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Revising Basic Theorem Proving Algorithms

to Cope with the Logic of Partial Functions

Cli� B. Jones, Matthew J. Lovert and L. Jason Steggles

School of Computing Science, University of Newcastle, U. K.

Abstract

Partial terms are those that can fail to denote a value; such terms arise frequently in the
speci�cation and development of programs. Earlier papers describe and argue for the use of the
non-classical �Logic of Partial Functions� (LPF) to facilitate sound and convenient reasoning
about such terms. This paper reviews the fundamental theorem proving algorithms �such as
resolution� and identi�es where they need revision to cope with LPF. Particular care is needed
with �refutation� procedures. The modi�ed algorithms are justi�ed with respect to a semantic
model. Indications are provided of further work which could lead to e�cient support for LPF.

1 Introduction

Within logical expressions, terms can fail to denote proper values and as a result logical formulae
involving such terms may not denote Booleans [18, 24, 30]. Such partial terms arise frequently
�for example when applying recursive functions� in the speci�cation of computer programs; more
tellingly, reasoning about such terms is required when discharging the proof obligations generated
in both establishing consistency of speci�cations at any level of abstraction and for justifying devel-
opment steps between levels (such proof obligations can be very large for industrial applications).
This raises the question of how one can reason about such formulae. Numerous approaches have
been conceived over the years � most are documented in [8, 12, 9, 10, 13, 16, 1, 14, 34].

The issue of reasoning about partial functions is by no means purely theoretical: in [35], it is
identi�ed as a signi�cant source of inconsistencies in the theorem provers for Event-B; after the
2011 �Landin seminar� by one of the current authors, David Crocker pointed out that one of very
few inconsistencies in �Perfect Developer� again revolved around the issue of unde�ned terms.

This paper is intended to interest computer scientists in alternatives to bending partial func-
tions into the classical model of �rst-order predicate calculus. It is not so much aimed at logicians.

The issue of non-denoting terms can be exempli�ed by the following property using integer
division:

∀i :Z · (i ÷ i = 1) ∨ ((i − 1)÷ (i − 1) = 1) (1)

When i has the value 0, the �rst disjunct fails to denote a value; similarly, the second disjunct
fails to denote a value when i has the value 1. The best way of thinking about the issue is to
see that there is a �gap� in the denotation of the integer division operator (this view is formalised
in Section 3).1 It is however convenient to illustrate the di�culties by writing ⊥Z to stand for a
missing integer value (and ⊥B for a missing Boolean value). The validity of Property 1 relies on

1As explained in earlier papers, the problem of non-denoting terms is pervasive and most of these papers have
used examples with recursive functions; in this paper, the fact that division is a partial operator is used to present
the essential points with a minimum of extra machinery.
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the truth of disjunctions such as (1÷ 1 = 1) ∨ (0÷ 0 = 1), which reduces to (1 = 1) ∨ (⊥Z = 1).
With strict (weak/computational) equality (unde�ned if either operand is unde�ned), this further
reduces to true ∨ ⊥B which makes no sense in classical logic since its truth tables only de�ne the
propositional operators for proper Boolean values.

The approach that the current authors take to reasoning about logical formulae that include
partial terms is to employ a non-classical logic known as the Logic of Partial Functions (LPF ) [3,
8, 10, 23, 24, 20], where �gaps� are handled by lifting the logical operators. Property 1 is true in
LPF and its proof presents no di�culty (after some explanation, this proof is given in Figure 2).
However, Property 1 can cause �issues� in other approaches to coping with non-denoting terms �
for example, with McCarthy's conditional version2 of the logical operators [29], where disjunctions
and conjunctions are not commutative and quanti�ers are problematic with respect to unde�ned
values.

However, the availability of a large body of proof techniques for classical logic presents an
argument against the adoption of LPF. These fundamental automated proof techniques are the
foundation on which many advanced automated proof techniques are built and as such represent
a natural starting point for considering the development of proof support for LPF. Determining
how to modify these proof procedures for LPF and analysing the associated performance issues
provides key insights into mechanising proof for a logic like LPF. Furthermore, it provides the
essential foundation to facilitate the modi�cation of more advanced proof techniques for LPF. The
main contribution of this paper (Section 5) is to pinpoint the issues that arise for the adaption
of techniques such as proof by refutation and resolution to cope with LPF. In some cases, the
justi�cation of the extended algorithms is essentially the same as with their classical counterparts;
only where there are signi�cant changes are new proofs provided. In particular, the soundness
of the modi�ed resolution procedure is proved; resolution completeness is the subject of on-going
research.

Structure of the paper: Section 2 provides an introduction to LPF. Section 3 provides a se-
mantics for the LPF version of the Predicate Calculus � the rest of the paper is grounded on
this semantic model. Section 4 discusses normal forms. Section 5 outlines the issues present �and
the changes required� for the proof procedures to cover LPF. Finally, Section 6 provides some
conclusions and an indication of further work.

Note that this technical report reworks and extends the previous technical report [22].

2 An Introduction to LPF

LPF is a �rst order logic that can handle non-denoting logical values that arise from terms that
apply partial functions and operators; it is the logic that underlies the Vienna Development Method

(VDM ) [18, 5, 15]; there was an instantiation of LPF on the mural formal development support
system [19]. Arguments for the use of LPF are documented in several of the previously cited
references, particulary [10, 24, 20].

It is straightforward to lift the standard two-valued truth tables for propositional operators
to cover logical values that may fail to denote (see for example [26, �64]). Such tables provide
the strongest possible monotonic extension of the familiar classical propositional operators with

2McCarthy de�ned, for example, the disjunction of e1, e2 as if e1 then tt else e2 and referred to the �rst variable
in such conditional expressions as the �inevitable variable� since conditionals are strict in their �rst argument. This
interpretation is implemented in some programming languages �sometimes with distinct keywords� and this imposes
a proof obligation when copying LPF expressions into program texts cf. [18].
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(a)

∨ tt ⊥B ff

tt tt tt tt
⊥B tt ⊥B ⊥B
ff tt ⊥B ff

(b)

e ∆e

tt tt
⊥B ff
ff tt

(c)

e δe

tt tt
⊥B ⊥B
ff tt

Figure 1: The LPF truth tables for disjunction and the de�nedness operators ∆ and δ.

respect to the ordering on truth values: ⊥B ≼ tt and ⊥B ≼ ff. As an example, the truth table for
disjunction is given in Figure 1(a). Alternatively, such truth tables can be viewed as describing
a parallel (lazy) evaluation of the operands that delivers a result as soon as enough information
is available; such a result would not be contradicted if a ⊥B were evaluated to a proper Boolean
value.

The way in which non-denoting values can be �caught� by these extended propositional oper-
ators can be depicted as follows3

∀i :Z ·
∈B︷ ︸︸ ︷

(i ÷ i︸︷︷︸
∈Z⊥

= 1)

︸ ︷︷ ︸
∈B⊥

∨ ((i − 1)÷ (i − 1)︸ ︷︷ ︸
∈Z⊥

= 1)

︸ ︷︷ ︸
∈B⊥

where Z⊥ stands for Z ∪ {⊥Z} and B⊥ stands for B ∪ {⊥B}.
Quanti�ers in LPF are a natural extension of the propositional operators: existential quanti�-

cation is equivalent to an (in the worst case) in�nite disjunction and universal quanti�cation to
an in�nite conjunction. Thus, an existentially quanti�ed expression in LPF is true if a witness
value exists (even if the quanti�ed expression is unde�ned or false for some of the bound values);
it is false if the quanti�ed expression is everywhere false; it is unde�ned in the remaining case
(a mixture of false and unde�ned). Similar comments apply, mutatis mutandis, for universally
quanti�ed expressions. In LPF, quanti�ed variables range over proper (i.e. de�ned) values.

Standard algebraic laws (de Morgan) relate ∨/∧ and the quanti�ers; implication has its normal
de�nition; commutativity and distribution hold as in standard �rst-order predicate calculus. One
issue with the use of LPF is that the, so called, law of the excluded middle (p ∨ ¬ p) does not
hold because the disjunction of two unde�ned Boolean values is unde�ned: thus (0 ÷ 0 = 1) ∨
¬ (0÷ 0 = 1) is not a tautology in LPF.

For expressive completeness, LPF adds a de�nedness operator ∆ whose truth table is in Fig-
ure 1(b). Unlike all of the other operators, the ∆ operator is not monotone. It also gives rise to
the property for LPF which is known as the law of the excluded fourth (p ∨ ¬ p ∨ ¬∆p). Adding
de�nedness hypotheses for all terms in some logical expression e is su�cient to make the validity
of e in LPF and classical logic coincide.

Whilst providing lifted truth tables is straightforward, it is less obvious how to present an
axiomatisation. This is done for untyped LPF in [3, 8] and for typed LPF in [23].

The normal notion of a proof is that one proceeds from assumptions and derives their conse-
quences. A sequent e1, . . . , en ⊢ e is used to represent the situation when the formula e can be
logically derived from the assumptions e1, . . . , en . For this reason, �unde�nedness� plays little part
in LPF proofs. The only real intrusion is where one wants to use what is, in classical logic, the
unrestricted deduction theorem (concluding ⊢ e1 ⇒ e2 from e1 ⊢ e2) � this does not hold in
LPF because e1 could be an arbitrary assumption that is potentially unde�ned. (Admitting this
form of the deduction rule e�ectively gives rise to the law of the excluded middle.) The use of ∆

3Comparisons of several di�ering approaches to handling unde�ned values are supported by pictures of this style
in [21]. Note that it is not claimed that such types are syntactically decidable.
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from ∀i · i = 0 ⇒ ¬ (i − 1 = 0); ∀i · ¬ (i = 0) ⇒ i ÷ i = 1;
∀i , j · (i − j ) ∈ Z

1 from i :Z
1.1 ¬ (i = 0) ∨ ¬ (i − 1 = 0) ∀-E (h, h1),⇒ -defn
1.2 from ¬ (i = 0)
1.2.1 i ÷ i = 1 ⇒ -E (∀-E (h, h1), h1.2)

infer (i ÷ i = 1) ∨ ((i − 1)÷ (i − 1) = 1) ∨-I -R(1.2.1)
1.3 from ¬ (i − 1 = 0)
1.3.1 (i − 1) ∈ Z ∀-E (h, h1)
1.3.2 (i − 1)÷ (i − 1) = 1 ⇒ -E (∀-E (h, 1.3.1), h1.3)

infer (i ÷ i = 1) ∨ ((i − 1)÷ (i − 1) = 1) ∨-I -L(1.3.1)
infer (i ÷ i = 1) ∨ ((i − 1)÷ (i − 1) = 1) ∨-E (1.1, 1.2, 1.3)

infer ∀i · (i ÷ i = 1) ∨ ((i − 1)÷ (i − 1) = 1) ∀-I (1)

Figure 2: An illustrative proof of Property 1 in LPF.

can provide a sound �⇒ -I � rule for LPF. However, the non-monotone ∆ operator is not normally
used in assertions and is generally considered to be a meta-level operator; to claim de�nedness in a
proof, the related δ operator (cf. Figure 1(c)) can be used which is monotone and whose de�nition
is the same as ∆ except that δ⊥B = ⊥B rather than false, thus δe1 is equivalent to the assertion
e1 ∨ ¬ e1 (see Figure 1(c)). Therefore, the following �⇒ -I � rule for LPF

⇒ -I
⊢ δe1; e1 ⊢ e2

⊢ e1 ⇒ e2

is more common. In practice, there are normally trivial ways of showing de�nedness since typical
implications have terms like i ≥ j on the left and its de�nedness follows immediately from the
type i , j :Z. (The observation about proof only leading to (de�ned and) true expressions is echoed
when it is noted in Section 6.2 that �cancellation� in resolution is valid on clauses to the left of a
turnstile.)

Anyone familiar with natural deduction proofs will �nd it straightforward to adapt to LPF.
The axioms in [23] include extra rules such as ¬∨ -I that ameliorate the loss of (but do not imply)
the law of the excluded middle.

To conduct a proof of Property 1, it is necessary to introduce some properties of division and
subtraction, since a proof is a game with symbols � it cannot use the �intended� semantics of the
operators −/÷:

∀i :Z · i = 0 ⇒ ¬ ((i − 1) = 0); ∀i :Z · ¬ (i = 0) ⇒ i ÷ i = 1
∀i , j · (i − j ) ∈ Z ⊢

∀i :Z · (i ÷ i = 1) ∨ ((i − 1)÷ (i − 1) = 1)

Since all uses of i and j as quanti�ed variables are of integer type, the type is left implicit for
the remainder of the paper (and, below, the type is omitted in σ: Σ). The proof of this property
in LPF is straightforward and, as can be seen in Figure 2, is not complicated by �unde�nedness�
issues despite the fact that the example has been deliberately chosen so that either of the disjuncts
could be unde�ned.
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3 Semantics of LPF

This section presents a semantics for the LPF version of Predicate Calculus. The semantics is
used to rede�ne standard logical notions �such as notions of a formula being satis�able and valid�
for LPF.

3.1 The Semantic Function [[e]]

The operators and quanti�ers for LPF include those of the standard predicate calculus; the addition
of the de�nedness operator ∆ is explained below. Also �as is standard� conjunction, implication
and universal quanti�cation are viewed as syntactic sugar for expressions using a basic set of
operators (it is one of the advantages of LPF over say McCarthy's conditional operators that the
standard de�nitions apply).

A concrete syntax for LPF using Extended Backus-Naur Form is provided in [22] but the
cases in the following semantic de�nition ought to provide an adequate view of the syntax of
LPF. Context conditions for LPF �that limit the formulae to which semantics need be given� are
outlined in [20] and spelt out fully in [27].

The challenge of giving a semantics that covers partial terms (e.g i ÷ 0) is met by mapping
formulae to relations between states and values.4 A state for which the expression does not denote
a value is absent from the domain of the relation. States map identi�ers to their values. The
set of identi�ers Id is partitioned into four subsets for propositions Prop, (integer) variables Var ,
functions Fn and predicates Pred . Furthermore, it is assumed that formulae bind all variables
by quanti�ers; quanti�ed values range only over proper (i.e. de�ned) integers. (The limitation to
integers is for brevity only.)

The set Σ of all maps from identi�ers to their values is de�ned as:

Σ = Id
m−→ Value

Value = B ∪ Z ∪ Function ∪ Predicate

It is assumed that each identi�er maps to a value of appropriate type. The map involving Prop
can be partial: a propositional identi�er can be absent from the domain of a speci�c σ to allow
for unde�ned propositional identi�ers. The maps involving Var , Fn and Pred are however total.

The denotations of Functions and Predicates are relations, thus (using P for power set):

Function = P(Z∗ × Z) Predicate = P(Z∗ × B)

Functions/predicates have a �xed arity in any given σ but can be partial � this is the reason
for using relations as their denotations but they always return the same result for any given
argument(s) in a given σ. Functions and predicates are assumed to be strict: if there is a �gap�
in an argument then there is a �gap� in the result of applying the function/predicate to that
argument.

The semantic function [[e]] is given in Figure 3. (The limited use of VDM notation should
provide no di�culty except perhaps: dom yields the domain of a relation; similarly, rng provides
the range; m1 †m2 yields a relation in which the second argument overwrites matching values in
the �rst; s �m is a sub-relation of m containing only those pairs whose �rst elements are also in
s. Full details can be found in [18]). This semantics de�nes the �lifted� LPF operators in terms of
(set theory and) the standard logical operators and quanti�ers on B. To emphasise the distinction
the standard operators and quanti�ers are marked with a subscript as in ∨B. It is easy to check
that their operands must be de�ned because they all rely on set membership. The de�nition of

4This is in contrast to the more common use of partial functions in denotational semantics [36]. Since the aim is
to explain a logic over partial functions, a clear distinction between the concepts of the meta and object languages
seems sensible.
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function application deserves some explanation: the values of the elements of the argument list
al are evaluated to form vl ; if any such argument does not yield a proper value, no application is
made; in the de�ned case, r is determined by (vl , r) ∈ σ(f ).

(A paper [21] by the current authors compares some of the main approaches to handling partial
terms; for each approach, it presents similar semantic models to that in Figure 3 � thus illustrating
where �unde�nedness� is handled in each approach.)

[[ ]]:Expr → P(Σ×Value)
[[e]] △

cases e of

e ∈ Value→ {(σ, e) | σ ∈ Σ}
e ∈ Prop → {(σ, σ(e)) | σ ∈ Σ ∧B e ∈ dom σ}
e ∈ Var → {(σ, σ(e)) | σ ∈ Σ}
f (al) → {(σ, r) | σ ∈ Σ ∧B

f ∈ (Fn ∪ Pred) ∧B
∀i : inds al · (σ, vl(i)) ∈ [[al(i)]] ∧B
(vl , r) ∈ σ(f )}

¬ e ′ → {(σ, tt) | (σ, ff) ∈ [[e ′]]} ∪ {(σ, ff) | (σ, tt) ∈ [[e ′]]}
e1 ∨ e2 → {(σ, tt) | (σ, tt) ∈ [[e1]] ∨B (σ, tt) ∈ [[e2]]} ∪

{(σ, ff) | (σ, ff) ∈ [[e1]] ∧B (σ, ff) ∈ [[e2]]}
∃x · e ′ → {(σ, tt) | σ ∈ Σ ∧B

∃Bi ∈ Z · (σ † {x 7→ i}, tt) ∈ [[e ′]]} ∪
{(σ, ff) | σ ∈ Σ ∧B

∀Bi ∈ Z · (σ † {x 7→ i}, ff) ∈ [[e ′]]}
∆e ′ → {(σ, tt) | σ ∈ dom [[e ′]]} ∪

{(σ, ff) | σ ∈ (Σ \ dom [[e ′]])}
end

Figure 3: The semantic function [[e]] which de�nes the semantics of LPF.

The motivating example of Property 1 uses functions and predicates whose denotations might
be:

σ(minus) △ {((a, b), a − b) | a, b:Z}
σ(div) △ {((a, b), a ÷ b) | a, b:Z ∧B b ̸= 0}
σ(equals) △ {((a, b), a = b)) | a, b:Z}

where the operators on the right hand sides of these de�nitions have their standard mathematical
meaning. Notice that, whereas subtraction is total, division and (strict) equality are partial. These
denotations have only been given for illustrative purposes � it is important to realise that the
hypotheses in the proof in Figure 2 are less constraining.

3.2 Reasoning using the semantics

A convenient abbreviation, which emphasises the fact that a relation is involved, is to write
(σ, b) ∈ [[e]] as σ[[e]]b.

It is useful to record that the de�nition of any relation [[e]] is deterministic (or �functional�):

Lemma 1. For any expression e it follows that σ[[e]]v1 ∧ σ[[e]]v2 ⇒ v1 = v2.

Proof. This follows from the fact that there is exactly one rule for each type of expression and,
where the resulting relation is de�ned by uniting sets, the domains of the relations are disjoint.
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It is a useful property of LPF that the standard de�nitions of extended operators apply:

De�nition 2. The following abbreviations are used:
e1 ∧ e2 for ¬ (¬ e1 ∨ ¬ e2)
e1 ⇒ e2 for ¬ e1 ∨ e2
∀x · e for ¬∃e · ¬ e

Thus:

[[e1 ∧ e2]] =
{(σ, tt) | (σ, tt) ∈ [[e1]] ∧B (σ, tt) ∈ [[e2]]} ∪
{(σ, ff) | (σ, ff) ∈ [[e1]] ∨B (σ, ff) ∈ [[e2]]}

[[∀x · e ′]] =
{(σ, tt) | σ ∈ Σ ∧B ∀Bi ∈ Z · (σ † {x 7→ i}, tt) ∈ [[e ′]]} ∪
{(σ, ff) | σ ∈ Σ ∧B ∃Bi ∈ Z · (σ † {x 7→ i}, ff) ∈ [[e ′]]}

Lemma 3. Many standard results can be proved for LPF using [[e]] and the above de�nitions.
(i) e ≡ ¬¬ e, for any formula e.
(ii) ¬ (e1 ∨ e2) ≡ (¬ e1) ∧ (¬ e2)
(iii) ¬ (e1 ∧ e2) ≡ (¬ e1) ∨ (¬ e2)
(iv) e1 ∨ (e2 ∧ e3) ≡ (e1 ∨ e2) ∧ (e1 ∨ e3)
(v) (e1 ∨ e1) ≡ e1 and (e1 ∧ e1) ≡ e1
(vi) (e1 ∨ e2) ≡ (e2 ∨ e1) and (e1 ∧ e2) ≡ (e2 ∧ e1)
(vii) e1 ∨ (e2 ∨ e3) ≡ (e1 ∨ e2) ∨ e3 and e1 ∧ (e2 ∧ e3) ≡ (e1 ∧ e2) ∧ e3.
(viii) p ∧ (p ∨ q) ≡ p

Proof. Proofs of this and subsequent trivial lemmas that use only expansion of [[e]] are generally
omitted for brevity. However, a range of illustrative proofs for such lemmas can be found in the
appendix.

3.3 Satis�ability, Validity and Logical Consequence

As with the type of i being integers, the remainder of the paper omits the type of σ.
The notions of satis�ability, validity and logical consequence [4] can be de�ned for LPF using

the semantics of Section 3.1. A formula e is said to be satis�able in LPF i� σ[[e]]tt, for some
interpretation σ. A formula e is unsatis�able i� it is not satis�able (i.e. for all interpretations
σ, (σ, tt) ̸∈ [[e]]). It is essential that the above formulation is used for unsatis�ability in LPF.
Consider, for example, de�ning unsatis�ability by σ[[e]]ff, for all interpretations σ. In this case
the set of unsatis�able expressions would be smaller since in LPF an expression e not evaluating
to tt is not the same as it evaluating to ff due to the presence of �gaps�. The above de�nition of
satis�able can be extended to a set of formulae: a set of formulae S is said to be (simultaneously)

satis�able i� there exists an interpretation σ ∈ Σ such that σ[[ei ]]tt, for all ei ∈ S . A set of formulae
S is said to be (simultaneously) unsatis�able i� they are not satis�able.

A formula e is said to be valid in LPF, denoted |= e, i� σ[[e]]tt holds for all interpretations σ.
The notation ̸|= e is used to represent that e is not valid.

Let Γ = {e1, . . . , en} be a set of formulae and e be a single formula. Then Γ |= e denotes that
e is a logical consequence of Γ. This can be formally de�ned using [[e]] as follows: Γ |= e holds i�
for all interpretations σ, whenever σ[[e1]]tt, . . . , σ[[en ]]tt hold it follows that σ[[e]]tt holds.

Two formulae e1 and e2 are logically equivalent, denoted e1 ≡ e2, i� [[e1]] = [[e2]]. Furthermore,
two formulae e1 and e2 are equi-satis�able i� ∃σ · σ[[e1]]tt ⇔ ∃σ′ · σ′[[e2]]tt.

7



4 Normal Forms in LPF

In order to mechanise and optimise proof procedures for classical logic a range of normal form
representations for logical formulae are employed. One well-used normal form is clausal form [4], a
set based representation for logical formulae which are structured as conjunctions of disjunctions.
In this section the process of converting a predicate LPF formula into clausal form is investigated
and a range of results are shown. While the standard conversion techniques considered here
have well-known shortcomings (i.e. the potential rapid expansion of formulae), they provide an
important foundation on which further investigations into more advanced optimisation techniques
(see Section 6) can be based.

4.1 Conjunctive Normal Form and Clausal Form

In the standard literature a literal is an atomic formula or the negation thereof. A propositional
formula is said to be in conjunctive normal form (CNF) i� it is a conjunction of disjunctions of
literals. An important result in classical propositional logic is that every propositional formula
can be converted into a logically equivalent one in CNF [4]. The standard conversion process to
CNF can be summarised as follows:

1. eliminate any propositional operators other than conjunction, disjunction and negation by
applying the standard syntactic conversions;

2. use de Morgan's Laws to push all negations inwards;

3. eliminate all double negations; and

4. use the distributive law to remove conjunctions within disjunctions.

It turns out that all of the equivalences used in the conversion process above hold in LPF as
shown by Lemma 3.

However, the process of converting a propositional formula into CNF needs to be extended
in LPF to incorporate rules for the non-monotone de�nedness ∆ operator (although this occurs
rarely in normal proofs, it has a signi�cant role to play in Theorem 11). The �rst step is to extend
the de�nition of a literal in LPF to include formulae of the form ∆l and ¬∆l , for any literal l in
the standard sense. The CNF conversion process de�ned above can then be extended by inserting
a new step after Step 1 in which all occurrences of ∆ are pushed inwards in a formula (similar to
the approach taken for negation).

The ∆ operator has some surprising properties. For example, although ∆e ⊢ e ∨ ¬ e and
e ∨ ¬ e ⊢ ∆e are both valid deductions, the semantics shows that [[∆e]] ̸= [[e ∨ ¬ e]]. This
points to care being needed in its expansion. In order to facilitate moving ∆ inwards, a range of
equivalences are needed, for example: ∆(e1 ∨ e2) is logically equivalent to

¬((¬e1 ∧ ¬∆e2) ∨ (¬∆e1 ∧ ¬e2) ∨ (¬∆e1 ∧ ¬∆e2))

which when converted to CNF gives

(e1 ∨ ∆e2) ∧ (∆e1 ∨ e2) ∧ (∆e1 ∨ ∆e2).

(It would be wrong to use e1 ∨ e2 ∨ ∆e1 ∧∆e2 because this would not yield ff in the case where
e1 was unde�ned and e2 was ff.)

The following lemma gives the key logical equivalences required for dealing with ∆ during the
CNF conversion process in LPF.
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Lemma 4. Let e1 and e2 be LPF formulae. Then the following logical equivalences involving ∆
hold in LPF:
i) ∆(e1 ∨ e2) ≡ (e1 ∨ ∆e2) ∧ (∆e1 ∨ e2) ∧ (∆e1 ∨ ∆e2);
ii) ∆(e1 ∧ e2) ≡ (¬e1 ∨ ∆e2) ∧ (∆e1 ∨ ¬e2) ∧ (∆e1 ∨ ∆e2);
iii) ∆(¬ e1) ≡ ∆(e1).

Proof. Based on expanding the relevant expressions using [[e]].

Note that using these rules can result in signi�cant expansion of formulae during the conversion
process for formulae containing ∆. However, it is important to remember that ∆ is not normally
written in LPF and the expansion only becomes an issue in refutation procedures.

Recall that the classical equivalences of (e ∨ ¬ e) ≡ tt and (e ∧ ¬ e) ≡ ff no longer hold in
LPF. However, in LPF both ∆(∆e) and (e ∨ ¬ e ∨ ∆e) can be shown to be logically equivalent
to the truth value tt, and (∆e ∧ ¬∆e) is equivalent to ff. These equivalences can be used during
the conversion process to simplify terms.

The above results lead to the following equivalence theorem for CNF and propositional LPF
formulae.

Theorem 5. Every propositional LPF formula can be converted into a logically equivalent propo-
sitional LPF formula that is in CNF.

Proof. This theorem follows immediately from Lemmas 3�4.

In classical propositional logic, a CNF formula

((l1,1 ∨ · · · ∨ l1,n1) ∧ · · · ∧ (lm,1 ∨ · · · ∨ lm,nm ))

can be represented in clausal form [4] as a set of sets:

{{l1,1, . . . , l1,n1}, . . . , {lm,1, . . . , lm,nm}}

The above representation relies on the properties of idempotency, commutativity and associativity

that hold for ∨ and ∧ in classical propositional logic. Thus, in order to use clausal form in LPF,
properties (v)�(vii) of Lemma 3 are needed.

4.2 Prenex Normal Form

In the standard literature a predicate logic formula is said to be in Prenex Normal Form (PNF)

if it consists of a sequence of quanti�ers followed by a quanti�er free formula (normally referred
to as the matrix ). So a formula in PNF is of the form

Q1x1 · . . . ·Qnxn · e

where each Qi is either a universal or existential quanti�er and e is the matrix.
The conversion of a predicate formula into clausal form in classical logic (see for example [4, 17])

proceeds by converting the formula into PNF and then Skolemising it. This removes any existential
quanti�ers in the formula replacing each with a Skolem function which takes as arguments any
universally quanti�ed variables that preceded the existential quanti�er. The resulting Skolemised
formula is equi-satis�able to the original formula. The standard conversions are used on the matrix
of the formula to ensure it is in CNF. The universal quanti�ers can then be dropped allowing
the formula to be represented in clausal form (the variables are interpreted as being implicitly
universally quanti�ed).

A key result in classical logic is that any predicate formula can be converted into a logically
equivalent formula in PNF. This conversion process for PNF can be summarised as follows [4]:
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1. standardise the variables apart by renaming variables, where necessary, so that no two quan-
ti�ers bind the same variable name;

2. push all negations inwards so that they only apply to atomic formulae through the use of de
Morgan's Laws and quanti�er conversions; and

3. push all quanti�ers outwards through the use of appropriate conversions, such as e1 ∨ ∃x ·e2
to ∃x · (e1 ∨ e2) and e1 ∨ ∀x · e2 to ∀x · e1 ∨ e2.

The above conversion rules again turn out to be valid in LPF as the following result (with
Lemma 3 and De�nitions 2) shows.

From here on the abbreviation σi = σ † {x 7→ i} is used freely.

Lemma 6. Let e1 and e2 be LPF formulae. Then, assuming e1 contains no free occurrences of
the variable x , e1 ∨ ∃x · e2 ≡ ∃x · (e1 ∨ e2) and e1 ∨ ∀x · e2 ≡ ∀x · (e1 ∨ e2).

Proof. The argument consists of expansion of the two formulae using the de�nition in Figure 3;
it is simpler to trace these steps if the tt/ff cases are separated; the intervening lines starting
⇔ indicate the operators whose de�nitions justify the step from the preceding to the succeeding
lines.

σ[[e1 ∨ ∃x · e2]]tt
⇔ expand using cases for ∨ and ∃

σ[[e1]]tt ∨ ∃i · σi [[e2]]tt

σ[[∃x · e1 ∨ e2]]tt
⇔ expand using cases for ∃ and ∨

∃i · (σi [[e1]]tt ∨ σi [[e2]]tt)

Since x is not free in e1, σ
i [[e1]]tt ⇔ σ[[e1]]tt and the standard laws of predicate calculus complete

the proof.
The argument for σ[[e1 ∨ ∃x · e2]]ff ⇔ σ[[∃x · e1 ∨ e2]]ff is similar.

In LPF the process of converting a predicate formula into PNF needs to be extended to
incorporate rules for handling the de�nedness ∆ operator (as was done above for CNF). Any ∆
surrounding a quanti�ed formula needs to be pushed inwards and so appropriate equivalences are
required. Just as with the discussion preceding Lemma 4, any surprise that the term e ∧ ∆e is
needed is overcome by checking that the expansion yields ff in all required cases.

Lemma 7. For any LPF formula p the following logical equivalences involving ∆ hold in LPF:
i) ∆(∃x · e) ≡ ∀x ·∆e ∨ ∃x · (e ∧∆e)
ii) ∆(∀x · e) ≡ ∀x ·∆e ∨ ∃x · (¬ e ∧∆e)

Proof. For (i):

σ[[∆∃x · e]]tt
⇔ expand using cases for ∆

∃i · σi [[e]]tt ∨ ∀i · σi [[e]]ff

σ[[∀x ·∆e ∨ ∃x · (e ∧∆e)]]tt
⇔ expand using cases for ∀

∃i · (σi [[e]]tt ∧ σi ∈ dom [[e]]) ∨ ∀i · σi ∈ dom [[e]]
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These expressions can be proved (e.g. in a natural deduction style) to be equivalent.
The ff case is argued in the same way. (Step-by-step expansions and full Natural Deduction

proofs are contained in Appendix A of this paper.)
For (ii), De�nition 2 is key to the argument.

The following result for predicate LPF formulae follows.

Theorem 8. Every LPF formula can be converted into an equivalent formula in PNF.

Proof. This follows by Theorem 5, Lemmas 6 and 7.

4.3 Skolemisation

Once an expression is in PNF, any existential quanti�ers it contains can be removed by Skolemi-

sation: each existentially quanti�ed variable is replaced by (a reference to) a Skolem function.5

Skolemisation creates a formula which is equi-satis�able with the original formula. The Skolemised
expression cannot be logically equivalent to the original one because they depend on di�erent
states/interpretations.

As is standard, Skolem functions depend on any embracing universally quanti�ed variables;
thus: ∃x · x = 42 is changed to (λ() · 42)() = 42 and ∀x · ∃y · x + y = 42 is changed to ∀x · x +(λy ·
42 − y)(x ) = 42. The following theorem shows that the Skolemisation procedure can be applied
in LPF. The result is essentially as in classical logic with the explicit requirement that the Skolem
functions are total (de�ned for all de�ned arguments).

Theorem 9. Given some expression S , an expression S ′ created by Skolemisation will be equi-
satis�able with the original S .

Proof. Without loss of generality, the discussion is couched in terms of S = ∀x · ∃y · e(x , y); for
which Skolemisation yields S ′ = ∀x · e(x , f (x )) with f being an unused name with which a total
function is associated.

∃σ · σ[[∀x · ∃y · e(x , y)]]tt
⇔ expanding using cases for ∀,∃

∃σ · ∀i · ∃j · (σ † {x 7→ i , y 7→ j})[[e(x , y)]]tt

With f ∈ dom σf :

∃σf · ∀x · e(x , f (x ))
⇔ expanding using case for ∀

∃σf · ∀i · ((σ ∪ {f 7→ λx · . . .}) † {x 7→ i})[[e(x , f (x ))]]tt

The Axiom of Choice [17, �3.6] guarantees that f can be associated with an appropriate result for
any speci�c argument x .

After Skolemising a PNF formula, the matrix of the formula can then be converted into CNF
and any universal quanti�ers can be removed since all free variables are assumed to be implicitly
universally quanti�ed in LPF. The resulting formula can then be directly represented in clausal
form.

Theorem 10. Every closed LPF formula can be converted into an LPF formula in clausal form
which is equi-satis�able.

Proof. This is an immediate consequence of Theorem 8, Theorem 9, Theorem 5 and Lemma 3.

5Some texts distinguish Skolem constants but these are just functions with zero parameters.
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In order to reduce the size of formulae represented in clausal form various absorption properties,
such as p ∧ (p ∨ q) ≡ p, are used � as Lemma 3 indicates, they hold in LPF.

5 Refutation and Resolution for LPF

This section investigates the application of refutation procedures and resolution to LPF. These
proof procedures are aimed at supporting or refuting the validity of a useful proportion of sequents.
Refutation converts the issue of sequent satisfaction into a validity question; resolution o�ers a
proof procedure for validity; and uni�cation enlarges the scope of resolvents. There are many
extensions to the basic procedures for standard �rst-order logic some of which are discussed in
Section 6.

5.1 Refutation Procedures for LPF

In two-valued classical logic, a formula e is valid i� ¬ e is unsatis�able and hence the validity
of a formula can be proved by refuting its negation. The above result is important since it
means that, in classical logic, a proof procedure for satis�ability can be used as a refutation

procedure for checking validity [4]. Furthermore, the same approach can be used to check logical
consequence [4, 6]: let Γ = {e1, . . . , en} be a set of formulae, then, in classical logic, Γ |= e holds
i� the formula

e1 ∧ . . . ∧ en ∧ ¬ e (2)

is unsatis�able. This follows in classical logic since any formula must evaluate to one of two truth
values.

(Note that the formulae in Γ are normally assumed to be consistent, i.e. there exists an inter-
pretation that makes all of the formulae in Γ true.)

The application of a refutation procedure in LPF is complicated by the fact that formulae might
not be de�ned in all interpretations and this breaks the duality between validity and satis�ability:
if ¬ e is unsatis�able in LPF, it might evaluate to either false or unde�ned for any interpretation;
it is therefore not possible to infer that e is valid since any interpretation making ¬ e unde�ned
will also make e unde�ned. Note that it is still true in LPF that if ¬ e is satis�able then e cannot
be valid.

The same issue arises with using a refutation procedure to check a logical consequence in LPF:
i) If e1 ∧ . . . ∧ en ∧ ¬ e is satis�able then it is clear that (as in classical logic) Γ ̸|= e in LPF;
ii) However, if e1 ∧ . . .∧ en ∧¬ e is unsatis�able, it cannot be inferred that Γ |= e since there may
exist interpretations in LPF in which e1, . . . , en are all true but e is unde�ned (e.g. |= i ÷ 0 = 1 ∨
¬ (i ÷ 0 = 1)).

One way forward is to note that, in order to show Γ |= e holds in LPF, it is possible to both
refute the false case (as in classical logic) and also to refute the unde�ned (�gap�) case. So, if
unsatis�able is returned from the initial refutation, the de�nedness of the formula e under Γ is
also checked (i.e. Γ |= ∆e). Note that no circularity is introduced by this additional refutation
proof since ∆e must evaluate to a de�ned value. (An optimisation is explored in Section 6.2.)

Theorem 11. Let Γ = {e1, . . . , en} be a set of formulae. Then Γ |= e i� both e1 ∧ . . . ∧ en ∧ ¬ e
and e1 ∧ . . . ∧ en ∧ ¬∆e are unsatis�able.

Proof. ⇒ Suppose Γ |= e. Then every interpretation σ making all the formulae in Γ true must
result in σ[[e]]tt. Therefore, by the de�nition of [[ ]], it must follow that σ[[e1 ∧ . . .∧ en ∧¬ e]]ff and
σ[[∆e]]tt as required.
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⇐ Suppose i) e1 ∧ . . . ∧ en ∧ ¬ e is unsatis�able and ii) Γ |= ∆e. Then by assumption ii),
σ[[∆e]]tt holds for every interpretation σ which makes all the formulae in Γ true. Therefore by the
de�nition of [[∆e]] it follows that for any such σ either σ[[e]]tt or σ[[e]]ff. However, by assumption
i), (σ, tt) ̸∈ [[¬ e]] and so by the de�nition of [[¬ e]] it follows that σ[[e]]tt as required.

In order to automate the check Γ |= ∆e, the refutation procedure being employed needs to be
extended appropriately to handle the ∆ operator. Such an extension for resolution is developed
in the next section.

5.2 Resolution for Propositional LPF

Resolution [33, 4, 17] is a proof procedure for checking the satis�ability of a set of clauses which
is widely used as a refutation procedure. The basic idea behind resolution is to �nd clauses
containing contradictory literals (e.g. literals of the form l and ¬ l) and then resolve these to form
a new clause. This generalises modus ponens to the following (ground) resolution rule:

resolve
l ∨ e1; ¬ l ∨ e2

e1 ∨ e2

Not only does this remain valid in LPF but it is also true that:

resolve∆
l ∨ e1; ¬∆l ∨ e2

e1 ∨ e2

and similarly for ¬ l ∨ e1. In the following, �syntactic clash� is de�ned as the pairs (l ,¬ l), (l ,¬∆l),
(¬ l ,¬∆l).

Resolution works on clauses by repeatedly applying the resolution rule to a set of clauses,
each time adding the newly derived resolved clause to the current set of clauses. (Each pair of
potentially clashing clauses is examined only once.)

In classical propositional logic, the resolvent of two clauses is satis�able if the two clauses are
simultaneously satis�able. The following extends this to propositional LPF.

Theorem 12. Let C1 and C2 be two propositional LPF clauses that contain a syntactic clash.
Let C3 be the resolvent clause formed by using the resolution rule to remove the clashing clauses.
If C1 and C2 are true in some interpretation σ then then C3 is also true in σ.

Proof. As a representative syntactic clash, consider the example of {l} ⊆ C1 and {¬ l} ⊆ C2, l is
a literal, C3 = (C1 \ {l})∪ (C2 \ {¬ l}). For an arbitrary interpretation σ ∈ Σ in which C1 and C2

evaluate to true, there are three cases to consider:

1. σ[[l ]]tt: By the de�nition σ[[¬ l ]]ff; since by assumption some clause in C2 is true in σ, there
must exist another disjunct than ¬ l in C2 such that σ[[l ′]]tt. This ensures that a clause of
C3 evaluates to true in σ.

2. σ[[l ]]ff: This follows by a symmetrical argument to the preceding case.

3. σ /∈ dom [[l ]]: The argument is again similar except that there must be other satisfying
clauses in both C1 and C2.

The argument for other syntactic clashes is similar.

Remembering that a set of clauses corresponds to a conjunction, it follows that two syntactically
contradicting single element clauses indicate that the whole set is unsatis�able. In resolution, such
a step is said to yield an �empty clause� and the following lemma is trivial.

13



Lemma 13. If the empty clause is derived when applying the resolution rule to a set of clauses
S , then S is unsatis�able.

Proof. Without loss of generality, take as a representative case two clauses: {¬∆l} and {¬ l}.
From the de�nition given in Figure 3, it is immediate that there can be no σ such that σ[[¬∆l ]]tt
and σ[[¬ l ]]tt.

The following theorem con�rms that resolution is a sound proof procedure for propositioal
LPF.

Theorem 14. (Soundness) If the empty clause is derived by applying the ground resolution
procedure to a set of clauses S , then S is unsatis�able.

Proof. Follows from Theorem 12 and Lemma 13 by induction on the number of steps of the
resolution procedure.

Theorem 15. (Completeness) If a set of propositional LPF clauses is unsatis�able then applying
ground resolution procedure to S will result in the empty clause being derived.

Proof. Follows, for example, Ben Ari's proof [4, Th 4.23] based on semantic trees.

5.3 General Resolution Procedure for LPF

As in the standard literature, a substitution is a map of variables to terms of the form:

ϕ = {x1 7→ t1, . . . , xn 7→ tn}

where each xi is a distinct variable and each ti is an integer term. The application of a substitution
ϕ to a term t , denoted ϕ[t ], is the simultaneous replacement of each xi ∈ dom ϕ in t with the
respective ϕ(xi). In a slight abuse of notation, ϕ[C ] is used to represent the application of a
substitution ϕ to all the terms in a clause C . Uni�cation [33, 4, 17, 7] is the process of �nding a
substitution that makes two terms identical, that is, �nding whether there exists a substitution ϕ
for the variables in two terms t1 and t2, such that:

ϕ[t1] = ϕ[t2]

If such a substitution exists then it is known as a uni�er for t1 and t2. If two terms can be uni�ed
then they have a most general uni�er (mgu), which is unique up to variable renaming. A mgu for
two terms t1 and t2 is a uni�er ϕ such that any other uni�er ϕ′ for t1 and t2 can be derived by
composing ϕ with a further substitution ϕ′′.

For predicate logic, the general resolution procedure [4] uses uni�cation to generate �clashing
clauses� that can be resolved. Since the clauses can contain variables, the aim is to resolve on the
most general forms of clauses. This is captured by the general resolution rule: Let C1 and C2 be
two clauses such that l1 ∈ C1 and ¬ l2 ∈ C2; Then if the literals l1 and l2 have an mgu ϕ then the
two clauses C1 and C2 can be resolved to the new resolvent clause

(ϕ[C1] \ ϕ[{l1}]) ∪ (ϕ[C2] \ ϕ[{¬ l2}])

Given a pair of literals of the form (l1,¬ l2), (l1,¬∆l2) or (¬ l1,¬∆l2) then they are said to
represent a (uni�cation) syntactic clash i� the underlying literals l1 and l2 can be uni�ed.

Formalising the above rule in LPF by extending it to syntactic clashes needs care since uni�ca-
tion may substitute variables, which range over only de�ned values, for terms which have unde�ned
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interpretations. To illustrate the potential problems with uni�cation in LPF, consider that if a
clause p(t) holds in an interpretation then p(ϕ[t ]) must also hold for any substitution ϕ in classical
logic. This property requires quali�cation in LPF since a substitution may introduce an unde�ned
term into the clause resulting in p(ϕ[t ]) being unde�ned.

Given the above problem with uni�cation, the general resolution rule as stated above can
produce unexpected results. For example, consider the two clauses C1 = {p(x , f (0)), q(x )} and
C2 = {p(g(0), y), r(y)}, and the resolvent clause C3 = {q(g(0)), r(f (0))}, derived using mgu
ϕ = {x 7→ g(0), y 7→ f (0)}. Suppose C1 and C2 are true in an interpretation σ in which the
terms f (0) and g(0) are unde�ned. Then it must be true that the literals q(x ) and r(y) are
true. However, the resolvent C3 cannot be true in σ, it must be unde�ned given the assumption
of strictness. This highlights again the problem with uni�cation; the literals q(x ) and r(y) are
implicitly universally quanti�ed and are true in σ for all well-de�ned integer values. However,
uni�cation allows the variables to be substituted by unde�ned terms thus forcing the literals to
become unde�ned.

A slightly di�erent problem can be observed when cancelling using literals of the form ¬∆l .
Consider the two clauses {p(x ), q(y)} and {¬∆(p(f (0)), r(z )}. Applying the general resolution
rule using the mgu ϕ = {x 7→ f (0)} will result in the resolvent clause {q(y), r(z )}. However, note
that in an interpretation σ where f (0) is unde�ned it is possible for both the clauses p(x ) and
¬∆(p(f (0)) to be true (i.e. they no longer clash). Therefore, in such an interpretation there is no
guarantee that the resolvent clause {q(y), r(z )} will be true.

To address the above issues additional uni�cation constraints need to be included in the re-
solvent clause to take account of the possibility of unde�ned terms. These uni�cation constraints
make use of a de�nedness operator (t ∈ Z) that indicates if a term t represents a de�ned (integer)
value. More formally, given a term t the de�nedness operator (t ∈ Z) is de�ned by

[[(t ∈ Z)]] = {(σ, tt) | σ ∈ dom [[t ]]} ∪ {(σ, ff) | σ ∈ Σ ∧B σ ̸∈ dom [[t ]]}

In the example above, the clauses {p(x ), q(y)} and {¬∆(p(f (0)), r(z )} are now resolved to the
clause {q(y), r(z ), (f (0) ∈ Z)}. Thus, if the term f (0) is interpreted as being unde�ned in σ then
the resolvent clause will still be true in σ. Such additional uni�cation constraints will need to be
resolved with de�nedness conditions, as illustrated in step 12 of the resolution trace example for
Property 1 given in Figure 4 (and, incidentally, foreshadowed in step 1.3.1 of the natural deduction
proof in Figure 2).

The above idea can be formalised by an LPF resolution rule as follows. Let C1 and C2 be
clauses and suppose l1 ∈ C1 and l2 ∈ C2 such that (l1, l2) is a syntactic clash under an mgu
ϕ = {x1 7→ t1, . . . , xn 7→ tn}. Then C1 and C2 can be resolved to a new clause

(ϕ[C1] \ ϕ[{l1}]) ∪ (ϕ[C2] \ ϕ[{l2}]) ∪ θ

where θ = {¬ (t1 ∈ Z), . . . ,¬ (tn ∈ Z)} is a set of uni�cation constraints derived from the mgu ϕ.
The following result shows that the new LPF resolution rule preserves satis�ability.

Theorem 16. Let C1 and C2 be two LPF clauses that contain a (uni�cation) syntactic clash.
Let C3 be the resolvent clause formed by using the resolution rule to remove the clashing clauses.
If C1 and C2 are true in some interpretation σ then then C3 is also true in σ.

Proof. As a representative syntactic clash, consider the example of p(t1) ∈ C1 and ¬ p(t2) ∈ C2

such that t1 and t2 unify with an mgu ϕ. Then they resolve to the following clause:

C3 = (ϕ[C1] \ ϕ[{p(t1)}]) ∪ (ϕ[C2] \ ϕ[{¬ p(t2)}]) ∪ θ
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For an arbitrary interpretation σ in which σ[[C1]]tt and σ[[C2]]tt, there are two cases to consider.
(Note in a slight abuse of notation the clausal form representation is used below in which variables
are implicitly universally quanti�ed.)

Case 1: σ[[p(t1)]]tt: It follows that (σ, tt) ̸∈ [[¬ p(t2)]] and so σ[[C2 \ {¬ p(t2)}]]tt must hold.
Given that applying the substitution ϕ allows for the introduction of unde�ned terms there are
two subcases to consider:
i) σ[[ϕ[C2 \ {¬ p(t2)}]]]tt: Then clearly σ[[C3]]tt holds for the resolvent clause.
ii) σ /∈ dom [[ϕ[C2 \ {¬ p(t2)}]]]: Then the substitution ϕ must have introduced an unde�ned term
and so there must exist a uni�cation constraint θi ∈ θ such that σ[[θi ]]tt. It therefore follows that
σ[[C3]]tt.

Case 2: σ[[p(t1)]]ff or σ /∈ dom [[p(t1)]]: This follows along similar lines to the preceding case
but is based on the possible values of the term ϕ[C1] \ ϕ[{p(t1)}].

The arguments for the other syntactic clashes follow by similar case analyses.

The general resolution rule can be shown to be sound for LPF. Again, soundness means that de-
riving the empty clause when applying the general resolution procedure indicates that the original
set of clauses is not simultaneously satis�able.

Theorem 17. (Soundness) If the empty clause is derived when applying general resolution to a
set of clauses S , then S is not simultaneously satis�able.

Proof. The proof uses Theorem 16 and follows similar lines to Theorem 12.

A procedure called factoring [4, 7] is required alongside the resolution procedure to ensure that
uni�able literals that occur in a single clause are merged. Care is again needed when formulating
a factoring rule in LPF due to the problems with uni�cation in LPF as discussed above.

Lemma 18. Let C be a clause containing two literals {l1, l2} ⊆ C such that l1 and l2 can be
uni�ed by an mgu ϕ. If C is true in an interpretation σ then ϕ[C \{l2}]∪θ is also true in σ, where
θ is the set of uni�cation constraints derived from ϕ.

Proof. By case analysis along similar lines to the proof of Theorem 16.

Soundness of the modi�ed resolution procedure is crucial; as indicated in Section 1, research is
on-going to re-establish resolution completeness for LPF. The key point is that the addition of the
de�nedness operator (t ∈ Z) coupled with the assumption of strictness of functions and predicates
means that further opportunities for resolving occur that are not covered by the current resolution
rules. To illustrate the problem, consider the clauses {p(f (x ))} and {¬ (f (0) ∈ Z)}; they are not
simultaneously satis�able but we cannot derive the empty clause from them. What appears to
be needed is a new resolution rule that allows such clashes to be resolved. Work is ongoing to
formulate such rules and thus derive completeness for general resolution in LPF.

5.4 Illustrative Examples (resumed)

Consider again the earlier counter example that |= p ∨ ¬ p does not hold in LPF. Resolution as
part of a refutation procedure yields the empty clause (unsatis�ability); but for LPF, it is also
necessary to prove that |= ∆e holds to be able to infer that |= e holds. In the modi�ed LPF clausal
form, the negation ¬∆(p ∨ ¬ p) is represented �after simpli�cation� as the unit set containing
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1 ∀i · i = 0 ⇒ ¬ (i − 1 = 0) assumption
2 ∀i · ¬ (i = 0) ⇒ i ÷ i = 1 assumption
3 ∀i , j · (i − j ) ∈ Z assumption
4 ∀i · (i ÷ i = 1) ∨ ((i − 1)÷ (i − 1) = 1) goal
5 {¬ (i = 0),¬ (i − 1 = 0)} clausal form(1)
6 {i = 0, i ÷ i = 1} clausal form(2)
7 {(i − j ) ∈ Z} clausal form(3)
8 {¬ (c ÷ c = 1)} clausal form(¬ 4)
9 {¬ ((c − 1)÷ (c − 1) = 1)} clausal form(¬ 4)
10 {c = 0} resolve(6, 8)
11 {c − 1 = 0} ∨ ¬ ((i − 1) ∈ Z) resolve(6, 9)
12 {c − 1 = 0} resolve(11, 7)
13 {¬ (c − 1 = 0)} resolve(5, 10)
14 empty clause resolve(12, 13)

Figure 4: An illustrative proof of Property 1 using resolution as part of a refutation procedure.

the clause {¬∆p} which cannot be refuted and therefore this example is satis�able and the result
̸|= p ∨ ¬ p is inferred.

Returning to the example of Property 1, an example proof of this property using a refutation
procedure is given in Figure 4 (where c is a Skolem constant). This resolution proof makes use of
uni�cation as needed.

A proof that the goal is de�ned is similar but the next section indicates that there is a more
e�cient procedure.

6 Conclusions and Further Work

6.1 Summary

LPF is a logic designed for reasoning about logical formulae that can include partial terms. This
paper considers applying the fundamental proof procedures of resolution and refutation procedures
to LPF; it identi�es potential pitfalls that arise in doing so and outlines extensions and modi�-
cations that are required to carry these techniques over to LPF. Illustrative proofs are provided
which are based upon a semantic de�nition of LPF.

Since LPF retains properties such as the commutativity and distributivity, the clausal form
of classical logic conversions carries over to LPF. The de�nedness operator ∆ in LPF, however,
results in the need for extra conversion rules. This has the undesirable result of leading to more
expensive clausal form formulae � fortunately the use of ∆ is constrained.

The concept of resolution carries over from the classical case to LPF when considering satis-
�ability. However, the use of a refutation procedure in LPF brings about extra overhead due to
the presence of �gaps�. An LPF refutation procedure requires that de�nedness of the consequent
needs to be established. There are, however, optimisations available.

Much, of course, remains to be done. It would be tempting to initiate work on mechanising the
modi�ed procedures described in this paper but the authors intend to resolve some other issues
before they start programming. The current investigation of the fundamental proof procedures
needs to be extended to consider the many optimisations that have arisen over the years. Equally
important is experimentation: Schmalz's thesis [35] sets an admirable example in using genuine
industrial benchmarks for checking performance.
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6.2 Optimisations

With respect to the proof procedures presented in this paper, there is an optimisation described
in [28] that shows∆ proofs are only needed in the case where resolution is between clauses from the
conclusions of sequents. Similarly, [28] discusses ways of reducing the overhead from uni�cation
constraints (e.g. by noting the Skolem functions are total).

As has been made clear in the introduction, this paper explores only the basic (but fundamen-
tal) proof procedures. Numerous other heuristic techniques have been developed to improve the
e�ciency of the resolution procedure � the interested reader is referred to [37, 11]. Some of the
known optimisations are addressed in [28]. For example, the Davis-Putnam procedure is tackled
in [28, Lemmas 28/29] and an optimisation for PNF on page 214 of the same thesis.

Also of considerable importance is support for equality. In Section 5 the symbol for equality is
not constrained to match the semantics for some particular notion of equality. The equality symbol
is just a binary predicate that could be interpreted arbitrarily. The obvious approach to handling
the equality relational operator in �rst-order predicate logic is to add axioms stating that equality
is re�exive, symmetric and transitive as well as axioms that assert the congruence (∀x · ∀y · x = y
⇒ f (x ) = f (y)) of each function and predicate used. Given such axioms, resolution can be
used to solve �rst-order logic problems with equality. This approach is, however, ine�cient since
it leads to an explosion in the number of clauses required. The standard approaches �including
paramodulation [32, 2, 17]� and their applicability in an LPF context are considered in [28].

6.3 Related work

A mechanisation of Kleene logic for partial functions is given in [25]. Kleene's logic is formalised in
an order-sorted three-valued logic and a resolution calculus is presented. This di�ers from what is
proposed in this paper which undertakes a thorough investigation of where �unde�nedness� arises
and this can lead to a reduction in the number of de�nedness obligations that are needed as well
as a reduction in the size of the resulting clausal form of a formula (when using ∆).

Matthias Schmalz's ETH thesis [35] provides great insight into the mechanisation of the logic
of Event-B. As mentioned above, he uncovered a number of unsoundnesses in the RodinTools
and rebuilt a sound foundation in Isabelle. Interestingly, he views Event-B as having a 3-valued
logic. Other important contributions include �directed rewriting� and the link made to interpreting
sequents in an �SW� semantics (cf. [31]). Schmalz's new �unlifting� process is far more e�cient
than its predecessors but still experiences major expansion.
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A Details of Proofs

A.1 Lemma 3

This section provides some illustrative proofs for Lemma 3 based on expanding [[e]].

Detailed proof of Lemma 3.(i). e ≡ ¬¬ e, for any formula e.

σ[[¬¬ e]]tt
⇔ expand using cases for ¬

σ[[¬ e]]ff
⇔ expand using cases for ¬

σ[[e]]tt

σ[[¬¬ e]]ff
⇔ expand using cases for ¬

σ[[¬ e]]tt
⇔ expand using cases for ¬

σ[[e]]ff

Detailed proof of Lemma 3.(ii). ¬ (e1 ∨ e2) ≡ (¬ e1) ∧ (¬ e2)

σ[[¬ (e1 ∨ e2)]]tt
⇔ expand using cases for ¬

σ[[e1 ∨ e2]]ff
⇔ expand using cases for ∨

σ[[e1]]ff ∧B σ[[e2]]ff
⇔ using de�nition of ¬

σ[[¬ e1]]tt ∧B σ[[¬ e2]]tt
⇔ using de�nition of ∧ (De�nition 2)

σ[[(¬ e1) ∧ (¬ e2)]]tt

σ[[¬ (e1 ∨ e2)]]ff
⇔ expand using cases for ¬

σ[[e1 ∨ e2]]tt
⇔ expand using cases for ∨

σ[[e1]]tt ∨B σ[[e2]]tt
⇔ using de�nition of ¬

σ[[¬ e1]]ff ∨B σ[[¬ e2]]ff
⇔ using de�nition of ∧ (De�nition 2)

σ[[(¬ e1) ∧ (¬ e2)]]ff

A.2 Lemma 7

Detailed proof of Lemma 7. Re (i) ∆(∃x · e) ≡ ∀x ·∆e ∨ ∃x · (e ∧∆e)
Using the abbreviation σi = σ † {x 7→ i} we expand as follows:
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σ[[∆∃x · e]]tt
⇔ expand using cases for ∆

σ ∈ dom [[∃x · e]]
⇔ expand using cases for ∃

∃i · σi [[e]]tt ∨ ∀i · σi [[e]]ff

σ[[∀x ·∆e ∨ ∃x · (e ∧∆e)]]tt
⇔ expand using cases for ∨ and commute

σ[[∃x · (e ∧∆e)]]tt ∨ σ[[∀x ·∆e]]tt
⇔ expand using cases for ∃ and ∀

∃i · (σi [[e ∧∆e]]tt) ∨ ∀i · σi [[∆e]]tt
⇔ expand using cases for ∧

∃i · (σi [[e]]tt ∧ σi [[∆e]]tt) ∨ ∀i · σi [[∆e]]tt
⇔ expand using cases for ∆ (twice)

∃i · (σi [[e]]tt ∧ σi ∈ dom [[e]]) ∨ ∀i · σi ∈ dom [[e]]

The two expressions can be proved equivalent, a (pair of) pedantic natural deduction proof(s)
would be:

from ∃i · σi [[e]]tt ∨ ∀i · σi [[e]]ff
1 from ∃i · σi [[e]]tt
1.1 ∃i · σi [[e]]tt ∧ σi ∈ dom [[e]]

infer ∃i · (σi [[e]]tt ∧ σi ∈ dom [[e]]) ∨ ∀i · σi ∈ dom [[e]] ∨-I (1.1)
2 from ∀i · σi [[e]]ff

infer ∃i · (σi [[e]]tt ∧ σi ∈ dom [[e]]) ∨ ∀i · σi ∈ dom [[e]] ∨-I (h2)
infer ∃i · (σi [[e]]tt ∧ σi ∈ dom [[e]]) ∨ ∀i · σi ∈ dom [[e]] ∨-E (h,1,2)

from ∃i · (σi [[e]]tt ∧ σi ∈ dom [[e]]) ∨ ∀i · σi ∈ dom [[e]]
1 from ∃i · (σi [[e]]tt ∧ σi ∈ dom [[e]])
1.1 ∃i · σi [[e]]tt ∧-Er(h1)

infer ∃i · σi [[e]]tt ∨ ∀i · σi [[e]]ff ∨-I (1.1)
2 from ∀i · σi ∈ dom [[e]]

infer ∃i · σi [[e]]tt ∨ ∀i · σi [[e]]ff dom [[e]] = B
infer ∃i · σi [[e]]tt ∨ ∀i · σi [[e]]ff ∨-E (h,1,2)
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And:

σ[[∆∃x · e]]ff
⇔ expand using cases for ∆

σ /∈ dom [[∃x · e]]
⇔ expand using cases for ∃

¬∃i · σi [[e]]tt ∧ ¬∀i · σi [[e]]ff
⇔ de Morgan (twice)

∀i · ¬σi [[e]]tt ∧ ∃i · ¬σi [[e]]ff

σ[[∀x ·∆e ∨ ∃x · (e ∧∆e)]]ff
⇔ expand using cases for ∨ (and commute)

σ[[∃x · e ∧∆e]]ff ∧ σ[[∀x ·∆e]]ff
⇔ expand using cases for ∃ and ∀

∀i · σi [[e ∧∆e]]ff ∧ ∃i · σi [[∆e]]ff
⇔ expand using cases for ∧

∀i · (σi [[e]]ff ∨ σi [[∆e]]ff) ∧ ∃i · σi [[∆e]]ff
⇔ expand using cases for ∆ (twice)

∀i · (σi [[e]]ff ∨ σi /∈ dom [[e]]) ∧ ∃i · σi /∈ dom [[e]]

The two expressions can be proved equivalent, a (pair of) pedantic natural deduction proof(s)
would be:

from ∀i · ¬σi [[e]]ff ∧ ∃i · ¬σi [[e]]ff
1 ∀i · ¬σi [[e]]ff ∧-El(h)
2 ∃i · ¬σi [[e]]ff ∧-Er(h)
3 ∀i · σi [[e]]b ⇒ b ∈ B [[e]]
4 ∀i · σi [[e]]ff ∨ σi /∈ dom [[e]] 1, 3
5 ∃i · σi /∈ dom [[e]] 1, 2

infer ∀i · (σi [[e]]ff ∨ σi /∈ dom [[e]]) ∧ ∃i · σi /∈ dom [[e]] ∧-I(4,5)

from ∀i · (σi [[e]]ff ∨ σi /∈ dom [[e]]) ∧ ∃i · σi /∈ dom [[e]]
1 ∀i · σi [[e]]ff ∨ σi /∈ dom [[e]] ∧-El(h)
2 ∃i · σi /∈ dom [[e]] ∧-Er(h)
3 ∀i · ¬σi [[e]]tt 1
4 ∃i · ¬σi [[e]]ff 2

infer ∀i · ¬σi [[e]]ff ∧ ∃i · ¬σi [[e]]ff ∧-I(3, 4)
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Re (ii) ∆(∀x · e) ≡ ∀x ·∆e ∨ ∃x · (¬ e ∧∆e)
Follows from the abbreviation

[[∆∀x · e]]
= [[∆¬∃x · ¬ e]]
= [[∆∃x · ¬ e]]
= [[∀x ·∆¬ e ∨ ∃x · (¬ e ∧∆¬ e)]]
= [[∀x ·∆e ∨ ∃x · (¬ e ∧∆e)]]
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