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inference rules to quintuples that accommodate rely and guarantee conditions. In 
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for concurrent programs, in which programs are developed in (small) steps from an 
abstract specification. As is usual, we extend the implementation language with 
specification constructs (the extended language is sometimes called a wide-spectrum 
language), in this case adding two new commands: a guarantee command (guar g.c) 
whose valid behaviours are in accord with the command c but all of whose atomic 
steps also satisfy the relation g, and a rely command (rely r.c) whose behaviours are 
like c provided any interference steps from the environment satisfy the relation r. The 
theory of concurrent program refinement is based on a theory of atomic program 
steps and more powerful refinement laws, most notably, a law for decomposing a 
specification into a parallel composition, are developed from a small set of more 
primitive lemmas, which are proved sound with respect to an operational semantics.  
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Abstract

Interference is the essence of concurrency and it is what makes reasoning about concurrent programs
difficult. The fundamental insight of rely-guarantee thinking is that stepwise design of concurrent pro-
grams can only be compositional in development methods that offer ways to record and reason about
interference. In this way of thinking, a rely relation records assumptions about the behaviour of the
environment, and a guarantee relation records commitments about the behaviour of the process. The
standard application of these ideas is in the extension of Hoare-like inference rules to quintuples that ac-
commodate rely and guarantee conditions. In contrast, in this paper, we embed rely-guarantee thinking
into a refinement calculus for concurrent programs, in which programs are developed in (small) steps
from an abstract specification. As is usual, we extend the implementation language with specification
constructs (the extended language is sometimes called a wide-spectrum language), in this case adding
two new commands: a guarantee command (guar g • c) whose valid behaviours are in accord with the
command c but all of whose atomic steps also satisfy the relation g, and a rely command (rely r • c)
whose behaviours are like c provided any interference steps from the environment satisfy the relation r.
The theory of concurrent program refinement is based on a theory of atomic program steps and more
powerful refinement laws, most notably, a law for decomposing a specification into a parallel composi-
tion, are developed from a small set of more primitive lemmas, which are proved sound with respect to
an operational semantics.
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1 Introduction

The rely-guarantee rules of Jones [Jon81, Jon83] provide a compositional approach to reasoning about
concurrent processes (the most accessible reference is [Jon96]; an exhaustive analysis of various compo-
sitional and non-compositional approaches can be found in [dR01]). Based on many other contributions
such as [Stø90, CJ00, CJ07] these rules have been absorbed into a more general rely-guarantee “thinking”
as exemplified in [JP11].

The basic rely-guarantee idea is simple: in order to develop a concurrent process c separately from
its surrounding components, one needs to take into account interference from the processes which form
the (parallel) environment of c. This is done by assuming that any interleaving step of the environment
of c satisfies a rely condition r. The rely condition records assumptions the developer is invited to make
about possible interference from the environment. Conversely, each process is associated with a guarantee
condition, which must be proved to be the limit of interference that it can inflict on the other processes in
its environment. Both rely and guarantee are expressed as binary relations over states. To handle reasoning
about concurrent programs, [Jon81, Jon83] extended Hoare triples to quintuples of the form {p, r} c {g, q},
in which the precondition p is augmented with a rely condition r and the post condition q is augmented with
a guarantee condition g. A set of Hoare-style inference rules based on these quintuples allows reasoning
about concurrent programs.

In this paper we use an approach based on the refinement calculus rather than Hoare logic. The refine-
ment calculus has separate primitives for precondition assumptions {p} and post condition specifications[
q
]
. To extend the refinement calculus for concurrent programs, we add two new constructs: one to sup-

port a guarantee condition g on a command c, (guar g • c), and the other to support a rely condition r,
(rely r • c). The main advantage of our new approach is that one can develop separate simpler refinement
laws for each construct in isolation and then combine them to produce more complex laws involving rely
and guarantee conditions as well as pre- and post-conditions. Proofs of laws equivalent to the Jones-style
inference rules are then straightforward to derive from the more basic laws and it is easier to derive new
variants of laws.

The guarantee command. To simplify reasoning about types and invariants in the refinement calculus,
Morgan and Vickers [MV90] introduced an “invariant command”: (inv p • c). A step of the execution of
c is allowed by (inv p • c) only if the step maintains the invariant p (a predicate of a single state). If in a
particular state the only steps available to c would all break p, then (inv p • c) is infeasible (in refinement
calculus terms; also known as unsatisfiable in VDM).

The way in which an invariant constrains a program is similar to the way in which a guarantee constrains
a program: an invariant constrains each state, while a guarantee constrains each atomic transition between
states. This was already noted in [CJ00] but here the similarity is taken further in that a novel command
of the form (guar g • c) is introduced. The idea behind this new command was motivated by the analogy
with the invariant command of Morgan and Vickers. The command (guar g • c) behaves as c but it only
allows atomic program steps which either satisfy the relation g between their before-state and after-state
or stutter (i.e. do not change the state). Any step that c alone could take that does not stutter or satisfy g
is not a valid step for (guar g • c). If in a particular state σ the only steps available to c would neither
stutter nor satisfy g, then (guar g • c) is not feasible in σ. The stuttering steps allow a process to perform
internal steps that do not affect the shared state. The definition of the guarantee command is given in terms
of a more primitive strict conjunction operator (c e d) in which every atomic step of c e d must be a valid
atomic step of both c and d.

The sequential refinement calculus makes use of a specification command of the form
[
q
]
, in which q is

a relation (expressed as a two-state predicate) giving its post condition [Mor88]. Any implementation of
[
q
]

must terminate in a state such that the initial and final states are related by q. The command (guar g •
[
q
]
)

not only satisfies the post condition q but also only uses atomic program steps which each satisfy the
relation g or stutter. At this level there is no particular notion of granularity of atomicity; all that is required
is that the atomic program steps (whatever they turn out to be) of any implementation of (guar g •

[
q
]
) all

individually satisfy g or stutter, while the complete sequence of steps satisfies q.
The main advantage in introducing the guarantee command is that it facilitates the separation of the
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concern of refining a command from that of showing that the refined code adheres to a guarantee. Because
the guarantee command is monotonic with respect to refinement of the command in its body, the body can
be refined and then a separate set of refinement laws can be used to distribute and eliminate the guarantee.1

There is one caveat though: a valid refinement of the body may introduce steps that become infeasible
when constrained by the guarantee. This means that in doing the refinement one needs to be aware of the
enclosing guarantee context in order to ensure that the refinement respects it. The guarantee command also
provides a novel simple definition of framing for a command c, i.e. specifying the set of variables c may
modify. Section 3 explores guarantee commands in detail.

The rely command. Sequential refinements are only valid if the interference from the environment is
restricted to stuttering steps and hence in order to preserve sequential refinements in our concurrent theory,
a specification is defined to abort if the environment does a non-stuttering step. In order to specify a
construct that meets a pre-post specification in the context of interference from the environment bounded
of a relation r, we make use of a novel command of the form (rely r • c), which is an “implementation”
of c provided interference from the environment respects the rely condition r. The relation r records an
assumption about every atomic step of the environment of the command: either the step satisfies r or it
stutters. The command 〈r ∨ id〉∗ represents any finite number, zero or more, of atomic steps that satisfy
the relation r or the identity relation id (i.e. stuttering). A specification

[
q
]

is refined by (v) the command
(rely r •

[
q
]
) run in parallel with interference bounded by r, i.e.[

q
]
v (rely r •

[
q
]
) ‖ 〈r ∨ id〉∗ .

The stronger the rely condition, the more constrained the acceptable environments and hence the easier
it is to implement

[
q
]
. The empty relation is the strongest rely condition: it represents only stuttering

interference from the environment. Common rely conditions are those that require that certain variables
are not modified, or those that restrict the way in which variables may change (e.g. only increase). Section 4
explores rely commands in detail as well as combining rely and guarantee commands.

Parallel. The key step in any concurrent refinement is the introduction of parallel composition, splitting
a sequential specification into two processes. The quintessential quintuple rule of Jones allows a postcon-
dition of q0 ∧ q1 to be achieved by two parallel processes that achieve q0 and q1, respectively, provided
each branch of the parallel guarantees the rely condition of the other. This can be expressed in the notation
used here as follows.[

q0 ∧ q1
]
v (guar g0 • (rely g1 •

[
q0

]
)) ‖ (guar g1 • (rely g0 •

[
q1

]
)) (1)

Using the strict conjunction operator “e”, the specification
[
q0 ∧ q1

]
can be written as a conjunction of two

specifications:
[
q0

]
e
[
q1
]
. This motivates a generalisation of (1) to refine a conjunction of two commands

c0 and c1 to a parallel composition.

c0 e c1 v (guar g0 • (rely g1 • c0)) ‖ (guar g1 • (rely g0 • c1))

Section 5 gives derivations of the laws for introducing parallel compositions from the properties of the
guarantee and rely commands and Section 6 extends these laws to allow trading of conditions between the
post condition of a specification and rely and guarantee conditions. These proofs give further insight into
the way in which rely and guarantee combine to enable reasoning about concurrent programs.

In the literature, early justifications of proof obligations for rely/guarantee conditions had to confront
the complete set of assumptions and commitments at once. [Pre01, Pre03] limits the task both by disal-
lowing nesting of parallelism (but allowing multi-way parallelism) and by simplifying assumptions about
atomicity; she does however provide a complete Isabelle-checked proof. In contrast, [Jon81] and [CJ07]
only offer proof outlines, but with minimal atomicity assumptions and using a language with arbitrarily
nested parallelism. In this paper the proof of the rule for introducing a parallel composition is comparatively
short and elegant because it utilises more basic laws that were not expressible in the earlier approaches.

1In saying this, there is no suggestion that the advantages of “rely-guarantee thinking” in providing a top-down development
method should be forgotten.
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Refinement with interference. As well as introducing parallel compositions, our laws need to handle
refining the individual processes in the presence of interference. Refining specifications to sequential com-
positions, atomic steps and assignments is treated in Section 7. In situations in which the environment
does not modify any of the variables used (read or written) by a process, sequential refinement laws can
be used. To accommodate this in the theory another command, (uses X • c), is introduced; it restricts c to
only access variables in the set X.

Section 8 examines expression evaluation, which in the presence of non-trivial interference is non-
deterministic. Section 9 examines local variable blocks. Local variables are not subject to interference
from external processes and, within a local variable block, code cannot modify any other variables with the
same name as the local variables and hence guarantees they are unchanged.

Reasoning about control structures in the presence of interference requires accepting that interference
can affect test evaluation. In the following refinement, the specification

[
q
]

is refined to an if statement, in
a context in which the variable x may be decreased, as represented by the rely relation x′ ≤ x in which x
and x′ stand for the initial and final values of the variable x, respectively, within the relation. For the “then”
branch, if x < 0 is true, decreasing x will not falsify it and hence x < 0 can be assumed as a precondition
of the “then” branch. For the “else” branch, if x ≥ 0 is true, decreasing x may falsify x ≥ 0, and hence
only the trivial precondition true can be assumed for the “else” branch. A specification command with a
precondition p and postcondition q is written

[
p, q

]
; any behaviour is possible if p does not hold initially.

(rely x′ ≤ x •
[
q
]
) v if x < 0 then (rely x′ ≤ x •

[
x < 0, q

]
) else (rely x′ ≤ x •

[
true, q

]
)

To handle tests within control structures, a new test construct [[b]], for boolean expression b, is used to
allow for interference during test evaluation. Section 10 examines rules for introducing conditionals and
“while” loops. Showing termination of loops requires reasoning about the effect of the interference on a
well-founded relation, in addition to the loop guard. A non-trivial example of a parallel search algorithm
involving relies, guarantees, parallelism, local variables, conditionals and iteration is developed in full in
Section 11.

Theory of atomic steps. In order to define the new constructs, we found it beneficial to develop a theory
of programs based on atomic program/environment steps. Our motivation is to provide a theory for reason-
ing about concurrent programs based on a set of basic laws for primitives that allow more complex laws to
be derived as needed. Using the theory, it is only necessary to justify that about two dozen basic lemmas
respect the semantic model: all of the remaining laws are derived from this basic set. Hence –to illustrate
that the theory does allow this– we have given the proofs of the derived laws in terms of the basic laws and
other derived laws. The theory of atomic steps is presented, as needed, throughout the paper. Interestingly,
it allows program properties to be represented as refinements, for example, termination of a command c
from states satisfying the precondition p in an environment in which all the interference steps satisfy the
relation r can be represented by c satisfying the refinement:

{p}〈true〉∗ vr c

where the command 〈true〉∗ can perform a finite number, zero or more, of any atomic program step.
The semantics of the language is given in Appendix A and proofs of the basic lemmas are contained in

Appendix B.

2 Programming language and refinement

2.1 Syntax
The syntax of expressions and commands is given in Figure 1. The command 〈p, q〉, where p is a single
state precondition and q is a relation, may abort if p does not hold in the before state but otherwise performs
a single atomic program step that satisfies relation q between its before and after states. The environment
is free to interleave any environment steps either before or after the program step. Note that p is evaluated
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Expressions Let v be a value, x be a variable, “⊕” stand for a binary operator and “	” stand for a unary
operator.

e ::= v | x | e1 ⊕ e2 | 	 e

Basic commands Let p be a predicate, q be a relation, C a set of commands, b a boolean expression, X a
set of variables, x a variable, and v a value.

c ::= 〈p, q〉 |
[
q
]
| {p} | ⊔C | c1 e c2 | c1 ; c2 | c1 ‖ c2 | [[b]] |

uses X • c | state x 7→ v • c

Figure 1: Syntax of expressions and basic commands

in the state immediately prior to the program step. The word “step” always means an atomic step. The
specification command

[
q
]

may take any finite number (zero or more) of atomic program steps to achieve
the relation q between its before and after states but it assumes that the environment will not interfere –
only stuttering environment steps are allowed otherwise the specification aborts. Refinement in an environ-
ment that only performs stuttering steps in our concurrent theory corresponds to refinement in a sequential
program theory.

The precondition command {p} terminates immediately if p holds initially, otherwise it aborts, at which
point any behaviour is possible. For a preconditioned command, “{p} ; c” is written with the “;” elided
as “{p}c”. The operator “ ⊔” is (demonic) nondeterministic choice from a set of commands and “e” is
strict conjunction of commands (a specification rather than implementation construct – see Section 3).
Sequential composition “;” and parallel composition “‖” are standard. Sequential composition has a higher
precedence than the other binary operators. The command [[b]] tests condition b and may either succeed
or fail depending on whether b evaluates to true or false, or it may abort if evaluation of the expression is
undefined, (e.g. division by zero); only traces for tests that succeed are retained as program traces. Tests are
used to define the “if” and “while” commands. The “uses” command restricts its body to only use (read and
write) variables within the set X. A local state command (state x 7→ v • c) behaves as c but encapsulates x
as a local variable with initial value v.

Figure 2 gives a set of derived commands that are defined in terms of the basic commands. Note that
assignment is not a primitive but is defined in terms of a nondeterministic choice over all possible values,
v, such that the test [[e = v]] succeeds, followed by an atomic update of x to be v. The nondeterminism is
needed because the evaluation of e may take place in an environment in which the variables in e are being
(concurrently) modified, and so there may be many possible final values v which can be assigned to x. A
local variable block (var x • c) encapsulates x as a local variable with an arbitrarily chosen initial value.
A command may be iterated a finite number of times (c∗ for zero or more and c+ for one or more), an
infinite number of times (c∞), and either a finite or infinite number of times (cω for zero or more and cω+

for one or more). Although fixed point operators are not part of the programming language, iterations of
commands are defined via greatest (ν) and least (µ) fixed points with respect to the refinement ordering
[vW04].

The language does not include procedures but (as usual) the main concern with adding procedures
is the possibility of introducing variable aliasing via the parameter passing mechanism. To simplify the
presentation, our language does not allow aliasing but we note below any places that would be impacted
by aliasing.

The syntax of predicates and relations is not given in detail here. A relation is expressed as a predicate
over a pair of states: the before state is represented by unprimed variables and the after state by primed
variables. The notation p0 V p1 means (∀σ : Σ • p0(σ) ⇒ p1(σ)), and q0 V q1 means (∀σ, σ′ ∈ Σ •
q0(σ, σ′) ⇒ q1(σ, σ′)). If the implications hold in both directions for all states, the symbol “≡” is used.
The predicate p′ stands for the predicate p with all variables replaced by their primed versions, i.e. p holds
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Let p be a predicate, q be a relation, c, c0 and c1 be commands, b a boolean expression, e an expression, x
a variable, and Val the set of values. For a set of variables X, the relation id(X) is the identity relation on X.
For a variable x, x̄ is the set of all variables other than x.

skip =̂ {true} (2)
abort =̂ {false} (3)
〈q〉 =̂ 〈true, q〉 (4)[

p, q
]

=̂ {p}
[
q
]

(5)
magic =̂ ⊔{} (6)

c0 u c1 =̂ ⊔{c0, c1} (7)
c∗ =̂ νx • skip u c ; x (8)

c∞ =̂ µ x • c ; x (9)
cω =̂ µ x • skip u c ; x (10)
c+ =̂ c∗ ; c (11)

cω+ =̂ cω ; c (12)
if b then c0 else c1 =̂ ([[b]] ; c0) u ([[¬ b]] ; c1) (13)

while b do c =̂ ([[b]] ; c)ω ; [[¬ b]] (14)
x := e =̂ ⊔{v ∈ Val • [[e = v]] ; 〈x′ = v ∧ id(x̄)〉} (15)

var x • c =̂ ⊔{v ∈ Val • (state x 7→ v • c)} (16)

The notation {v ∈ V • f} stands for the set of values of the expression f for v in the set V .2

Figure 2: Derived commands

in the after state. The composition of two relations q0 and q1 is defined by

q0 o
9 q1 =̂ (∃Var′′ • q0[Var′′/Var′] ∧ q1[Var′′/Var]) (17)

in which the final state variables of the first relation (Var′) and the initial state variables of the second
relation (Var) are identified by replacing them both with fresh intermediate state variables Var′′. The
reflexive, transitive closure of a relation r is denoted by r∗.

2.2 Program refinement
The refinement calculus [Bac81, Mor87, Mor88, Mor94, MV94a, BvW98] provides a systematic approach
to program development based on step-wise refinement from a specification to code. A key concept is that
the development takes place using a wide-spectrum language, which includes implementation constructs as
well as specification constructs that are not directly executable. The process of refinement is to transform
the specification into code in small steps, some of which may generate proof obligations.

The sequential refinement calculus introduced both precondition assumptions {p} and postcondition
specifications

[
q
]

as commands in the wide-spectrum language. In this paper we introduce two new com-
mands (guar g • c) and (rely r • c) which extend the expressive power of specifications to allow reasoning
about interference between concurrently executing commands. The most general form of specification is
thus (guar g • (rely r • {p}

[
q
]
)). The statement that this specification is refined by a command c is

written

(guar g • (rely r • {p}
[
q
]
)) v c

and is logically equivalent to c satisfying the Jones-style five tuple {p, r} c {g, q}.
2The notation {v ∈ V • f} is often written {f | v ∈ V} but it is preferable not to use the latter because it is ambiguous as to

whether v is bound within the set comprehension or a free variable being tested for membership of V .
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In the standard sequential refinement calculus, refinement of a command c by a command d, written
c v d, is defined in terms of weakest precondition predicate transformers but, because we wish to deal
with concurrent execution of processes, this form of semantics is inadequate. Instead we use an operational
semantics based on traces formed from atomic steps (detailed in Appendix A). In order to handle specifi-
cations with rely conditions, we use a form a trace invented by [Acz83], which distinguishes program steps
and environment steps [dBHdR99, dR01]. A state is a total mapping from program variable names (Var)
to values (Val) or the undefined state “⊥”.

Σ =̂ ⊥ | Var → Val (18)

Each atomic step of a program, α ∈ L, is either a program step, π(σ, σ′), an environment step, ε(σ, σ′), or
a termination step, X(σ), where σ and σ′ represent the pre (before) and post (after) states of a step.

pre(π(σ, σ′)) =̂ σ pre(ε(σ, σ′)) =̂ σ pre(X(σ)) =̂ σ
post(π(σ, σ′)) =̂ σ′ post(ε(σ, σ′)) =̂ σ′ post(X(σ)) =̂ σ

A trace t is a sequence of steps, which may be finite or infinite in length (i.e. t ∈ Lω), and which must be
consistent, that is, the post state of any step in t always matches the pre state of the next step in t. Indices
of sequences start from zero and #t stands for the length of t.

LX =̂ {σ : Σ • X(σ)} (19)
consistent(t) =̂ ∀ i ∈ dom(t)− {0} • post(t(i− 1)) = pre(t(i)) (20)

Trace =̂ {t : L ω | consistent(t) ∧
(∀ i ∈ dom(t) • t(i) ∈ LX ⇒ t ∈ L∗ ∧ i = #t − 1)}

(21)

Complete =̂ {t : Trace | dom(t) 6= N⇒ t(#t − 1) ∈ LX} (22)

The domain, dom(t), of a sequence is the set of valid indices of t and its range, ran(t), is the set of elements
in the sequence. The semantics of a command c is represented by a set of traces, [[c]], which is determined by
the operational semantics given in Appendix A. Once a command aborts any trace of behaviour is possible,
i.e. the transition (⊥, σ) is possible for any σ. Parallel execution of two commands is given an interleaving
semantics that matches a program step π(σ, σ′) of one command with an equivalent environment step
ε(σ, σ′) of the other to give a step π(σ, σ′) of the composition, or matches equal environment steps of both
to give an environment step of the composition. Termination of one of the commands via a X(σ) step
means the parallel composition reduces to the other command.

In general, the semantics of a command is given for arbitrary environment transitions but often we wish
to restrict consideration to a particular environment; given a trace t, its environment relation env(t) may be
extracted by collecting the pairs of states in each environment step.

env(t) =̂ {(σ, σ′) | ε(σ, σ′) ∈ ran(t)} (23)

The traces of c for which the environment steps are restricted to satisfy r or stutter (i.e. satisfy id) are
defined as follows.

[[c]]r =̂ {t ∈ [[c]] | env(t) ⊆ r ∨ id} (24)

Refinement of a command c by a command d in environment r requires that all traces of d in environment
r are traces of c. Refinement is a partial order.

Definition 2.1 (refinement-in-context) For any relation r and commands c and d,

c vr d =̂ [[d]]r ⊆ [[c]] (25)
c =r d =̂ (c vr d) ∧ (d vr c) (26)

Note that (25) is equivalent to [[d]]r ⊆ [[c]]r. Sequential refinement corresponds to refinement in a context in
which the environment may only stutter: c vid d. Refinement in any context corresponds to choosing r to
be the universal relation true because this allows any environment steps.
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Definition 2.2 (refinement) For any commands c and d,

c v d =̂ c vtrue d

c = d =̂ (c v d) ∧ (d v c)

Strengthening the environment assumption preserves refinement. In particular, if c v d then c vr d, for
any r.

Law 2.3 (refinement-monotonic) For any commands c and d and relations r0 and r1, if r0 V r1 ∨ id and
c vr1 d, then c vr0 d.

Proof. As r0 V r1 ∨ id by (24), [[d]]r0 ⊆ [[d]]r1 and by Definition 2.1 (refinement-in-context) [[d]]r1 ⊆ [[c]]
and hence the result follows by transitivity. 2

2.3 Basic properties of the refinement calculus
We use the term “lemma” to refer to a basic property of a language construct for which the proof is
dependent on the semantics of that construct, and the term “law” for properties that are proven from the
basic lemmas and other laws. Proofs of most of the basic lemmas may be found in Appendix B.

A precondition command {p} aborts (i.e. any behaviour is possible) if p is false in the initial state (i.e.
before any execution steps, even environment steps, have taken place); if p holds in the initial state, {p}
terminates immediately.

Lemma 2.4 (precondition) For any predicates p, p0 and p1, relation r and commands c and d,

{p0}{p1} = {p0 ∧ p1} (27)
(p0 V p1) ⇒ ({p0} v {p1}) (28)

({p}c vr {p}d) ⇔ ({p}c vr d) (29)

Because these properties are so basic, we often make use of them without explicit reference to this lemma.

Lemma 2.5 (parallel-precondition) For any predicate p, and commands c and d,

{p}(c ‖ d) = ({p}c) ‖ ({p}d)

A specification
[
p, q

]
is defined to achieve q between its before and after states provided p holds

initially and the environment only stutters; if the environment does a non-stuttering step the specification
aborts. The only interesting case for refinement of a specification is refinement in an environment of id,
because a specification command is defined to abort in any other environment.

Lemma 2.6 (refine-specification) For any predicate p, relation q, and command c,

(
[
p, q

]
v c) ⇔ (

[
p, q

]
vid c) .

As a result of this property one can use “v” in place of “vid” whenever the left side of a refinement is a
specification.

Lemma 2.7 (make-atomic) For any predicate p and relation q,
[
p, q

]
v 〈p, q〉.

Some basic laws from the sequential refinement calculus are still valid in our extended language.

Lemma 2.8 (consequence) For any predicates p0 and p1, and relations q0 and q1, provided p0 V p1 and
p0 ∧ q1 V q0,

〈p0, q0〉 v 〈p1, q1〉 (30)[
p0, q0

]
v

[
p1, q1

]
(31)
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Lemma 2.9 (sequential) For any predicates p0 and p1, and any relations q, q0 and q1, such that p0 ∧
((q0 ∧ p′1) o

9 q1) V q,[
p0, q

]
v

[
p0, q0 ∧ p′1

]
;
[
p1, q1

]
.

Recall that p′1 stands for p1 holding in the after-state. The traces of a nondeterministic choice over a set of
commands consists of the union of their traces.

Lemma 2.10 (nondeterminism-traces) For a set of commands C,

[[ ⊔C ]] =̂
⋃
{c ∈ C • [[c]]}

Nondeterministic choice has identity magic and zero abort. Nondeterministic choice is the greatest lower
bound with respect to the refinement ordering and hence satisfies the following laws.

Law 2.11 (nondeterministic-choice) For any relation r, command c and set of commands C,

(∀ d ∈ D • (∃ c ∈ C • c vr d)) ⇒ ( ⊔C) vr ( ⊔D) (32)
c ∈ C ⇒ ( ⊔C) vr c (33)

(∀ d ∈ D • c vr d) ⇒ c vr ( ⊔D) (34)

Proof. Property (32) follows from Lemma 2.10 (nondeterminism-traces) and Definition 2.1 (refinement-
in-context). The other two parts are special cases of (32) given that c = ⊔{c}. 2

In the sequential refinement calculus the specification
[
def (b), b ∧ id

]
, where predicate def (b) holds

if and only if b is well defined (e.g. not the result of a division by zero), can be used to represent test
evaluation in the definitions of conditional and loop commands. Such a definition is inadequate in the
context of concurrent interference and hence here test evaluation is represented by the separate command
[[b]], which is defined operationally in Appendix A. A test [[b]] refines

[
def (b), b ∧ id

]
in an environment

consisting of only stuttering. If b evaluates to false the test is infeasible.

Lemma 2.12 (introduce-test) For any boolean expression b,
[
def (b), b ∧ id

]
v [[b]] .

Lemmas 2.13 to 2.17 are based on standard properties of iterations defined in terms of fixed points [vW04].
They follow from definitions (8), (9) and (10).

Lemma 2.13 (fold/unfold-iteration) For any command c,

c∗ = skip u c ; c∗ (35)
c∞ = c ; c∞ (36)
cω = skip u c ; cω (37)

Lemma 2.14 (iteration-induction) For any relation r and commands c, d and x,

x vr d u c ; x ⇒ x vr c∗ ; d (38)
c ; x vr x ⇒ c∞ vr x (39)

d u c ; x vr x ⇒ cω ; d vr x (40)

Lemma 2.15 (iteration-monotonic) For any relation r and commands c and d, if c vr d then both c∗ vr
d∗ and cω vr dω .

All our commands are conjunctive (i.e. c ; (d0 u d1) = c ; d0 u c ; d1) and hence cω can be decomposed
into a choice between finite and infinite iteration [vW04].

Lemma 2.16 (isolation) For any command c, cω = c∗ u c∞ .

The following lemma allows reasoning about fixed points on a complete lattice [BvW98]. The lattice join
operation is the standard one induced by the refinement ordering, i.e. intersection on set of traces.
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Lemma 2.17 (fusion) For monotonic functions F and G on complete lattices and a function H, if H ◦F =
G ◦ H then

H(µF) = µG provided H is continuous and

H(νF) = νG provided H is co-continuous.

A terminating command can only perform a finite number of atomic steps. As in the sequential refine-
ment calculus, a command may be guaranteed to stop only from starting states satisfying a precondition p.
Further, in the context of concurrency, it may be guaranteed to stop only if every interference step of the
environment satisfies a relation r or stutters.

Definition 2.18 (stops) For any command c and relation r, stops(c, r) is the weakest predicate such that
from states satisfying stops(c, r), c is guaranteed to stop in environment r.

{stops(c, r)}〈true〉∗ vr c (41)
∀ p • ({p}〈true〉∗ vr c) ⇔ (p V stops(c, r)) (42)

Law 2.19 (term-monotonic) For any commands c and d and relations r, r0 and r1,

(r0 V r1 ∨ id) ⇒ (stops(c, r1) V stops(c, r0)) (43)
(c vr d) ⇒ (stops(c, r) V stops(d, r)) (44)

Proof. For (43) by Definition 2.18 (stops) part (41),

{stops(c, r1)}〈true〉∗ vr1 c

⇒ by Law 2.3 (refinement-monotonic) as r0 V r1 ∨ id
{stops(c, r1)}〈true〉∗ vr0 c

and hence by Definition 2.18 (stops) part (42), stops(c, r1) V stops(c, r0). For (44) from Definition 2.18
(stops) part (41)

{stops(c, r)}〈true〉∗ vr c vr d

and hence by Definition 2.18 (stops) part (42), stops(c, r) V stops(d, r). 2

Lemma 2.20 (precondition-term) For any predicate p, relation r and command c,

stops({p}c, r) ≡ p ∧ stops(c, r) .

Lemma 2.21 (specification-term) For any relations q and r,

stops(
[
q
]
, r) ≡ true, if r V id

stops(
[
q
]
, r) ≡ false, if r 6V id

Lemma 2.22 (sequential-term) For any relation r and commands c0 and c1,

stops(c0 ; c1, r) = stops(c0{stops(c1, r)}, r) .

Lemma 2.23 (atomic-term) For any predicate p, and relations q and r, such that r V (p⇒ p′),

stops(〈p, q〉, r) ≡ p .

For an atomic step 〈p, q〉 not to abort, its precondition p must hold in the state in which the atomic program
step takes place, which may be after a sequence of environment steps. If r preserves p and p holds initially,
p holds after any number of environment steps that respect r, and hence p V stops(〈p, q〉, r).
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3 The guarantee command

The guarantee command (guar g • c) constrains the possible implementations of the command c such that
each program step must either satisfy the relation g or stutter. Intuition for its semantics is provided by
some examples in Section 3.1 before its definition in terms of a strict conjunction operator and iteration of
atomic steps is given in Section 3.2. Sections 3.3 and 3.4 give some properties of atomic steps and strict
conjunction. Sections 3.5, 3.6, 3.7 and 3.8 give laws for manipulating guarantees. Section 3.9 introduces
a special case when the guarantee preserves an invariant. Section 3.10 applies guarantees and guaran-
tee invariants to a novel development of a simple search algorithm (which is revisited when we consider
concurrency in Section 11).

3.1 Examples

The laws referred to in the following examples are given later in Section 3.

1. Refine a specification enclosed in a guarantee by an assignment which respects the guarantee and
implements the specification.

guar x < x′ •
[
x′ = x + 1

]
v by Law 3.38 (guarantee-assignment) as x′ = x + 1 V x < x′

x := x + 1

2. Use two atomic steps that both satisfy the guarantee.

guar x < x′ •
[
x′ = x + 2

]
v by Law 3.21 (guarantee-monotonic) as

[
x′ = x + 2

]
v
[
x′ = x + 1

]
;
[
x′ = x + 1

]
guar x < x′ • (

[
x′ = x + 1

]
;
[
x′ = x + 1

]
)

= by Law 3.27 (distribute-guarantee) over sequential (61)

(guar x < x′ •
[
x′ = x + 1

]
) ; (guar x < x′ •

[
x′ = x + 1

]
)

v by example (1) above (twice)
x := x + 1 ; x := x + 1

3. A guarantee may restrict a choice. Because every atomic step must satisfy the relation x < x′ or
stutter, the whole must satisfy the reflexive transitive closure of this relation: (x < x′)∗.

guar x < x′ •
[
x′ = x + 1 ∨ x′ = x− 1

]
= by Law 3.31 (trading-post-guarantee) and as (x < x′)∗ = (x ≤ x′)

guar x < x′ •
[
(x′ = x + 1 ∨ x′ = x− 1) ∧ x ≤ x′

]
= guar x < x′ •

[
x′ = x + 1

]
4. A specification constrained by a guarantee g cannot be implemented if there is no sequence of atomic

steps satisfying g that satisfy the post condition of the specification overall.

guar x < x′ •
[
x′ = x− 1

]
= by Law 3.31 (trading-post-guarantee) and as (x < x′)∗ = (x ≤ x′)

guar x < x′ •
[
x′ = x− 1 ∧ (x ≤ x′)

]
= guar x < x′ •

[
false

]
=
[
false

]
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3.2 Defining the guarantee command
The definition of the guarantee command makes use of the strict conjunction operator “e”, where c e d
defines a command that behaves as both c and d in the sense that each atomic step of taken by c e d must
be an atomic step that both c and d can make. The conjunction is strict in the sense that if either c or d can
abort, then c e d can also abort.

Every atomic step of a guarantee command, (guar g • c), must satisfy g or stutter. The command
〈g ∨ id〉 represents a single atomic step that satisfies g or the identity relation (i.e. a stuttering step), and
〈g ∨ id〉ω represents the iteration of 〈g ∨ id〉 any number of times, zero or more, including infinitely many
times. The strict conjunction operator “e” is used to conjoin 〈g ∨ id〉ω with c to define the guarantee
command.

Definition 3.1 (guarantee) For any relation g and command c, guar g • c =̂ 〈g ∨ id〉ω e c .

3.3 Properties of atomic steps and iterations
Law 3.2 (strengthen-iterated-atomic) For any relations g0 and g1, if g0 V g1 then both 〈g1〉∗ v 〈g0〉∗
and 〈g1〉ω v 〈g0〉ω .

Proof. The proof follows by combining Lemma 2.8 (consequence) for atomic steps (30) with Lemma 2.15
(iteration-monotonic). 2

Law 3.3 (refine-iterated-relation) For any relation g,
[
g∗
]
v 〈g〉∗.

Proof. The proof follows using Lemma 2.14 (iteration-induction) for finite iteration (38) provided the
refinement,

[
g∗
]
v skip u 〈g〉 ;

[
g∗
]
, holds, which is shown as follows.[

g∗
]

= as g∗ = id ∨ (g o
9 g∗)[

id ∨ (g o
9 g∗)

]
v by Law 2.11 (nondeterministic-choice) and Lemma 2.9 (sequential)[

id
]
u
[
g
]

;
[
g∗
]

v by Lemma 2.7 (make-atomic)
skip u 〈g〉 ;

[
g∗
]
.

2

3.4 Properties of strict conjunction
Strict conjunction “e” is an associative, commutative and idempotent operator with identity 〈true〉ω and
zero abort. It is monotonic with respect to refinement in each of its arguments.

Lemma 3.4 (conjunction-monotonic) For any relation r and commands c0, c1, d0 and d1,

(c0 vr d0) ∧ (c1 vr d1) ⇒ (c0 e c1) vr (d0 e d1)

Lemma 3.5 (conjunction-strict) For any predicate p and commands c and d,

{p}(c e d) = ({p}c) e d = c e ({p}d) = ({p}c) e ({p}d) .

Lemma 3.6 (conjunction-atomic) For any predicates p0 and p1, relations q0 and q1, and commands c0
and c1,

skip e skip = skip (45)
〈p0, q0〉 e 〈p1, q1〉 = 〈p0 ∧ p1, q0 ∧ q1〉 (46)

(〈p0, q0〉 ; c0) e (〈p1, q1〉 ; c1) = (〈p0, q0〉 e 〈p1, q1〉) ; (c0 e c1) (47)
(〈p0, q0〉 ; c0) e skip = {p0}magic (48)
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Strict conjunction does not distribute through parallel or sequential composition but the following in-
terchange properties hold.

Lemma 3.7 (interchange-conjunction) For any commands c0, c1, d0 and d1, the following hold.

(c0 ‖ c1) e (d0 ‖ d1) v (c0 e d0) ‖ (c1 e d1) (49)
(c0 ; c1) e (d0 ; d1) v (c0 e d0) ; (c1 e d1) (50)

Note that (49) is a refinement rather than an equality because on the left behaviour of c0 may synchronise
with behaviour of either d0 or d1, whereas on the right it can only synchronise with behaviour of d0; (50)
is similar.

Lemma 3.8 (refine-conjunction) For commands c0, c1 and d, if c0 vr d and c1 vr d, then c0 e c1 vr d.

Proof. Any trace of d in environment r must also be a trace of both c0 and c1, and hence it is a trace of
c0 e c1, noting that if either c0 or c1 can abort their conjunction also can. 2

Law 3.9 (simplify-conjunction) For commands c and d, if c vr d, c e d vr d .

Proof. The proof follows from Lemma 3.8 (refine-conjunction) as c vr d and d vr d. 2

Law 3.10 (conjunction-term) For any relation r and commands c0 and c1,

stops(c0, r) ∧ stops(c1, r) V stops((c0 e c1), r) .

Proof. Let p ≡ stops(c0, r) ∧ stops(c1, r), by Definition 2.18 (stops) part (42) both {p}〈true〉∗ vr c0 and
{p}〈true〉∗ vr c1 and hence by Lemma 3.4 (conjunction-monotonic)

{p}〈true〉∗ e {p}〈true〉∗ vr c0 e c1,

and because “e” is idempotent the left side reduces to {p}〈true〉∗, and hence by Definition 2.18 (stops)
part (42), p V stops((c0 e c1), r). 2

For a local variable block (var x • c), any program step of c that modifies only x becomes a stuttering
step of the block but any steps that modify variables other than x are preserved.

Lemma 3.11 (no-change-local) For any command c, and variable x,

〈id(x)〉ω e (var x • c) = (var x • c) .

Proof. Because x is local to (var x • c), every program step of (var x • c) maintains id(x) on the global
variable x, and hence the conjunction with 〈id(x)〉ω has no effect. 2

For a relation g that does not depend on x, if every program step of c satisfies g, then every program
step of (var x • c) also satisfies g. A relation g depends only on a set of variables X, if the effect of g in a
state is independent of all variables other than X. Recall that id(X) is the identity relation on X; it allows
chaos for variables other than X.

Definition 3.12 (depends-only) For any relation g and set of variables X,

depends only(g,X) =̂ (id(X) o
9 g o

9 id(X)) ≡ g .

Note that the above is equivalent to (id(X) o
9 g o

9 id(X)) V g because the reverse implication holds for any g
and X. Furthermore depends only(g,X) implies (id(X) o

9 g) ≡ g ≡ (g o
9 id(X)).

Strict conjunction distributes through both itself and nondeterministic choice, and conjunction of an
iterated atomic step 〈g〉ω distributes through both sequential and parallel composition, as well as through
local variable blocks and iterations.
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Lemma 3.13 (distribute-conjunction) For any relations g and g1, commands c, d, d0 and d1, nonempty
set of commands D, and variable x, such that g1 does not depend on x, i.e. depends only(g1, x̄),

c e (d0 e d1) = (c e d0) e (c e d1) (51)
c e ( ⊔D) = ⊔{d ∈ D • (c e d)} (52)

〈g〉ω e (c ; d) = (〈g〉ω e c) ; (〈g〉ω e d) (53)
〈g〉ω e (c ‖ d) = (〈g〉ω e c) ‖ (〈g〉ω e d) (54)

〈g1〉ω e (var x • c) = var x • (〈g1〉ω e c) (55)
〈g〉ω e (cω) = (〈g〉ω e c)ω (56)

Law 3.14 (conjunction-with-atomic) For any relations g and q, 〈g〉ω e 〈p, q〉 = 〈p, g ∧ q〉 .

Proof.

〈g〉ω e 〈p, q〉
= by Lemma 2.13 (fold/unfold-iteration)

(skip u 〈g〉 ; 〈g〉ω) e 〈p, q〉
= by Lemma 3.13 (distribute-conjunction) over choice (52) and 〈p, q〉 = 〈p, q〉 ; skip

(skip e 〈p, q〉) u (〈g〉 ; 〈g〉ω e 〈p, q〉 ; skip)
= by (48), (47) and (46) of Lemma 3.6 (conjunction-atomic); Lemma 2.13 (fold/unfold-iteration)

({p}magic) u (〈p, g ∧ q〉 ; ((skip u 〈g〉 ; 〈g〉ω) e skip))
= by Lemma 3.13 (distribute-conjunction) over choice (52); (45)

({p}magic) u (〈p, g ∧ q〉 ; (skip u (〈g〉 ; 〈g〉ω e skip))
= by Lemma 3.6 (conjunction-atomic) part (48)

({p}magic) u (〈p, g ∧ q〉 ; (skip umagic)
= as skip umagic = skip and 〈p, g ∧ q〉 v {p}magic
〈p, g ∧ q〉

2

Law 3.15 (terminating-iteration) For any relation q, 〈true〉∗ e 〈q〉ω = 〈q〉∗ .

Proof. Lemma 2.17 (fusion) can be applied by choosing F = (λ x • skip u 〈true〉 ; x) and hence νF =
〈true〉∗, and choosing G = (λ x • skipu〈q〉 ;x), and hence νG = 〈q〉∗, and choosing H = (λ x • xe〈q〉ω),
and hence H(νF) = 〈true〉∗ e 〈q〉ω . Both F and G are monotone because non-deterministic choice and
sequential composition are monotone operators. By Lemma 2.17 (fusion) 〈true〉∗ e 〈q〉ω = 〈q〉∗ if,

(skip u 〈true〉 ; x) e 〈q〉ω = skip u 〈q〉 ; (x e 〈q〉ω)

which we show as follows starting from the left side.

(skip u 〈true〉 ; x) e 〈q〉ω
= by Lemma 2.13 (fold/unfold-iteration)

(skip u 〈true〉 ; x) e (skip u 〈q〉 ; 〈q〉ω)
= by Lemma 3.13 (distribute-conjunction) over choice (52)

(skip e skip) u ((〈true〉 ; x) e skip) u (skip e (〈q〉 ; 〈q〉ω)) u ((〈true〉 ; x) e (〈q〉 ; 〈q〉ω))
= by Lemma 3.6 (conjunction-atomic) parts (45), (48) twice, (47) and (46)

skip umagic umagic u (〈q〉 ; (x e 〈q〉ω))
= as skip umagic = skip

skip u (〈q〉 ; (x e 〈q〉ω))

Function H is co-continuous by Lemma 3.13 (distribute-conjunction) over non-deterministic choice (52)
and as magic e 〈q〉ω = magic. 2

Law 3.16 (conjunction-atomic-iterated) For any relations g0 and g1 both the following hold.

〈g0〉ω e 〈g1〉ω = 〈g0 ∧ g1〉ω (57)
〈g0〉∗ e 〈g1〉∗ = 〈g0 ∧ g1〉∗ (58)
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Proof. By Law 3.2 (strengthen-iterated-atomic) both the refinements 〈g0〉ω v 〈g0 ∧ g1〉ω and 〈g1〉ω v
〈g0 ∧ g1〉ω hold and hence by Lemma 3.8 (refine-conjunction) 〈g0〉ω e 〈g1〉ω v 〈g0 ∧ g1〉ω . The reverse
refinement for (57) holds by Lemma 2.14 (iteration-induction) provided

skip u 〈g0 ∧ g1〉 ; (〈g0〉ω e 〈g1〉ω) v 〈g0〉ω e 〈g1〉ω

which we show by expanding the right side as follows.

〈g0〉ω e 〈g1〉ω
= by Lemma 2.13 (fold/unfold-iteration) unfolding

(skip u 〈g0〉 ; 〈g0〉ω) e (skip u 〈g1〉 ; 〈g1〉ω)
= by Lemma 3.13 (distribute-conjunction) over choice (52)

(skip e skip) u (skip e 〈g1〉 ; 〈g1〉ω) u (〈g0〉 ; 〈g0〉ω e skip) u ((〈g0〉 ; 〈g0〉ω) e (〈g1〉 ; 〈g1〉ω)
= by Lemma 3.6 (conjunction-atomic) parts (45), (48) twice, (47) and (46)

skip umagic umagic u 〈g0 ∧ g1〉 ; (〈g0〉ω e 〈g1〉ω)
= as skip umagic = skip

skip u 〈g0 ∧ g1〉 ; (〈g0〉ω e 〈g1〉ω)

To prove (58) we start by using (57).

〈g0〉ω e 〈g1〉ω = 〈g0 ∧ g1〉ω
⇒ by Lemma 3.4 (conjunction-monotonic)
〈true〉∗ e 〈g0〉ω e 〈g1〉ω = 〈true〉∗ e 〈g0 ∧ g1〉ω

⇒ by Law 3.15 (terminating-iteration) as conjunction is idempotent and associative
〈g0〉∗ e 〈g1〉∗ = 〈g0 ∧ g1〉∗

2

Law 3.17 (conjunction-with-terminating) For any predicate p, relations r and g, and command c, such
that p V stops(c, r),

{p}〈g〉∗ vr 〈g〉ω e ({p}c) .

Proof. Definition 2.18 (stops) part (42) gives {p}〈true〉∗ vr {p}c, which is used below.

{p}〈g〉∗
= by Law 3.15 (terminating-iteration) and Lemma 3.5 (conjunction-strict)
〈g〉ω e ({p}〈true〉∗)

vr by Lemma 3.4 (conjunction-monotonic) as {p}〈true〉∗ vr {p}c
〈g〉ω e ({p}c)

2

Lemma 3.18 (conjoined-specifications) For any relations q0 and q1,
[
q0 ∧ q1

]
=
[
q0
]
e
[
q1

]
.

Proof. In any environment other than id both sides may abort and hence by Lemma 2.6 (refine-specification)
one only needs to consider equivalence in environment id. A trace of

[
q0
]
e
[
q1

]
must be a trace of both[

q0

]
and a trace of

[
q1

]
, and hence it satisfies both q0 and q1 end-to-end and hence it satisfies q0 ∧ q1

end-to-end, and thus it is a trace of
[
q0 ∧ q1

]
. By Lemma 2.8 (consequence) both

[
q0

]
v
[
q0 ∧ q1

]
and[

q1

]
v
[
q0 ∧ q1

]
and hence by Lemma 3.8 (refine-conjunction)

[
q0
]
e
[
q1

]
v
[
q0 ∧ q1

]
. 2

Law 3.19 (specification-finite) For any relation q, 〈true〉∗ e
[
q
]
v
[
q
]

Proof. By Lemma 2.21 (specification-term) 〈true〉∗ vid
[
q
]

and hence by Law 3.9 (simplify-conjunction)
〈true〉∗ e

[
q
]
vid

[
q
]
. In a non-id environment both sides abort and the refinement holds. 2
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3.5 Laws for refining guarantee commands
Law 3.20 (guarantee-true) For any command c, (guar true • c) = c .

Proof. The proof relies on the fact that 〈true〉ω is the identity of “e”.
(guar true • c) = 〈true ∨ id〉ω e c = 〈true〉ω e c = c 2

Law 3.21 (guarantee-monotonic) For any commands c and d, and relations g and r,

c vr d ⇒ (guar g • c) vr (guar g • d) .

Proof. The proof relies on Lemma 3.4 (conjunction-monotonic). If c vr d,
(guar g • c) = 〈g ∨ id〉ω e c vr 〈g ∨ id〉ω e d = (guar g • d) . 2

Law 3.22 (strengthen-guarantee) For any command c and relations g0 and g1,

(g0 V g1 ∨ id) ⇒ (guar g1 • c) v (guar g0 • c) .

Proof. The proof relies on Lemma 3.4 (conjunction-monotonic) and Law 3.2 (strengthen-iterated-atomic).
Assume g0 V g1 ∨ id,

(guar g1 • c) = 〈g1 ∨ id〉ω e c v 〈g0 ∨ id〉ω e c = (guar g0 • c) . 2

Law 3.23 (guarantee-precondition) For any predicate p, relation g and command c,

(guar g • {p}c) = {p}(guar g • c) .

Proof. From Lemma 3.5 a strict conjunction aborts if either of its operands aborts,
(guar g • {p}c) = 〈g ∨ id〉ω e {p}c = {p}(〈g ∨ id〉ω e c) = {p}(guar g • c) . 2

Law 3.24 (introduce-guarantee) For any command c and relation g, c v (guar g • c) .

Proof. The proof can be shown using Law 3.20 (guarantee-true) and Law 3.22 (strengthen-guarantee) as
follows: c = (guar true • c) v (guar g • c) 2

The traces of (guar g • c) are a subset of the traces of c and hence if c stops from some state σ,
(guar g • c) must also stop (or it is infeasible).

Law 3.25 (guarantee-term) For any command c, and relations g and r,

stops(c, r) V stops((guar g • c), r)

Proof. The law holds by Definition 2.18 (stops) part (42) if {stops(c, r)}〈true〉∗ vr (guar g • c), which
holds using Definition 2.18 (stops) part (41) and Law 3.24 (introduce-guarantee) as follows.
{stops(c, r)}〈true〉∗ vr c v (guar g • c) . 2

Law 3.26 (nested-guarantees) For a command c and relations g0 and g1,

(guar g0 • (guar g1 • c)) = (guar g0 ∧ g1 • c) .

Proof. The proof relies on the property of relations: (g0 ∨ id) ∧ (g1 ∨ id) = (g0 ∧ g1) ∨ id.

(guar g0 • (guar g1 • c))

= by Definition 3.1 (guarantee) twice, “e” is associative
〈g0 ∨ id〉ω e 〈g1 ∨ id〉ω e c

= by Law 3.16 (conjunction-atomic-iterated) part (57) using the above property of relations
〈(g0 ∧ g1) ∨ id〉ω e c

= (guar g0 ∧ g1 • c)

2

A guarantee on a composite command may be distributed to its component commands.
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Law 3.27 (distribute-guarantee) For any relations g and g1, commands c and d, set of commands C, and
variable x such that g1 does not depend on x, i.e. depend only(g1, x̄), the following hold.

guar g • (c e d) = (guar g • c) e (guar g • d) (59)
guar g • ( ⊔C) = ⊔{c ∈ C • (guar g • c)} (60)
guar g • (c ; d) = (guar g • c) ; (guar g • d) (61)

guar g • (c ‖ d) = (guar g • c) ‖ (guar g • d) (62)
guar g1 • (var x • c) = var x • (guar g1 • c) (63)

guar g • (cω) = (guar g • c)ω (64)

Proof. The proofs of (59)-(64) follow directly from Lemma 3.13 (distribute-conjunction) properties (51)-
(56) respectively. 2

A guarantee g on an atomic step that satisfies q must satisfy both q and the guarantee.

Law 3.28 (guarantee-atomic) For any predicate p and relations g and q,

(guar g • 〈p, q〉) = 〈p, (g ∨ id) ∧ q〉 .

Proof. The proof follows using Law 3.14 (conjunction-with-atomic).
(guar g • 〈p, q〉) = 〈g ∨ id〉ω e 〈p, q〉 = 〈p, (g ∨ id) ∧ q〉 2
The following law is a fundamental property of guarantees used in a parallel composition and is used

in proving the parallel introduction laws in Section 5.

Lemma 3.29 (refine-in-guarantee-context) For any relations g and r and commands c0, c1 and d, such
that c0 vg∨r c1,

c0 ‖ (guar g • d) vr c1 ‖ (guar g • d) .

Law 3.30 (refine-in-context) For any relations r0 and r1 and commands c0 and c1, if c0 vr0∨r1 c1,

c0 ‖ 〈r0 ∨ id〉∗ vr0∨r1 c1 ‖ 〈r0 ∨ id〉∗ .

Proof. Using Lemma 3.29 (refine-in-guarantee-context) taking d to be 〈true〉∗, g to be r0 and r to be r0 ∨ r1
gives the following.

c0 ‖ (guar r0 • 〈true〉∗) vr0∨r1 c1 ‖ (guar r0 • 〈true〉∗)
⇔ by Definition 3.1 (guarantee)

c0 ‖ (〈r0 ∨ id〉ω e 〈true〉∗) vr0∨r1 c1 ‖ (〈r0 ∨ id〉ω e 〈true〉∗)
⇔ by Law 3.15 (terminating-iteration) twice

c0 ‖ 〈r0 ∨ id〉∗ vr0∨r1 c1 ‖ 〈r0 ∨ id〉∗

2

The execution of any command enclosed in a guarantee consists of zero or more atomic steps each of
which must satisfy g or stutter and hence any such finite execution sequence satisfies the reflexive, transitive
closure of g. The following law allows a post condition ensuring g∗ to be traded for a guarantee of g on
every atomic step.

Law 3.31 (trading-post-guarantee) For any relations g and q,

(guar g •
[
g∗ ∧ q

]
) = (guar g •

[
q
]
) .

Proof. By Lemma 2.8 (consequence)
[
q
]
v
[
g∗ ∧ q

]
and hence by Law 3.21 (guarantee-monotonic) the

refinement holds from right to left. The proof of refinement from left to right follows.

guar g •
[
g∗ ∧ q

]
= by Definition 3.1 (guarantee), Lemma 3.18 (conjoined-specifications)

〈g ∨ id〉ω e
[
g∗
]
e
[
q
]
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v by Law 3.3 (refine-iterated-relation) and (g ∨ id)∗ = g∗

〈g ∨ id〉ω e 〈g ∨ id〉∗ e
[
q
]

= by Law 3.15 (terminating-iteration)

〈g ∨ id〉ω e 〈g ∨ id〉ω e 〈true〉∗ e
[
q
]

v as “e” is idempotent and by Law 3.19 (specification-finite)

〈g ∨ id〉ω e
[
q
]

= Definition 3.1 (guarantee)

guar g •
[
q
]

2

3.6 Tests and control structures
In order to define conditionals and loops, a primitive test command, [[b]], is used. It evaluates the boolean
expression b and if it evaluates to true the test terminates normally, however if it evaluates to false, the test
is infeasible and that trace of behaviour is eliminated. We assume that expressions are evaluated in any
order as opposed to a strict left-to-right evaluation. One may enforce the order of evaluation by defining
boolean operators, such as “conditional and” (cand)3 and “conditional or” (cor), that evaluate their second
operand depending on the evaluation of the first. Tests satisfy the following laws.

Lemma 3.32 (tests) For any boolean expressions a and b the following hold.

[[a ∧ b]] = [[a]] ‖ [[b]] v [[a]] ; [[b]] = [[a cand b]]
[[a ∨ b]] = [[a]] u [[b]] v [[a]] u [[¬ a]] ; [[b]] = [[a cor b]]

For arithmetic expressions e0 and e1,

[[e0 < e1]] = ⊔{v ∈ Val,w ∈ Val | v < w • ([[e0 = v]] ‖ [[e1 = w]])} .

Other relational operators are treated similarly. Assuming atomic access to a variable x, for any value v

[[x = v]] = 〈id〉∗ ; 〈x = v ∧ id〉 ; 〈id〉∗ .

Because a test does not modify any variables, it ensures any guarantee. Note that because tests only
stutter they do not have to be atomic in order to satisfy a guarantee.

Law 3.33 (test-guarantee) For any relation g and test predicate b, (guar g • [[b]]) = [[b]] .

Proof. Refinement from right to left holds by Law 3.24 (introduce-guarantee). Because a test does not
modify any variables (guar id • [[b]]) = [[b]], which is used in the following refinement.

(guar g • [[b]])
v by Law 3.22 (strengthen-guarantee) as id V g ∨ id

(guar id • [[b]])
= [[b]]

2

For the conditional and loop control structures, because guarantees distribute over program combina-
tors, they distribute into conditionals and loops.

Law 3.34 (guarantee-conditional) For any relation g, boolean expression b, and commands c and d,

(guar g • if b then c else d) = if b then (guar g • c) else (guar g • d) .

3In languages deriving their syntax from C, cand and cor are written “&&” and “||” but we reserve “||” for the parallel operator
here.
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Proof. The proof is mechanical: it expands the left side conditional using its definition (13), applies
Law 3.27 (distribute-guarantee) to distribute the guarantee over the nondeterministic choice and sequential
compositions, then applies Law 3.33 (test-guarantee) twice to eliminate the guarantee around the tests, and
finally rewrites the result as a conditional using definition (13). 2

Law 3.35 (guarantee-loop) For any relation g, boolean expression b, and command c,

(guar g • while b do c) = while b do(guar g • c) .

Proof. The proof is mechanical: it expands the left side loop using its definition (14), then applies Law 3.27
(distribute-guarantee) to distribute the guarantee over the sequential composition and iteration, then applies
Law 3.33 (test-guarantee) to eliminate the guarantees around the tests, and finally rewrites the result as a
while loop using definition (14). 2

3.7 Frames and assignment
The refinement calculus as described by [Mor88] includes a version of a specification command x :

[
q
]

with an explicit frame x representing the set of variables that may be changed by it. Using the notation x̄ to
stand for all variables other than x, and id(x̄) to stand for the identity relation on all variables other than x,
in Morgan’s sequential refinement calculus x :

[
q
]

is defined as
[
q ∧ id(x̄)

]
, where this latter specification

implicitly has all variables in its frame. In the context of concurrent programs this definition is not strong
enough as it allows the following refinement,

x :
[
x′ = y + 1

]
v y := y + 1; x := y; y := y− 1

which, although it modifies y, leaves its final value the same as its initial value and hence satisfies the
specification on the left. If a concurrent process accesses y during the execution this may lead to unexpected
results. However, if the specification is strengthened by making id(x̄) a guarantee, i.e. (guar id(x̄) •[
x′ = y + 1

]
), the above refinement is no longer valid. Hence, rather than Morgan’s definition above, a

frame on a specification satisfies the following.

x :
[
q
]

= (guar id(x̄) •
[
q
]
) .

It turns out to be simple to allow a frame on any command, not just a specification.

Definition 3.36 (frame) For any set of variables x and command c, x : c =̂ (guar id(x̄) • c) .

The importance of framing in reasoning about concurrency is highlighted by framing being defined in terms
of a guarantee, which is central to our approach to concurrency.

Note that one needs to avoid nested frames because by Law 3.26 (nested-guarantees)

x : (y : c) = (guar id(x̄) ∧ id(ȳ) • c) = (guar id • c) 6= (guar id(x, y) • c) = (x, y : c) .

Law 3.37 (guarantee-frame) For any set of variables x, relation g and command c,

x : (guar g • c) = guar g • (x : c) .

Proof. The proof follows from Definition 3.36 (frame) and Law 3.26 (nested-guarantees).

x : (guar g • c) = (guar id(x̄) ∧ g • c) = guar g • (x : c)

2

An assignment is defined in terms of a test [[e = v]] representing the expression evaluation, followed
by an atomic update of x (15).

x := e =̂ ⊔{v ∈ Val • [[e = v]] ; 〈x′ = v ∧ id(x̄〉}

If the expression e is undefined (e.g. via a division by zero) the test [[e = v]] aborts and hence so does the
assignment. No variables other than x may be modified and the only modification allowed to x is to set it to
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v; this rules out an implementation that sets x to some intermediate value before assigning x its final value
v. This interpretation is required in the context of concurrency because if x can be set to an intermediate
value, a parallel process may observe the intermediate value and alter its behaviour. The update made by
the assignment x := e satisfies the relation x′ = e ∧ id(x̄) and hence this relation must imply g ∨ id in
order for the assignment to implement the guarantee g.

Law 3.38 (guarantee-assignment) For any precondition p, relation g, variable x and expression e, such
that p V def (e) and such that p ∧ x′ = e ∧ id(x̄) V q ∧ (g ∨ id),

guar g •
[
p, q

]
v x := e .

Proof.

guar g •
[
p, q

]
v by Lemma 2.8 (consequence) as p ∧ x′ = e ∧ id(x̄) V q

guar g •
[
p, x′ = e ∧ id(x̄)

]
v by Law 2.11 (nondeterministic-choice) and Lemma 2.9 (sequential)

guar g • ⊔{v ∈ Val •
[
p, p ∧ v = e ∧ id

]
;
[
p ∧ v = e, x′ = v ∧ id(x̄)

]}
v by Law 3.27 (distribute-guarantee) into choice (60) and sequential (61)⊔{v ∈ Val • (guar g •

[
p, p ∧ v = e ∧ id

]
) ; (guar g •

[
p ∧ v = e, x′ = v ∧ id(x̄)

]
)
}

v by Lemma 2.12 (introduce-test) as p V def (e); Lemma 2.7 (make-atomic)⊔{v ∈ Val • (guar g • [[e = v]]) ; (guar g • 〈p ∧ v = e, x′ = v ∧ id(x̄)〉)}
v by Law 3.33 (test-guarantee); Law 3.28 (guarantee-atomic) as p ∧ x′ = e ∧ id(x̄) V (g ∨ id)⊔{v ∈ Val • [[e = v]] ; 〈x′ = v ∧ id(x̄)〉}
= by the definition of an assignment (15)

x := e

2

In the sequential refinement calculus
[
def (e), x′ = e ∧ id(x̄)

]
is equivalent to x := e but here it is a

strict refinement. The standard refinement calculus gives the following equivalences.

x := x + 2 = x :
[
x′ = x + 2

]
= x :

[
x′ = x + 1

]
; x :
[
x′ = x + 1

]
= x := x + 1 ; x := x + 1

However, if x is initially even, a process running in parallel with x := x + 1 ; x := x + 1 may observe an odd
value of x, whereas a process running in parallel with x := x + 2 will not, and hence they are not equivalent
in a concurrent programming context.

3.8 Local variables
A local variable declaration introduces a new local variable for its scope and adds the variable to the frame.

Lemma 3.39 (introduce-variable) For any variable x, set of variables Y, and command c, such that x is
not in Y and does not occur free in c,

Y : c v (var x • x,Y : c) .

Commands within the scope of a local variable declaration guarantee not to change any non-local variable
with the same name.4

Law 3.40 (guarantee-variable) For any command c and variable x,

(guar id(x) • (var x • c)) = (var x • c) .

4Additional care would be needed with a language that allowed variable aliasing because the non-local variable may be accessible
via an alias. Aliasing is excluded throughout this paper.
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Proof. Because (id(x) ∨ id) = id(x), from Definition 3.1 (guarantee),

(guar id(x) • (var x • c)) = 〈id(x)〉ω e (var x • c)

and the proof follows by Lemma 3.11 (no-change-local). 2

3.9 Guarantee invariants
A special case of a guarantee relation is that a single-state predicate is an invariant of every atomic step.
The following notation is used as an abbreviation in this case.

Definition 3.41 (guarantee-invariant) For a single-state predicate p and command c,

guar-inv p • c =̂ (guar(p⇒ p′) • c) .

where by convention p′ stands for the predicate p with all program variables replaced by their primed
counterparts, i.e. p in the after state.

An interesting aspect of an invariant predicate is that the relation (p ⇒ p′) is both reflexive and transitive
and hence

(p⇒ p′)∗ ≡ (p⇒ p′) (65)

that is, for any number of steps (zero or more) if each step maintains the invariant, then the whole does.
This fact can be combined with Law 3.31 (trading-post-guarantee) to give the following law.

Law 3.42 (trade-guarantee-invariant) For any predicate p and relation q,[
p, p′ ∧ q

]
v (guar-inv p •

[
p, q

]
)

The effect of this law is to take a property p that is required to be invariant overall and require it to be
invariant for every atomic step of the computation – a stronger requirement.
Proof.[

p, p′ ∧ q
]

v by Lemma 2.8 (consequence) using (65); Law 3.24 (introduce-guarantee)

guar(p⇒ p′) •
[
p, (p⇒ p′)∗ ∧ q

]
= by Law 3.31 (trading-post-guarantee); Definition 3.41 (guarantee-invariant)

guar-inv p •
[
p, q

]
2

3.10 Extended example (sequential version)
Sect. 11 presents, in a new style, the development of a well-known concurrent algorithm. To cement the
material so far, this section offers an unconventional development of a sequential program from the same
specification. The objective is, given an array v with indices starting from one, to find the least index t for
which a predicate p holds,5 or if p does not hold for any element of v, to set t to len(v) + 1. As shown
in Sect. 11, the unconventional approach using guarantee invariants is useful when deriving a concurrent
implementation from the same specification. To avoid repetition, a refinement with no explicit left side
applies to the most recent command marked by “C” and hence the specification of the findp program is
marked with “C” as the starting point of the refinement.

findp =̂ t :
[
(t′ = len(v) + 1 ∨ satp(v, t′)) ∧ notp(v, dom(v), t′)

]
C

5For brevity, it is assumed here that p(x) is always defined (undefinedness is considered by [CJ07] but it has little bearing on the
actual design).
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where

satp(v, t) =̂ t ∈ dom(v) ∧ p(v(t))

notp(v, s, t) =̂ (∀ i ∈ s • i < t⇒ ¬ p(v(i)))

No explicit laws have been given above to handle frames on a specification but any construct involving a
frame can be converted to an equivalent guarantee command and the corresponding refinement law used.
In the development below such steps are elided. The first refinement step introduces an invariant (t =
len(v)+1 ∨ satp(v, t)) and an initialisation of t that establishes the invariant, using Lemma 2.9 (sequential)
and Law 3.38 (guarantee-assignment) to handle the frame.

v t := len(v) + 1;
t :
[
t = len(v) + 1 ∨ satp(v, t), (t′ = len(v) + 1 ∨ satp(v, t′)) ∧ notp(v, dom(v), t′)

]
C

The second specification can be refined using Law 3.42 (trade-guarantee-invariant).

v guar-inv t = len(v) + 1 ∨ satp(v, t) •
t :
[
notp(v, dom(v), t′)

]
C

The body of this involves a quantification within notp which can be refined using a loop with fresh control
variable c and loop invariant notp(v, dom(v), c). The invariant is also strengthened by bounds on c, where

bnd(c, v) =̂ 1 ≤ c ≤ len(v) + 1 .

The invariant is trivially established if c is set to one. We use Lemma 3.39 (introduce-variable) for c and
initialise it using Lemma 2.9 (sequential), and Law 3.38 (guarantee-assignment).

v var c • c := 1;
c, t :

[
notp(v, dom(v), c) ∧ bnd(c, v), notp(v, dom(v), c′) ∧ bnd(c′, v) ∧ t′ = c′

]
C

This can be refined using Law 3.42 (trade-guarantee-invariant).

v guar-inv notp(v, dom(v), c) ∧ bnd(c, v) •
c, t :

[
t′ = c′

]
C

This would appear to say that all that is required is that the final values of t and c are equal, however, this is
in the context of an accumulated guarantee invariant (t = len(v) + 1 ∨ satp(v, t)) ∧ notp(v, dom(v), c) ∧
bnd(c, v), which must be preserved by every atomic step. The body can be refined to a loop with a well
founded relation that reduces t−c. We use the sequential refinement calculus rule for introducing a “while”
loop.6

v while c < t do
c, t :

[
c < t, 0 ≤ t′ − c′ < t − c

]
C

Note that this is in the context of the accumulated guarantee invariant, which also acts as an invariant of the
loop. The well-founded relation can be achieved either by increasing c or by decreasing t. If c is increased
the invariant notp(v, dom(v), c) must be maintained. To increase c by one this requires ¬ p(v(c)). If t is
decreased the invariant t′ = len(v) + 1 ∨ satp(v, t′) must be maintained. To decrease t to c this requires
p(v(c)). We use the sequential refinement calculus rule for introducing a conditional.6 Hence the body of
the loop is refined by

v if p(v(c)) then t :
[
p(v(c)), t′ = c

]
else c :

[
¬ p(v(c)), c′ = c + 1

]
6 The rules for introducing “while” loops and conditionals are not given here; they are special cases of Law 10.6 (rely-loop) and

Law 10.2 (rely-conditional) given later.
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If the guarantee invariants are distributed into the program this becomes.

if p(v(c)) then
guar-inv(t = len(v) + 1 ∨ satp(v, t)) ∧ notp(v, dom(v), c) ∧ bnd(c, v) •

t :
[
p(v(c)), t′ = c

]
else

guar-inv(t = len(v) + 1 ∨ satp(v, t)) ∧ notp(v, dom(v), c) ∧ bnd(c, v) •
c :
[
¬ p(v(c)), c′ = c + 1

]
The branches of the conditional can be refined using Law 3.38 (guarantee-assignment) to give the following
final program.

t := len(v) + 1;
(var c • c := 1;

while c < t do
if p(v(c)) then t := c else c := c + 1)

4 The rely command
Given a parallel composition (c ‖ d), it is not possible to use the sequential refinement laws to refine one
branch, say c, because d may interfere with execution of c by modifying variables shared between c and
d. [Jon81, Jon83] addressed this issue by introducing the notion of a rely condition, which is a relation r
that bounds the tolerable interference acceptable from the environment (either d or the wider environment
of both c and d). Every atomic step of the environment is assumed to satisfy the relation r or stutter.

In this paper a new command (rely r • c) is introduced; it is the most general command that when it is
put in an environment in which every atomic interference step satisfies the relation r or stutters, the com-
posite behaviour implements c from states in which c terminates with no interference. Finite interference
can be represented by the process 〈r ∨ id〉∗, that is, the process that can do any finite number, zero or more,
of atomic steps, each of which satisfies the relation r or stutters. Hence, for a command c that terminates
from states satisfying p (i.e. p V stops(c, id)) the rely command satisfies the following property.

{p}c vid (rely r • {p}c) ‖ 〈r ∨ id〉∗

A rely command should be thought of as giving a designer permission to assume that the environment in
which an implementation will run is at least as benign as r records. The motivation for the rely command
is similar to that for weakest environment of [CH81] and [Cha82], and the weakest pre-specification of
[HH86], although the latter deals with sequential composition rather than parallel composition.

4.1 Examples
To understand better the rely command and whether it is feasible, a few examples are examined.

1. (rely x < x′ •
[
x + 1 ≤ x′

]
) guarantees that, when it is put in an environment that may increase

x, the value of x is increased by at least one. A possible implementation of this rely command is
to increment x by one. The environment may further increase x but together they ensure that it is
increased by at least one.

2. (rely x < x′ •
[
x′ = x

]
) guarantees that, when it is put in an environment that may increase x,

the value of x is unchanged. There is no possible implementation of this. Even the “obvious”
implementation, skip, which does nothing is not a valid implementation because when put in an
environment that may increase x, the overall effect may be to increase x.

3. (rely x = x′ •
[
x′ = x + 1

]
) guarantees that, when put in an environment in which each interference

step does not modify x, x is incremented by exactly one. It may be implemented by the assignment
x := x + 1. This assignment does not have to be performed atomically, i.e. it may be interleaved
with interference that satisfies x = x′, which guarantees not to modify x but may arbitrarily modify
any variables other than x. Because none of the interference steps modify x, the evaluation of x + 1
and its assignment to x are not affected.



Rely-guarantee refinement - July 14, 2014 25

4. (rely x = x′ ∧ y = y′ •
[
x′ = x + 1

]
) guarantees that, when put in an environment in which each

interference step does not modify either x or y (although it may modify variables other than x and
y), x is incremented by one. It puts no constraints on the final value of y. It may be implemented
by the (non-atomic) assignments (y := x + 1; x := y), but note that this sequence of assignments
does not implement example 3 above because the environment in example 3 may arbitrarily modify
y between the two assignments.

4.2 Properties of interference

Before delving into the rely command in detail, we look at some basic properties of interference as repre-
sented by iteration of atomic steps. Two sets of interference in parallel corresponds to the disjunction of
the interferences.

Lemma 4.1 (parallel-interference) For any relations r0 and r1, 〈r0〉∗ ‖ 〈r1〉∗ = 〈r0 ∨ r1〉∗ .

Repeated interference is equivalent to interference.

Lemma 4.2 (repeated-interference) For any relation r, 〈r〉∗ ; 〈r〉∗ = 〈r〉∗ .

Interference on an atomic command can only precede or follow it.

Lemma 4.3 (interference-atomic) For any predicate p and relations q and r,

〈p, q〉 ‖ 〈r〉∗ = 〈r〉∗ ; 〈p, q〉 ; 〈r〉∗ .

During design, the inherited interference must be passed on to sub-components. Thus, parallel must
satisfy the following distribution properties. Note that except for nondeterministic choice, one can only
distribute interference (rather than an arbitrary command).

Lemma 4.4 (distribute-parallel) For any commands c0, c1 and d, set of commands C, and relation r,

( ⊔C) ‖ d = ⊔{c ∈ C • (c ‖ d)} (66)
(c0 ; c1) ‖ 〈r〉∗ = (c0 ‖ 〈r〉∗) ; (c1 ‖ 〈r〉∗) (67)

(c0 ‖ c1) ‖ 〈r〉∗ = (c0 ‖ 〈r〉∗) ‖ (c1 ‖ 〈r〉∗) (68)

Law 4.5 (term-in-context) For any relations r0 and r1, and command c,

stops(c, r0 ∨ r1) ≡ stops(c ‖ 〈r1 ∨ id〉∗, r0 ∨ r1) .

Proof. The implication from right to left holds by Law 2.19 (term-monotonic) because 〈r ∨ id〉∗ v skip.
For the implication from left to right, by Definition 2.18 (stops) part (42) it is sufficient to show

{stops(c, r0 ∨ r1)}〈true〉∗ vr0∨r1 c ‖ 〈r1 ∨ id〉∗

which holds as follows.

{stops(c, r0 ∨ r1)}〈true〉∗
v by Lemma 4.1 (parallel-interference) and Lemma 2.5 (parallel-precondition)
{stops(c, r0 ∨ r1)}〈true〉∗ ‖ 〈r1 ∨ id〉∗

vr0∨r1 by Law 3.30 (refine-in-context) as by (41) {stops(c, r0 ∨ r1)}〈true〉∗ vr0∨r1 c
c ‖ 〈r1 ∨ id〉∗

2
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4.3 Fundamental properties of rely

Our theory makes use of a generalisation of the rely command discussed above. The more general com-
mand (rely r • cz) adds an extra parameter relation z which represents the rely context within c. When
run in parallel with finite interference that is bounded by the relation r, (rely r • cz) is the most general
command that implements c in an environment bounded by z if started in a state from which c terminates
in environment z, i.e.

{stops(c, z)}c vz (rely r • cz) ‖ 〈r ∨ id〉∗ . (69)

The additional parameter z to the rely command is necessary to determine the environment in which the
refinement (69) is valid and the states from which the rely command is required to terminate, i.e. stops(c, z).
The default value for the relation z is id, i.e.

(rely r • c) =̂ (rely r • cid) (70)

Condition (69) does not cover the case of (rely r • cz) failing to terminate in the presence of infinite
interference from its environment. For example, the left loop in

(while 0 < i do i := i− 1) ‖ (while i < 10 do i := i + 1)

is guaranteed to terminate in the presence of finite interference satisfying (i′ = i + 1 ∨ id) but not in the
presence of potentially infinite interference as represented by the right loop. Hence condition (69) is not
sufficient to characterise the rely command and we need a further termination condition, which we now
investigate.

The specification command
[
p, q

]
is guaranteed to terminate from states satisfying p in an environment

that satisfies id, i.e. only stuttering interference. Hence (rely r •
[
p, q

]
) must be guaranteed to terminate

from states satisfying p in an environment that satisfies r. Hence the termination condition that the rely
command should satisfy is captured by the following.

stops((rely r •
[
p, q

]
), r) ≡ stops(

[
p, q

]
, id) ≡ p (71)

More generally, if the specification is included in nested relies, the following should hold.

p ≡ stops(
[
p, q

]
, id)

≡ stops((rely r1 •
[
p, q

]
), r1)

≡ stops((rely r0 • (rely r1 •
[
p, q

]
)r1), r0 ∨ r1)

The definition of the rely command below is designed so that these termination conditions hold (they follow
from Law 4.7 (rely-stops) below).

The rely command (rely r • cz) is the weakest command such that (rely r • cz) in parallel with inter-
ference 〈r ∨ id〉∗ refines c in an environment z from initial states from which c terminates in environment
z.

Definition 4.6 (rely) For any command c and relations r and z,

rely r • cz =̂ ⊔{d | ({stops(c, z)}c vz d ‖ 〈r ∨ id〉∗) ∧ (stops(c, z) V stops(d, z ∨ r))}

For particular r, z and c, the command (rely r • cz) may not be feasible because all d satisfying the condi-
tions in the nondeterministic choice in Definition 4.6 (rely) are infeasible, as in example 2 in Section 4.1.
In fact, any “code” consisting of control structures and assignments becomes infeasible within any rely
context. The first basic law for the rely command determines when it terminates.

Law 4.7 (rely-stops) For any relations z and r and command c,

stops((rely r • cz), z ∨ r) ≡ stops(c, z) .
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Proof.

stops((rely r • cz), z ∨ r)
≡ by Definition 4.6 (rely)

stops(( ⊔{d | ({stops(c, z)}c vz d ‖ 〈r ∨ id〉∗) ∧ (stops(c, z) V stops(d, z ∨ r))}), z ∨ r)
≡ termination of non-deterministic choice
∀ d • ({stops(c, z)}c vz d ‖ 〈r ∨ id〉∗) ∧ (stops(c, z) V stops(d, z ∨ r))⇒ stops(d, z ∨ r)

≡ stops(c, z)

For the last step the reverse direction is straightforward. In the forward direction, take d to be the command
“{stops(c, z)}magic” and hence stops(d, z ∨ r) ≡ stops(c, z) and d satisfies the conditions on the left of
the implication in the quantification and hence stops(d, z ∨ r) and hence stops(c, z). 2

The following law provides the fundamental property of a rely command. It is used as the basis for the
remaining laws involving rely commands. It transforms refinement of a rely command into a refinement
to a parallel composition with the interference corresponding to the rely condition. Finite interference, as
represented by 〈r ∨ id〉∗, only handles terminating constructs and hence the rely command in the context
of the interference only needs to refine c from initial states for which c terminates in environment z.

Law 4.8 (rely-refinement) For any relations z and r, and commands c and d,

((rely r • cz) v d) ⇔ ({stops(c, z)}c vz d ‖ 〈r ∨ id〉∗) ∧ (stops(c, z) V stops(d, z ∨ r)) .

Proof. The reverse implication holds as follows.

(rely r • cz) v d
⇔ by Definition 4.6 (rely)⊔{d0 | ({stops(c, z)}c vz d0 ‖ 〈r ∨ id〉∗) ∧ (stops(c, z) V stops(d0, z ∨ r))} v d
⇐ by Law 2.11 (nondeterministic-choice) part (33)
∃ d0 • ({stops(c, z)}c vz d0 ‖ 〈r ∨ id〉∗) ∧ (stops(c, z) V stops(d0, z ∨ r)) ∧ (d0 v d)

⇐ a witness for the existential quantifier is d
({stops(c, z)}c vz d ‖ 〈r ∨ id〉∗) ∧ (stops(c, z) V stops(d, z ∨ r))

For the forward implication by Law 2.3 (refinement-monotonic)

((rely r • cz) v d) ⇒ ((rely r • cz) vz∨r d) (72)

and hence it is sufficient to show the following.

((rely r • cz) vz∨r d)⇒ ({stops(c, z)}c vz d ‖ 〈r ∨ id〉∗) ∧ (stops(c, z) V stops(d, z ∨ r)) (73)

We show each of the conjuncts on the right holds separately. To make the steps more readable we abbreviate
stops(c, z) by p.

{p}c vz d ‖ 〈r ∨ id〉∗
⇐ by Law 3.30 (refine-in-context) as (rely r • cz) vz∨r d
{p}c vz (rely r • cz) ‖ 〈r ∨ id〉∗

⇔ by Definition 4.6 (rely)
{p}c vz ⊔{d1 | ({p}c vz d1 ‖ 〈r ∨ id〉∗) ∧ (p V stops(d1, z ∨ r))} ‖ 〈r ∨ id〉∗

⇔ by Lemma 4.4 (distribute-parallel) part (66)
{p}c vz ⊔{d1 | ({p}c vz d1 ‖ 〈r ∨ id〉∗) ∧ (p V stops(d1, z ∨ r)) • (d1 ‖ 〈r ∨ id〉∗)} 7

⇐ by Law 2.11 (nondeterministic-choice)
∀ d1 • ({p}c vz d1 ‖ 〈r ∨ id〉∗) ∧ (p V stops(d1, z ∨ r))⇒ ({p}c vz d1 ‖ 〈r ∨ id〉∗)

The last condition trivially holds. The termination condition is shown as follows.

stops(d, z ∨ r)
W by Law 2.19 (term-monotonic) as (rely r • cz) vz∨r d

stops((rely r • cz), z ∨ r)
≡ by Law 4.7 (rely-stops)

stops(c, z)
7Recall that the notation {d | p • e} stands for the set of values of the expression e for d ranging over values that satisfy the

predicate p.
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2

Law 4.9 (rely-environment) For any relations z and r, and commands c and d,

(rely r • cz) v d ⇔ (rely r • cz) vz∨r d .

Proof. The forward implication holds by Law 2.3 (refinement-monotonic). For the reverse implication by
Law 4.8 (rely-refinement) it is sufficient to show

((rely r • cz) vz∨r d) ⇒ ({stops(c, z)}c vz d ‖ 〈r ∨ id〉∗) ∧ (stops(c, z) V stops(d, z ∨ r))

which was shown as property (73) above. 2
Law 4.9 (rely-environment) allows one to use the stronger “v” instead of “vz∨r” when dealing with

rely commands.

Law 4.10 (rely-refinement-precondition) For any predicate p, relations z and r, and commands c and d,
such that p V stops(c, z) ∧ stops(d, z ∨ r),

(rely r • {p}cz) v d ⇔ {p}c vz d ‖ 〈r ∨ id〉∗ .

Proof. Because stops({p}c, z) ≡ p ∧ stops(c, z) ≡ p V stops(d, z ∨ r), the law follows by Law 4.8
(rely-refinement) . 2

Law 4.11 (rely-specification) For any predicate p, relations q and r, and command d, such that p V
stops(d, r),

(rely r •
[
p, q

]
) v d ⇔

[
p, q

]
v d ‖ 〈r ∨ id〉∗

Proof. The law follows from Law 4.10 (rely-refinement-precondition) and Lemma 2.6 (refine-specification)
because stops({p}

[
q
]
, id) ≡ p ∧ stops(

[
q
]
, id) ≡ p by Lemma 2.20 (precondition-term) and Lemma 2.21

(specification-term). 2

Law 4.12 (rely) For any predicate p, relations z and r, and command c, such that p V stops(c, z),

{p}c vz (rely r • {p}cz) ‖ 〈r ∨ id〉∗ .

Proof. Because by Law 4.7 (rely-stops), stops((rely r • {p}cz), z ∨ r) ≡ stops({p}c, z) ≡ p, the law
follows from Law 4.10 (rely-refinement-precondition) by taking d to be (rely r • {p}cz). 2

Law 4.13 (strengthen-rely-in-context) For any relations r, rx and z, and command c,

(rely r • cz) vrx (rely rx ∧ r • cz) .

Proof. By Definition 4.6 (rely) the law holds provided

⊔{d1 | ({stops(c, z)}c vz d1 ‖ 〈r ∨ id〉∗) ∧ (stops(c, z) V stops(d1, z ∨ r))} vrx⊔{d0 | ({stops(c, z)}c vz d0 ‖ 〈(rx ∧ r) ∨ id〉∗) ∧ (stops(c, z) V stops(d0, z ∨ (rx ∧ r)))}
W by Law 2.11 (nondeterministic-choice)
∀ d0 • ({stops(c, z)}c vz d0 ‖ 〈(rx ∧ r) ∨ id〉∗) ∧ (stops(c, z) V stops(d0, z ∨ (rx ∧ r)))⇒
∃ d1 • ({stops(c, z)}c vz d1 ‖ 〈r ∨ id〉∗) ∧ (stops(c, z) V stops(d1, z ∨ r)) ∧ d1 vrx d0

As the witness for the existential quantifier choose d1 to be the same as d0 except that d1 only allows
environment steps satisfying rx ∨ id, that is, [[d1]] = [[d0]]rx. By Definition 2.1 (refinement-in-context)
one can deduce d0 v d1 vrx d0. Because the environment steps of d1 only allow interference satisfying
rx ∨ id, it follows that

{stops(c, z)}c vz d0 ‖ 〈(rx ∧ r) ∨ id〉∗ v d1 ‖ 〈(rx ∧ r) ∨ id〉∗ = d1 ‖ 〈r ∨ id〉∗ .

In addition, [[d1]]z∨r = [[d0]]rx∧(z∨r) ⊆ [[d0]]z∨(rx∧r). Hence stops(c, z) V stops(d0, z ∨ (rx ∧ r)) V
stops(d1, z ∨ r). 2
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There may be any finite number, zero or more, of interference steps (each of which satisfies r or stutters)
between any two program steps. Hence the interference between any two program steps satisfies r∗. For
this reason most formulations of the rely-guarantee approach (including [CJ07]) require r to be reflexive
and transitive, so that r∗ = r. Here we do not require r to be either reflexive or transitive but use its reflexive
transitive closure where necessary.

Note that care needs to be taken with the order of guarantee and rely clauses. The form usually required
is a rely nested within a guarantee. The problem with using a guarantee command nested within a rely is
that to show (rely r • (guar g •

[
p, q

]
)) v d, Law 4.8 (rely-refinement) requires one to show (guar g •[

p, q
]
) v d ‖ 〈r ∨ id〉∗, which requires the interference r to guarantee g as well as d guaranteeing g.

However, for a rely nested within a guarantee, only d is required to satisfy the guarantee. A guarantee
within a rely should therefore be avoided, although there are situations in which it is allowed: a trivial case
is if the rely is id but the more general case is if the rely condition happens to imply the guarantee; this
sometimes happens with a set of operations handling a shared data structure [CJ00].

Law 4.14 (guarantee-plus-rely) For any relations g, z and r, and commands c and d,

(guar g • (rely r • cz)) v d, (74)

if both the following hold

(rely r • cz) v d (75)
(guar g • d) v d . (76)

Proof. Applying Law 3.21 (guarantee-monotonic) to (75) gives the following.

(guar g • (rely r • cz)) v (guar g • d)

When combined with (76) this implies (74). 2

4.4 Laws for refining rely commands
Law 4.15 (weaken-rely) For any command c, and any relations z, r0 and r1, such that r0 V r1 ∨ id,

(rely r0 • cz) v (rely r1 • cz) .

Proof. By Law 4.8 (rely-refinement) the theorem holds provided

({stops(c, z)}c vz (rely r1 • cz) ‖ 〈r0 ∨ id〉∗) ∧ (stops(c, z) V stops((rely r1 • cz), z ∨ r0))

W Law 3.2 (strengthen-iterated-atomic) and Law 2.19 (term-monotonic) as r0 V r1 ∨ id
({stops(c, z)}c vz (rely r1 • cz) ‖ 〈r1 ∨ id〉∗) ∧ (stops(c, z) V stops((rely r1 • cz), z ∨ r1)

which follow by Law 4.12 (rely) and Law 4.7 (rely-stops). 2
Note that for relations q and r we have the following relationships.[

q
]

= (rely id •
[
q
]
) v (rely r •

[
q
]
) v (rely true •

[
q
]
)

In particular,
[
false

]
is infeasible in an environment of just stuttering (id) but aborts in any non-id environ-

ment, whereas (rely true •
[
false

]
) is infeasible in any environment.

Law 4.16 (rely-monotonic) For relations z and r, and commands c and d, such that {stops(c, z)}c vz d,

(rely r • cz) v (rely r • dz) .

Proof. The theorem holds by Law 4.8 (rely-refinement) provided the following holds.

({stops(c, z)}c vz (rely r • dz) ‖ 〈r ∨ id〉∗) ∧ (stops(c, z) V stops((rely r • dz), z ∨ r))

W by Law 4.12 (rely), {stops(d, z)}d vz (rely r • dz) ‖ 〈r ∨ id〉∗ and Law 4.7 (rely-stops)
({stops(c, z)}c vz {stops(d, z)}d) ∧ (stops(c, z) V stops(d, z))
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By assumption {stops(c, z)}c vz d and hence by Law 2.19 (term-monotonic) stops(c, z) V stops(d, z). 2
Note that refining the body of a rely command does not necessarily preserve feasibility. For example,[

x = 0, x < x′
]
v
[
x′ = 1

]
is a valid refinement but while (rely x ≤ x′ •

[
x = 0, x < x′

]
) is feasible,

(rely x ≤ x′ •
[
x′ = 1

]
) is not feasible because the interference may increase x beyond one.

Law 4.17 (rely-precondition) For any predicate p, relations z and r, and command c, if p V stops(c, z),

(rely r • {p}cz) = {p}(rely r • {p}cz) .

Proof. Refinement from right to left is simply removing the precondition. Refinement from left to right
holds by Law 4.10 (rely-refinement-precondition) provided both the following hold.

{p}c vz ({p}(rely r • {p}cz)) ‖ 〈r ∨ id〉∗ (77)
p V stops({p}(rely r • {p}cz), z ∨ r) (78)

Because by Lemma 2.4 (precondition) part (27), {p} = {p}{p}, (77) can be shown as follows.

{p}{p}c
vz by Law 4.12 (rely) using assumption p V stops(c, z)

{p}((rely r • {p}cz) ‖ 〈r ∨ id〉∗)
v by Lemma 2.5 (parallel-precondition)

({p}(rely r • {p}cz)) ‖ 〈r ∨ id〉∗

One can use Law 4.7 (rely-stops) to show (78) as follows.

stops({p}(rely r • {p}cz), z ∨ r) ≡ p ∧ stops((rely r • {p}cz), z ∨ r) ≡ p ∧ stops({p}c, z) ≡ p

2

Law 4.18 (nested-rely) For any command c and relations z, r0 and r1,

(rely r0 • (rely r1 • cz)z∨r1) = (rely r0 ∨ r1 • cz) .

Proof. The proof uses the fact that stops(d, z ∨ r0 ∨ r1) V stops(d ‖ 〈r0 ∨ id〉∗, z ∨ r1) by Law 4.5
(term-in-context).

(rely r0 • (rely r1 • cz)z∨r1)

= by Definition 4.6 (rely)⊔{d | ({stops((rely r1 • cz), z ∨ r1)}(rely r1 • cz) vz∨r1 d ‖ 〈r0 ∨ id〉∗) ∧
(stops((rely r1 • cz), z ∨ r1) V stops(d, z ∨ r0 ∨ r1))}

= by Law 4.7 (rely-stops)⊔{d | ({stops(c, z)}(rely r1 • cz) vz∨r1 d ‖ 〈r0 ∨ id〉∗) ∧ (stops(c, z) V stops(d, z ∨ r0 ∨ r1))}
= by Law 4.17 (rely-precondition) and Law 4.8 (rely-refinement)⊔{d | ({stops(c, z)}c vz d ‖ 〈r0 ∨ id〉∗ ‖ 〈r1 ∨ id〉∗) ∧

(stops(c, z) V stops(d ‖ 〈r0 ∨ id〉∗, z ∨ r1)) ∧ (stops(c, z) V stops(d, z ∨ r0 ∨ r1))}
= by Lemma 4.1 (parallel-interference) and Law 4.5 (term-in-context) – see above⊔{d | ({stops(c, z)}c vz d ‖ 〈r0 ∨ r1 ∨ id〉∗) ∧ (stops(c, z) V stops(d, z ∨ r0 ∨ r1))}
= by Definition 4.6 (rely)

(rely r0 ∨ r1 • cz)

2

In a development process, the permission to make assumptions must be passed on to sub-components,
so a rely on a composite command may be distributed to its component commands.
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Law 4.19 (distribute-rely-choice) For any relations z and r, and set of commands C,

rely r • ( ⊔C)z v ⊔{c ∈ C • (rely r • cz)} .

Proof. By Law 4.8 (rely-refinement) we must show both the following.

{stops( ⊔C, z)}( ⊔C) vz ( ⊔{c ∈ C • (rely r • cz)}) ‖ 〈r ∨ id〉∗ (79)
stops( ⊔C, z) V stops( ⊔{c ∈ C • (rely r • cz)}, z ∨ r) (80)

The proof of (79) follows starting from the right side.

( ⊔{c ∈ C • (rely r • cz)}) ‖ 〈r ∨ id〉∗

= by Lemma 4.4 (distribute-parallel) over nondeterministic choice (66)⊔{c ∈ C • (rely r • cz) ‖ 〈r ∨ id〉∗}
wz by Law 2.11 (nondeterministic-choice) part (32) and Law 4.12 (rely)⊔{c ∈ C • {stops(c, z)}c}
= {stops( ⊔C, z)}( ⊔C)

The proof of (80) follows.

stops( ⊔{c ∈ C • (rely r • cz)}, z ∨ r)

≡ termination of a nondeterministic choice
(∀ c ∈ C • stops((rely r • cz), z ∨ r))

≡ by Law 4.7 (rely-stops)
(∀ c ∈ C • stops(c, z))

≡ termination of nondeterministic choice
stops( ⊔C, z)

2

Law 4.20 (rely-post-assertion)

(rely r • (c{p})z) v (rely r • cz){p}

Proof. By Law 4.8 (rely-refinement) one must show both the following.

{stops(c{p}, z)}c{p} vz (rely r • cz){p} ‖ 〈r ∨ id〉∗ (81)
stops(c{p}, z) V stops((rely r • cz){p}, z ∨ r) (82)

For (81)

{stops(c{p}, z)}c{p} vz ((rely r • cz){p}) ‖ 〈r ∨ id〉∗
⇐ moving assertion out of parallel
{stops(c{p}, z)}c{p} vz ((rely r • cz) ‖ 〈r ∨ id〉∗){p}

⇐ as stops(c{p}, z) V stops(c, z) by Law 2.19 (term-monotonic) as c{p} v c
{stops(c, z)}c vz (rely r • cz) ‖ 〈r ∨ id〉∗

which holds by Law 4.12 (rely). 2

Law 4.21 (distribute-rely-sequential) For any predicate p, relations z and r, commands c0 and c1, such
that (p V stops((c0 ; c1), z)

rely r • ({p}c0 ; c1)z v (rely r • ({p}c0)z) ; (rely r • (c1)z) .
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Proof. By Law 4.10 (rely-refinement-precondition) we must show both the following.

{p}c0 ; c1 vz ((rely r • ({p}c0)z) ; (rely r • (c1)z)) ‖ 〈r ∨ id〉∗ (83)
p V stops(((rely r • ({p}c0)z) ; (rely r • (c1)z)), z ∨ r) (84)

Note that p V stops((c0 ; c1), z) V stops(c0, z). The proof of (83) follows starting from its right side.

((rely r • ({p}c0)z) ; (rely r • (c1)z)) ‖ 〈r ∨ id〉∗

= by Lemma 4.4 (distribute-parallel) over sequential (67)
((rely r • ({p}c0)z) ‖ 〈r ∨ id〉∗) ; ((rely r • (c1)z) ‖ 〈r ∨ id〉∗)

wz by Law 4.12 (rely) twice as p V stops(c0, z)

{p}c0 ; {stops(c1, z)}c1
=z as p V stops((c0 ; c1), z)

{p}c0 ; c1

The proof of (84) follows.

stops((rely r • (c0)z) ; (rely r • (c1)z), z ∨ r)
≡ by Lemma 2.22 (sequential-term)

stops((rely r • (c0)z){stops((rely r • (c1)z), z ∨ r)}, z ∨ r)
≡ by Law 4.7 (rely-stops)

stops((rely r • (c0)z){stops(c1, z)}, z ∨ r)
≡ by Law 4.20 (rely-post-assertion) and Law 2.19 (term-monotonic)

stops((rely r • (c0{stops(c1, z)})z), z ∨ r)
≡ by Law 4.7 (rely-stops)

stops(c0{stops(c1, z)}, z)
≡ by Lemma 2.22 (sequential-term)

stops(c0 ; c1, z)
W by assumption

p

2

Law 4.22 (distribute-rely-conjunction) For any predicate p, relations z and r, and commands c0 and c1,
such that p V stops(c0, z) ∧ stops(c1, z),

rely r • {p}(c0 e c1)z v (rely r • ({p}c0)z) e (rely r • ({p}c1)z) .

Proof. By Law 4.10 (rely-refinement-precondition) we must show both the following.

{p}(c0 e c1) vz ((rely r • ({p}c0)z) e (rely r • ({p}c1)z)) ‖ 〈r ∨ id〉∗ (85)
p V stops(((rely r • ({p}c0)z) e (rely r • ({p}c1)z)), z ∨ r)) (86)

The proof of (85) follows starting from the right side using the fact that conjunction is idempotent.

((rely r • ({p}c0)z) e (rely r • ({p}c1)z)) ‖ (〈r ∨ id〉∗ e 〈r ∨ id〉∗)
w by Lemma 3.7 (interchange-conjunction) with parallel (49)

((rely r • ({p}c0)z) ‖ 〈r ∨ id〉∗) e ((rely r • ({p}c1)z) ‖ 〈r ∨ id〉∗

wz by Law 4.12 (rely) twice using termination assumptions
({p}c0) e ({p}c1)

= by Lemma 3.5 (conjunction-strict)
{p}(c0 e c1)

For the proof of termination property (86), using Law 4.7 (rely-stops) one can deduce the property p V
stops((rely r • ({p}c0)z), z ∨ r) ∧ stops((rely r • ({p}c1)z), z ∨ r) and hence that (86) holds by Law 3.10
(conjunction-term). 2
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Law 4.23 (distribute-rely-iteration) For any predicate p, relations z and r, and command c, such that
p V stops(({p}c)ω+, z),

rely r • (({p}c)ω+)z v (rely r • {p}cz)
ω+

Proof. Because p V stops(({p}c)ω+, z), we have p V stops({p}c ; ({p}c)ω, z) V stops(c, z). Using Law
4.10 (rely-refinement-precondition) one must show both the following.

({p}c)ω+ vz (rely r • {p}cz)
ω+ ‖ 〈r ∨ id〉∗ (87)

p V stops((rely r • {p}cz)
ω+, z ∨ r) (88)

For cω+ iteration we use Lemma 2.14 (iteration-induction) for ω-iteration (40). In general,

c u (c ; d) vrx d ⇒ cω+ vrx d (89)

and hence (87) holds if

{p}c u ({p}c ; ((rely r • {p}cz)
ω+ ‖ 〈r ∨ id〉∗)) vz (rely r • {p}cz)

ω+ ‖ 〈r ∨ id〉∗

which we show as follows.

{p}c u ({p}c ; ((rely r • {p}cz)
ω+ ‖ 〈r ∨ id〉∗))

vz by Law 4.12 (rely) twice as p V stops(c, z)

((rely r • {p}cz) ‖ 〈r ∨ id〉∗) u
(((rely r • {p}cz) ‖ 〈r ∨ id〉∗);((rely r • {p}cz)

ω+ ‖ 〈r ∨ id〉∗))
= by Lemma 4.4 (distribute-parallel) over choice (66) and sequential (67)

((rely r • {p}cz) u ((rely r • {p}cz) ; (rely r • {p}cz)
ω+)) ‖ 〈r ∨ id〉∗

= by Lemma 2.13 (fold/unfold-iteration)
(rely r • {p}cz)

ω+ ‖ 〈r ∨ id〉∗

For termination condition (88) by Law 4.12 (rely)

{p}c vz (rely r • {p}cz) ‖ 〈r ∨ id〉∗
⇒ by Lemma 2.15 (iteration-monotonic)

({p}c)ω+ vz ((rely r • {p}cz) ‖ 〈r ∨ id〉∗)ω+
⇒ by Law 2.19 (term-monotonic) and assumption

p V stops(({p}c)ω+, z) V stops(((rely r • {p}cz) ‖ 〈r ∨ id〉∗)ω+, z)
⇒ by Lemma 4.24 (term-iteration) as p V stops((rely r • {p}cz), z ∨ r) by Law 4.7 (rely-stops)

p V stops((rely r • {p}cz)
ω+, z ∨ r)

2

Lemma 4.24 (term-iteration) For any predicate p, relations r and z, and command c, such that p V
stops(c, z ∨ r),

stops(({p}c ‖ 〈r ∨ id〉∗)ω+, z) V stops(({p}c)ω+, z ∨ r) .

Law 4.23 (distribute-rely-iteration) applies to cω+ but not cω because (rely r • skip) is not refined by
skip (because by Law 4.8 (rely-refinement) this would require skip v skip ‖ 〈r ∨ id〉∗).

5 Parallel refinement
This section develops laws for refining to a parallel composition making use of rely and guarantee com-
mands to handle interference between the parallel processes. For command conjunction one has the identity[

x′ = 1
]
e
[
y′ = 2

]
=

[
x′ = 1 ∧ y′ = 2

]
.
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However, the parallel composition
[
x′ = 1

]
‖
[
y′ = 2

]
aborts because each of the specifications implicitly

has a rely condition of id but each also must modify either x or y, thus breaking the rely of the other.
Hence in refining from a conjunction of commands to a parallel composition one must introduce rely and
guarantee conditions to control the interference, which after all is their raison d’être.

A conjunction of commands may be implemented by a parallel combination of commands provided
each respects the rely of the other; Law 5.1 captures the core of the rely-guarantee approach to developing
a parallel program. This law generalises the Jones-quintuple rule because it applies to a conjunction of
commands, rather than a conjunction of postconditions. Law 5.2 extends that to handle a conjunction of
commands within a rely context, and Law 5.3 specialises that to refining a specification (with a conjunction
of post conditions) by a parallel composition.

Law 5.1 (introduce-parallel) For any predicate p, relations z, g0 and g1, and commands c0 and c1, such
that p V stops(c0, z) ∧ stops(c1, z),

{p}(c0 e c1) vz (guar g0 • (rely g1 • ({p}c0)z)) ‖ (guar g1 • (rely g0 • ({p}c1)z)) .

Proof. By Law 4.12 (rely) both the following hold.

{p}c0 vz (rely g1 • ({p}c0)z) ‖ 〈g1 ∨ id〉∗ (90)
{p}c1 vz (rely g0 • ({p}c1)z) ‖ 〈g0 ∨ id〉∗ (91)

Hence the law holds as follows.

{p}(c0 e c1)

= by Lemma 3.5 (conjunction-strict)
({p}c0) e ({p}c1)

vz by Lemma 3.4 (conjunction-monotonic) using (90) and (91)
((rely g1 • ({p}c0)z) ‖ 〈g1 ∨ id〉∗) e (〈g0 ∨ id〉∗ ‖ (rely g0 • ({p}c1)z))

v by Lemma 3.7 (interchange-conjunction) with parallel
((rely g1 • ({p}c0)z) e 〈g0 ∨ id〉∗) ‖ (〈g1 ∨ id〉∗ e (rely g0 • ({p}c1)z))

= by Law 3.15 (terminating-iteration)
(〈g0 ∨ id〉ω e 〈true〉∗ e (rely g1 • ({p}c0)z)) ‖ (〈g1 ∨ id〉ω e 〈true〉∗ e (rely g0 • ({p}c1)z))

= by Definition 3.1 (guarantee)
(guar g0 • (〈true〉∗ e (rely g1 • ({p}c0)z))) ‖ (guar g1 • (〈true〉∗ e (rely g0 • ({p}c1)z)))

vz by Lemma 3.29 (refine-in-guarantee-context) – see below
(guar g0 • (rely g1 • ({p}c0)z)) ‖ (guar g1 • (rely g0 • ({p}c1)z))

For the proof of the last step above, the body of left branch of the parallel is refined as follows.

〈true〉∗ e (rely g1 • ({p}c0)z)

= by Law 4.17 (rely-precondition) and Lemma 3.5 (conjunction-strict)
{p}〈true〉∗ e (rely g1 • ({p}c0)z)

vz∨g1 by Law 3.9 (simplify-conjunction) using (92) below
(rely g1 • ({p}c0)z)

The right branch is refined similarly. By Law 4.7 (rely-stops), p V stops((rely g1 • ({p}c0)z), z ∨ g1) and
hence by Definition 2.18 (stops) part (42),

{p}〈true〉∗ vz∨g1 (rely g1 • ({p}c0)z) . (92)

which is used in the proof of the last step above. 2
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Law 5.2 (introduce-parallel-with-rely) For any predicates p, p0 and p1, relations z, r, g0 and g1, such
that p V p0 ∧ p1, and commands c0 and c1 such that p0 V stops(c0, z) and p1 V stops(c1, z),

(rely r • ({p}(c0 e c1))z)
v (guar g0 • (rely g1 ∨ r • ({p0}c0)z)) ‖ (guar g1 • (rely g0 ∨ r • ({p1}c1)z)) .

(93)

Proof. From the assumptions one can deduce both p0 V stops((rely r • ({p0}c0)z), z ∨ r) and p1 V
stops((rely r • ({p1}c1)z), z ∨ r). These are used in the application of Law 5.1 (introduce-parallel) below.
By Law 4.9 (rely-environment) it is sufficient to show (93) in context z ∨ r.

(rely r • {p}(c0 e c1)z)

v by Lemma 3.5 (conjunction-strict) and as p V p0 and p V p1
(rely r • ({p0}c0 e {p1}c1)z)

v Law 4.22 (distribute-rely-conjunction) using termination conditions
(rely r • ({p0}c0)z) e (rely r • ({p1}c1)z)

v by Law 4.17 (rely-precondition) twice using termination conditions
({p0}(rely r • ({p0}c0)z)) e ({p1}(rely r • ({p1}c1)z))

= by Lemma 3.5 (conjunction-strict)
{p0 ∧ p1}((rely r • ({p0}c0)z) e (rely r • ({p1}c1)z)

vz∨r by Law 5.1 (introduce-parallel) using termination conditions
(guar g0 • (rely g1 • (rely r • ({p0}c0)z)z∨r)) ‖ (guar g1 • (rely g0 • (rely r • ({p1}c1)z)z∨r))

= by Law 4.18 (nested-rely) twice
(guar g0 • (rely g1 ∨ r • ({p0}c0)z)) ‖ (guar g1 • (rely g0 ∨ r • ({p1}c1)z))

2

The following law applies Law 5.2 to specifications. This corresponds to the parallel introduction law
of [Jon83].

Law 5.3 (introduce-parallel-spec-with-rely) For predicates p, p0 and p1, and relations r, q, q0, q1, g0
and g1, such that p V p0 ∧ p1 and p ∧ q0 ∧ q1 V q,

(rely r •
[
p, q

]
) v (guar g0 • (rely g1 ∨ r •

[
p0, q0

]
)) ‖ (guar g1 • (rely g0 ∨ r •

[
p1, q1

]
)) .

Proof. The termination assumptions for the application of Law 5.2 (introduce-parallel-with-rely) below are
p V stops(

[
q0

]
, id) and p V stops(

[
q1
]
, id), which are trivial.

(rely r •
[
p, q

]
)

v by Lemma 2.8 (consequence) as p ∧ q0 ∧ q1 V q and Law 4.16 (rely-monotonic)

(rely r • {p}
[
q0 ∧ q1

]
)

= by Lemma 3.18 (conjoined-specifications)

(rely r • {p}(
[
q0
]
e
[
q1

]
))

v by Law 5.2 (introduce-parallel-with-rely)

(guar g0 • (rely g1 ∨ r •
[
p0, q0

]
)) ‖ (guar g1 • (rely g0 ∨ r •

[
p1, q1

]
))

2

6 Trading post conditions with rely and guarantee
Any command in a guarantee context of g and a rely context of r only executes atomic program steps
satisfying (g ∨ id) and assumes the environment only executes atomic steps satisfying (r ∨ id) and hence
any single step (whether program or environment) satisfies (g ∨ r ∨ id) and hence any sequence of steps
satisfies (g ∨ r)∗. We first apply this property to a specification and then to augment the law for introducing
a parallel composition.
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Law 6.1 (trade-rely-guarantee) For any predicate p and relations g, r and q,

guar g • (rely r •
[
p, q ∧ (g ∨ r)∗

]
) = guar g • (rely r •

[
p, q

]
) .

Proof. Refinement from right to left is just a strengthening of the post condition. The refinement from
left to right can be shown using Law 4.14 (guarantee-plus-rely). The guarantee proviso (76) of Law 4.14
is trivial; to prove the other proviso (75) one can use Law 4.11 (rely-specification) which requires one to
show both the following.[

p, q ∧ (g ∨ r)∗
]

v (guar g • (rely r •
[
p, q

]
)) ‖ 〈r ∨ id〉∗ (94)

p V stops((guar g • (rely r •
[
p, q

]
)), r) (95)

The proof for (95) follows by Lemma 2.20 (precondition-term), Lemma 2.21 (specification-term), Law 4.7
(rely-stops) and Law 3.25 (guarantee-term).

p ≡ stops(
[
p, q

]
, id) ≡ stops((rely r •

[
p, q

]
), r) V stops((guar g • (rely r •

[
p, q

]
)), r)

The proof of the refinement (94) follows.[
p, q ∧ (g ∨ r)∗

]
v by Law 3.24 (introduce-guarantee) of g ∨ r and Law 3.31 (trading-post-guarantee)

guar g ∨ r •
[
p, q

]
v by Law 4.12 (rely)

guar g ∨ r • ((rely r •
[
p, q

]
) ‖ 〈r ∨ id〉∗)

= by Law 3.27 (distribute-guarantee) over parallel (62)

(guar g ∨ r • (rely r •
[
p, q

]
)) ‖ (guar g ∨ r • 〈r ∨ id〉∗)

v by Law 3.22 (strengthen-guarantee) twice

(guar g • (rely r •
[
p, q

]
)) ‖ (guar r • 〈r ∨ id〉∗)

= by Law 3.16 (conjunction-atomic-iterated) part (58) and Law 3.15 (terminating-iteration)

(guar g • (rely r •
[
p, q

]
)) ‖ 〈r ∨ id〉∗

Because conjunction is idempotent the last step holds as follows.

(guar r • 〈r ∨ id〉∗) = 〈r ∨ id〉ω e 〈r ∨ id〉∗ = 〈r ∨ id〉ω e 〈true〉∗ e 〈r ∨ id〉∗ = 〈r ∨ id〉∗

2

Law 6.2 (introduce-parallel-spec-with-trading) For any predicates p, p0 and p1, and relations r, q, q0,
q1, g0 and g1, such that p V p0 ∧ p1 and p ∧ q0 ∧ q1 V q,

(rely r •
[
p, q ∧ (g0 ∨ g1 ∨ r)∗

]
)

v (guar g0 • (rely g1 ∨ r •
[
p0, q0

]
)) ‖ (guar g1 • (rely g0 ∨ r •

[
p1, q1

]
))

Proof. We use Law 6.1 (trade-rely-guarantee) and then introduce a parallel composition.

(rely r •
[
p, q ∧ (g0 ∨ g1 ∨ r)∗

]
)

v by Law 3.24 (introduce-guarantee) of g0 ∨ g1 and Law 6.1 (trade-rely-guarantee)

(guar g0 ∨ g1 • (rely r •
[
p, q

]
))

v by Law 5.3 (introduce-parallel-spec-with-rely) as p V p0 ∧ p1 and p ∧ q0 ∧ q1 V q

(guar g0 ∨ g1 • ((guar g0 • (rely g1 ∨ r •
[
p0, q0

]
)) ‖ (guar g1 • (rely g0 ∨ r •

[
p1, q1

]
))))

= by Law 3.27 (distribute-guarantee) and Law 3.26 (nested-guarantees)

(guar g0 • (rely g1 ∨ r •
[
p0, q0

]
)) ‖ (guar g1 • (rely g0 ∨ r •

[
p1, q1

]
))

2
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Law 6.3 (introduce-parallel-spec-weaken-rely) For any predicates p, p0 and p1 and relations r, r0, r1,
q, q0, q1, g0 and g1, such that p V p0 ∧ p1 and p ∧ q0 ∧ q1 V q and g0 ∨ r V r1 ∨ id and
g1 ∨ r V r0 ∨ id,

(rely r •
[
p, q ∧ (g0 ∨ g1 ∨ r)∗

]
)

v (guar g0 • (rely r0 •
[
p0, q0

]
)) ‖ (guar g1 • (rely r1 •

[
p1, q1

]
))

Proof. The law follows from Law 6.2 (introduce-parallel-spec-with-trading) and two applications of Law
4.15 (weaken-rely). 2

Trading can also be applied to a guarantee invariant.

Law 6.4 (trade-rely-guarantee-invariant) For predicate p and relations r and q, such that r V (p⇒ p′),

rely r •
[
p, p′ ∧ q

]
v guar-inv p • (rely r •

[
p, q

]
)

Proof.

rely r •
[
p, p′ ∧ q

]
v by Lemma 2.8 (consequence) as r V (p⇒ p′)

rely r •
[
p, ((p⇒ p′) ∨ r)∗ ∧ q

]
v by Law 3.24 (introduce-guarantee)

guar(p⇒ p′) • rely r • (
[
p, ((p⇒ p′) ∨ r)∗ ∧ q

]
)

= by Law 6.1 (trade-rely-guarantee) and Definition 3.41 (guarantee-invariant)
guar-inv p • (rely r •

[
p, q

]
)

2

7 Specifications and rely commands

A specification placed in an environment that can generate interference steps that satisfy r or stutter must at
least be able to tolerate any finite number of r steps (zero or more) both before and after its execution. If the
precondition p holds initially, it must hold after any interference steps satisfying r – this leads to condition
(96) below. If the specification with post condition q is preceded by an interference step satisfying r, then a
step satisfying r followed by the step satisfying q should also satisfy q – this leads to condition (97), which
also assumes p holds initially. Condition (98) is similarly required to handle an interference step following
the specification.

Definition 7.1 (tolerate-interference) A specification
[
p, q

]
tolerates interference r provided

r V (p⇒ p′) (96)
p ∧ (r o

9 q) V q (97)
p ∧ (q o

9 r) V q (98)

Properties (96), (97) and (98) imply both the following.

r∗ V (p⇒ p′) (99)
p ∧ (r∗ o

9 q o
9 r∗) V q (100)

Law 7.2 (tolerate-interference) If a specification
[
p, q

]
tolerates interference r then[

p, q
]
v 〈r ∨ id〉∗ ;

[
p, q

]
; 〈r ∨ id〉∗
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Proof.[
p, q

]
v by Lemma 2.8 (consequence) as p ∧ (r∗ o

9 q o
9 r∗) V q[

p, r∗ o
9 q o

9 r∗
]

v by Lemma 2.9 (sequential) twice as r∗ V (p⇒ p′)[
r∗
]

;
[
p, q

]
;
[
r∗
]

v by Law 3.3 (refine-iterated-relation) twice as (r ∨ id)∗ = r∗

〈r ∨ id〉∗ ;
[
p, q

]
; 〈r ∨ id〉∗

2

Conditions (96), (97) and (98) are slight generalisations of conditions PR-ident, RQ-ident, and QR-
ident used by Coleman and Jones [CJ07, Sect. 3.3] in which r is assumed to be reflexive and transitive.
They are also closely related to the the concept of stability of p and q in the sense of [WDP10], although
that paper limits post conditions to single state predicates rather than relations.

If
[
p, q

]
can be implemented by a single atomic step, tolerating interference is sufficient to show over-

all feasibility but, in general, tolerating interference does not guarantee that
[
p, q

]
can be implemented

because the conditions do not address interference while
[
p, q

]
is executing, only before and after. Inter-

ference during
[
p, q

]
is handled by distributing the rely. We may have that

[
p, q

]
tolerates interference r

and [
p, q

]
v

[
p, q0

]
;
[
p1, q1

]
but, when these are placed in a rely context and the rely is distributed, one gets

(rely r •
[
p, q

]
) v (rely r •

[
p, q0

]
) ; (rely r •

[
p1, q1

]
)

but there is no guarantee that either
[
p, q0

]
or
[
p1, q1

]
tolerate interference r. Hence, as expected, a

feasible refinement in the sequential refinement calculus may no longer be feasible in the context of a rely
condition.

The following law corresponds to Jones-style sequential introduction [Jon83]; note that by Law 3.21
(guarantee-monotonic) both sides of the law may be enclosed in the same guarantee, which may then be
distributed to the two components on the right using Law 3.27 (distribute-guarantee) over sequential (61).

Law 7.3 (rely-sequential) For any preconditions p0 and p1, and any relations r, q0 and q1, such that
p0 ∧ ((q0 ∧ p′1) o

9 q1) V q,

(rely r •
[
p0, q

]
) v (rely r •

[
p0, q0 ∧ p′1

]
) ; (rely r •

[
p1, q1

]
)

Proof.

(rely r •
[
p0, q

]
)

v by Lemma 2.9 (sequential) and Law 4.16 (rely-monotonic)

(rely r •
[
p0, q0 ∧ p′1

]
;
[
p1, q1

]
)

v by Law 4.21 (distribute-rely-sequential)

(rely r •
[
p0, q0 ∧ p′1

]
) ; (rely r •

[
p1, q1

]
)

2

A specification command within a rely may be refined to an atomic step satisfying the specification
provided it can tolerate interference satisfying the rely before and after the atomic step.

Law 7.4 (rely-to-atomic) For predicate p, and relations r and q, such that
[
p, q

]
tolerates interference r,

(rely r •
[
p, q

]
) v 〈p, q〉 .
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Note that the precondition p in the specification
[
p, q

]
must hold in the initial state before any steps,

including environment steps, whereas the precondition p in 〈p, q〉 must hold in the state in which the
atomic step is executed, which may be after a number of environment steps.
Proof.

(rely r •
[
p, q

]
) v 〈p, q〉

≡ by Law 4.11 (rely-specification) as p V stops(〈p, q〉, r) by Lemma 2.23 (atomic-term)[
p, q

]
v 〈p, q〉 ‖ 〈r ∨ id〉∗

≡ by Lemma 4.3 (interference-atomic)[
p, q

]
v 〈r ∨ id〉∗ ; 〈p, q〉 ; 〈r ∨ id〉∗

W by Lemma 2.7 (make-atomic)[
p, q

]
v 〈r ∨ id〉∗ ;

[
p, q

]
; 〈r ∨ id〉∗

The last refinement holds by Law 7.2 (tolerate-interference) as
[
p, q

]
tolerates r. 2

If
[
p, q

]
tolerates interference id(X), where X contains the free variables of p and q, it is tempting to

use a non-atomic specification on the right in Law 7.4. However, recall that a specification without a rely
condition is treated as if the rely is the identity relation, i.e. only stuttering interference is allowed. In this
case a refinement of

[
p, q

]
is free to make use of variables outside X and these variables are not guaranteed

to be stable according to the rely condition id(X). However, if any refinement of
[
p, q

]
is restricted to use

only variables in X, it will be an implementation of the left side. To address this issue we introduce a new
language construct (uses X • c) that can be refined by a command d only if c v d and d exclusively uses
(reads or writes) variables in X.

The set of traces of (uses X • c) contains just those traces of c such that each atomic step is dependent on
only the variables in X. When c has been refined to code this requirement can be discharged syntactically.
The uses construct distributes through all language constructs in a straightforward manner, although the
usual care is required with local variable declarations. The rules are straightforward and hence they are not
spelled out here.8

Lemma 7.5 (uses-atomic-effective) For any predicate p, relation q, command c, and set of variables X,[
p, q

]
v (uses X • c) ‖ 〈id(X)〉∗ ⇔

[
p, q

]
v 〈id(X)〉∗ ; (uses X • c) ; 〈id(X)〉∗ .

Proof. The implication from left to right is straightforward. For the reverse implication, any trace of the
(uses X • c) must be a trace of c in which every atomic step does not modify or depend on variables outside
X. Hence in a trace of (uses X • c) ‖ 〈id(X)〉∗, all steps of 〈id(X)〉∗ may be moved to the left or right to
give an equivalent trace (in terms of the overall relation) consisting of a trace of c surrounded by traces of
〈id(X)〉∗ on either side. 2

Law 7.6 (rely-uses) For any predicate p, relation q, and set of variables X, such that
[
p, q

]
tolerates

interference id(X),

(rely id(X) •
[
p, q

]
) v (uses X •

[
p, q

]
) .

Proof. Noting that id(X) ∨ id = id(X) and p ≡ stops((uses X •
[
p, q

]
), id(X)), by Law 4.11 (rely-

specification) the theorem holds if,[
p, q

]
v (uses X •

[
p, q

]
) ‖ 〈id(X)〉∗

W by Lemma 7.5 (uses-atomic-effective)[
p, q

]
v 〈id(X)〉∗ ; (uses X •

[
p, q

]
) ; 〈id(X)〉∗

W by Law 7.2 (tolerate-interference) as
[
p, q

]
tolerates id(X)[

p, q
]
v (uses X •

[
p, q

]
)

8Care would be needed for a language which allowed aliasing of variable names because a uses clause involving a variable x
would implicitly include any aliases of x.
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which holds as c v (uses X • c) for any command c. 2
Because the “uses” construct is monotonic with respect to refinement, if

[
p, q

]
v c, then the refinement

(uses X •
[
p, q

]
) v (uses X • c) is also valid; that allows sequential refinement rules to be used to refine

(uses X •
[
p, q

]
) provided the final code respects the “uses” clause restriction.

Law 7.7 (assignment-rely-guarantee) For any variable x, expression e, set of variables X, predicate p
and relations g and q, such that

[
p, q

]
tolerates interference id(X), p V def (e) and p ∧ x′ = e ∧ id(x̄) V

q ∧ (g ∨ id) and vars(e) ∪ {x} ⊆ X

x : (guar g • (rely id(X) •
[
p, q

]
)) v x := e .

Proof. Many of the steps in the proof implicitly use Law 3.21 (guarantee-monotonic).

x : guar g • (rely id(X) •
[
p, q

]
)

v by Law 7.6 (rely-uses) as
[
p, q

]
tolerates id(X)

x : guar g • (uses X •
[
p, q

]
)

= as uses distributes through guarantees and Law 3.37 (guarantee-frame)

uses X • (guar g • x :
[
p, q

]
)

v by Law 3.38 (guarantee-assignment) as p V def (e) and p ∧ x′ = e ∧ id(x̄) V q ∧ (g ∨ id)

uses X • x := e

v as vars(e) ∪ {x} ⊆ X

x := e

The restriction on the variables of e and x ensures that every atomic step of x := e does not modify or
access variables outside X. 2

The VDM rules for rely-guarantee handle this issue via disjoint sets of read and write variables. The
union of the variables in VDM read and write sets corresponds to the set of “used” variables, and the
variables in the VDM write set correspond to the set of variables in the frame here.

8 Expressions and tests
Evaluation of an expression becomes nondeterministic if, during its evaluation, a concurrent process can
modify variables used within the expression. Properties of nondeterministic expression evaluation have
been investigated elsewhere [CJ07, Col08, WDP10, HBDJ13]; here we use the results of those investiga-
tions. Our treatment of nondeterministic expressions considers a common special case where there is at
most a single reference within an expression e to a single variable y that may be modified by the environ-
ment and all variables in e other than y are stable (unchanged by the environment) during the evaluation
of e. For example, the test x ≤ y satisfies the single reference property provided x is a local variable (and
hence may not be modified by the environment) and y is a global variable (which may be modified by the
environment). For expressions that do not satisfy this property, such as x ≤ y when both x and y are global
variables, the development typically requires the use of rely conditions that are specific to the application
and the refinement needs to use more primitive rules such as Lemma 3.32 (tests).

If an expression e satisfies the single reference property, the value of e is its value in the state in which
y is sampled. If the environment respects a rely condition r (which preserves all variables in e other than
y), the evaluation state is related to the initial state by r∗. This property is encapsulated by the following
law, which is similar in structure to Lemma 7.5 (uses-atomic-effective).

Lemma 8.1 (test-single-reference) Given any predicate p, relations q and r, and a boolean expression b,
if there is at most one variable y such that r V id(vars(b)−{y}), and if there is at most a single reference
to y within b,[

p, q
]
v [[b]] ‖ 〈r ∨ id〉∗ ⇔

[
p, q

]
v 〈r ∨ id〉∗ ; [[b]] ; 〈r ∨ id〉∗ .
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Proof. The implication from left to right is straightforward. For the reverse implication, any trace of
[[b]] consists of a single atomic step that references y together with other steps that are either stuttering
(calculation) steps or reference variables that are stable under r. For any trace of [[b]] ‖ 〈r ∨ id〉∗, the
stable steps of [[b]] occurring before (or after) the reference to y may all be shifted right or left over the
interference steps so that all the steps of [[b]] are together and the overall end-to-end relation between
the initial and final states is unchanged. Hence the whole trace of [[b]] is preceded and followed by the
interference steps and hence is a trace of 〈r ∨ id〉∗ ; [[b]] ; 〈r ∨ id〉∗. 2

For Law 7.7 (assignment-rely-guarantee) there is an assumption of no interference on e and x. Below
we develop a law that handles interference in the form of the single reference property.

Law 8.2 (assignment-single-reference) For any variable x, expression e, predicate p, and relations r and
q, such that

[
p, q

]
tolerates interference r, p V def (e), e satisfies the single-reference property and is

preserved by r, i.e. r V (e = e′), and p ∧ x′ = e ∧ id(x̄) V q,

(rely r •
[
p, q

]
) v x := e .

Proof. From the definition of assignment (15) one must show the following refinement in which the bound
variable v does not occur free in either e or x.

(rely r •
[
p, q

]
) v ⊔{v ∈ Val • [[e = v]] ; 〈x′ = v ∧ id(x̄)〉}

W by Law 2.11 (nondeterministic-choice) part (34) if for all v ∈ Val
(rely r •

[
p, q

]
) v [[e = v]] ; 〈x′ = v ∧ id(x̄)〉

≡ by Law 4.8 (rely-refinement)[
p, q

]
v ([[e = v]] ; 〈x′ = v ∧ id(x̄)〉) ‖ 〈r ∨ id〉∗ ∧

(stops(
[
p, q

]
, id) V stops([[e = v]] ; 〈x′ = v ∧ id(x̄)〉, r))

The termination condition holds because stops(
[
p, q

]
, id) ≡ p holds by Lemma 2.20 (precondition-term)

and Lemma 2.21 (specification-term), and p V def (e) and p is preserved by r and hence the test terminates;
an atomic step with no (i.e. true) precondition terminates. The refinement holds by Lemma 4.4 (distribute-
parallel) over sequential (67) if,[

p, q
]
v ([[e = v]] ‖ 〈r ∨ id〉∗) ; (〈x′ = v ∧ id(x̄)〉 ‖ 〈r ∨ id〉∗)

≡ by Lemma 8.1 (test-single-reference) and Lemma 4.3 (interference-atomic)[
p, q

]
v 〈r ∨ id〉∗ ; [[e = v]] ; 〈r ∨ id〉∗ ; 〈r ∨ id〉∗ ; 〈x′ = v ∧ id(x̄)〉 ; 〈r ∨ id〉∗

W by Law 7.2 (tolerate-interference) and Lemma 4.2 (repeated-interference)[
p, q

]
v [[e = v]] ; 〈r ∨ id〉∗ ; 〈x′ = v ∧ id(x̄)〉

W by Law 3.3 (refine-iterated-relation) and Lemma 2.7 (make-atomic)[
p, q

]
v [[e = v]] ;

[
r∗
]

;
[
x′ = v ∧ id(x̄)

]
W by Lemma 2.12 (introduce-test)[

p, q
]
v
[
def (e), e = v ∧ id

]
;
[
r∗
]

;
[
x′ = v ∧ id(x̄)

]
W as p V def (e) and Lemma 2.9 (sequential) twice

p ∧ (e = v ∧ id) o
9 r∗ o

9 (x′ = v ∧ id(x̄)) V q
W as r preserves p and e

p ∧ r∗ o
9 (p ∧ x′ = e ∧ id(x̄)) V q

W as p ∧ x′ = e ∧ id(x̄) V q
p ∧ r∗ o

9 q V q

which holds as
[
p, q

]
tolerates interference r. 2

9 Local variables
A local variable is immune from interference from its environment. Hence when refining the body of a
local variable block, the environment can not change the local variable. Furthermore the values of x in
environment steps of a local variable block have no effect on its behaviour.
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Lemma 9.1 (refine-var) For any variable x, and commands c and d,

c vid(x) d ⇒ (var x • c) v (var x • d) .

Law 9.2 (variable-rely) For any command c, relations z and r, variable x, and set of variables Y, where x
is not in Y,

(var x • x,Y : (rely r • cz)) = (var x • x,Y : (rely id(x) ∧ r • cz)) .

Proof. The refinement from right to left follows by Law 4.15 (weaken-rely). The refinement from left to
right holds as follows.

(var x • x,Y : (rely r • cz)) v (var x • x,Y : (rely id(x) ∧ r • cz))
W by Lemma 9.1 (refine-var)

x,Y : (rely r • cz) vid(x) x,Y : (rely id(x) ∧ r • cz)
W by Law 3.21 (guarantee-monotonic) applied to the frames

(rely r • cz) vid(x) (rely id(x) ∧ r • cz)

The latter follows by Law 4.13 (strengthen-rely-in-context). 2
In the following law the guarantee on the left applies to any global occurrence of x, which cannot be

modified by any implementation of c on the right because all its references to x are to the new local x9,
while the rely on the right refers to the local variable x, which because it is local to the process cannot be
subject to external interference.

Law 9.3 (variable-rely-guarantee) For a command c, relations z, g and r, a set of variables Y, and a
variable x that is not in Y and that does not occur free in any of g, r, z and c,

(guar g ∧ id(x) • Y : (rely r • cz)) v (var x • x,Y : (guar g • (rely id(x) ∧ r • cz))) .

Proof.

guar g ∧ id(x) • Y : (rely r • cz)
v by Lemma 3.39 (introduce-variable) as x not in Y and not used by c or r

guar g ∧ id(x) • (var x • x,Y : (rely r • cz))
= by Law 3.26 (nested-guarantees) and Law 3.40 (guarantee-variable)

guar g • (var x • x,Y : (rely r • cz))
= by Law 9.2 (variable-rely) as variable declaration ensures rely id(x) locally

guar g • (var x • x,Y : (rely id(x) ∧ r • cz))
= by Law 3.27 (distribute-guarantee) over variable declaration (63) as g is independent of x

var x • x,Y : (guar g • (rely id(x) ∧ r • cz))

The last step also uses Law 3.37 (guarantee-frame). 2

10 Control structures and rely commands
For control structures it is not enough to simply evaluate a test, but rather one would like to be able to
use its successful evaluation as an assumption within the body of a conditional or loop. In the presence of
interference this requires some care. For instance, if x is a shared variable that may be modified arbitrarily
by the environment and the test [[x ≤ 0]] succeeds, that does not allow one to assume that x ≤ 0 continues to
hold after its evaluation because the environment may increase x. However, the property is preserved if the
environment respects the rely condition x′ ≤ x. More generally, if [[b]] is a test then one may subsequently
assume a weaker condition b0, provided b0 is preserved by r, i.e., r V (b0 ⇒ b′0). This weakening of a
test may be useful for various purposes; in Section 11 it is used to allow an early exit from a loop. We now
consider this special case for introducing a test that satisfies the single reference property, before using it
to prove the laws for introducing conditionals and loops.

9This can be violated in a language that allows another variable to be an alias for the global variable x.
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Law 10.1 (rely-test) For any relation r, predicate p that is preserved by r, boolean expression b that has
the single reference property and predicate b0 such that p ∧ b V b0 and p ∧ r V (b0 ⇒ b′0) and
p V def (b),

(rely r •
[
p, r∗ ∧ b′0

]
) v [[b]] .

Proof. Note that due to the assumption that p is preserved by r and the assumption on b0,

p ∧ r∗ V (b0 ⇒ b′0) .

Hence
[
p, r∗ ∧ b′0

]
tolerates interference r. The termination condition, p V stops([[b]], r), holds because

p V def (b) and p is preserved by r. Hence by Law 4.11 (rely-specification) the theorem holds if,[
p, r∗ ∧ b′0

]
v [[b]] ‖ 〈r ∨ id〉∗

≡ by Lemma 8.1 (test-single-reference)[
p, r∗ ∧ b′0

]
v 〈r ∨ id〉∗ ; [[b]] ; 〈r ∨ id〉∗

W by Law 7.2 (tolerate-interference)[
p, r∗ ∧ b′0

]
v [[b]]

W by Lemma 2.8 (consequence) as p V def (b) and p ∧ b V b0 and id V r∗[
def (b), b ∧ id

]
v [[b]]

which holds by Lemma 2.12 (introduce-test). 2
A boolean expression b satisfying the single reference property may not be invariant under r but it may

imply a weaker predicate b0, that is invariant under r. Similarly, ¬ b may imply a weaker predicate b1 that
is invariant under r. Hence in a conditional command, if b evaluates to true, b may no longer hold at the
start of the “then” part, but b0 will hold. Similarly, if b evaluates to false, ¬ b may no longer hold at the
start of the “else” part, but b1 will. Note that p ∧ (b ∨ ¬ b) V b0 ∨ b1 that is, p V b0 ∨ b1, and that sets
of states satisfying b0 and b1 may overlap.

Law 10.2 (rely-conditional) For any predicate p, relations r and q, such that
[
p, q

]
tolerates interference

r, and boolean expressions b, b0 and b1 such that b satisfies the single-reference property and p ∧ b V b0
and p ∧ r V (b0 ⇒ b′0), and p ∧ ¬ b V b1 and p ∧ r V (b1 ⇒ b′1) and p V def (b),

(rely r •
[
p, q

]
) v if b then (rely r •

[
p ∧ b0, q

]
else (rely r •

[
p ∧ b1, q

]
) .

Proof.

rely r •
[
p, q

]
= as nondeterministic choice is idempotent

(rely r •
[
p, q

]
) u (rely r •

[
p, q

]
)

v by Law 7.3 (rely-sequential) twice as
[
p, q

]
tolerates interference r; hence p ∧ r∗ o

9 q V q

((rely r •
[
p, r∗ ∧ b′0

]
);(rely r •

[
p ∧ b0, q

]
)) u ((rely r •

[
p, r∗ ∧ b′1

]
);(rely r •

[
p ∧ b1, q

]
))

v by Law 10.1 (rely-test) twice using the assumptions on b0 and b1
([[b]] ; (rely r •

[
p ∧ b0, q

]
)) u ([[¬ b]] ; (rely r •

[
p ∧ b1, q

]
))

= by the definition of a conditional (13)

if b then (rely r •
[
p ∧ b0, q

]
)) else (rely r •

[
p ∧ b1, q

]
)

2

If the rely condition implies that all the variables used in the boolean expression b are stable, then b0
and b1 can be chosen to be b and ¬ b, respectively. Note that this law may be combined with Law 3.34
(guarantee-conditional) to handle refinement of a specification to a conditional in both guarantee and rely
contexts.

The proof of Law 10.6 (rely-loop) below depends on properties of an iteration of a specification with a
post condition satisfying a well-founded relation.
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Definition 10.3 (well-founded) For a predicate p, a relation w is well-founded on p if for any state σ0
satisfying p there does not exist an infinite sequence of states starting with σ0 in which every adjacent pair
of states in the sequence is related by w.

Iteration of a specification that establishes a well-founded relation terminates.

Law 10.4 (well-founded-termination) For any predicate p and relation w, such that w is well founded on
p, [

p, p′ ∧ w
]ω+

=
[
p, p′ ∧ w

]+
.

Proof.[
p, p′ ∧ w

]ω+
= by Lemma 2.16 (isolation)[

p, p′ ∧ w
]+ u [p, p′ ∧ w

]∞
= as w is well founded on p,

[
p, p′ ∧ w

]∞
=
[
p, false

][
p, p′ ∧ w

]+
2

A relation w+ may be established by finitely iterating a specification that establishes w+.

Law 10.5 (refine-to-iteration) For any precondition p and relation w,[
p, p′ ∧ w+

]
v

[
p, p′ ∧ w+

]+
.

Proof. By Lemma 2.14 (iteration-induction) for finite iteration (38)

d v c u (c ; d) ⇒ d v c+ . (101)

Applying this to the theorem requires one to show,[
p, p′ ∧ w+

]
v

[
p, p′ ∧ w+

]
u
[
p, p′ ∧ w+

]
;
[
p, p′ ∧ w+

]
which holds as w+ o

9 w+ V w+. 2
The law for a “while” loop treats the test in a similar manner to the test in a conditional. To guarantee

termination of a loop a well-founded relation w is required. The body of the loop must satisfy w and in
addition any interference step satisfying r must either satisfy the transitive closure w+ or not change any
variables in some set X, where w depends only on the variables in X and hence satisfies (id(X) o

9 w) ≡ w ≡
(w o

9 id(X)). The reflexive transitive closure w∗ would be too strong here because it would require that r
implies no variables at all are changed if r did not satisfy w+. We define w∗X =̂ w+ ∨ id(X) and note that
if w is well founded then so is w+.

Law 10.6 (rely-loop) For predicate p, relations r, w and q, and set of variables X, such that r V (p⇒ p′)
and w is well-founded on p and depends only(w,X) and p ∧ r V w∗X and boolean expressions b, b0 and
b1 such that b satisfies the single-reference property and p ∧ b V b0 and p ∧ r V (b0 ⇒ b′0), and
p ∧ ¬ b V b1 and p ∧ r V (b1 ⇒ b′1) and p V def (b),

(rely r •
[
p, p′ ∧ b′1 ∧ w∗X

]
) v while b do(rely r •

[
p ∧ b0, p′ ∧ w

]
) .

Proof. Note that w+ o
9 w∗X V w∗X because w o

9 id(X) ≡ w.

rely r •
[
p, p′ ∧ b′1 ∧ w∗X

]
v as nondeterministic choice is idempotent and Lemma 2.9 (sequential) as w+ o

9 w∗X V w∗X
rely r • (

[
p, p′ ∧ w+

]
;
[
p, p′ ∧ b′1 ∧ w∗X

]
u
[
p, p′ ∧ b′1 ∧ w∗X

]
)

v by Law 4.19 (distribute-rely-choice) and Law 4.21 (distribute-rely-sequential)
((rely r •

[
p, p′ ∧ w+

]
) ; (rely r •

[
p, p′ ∧ b′1 ∧ w∗X

]
)) u (rely r •

[
p, p′ ∧ b′1 ∧ w∗X

]
)

= distribute sequential over nondeterministic choice
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((rely r •
[
p, p′ ∧ w+

]
) u skip) ; (rely r •

[
p, p′ ∧ b′1 ∧ w∗X

]
)

v by Lemma 2.8 (consequence) as p ∧ r∗ V p′ ∧ w∗X
((rely r •

[
p, p′ ∧ w+

]
) u skip) ; (rely r •

[
p, r∗ ∧ b′1

]
)

v by Law 10.1 (rely-test) as p ∧ ¬ b V b1 and p ∧ r V (b1 ⇒ b′1) and p V def (b)
((rely r •

[
p, p′ ∧ w+

]
) u skip) ; [[¬ b]]

v by Law 10.5 (refine-to-iteration)
((rely r •

[
p, p′ ∧ w+

]+
) u skip) ; [[¬ b]]

= as w+ is well founded using Law 10.4 (well-founded-termination) but with w+ rather than w
((rely r •

[
p, p′ ∧ w+

]ω+
) u skip) ; [[¬ b]]

v by Law 4.23 (distribute-rely-iteration)
((rely r •

[
p, p′ ∧ w+

]
)ω+ u skip) ; [[¬ b]]

v by Lemma 2.13 (fold/unfold-iteration) and cω+ = cω ; c
(rely r •

[
p, p′ ∧ w+

]
)ω ; [[¬ b]]

v by Law 7.3 (rely-sequential) as w∗X o
9 w ≡ w+ because id(X) o

9 w ≡ w
((rely r •

[
p, p′ ∧ b′0 ∧ w∗X

]
) ; (rely r •

[
p ∧ b0, p′ ∧ w

]
))ω ; [[¬ b]]

v by Lemma 2.8 (consequence) as p ∧ r∗ V p′ ∧ w∗X
((rely r •

[
p, r∗ ∧ b′0

]
) ; (rely r •

[
p ∧ b0, p′ ∧ w

]
))ω ; [[¬ b]]

v by Law 10.1 (rely-test) as p ∧ b V b0 and p ∧ r V (b0 ⇒ b′0)
([[b]] ; (rely r •

[
p ∧ b0, p′ ∧ w

]
))ω ; [[¬ b]]

= by the definition of a loop (14)
while b do(rely r •

[
p ∧ b0, p′ ∧ w

]
)

2

If the rely condition implies that all the variables used in the boolean expression b are stable, then b0

and b1 can be chosen to be b and ¬ b, respectively. Also note that if r V id(X) then r V w∗X . This law
may be combined with Law 3.35 (guarantee-loop) to handle refinement of a specification to a loop in both
guarantee and rely contexts.

11 Extended example (concurrent version)

The task here is as described in Section 3.10; here, however, the focus is on refining to a concurrent algo-
rithm. This choice of example facilitates comparison with other publications: it is taken from Susan Ow-
icki’s thesis [Owi75] (and is also used by [Jon81] and [dR01] to contrast the compositional rely/guarantee
approach with the “Owicki/Gries” method).

11.1 Specification

The specification requires that findp sets the final value of variable t to the lowest index of array v such that
p(v(t)) for some predicate p; it assumes that neither v nor t is changed by the environment; the frame prefix
guarantees no changes to variables other than t are made.

findp =̂ t : rely id({v, t}) •
[
(t′ = len(v) + 1 ∨ satp(v, t′)) ∧ notp(v, dom(v), t′)

]
C

For a parallel implementation the essential change from Sect. 3.10 is the addition of a rely condition which
records the assumption that the key variables v and t experience no interference. The majority of the laws
developed above do not explicitly handle frames, however, a frame of x corresponds to a guarantee of id(x̄),
and hence the laws using guarantees can be used wherever needed.

11.2 Representing the result using two variables

The implementation developed in Section 3.10 uses one process with an index c and loops from one up-
wards until either p(v(c)) is satisfied or the index goes beyond len(v). Utilising concurrency, one can split
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the task into two10 processes and have each process consider a subset of the domain of v.
One danger here is to end up with a design that needs to “lock” the result variable t during updates and

there is a better approach followed here. One can avoid the difficulties of sharing t by having a separate
index for each of the concurrent processes and representing t by min(ot, et).11 A poor solution would then
use disjoint parallelism where the two processes ignore each other’s progress — our aim is an algorithm
where the processes “interfere” to achieve better performance. Two local variables ot and et are introduced
with the intention that on termination the minimum of ot and et will be the least index satisfying p.

v by Law 9.3 (variable-rely-guarantee) for ot and et and Lemma 2.8 (consequence)
var ot, et •

ot, et, t : rely id({v, t, ot, et}) •
[
(min(ot′, et′) = len(v) + 1 ∨ satp(v,min(ot′, et′))) ∧

notp(v, dom(v),min(ot′, et′)) ∧ t′ = min(ot′, et′)

]
C

Note that reducing a frame corresponds to strengthening the corresponding guarantee.

v by Law 7.3 (rely-sequential), Law 3.27 (distribute-guarantee) and Law 4.15 (weaken-rely)

ot, et : rely id({v, ot, et}) •
[
(min(ot′, et′) = len(v) + 1 ∨ satp(v,min(ot′, et′))) ∧

notp(v, dom(v),min(ot′, et′))

]
; C

t : rely id({t, ot, et}) •
[
t′ = min(ot, et)

]
The specification t : rely id({t, ot, et}) •

[
t′ = min(ot, et)

]
can be refined to t := min(ot, et) using Law 7.7

(assignment-rely-guarantee) because all the variables involved are stable in the rely condition. A guarantee
invariant can be employed in a manner similar to the use in Sect. 3.10; the invariant is established by setting
both ot and et to len(v) + 1 using Law 7.7 (assignment-rely-guarantee).

v by Law 6.4 (trade-rely-guarantee-invariant); Law 7.3 (rely-sequential)
ot := len(v) + 1 ; et := len(v) + 1;
guar-inv min(ot, et) = len(v) + 1 ∨ satp(v,min(ot, et)) •

ot, et : rely id({v, ot, et}) •
[
notp(v, dom(v),min(ot′, et′))

]
C

11.3 Concurrency
The motivation for the parallel algorithm comes from the observation that the set of indices to be searched,
dom(v), can be partitioned into the odd and even indices of v, namely evens(v) and odds(v), respectively,
which can be searched in parallel.

notp(v, odds(v),min(ot′, et′)) ∧ notp(v, evens(v),min(ot′, et′)) V notp(v, dom(v),min(ot′, et′))

The next step is the epitome of rely-guarantee refinement: splitting the specification command.

v by Law 6.3 (introduce-parallel-spec-weaken-rely)
ot, et : guar ot′ ≤ ot ∧ et′ = et • rely et′ ≤ et ∧ id({ot, v}) •[

notp(v, odds(v),min(ot′, et′))
]

C
‖
ot, et : guar et′ ≤ et ∧ ot′ = ot • rely ot′ ≤ ot ∧ id({et, v}) •[

notp(v, evens(v),min(ot′, et′))
]

The above is all in the context of the guarantee invariant given above. As with Sect. 3.10, the guarantee
invariant will eventually need to be discharged for each atomic step but it is only possible to do that when the
final code has been developed. However, during the development one needs to be aware of this requirement
to avoid making design decisions that result in code that is inconsistent with the guarantee invariant.

10Generalising to an arbitrary number of threads presents no conceptual difficulties; in common with the earlier papers using this
example, a two way split of the index values into even and odd is considered because this keeps formulae short.

11 [Jon07] observes that achieving rely and/or guarantee conditions is often linked with data reification, for instance, viewing
min(ot, et) as a representation of the abstract variable t; this point is not pursued here.
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11.4 Refining the branches to code
For the first branch of the parallel, the guarantee et′ = et is by Definition 3.36 (frame) equivalent to
removing et from the frame of the branch.

= guar ot′ ≤ ot •
ot : rely et′ ≤ et ∧ id({ot, v}) •

[
notp(v, odds(v),min(ot′, et′))

]
C

The body of this can be refined to sequential code in a manner similar to that used in Sect. 3.10, however,
because the specification refers to et′ it is subject to interference from the parallel (evens) process which
may update et. That interference is however bounded by the rely condition which assumes the parallel
process only ever decreases et.

v by Law 9.3 (variable-rely-guarantee) for oc
var oc •

oc, ot : rely et′ ≤ et ∧ id({oc, ot, v}) •
[
notp(v, odds(v),min(ot′, et′))

]
C

As in Sect. 3.10, a loop invariant is introduced as a (stronger) guarantee invariant

notp(v, odds(v), oc) ∧ bnd(oc, v)

where the bounding conditions on oc are not quite the same as earlier because oc only takes on odd values.

bnd(oc, v) =̂ 1 ≤ oc ≤ len(v) + 2

This invariant is established by setting oc to one. The guarantee invariant combined with the postcon-
dition oc′ ≥ min(ot′, et′) implies the postcondition of the above specification. The postcondition oc′ ≥
min(ot′, et′) uses “≥” rather than “=” because the parallel process may decrease et. The above can be
refined using Law 7.3 (rely-sequential), Law 6.4 (trade-rely-guarantee-invariant) and Law 7.7 (assignment-
rely-guarantee) as follows.

v oc := 1;
guar-inv notp(v, odds(v), oc) ∧ bnd(oc, v) •

oc, ot : rely et′ ≤ et ∧ id({oc, ot, v}) •
[
oc′ ≥ min(ot′, et′)

]
C

A while loop is introduced using Law 10.6 (rely-loop). Only the first conjunct of the loop guard oc < ot ∧
oc < et is preserved by the rely condition because et may be decreased. Hence the boolean expression b0

for this application of the law is oc < ot. However, the loop termination condition oc ≥ ot ∨ oc ≥ et is
preserved by the rely condition as decreasing et will not falsify it. Hence b1 is oc ≥ ot ∨ oc ≥ et, which
ensures oc ≥ min(ot, et) as required. For loop termination a well founded relation reducing ot−oc is used.

v by Law 10.6 (rely-loop)
while oc < ot ∧ oc < et do

oc, ot : rely et′ ≤ et ∧ id({oc, ot, v}) •
[
oc < ot, −1 ≤ ot′ − oc′ < ot − oc

]
C

The specification of the loop body only involves variables which are stable under interference.

v by Law 4.15 (weaken-rely)
oc, ot : rely id({oc, ot, v}) •

[
oc < ot, −1 ≤ ot′ − oc′ < ot − oc

]
C

At this stage one could use Law 7.6 (rely-uses) to introduce a “uses” clause and allow a sequential refine-
ment to be used; we follow an alternative path in order to illustrate other laws. The refinement is now
similar to that used in Sect. 3.10 but uses Law 10.2 (rely-conditional).

v if p(v(oc)) then oc, ot : rely id({oc, ot, v}) •
[
p(v(oc)) ∧ oc < ot, −1 ≤ ot′ − oc′ < ot − oc

]
else oc, ot : rely id({oc, ot, v}) •

[
¬ p(v(oc)) ∧ oc < ot, −1 ≤ ot′ − oc′ < ot − oc

]
Finally, Law 7.7 (assignment-rely-guarantee) can be applied to each of the branches. Each assignment
ensures the guarantee invariant (min(ot, et) = len(v) + 1 ∨ satp(v,min(ot, et)) ∧ notp(v, odds(v), oc) ∧
bnd(oc, v) is maintained.

v if p(v(oc)) then ot := oc else oc := oc + 2
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11.5 Collected code
The development of the “evens” branch of the parallel composition follows the same pattern as that of the
“odds” branch given above. The collected code follows.

var ot, et •
ot := len(v) + 1 ;
et := len(v) + 1 ;

var oc •
oc := 1 ;
while oc < ot ∧ oc < et do

if p(v(oc)) then ot := oc
else oc := oc + 2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
var ec •
ec := 2 ;
while ec < ot ∧ ec < et do

if p(v(ec)) then et := ec
else ec := ec + 2

 ;

t := min(ot, et)

The two branches (odds/evens) step through their respective subsets of the indices of v looking for the
first element that satisfies p. The efficiency gain over a sequential implementation comes from allowing
one of the processes to exit its loop early if the other has found an index i such that p(v(i)) that is lower
than the remaining indexes that the first process has yet to consider. The extra complications for reasoning
about this interprocess communication manifests itself particularly in the steps that introduce concurrency
and the while loop because the interference affects variables mentioned in the test of the loop.

This implementation is guaranteed to satisfy the original specification due to its use at every step of
the refinement laws. In many ways, this mirrors the development in [CJ07]. In particular, the use of
Law 6.3 (introduce-parallel-spec-weaken-rely) in Section 11.3 mirrors the main thrust of “traditional”
rely/guarantee thinking. What is novel in the new development is both the use of a guarantee invariant
and the fact that there are rules for every construct used. Moreover, because all of the results are derived
from a small number of basic lemmas, it is possible to add new styles of development without needing to
go back to the semantics.

12 Conclusions

12.1 Summary
The current paper shows how the sort of explicit reasoning about interference that underlies rely-guarantee
thinking can be recast into a refinement calculus mould. It transpires that there is a very good fit of ba-
sic objectives. This includes the simple observation that the refinement calculus also embraced relations
(rather than single state predicates) as the cornerstone of specifications; more important is the shared ac-
knowledgement that compositional reasoning is a necessity if a method is to scale up to large problems.

Rather than treat a specification of a program as a four-tuple of pre, rely, guarantee and post condition,
the approach taken here has been to consider initially guarantees and relies separately and, rather than just
apply them to a pre-post specification, allow them to be applied more generally to commands. The guaran-
tee command (guar g • c) constrains the behaviour of c so that only atomic program steps that respect g are
permitted. It generalises nicely to being applied to an arbitrary command. Refining a guarantee command
can be decomposed into refining the body of the command, distributing the guarantee into the components
of the refinement and then checking that each atomic step maintains the guarantee. Alternatively, in order
to ensure that the guarantee is not broken, one can interleave refinement steps with checking that the guar-
antee is preserved. The choice of strategies is up to the developer. The guarantee command also provides
a neat way to define a frame for a command in a manner suitable to handle concurrency. Motivation for
the guarantee construct was drawn from the invariant construct of [MV94b] and its behaviour in restricting
the possible atomic steps mirrors the restrictions introduced by the invariant command on possible states.
The guarantee construct is also related to a form of enforced property used in action system refinement in
which every action of a system is constrained to satisfy a relation [DH10]. The guarantee construct can be
thought of as providing a context in which its body is refined. [NH97] have investigated tool support for
contexts such as preconditions and the Morgan-Vickers invariant, and it is clear that the guarantee context
could be treated similarly in tool support.
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Invariants play an important role in reasoning about “while” loops because if a single iteration of a
loop maintains an invariant, any finite number of iterations of the loop will also maintain the invariant. In a
similar vein, if every atomic step of a computation maintains an invariant, the whole computation will also
maintain the invariant. This motivates the introduction of the guarantee invariant construct (Sect. 3.9). As
illustrated in the developments of findp as both sequential (Sect. 3.10) and concurrent (Sect. 11) programs,
one can make use of guarantee invariants to ensure that every atomic step of a computation maintains the
invariant, and hence the whole computation (including any loops within it) also maintains the invariant.
The negative is that one must ensure every atomic step maintains the invariant, although in many cases this
is trivial if no variables within the invariant are modified by the step. Guarantee invariants also play a role
in the context of concurrency because if every atomic step of a process c maintains an invariant, then a
concurrent process d can rely on the invariant being maintained by any interference generated by c.

The rely command (rely r •
[
p, q

]
) guarantees to implement

[
p, q

]
under interference bounded by the

relation r. The generalisation of a rely command to allow a body containing any arbitrary command c is
complicated by the need to make the rely context z of c explicit. The explicit context is required because
the termination set of (rely r • cz) in context z ∨ r is stops(c, z), which depends on the context z.

In order for (rely r • c) to be feasible, c must allow inference bounded by r and this usually requires c
to be in the form of a pre-post specification (or a composition of such specifications) rather than more basic
commands like assignments because the latter are too restrictive to be feasible when included in a rely.

The advantage of treating the guarantee and rely constructs separately is that we have been able to
develop sets of laws specific to each. This has the advantage of providing a better understanding of the role
of guarantees and relies. In particular the main defining property of the rely construct

{stops(c, z)}c vz (rely r • cz) ‖ 〈r ∨ id〉∗

given in Section 4.3 brings out the essence of the role of the rely condition.
Of course, the main point of introducing rely and guarantee constructs is to allow them to be used to

express the bounds on interference in parallel compositions. To this end, in Section 5, we have devel-
oped refinement laws for parallel composition that have been proved using the more fundamental laws for
guarantee and rely constructs along with basic laws about conjoined specifications/commands.

Our theory of rely and guarantee commands is built on a more basic theory of atomic steps. The
guarantee command is defined in terms of a strict conjunction with an iteration of atomic steps, each of
which satisfies the guarantee. The rely command again makes use of atomic steps but this time to represent
that the interference is bounded by the rely condition. This shows the basic relationship required for the
parallel composition law in which the atomic steps of one process must guarantee the assumed interference
of all other processes. All the refinement laws have been proven in terms of these more basic theories, and
from our experience it is clear that it is much easier to develop new refinement laws using the theory than
proving new laws directly from the semantics.

12.2 Related work
The idea of adding state assertions to imperative programs is crucial to the ability to decompose proofs
about such program texts. The most influential source of this idea is due to [Flo67] although it is interesting
to note that pioneers such as Turing and von Neumann recognised that something of the sort would aid
reasoning [Jon03a]. The key contribution of [Hoa69] was to change the viewpoint away from program
annotations to a system of judgements about “Hoare triples”. One crucial advantage of this viewpoint was
that it offered a notion of compositional development. This is not the place to attempt a complete history
but it is important to note that the refinement calculus [Bac81, Mor87, Mor88, Mor94, BvW98] brings
together the strands of development for sequential programs into an elegant calculus in which algebraic
properties are clear. Other key developments include the idea of data refinement (or reification) and the
importance of data type invariants.

The refinement calculus presented in this paper provides a method for deriving correct implementa-
tions from specifications via a sequence of intermediate steps, as opposed to verifying an implementation
against a specification. The latter style is exemplified by Jones’ quintuples [Jon81, Jon83], as discussed in
Sect. 2.2. The derivational style provides a formal way of structuring large proofs into intuitive chunks and
incrementally introducing the implementation control structure. The inference-rule style is more suited to
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monolithic verifications, although it is often the case that applications of the method to non-trivial examples
are presented in an incremental style (e.g., [CJ07]).

The thesis by [Din00] and the more accessible [Din02] offer an approach towards a refinement calculus
view of rely/guarantee reasoning. The main difference is that Dingel does not treat rely and guarantees as
separate commands, and instead each refinement step includes a four-tuple of pre, rely, guarantee and post
conditions. Our command-based approach is more flexible in both writing specifications and structuring
proofs. Furthermore, Dingel’s writings do not follow Jones’ original relational view because, for example,
he uses post conditions that are sets of predicates of single states — on this point he follows [Sti86]. To
the current authors, the key reason for a refinement calculus view is to get away from any fixed packaging
of the assertions that comprise a specification and to view guarantee/rely commands in a way that opens
up a relational view of the constructs. Given a basic set of commands and their basic laws, it is possible
to derive more specific laws that often show nice algebraic properties. Dingel’s semantics, like that of
[Bro07], defines semantic equivalence modulo finite stuttering (program steps that don’t change the state)
and mumbling (two program steps may be merged into a single step with the same overall effect). Because
the set of traces of a specification command

[
q
]

is closed under finite stuttering and mumbling12 and we
are concerned with refinement from a specification to program code, rather than program equivalence, our
refinement relation does not need to be complicated by issues of stuttering and mumbling equivalence.

Rely-guarantee thinking is suited to dealing with concurrency where interference (or co-operation, as
in the example in Sect. 11) between processes is unavoidable. Separation Logic [Rey02, IO01, OYR09] is
especially suited to cases where for the most part interference is avoided, for instance where two programs
(sequential or concurrent) operate on separate parts of a shared heap. The combination of the two areas of
research is a current topic; for instance, [VP07] provide inference rules for rely-guarantee style quintuples
where assertions from Separation Logic may be used inside the relations. SAGL [FFS07] makes a similar
attempt to bring together separation logic with rely/guarantee methods. [TW11] also make use of separation
logic combined with ideas from the rely-guarantee approach to reason about concurrent objects. Operations
on local state are not affected by interference and can be considered atomic; that has similarities with the
uses construct here, which allows sequential refinement laws to be used. Current attempts to find a deeper
way of combining the approaches include ideas by Matt Parkinson (private communication) and [Jon12,
JHC14]. It is not appropriate to explore further this distinct avenue of research in the current paper.

A large body of work has been developed for verifying concurrent programs based on using linearizabil-
ity [HW90] as the correctness criteria: in inference rule-style, see for instance [DSW11], and in derivation
(refinement calculus) style see [GC09]. Specifications of operations in the context of linearizability are
typically a single atomic operation, which is successively decomposed into an implementation which is not
atomic but appears so to an observer. For instance, a linearisable “push” of an element onto a stack must
take place at some point between the invocation of the operation and its completion, although by the time of
completion that element may already have been “popped” by some other process. This type of specification
is in contrast to our own, in which a relation between the pre (invocation-time) and post (completion-time)
states must hold, regardless of interference from other processes. As such our specifications consist of the
set of all possible traces, formed from single atomic steps or otherwise, that satisfy the relation when taken
as a whole. Hence we do not “split” [JP08] atomicity during refinement, but rather successively direct the
development towards an implementation that generates correct traces.

12.3 Further work

In the sequential refinement calculus because one is only concerned with the end-to-end behaviour from
the initial state to the final state, any program can be reduced to an equivalent specification statement.
However for concurrent programs the intermediate reactive behaviour of a process can be as important as
its overall effect. The rely-guarantee approach augments pre-post specifications with rely and guarantee
relations which allow a pre-rely-guarantee-post specification to express both the assumption it makes of
steps by its environment and the guarantee about the steps its takes. As rely (guarantee) conditions abstract

12A finite trace t0 of
[
q
]

satisfies q (end-to-end) and hence any trace t1 that is equivalent to t0 modulo finite stuttering also satisfies
q and is therefore a trace of

[
q
]
. If a trace t0 satisfying q contains two consecutive program steps π(σ1, σ2) and π(σ2, σ3) then the

trace t0 with those two steps replaced with a single step π(σ1, σ3) also satisfies q, and hence is a trace of
[
q
]
.
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all interference (program) steps, pre-rely-guarantee-post specifications are not rich enough to be able to
express precisely the behaviour of all processes.13 One challenge is to increase the expressive power of
rely and guarantee conditions to allow a more precise specification of a greater range of processes, while
retaining the elegance of the rely-guarantee approach.

As should be clear from the preceding material, the reformulation of rely/guarantee thinking in a re-
finement calculus mould has suggested new notation and laws. Nice examples are the representation of the
frame of a command by a guarantee, and the novel test command used both for guards in control structures
and to define the assignment command.

There is also a clear case for reconsidering data reification in the new framework. The concept of
“possible values” was introduced by [JP11] and linked to non-deterministic states by [HBDJ13] — re-
examining the idea in the new framework might also be enlightening.

Acknowledgements. The authors would like to thank our colleagues Joey Coleman, Larissa Meinicke,
Jeff Sanders, Gerhard Schellhorn and (anonymous) referees for feedback on our earlier work.

APPENDIX

A A rely-able semantics

A.1 Basic definitions
Memory is represented by a state that is either undefined (⊥) or maps variables to their values, which is
represented formally by the type Σ =̂ ⊥ | (Var → Val). We use σ, σ′, σi for elements of Σ. A sequence t
of type T , t ∈ Tω , may be either finite (t ∈ T∗) or infinite (t ∈ T∞). The domain of a finite sequence of
length n is the set of natural numbers 0..n− 1, and the domain of an infinite sequence t is the entire set of
natural numbers (dom(t) = N).

A.2 Interpretation of programs
A semantics for sequential programs is classically given in terms of a binary relation between the pre-state
and post-state (perhaps augmented by a termination set as in VDM [Jon87]). However to handle con-
currency and the possibility of interference, we need to divide a program’s behaviour – its trace– into its
atomic steps. Moreover, to conveniently represent the behaviour of a program c in the presence of interfer-
ence from the environment, we include the steps of the environment within the traces of c, distinguishing
program steps, π(σ, σ′), from environment steps, ε(σ, σ′), where each step has an associated pair of states,
(σ, σ′), representing the pre- and post-states of the step [dBHdR99].14 In addition, we distinguish termi-
nation of a command in state σ by the label “X(σ)”. A step α ∈ L may adorn a transition arrow, and its
syntax follows.

α ::= π(σ, σ′) | ε(σ, σ′) | X(σ) (A.102)

Recall a trace is a consistent (20) sequence of steps. For the semantics the additional command nil is used
to indicate a terminated process; nil has no transitions. An example execution of a command c is of the
form

c
ε(σ0,σ1)−−−−−→ c1

π(σ1,σ2)−−−−−→ c2
ε(σ2,σ3)−−−−−→ c3

ε(σ3,σ4)−−−−−→ c4
π(σ4,σ5)−−−−−→ c5

ε(σ5,σ6)−−−−−→ c6
X(σ6)−−−−→ nil

where c, c1, . . . is the successive evolution of c as it is executed, and each transition represents an atomic
step from state σi to state σi+1. The trace generated by the above execution is the sequence

ε(σ0, σ1), π(σ1, σ2), ε(σ2, σ3), ε(σ3, σ4), π(σ4, σ5), ε(σ5, σ6),X(σ6) .

13Technically this can be overcome by adding some form of program counter to each process and labels to each step of the program
but such an approach destroys the elegance of the rely/guarantee abstractions.

14 The use of explicit environment steps goes back to Peter Aczel’s use of direct (program) and interference (environment) steps in
traces to give a semantics for rely-guarantee inference rules [Acz83].
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A trace representing a terminated behaviour always ends with a label of the form X(σ), where σ matches
the final state of the preceding trace (if it is non-empty). Infinite traces do not contain a X(σ) step.

An operational semantics defining the above transition relation via a set of inference rules is used
below to define the behaviour of the basic commands in the language; the transition relation is the smallest
relation induced by those rules. The style of placing pairs of states on the transition arrows follows that of
Modular Structural Operational Semantics (MSOS) [Mos04a, Mos04b], which has some advantages over
the seminal Plotkin-style operational semantics [Plo04] in which the states form part of the configuration
rather than the label: 〈c0, σ0〉 −→ 〈c1, σ1〉. Of particular importance for the semantics presented here is that
by collecting the steps in a trace we are able to more succinctly describe properties of the traces, including
interference.

The single-step transition relation induces a (multi-step) trace relation in the obvious way. For a finite

trace of steps, t, the relation is written c t=⇒ c′ and if t is infinite, it is written c t=⇒∞. The meaning of
a command c, [[c]], is the collection of all (finite and infinite) complete traces it may generate that either
terminate or are non-terminating.

[[c]] =̂ {t ∈ Trace | c t=⇒ nil ∨ c t=⇒∞}

We start with the semantics of expressions (Appendix A.3) and commands that can be described by a
small-step semantics (Appendix A.4). We then move on to commands that require a big-step semantics
(A.5). We prefer the operational semantics style to direct denotational semantics as the former is generally
held to be more readable [Jon03b], although the latter is certainly possible (as demonstrated by [Bro07]).

A.3 Operational semantics of expression evaluation
The evaluation of a variable x to a value v generates a single program step (label) which is allowed only
when x has the value v in state σ; the step does not change the value of any variables.

σ(x) = v v ∈ Val

x
π(σ,σ)−−−−→ v

To evaluate a binary expression e1 ⊕ e2 the operands may be evaluated to values in any order.15 The
final value is found by applying the underlying mathematical operator to the values, which we write
eval(⊕, (v1, v2)). The function eval may return the undefined value ⊥ if the operator is not defined for
those values (e.g., division by zero). Unary operators are evaluated similarly.

e1
α−→ e′1

e1 ⊕ e2
α−→ e′1 ⊕ e2

e2
α−→ e′2

e1 ⊕ e2
α−→ e1 ⊕ e′2

v1, v2 ∈ Val

v1 ⊕ v2
π(σ,σ)−−−−→ eval(⊕, (v1, v2))

e α−→ e′

	e α−→ 	e′
v ∈ Val

	v
π(σ,σ)−−−−→ eval(	, v)

In addition, the evaluation of an expression may be interrupted by an environment step at any time, as
given by the following rule.

e
ε(σ,σ′)−−−−→ e (A.103)

The interference step does not change the expression e, but may change the state, possibly affecting sub-
sequent evaluations of variables. Note that this rule allows any finite or infinite interference in the trace
generated by the evaluation.

15Operators like “conditional and” (which only evaluates its second operand if its first operand evaluates to true) are not covered
by these rules and would need separate specific rules.
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A.4 Operational semantics of primitive code commands

Termination of a command in state σ is indicated by the transition c
X(σ)−−−→ nil, where nil represents the

terminated command that can perform no steps whatsoever. That a command c aborts in state σ is indicated
by the predicate cσ×. A precondition {p} may terminate immediately in any state σ in which p holds, and
abort in any state in which it does not.

σ ∈ p

{p} X(σ)−−−→ nil

σ 6∈ p
{p}σ×

(A.104)

The “worst” command is abort, defined as {false}, and the command that terminates immediately, skip, is
defined as {true}. A command that has aborted in state σ may take any further finite or infinite behaviour,
or terminate immediately.

cσ×

c
π(σ,σ′)−−−−→ abort

cσ×

c
ε(σ,σ′)−−−−→ abort

cσ×

c
X(σ)−−−→ nil

(A.105)

For a single state predicate p and relation q, the atomic step 〈p, q〉 can do a q program step if p holds
or can abort if p does not hold. The execution of the step may be preceded by any number of environment
steps.

σ ∈ p (σ, σ′) ∈ q

〈p, q〉 π(σ,σ′)−−−−→ skip
〈p, q〉 ε(σ,σ′)−−−−→ 〈p, q〉

σ 6∈ p
〈p, q〉σ×

(A.106)

Note that 〈true, false〉 has no program transitions: all its traces are infinite in length and contain only
environment steps.

Nondeterministic choice between a set of commands C, ( ⊔C), can behave as any command within C.
If any c ∈ C can terminate, i.e. c′ is nil, the choice can terminate and if any c ∈ C can abort, the choice
can abort.

c ∈ C c α−→ c′

( ⊔C)
α−→ c′

(A.107)

A sequential composition, (c1 ; c2), is defined to execute c1 until it terminates, after which c2 may begin,
provided c2 begins execution in the state in which c1 terminated.

c1
α−→ c′1 (∀σ • α 6= X(σ))

c1 ; c2
α−→ c′1 ; c2

(c1)σ×
(c1 ; c2)σ×

(A.108)

c1
X(σ)−−−→ nil c2

α−→ c′2 pre(α) = σ

c1 ; c2
α−→ c′2

(A.109)

Note that sequential composition implicitly fails to terminate if c1 fails to terminate, i.e., c2 is never exe-
cuted.

A strict conjunction of two commands c e d behaves in a manner consistent with both c and d, termi-
nating when both may terminate. If either can abort, so can their conjunction.

c1
α−→ c′1 c2

α−→ c′2 (∀σ • α 6= X(σ))

c1 e c2
α−→ c′1 e c′2

c1
X(σ)−−−→ nil c2

X(σ)−−−→ nil

c1 e c2
X(σ)−−−→ nil

(A.110)

(c1)σ×
(c1 e c2)σ×

(c2)σ×
(c1 e c2)σ×

(A.111)
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A parallel composition c ‖ d matches a program step of c with an environment step of d (or vice versa)
to give a program step of the composition. It can also match environment steps of both commands to give
an environment step of their composition. If either command can abort on a step matched by the other, the
parallel composition can abort. To define parallel composition we define a relation match between a pair
of steps (representing the transitions of the two components) and a single step (representing the transition
of the parallel composition) as follows.

(π(σ, σ′), ε(σ, σ′)) match π(σ, σ′) (A.112)
(ε(σ, σ′), π(σ, σ′)) match π(σ, σ′) (A.113)
(ε(σ, σ′), ε(σ, σ′)) match ε(σ, σ′) (A.114)

The rule for the normal case allows any combinations that match while if either of the commands can
abort on matching transitions, the whole can. When either command terminates, it is removed from the
composition (note that Rule (A.116) also allows synchronised termination).

c1
α1−−→ c′1 c2

α2−−→ c′2 (α1, α2) match α

(c1 ‖ c2)
α−→ (c′1 ‖ c′2)

(A.115)

c1
X(σ)−−−→ nil c2

α−→ c′2 pre(α) = σ

(c1 ‖ c2)
α−→ c′2

c2
X(σ)−−−→ nil c1

α−→ c′1 pre(α) = σ

(c1 ‖ c2)
α−→ c′1

(A.116)

(c1)σ×
(c1 ‖ c2)σ×

(c2)σ×
(c1 ‖ c2)σ×

(A.117)

A local state command (state y 7→ v • c) limits the scope of y. Modifications to y are kept locally
(and have no effect on any (global) declarations of y) and the environment is explicitly prevented from
modifying the local variable y (but may modify other non-local variables called y). The state σ[y 7→ v] is
the state σ with the value at y updated to v.

c
π(σ[y7→v],σ′[y7→v′])−−−−−−−−−−−−→ c′ σ′(y) = σ(y)

(state y 7→ v • c)
π(σ,σ′)−−−−−→ (state y 7→ v′ • c′)

(A.118)

c
ε(σ[y7→v],σ′[y7→v])−−−−−−−−−−−→ c′

(state y 7→ v • c)
ε(σ,σ′)−−−−→ (state y 7→ v • c′)

(A.119)

c
X(σ[y7→v])−−−−−−→ nil

(state y 7→ v • c)
X(σ)−−−→ nil

cσ[y7→v]×
(state y 7→ v • c)σ×

(A.120)

Rule (A.118) states that if c transitions with a program step in which the global pre-post values for y
are overwritten by the local values, then the new post-state local value for y becomes v′, but to an external
observer the global value of y is unchanged. The latter is enforced by the premise of the rule. Rule (A.119)
states that environment steps within the scope of the declaration of y may not modify y, however environ-
ment steps outside the scope of the local y may modify some global y. Thus, the local declaration of y
protects it from interference. Rule (A.120) states that a local state may terminate in any state that is consis-
tent with the local value. For instance, (state y 7→ 4 •

[
y′ = 4

]
): this can terminate immediately, but this

must not be allowed if the specification is y′ = 5, for instance.
A program step π(σ, σ′) of (uses X • c) is permitted if and only if c may take essentially the same

program step for every pair of states that is equal to (σ, σ′) in X. Let σ X
= σ′ abbreviate (σ, σ′) ∈ id(X),

and similarly lifted to pairs of states.

c
π(σ,σ′)−−−−−→ c′ σ

X
= σ′ ∀σ1, σ′1 • (σ1, σ

′
1)

X
= (σ, σ′) ∧ σ1

X
= σ′1 ⇒ c

π(σ1,σ′
1)−−−−−→ c′

(uses X • c)
π(σ,σ′)−−−−−→ (uses X • c′)

(A.121)
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c
ε(σ,σ′)−−−−→ c′

(uses X • c)
ε(σ,σ′)−−−−→ (uses X • c′)

(A.122)

c
X(σ)−−−→ nil

(uses X • c)
X(σ)−−−→ nil

cσ×
(uses X • c)σ×

(A.123)

Environment steps for the body of a uses command are simply promoted, and if the body of a “uses”
command can terminate or abort, the “uses” command terminates or aborts, respectively.

A.5 Semantics of tests and specifications

We now turn our attention to commands that cannot be adequately described using a small-step semantics.
The test command [[b]] evaluates its boolean expression b. Only terminating traces that evaluate to true will
survive; evaluations to false are eliminated. If the evaluation of b results in undefined, the test aborts, and a
non-terminating expression evaluation results in non-terminated test. Variations in the evaluation strategy
used in an implementation may lead to evaluation traces that differ only in stuttering steps. For example,
stuttering steps allow equivalences like [[a ∧ b]] = [[a]] ‖ [[b]] and refinements like [[b ∧ b]] v [[b]].
The semantics of the test command allows traces that are equivalent to the trace defined by the expression
evaluation modulo finite stuttering. The notation t0

st
= t1 states that t0 and t1 are identical modulo finite

stuttering of program steps.

b t0=⇒ true t0
st
= t1

[[b]]
t1=⇒ skip

b t0=⇒ ⊥ t0
st
= t1

[[b]]
t1=⇒ abort

b t0=⇒∞ t0
st
= t1

[[b]]
t1=⇒∞

(A.124)

If b t=⇒ false, that trace is not promoted to a trace of [[b]]. The exclusion of evaluations to false is required
for the definition of the conditional command, in which there is a nondeterministic choice between a branch
with test [[b]] and another with [[¬b]]. Whichever branch evaluates to false must “lose”, which is modelled
by a lack of a trace.

A specification command
[
q
]

can perform any finite sequence of program steps that end-to-end satisfies
q, provided all environment steps are stuttering steps. However, if the environment changes the state, then[
q
]

aborts. Recall from (23) that env(t) ⊆ id holds if every environment step in t satisfies id and that pre(t)
abbreviates pre(t(0)) and post(t) abbreviates post(t(#t − 1)).

env(t) ⊆ id (pre(t), post(t)) ∈ q t ∈ L∗ ∩ Complete[
q
] t

=⇒ nil
(A.125)

env(t) 6⊆ id t ∈ L∗ − Complete[
q
] t

=⇒ abort
(A.126)

env(t) ⊆ id interrupted(t) t ∈ L∞ ∩ Trace[
q
] t=⇒∞

(A.127)

The premises of the first rule require the first and final states in t to satisfy q. Any behaviour may occur in
between as long as q is established on termination. This includes the possibility of immediate termination –
the trace X(σ), if (σ, σ) ∈ q. The final two rules state that a specification may fail to meet its postcondition
if the environment changes any variable or if the environment unfairly interrupts execution. The latter case
uses the predicate interrupted(t), which holds if t ends with a sequence of environment steps.

interrupted(t) =̂ (∃ i ∈ dom(t) • (∀ j ∈ dom(t) • i < j⇒ (∃σ, σ′ • t(j) = ε(σ, σ′))))

Because the rule for a specification command only gives the full traces for the command we introduce
the command (c after t) to stand for the remaining execution of command c after it has executed trace t. A
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trace with a single step α is equivalent to a transition on α.

c1
t1
at2====⇒ c2

c1
t1=⇒ (c1 after t1) (c1 after t1)

t2=⇒ c2

c1
[α]

==⇒ c2

c1
α−→ c2

(A.128)

A rule similar to the first is required for infinite traces but with c2 replaced by∞.

B Proofs of lemmas
In this section we prove soundness of some of the lemmas in the body of the paper.

Proof technique
Refinement is defined as reverse trace inclusion (Definition 2.2). It has elements of both sequential program
refinement and notions such as (bi)simulation from the process algebra literature [Mil89]. For the majority

of the proofs of laws of the form c v d we enumerate all possible transitions d α−→ d′, check that there

exists a corresponding transition c α−→ c′, requiring furthermore that d′ is a refinement of c′.

Theorem B.1 The refinement c vr d holds if, for all α and d′ such that d α−→ d′ and if α is of the form
ε(σ, σ′) then (σ, σ′) ∈ r ∨ id, there exists a c′ such that both

c α−→ c′ (B.129)
c′ vr d′ (B.130)

Proof. By induction, under the above conditions, any complete trace of d generated by the small-step
operational semantics must be a trace of c. This is similar to the definition of simulation given by [Mil89].
2

Proofs using Theorem B.1 proceed by first discharging B.129 by case-analysis on the possible transi-
tions of d. Condition B.130 is usually trivial because the basic laws are defined so that c and d (and hence
c′ and d′) are structurally similar. Theorem B.1 is applied when c and d are commands defined using the
small-step operational semantics rules; for the remaining commands, defined using big-step operational se-
mantics rules, in particular the specification command

[
q
]
, we instead justify refinements against complete

traces. For convenience, when proving a refinement of the form c v d, we refer to c as the source and d as
the target, and use the same terms when proving an equality c = d.

Lemma B.2 (precondition-traces) For any predicate p and command c,

[[{p}c]] = {t ∈ Trace | pre(t) ∈ p⇒ t ∈ [[c]]} (B.131)
{p}c vr d ⇔ (∀ t ∈ [[d]]r • pre(t) ∈ p⇒ t ∈ [[c]]) (B.132)

Proof. By Rules (A.104) and (A.105), if pre(t) 6∈ p then {p} may take any behaviour in state pre(t), hence
t ∈ [[{p}c]]. Otherwise, if pre(t) ∈ p, then t ∈ [[{p}c]] if and only if t ∈ [[c]]. Hence (B.131) holds. Property
(B.132) follows directly from (B.131) and Definition 2.1 (refinement-in-context). 2

Lemma 2.5 (parallel-precondition) {p}(c ‖ d) = ({p}c) ‖ ({p}d) .
Proof. The proof is based on Lemma B.2 (precondition-traces). Consider a trace t of {p}(c ‖ d). If
pre(t) ∈ p then t is a trace of c ‖ d, and hence there exist traces tc and td of c and d respectively, which
match in a parallel combination to give t and furthermore both pre(tc) ∈ p and pre(td) ∈ p. Hence tc is a
trace of {p}c that matches td which is a trace of {p}d and it follows that t is a trace of ({p}c) ‖ ({p}d). If
pre(t) 6∈ p, t is a trace of both {p}(c ‖ d) and {p}c. Let t1 be the trace t with all program steps replaced
with the equivalent environment steps. Because pre(t1) 6∈ p, t1 is a trace of {p}d and hence t is a trace of
the right side. 2

Lemma 2.6 (refine-specification) (
[
p, q

]
v c) ⇔ (

[
p, q

]
vid c) .
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Proof. By Lemma B.2 (precondition-traces) {p}
[
q
]
v c if and only if

∀ t ∈ [[c]] • pre(t) ∈ p⇒ t ∈ [[
[
q
]
]]

If t ∈ [[c]] and env(t) 6⊆ id then by Rule (A.125), t ∈ [[
[
q
]
]]. The remaining case is when env(t) ⊆ id and

requires

∀ t ∈ [[c]]id • pre(t) ∈ p⇒ t ∈ [[
[
q
]
]]

which by Lemma B.2 (precondition-traces) is equivalent to {p}
[
q
]
vid c. 2

Lemma 2.7 (make-atomic)
[
p, q

]
v 〈p, q〉 .

Proof. By Lemma 2.6 (refine-specification) it is sufficient to show {p}
[
q
]
vid 〈p, q〉 and hence by Lemma

B.2 (precondition-traces) that

∀ t ∈ [[〈p, q〉]]id • pre(t) ∈ p⇒ t ∈ [[
[
q
]
]]

By Rule (A.106) any complete trace t ∈ [[〈p, q〉]]id has one of the following forms: a) a finite number of
id environment steps containing a single program step (satisfying p and q), followed by termination; b) a
finite number of id environment steps, followed by a single program step that does not satisfy p, followed
by any trace; or c) an infinite number of id environment steps.

In case a), because all environment steps of t satisfy id, (pre(t), post(t)) ∈ q holds (due to the single
program step) and hence t is a finite trace of

[
q
]
.

In case b), because every initial environment step satisfies id, if pre(t) ∈ p holds then p must also hold
for the atomic step, and hence no traces t in case b) satisfy pre(t) ∈ p.

Case c) covers interrupted traces which are in [[
[
q
]
]]. 2

Lemma 2.8 (consequence) Assuming p0 V p1, and p0 ∧ q1 V q0,

〈p0, q0〉 v 〈p1, q1〉[
p0, q0

]
v

[
p1, q1

]
Proof. Consider a trace t ∈ [[〈p1, q1〉]]. By Rule (A.106), t may start with any sequence of environment steps
followed by either a program step satisfying q1 if p1 holds or it may abort if p1 does not hold. Similarly,
a trace of 〈p0, q0〉 may do any sequence of environment steps. If after the environment steps p0 holds, by
assumption so so p1 and as p0 ∧ q1 V q0 any step satisfying q1 also satisfies q0 and hence the step can be
taken by 〈p0, q0〉. If p0 does not hold, 〈p0, q0〉 aborts allowing any behaviour for 〈p1, q1〉.

For specifications we need to show
[
p0, q0

]
v
[
p1, q1

]
. By Lemma 2.6 (refine-specification) and

Lemma 2.4 (precondition) part (29) as p0 V p1 it is sufficient to show {p0}
[
q0

]
vid

[
q1
]

and hence by
Lemma B.2 (precondition-traces) to show that

∀ t ∈ [[
[
q1
]
]]id • pre(t) ∈ p0 ⇒ t ∈ [[

[
q0
]
]] . (B.133)

By Rule (A.125), t ∈ [[
[
q1

]
]]id if and only if interrupted(t) or t is finite and (pre(t), post(t)) ∈ q1. If

interrupted(t) then by Rule (A.125) we also have t ∈ [[
[
q0
]
]], otherwise if pre(t) ∈ p0 then t ∈ [[

[
q0
]
]]

because p0 ∧ q1 V q0. 2

Lemma 2.9 (sequential) Assume p0 ∧ ((q0 ∧ p′1) o
9 q1) V q,[

p0, q
]
v

[
p0, q0 ∧ p′1

]
;
[
p1, q1

]
.

Proof. By Lemma 2.4 (precondition) part (29) and Lemma 2.6 (refine-specification) it is sufficient to show
{p0}

[
q
]
vid

[
q0 ∧ p′1

]
;
[
p1, q1

]
and hence by Lemma B.2 (precondition-traces),

∀ t ∈ [[
[
q0 ∧ p′1

]
;
[
p1, q1

]
]]id • pre(t) ∈ p0 ⇒ t ∈ [[

[
q
]
]] .

A trace t of
[
q0 ∧ p′1

]
;
[
p1, q1

]
in environment id is either an interrupted trace of

[
q0 ∧ p′1

]
or a finite trace

t0 of
[
q0 ∧ p′1

]
followed by a trace t1 of

[
p1, q1

]
. If interrupted(t) then t is also a trace of

[
q
]
, otherwise
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t = t0 a t1. Because t0 is a finite trace of
[
q0 ∧ p′1

]
, it follows that (pre(t0), post(t0)) ∈ (q0 ∧ p′1) and

hence post(t0) ∈ p1. Because t is consistent (20), pre(t1) ∈ p1 and hence as t1 is a trace of
[
q1

]
, either

interrupted(t1) or t1 is finite and (pre(t1), post(t1)) ∈ q1. If interrupted(t1), then interrupted(t) and hence
t is a trace of

[
q
]
, otherwise as t = t0 a t1, both pre(t) ∈ p0 and (pre(t), post(t)) ∈ ((q0 ∧ p′1) o

9 q1) and
because p0 ∧ ((q0 ∧ p′1) o

9 q1) V q, (pre(t), post(t)) ∈ q and hence t is a trace of
[
q
]
. 2

Lemma 2.10 (nondeterminism-traces) [[ ⊔C ]] =
⋃

c∈C[[c]] .
Proof. By Rule (A.107) any trace of ⊔C is a trace of a command c ∈ C and hence the set of traces of ⊔C
is the union of the traces of all c ∈ C. If the set C is empty no behaviour is possible, i.e., as expected, the
empty set of choices is equivalent to magic. 2

Lemma 2.12 (introduce-test)
[
def (b), b ∧ id

]
v [[b]] .

Proof. By Lemma 2.6 (refine-specification) and Lemma B.2 (precondition-traces) it is sufficient to show

∀ t ∈ [[[[b]]]]id • pre(t) ∈ def (b)⇒ t ∈ [[
[
b ∧ id

]
]]

By Rule (A.124) a trace of the target ([[b]]) is any evaluation of b to true using the expression evaluation
rules (Appendix A.3), or an evaluation ending in abort if b is not defined. Because the evaluation of b does
not change the state and neither do the environment steps, if def (b) holds initially then it holds for all states
in the trace, and hence the evaluation to ⊥ is not possible. Moreover, because the state does not change in
any finite trace of [[b]], b must be true for all states in the trace, including in the final state. Therefore, all
finite traces of [[b]] are traces of

[
b ∧ id

]
. Finally, any interrupted trace of [[b]] is also a possible behaviour

of the
[
b ∧ id

]
(by Rule (A.125)). 2

Lemma 2.14 (iteration-induction) For any relation r and commands c, d and x,

x vr d u c ; x ⇒ x vr c∗ ; d (B.134)
c ; x vr x ⇒ c∞ vr x (B.135)

d u c ; x vr x ⇒ cω ; d vr x (B.136)

To aid in the proof of this lemma we introduce the command (env r • c) that behaves as c if all the
environment steps satisfy r but otherwise aborts; it is used to simplify some proofs in the theory. Its traces
are given by [[env r • c]] = {t ∈ Trace | env(t) ⊆ r ∨ id⇒ t ∈ [[c]]}.
Proof. Standard fixed point theory gives

y v d u c ; y ⇒ y v c∗ ; d . (B.137)

To show (B.134), note that using (B.137)

(x vr c∗ ; d)⇐ (∃ y • (x vr y) ∧ (y v c∗ ; d))⇐ (∃ y • (x vr y) ∧ (y v d u c ; y))

As a witness for y choose (env r • x). This gives x vr (env r • x) by Definition 2.1 (refinement-in-context).
The refinement y v d u c ; y also holds as follows.

([[d u c ; (env r • x)]] ⊆ [[env r • x]])⇐ ([[d u c ; x)]]r ⊆ [[x]]r)⇐ (x vr d u c ; x)

Hence (B.134) holds. The proofs of (B.135) and (B.136) are similar, except the witness for y is a process
with traces [[x]]r. 2

Lemma 2.21 (specification-term)

stops(
[
q
]
, r) ≡ true, if r V id (B.138)

stops(
[
q
]
, r) ≡ false, if r 6V id (B.139)

Proof. By Rule (A.125), every trace t of
[
q
]

in an environment satisfying id is finite (or interrupted) and
hence stops(

[
q
]
, id) ≡ true. If r 6V id, then in an environment satisfying r, by Rule (A.126),

[
q
]

can abort
and hence has a nonterminating trace and hence stops(

[
q
]
, r) ≡ false. 2

Lemma 3.5 (conjunction-strict) We focus on {p}(c e d) = ({p}c) e d, the other cases follow similarly.
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Proof. By Rule (A.110) there are two cases of c e d to consider: 1) when both c and d may take the
same step α, and 2) when both may terminate. The precondition p requires a further two sub-cases by
Rule (A.104): a) when p is satisfied by α, and b) when it is not. It is clear from Rule (A.111) that both
sides may abort in any state σ in which p does not hold, hence we need consider the case where pre(α) ∈ p
only.

• Case 1. In this case α is trivially a step of each side of the equality.

• Case 2. Since all three commands are terminating (recalling pre(α) ∈ p), both sides trivially termi-
nate.

2

Lemma 3.13 (distribute-conjunction) For any relations g and g1, commands c, d, d0 and d1, nonempty
set of commands D, and variable x, such that g1 does not depend on x, i.e. depends only(g1, x̄),

c e (d0 e d1) = (c e d0) e (c e d1) (B.140)
c e ( ⊔D) = ⊔{d ∈ D • (c e d)} (B.141)

〈g〉ω e (c ; d) = (〈g〉ω e c) ; (〈g〉ω e d) (B.142)
〈g〉ω e (c ‖ d) = (〈g〉ω e c) ‖ (〈g〉ω e d) (B.143)

〈g1〉ω e (var x • c) = var x • (〈g1〉ω e c) (B.144)
〈g〉ω e (cω) = (〈g〉ω e c)ω (B.145)

Proof. Property (B.140) holds since strict conjunction is associative, commutative and idempotent.
For (B.141), a nonaborting trace of the left side is both a trace of c and a trace of ⊔D, and hence for

some d ∈ D a trace of d. Hence it is a trace of c e d and hence a trace of the right side. Note that if D is
empty and hence ⊔D = magic, the left side becomes c e magic and the right magic and hence one only
gets a refinement (e.g. when c is abort). The reverse inclusion of traces is similar, as is the argument for
aborting traces.

For (B.142) a nonaborting trace of the left side is a trace t of (c ;d) in which every program step satisfies
g. Either t is an infinite trace of c or t = tc a td, where tc is a finite trace of c and td is a trace of d. If t is
an infinite trace of c, as every program step of t satisfies g, it is an infinite trace of (〈g〉ω e c), and hence a
trace of the right side. Otherwise, tc is a finite trace of c for which every program step satisfies g and hence
tc is a trace of (〈g〉ω e c); similarly td is a trace of (〈g〉ω e d). Hence t is a trace of the right side.

For (B.143) a nonaborting trace of the left side is a trace t of (c ‖ d) for which every program step
satisfies g. Hence there must exist traces tc of c and td of d such that t is an “interleaving” of tc and td.
As every program step of t satisfies g, so does every program step of tc and td and hence tc is a trace of
(〈g〉ω e c) and td is a trace of (〈g〉ω e d). Hence t is a trace of the right side.

For (B.144) (〈g1〉ωec) can do a program step π(σ, σ′) if and only if c can do π(σ, σ′) and (σ, σ′) ∈ g1.
In which case (var x • (〈g1〉ω e c)) can do a step π(σ[x 7→ v], σ′[x 7→ v]) for any v. If c can do a step
π(σ, σ′) then (var x • c) can do a step π(σ[x 7→ v], σ′[x 7→ v]) for any v and as g1 is independent of x,
(σ[x 7→ v], σ′[x 7→ v]) ∈ g1 ⇔ (σ, σ′) ∈ g1. Hence the traces of the left and right sides are the same.

Lemma 2.17 (fusion) is applied to prove (B.145) by choosing F = (λ x • skip u c ; x) and hence
µF = cω , choosing G = (λ x • skip u (〈g〉ω e c) ; x), and hence µG = (〈g〉ω e c)ω , and choosing
H = (λ x • 〈g〉ω e x), and hence H(µF) = 〈g〉ω e cω . By Lemma 2.17 (fusion), (B.145) holds if,

〈g〉ω e (skip u c ; x) = skip u (〈g〉ω e c) ; (〈g〉ω e x)

which holds by a combination of parts (B.141) and (B.142), Lemma 2.13 (fold/unfold-iteration) and
Lemma 3.6 (conjunction-atomic). The function H is continuous because strict conjunction is continuous.
2

Lemma 3.29 (refine-in-guarantee-context) For any relations g and r and commands c0, c1 and d, such
that c0 vg∨r c1,

c0 ‖ (guar g • d) vr c1 ‖ (guar g • d) .
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Proof. We use Theorem B.1, recalling that (guar g • d) =̂ d e 〈g ∨ id〉ω . We first show (B.129).

Assume d α−→ d′. In the case where d′ is abort then both source and target may abort (Rule (A.110) and
Rule (A.115)). In the case where d′ is not abort, then we may further assume that a program step α satsifies
g ∨ id.

Because the context is r, by Definition 2.1 (refinement-in-context) we need only consider traces of the
target where the environment steps satsify r. Consider the case where the target takes an environment step,

c1 ‖ (guar g • d)
ε(σ,σ′)−−−−→ c′1 ‖ (guar g • d′)

assuming (σ, σ′) ∈ r ∨ id. By Rule (A.115) both subprocesses must have also taken this step, and hence

c1
ε(σ,σ′)−−−−→ c′1. By assumption (σ, σ′) ∈ r ∨ id, which implies (σ, σ′) ∈ g ∨ r ∨ id. Hence from the

assumption c0 vg∨r c1, we have that ε(σ, σ′) is a step of c0, and therefore by extension is also a step of the
source.

Now consider a program step of the target.

c1 ‖ (guar g • d)
π(σ,σ′)−−−−−→ c′1 ‖ (guar g • d′)

This is a program step of either operand. If π(σ, σ′) is a program step of c1 (matched by an environment
step of (guar g • d)), then it is also a step of the source, by assumption. The interesting case of the
proof is when π(σ, σ′) is a program step of (guar g • d). Such a program step must be matched by a
corresponding environment step of c1. By the reasoning above, any program step of (guar g • d) satisfies
g ∨ id, and hence also satisfies g ∨ r ∨ id. The corresponding environment step of c1 therefore also
satisfies g ∨ r ∨ id, and by assumption this is a valid step of c0 in the context g ∨ r ∨ id. This completes
the proof of (B.129). To prove (B.130) is straightforward as both source and target evolve similarly. 2

Lemma 3.39 (introduce-variable) Assuming x does not occur free in c and x 6∈ Y ,

Y : c v (var x • x,Y : c)

Proof. From the definition of a local variable block (16), the statement in the law is equivalent to showing
that for all v ∈ Val,

Y : c v (state x 7→ v • x,Y : c) .

Expanding using the the definition of the frame and hence guarantee gives:

c e 〈id(Y)〉ω v (state x 7→ v • c e 〈id(x,Y)〉ω)

The proof uses Theorem B.1. For property (B.129) for program steps

(state x 7→ v • c e 〈id(x,Y〉ω)
π(σ,σ′)−−−−−→ (state x 7→ v′ • c′ e 〈id(x,Y〉ω)

⇔ by Rule (A.118)

(c e 〈id(x,Y〉ω π(σ[x 7→v],σ′[x 7→v′])−−−−−−−−−−−−→ c′ e 〈id(x,Y〉ω) ∧ σ′(x) = σ(x)
⇒ by Rule (A.106) the program step must satisfy id(x,Y)

(c
π(σ[x 7→v],σ′[x 7→v′])−−−−−−−−−−−−→ c′) ∧ (σ, σ′) ∈ id(Y)

⇔ as x does not occur free in c

(c
π(σ,σ′)−−−−−→ c′) ∧ (σ, σ′) ∈ id(Y)

⇔ as the step π(σ, σ′) satisfies id(Y)

c e 〈id(Y)〉ω π(σ,σ′)−−−−−→ c′ e 〈id(Y)〉ω
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and for environment steps

(state x 7→ v • c e 〈id(x,Y〉ω)
ε(σ,σ′)−−−−→ (state x 7→ v • c′ e 〈id(x,Y〉ω)

⇔ by Rule (A.119)

c e 〈id(x,Y〉ω ε(σ[x 7→v],σ′[x 7→v])−−−−−−−−−−−→ c′ e 〈id(x,Y〉ω
⇔ by Rule (A.106) an atomic step allows any environment step

c
ε(σ[x 7→v],σ′[x 7→v])−−−−−−−−−−−→ c′

⇒ as x does not occur free in c

c
ε(σ,σ′)−−−−→ c′

⇔ by Rule (A.106) as an atomic step allows any environment step

c e 〈id(Y〉ω ε(σ,σ′)−−−−→ c′ e 〈id(Y〉ω

2

Lemma 4.1 (parallel-interference) For any relations r0 and r1, 〈r0〉∗ ‖ 〈r1〉∗ = 〈r0 ∨ r1〉∗ .
Proof. Follows straightforwardly from Rule (A.106) and Rule (A.115). 2

Lemma 4.3 (interference-atomic) For any predicate p and relations q and r,

〈p, q〉 ‖ 〈r〉∗ = 〈r〉∗ ; 〈p, q〉 ; 〈r〉∗ .

Proof. Follows straightforwardly from Rule (A.106), Rule (A.115), and Rule (A.109). 2

Lemma 9.1 (refine-var) c vid(x) d ⇒ (var x • c) v (var x • d) .
Proof. Using the definition of a local variable block (16) and Law 2.11 (nondeterministic-choice) part (32),
it is sufficient to show

c vid(x) d ⇒ ∀ v • (state x 7→ v • c) v (state x 7→ v • d) .

We assume the property on the left of the implication and show the property on the right holds for all v
using Theorem B.1. For property (B.129) for program steps

(state x 7→ v • d)
π(σ,σ′)−−−−−→ (state x 7→ v′ • d′)

≡ by Rule (A.118)

(d
π(σ[x 7→v],σ′[x 7→v′])−−−−−−−−−−−−→ d′) ∧ σ′(x) = σ(x)

V as c vid(x) d

(c
π(σ[x 7→v],σ′[x 7→v′])−−−−−−−−−−−−→ c′) ∧ σ′(x) = σ(x)

≡ by Rule (A.118)

(state x 7→ v • c)
π(σ,σ′)−−−−−→ (state x 7→ v • c′)

and for environment steps

(state x 7→ v • d)
ε(σ,σ′)−−−−→ (state x 7→ v • d′)

≡ by Rule (A.119)

d
ε(σ[x 7→v],σ′[x 7→v])−−−−−−−−−−−→ d′

V as c vid(x) d and (σ[x 7→ v], σ′[x 7→ v]) ∈ id(x)

c
ε(σ[x 7→v],σ′[x 7→v])−−−−−−−−−−−→ c′

≡ by Rule (A.119)

(state x 7→ v • c)
ε(σ,σ′)−−−−→ (state x 7→ v • c′)

Property (B.130) is straightforward as both source and target evolve similarly. 2
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