Newcastle
+ University

COMPUTING
SCIENCE

Tackling Separation via Abstraction (with proofs)

Cliff B. Jones and Nisansala Yatapanage

TECHNICAL REPORT SERIES

No. CS-TR-1447 January 2015

TECHNICAL REPORT SERIES

No. CS-TR-1447 January, 2015

Tackling Separation via Abstraction (with proofs)

C.B. Jones, N. Yatapanage

Abstract

This paper investigates the use of abstraction to specify and reason about separation
in program design. Two case studies are presented: one concerns a sequential
program and the other a concurrent application. The examples demonstrate that using
separation as an abstraction is a potentially useful approach.

© 2015 Newcastle University.

Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

JONES, C.B., YATAPANAGE, N.

Tackling Separation via Abstraction (with proofs)
[By] C.B. Jones and N.Yatapanage

Newcastle upon Tyne: Newcastle University: Computing Science, 2015.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1447)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1447

Abstract

This paper investigates the use of abstraction to specify and reason about separation in
program design. Two case studies are presented: one concerns a sequential program
and the other a concurrent application. The examples demonstrate that using
separation as an abstraction is a potentially useful approach.

About the authors

Nisansala Yatapanage completed her PhD in Griffith University, Australia, in 2012, on the topic of slicing of
Behavior Tree specifications for model checking. This included the development of a novel form of branching
bisimulation known as Next-preserving Branching Bisimulation, which has the unique property of preserving the
Next temporal logic operator while still allowing stuttering steps to be removed. Nisansala has worked on research
projects in software specification and verification since 2004 in both Griffith University and The University of
Queensland (UQ), centering on the Behavior Tree specification language and model checking. From 2004 to 2007
she worked on the Dependability in Complex Computer-based Systems project, as part of the ARC Centre for
Complex Systems, where she developed a translator from the Behavior Tree language to the input languages of
model checkers, in order to automate Failure Modes and Effects Analysis. After completion of her PhD, she
applied this technique to actual case studies as part of a project at UQ. Nisansala is now a Research Associate on
the Taming Concurrency project at Newcastle University, UK.

Suggested keywords

CONCURRENCY
SEPARATION
SEPARATION LOGIC
RELY-GUARANTEE

Tackling Separation via Abstraction
(with proofs)

Cliff B. Jones and Nisansala Yatapanage

School of Computing Science, Newcastle University, United Kingdom

Abstract. This paper investigates the use of abstraction to specify and
reason about separation in program design. Two case studies are pre-
sented: one concerns a sequential program and the other a concurrent
application. The examples demonstrate that using separation as an ab-
straction is a potentially useful approach.

Keywords: concurrency, separation, separation logic, rely-guarantee

1 Introduction

It is useful to distinguish the issues arising in the design of concurrent programs
— two such issues are separation and interference. An obvious approach is to
employ Separation Logic to tackle the first set of issues and something like
Rely/Guarantee reasoning for the second. In [JHCI14], the benefits of studying
the issues prior to choosing an approach are discussed. In particular, that paper
—and more fully [HJCI4]- take a new look at specifying and reasoning about
interference. The current paper attempts to offer a fresh approach to the issue
of separation.

The separation of storage into disjoint portions is clearly an issue for con-
current program design — when it can be established, it is possible to reason
separately about threads or processes that operate on the disjoint sections. Tony
Hoare’s early attempt to extend his “axiomatic basis” [Hoa69] to parallel pro-
grams provided this insight in [Hoa72]. Hoare showed that pre/post conditions
of the code for separate threads could be conjoined providing the variables used
by the threads are disjoint. He tackled normal (or “scoped”) variables; it is more
delicate to reason about “heap” variables whose addresses are computed by the
programs in which they occur. Furthermore, the dynamic nature of such ad-
dresses leads naturally to the further issue of ownership because it is possible
to write programs that effectively exchange the ownership of portions of store
between threads.

The issues of separation and ownership are certainly handled well by Con-
current Separation Logic [O"HOT].

The current paper suggests that some forms of separation can be specified
by using data abstraction; The novelty is that the attendant obligation is to
demonstrate that the separation property is preserved by the reification to a

representation. Two examples are presented here: a simple list reversal algo-
rithm that is sequential and comes from one of Reynolds’ early papers [Rey02]
on Separation Logic and a concurrent sorting algorithm. In both cases the rep-
resentation uses heap storage.

The observation that it is possible to tackle some cases of reasoning about sep-
aration by using layers of abstraction is in no way intended to challenge research
on separation logics. It might, however, give a new angle on notations for sep-
aration and/or reduce the need to develop new logics (Matt Parkinson appears
to raise concerns about the proliferation of separation logics in [Par10]). Nei-
ther separation logic itself nor rely/guarantee reasoning [Jon81lJon83allJTon83b]
are directly used although their relevance is discussed in the concluding section.
Hints for a top-down development of the list reversal algorithm are sketched
in [JHCI4]. The current paper completes the development and fills in details
omitted there — more importantly, it draws out the consequences (cf. Section
and adds the more substantial example of concurrent merge sorting in Section

2 In-place List Reversal

As observed in [JHC14], as well as separation being crucial for concurrent pro-
grams, it also has a role in sequential programs. In fact, Separation Logic [Rey02]
was conceived for sequential programs; Concurrent Separation Logic [O"HOT] ap-
peared later. While Section [3| applies the idea of separation as an abstraction to
a concurrent sorting algorithm, this section shows the application of the same
idea to the development of a sequential program whose final implementation
performs in-place reversal of a sequence.

2.1 Original presentation

In [Rey02], John Reynolds presented an efficient sequential list reversal algo-
rithm; the fact that the code operates in-place makes it an ideal vehicle for
introducing the idea of using abstraction to handle separation. Interestingly,
Reynolds introduced the problem by starting with the algorithm, shown in Fig-
ure [1} The list is represented by a value for each item, with the subsequent ad-
dress containing a pointer to the next item. The algorithm utilises three pointers
(i, j, k) where initially i points to the start of the list and j is set to null. At
each step, the next pointer of item i, given by *(i+1), is redirected to point to
the location of the previous item, held by j. Next, the j pointer is updated to i.
The i pointer is then moved to point to the original next item, now held by the
temporary place-holder k. The process continues in this manner until the full
list is reversed. Reynolds uses the separating conjunction of Separation Logic to
develop a useful specification of the algorithm from the code.

j = null;
while (i '= null) {

k = *(i+1);
*(i+1) = j;
=1
i =k;

}

Fig. 1. Reynolds’ in-place list reversal program in C notation: *k is C-style pointer
dereference of pointer k.

2.2 Abstract specification
The notion of reversing a sequence is easily expressed as a recursive functionﬂ

rev : Val* — Val*
rev(list) £ if list =[] then list else rev(tllist) " [hd list]

The intention is to develop a program (using rev in the specification); the
first thing is to note that the state of the program is a pair of lists:

2, = (Val* x Val*)

where the first, referred to as s, is the original list and the second, referred to
as r, should finally contain the reversed list. It is worth observing that the two
fields of ¥, are implicitly separate.

An “operation” to compute the reverse of a list can be specified as follows:

post-REVERSE,((s,7),(s',7")) & r' = rev(s)

It is easy to develop the abstract program in Figure[2] The body of the while loop
is again given as a specified operation because its isolation makes the reification
below clearer. The loop preserves the value of rev(s) " r; the standard VDM
proof rule for loops handles termination by requiring that the relation be well-
founded — thus rev(s’) " ' = rev(s) " r Alens’ < lens.

2.3 Representing sequences

The program in Figure [2| is based on abstract states which cannot require the
sorting to be performed in place (recursive implementations utilising temporary
storage space would also satisfy the specification). To show how the list rever-
sal can occur without moving the data, the abstract state is reified to a heap
representation:

Heap = Ptr = (Val x [Ptr])

1 Well-established VDM notation is used throughout the current paper; see [Jon90]
for details.

r < [I;

while s # [] do
STEP,

end while

pre-STEP,((r,s)) £& s #]
post-STEP,((r,s), (r',s")) & ' =[hds] "~ rAs =tls

Fig. 2. Abstract list reversal program.

Maps in VDM (D -2 R) are finite, constructed functions; the fields of a pair
pr € (Val x [Ptr]) are accessed by index e.g. pry; the square brackets around
[Ptr] indicate that nil is a possible value.

In general, such a heap might contain information for other threads and/or
garbage discarded by processes. The specification is most concisely expressed
on a portion of the heap currently being used by REVERSE. The notion of a
sequence representation (Srep) is a sub-heap containing a representation of one
sequenceﬂ Restricting types by predicates is useful and the invariant of Srep
ensures that the sub-heap contains a pointer to the start of a list representation
and that there are no loops present.

Srep = Heap

where

inv-Srep : Heap — B

inv-Srep(hp) 2

hp ={}v
3b € dom hp - is-start(hp, b) A

Vp,gedomhp-p#q = hp(p)2 # hp(q)2

The invariant for Srep uses a function that checks whether the given pointer is
pointing to the start of the sequence representation by checking that b is the
only pointer not contained in the second elements of any pair in the Srep:

is-start : Heap x Ptr — B
is-start(hp,b) 2 {hp(p)2 | p € dom hp} = (dom hp — {b}) U {nil}

Lemma 1. The initial element in an Srep object is always unique:

Vsr € Srep -V, d € dom sr - is-start(sr, ¢) A is-start(sr,d) = c¢=4d

2 The Srep concept is worth separating because it is useful both for this simple example
and for the development of the concurrent program in Section E}

The proof follows trivially from the deﬁnitionsﬂ

This justifies the use of the iota operator, requiring the unique existence of a
value, in the following definition of the function start that returns the initial
element of an Srep:

start : Srep — [Ptr]

start(sr) 2 if sr ={} then nil else ¢ b € dom sr - is-start(sr, b)

The state for this development step contains two separate Srep objects:
¥y = (Srep x Srep)

where

inv-Sp((s,7)) 2 sep(s,r)

sep : Srep X Srep — B
sep(s,r) & domsnNdomr={}

On this representation, the specification of the operation corresponding to
the body of the while loop in Figure [2]is:

pre-STEPy(s,r) & s # {}
post-STEP,((s,), (s',7")) &
s = {start(s)} @ s Ar' = rU{start(s) — (s(start(s))1, start(r))}

It is necessary to show that STEP, preserves the invariant of .

Lemma 2. (s,7) € Xy A post-STEPy((s,r),(s',r")) = (s',r') € Xy

The proof follows easily from the definitions.

Developing programs by data reification is standard in VDM (cf. [Jon90,
Chap. 8]); here, the novel aspect is the need to show that the chosen representa-
tion preserves the separation of the representations of the abstract variables. As
can be seen from the following retrieve function, each of the Srep components
in X, represents a sequence in .

retr-a : X, — X,

retr-a((s,r)) 2 (gather(s), gather(r))

3 The conference version of this paper omits all detailed proofs which are mostly
routine — they can be found in the Technical Report [?, App.].

which uses a function that collects the values in a given Srep into a list:

gather : Srep — Val*

gather(sr) & if sr = {}
then []
else let b = start(sr) in
[s7(D)1] " gather({b} < sr)

Retrieve functions are homomorphisms from the representation back to the
abstraction. VDM defines an “adequacy” proof obligation which requires that,
for each abstract state, there exists at least one representation state.

Lemma 3. There is at least one representation for each abstract state:
Vs € Val* - 3sr € Srep - gather(sr) = s

The proof of this lemma is by induction on s.

The key commutativity proof for reification shows that the design step models
the abstract specification:

Lemma 4. STEP, models (under retr-a) the abstract STEP,
inv-3y(op) Apost-STEPy (0, 0),) = post-STEP,(retr-a(oy), retr-a(oy))

The proof follows from unfolding the defined functions/predicates.

2.4 Using Pointers

The final representation uses a heap (hp) and two pointers (i,5). The hp field
of ¥, is essentially the heap envisaged in Figure [If*| In this case, rather than a
retrieve function, it is easier to define a relation between ¥, and X,

rel-b-c : 3, x Y. — B

rel-b-c((s,7), (hp,4,7))) 2 hp=rUsAi=start(s) Aj = start(r)

On X, the specification of the operation corresponding to STEP;, above is:
pOSt_STEPC((hpa i7j)7 (hpla i/aj,)) é
" =hp(i)2 Aj =i ANhp" = hpt{i— (hp(i)1,j)}
The reification proof obligation in the case of a relation between the abstrac-
tion and representation is given in [Jon90, Sect. 9.3]

Lemma 5. STEP,. models STEP,

rel-b-c(op,0.) A post-STEP (o.,0,) =
Jo}, € Xy - post-STEPy (0, 0}) A rel-b-c(oy, o)

4 The fact that “cells” contain both data and pointer (rather than them being in
locations n and n + 1 as in Figure is incidental — think of car/cdr in Lisp.
Furthermore, the decision to use Ptr rather than N is deliberate.

The proof follows from the definitions with the existential introduction using
the one point rule.

The attentive reader might have noted that no invariant was given for X;
this is most easily expressed as:

inv-Y.(o.) & Fs,r € Srep - sep(s,r) A rel-b-c((s,7),0.)

Code (in C++) that satisfies post-STEP, is given in Figure [3] The final
step in the correctness argument is to note that Figure |2 terminates when s =
[], modelled on the representation by terminating when ¢ = nil, which, under
rel-b-c and retr-a, are equivalent.

Class Pair{
Val v;
Pair* p;
}
Pair* reverse(Pair* i){
Pair* k;
Pair* j = NULL;
while (i !'= NULL) {

k = i->p;
i->p = 3
j=1i;
i=k;

}

return j;

}

Fig. 3. C++ implementation of the list reversal algorithm.

2.5 Observations

This simple sequential example illustrates how the motto separation is an ab-
straction can work in practice. In the abstraction (X,) of Section the two
variables are assumed to be distinct; standard data reification rules apply where
that distinction is obvious; here, it must be established that the abstraction of
separation holds in the representation as (changing) portions of a shared heap.
A valuable byproduct of the layered design is that the algorithm is discussed on
the abstraction and neither the reification step nor its justification are concerned
with list reversal as such. This is, of course, in line with the message of [Wir70].

There are some incidental bonuses from the use of VDM: the invariant
(and the use of predicate restricted types) effectively provides pre conditions
on the functions; use of relational post conditions avoids the need for what

are essentially auxiliary variables to refer to the initial state; and the use of
“LPF” [BCIJ84] simplifies the construction of logical expressions where terms
and/or propositions can fail to denote.

There is no need to use rely/guarantee conditions here because there is no
concurrency but they could be used to demarcate the portion of the heap that
is of concern. Notice that hp = r U s could be relaxed to r U s C hp. This topic
is reviewed in the next section where parallelism is an issue.

3 Mergesort

The list reversal example demonstrates the idea of handling separation via ab-
straction in a sequential development. This section applies the same idea to a
concurrent design: the well-known mergesort algorithm which sorts by recur-
sively splitting lists. At each stage, the argument list is divided into two parts
(preferably, but not necessarily, of roughly equal sizes) which are then recur-
sively submitted to merge sort. As the recursion unwinds, the two sorted lists
are merged into a single sorted list.

3.1 Specification

The notion of sorting is easy to specify as a relation:
is-sort : Val* x Val* — B
is-sort(s,s') 2 ordered(s') A permutes(s’, s)

The ordered predicate tests that the elements of its argument are in ascending
order.

ordered : Val* — B
ordered(s) £ Vie{l.lens—1}-5(i) <s(i+1)
The permutes predicate tests that its two argument lists contain the same ele-

ments; here this is done by comparing the “bag” (“multiset”) of occurrences:

permutes : Val* x Val* — B

permutes(s,s’) 2 bag-of (s") = bag-of (s)

bag-of : Val* — (Val = Ny)
bag-of (s) 2 {ew> card{i € indss|s(i) = e} | e € elems s}

3.2 Algorithm

The basic idea of merge sorting can be established with a recursive function
(mergesort defined below). This uses a merge function that joins the two given
lists by comparing their head elements and inserting the smaller element into
the result list:

merge : Val* x Val* — Val*

merge(sl,s2) &
if s1 =1]
then s2
else if s2 =[]
then sl
else if (hd s1 < hd s2)
then [hd s1] " merge(tl 51, 52)
else [hd s2] ¥ merge(s1,tl 52)

Lemma 6. The merge function has the property that the final list is a permu-
tation of the initial two lists conjoined:

permutes(merge(sl, s2), 517 s2)

The proof is by nested induction on the lists.

Lemma 7. The merge function also satisfies the property that, if the argument
lists are ordered, so is the resulting merged list:

ordered(sl) A ordered(s2) = ordered(merge(sl, s2))

The proof is identical in structure to that of Lemma [6]
The mergesort function itself is defined as follows:

mergesort : Val* — Val*

mergesort(s) 2
iflens <1
then s
else let s1,52 be st 51" s2=sAsl#[]As2#([] in
merge(mergesort(sl), mergesort(s2))

Lemma 8. The mergesort function ensures that the resulting list is both sorted
and a permutation of the initial list:

s' = mergesort(s) = is-sort(s,s’)

The proof needs course-of-values induction on s.

3.3 Representing sequences

Having established the overall algorithmic ideas in Section the method used
in Section [2:3] can be followed by reifying the sequences into representations
in heap storage. The type Srep is exactly as in Section [2.3] The implementa-
tion consists of two operations: MERGE and MSORT. MSORT operates on ¥,
(cf. Section [2.3), while the MERGE operation uses a state that contains three
instances of Srep:

Ym = (Srep x Srep x Srep),

where the three fields are pairwise separate (sep).

In Section a while loop was used for the (abstract) program. This ap-
proach is not followed here because it would be a digression to derive a proof
rule for the (non-tail) recursion needed in MSORT (this construct is not cov-
ered in [Jon90]). Instead the recursion in both MERGE and MERGESORT is
represented by “quoting post conditions” (cf. [Jon90, Section 9.3]).

post-MERGE((l,r,a),(I',7",a")) &
I={Ind' =rAl'=r"={}V
r={}Aad =IANI=r"={}V
TE{YAT £ {} AN I(start(l); < r(start(r))1 A
post-MERGE (({start(1)} < 1, r,a),(I',r", ma)) A
a’ = {start(l) — (I(start(l)), start((ma))} U ma V
F#{Y AT #{}NI(start(l))1 > r(start(r))1 A
post MERGE((l,{start(r)} < r,a),(I',r",ma)) A
a’ = {start(r) — (r(start(r))1,start((ma))}Uma

Lemma 9. MERGE preserves separation:
(I,r,a) € By Apost-MERGE((I,r,a),(I',r",d")) = (I',r',a’) € &y,

The proof of this lemma is obvious from the form of the proof of Lemma

Lemma 10. MERGE mirrors merge

Vi,r,a,l',r" a € Val* -
post-MERGE((I,r,a),(I',r,d")) =
gather(a’) = merge(gather(l), gather(r))

Here again, the proof follows that of Lemma [4]

It is necessary below to split an Srep into two separate values of that type.
Since the result must represent two non-empty sequences, the argument Srep
must represent a sequence whose length is at least two. The function split re-
curses until the argument p is located in the representation:

split : Srep x Ptr — (Srep x Srep)

split(sr,p) A
if sr(start(sr))s =p
then ({start(sr) — (sr(start(sr))i,nil)}, {start(sr)} < sr)
else let (I, r) = split({start(sr)} < sr,p) in
(({start(sr)} < sr)Ul,r)

pre p € dom sr A p # start(sr)

Lemma 11. The split function yields two instances of Srep that are separate:
p € dom srAp # start(sr)A(l,r) = split(sr,p) = 1,r € SrepAsep(l, 1)
The proof is by induction on sr.

Lemma 12. Under the gather function, concatenation of the two lists produced

by split gives the argument list:

p € dom sr A p # start(sr) A (1,r) = split(sr,p) =
gather(1) ™ gather(r) = gather(sr)

This proof follows the structure of that of Lemma

The state for MSORT is precisely a (single) Srep:
¥, = Srep

Whereas MERGE is used sequentially (there are no concurrent threads), in-
stances of MSORT can be run in parallel. The term “parallel” is used in prefer-
ence to “concurrently” precisely because the instances are executed on separate
parts of the heapﬂ

MSORT

ext wr o : Srep

post (o ={} Vo(start(o))s =nil) Ao’ =0 V
let p € dom o be st p # start(c) in
let (I,7) = split(o, p) in
post-MSORT (1,1') A
post-MSORT (r,r") A
post-MERGE((I',r'.{}),(,,0"))

The final conclusion is that MSORT mirrors mergesort:
post-MSORT (o,0’) = gather(c') = mergesort(gather(c))
which follows immediately from the lemmas.

5 The alternative of using a simple form of rely/guarantee condition is discussed in
Section @

3.4 Using pointers

As in Section [2.4] it is straightforward to develop code as in Figures [4] and
that satisfy the specifications of MERGE and MSORT; Section [4] raises the
more interesting possibility of mechanically generating such code.

Class Pair{
Val v;
Pair* ptr;
}
Pair* merge(Pair* 1, Pair* r){

Pair* result;

if (1 == NULL){
return r;

}else if (r == NULL){
return 1;

}else if (1->v <= r->v){
result = merge(1->ptr, r);
1->ptr = result;
return 1;

Yelse{
result = merge(l, r->ptr);
r->ptr = result;
return r;

}

}

Fig. 4. C++ implementation of MERGE.

3.5 Observations

As in Section [2], the approach of viewing separation as an abstraction has ben-
efits. As in the earlier example, aspects of VDM such as types restricted by
predicates and relational post conditions play a small part in the development
of merge sort. More significant is that the layered development makes it possi-
ble to divorce the reasoning about merging and sorting from details of how the
abstract state is reified onto heap storage.

Although this example has used some aspects of VDM not needed in Section[2]
— in particular, quoting post conditions — it is important to remember that
these are long-standing ideas in VDM and are not specific to reasoning about
the separation issue.

Pair* split(Pair* p){

int midlen = getlength(p) / 2;

int counter = 1;

Pair* current = p;

while (counter < midlen){
current = current->ptr;
counter++;

}

Pair* next = current->ptr;

current->ptr = NULL;

return next;

}

Pair* msort(Pair* p){
if (p == NULL || p->ptr == NULL){
return p;
}
Pair* mid = split(p);
Pair* sortedp = msort(p);
Pair* sortedmid = msort(mid);
return merge(sortedp, sortedmid);

Fig. 5. C++ implementation of MSORT.

4 Discussion

The research reported in this paper is one vector of a project known as “Taming
Concurrency” in which it is hoped to identify and/or develop apposite notations
for reasoning about the underlying issues that make designing and reasoning
about intricate concurrent programs challenging. In contrast, starting with a
fixed notation might be seen as a version of “to a man with a hammer, everything
looks like a nail”.

The Rely/Guarantee (R/G) approach (of which more below) was devised to
reason about the issue of interference. The R/G concept has been substantially
recast in [HJCI4] and summarised in [JHCI14]. In contrast to the monolithic
five-tuple approach of [Jon81lJon83allTon83b] for R/G specifications, [HIJC14]
presents separate rely and guar constructs in a refinement calculus style and
indicates that these constructs have an algebraic structure.

The current paper is written in the same spirit. Separation is also a key
issue in thinking about parallel programs. One example of the importance of
separation is the way in which storage is allocated between threads in an op-
erating system. Separation Logic (SL) has a well-crafted collection of operators
for reasoning about separation and an attractive feature is the pleasing algebraic
properties of the operators.

This paper —with the help of examples previously tackled with SL— explores
the option of reasoning about separation using predicates defined over heaps.
The idea can be summarised with the motto that separation is an abstraction. A
corollary of this point of view is that reifications (e.g. of separate variables into
heap representations) have to preserve the separation property of the abstrac-
tion. Other than the twist of viewing separation as an abstraction, the method
of data reification used here is long-established in the literature.

Analogous to the pulling apart of R/G specifications, an alternative view of
SL might lead to different notational ideas than if the notation itself is taken as
the fixed point.

Obviously, the fact that it is possible to reason about separation without the
need to use SL itself, is not an argument against SL. One huge benefit of SL is the
tool support that has been developed around the notation. These tools support a
“bottom-up” approach that is advantageous with legacy software. The pleasing
algebraic relationship between SL operators has been referred to above. These
operators are also able to express some constraints in a succinct way (e.g. the
use of separating conjunction with recursion to state that a chain of pointers has
no loops).

A bonus from the top down approach can be seen in both of the examples
above: the essence of each algorithm is documented and reasoned about on the
abstraction and this is separated from arguments about the messy details of the
(heap) representations. The hope is that seeing what can be done via a top-down
view using abstraction could prompt new requirements for SL-like notations. The
approach might, conceivably, also control the proliferation against which Matt
Parkinson warns in [Parl0].

To anyone familiar with the first author’s work on R/G, the limited role of
that approach in the current paper might come as a surprise. Of course, the
principal cause is that this paper addresses the issue of separation whereas R/G
was developed to tackle interference. It would, however, be possible to use R/G
conditions for the specification of MSORT in Section to show that there is
really only one heap and that interference is limited to appropriate sub-heaps
(e.g.
rely-MSORT: ptrs(p, hp) < hp’ = ptrs(p, hp) < hp
gquar-MSORT: ptrs(p, hp) < hp' = ptrs(p, hp) < hp
it would be worth defining a ptrs function but without that it is the domain of
the corresponding Srep).

The preceding comment prompts some observations about alternative devel-
opments considered by the authors.

— It would simplify the notation to separate the Heap into two mappings (one
for the Val and the other for the next Ptr) because it would remove the need
to use subscripts to access the components of the pair.

— In both applications, it would be possible to omit the intermediate ()
representation and to jump directly from the respective abstract states to
the general Heap. As mentioned in Section the fact that Srep was used
in both problems is one argument for separating it as an intermediate notion

— the other argument is the Wirth-like divorce of the algorithm design from
the messy heap representation details.

— It would be useful to develop a “theory” of Srep objects and this might be
the most telling testbed for choosing the role of separating conjunction.

Another avenue that would be interesting to explore is the extent to which
recording the relationship between a clean abstraction and its representation
(given here as “retrieve functions”) could be used to generate code automatically
from the abstract algorithm.

Related to the connections between R/G and SL (cf. [?,?]), it might be worth
noting one of the Laws in [HJC14]:

(01 N @2] E (guar gy e (rely gz @ [¢1])) || (guar gz o (rely g1 ¢ [g2]))

which both handles the general case of interference and rather clearly shows
that the attractive prospect of conjoining the post conditions of parallel threads
can be achieved (only) if their respective guarantee conditions ensure sufficient
separation. This makes clear that complete separation is just an extreme case of
minimising interference.

For the future, the need to reason about both separation and interference will
be discussed in another paper on which the current authors are working (together
with Andrius Velykis) which covers the design of a concurrent implementation
of DOM .

Acknowledgements

The research reported here is supported by (UK) EPSRC “Taming Concurrency”
and “TrAmS-2” research grants. The authors would like to thank Andrius Ve-
lykis and our colleagues Ian Hayes, Larissa Meinicke and Kim Solin from the
(Australian) ARC-funded project “Understanding concurrent programmes us-
ing rely-guarantee thinking” for their invaluable feedback.

References

BCJ84. H. Barringer, J.H. Cheng, and C. B. Jones. A logic covering undefinedness in
program proofs. Acta Informatica, 21(3):251-269, 1984.

HJC14. Ian J. Hayes, Cliff B. Jones, and Robert J. Colvin. Laws and semantics for rely-
guarantee refinement. Technical Report CS-TR-1425, Newcastle University,
July 2014.

Hoa69. C. A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576-580, 583, October 1969.

Hoa7l. C.A.R. Hoare. Proof of a program: FIND. Communications of the ACM,
14(1):39-45, January 1971.

Hoa72. C.A.R. Hoare. Towards a theory of parallel programming. In Operating System
Techniques, pages 61-71. Academic Press, 1972.

JHC14. CIiff B. Jones, Ian J. Hayes, and Robert J. Colvin. Balancing expressiveness
in formal approaches to concurrency. Formal Aspects of Computing, (on-line),
2014.

Jon81. C. B. Jones. Development Methods for Computer Programs including a No-
tion of Interference. PhD thesis, Oxford University, June 1981. Printed as:
Programming Research Group, Technical Monograph 25.

Jon83a. C. B. Jones. Specification and design of (parallel) programs. In Proceedings
of IFIP’83, pages 321-332. North-Holland, 1983.

Jon83b. C. B. Jones. Tentative steps toward a development method for interfering
programs. Transactions on Programming Languages and System, 5(4):596—
619, 1983.

Jon90. C. B. Jones. Systematic Software Development using VDM. Prentice Hall
International, second edition, 1990.

O’H07. P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical
Computer Science, 375(1-3):271-307, May 2007.

Par10. Matthew Parkinson. The next 700 separation logics. In Gary Leavens, Peter
O’Hearn, and Sriram Rajamani, editors, Verified Software: Theories, Tools,
Ezperiments, volume 6217 of Lecture Notes in Computer Science, pages 169—
182. Springer Berlin / Heidelberg, 2010.

Rey02. John C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In Proceedings of 17th LICS, pages 55-74. IEEE, 2002.

Wir76. N. Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, 1976.

Appendix

This appendix (of the Technical Report version) contains detailed proofs of some
of the lemmas in the submitted version of the paper. The proofs are laid out in
a natural deduction style whose VDM use is described in [Jon90l Sect.1.2].

Lemma [T states:
Vsr € Srep - Ve, d € dom sr - is-start(sr, ¢) A is-start(sr,d) = c=d
The proof follows simply by expanding the definitions.

from sr € Srep; c,d € dom sr

1 from is-start(sr, c) A is-start(sr, d)

1.1 {sr(p)2 | p € dom sr} = (dom sr — {c}) U {nil} h1, is-start

1.2 {sr(p)2 | p € dom sr} = (dom sr — {d}) U {nil} h1, is-start

1.3 (dom sr — {c}) U {nil} = (dom sr — {d}) U {nil} 1.1,1.2

14 {c} ={d} h,1.3
infer c =d 1.4

infer is-start(sr,c) A is-start(sr,d) = c=d 1

Lemma [2 states:
(s,7) € 3y A post-STEPy((s, 1), (s, 7)) = (s,7) €,
The proof again follows immediately from the definitions.

from (s,7) € Xy A post-STEPy((s,r), (s, "))

1 inv-Srep(s) h, inv-3,
2 s#{} 1, pre-STEP,
3 3b € dom s - is-start(s, b) 2, inv-Srep
4 s’ = {start(s)} = s 1, 3, post-STEP,
5 start(s') = s(start(s))2 4, start
6 3b € dom s’ - is-start(s’, b) 5, is-start
7 Vp,g€doms-p#q = s(p)2# s(q)2 h, inv-3,
8 Vp,gedoms’-p#q = s'(p)2 # 5'(q) 7,4
9 inv-Srep(s’) 6, 8
10 inv-Srep(r) h, inv-3,
11 r’ = rU{start(s) — (s(start(s))1, start(r))} h, post-STEP,
12 start(r’) = start(s) 11, start
13 3b € dom 1’ - is-start(r’, b) 12, is-start
14 Vp,g edomr-p#q = r(p) # r(q)2 10, inv-X,
15 sep(s,r) h, inv-X,
16 start(s) ¢ dom r 15, sep
17 Vp,gedomr’ -p#£q = 1'(p)e #1(q)2 14, 16
18 inv-Srep(r') 13,17, inv-Srep
19 sep(s’,r") 1, 4, 11, sep
infer (s',7') € 3 9,18, 19
Lemma [3 states:
Vs € Val* - 3sr € Srep - gather(sr) = s
The proof is by a straightforward induction on sequences.
from s € Val*
1 from s =[]
1.1 {} € Srep inv-Srep
1.2 gather({}) =[] gather
infer 3sr € Srep - gather(sr) = s 1.1, 1.2
2 from s € Val*;3sr € Srep - gather(sr) = s IH
2.1 p ¢ domsr Ae e Val assume
2.2 s’ = {p > (e, start(sr))} U sr assume
2.3 is-start(sr’,p) 2.2, is-start
2.4 Vq,q edomsr’ - q# q = sr'(q)s # sr'(q')2 h2, 2.1, 2.2
2.5 sr’ € Srep 2.3, 2.4, inv-Srep
2.6 gather(sr') = [e] " gather(sr) 2.2, 2.3, 2.5, gather
infer 3sr’ € Srep - gather(sr') = [e] " s 2.6, 2.7
infer 3sr € Srep - gather(sr) = s indn(1, 2)

Lemma [states:
inv-Xy(0p) Apost-STEPy (04, 01) = post-STEP,(retr-a(oy), retr-a(o}))
The proof follows by expanding the definitions.
from inv-X,(0p) A post-STEPy(oy,0%)

1 (s,m) =op;(s',7") =0}, assm
2 s’ = {start(s)} = s 1, post-STEP,,
3 ' =r U {start(s) — (s(start(s), start(r)} 1, post-STEP,,
4 gather(s’) = gather({start(s)} < s) 2, gather
5 = tl gather(s) 4, gather
6 gather(r') = gather(r U {start(s) — (s(start(s)1, start(r))} 3, gather
7 = [hd gather(s)] " gather(r) 6, gather

infer post-STEP,(retr-a(oy), retr-a(o},)) post-STEP,, 5, 7

Lemma [3 states:

rel-b-c(op,0.) A post-STEP (o.,0,) =
Jdo}, € Xy - post-STEPy (0, 0}) A rel-b-c(oy, o)

The proof requires the definitions of the functions/predicates; the existential
introduction is by the one-point rule.

from rel-b-c(op,0.) A post-STEP (o, c’,)

1 (s,7)=0% assm
2 (hp,i,j) = o assm
3 (hp',i',5") =0, assm
4 hp" = hp 1 {i — (hp(i)1,7)} 3, post-STEP,
5 i = hp(i)2 3, post-STEP,
6 j =1 3, post-STEP,
7 from s’ = {start(s)} < sA
r’ = r U {start(s) — (s(start(s)1, start(r)} assm
7.1 hp' =r"Us’ 4, h7
7.2 i’ = start(s) 5, h7
7.3 j' = start(r’) 6, h7
7.4 rel-b-c(o}, 0) 7.1, 7.2, 7.3, h7, rel-b-c
infer post-STEPy(cy,0}) A rel-b-c(oy,, 0%,) 7.4, post-STEP,

infer 3o} € ¥y, - post-STEP, (0, 0}) A rel-b-c(o}, o7,) 31,7

c

Lemma [Glstates:

permutes(merge(sl, 52),s17 52)

This proof uses nested induction on sequences. (In order to save (horizontal) space, permutes is abbreviated to p and

merge to m in this proof.)

from sl € Val* A s2 € Val*

1 from sl =[]
1.1 m(sl, s2) = s2
1.2 s17 52 =52
infer p(m(sl,s2),s1"" s2)
2 from p(m(sl,s2),s1"" 52)
2.1 from s2' =[]
2.11 m(le] " s1,52") = [e]
2.1.2 [e] Y s1 52 =[e]
infer p(m([e] " s1,52'),[e] " slms2')
2.2 from p(m([e] " s1,52'),[e] Y517V 52)
2.2.1 p(m(sl,[e] 7Y 52),s17V [e/] 7Y s2)
2.2.2 from e < ¢’
2.2.2.1 m([e] ¥ s1,[e] Y s2') = [e] ¥ m(sl, [e] 52)
infer p(m([e] " s1,[e/] " s2'),[e] ¥ s1 7V [e/] Y 52))
2.2.3 from e > ¢
2.2.3.1 m([e] Y s1,[e] 52') = [e/] ¥ m(le] " s1,52')

]
infer p(m([e] "> s1,[e/] " s2'),[e] V51V [e/] Y 52))
infer p(m([e] "> s1,[e'] ¥ s2'),[e] ¥ s1 ¥ [e/] 7Y 52))
infer p(m([e] " s1,52),[e] " 517" 52)
infer p(m(sl,s2),s1" 52)

hl, m

hl
1.1,1.2, p
IH

h2.1, m
h2.1

2.1.1, 2.1.2
IH

h2, p

h2.2.1, m
2.2.1,2.2.2.1, p

1h2.2.2,m
9.2.1,2.2.3.1, p
V-E(2.2.2, 2.2.3)
indn(2.1, 2.2)
indn(1, 2)

Lemma [7] states:
ordered(s1) A ordered(s2) = ordered(merge(sl, s2))

The proof is identical in structure to that of Lemma [f]

Lemma [§ states:

s’ = mergesort(s) = is-sort(s,s’)

This proof uses “course of values” induction so that the induction hypothesis

can be applied to the arbitrary sub-parts of s € Srep.

from s’ = mergesort(s)

1 from lens <1
1.1 mergesort(s) = s hl, mergesort
1.2 permutes(s, s) permutes
1.3 ordered (s) h, ordered
infer is-sort(s,s’) 1s-sort, h, 1.1, 1.2, 1.3
2 from s1’ = mergesort(sl) = is-sort(sl, sl’)A
s2" = mergesort(s2) = is-sort(s2,s2)
2.1 ordered(s1’) A ordered(s2") h2, is-sort
2.2 ordered(merge(s1’, s2')) Lemmal[7] 2.1
2.3 permutes(s1’, s1) A permutes(s2’, s2) h2, is-sort
2.4 permutes(merge(s1’,s2'), 517 s2) Lemma [permutes, 2.3
infer is-sort(s1”" s2, merge(s1’, s2')) is-sort, 2.2, 2.4

infer is-sort(s, s’) cov-indn(1, 2)

Lemma [d states:
(I,r,a) € By Apost-MERGE((I,r,a),(I',7",d")) = (I',r',a’) € &,
The proof is obvious from the form of the proof of Lemma

Lemma [10] states:

Vi, r,a,l',r", 0" € Val* -
post-MERGE((l,r,a),(lI',7",a")) =

gather(a’) = merge(gather(l), gather(r))

The proof follows that of Lemma

Lemma [T1] states:
(I,r) = split(sr,p) = 1,7 € Srep A sep(l,)

The proof is by induction on sr — remembering that the base case is for an
Srep corresponding to two elements (see pre-split).

from true
1 from sr = {p — (v,q), ¢ — (v/,nil)}A
q € dom sr A q # start(sr) base case
1.1 split(sry q) = ({p — (v,nil)}, {g — (v/,nil)})
1.2 (I,r) = split(sr, q) naming
infer [, r € Srep A sep(l, 1) 1.1, 1.2, Srep, sep
2 from (I, r) = split(sr,p) Al,r € Srep A sep(l, 1) IH
2.1 s’ ={o > (v, start(sr)} U sr naming
2.2 (U',r") = split(sr’, q) naming
2.3 from ¢ = start(sr)
2.3.1 (I',r") = ({or (v/,nil)}, sr) split, h2.3
infer I’ " € Srep A sep(l', ') h2, Srep, sep
2.4 from q # start(sr)
2.4.1 (I',r")y = ({ow (v, start(l))} Ul 1) split, h2.4
infer ', v’ € Srep A sep(l', ") h2, Srep, sep
infer ', r' € Srep A sep(I', ") V-E(2.3, 2.4)
infer [,r € Srep A sep(l, 1) indn(1, 2)
Lemma [[2] states:

p € dom sr A p # start(sr) A (l,r) = split(sr,p) =
gather(1) " gather(r) = gather(sr)

The proof follows the structure of that of Lemma [T1]

	MasterTRCover1447
	MasterTRAbstract1447
	TECHNICAL REPORT SERIES
	Abstract

	MasterTRBibliography1447

