference here from ‘actions’ [Bac89] or ‘events’ [Abr10] which view
execution of a guarded action as atomic.

3

tively, even and odd indices (for a full development of this example, see [HJC14]). If a
single variable t were used to record the least index of an element that satisfies P , there
would be a data race between the two processes potentially changing t . A neat way
to avoid the ‘write/write’ race is to represent t by the minimum of two variables, et
and ot that record the least value of, respectively, even and odd indices where the array
element satisfies P . The ‘write/write’ race, which is useful in an abstract description
of the design, is reduced to a ‘read/write’ race because the actual code for each process
updates only one of the variables although it reads the other variable in its loop test
(and on the completion of both processes t can be retrieved as min(et , ot)).

The citations above relate to a form of rely/guarantee reasoning in which the (po-
tentially) four conditions are combined. More recent work [JHC15, HJC14] has broken
the connection to yield a refinement calculus style in which rely and/or guarantee con-
straints can be wrapped around any command including conventional relations.

1.2 Auxiliary variables
The statement is made in [Jon10] that using auxiliary (a.k.a. ghost) variables in the
specification of a software component can destroy compositionality by encoding too
much information about the environment. Studying possible values has helped put the
position more clearly:

• having the code of the environment gives maximum information — but minimal
compositionality

• the same distinction is actually there with sequential programs where post con-
ditions provide an abstract description of functionality without committing to an
algorithm (they can also leave unconstrained the values left in temporary vari-
ables etc.)

• for concurrency, things are much more sensitive: an ideal is that the visible vari-
ables (read and write) of parallel processes are ‘separate’ — this might be true
on a concrete representation even when an abstract description appears to admit
interference — cf. [JY15]

• rely/guarantee conditions are an attempt to state only what matters

• the expressive ‘weakness’ of rely/guarantee conditions (is conceded and) can be
a positive attribute

• auxiliary variables can be used to encode extra information about the environ-
ment — in the extreme, with use of statement counters, they can encode as much
as the program being executed by the environment

The advice is to minimise the use of auxiliary variables — even when writing asser-
tions, abstraction from the environment can be lost if gratuitous information is recorded
in auxiliary variables. The ‘possible values’ notation appears to offer an intuitive spec-
ification tool and a principled way of avoiding the need for some auxiliary variables.

4

One indication of the compositional nature of rely conditions is that, if a component
with a rely condition r is refined to a sequential composition, each subcomponent
inherits the rely condition r . Conversely, a sequential composition guarantees a relation
g if each component of the sequential composition guarantees g .

1.3 Plan of this paper
This paper provides evidence of the usefulness of the possible values concept. Sec-
tion 2 presents a notation for the concept while Section 3 is an extended example using
the concept and notation. Section 4 outlines how a semantic model can be provided
and looks at the form of laws that would fit the newer presentation of rely/guarantee
reasoning [HJC14]. The current authors recognise that this paper represents the start
of an exploration — some avenues to be investigated are mentioned in Section 5. They
hope that the exploratory nature of the contribution will please the dedicatee!

2 Possible values of variables
It is argued above that the confessed expressive weakness of rely/guarantee specifica-
tions might actually serve the purpose of preserving some form of compositionality in
the design of concurrent programs. However, if notations can be found that increase
expressive power, they should be evaluated both for expressiveness and tractability.
The simple case mentioned above of using one or more possible values terms in a post
condition is considered first and issues about extension are deferred to Section 5.

If an operation only has read access to a shared variable y and x is a local variable
of the process, then:

post-Op: x ′ ∈ Ûy (1)

requires that the final value of the variable x should contain one of the values that the
environment places in the variable y — this includes the (initial) value of y at the time
Op began execution. So Ûy denotes a set of values whose elements have the type of y .

Notice that the post condition above is ‘stable’ in the sense that the environment
might change the value of y after Op accesses the variable and the post condition is
still true. In contrast, it would be unwise to write a post condition that contained x ′ /∈ Ûy
because this would not be stable and it would appear to require that every possible
change that the environment makes to the value of y is observed. (In some cases, it
would be possible to establish such a result under a suitable rely condition; but some
form of (local) datatype invariant should also be considered in such cases.)

So, for the straightforward case, the post condition (1) can be established by the
assignment x ← y . As is pointed out in Section 3, an instance of this simple case
was the inspiration for the possible values notation and also suffices for the current
example. There are however several vectors of extension. If the process in which the Ûy
term is written also has write access to the variable y , it is necessary to take a position
on whether both environment assignments to y and those of the component itself are
reflected in Ûy ; the view of the current authors is that Ûy contains all values of y that
could be observed by the process.

5

while true do
· · · produce v · · ·
Write(v)

od

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

while true do
r ← Read()
· · · consume r · · ·

od

Figure 1: Code to clarify reader/writer structure

3 Asynchronous Communication Mechanisms
An Asynchronous Communication Mechanism (ACM) logically provides a one-place
buffer between a single writer and a single reader (see Figure 1). This sounds trivial but
the snag is in the adjective: ACMs are asynchronous in the sense that neither the reader
nor the writer should ever be held up by locks. Unless the value being communicated
via the buffer is small enough to be read and written atomically, it should be obvious
that one slot is not enough to realise the buffer; a little thought shows that a buffer rep-
resentation with two slots is also inadequate; the topic of how many slots are required
is returned to in Section 3.4. In [Sim90], Hugo Simpson proposed a ‘four-slot’ algo-
rithm to implement an ACM that, while the code is short, extremely subtle reasoning
is required for its justification.

3.1 ACM requirements
The requirement is to communicate the “most recent” value from a single producer to
a single consumer via a shared buffer. More precisely, it must satisfy the following.

• It is assumed that there is only a single reader and a single writer but the reader
and writer processes operate completely asynchronously

• Reads and writes must not block (no locks)

• Reads and writes of values can’t be assumed to be atomic (i.e. a single value may
be larger than the atomic changes made by the hardware)

• The only thing Simpson assumes to be atomic is the setting of single bits (and
they are actually realised by wires)

• A write puts a new value in the buffer

• A read gets a completely written value from the buffer

• The value read is at least as fresh as the last completely written value when the
read started – this implies that, for two consecutive reads, the value read by the
second read will be at least as fresh as that read by the first

• The buffer is initialised with a data value (so there is always something to read)

• The buffer is shared by the reading and writing processes alone (i.e. no third
process can modify the buffer)

6

In the terminology of Lamport [Lam86] this can be summarised as implementing a
single-reader wait-free atomic register in terms of atomic boolean control registers.

3.2 Approaches to specifying ACM
There is an interesting range of approaches as to how these requirements should be
expressed in a formal specification and there are many attempts. (Other approaches
include [Hen04, Abr10].) Without surveying all of them, it fits the theme of this pa-
per to review two strands of publications: one motivated by (Concurrent) Separation
Logic [Rey02, O’H07] and the other by rely/guarantee methods. Surveying the latter
also pinpoints the origin of the possible value notation.

Richard Bornat is an expert on separation logic so it is interesting to look at how he
has formalised the specification and development of Simpson’s ‘four slot’ algorithm.
In [BA10], separation logic is certainly used but it is interesting to see that the paper
also uses rely/guarantee concepts. In contrast, [BA13] makes no real use of separation
logic and the specification uses the concept of linearisability [HW90]. The reason that
this history is enlightening is that the essence of Simpson’s algorithm is the exchange
of ‘ownership’ of the four slots between the reader and writer processes. This is done
precisely to ensure (data) race freedom so one would anticipate that separation logic
would be in its element. There is, in fact, one paper that uses separation logic for
precisely this form of argument; unfortunately [WW12] does not include an argument
that the reader always gets the ‘freshest’ value and a recent private correspondence
with one of the authors indicates that they have not extended their work to cover this
essential property.

It is only fair to make an equally critical assessment of two papers [JP08, JP11]
that use rely/guarantee ideas. In the development recorded in [JP08],4 it is necessary
to assert that the value of one variable (lw) is assigned to another variable (cr); this
assertion was recorded as:

cr ′ = lw ∨ cr ′ = lw ′ .

This plausible attempt says that the final value of cr is either the initial or final value of
lw . Unfortunately, during the operation being specified, the value of lw could poten-
tially be changed more than once. This observation was precisely the stimulus that led
to the invention of the notation for possible values. In addition to various improvements
and clarifications in the development, the journal version [JP11] resolves the problem
by using

cr ′ ∈ılw .

Rushby [Rus02] noted a similar issue in model checking Simpson’s algorithm: a
version checking for just the before or after values fails in the case of multiple writes
overlapping a single read. To handle this in the model checking context, Rushby re-
stricts the sequence of data values written so that they are strictly increasing in value,
and then checks that the sequence of values read is nondecreasing, which he concludes

4The actual variable names in the Jones/Pierce papers are hold-r (here cr) and fresh-w (here lw); for
the reader’s convenience, these have been changed in the extracts to match the names used in the current
paper.

7

is necessary but may not be sufficient. He concedes that this is a limitation of the ex-
pressiveness of the model checking specification language (which does not have the
(unbounded) expressive power of the possible values notation).

There is however a deeper objection to both of the Jones/Pierce specifications of
ACMs. In both cases, the most abstract specification uses a variable (data-w) that
contains the entire history of values written by the write process. This is in spite of
the fact that a read operation cannot access values in the sequence earlier than the last
value added before the read began. This sort of redundancy is deprecated in [Jon90,
Sect. 9.3] as using a ‘biased’ representation: the state contains values which have no
influence on subsequent operations. Where there is no bias in the representation under-
lying a specification, a homomorphism (retrieve function) relates a representation back
to the abstraction; in the case of a biased representation, a relation between the abstrac-
tion and the representation is used to argue that the operations on the latter fit those on
the former. In situations where it is necessary to express non-determinism in a specifi-
cation that can be removed in the design process, biased specifications are sometimes
unavoidable — but, where there is an alternative, unbiased specifications are normally
preferred because they make it easier to see the range of possible implementations.
One further surprising fact about the specifications in [JP08, JP11] is that, even at the
most abstract level, the specifications of both Read and Write are each split into two
sub-operations which are joined by sequential composition. Although the semantics
of such a specification are clear, it means that the task of convincing users that their
requirements have been adequately captured involves a rather algorithmic discussion.

Having been self-critical of these specifications, there is one important positive
point that needs preserving in the approach below: the issue of data-race freedom is
handled in [JP11] at the level of an abstract intermediate representation. This is an
important general point: rely/guarantee conditions can be used to record interference
on an abstraction where the final code is certainly not ‘racy’.

3.3 Specification using possible values
In contrast to the above attempts, a specification using ‘possible values’ notation ap-
pears to be much more natural and perspicuous. The abstract specification uses a state
with just a single value buffer b of type Value . This only works by using possible value
notation in the post condition of Read , where Ûb stands for the set of possible values of
b during the execution of Read . As in some earlier specifications (including [JP11]),
the Read operation is described as returning a value (r) so the post condition is simply
r ′ ∈ Ûb. This means that a single read operation can return the value of the write most
recently completed at the time the read begins or of any write that executes an assign-
ment to b during the execution of the read operation. (Notice that there is no danger of
a subsequent read operation obtaining an older value than the current read because the
reference point for the possible values of the newer read is the start of its execution.)

As in [JP11], the specification can be made clearer by annotating whether the ex-
ternal state variables accessed by an operation can be only read (rd) or both read and
written (wr).

Thus, the specification of Read can be given as:

8

Read() r :Value
ext rd b:Value
post r ′ ∈ Ûb

When generating proof obligations, the ext rd is equivalent to a guarantee condition
b′ = b.

The specification of the Write operation is interesting. If the parameter to Write
is v , one would expect the post condition to be b′ = v — and this is certainly required.
In addition, it is necessary to rule out the possibility that Write(v) puts some spurious
value(s) into b that might be accessed by Read before the Write(v) corrects its way-
ward behaviour and achieves its post condition. This can be expressed in a guarantee
condition b′ 6= b ⇒ b′ = v . Extending (again, as in [JP11]) the ext annotation to
mark write ownership yields a specification:

Write(v :Value)
ext owns wr b:Value
guar b′ 6= b ⇒ b′ = v
post b′ = v

Here, the proof obligation expansion of ext owns wr is a rely condition b′ = b, which
matches the implicit guarantee of Read courtesy of its ext rd annotation.

The role of the guarantee of Write here is to provide an intuitive specification;
the more standard use is to show that processes can co-exist and this usage occurs in
the development below. The guarantee of Write ensures that only valid values are
observable in the buffer (by Read). It is an important part of the specification of Write
but note that there is no corresponding rely condition in Read . Firstly, there is the
technical issue that v is local to Write and hence cannot be referred to in (the rely of)
Read . Secondly, several Write operations might take place during a single Read and
hence there may be multiple changes to the buffer during a Read , even though each
Write only changes the buffer (at most) once. In fact, the possible multiple changes
of the buffer during a Read motivates the use of Ûb in its post condition. It is worth
observing that Ûb is applied to an abstract variable b — the development that follows
employs a representation of b that is by no means obvious.

The guarantee of Write requires that the observable effect of the operation takes
place in a single atomic step and the use of the possible values notation in the post
condition of Read ensures that the observable effect of Read also takes place in a
single atomic step. That the observable effect of both operations takes place in a single
atomic step links to Bornat’s use of the concept of linearisability [BA13].

The initial state (as in all specifications) is assumed to contain a valid Value so that
it is possible for a Read operation to precede the first Write .

Thus far, the possible values concept –that was devised in order to document an
intermediate design– has been shown to offer a short and clear overall specification of
ACM behaviour.

9

3.4 Intermediate reification
The challenge of presenting a specification that makes sense to potential users is ad-
dressed in Section 3.3. The next hurdle is to show how to structure an explanation of
the design decisions that show what is going on in Simpson’s algorithm: this is tackled
here and in the next sub-section.

The first refinement step is based on the approach in [JP11]: a generalisation of
Simpson’s four slots is represented by a map of an indexed set of ‘slots’ X m−→ Value;
the index set X is deliberately left unspecified at this stage. Here, this part of the state
is named dw . In addition, the state contains three variables whose values are used
to communicate between Writei and Readi . The final letter of each variable name
records which process, reader or writer, can write to that variable (e.g. lw can only be
modified by Writei). It is an interesting observation that none of the variables can be
modified by both operations. Each of these variables contains a single value from the
index set X . As a VDM record, the state is:

Σi :: dw : X
m−→ Value – the data value buffers

lw : X – index of the last completely written slot
cw : X – index of the current write slot
cr : X – index of the current read slot

There is also a data type invariant that requires that the (potentially partial) map has a
value in every slot dom dw = X . Note that in the concurrent context, the data type
invariant must hold for every step, not just initially and at the end of each operation.

It is not difficult to follow the lines of the data reification being undertaken in this
section: the retrieve function is b = dw(lw).

The initial state must, of course, satisfy the invariant; the initial value in the buffer
must be dw(lw) and there must be some arbitrary value in every slot to ensure that
dom dw = X .

The retrieve function and the initial specification of Write suggest immediately:

post-Writei : dw
′(lw ′) = v

guar -Writei : dw
′(lw ′) 6= dw(lw) ⇒ dw ′(lw ′) = v

But, because the two operations can be executed concurrently, it is necessary to ensure
that Writei does not interfere with a slot that Readi might be accessing. Facilitating
this non-interference is exactly the role of cr and an additional conjunct is added to the
guarantee condition:

guar -Writei : (· · ·) ∧ dw ′(cr) = dw(cr)

However, if Readi could change cr arbitrarily, this would be unachievable, so it is
necessary to record that cr can only change to the index of the last completely written
slot:

rely-Writei : cr
′ ∈ {cr , lw}

Turning to Readi , it is clear that its guarantee condition must match rely-Writei :

guar -Readi : cr
′ ∈ {cr , lw}

10

Writei(v :Value)
owns wr dw , lw , cw
ext rd cr
rely cr ′ ∈ {cr , lw}
guar (dw ′(lw ′) 6= dw(lw) ⇒ dw ′(lw ′) = v) ∧ dw ′(cr) = dw(cr)
post dw ′(lw ′) = v

Readi() r :Value
owns wr cr
ext rd dw , lw
rely dw ′(cr) = dw(cr)
guar cr ′ ∈ {cr , lw}
post r ′ ∈˚�dw(lw) ∧ cr ′ ∈ılw ∧ r ′ = dw ′(cr ′)

Figure 2: The intermediate specifications

As indicated above, the Readi operation uses cr to indicate to Writei which slot it
is accessing. For the post condition, the retrieve function gives:

post-Readi : r
′ ∈˚�dw(lw)

but it is also necessary to remove the freedom left in the guarantee condition and insist
that cr corresponds to either the most recent completely written value at the start of the
read or a later completely written value — this adds:

post-Readi : (· · ·) ∧ cr ′ ∈ılw ∧ r ′ = dw ′(cr ′)

This result can only be achieved if the design of Readi can assume the value being
read is stable:

rely-Readi : dw
′(cr) = dw(cr)

The specifications are summarised in Figure 2. It is a consequence of the fact
that Writei must not change dw(cr) together with the fact that cr can change but
only to the value of lw that there must be at least three slots (i.e. cardX ≥ 3). This
observation is perhaps more obvious when pseudo code for this intermediate refinement
is considered (cf. Figure 3) because it uses the variable cw as foreseen by the earlier
description. It must, however, be emphasised that this ‘code’ is only given as an aid to
the reader’s intuition — it is not part of the formal development.

In Figure 3, the marking of 〈cr ← lw〉 as atomic (via enclosing it in angle
brackets) is also interesting: because the environment (Writei) could change the value
of lw between its access by Readi and the completion of the write to cr , the guarantee
condition of Readi would not be met with a non-atomic assignment. Of course, such
atomic statements are not permitted in the final implementation so the removal of this
atomicity requirement is a challenge for the subsequent development.

Furthermore, although the whole point of using multiple slots in order to achieve
the ACM requirements is to avoid any assumption about it being possible to read and

11

Writei(v :Value)
cw :∈ X − {cr , lw};
dw(cw) ← v ;
lw ← cw

Readi()r :Value
〈cr ← lw〉;
r ← dw(cr)

Figure 3: Suggestive pseudo code for the intermediate development step

write elements of Value atomically, precisely this assumption is so far being made
about elements of X . Reducing this assumption to the communication of single bits
is one of the key achievements of Hugo Simpson’s ‘four slot’ implementation, as is
outlined in the Section 3.5.

Before moving to that material however, there are some illuminating observations
about the development thus far. The guarantee condition of Write used in the abstract
specification was there to fix the overall function of what it means to execute a write to
the buffer; there is no matching rely condition in the abstract Read operation. The ad-
ditional rely and guarantee conditions in the intermediate refinement (Readi ,Writei)
play the more normal role of fixing the permitted interference between the two threads.
In fact, they have established the protocol of the exchange of ownership of the slots
between the threads (cf. the discussion at the beginning of Section 3).

There is however a point that needs to be made clear here. Just as one can weaken
pre conditions (which are permissions for the developer to make assumptions about the
context of use) and strengthen post conditions (which are obligations on the code to be
developed), it is permissible to weaken rely conditions and strengthen guarantee con-
ditions.5 In the text above, the first stab at any of the conditions is derived by mapping
them –under the retrieve function– from the abstract to the intermediate level. What
might surprise the reader is that new terms are added to these derived rely conditions.
This is permissible because the context (see Figure 1) defines that only the reader and
writer processes can update the variables, so the only obligation is to show that the
strengthened guarantee conditions imply the strengthened rely conditions.

The post condition of the top-level specification Read requires r ′ ∈ Ûb which via the
retrieve function, b = dw(lw), requires r ′ ∈˚�dw(lw) for the intermediate reification

Readi . Note that ˚�dw(lw) corresponds to the possible values of dw(lw) in one of the
states and hence for each possible value of dw(lw) the values of dw and lw are taken
in the same state. Returning to the post condition of Readi in Figure 2, note that
r ′ ∈˚�dw(lw) is implied by

dw ′(cr ′) ∈˚�dw(lw) ∧ r ′ = dw ′(cr ′)

5In contrast to the original 5-tuple form of rely/guarantee specification, this is much clearer in the new
‘deconstructed’ version where [JHC15, HJC14] has precise laws for these changes.

12

where the variable cr records the slot currently being read. The rely condition of Readi
requires that dw(cr) is stable and hence the above requirement is equivalent to˚�dw(cr ′) ⊆˚�dw(lw) ∧ r ′ = dw ′(cr ′)

which is in turn implied by cr ′ ∈ ılw ∧ r ′ = dw ′(cr ′). Note how the task of ensuring

that dw ′(cr ′) ∈˚�dw(lw) has been reduced to ensuring that the index cr ′ ∈ılw .
The guarantee of Write , b′ 6= b ⇒ b′ = v , requires that the update of the buffer

happens atomically. But because it is assumed the values of type Value cannot be
written atomically, the implementation makes use of multiple buffers. The write (non-
atomically) updates a buffer that differs from both the current read slot (cr) and the
last completely written slot (lw), which a new read may access. It achieves apparent
atomicity by updating the index lw atomically.

It is interesting to note that the issue of (data) race freedom on the slots is worked
out with rely/guarantee conditions. This can be contrasted with Peter O’Hearn’s view
in [O’H07] that separation logic is the tool of choice for reasoning about race freedom
and rely/guarantee reasoning is for ‘racy’ programs. The decisive point appears to be
that, here, race freedom is established on a data structure that is more abstract than the
final representation.

3.5 Focus on four slots
This paper contains only an outline of the remaining development. It broadly fol-
lows [JP11]. Although the observation is made in Section 3.4 that three slots would be
adequate to avoid clashing,6 the genius of the representation proposed by Hugo Simp-
son is that –if four slots are used– communication can be reduced to using single bits.
Furthermore, in a real implementation, these bits can be wires connecting the Readf
and Writef processes running on separate processors. Simpson describes the algo-
rithm in terms of choosing ‘pairs’ and ‘slots’. As in [JP11], this intuition is followed
by using two sets P and S each of which has two possible values. However, here, tog-
gling between the two values is achieved by a “¬ ” operator. Although both sets P and
S can be implemented as Booleans, the temptation to use Booleans is resisted at this
stage because separating the types P and S provides useful information as to whether
each index variable refers to a pair or a slot (and has the potential to flag incorrect use
as a type error).

Thus, the representation of X from the intermediate representation is a pair P ×S .
The concrete state is:

Σf :: dsw : P × S
m−→ Value – two pairs of two data slots each

sw : P
m−→ S – sw(p) is the last written slot for pair p

lpw : P – last written pair
cpw : P – current write pair
cpr : P – current read pair
csr : S – current read slot

6In fact, [BA13] also considers a three slot implementation.

13

Writei(v :Value)
cpw ← ¬ cpr ;
dsw(cpw ,¬ sw(cpw))← v ;
sw(cpw)← ¬ sw(cpw);
lpw ← cpw

Readi()r :Value
cpr ← lpw ;
csr ← sw(cpr);
r ← dsw(cpr , csr) — rely ensures expression is stable

Figure 4: Suggestive pseudo code for the final development step

Pseudo-code is given in Figure 4 to indicate the algorithm on Σf — just as with
Figure 3, this will not form part of the final correctness argument: it is shown only to
aid the reader’s intuition.

4 Semantics and laws
It is not difficult to see how a formal meaning can be given to the simple form of
the possible values notation in a semantics such as that in [HJC14]: basically, that
portion of the sequence of states that corresponds to the execution of an operation is
distinguished so as to identify the first and last states in order to give a semantics to
post conditions. It is only necessary to consider all of the states in that portion and to
extract the set of values of the relevant variable. This simple case covers the usage of
possible values in the example of Section 3 and all of the others which have been driven
by practical applications. A decision has to be made about the required meaning in the
case where both the process (in whose post condition the possible values term is used)
and its environment can change the relevant variable. This topic will be addressed
when a practical application shows the need (and hopefully gives a steer as to the most
appropriate choice).

Another interesting semantic issue concerns locking. In fact, the possible values
notation forces consideration of a number of facets of ‘atomicity’. Locking may be
used to ensure mutual exclusive access to a set of variables. A process may lock a
resource protecting a set of variables. While it owns the lock, it may make multiple
changes to the variables protected by the lock, however, any other processes accessing
the protected variables cannot observe any of the intermediate states of the protected
variables. Hence a process in the scope of a resource with a set of protected variables
can only observe the initial and final states of a protected block within another process.
Throughout the body of a protected block a process can rely on the protected variables
being stable. Furthermore, any guarantee involving just the protected variables has to
hold only between the initial and final states of the protected block.

Just as the semantics for the straightforward use of possible values terms in a post

14

condition poses no difficulties in terms of the underlying traces, a rather simple law
suffices to reason about the notation. Here, it is convenient to switch to the refinement
calculus style of [JHC15, HJC14] in which the specification statement x :

[
q
]

establishes
the postcondition q and modifies only x , and the command c in a rely context of r is
written rely r · c. Assuming a read of y is atomic, the following law holds.

rely(x ′ = x) · x :
[
x ′ ∈ Ûy] v x ← y

The rely condition x ′ = x is required to ensure that the environment doesn’t change
x after the assignment is made. For example, x may be a local variable or, as above,
annotated owns wr x .

Replacing y in the above law with an expression e introduces the complication that
each variable reference in the evaluation of e in the assignment could be accessed in a
different state. Note that if e has multiple references to a single variable y , each refer-
ence could be accessed in a different state. However, if e has only a single reference
to a variable y and all other variables in e are stable, any evaluation of e is equivalent
to evaluating it in the state in which y is accessed and the law is valid. Let S be a set
of variables such that the free variables of e are contained in S ∪ {y} and e has only a
single reference to y and accesses to y are atomic, then

rely(x ′ = x ∧ (
∧

z ∈ S · z ′ = z)) · x :
[
x ′ ∈ Ûe] v x ← e . (2)

If the environment can be relied upon to ensure that the value of an expression e
increases monotonically, i.e. e ≤ e ′, then evaluating e in any intermediate state gives
a value between the initial and final values of e .

rely x ′ = x ∧ e ≤ e ′ · x :
[
e ≤ x ′ ≤ e ′

]
v rely x ′ = x ∧ e ≤ e ′ · x :

[
x ′ ∈ Ûe]

This generalises to any reflexive, transitive relation r as follows.

rely x ′ = x ∧ r(e, e ′) · x :
[
r(e, x ′) ∧ r(x ′, e ′)

]
v rely x ′ = x ∧ r(e, e ′) · x :

[
x ′ ∈ Ûe]

The earlier law (2) can be used to specialise the resultant refinement further provided
e satisfies the constraints in the earlier law.

If every step of the environment ensures that the value of e either does not change
or, if it does, it changes to some value v just once, the possible values of e are either its
initial value or v , which leads to the following law.

con v · rely x ′ = x ∧ (e ′ 6= e ⇒ e ′ = v) · x :
[
x ′ ∈ Ûe] v x ← e

The logical constant con v is effectively quantified over the whole construct (as op-
posed to existentially quantifying it within the rely relation which would reduce the
second conjunct of the rely condition to true).

Note that there is a subtle difference between the specifications

x :
[
∃v · v ∈ Ûy ∧ x ′ = v + v

]
15

which samples y once and hence ensures the final value of x is even, and

x :
[
∃v ,w · v ∈ Ûy ∧ w ∈ Ûy ∧ x ′ = v + w

]
which samples y twice so that the values of v and w may differ.

As well as possible values of an expression Ûe that is the set of values of e evaluated
in each state of the execution, one can define ÛÛe as the set of all possible evaluations of e
over the execution interval: each instance of a variable x in e takes on one of the values
of x in the interval so that different occurrences of x within e may take on different
values, and the values of separate variables x and y may be taken from different states.
The set of evaluations includes those in which the values of all the variables are taken
in a single state and hence Ûe ⊆ ÛÛe . In [HBDJ13] the possible values concept was linked
to different forms of nondeterministic expression evaluation corresponding to Ûe and ÛÛe .

The following simple rule requires no restriction on e other than it does not contain
references to x because x is in the frame of the specification.

rely x ′ = x · x :
î
x ′ ∈ ÛÛeó v x ← e .

If e is single reference over the execution interval (as defined earlier) then ÛÛe = Ûe and
hence

rely x ′ = x ∧ (
∧
z ∈ S · z ′ = z) · x :

[
x ′ ∈ Ûe]

= rely x ′ = x ∧ (
∧
z ∈ S · z ′ = z) · x :

î
x ′ ∈ ÛÛeó

v x ← e .

5 Conclusions and further work
The concept of possible values arose in an attempt to provide a clear design rationale
of code which is delicate in the sense that slight changes destroy its correctness. A
seemingly simple and intuitive notational idea contributed to a layered description.
The proposal was clearly motivated by a need in a practical application. The next bonus
came in the link to the non-deterministic state ideas: this is set out in [HBDJ13]. This
paper is the first publication of the specification given in Section 3.3 and the simplicity
of the overall specification comes as strong encouragement for the concept and notation
of possible values. The authors recognise that this is the beginning of an exploration
rather than a finished proposal but they hope that José Nuno Oliveira will accept the
tentative material as our birthday offering.

This closing section hints at further avenues that appear to have potential but cer-
tainly require more work. As with the steps to date, the motivation for the decisions
should come from practical examples.

5.1 Further applications
In the spirit of birthday fun, it can perhaps be mentioned that the possible values nota-
tion appears to have some potential for recording arguments about brain-teaser puzzles.
At a recent meeting of IFIP WG 2.3, Michael Jackson posed a hide-and-seek puzzle

16

which is apparently described in several contexts. Here, a mole is what must be lo-
cated. There are five holes in a line; the mole moves each night to an adjacent hole;
the seeker can only check one hole per night and must devise a strategy that eventually
locates the mole whose non-deterministic nocturnal movements are only constrained at
either end of the line of holes. This paper doesn’t spoil the reader’s fun by providing an
answer; it only mentions that one of the authors recorded the argument for termination
using the possible values notation.

Sadly, most of the examples (cf. [ŜVZN+11, VN11, Rid10]) about ‘weak memory’
(a.k.a. ‘relaxed memory’) also give the feeling that they are gratuitous puzzles. At a
recent Schloss Dagstuhl meeting (15191), one of the authors again tried to use the
possible values notation to record the non-determinism that results from not knowing
when the various caches are flushed. It must be conceded that, on the pure puzzle
examples, possible values are doing little more than providing an alternative notation
for disjunctions. The challenge is to find a genuinely useful piece of code that, despite
non-determinism, satisfies a coherent overall specification under, say, total store order
(TSO) or partial store order (PSO) memory models. Only on such an application should
the judgement about the usefulness of possible values be based.

There are also alternative views of the possible values notation itself. For example,Ûb could yield a sequence of values rather than a set. There is however an argument for
preserving a (direct) way of denoting the set of possible values.

Acknowledgements
Outlines of this material were presented at the 2015 meeting of IFIP WG 2.3 and at the
Schloss Dagstuhl meeting 15191 — on both occasions comments were made that have
helped clarify the current presentation. In particular, useful discussions with Viktor
Vafeiadis helped one author understand the issues around weak memory. Further useful
comments on a draft from Diego Machado Dias are gratefully acknowledged as are
those of the anonymous journal referees.

For the funding for their research, the authors of this paper gratefully acknowledge
the EPSRC responsive mode grant on “Taming Concurrency”, the EPSRC Platform
Grant “TrAmS-2” and the ARC grant DP130102901.

References
[Abr96] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge

University Press, 1996.

[Abr10] J.-R. Abrial. Modeling in Event-B. Cambridge University Press, 2010.

[BA10] Richard Bornat and Hasan Amjad. Inter-process buffers in separation
logic with rely-guarantee. Formal Aspects of Computing, 22(6):735–772,
2010.

17

[BA13] Richard Bornat and Hasan Amjad. Explanation of two non-blocking
shared-variable communication algorithms. Formal Aspects of Comput-
ing, 25(6):893–931, 2013.

[Bac89] R.J.R. Back. A method for refining atomicity in parallel algorithms. In
Eddy Odijk, Martin Rem, and Jean-Claude Syre, editors, PARLE ’89 Par-
allel Architectures and Languages Europe, volume 366 of LNCS, pages
199–216. 1989.

[Hay93] Ian Hayes, editor. Specification Case Studies. Prentice Hall International,
second edition, 1993.

[HBDJ13] Ian J. Hayes, Alan Burns, Brijesh Dongol, and Cliff B. Jones. Compar-
ing degrees of non-determinism in expression evaluation. The Computer
Journal, 56(6):741–755, 2013.

[Hen04] Neil Henderson. Formal Modelling and Analysis of an Asynchronous
Communication Mechanism. PhD thesis, University of Newcastle upon
Tyne, 2004.

[HJC14] Ian J. Hayes, Cliff B. Jones, and Robert J. Colvin. Laws and semantics
for rely-guarantee refinement. Technical Report CS-TR-1425, Newcastle
University, July 2014.

[HW90] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3):463–492, 1990.

[JHC15] Cliff B. Jones, Ian J. Hayes, and Robert J. Colvin. Balancing expressive-
ness in formal approaches to concurrency. Formal Aspects of Computing,
27:475–497, 2015.

[Jon80] C. B. Jones. Software Development: A Rigorous Approach. Prentice Hall
International, 1980.

[Jon81] C. B. Jones. Development Methods for Computer Programs including a
Notion of Interference. PhD thesis, Oxford University, June 1981. Printed
as: Programming Research Group, Technical Monograph 25.

[Jon83] C. B. Jones. Specification and design of (parallel) programs. In Proceed-
ings of IFIP’83, pages 321–332. North-Holland, 1983.

[Jon90] C. B. Jones. Systematic Software Development using VDM. Prentice Hall
International, second edition, 1990.

[Jon96] C. B. Jones. Accommodating interference in the formal design of con-
current object-based programs. Formal Methods in System Design,
8(2):105–122, March 1996.

[Jon07] C. B. Jones. Splitting atoms safely. Theoretical Computer Science,
375(1–3):109–119, 2007.

18

[Jon10] C. B. Jones. The role of auxiliary variables in the formal development
of concurrent programs. In Cliff B. Jones, A. W. Roscoe, and Kenneth
Wood, editors, Reflections on the work of C.A.R. Hoare, chapter 8, pages
167–188. Springer, 2010.

[JP08] Cliff B. Jones and Ken G. Pierce. Splitting atoms with rely/guarantee
conditions coupled with data reification. In ABZ2008, number 5238 in
LNCS, pages 360–377. Springer, 2008.

[JP11] Cliff B. Jones and Ken G. Pierce. Elucidating concurrent algorithms
via layers of abstraction and reification. Formal Aspects of Computing,
23(3):289–306, 2011.

[JY15] Cliff B. Jones and Nisansala Yatapanage. Reasoning about separation us-
ing abstraction and reification. In Radu Calinescu and Bernhard Rumpe,
editors, Software Engineering and Formal Methods, volume 9276 of
LNCS, pages 3–19. Springer, 2015.

[Lam86] Leslie Lamport. On interprocess communication, part ii: Algorithms.
Distributed Computing, 1(2):86–101, 1986.

[O’H07] P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical
Computer Science, 375(1-3):271–307, May 2007.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of 17th LICS, pages 55–74. IEEE, 2002.

[Rid10] Tom Ridge. A rely-guarantee proof system for x86-TSO. In Verified
Software: Theories, Tools, Experiments, pages 55–70. Springer, 2010.

[Rus02] John Rushby. Model checking simpsons four-slot fully asynchronous
communication mechanism. Technical report, Computer Science Labo-
ratory, SRI International, Menlo Park CA 94025 USA, July 2002.

[Sim90] H. R. Simpson. Four-slot fully asynchronous communication mechanism.
Computers and Digital Techniques, IEE Proceedings E, 137(1):17–30,
1990.

[ŜVZN+11] Jaroslav Ŝevčik, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Ja-
gannathan, and Peter Sewell. Relaxed-memory concurrency and verified
compilation. In ACM SIGPLAN Notices, volume 46, pages 43–54. ACM,
2011.

[VN11] Viktor Vafeiadis and Francesco Zappa Nardelli. Verifying fence elimina-
tion optimisations. In Eran Yahav, editor, Static Analysis, volume 6887
of LNCS, pages 146–162. Springer, 2011.

[WW12] Shuling Wang and Xu Wang. Proving Simpson’s four-slot algorithm us-
ing ownership transfer. In Markus Aderhold, Serge Autexier, and Heiko
Mantel, editors, VERIFY-2010, volume 3 of EPiC Series, pages 126–140.
EasyChair, 2012.

19

	1483-Cover
	1483-Abstract
	1483-Bibliography
	1483

