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Abstract

In the AI4FM project we have set ourselves the challenge of building a system that can learn
high-level proof strategies by monitoring expert users. A typical level of ambition is users who
are proving the feasibility and reification of medium-sized specifications. The purpose of this
report is to provide a source document. In particular, it (a) summarises some experiments in
the use of verification tools to determine how realistic the ambition is of extracting the “why”
from experts’ use of verification tools; and, (b) provides a revision of an earlier description of
an abstract model of an AI4FM system that is linked to the case studies.
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Chapter 1

Introduction

In a UK-funded project known as AI4FM1 we have set ourselves the challenge of learning
proof strategies from experts. The challenge is discussed in several earlier publications includ-
ing [JFV13].

The purpose of this report is to provide source material from an experiment in the use
of verification tools to determine how realistic the ambition is of extracting the “why” from
experts’ use of verification tools. That is, the underlying intent behind certain decisions in
both modelling, proof strategies, the way to “phrase” lemmas, etc. It is useful to think of
the task we face in deducing/re-using (high level) strategies by comparing it to the task of
designing a “programming language” — we find it better to design a language from its state.
Our hypothesis for the project is:

Enough information-extraction can be automated from a mechanical proof that future
proofs of examples of the same class can have increased automation

One crucial point: the importance of starting the analysis of what the user (expert) is doing
top down — this is the key to getting an appropriate “parse” of the expert’s steps. Looking
at the proof steps from a finished proof script is a much harder way of understanding what is
going on. Our hope was to enable through this process transference of proof strategies between
problems to the point of getting full automation. Although we still believe it is achievable, we
are still a way off, hence the use of “increased automation” instead of “full automation” in the
hypothesis.

In this report, a non-trivial example is used. We believe that too small an example is unlikely
to clarify the issues with high-level proof strategies; on the other hand, genuine industrial
examples are just too large for consideration. We also present general lessons from such larger
proof exercises, such as [DEP12a, FW08, DEP12b, FW09, Sch12, JOW06]. We are clear that
AI4FM will only achieve its objectives if it can work for examples as large as those used by
Schmalz in his admirable engineering comparisons in [Sch12], by other examples met in the
DEPLOY project2 or in [FW08, Fre04, FW09]. This is, however, for the future. The “Heap”
example here offers just enough challenges to illustrate key points in our approach to gathering
information from an expert’s proof (see Chapters 2 and 4 for more detail).

In [JFV13], we describe the principles and processes behind what we believe must be cap-
tured during an expert’s proof in order to be able to replay the ideas in related contexts. In
the current report, we describe both the thought processes behind a modelling exercise, as well
as the “proof engineering” principles to get there. We outline key stages of the development
process in our description, including mistaken paths and their correction. We also summarise
principles from larger examples worked so far.

1See http://www.ai4fm.org
2See http://www.deploy-project.eu/
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1.1. INFERRING PROOF INTENT

Before a stated conjecture is proved, initial failures are common and have various sources.
Reasons include, but are not limited to, mistaken understanding of mathematical notation by
engineers, misinterpretation of requirements and unnecessarily complex modelling decisions, etc.
Proof experts can fail initially as they are not necessarily familiar with the problem domain. In
an industrial setting where hundreds of (structurally similar) proof obligations emerge, this is
a serious problem. By prescriptively capturing the intent behind what an expert/engineer does
and –more importantly– how does one recover from failure, our aim is to reduce the amount of
effort involved in discharging remaining proof obligations, once a proof is finished. That is, by
analysing the way experts (fail and) produce proofs, we hope to transfer some proof ideas from
one problem to another through a set of expert proofs.

Our approach was to mechanise models using two different theorem provers in order to
test our hypothesis that proof intent, and sometimes even strategies, are transferable between
problems of similar shape. This is less difficult to identify across problems within the same
prover, yet it also transfers between provers in some cases. Obviously, different provers have
different strengths and ways of interaction. We focus on Isabelle (see Chapter 5), and discuss
additional proof efforts in Z/EVES in an appendix (see Appendix G and Chapter 4).

The heap example comes from [JS90, Chapter 7] and uses VDM (e.g. [Jon90]), which is
similar to other model-oriented specification languages used in industry, such as Z [WD96] and
(Event-)B [Abr96, Abr10]. Perhaps the least uniform decision between such formal languages
is how they handle undefined terms that arise from the application of partial functions. VDM
uses the “Logic of Partial Functions” [BCJ84, JLS12], which can be thought of as a three-valued
logic.

VDM generates proof obligations for well-formedness (i.e. specifications denote: functions
are within their domain and unique existential quantification are checked), feasibility of state
operations (i.e. operation preconditions are strong enough to ensure that postconditions can be
satisfied) and data reification proof obligations (PO) (i.e. that changes in data representations
to add extra detail respect previous design decisions).

In our experiment, we first typeset models and all its layers of refinement using the VDM
Overture Tools3. This enabled us to identify a few minor errors in typing (e.g. sequence types
used as sets) and other minor syntactical issues. Overture generates well-formedness and feasi-
bility proof obligations but, unfortunately, no refinement POs. Moreover, there is no theorem
proving support for VDM to our knowledge.

To discharge proof obligations, we used two theorem provers: Isabelle [Pau94, NPW02a,
WWW13] and Z/EVES [Saa99], the former is a well-known general purpose theorem prover,
whereas the latter is a industrial-strength theorem prover specialised for the Z notation. Apart
from our having in-house expertise, these are two provers of different families (i.e. LCF [Pau94]
and Boyer-Moore [KMM09]), which we think will highlight the issues and differences between
proof styles and strategies.

We are ensuring models denote, hence undefinedness will not participate in proofs to follow.
A study on whether proofs from different logics transfer across theorem provers is an interesting
subject in itself and has been discussed in [WF08] regarding using the Z/EVES prover to
discharge VDM proof obligations.

1.1 Inferring proof intent

We collect meta-information about models and proof scripts throughout the proof development
process. Some of this information, such as expected typing features or expected signatures
(LHS) of lemmas that would discharge or weaken current goals, can be automatically inferred.

Within formal methods (and across different methods like VDM, Z or B), proof obligations
tend to have a predictable shape. This repetition in the phrasing of theorems suggests the

3See http://www.overturetool.org
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CHAPTER 1. INTRODUCTION

possibility of repeated proofs. This is corroborated in practice, providing proof experts are
available. Our aim is to de-skill this process by, given a set of proofs from an expert and
the data we collect, provide proof support to discharge the remainder (similar/familiar) proof
obligations.

User annotations might declare specific (and open-ended) proof intent, such as existential-
witnessing often appearing in feasibility proofs, domain-element mapping for well-definedness
in proofs involving maps, type-definition morphisms, etc., are also part of this process. We
want to capture the “Whys” within various decisions taken by the user. For example, was a
particular representation of a data type used for convenience, previous experience, ease of proof,
or something else?; what kind of extra annotation to add to the description of the problem that
would help improving proof automation?; how to inspect the proof traces of different provers
to infer/measure the quality of (different) formulations?; etc. Given that most time spent on
proof involves failure of some kind, we are more interested in the theorem proving processes
leading to the final proof, rather than just the final (usually polished/optimised) proof scripts
and theory representations.

The aim is to detect the most relevant meta-proof information needed to characterise, and
eventually infer, proof strategies and/or suggest lemmas. That is, to infer possible lemmas
to suggest, and indeed proof script snippets to reproduce/adjust given (structurally repeated)
scenarios on different problems. We call this our language of how to say “Why” within a proof
step/scenario (see Chapter 3). These abstract reasons on why certain steps were taken are then
used to prune the possible proof search space.

We are interested in capturing the modifications in the model, as well as the “aha” moments
within a proof (ie., those—often final—steps leading to a neat solution). Within research
reports from AI4FM, we have an initial catalog of such “whys” to be used for pruning the
proof search space, in particular with reasons/ideas coming from rippling [BBHI05a] and from
a set of proof scenarios such as: identification of induction within goals; proof chunking (or
problem splitting); n-proofs (e.g. n—different—proofs from same goal); cut-rules (e.g. lemma
identification and introduction); goal generalisation and anti-unification; etc. Thus, failed proof
attempts are as important as the final proof script: they contain the thought process towards
the end result. Hopefully, given our previous experience with proof of large scale models [FW08,
BFW09], and enough proof data collected by both extra proof annotations and by listening to
the interactions between users and theorem provers, we will be able learn proof strategies of
interest.

We are also investigating the use of machine learning to mine useful features from this data
in a process akin to what is described in preliminary tools in this area4. The meta-information
collected is guided by a formal development, again using VDM and proof, where more details are
in [JFV13]. Our tools extend the Eclipse platform by embedding theorem provers of interest
in the background, such that we are able to eavesdrop on the interactions between the user
writing specifications, failing at proof obligations and then the changing the shapes of lemmas
or models, within the theorem proving system used in the process.

1.2 Proof engineering

We call the streamlining of such proof processes proof engineering. That is, before we can tackle
any proof obligation born from modelling, we first need to shape and polish models to fit the
needs of a mechanical theorem prover, yet at the same time, keep faithful to the original design
intent (i.e. no model adjustment for the sake of an easier proof). We claim that this setup is
crucial for the successful mechanisation of any industrial-scale specification regardless of specific
method or prover. In Chapter 4, we discuss how we systematically performed such steps for
the heap model within the context of both Z/EVES (see Appendix G) and Isabelle/HOL (see

4See http://www.computing.dundee.ac.uk/staff/katya/ML4PG/
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1.3. PROOF OBLIGATIONS IN FORMAL METHODS

Chapter 5); it explores two specification methods and two theorem provers, which are quite
different in nature: Z is described with untyped classical logic, whereas VDM used the Logic of
Partial Functions; Z/EVES belongs within the Boyer-Moore family of theorem provers, whereas
Isabelle/HOL belongs to the LCF (Logic of Computable Functions) family.

We see the exercise with these variations as crucial, since it illustrates the generality of
our ideas. Even though proof strategies and lemma suggestions for Z might not transfer across
provers as readily as across formalisms — this is not that surprising. We have empirical evidence
that these techniques are transferable to other notations, like VDM or B, and other theorem
provers.

Importance of lemmas Before one can get to the nub of the problem within industrial-
scale proof obligations, which almost always involve large formulae (i.e. tens of pages long) and
multiple (i.e. over 100) variables, we claim it is fundamental to have in place a considerable
amount of machinery to enable automation to an acceptable level. Proof engineering is es-
sential for scalability: it takes a good amount of unrelated proof effort in order enable one to
tackle the actual proof obligations of interest. Lemmas are useful whenever one needs to ei-
ther: decompose a complex problem; fine-tune the theorem prover’s rewriting abilities to given
goals; generalise a solution of some related (usually more abstract) problem; and to provide
alternative solutions/encodings of the same data structure/algorithm being modelled; etc5.

1.3 Proof obligations in formal methods

Well-formedness proofs involve application of partial functions and uniqueness of existential
quantifiers. Their complexity is directly proportionate to the complexity of involved data types.
In the abstract specification of the heap, unnecessarily difficult auxiliary functions are used (see
Chapter 2). Overcoming the difficulty these data representation choices make for proof is a key
part of the proof process, although what it achieves is not immediately visible: the appropriate
setup of lemmas and type morphisms is not perceptible until the top-level POs are discharged.
If only one inspected the proof traces leading up to the successful (neatly constructed final)
proof script!

Arguably, if proof mechanisation was in mind, the heap might have been modelled differently.
That is not the point, though. The point is, given a model “warts and all”, what can expert
use of tools do to improve proof automation, or indeed point out issues to engineers where
automation is likely to fail? Once such process is in place, the well-formedness proofs become
relatively straightforward.

Feasibility proofs are harder: they require finding witnesses for the after state and outputs
providing the before state invariants, the inputs and the operation predicates themselves. Be-
yond just proof engineering over types, extra lemmas exposing key relationships between the
state and operation invariants are often necessary. And this can make the proof effort more dif-
ficult. Refinement proofs establish a link between abstract and concrete specifications and tend
to be repetitive and tedious. They are also the most complex of the POs of interest discussed
here.

1.4 Outline

The rest of this report is organised as follows:

• Chapter 2 explains our (final) model of two levels of representation of the Heap storage
problem. It describe the issues regarding the data representation invariant, as well as

5This list is not exhaustive, but those that came up during the development involving Tokeneer’s abstract
specification [CB08].
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how the first refinement from levels 0 to 1 is made. It is directly related to Chapter 4,
which represents and evolution of the models from the original in VDM [JS90, Chapter 7],
through various versions in both Z/EVES (Appendix G) and Isabelle (Chapter 5).

• Chapter 3 describes the AI4FM contribution to how to represent proof processes by means
of bodies of knowledge. They represent meta-level structure and information regarding
dependencies between theories and problems of interest. These models are at the heart
of our Eclipse proof processing tools (see Section 7.2).

• Chapter 4 describes the evolution between models, from the originals through to the
current one in Chapter 2.

• Chapter 5 describes the encoding of the model in Chapter 2 into Isabelle. This includes
resolving issues of data type representation, such as data type invariants and VDM maps,
within Isabelle’s type system. We elided discussion about undefinedness, and we assume
the models to be well-formed, except at places like partial functions such as locs-of , which
we use the Isabelle undefined marker, which should never appear in the middle of proofs.

• Chapter 6 discusses the proofs resulting from the efforts of Chapter 5.

• Chapter 7 presents our conclusions, points for discussion and future work.

• Appendix G presents the links to various resources related to the Z/EVES models and
proofs discussed partially in Chapter 4.
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Chapter 2

Modelling heap storage

In this chapter we present a VDM development of a HEAP memory manager. From an initial
abstract specification, a design is given at increasing levels of (representation) detail.

The original specification and development from [JS90, § 7] is discussed in Chapter 4, to-
gether with a historical perspective on how and why this original model evolved to what is
summarised in this Chapter.

We chose the HEAP problem as it is well known, is abstractly simple, and has some non-
trivial refinement proofs (albeit with relatively easy retrieve functions between state represen-
tations). The original VDM development is given as a textbook example for modelling and
refinement using VDM and it does refer to some of the involved refinement proofs (i.e. different
state representations are compatible), yet little is said about feasibility (i.e. operation precondi-
tions are strong enough to to ensure that the postconditions are satisfiable) or well-formedness
(i.e. functions are applied within their domains) proofs, or any sanity checks (i.e. desirable
properties of the model). In our development, we discharge proof obligations related to these
four levels of consistency checking across different layers of data refinement.

We remained as faithful as reasonable to George’s original model, up to the point where
design decisions appeared to us to be questionable or mistaken. What we did not do was to
change the model just to make proofs easier; we believe that in larger industrial models that is
not a practical option and that difficulties in proof are better tackled by introducing lemmas
etc.

2.1 Heap as a set of (contiguous) locations (level 0)

The specification (Level 0) of a HEAP store manager offers two simple operations NEW 0
requests an allocation of s contiguous bytes and DISPOSE0 frees a specific contiguous sequence
of bytes. The state of this abstract specification is simply a set of locations:

Free0 = Loc-set

The issue of handling adjacency is handled by accepting that Loc is synonomous with N.
The basic function for constructing a range of memory locations given an initial location

and size is called locs-of . At this level, memory is modelled as a set of locations:
locs-of : Loc × N1 → Loc-set

locs-of (l ,n) 4 {l , . . . , l + n − 1}

A predicate is-block is also defined to verify if a memory range exists in a set of locations:
is-block : Loc × N1 × Loc-set→ B
is-block(l ,n, ls) 4 locs-of (l ,n) ⊆ ls

10
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The heap operations at level 0 are defined next. They use locs-of and is-block to construct
the necessary range of memory locations and update the state accordingly. For NEW , we
return a single location—the starting location of the memory allocated—across all levels with
the assumption that allocated location sizes will be respected. The state is updated by removing
the set of allocated locations from the free store. For DISPOSE , we ensure that the locations
being returned are not already free and perform the inverse operation (union) to add the
deallocated memory back to the free store.

NEW 0 (s:N1) r : Loc

ext wr f0 : Free0

pre ∃l ∈ Loc · is-block(l , s, f0)

post is-block(l , s
↼−
f0 ) ∧

f0 =
↼−
f0 − locs-of (r , s)

DISPOSE0 (l : Loc, s:N1)

ext wr f0 : Free0

pre locs-of (l , s) ∩ f0 = { }

post f0 =
↼−
f0 ∪ locs-of (l , s)

Comments on the model and proofs. We note that zero-memory request are not possible
due to the type constraints on the input s. Furthermore, we note that, whilst the precondition
for DISPOSE is not actually required to satisfy the postcondition at this level, we have it at
this level to document the design decision that one cannot deallocate memory that hasn’t been
allocated.

Finally, the feasibility proofs for both operations are trivial at this level (cf. Chapter 6).
For NEW , the existential on the precondition provides an appropriate witness for the result,
and the updated state is defined in terms of the postcondition, providing a trivial witness. For
DISPOSE , we simply need to instantiate the updated state as described by the postcondition.

2.2 Heap as a disjoint map of location sizes (level 1)

Level 1 reifies the representation of the heap store by representing the free store as a mapping
from locations to their corresponding sizes. This naturally filters out duplicate locations of
different sizes, simplifies the non-abuttness/ordering property description and introduces the
appropriate level of development regarding allocation ordering. The new state invariant requires
that every mapped location is “disjoint” and “separate” (i.e. locations are ordered and non-
abutting).

is-disj : X -set×X -set→ B
is-disj (s, t) 4 s ∩ t = { }

Free1 = Loc
m−→ N1

inv (f ) 4
(∀l , l ′ ∈ dom f ·

l 6= l ′ ⇒ is-disj (locs-of (l , f (l)), locs-of (l ′, f (l ′)))) ∧
∀l ∈ dom f · (l + f (l)) /∈ dom f

The definition of NEW 1 in terms of this mapping is given explicitly over the after state de-
pending on whether the requested size is exact or within what is available (f1(l) ≥ s), where
mapping operations are used to perform appropriate update as domain filtering (−C) or map
union (∪), which is only defined for maps with disjoint domains. The use of map union makes
proofs harder because of the domain condition that the maps are disjoint. Using map override
(†) would lead to much easier proofs and would not make much difference to the model given

11
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the precondition of both operations already guarantee map domain disjointness. Insisting on
using union where the domains are known to be disjoint makes a fact about the model clear.

NEW 1 (s:N1) r : Loc

ext wr f1 : Free1

pre ∃l ∈ dom f1 · f1(l) ≥ s

post r ∈ dom
↼−
f1 ∧

(
↼−
f1 (r) = s ∧ f1 = {r} −C

↼−
f1 ∨

↼−
f1 (r) > s ∧ f1 = ({r} −C

↼−
f1 ) ∪ {r + s 7→↼−

f1 (r)− s})

The complexity of ordering non-abutting locations is brought to the surface in the definition of
both NEW 1 and DISPOSE1. For the latter, we make the design decision of finding adjacent
locations to be merged that might be either above and below the location being returned, which
may be empty. Adjacent location mappings are merged as extended set calculated by their
minimum location to be mapped to the sum of all mapping sizes involved, including the ones
being returned. The auxiliary functions calculating minimum location and summed sizes are
defined recursively on the cardinality of the domain of the map, which is finite in VDM.

DISPOSE1 (d : Loc, s:N1)

ext wr f : Free1

pre is-disj (locs-of (d , s), locs(f ))

post ∃below , above, ext ∈ Loc
m−→ N1 ·

below = {l | l ∈ dom f ∧ l +
↼−
f (l) = d}C f ∧

above = {l | l ∈ dom f ∧ l = d + s}C f ∧
ext = above ∪ below ∪ {d 7→ s} ∧
f = (dom below ∪ dom above −C

↼−
f ) ∪

{min-loc(ext) 7→ sum-size(ext)}

where:
min-loc : (Loc

m−→ N1)→ Loc

min-loc(sm) 4 if sm = {x 7→ y}
then x
else let x ∈ dom sm in min(x ,min-loc({x} −C sm)

pre sm 6= { }
min :N× N→ N

min(x , y) 4 if x < y
then x
else y

sum-size : (Loc
m−→ N1)→ N

sum-size(sm) 4
if sm = { }
then 0
else let x ∈ dom sm in sm(x ) + sum-size({x} −C sm)

Comments on model and proof On the strictly greater case for NEW 1, we make a
design decision to choose the right-most section of contiguous memory to be the one allocated

(i.e. the maplet update as {r + s 7→ ↼−
f0 (r)-s}). We could have also defined a (more abstract)

non-deterministic choice among any of the possible contiguous set of locations, which would
lead NEW 1 to be the exact inverse of DISPOSE1. We chose a specific implementation without

12
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realising this observation. In retrospect, this is likely to be simplifying the proofs involving
NEW 1, yet our decision was oblivious to this fact1.

The explicit commitment to the design decision of finding adjacent locations to return makes
the proof strategies about this model clearer. In DISPOSE1, the extended map can have at
most three elements with respect to the returned amount (s) for given location (d). This makes
the proof strategy for discharging the overall goal modular, where the complexity of chasing
further adjacent pieces is naturally separated by the invariant, which helps identifying strategies
to reuse from other proofs involving like those from [FW09].

Although this model seems more complicated, its proof obligations are still relatively straight-
forward (cf. Chapter 6). For instance, the feasibility witnesses are almost trivial, given the
one-point rule applies for all variables involved on both operations, if the precondition is split
at the right (= and >) cases for NEW 1.

This is mostly to do with explicit aspects of the invariant being separate and directly defined,
rather than implicitly described. The use of case distinction over the precondition of NEW 1 as
either equal or strictly smaller requested sizes help discharging the goal, but also clearly declare
the intent behind what is being modelled.

2.3 Feasibility

At each level we prove well-formedness and feasibility of operations using two theorem provers
(with the model represented in their notations). Proofs at level 0 are straightforward, given
there is no state invariant. There are no well-definedness proofs as the auxiliary functions
are total; and there are (standard) feasibility proof obligations per operation, where pre/post
conditions are expanded in place from definitions (see Appendix A). The PO for the feasibility
of NEW 0 is:

NEW 0-feas

↼−
f0 ∈ Free0, s ∈ N1

pre-NEW 0(
↼−
f0 , s)

∃f ∈ Free0, r ∈ Loc · post-NEW 0(s,
↼−
f0 , f , r)

where the theorem stated in a prover looks like this:

∀s ∈ N1,
↼−
f0 ∈ Free0 · pre-NEW 0(s,

↼−
f0 ) ⇒

∃r ∈ Loc-set, f0 ∈ Free0 · post-NEW 0(s,
↼−
f0 , f0, r)

which is equivalent to

∀s ∈ N1,
↼−
f0 ∈ Free0 · ∃l ∈ Loc∗ · is-block(l , s,

↼−
f 0) ⇒

∃r ∈ Loc-set, f0 ∈ Free0 · ∃s ∈ Loc∗ · (is-block(r , s,
↼−
f0 ) ∧

f0 =
↼−
f0 − locs-of (r , s)

For given inputs (s) and before state (
↼−
f0 ), outputs (r) and after state (f0) need to be found

(∃), providing the precondition is strong enough ( ⇒ ) to establish the postcondition. The PO
for the feasibility of DISPOSE0 is similar:

DISPOSE0-feas

↼−
f0 ∈ Free0, d ∈ Loc, s ∈ N1

pre-DISPOSE0(d , s,
↼−
f0 )

∃f ∈ Free0 · post-DISPOSE0(d , s,
↼−
f0 , f )

1This design decision also appears in the widen-precondition proof of the reification between levels 0 and 1
in Section 6.3.2
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At level 1, the proofs of “feasibility” for the two operations are mildly challenging, if lengthly,
because the invariant on Free1 has to be maintained. The PO for the feasibility of NEW 1 is:

NEW 1-feas

↼−
f1 ∈ Free1, s ∈ N1

pre-NEW 1(s,
↼−
f1 )

∃f1 ∈ Free1, r ∈ Loc · post-NEW 1(s,
↼−
f1 , f1, r)

The precondition hypothesis shows that a location exists and might suggest a case split for the
inner disjunction in the conclusion but it is likely that a theorem proving (TP) system will need
help to spot this. Since f is defined using only total operators it is clearly defined and of the
correct (unconstrained) type. So the only difficulty is —as expected— the invariant.

2.4 Sanity checks

Proving feasibility of our operations does not guarantee adherence to the “expected” interaction
or behaviour. We have several identities that give us further assurance. The first property is
to show that directly disposing space is always possible

NEW 0-DISPOSE0-Post

↼−
f , f ∈ Free0, r ∈ Loc, s ∈ N1

pre-NEW 0(
↼−
f , s)

post-NEW 0(
↼−
f , s, f , r)

pre-DISPOSE0(f , r , s)

post-DISPOSE0(f , r , s,
↼−
f )

NEW 0-DISPOSE0-Pre

↼−
f , f ∈ Free0, r ∈ Loc, s ∈ N1

pre-NEW 0(
↼−
f , s)

post-NEW 0(
↼−
f , s, f , r)

pre-DISPOSE0(f , r , s)

Another example is that ‘new applied twice cannot return the same location’; or, more
generally: the locations do not intersect:

NEW 0-NEW 0-disjoint

f 1, f 2, f 3 ∈ Free0, r1, r2 ∈ Loc, s1, s2 ∈ N1

pre-NEW 0(f 1, s1)
post-NEW 0(f 1, s1, f 2, r1)
pre-NEW 0(f 2, s2)
post-NEW 0(f 2, s2, f 3, r2)
is-disj (locs-of (r1, s1), locs-of (r2, s2))

Another property could relate recently freed heap space:

DISPOSE0-NEW 0-Pre

↼−
f , f ∈ Free0, l ∈ Loc, s1, s2 ∈ N1

pre-DISPOSE0(
↼−
f , l , s1)

post-DISPOSE0(
↼−
f , l , s1, f )

s1 ≥ s2
pre-NEW 0(f , l , s2)

That is, claiming a new amount of space just after freeing a portion of at least that size is
always possible. This is just a subset of the properties possible. These properties are proved
for both levels (0 and 1) of development (see Chapter 6).
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2.5 Reification POs

The reification proofs use the following retrieve function linking the data representation at each
level of development (from 0 to 1):

retr0 : Free1→ Free0

retr0(f ) 4 locs(f )

In VDM, reification induces three different types of proof obligation. First, a single adequacy
PO states that every level 0 state can be mapped to a level 1 state through the retrieve function:

Free1-adequacy
f0 ∈ Free0
∃f1 ∈ Free1 · f0 = retr0(f1)

The second type of proof obligation is widen precondition, which states that (for DISPOSE ):

DISPOSE1-w-pre

f ∈ Free1, l ∈ Loc, s ∈ N1

pre-DISPOSE0(retr0(f ), l , s)
pre-DISPOSE1(f , l , s)

The third type is narrow postcondition, which (for DISPOSE ) states:

DISPOSE1-n-post

↼−
f , f ∈ Free1, l ∈ Loc, s ∈ N1

pre-DISPOSE0(retr0(
↼−
f ), l , s)

post-DISPOSE1(
↼−
f , l , s, f )

post-DISPOSE0(retr0(
↼−
f ), l , s, retr(f ))
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Chapter 3

Models of why

This chapter enlarges on [JFV13] in motivating and describing an abstract model of the AI4FM
system. Significantly, the extension of the earlier material uses parts of the example in Chap-
ter 2.

The overall architecture of an AI4FM system can be seen in Figures 3.1 and 3.2.
Figure 3.1 pictures how high-level strategies will be “captured” in AI4FM. The numbered

arcs are explained as follows:

1. Having a record of why a conjecture is being tackled, the system can attempt to “parse”
any interactions initiated by the expert against existing strategies.

2. The expert will be asked to name any new strategies and be invited to mark identifying
features.

3. The system can note undischarged goals, record success/failure of strategies; and record
the lemmas that are used.

4. The system can suggest strategies to the expert.

Similarly, the extra indexed arcs in Figure 3.2 relate to the “replay” of strategies and are
explained:

1. The system can replay (possibly modified versions of) strategies that fit the context and
have been previously generated in expert mode. As explained below, an attempt is made
to order the use of options based on previous success/failure.

2. Success/failure of strategies is noted both to trigger a move to the next option and to
adjust weights that will affect future choices. If necessary, failure of the final option will
cause the system to backtrack to an earlier point in the proof tree.

3. The system must keep the user informed (especially about backtracks); it might also ask
about lemmas.

4. The engineer might be able to assist if automatic attempts (just) fail; alternatively, there
might be a need to bring an expert on line.

To realise this functionality data has to be stored in AI4FM; this chapter presents an
abstract (VDM) model of the state which we believe can achieve the information gathering.
We are here, following the approach used when mural [JJLM91] was developed: we are thinking
out the architecture in terms of an abstract model thereof. The model itself is contained in
Section 3.5.1; the sections that precede the model try to build up the case for the various
components in an intuitive way.

16



CHAPTER 3. MODELS OF WHY

(1)

(2)

(3)(4)

Figure 3.1: AI4FM “capture” mode

(1)(3)

(2)(4)

?

Figure 3.2: AI4FM “replay” mode
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3.1. BODIES OF KNOWLEDGE

The conjectures and proof content of a body (Section 3.2) is fairly routine; Section 3.3 on
“strategies” is central to the realistion of the AI4FM hypothesis. Firstly, the overall structure
of the data is described in Section 3.1.

3.1 Bodies of knowledge

The accumulated information in an AI4FM instantiation can be thought of as a collection of
bodies (in the sense of “body of knowledge”).

Σ :: bdm : BdId
m−→ Body

· · ·
There will be bodies of knowledge about mathematical theories such as set theory (cf. Sec-
tion 3.1.1); there will also be bodies that relate to single specifications (cf. Section 3.1.2).
(Relationships between bodies (bdrels) are used in finding strategies and are discussed in Sec-
tion 3.4.)

A FnDefn contains the signature of the function and, optionally, its definition in terms of
more basic operators. Thus far:

Body :: uses : BdId -set

functions : FnId
m−→ FnDefn

· · ·
FnDefn :: type : Signature

defn :
[
Definition

]
3.1.1 Base theories (as Body objects)

Consider, say, the Body for sets of “locations” as in the model in Section 2.1. The BdId will be
some memorable name such as LocSet. It will “use” the generic theory for sets and that for
Loc (the polymorphic theory for X -set will in turn use that for N for the result of card s).

For illustration, assume that the body for LocSet introduces the new function (this could
as well be in the generic theory of sets.)

disj : Loc-set× Loc-set→ B
disj (s1, s2) 4 s1 ∩ s2 = { }

This signature and definition are stored in a FnDefn.
Similarly, there would be a body (of knowledge) for Loc

m−→ N1 (cf. Section 2.2).

3.1.2 Specifications give rise to bodies

As well as the general theories in Section 3.1.1, we would also expect each (VDM) user specifi-
cation to be linked to a Body corresponding to its “state”. Thus there will be more than one
Body associated with the HEAP problem (cf. Chapter 2) — at least one per refinement layer
and separate ones for reifications that connect refinements.

So one Body of interest in Chapter 2 is that for HEAP1. This will record that it uses base
types such as sets and maps; it will also contain definitions of the predicate inv -Free1 and the
functions all -locs and locs-of .1

We might go further. The example in Chapter 2 is unusual in that a series of “non-record”
states suffice for the development. In examples such as those from the industrial partners in
the DEPLOY project, states of 20 fields were not unusual — and these states also had lengthy
invariants. Issue 4 indicates that more in-built support for records might be required. In most
industrial cases, the state will be defined as a record. A trivial case such as:

1For the purposes of this chapter, there has been some refactoring [Whi13] wrt Chapter 2: the function locs
has been renamed all-locs d1 has been renamed d etc. This is particularly important for Section 3.2.3.
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X :: f 1 : T1
f 2 : T2

would give rise to constructor and selector functions:
mk -X : T1× T2→ X
f 1: X → T1
f 2: X → T2

Beyond that, it might be worth generating sub-theories for any separable sub-states (in the
sense that data type invariants and/or operations force some fields to be grouped together —
other than these constraints, models should be broken down as far as is possible). The examples
in Chapter 2 are unfortunately not large enough to illustrate this.

3.2 Proof objects

This section describes the information that AI4FM has to retain about proofs themselves. This
might appear to duplicate what is going on in the ATP but looking again at Figures 3.1 and 3.2
it should be clear that AI4FM has to retain knowledge of any proof tasks that either are still
open or which were open and whose completion was achieved with the help of AI4FM; where
the ATP can discharge a PO automatically, only that fact need be stored.

The conjectures and proof content of a body is similar to that in the formal description of
mural (see [JJLM91]); Proof objects are those entities related to proof process analysis which
is detailed in the coming sections.

3.2.1 Conjectures

The information in a Body that is of use in proofs is the collection of formal results that are
built up over the lifetime of that body.

Body :: · · ·
guts : ConjId

m−→ Conjecture
· · ·

The guts of a body is a collection of proof tasks (Conjecture). A proof task has hypotheses
and a goal both containing judgements. A Judgement can be typing information, a sequent or
an equation. In addition there can be any number of (attempts at) justifications. Thus:

Conjecture :: hyps : Judgement∗

goal : Judgement
status : {Lemma,RewriteL2R,NegativeProperty, · · ·}
justifs : JusId

m−→ (Axiom | Trusted | Justification)
· · ·

Judgement = Typing | Sequent | Equation | Ordering | · · ·

An example of a low level conjecture would be a natural deduction proof rule for “or elim-
ination”: it would have hypotheses E1 ` E , E2 ` E and E1 ∨ E2 and a conclusion of E .
This conjecture might be marked as an axiom (Axiom). (Where there is nothing on the left
of a sequent, the convention of dropping the ` is followed.) Another might record that if
S1,S2,S3: X -set, S1 ⊆ S2 and S2 ⊆ S3 then S1 ⊆ S3. This conjecture might be marked as
trusted (Trusted) in the sense that it came from a trusted source document.

Within a body for a specification (cf. Section 3.1.2), a proof obligation generator will create
a Conjecture for each proof obligation (PO) about the consistency of that single specification.
Proof obligations will also be generated corresponding to the claim that one model reifies
another (obviously this has to be triggered by the claimed reification link) e.g. Section 6.3.

It is important to remember that the first action for any conjecture is to pass it to at least
one ATP: AI4FM has nothing to do if, say, Isabelle discharges the PO. We might also arrange
that counter examples are sought if the first attempt at proof fails.
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To return to the body for LocSet, the following straightforward lemmas are likely to be
Judgements (ultimately accompanied by a justification).

L1

s1, s2: X -set
disj (s1, s2)
s3 ⊆ s2
disj (s1, s3)

L1.5
s1, s2: X -set
disj (s2, s1− s2)

L2

disj (s1, s3)
disj (s2, s3)
disj ((s1 ∪ s2), s3)

The use of lemmas is a crucial element in conducting proofs at an appropriate “level of
discourse” (cf. Leo’s term “zooming”). In contrast, it would be technically possible –when
proving results about actual models– to just expand out the definition of disj but this would
obscure proofs of the results about say HEAP1. Even more obfuscating would be to expand,
for example, set subtraction via its definition in terms of predicates. Conducting a proof at a
high level of discourse if nearly always better than going to a lower level and lemmas are the
key way of achieving this.

The main activity of a user is to discharge POs and it is precisely here that strategies
become important. But it should be remembered that the first thing that happens to any PO
is that it is fed to the (or more than one) “theorem prover of choice”: if, for example, Isabelle
discharges the PO only that fact is stored. This happens for NEW 0-feas and DISPOSE0-feas
from Section 6.2.

The conjectures of a body generated from a specification will contain all of the proof obli-
gations (e.g. invariant preservation, links between models, etc.). Appendix A gives the general
form of rules for VDM POs.

One top-level PO from HEAP1 would be:

DISPOSE1-feas

↼−
f1 ∈ Free1, d ∈ Loc, s ∈ N1

pre-Dispose1(d , s,
↼−
f1 )

∃f1 ∈ Free1 · post-DISPOSE1(d , s,
↼−
f1 , f1)

Section 3.2.3 traces through a justification of a lemma that is needed to discharge this PO and
Section 3.3.2.1 explains the strategies involved.

3.2.2 Justifications

Turning to Justification, remember that it is explicitly envisaged that there can be multiple
attempts to justify a proof task (i.e. Conjectures can have a mapping to different Justifications).
When a conjecture is first generated, it will have no justifications. A user might start one proof
justification, leave it aside and try another, then come back and complete the first proof. But
notice that the notion of whether a proof is complete (in the sense of (transitively) relying only
on axioms) is a complex recursive predicate.

Overall,
Justification :: claim : (ConjId | ToolOP)

subst : Term
m−→ Term

sub-probs : ConjId -set

20



CHAPTER 3. MODELS OF WHY

A justification which uses an established inference rule will point to its ConjId . The subst
relates the terms in the inference rule to those in the hyps and goal of the Conjecture. The
sub-probs field points to any sub-problems that need to be discharged to complete the proof.
Notice that such a justification corresponds to one step in a proof: collecting a whole proof
requires tracing the attempts at the sub-conjectures. A low-level instance of Justification might
record that the rule on which it is based (rule) is “and elimination right”:

∧-Er
E1 ∧ E2

E1

(much more interesting would be the use of an induction rule — but the same structure applies);
in this case the hypotheses (hyps) will point to a single conjecture that is a conjunction but
almost certainly with large expressions as conjuncts; the substitution (subst) will relate the Ei

to the components of the conjecture pointed to by hyps.

In rare cases, proof steps can be as fine-grained as in mural [JJLM91] — the example
that follows is unrealistic in the sense that we’d certainly expect any TP system to handle it
automatically. The classic instance of a strategy is case split; ∨-E is the obvious example.
One nice property of ∨-E is that, by pointing at a disjunct, the decomposition is clear. The
important point is that the proof of one Conjecture can give rise to several others. This in
turn shows that we need to define a predicate that can check whether a proof is complete
and a function that can help a user locate incomplete proof tasks. Similar comments apply to
both ∀Needed,∃Needed. The former then creates a place for the various parts of induction.
Another item that might not be too hard is NormalFormReduction. In contrast, CutRule
gives no clue how to generate an intermediate Judgement that is the essence of user intuition in
top-down proof. This puts a lot of reliance on what could be detected when the “expert” uses
a cut rule to split a proof task. For the time being, we’re assuming that most useful examples
of the cut rule will have to be annotated by the expert.

In practice, TP tools such as Isabelle and Z/EVES are powerful enough that a user will
hardly ever interact at the level of the (natural deduction) laws of the logic itself. So, in fact,
the most prevalent examples of Justification ought come from the underlying theorem prover;
as shown in Figure 3.2. Use of a ATP will be recorded as an instance of ToolOP — such output
will be specific enough to the specific ATP that it is not further specified here. If it is an SMT
tool, the claim might be no more than the name of the tool. Notice however that Isabelle’s
auto will generate sub-probs.

The Features set is described in Section 3.3.

3.2.3 Representing a hand proof

In order to explain the basic way in which detailed proof attempts are handled, this section
takes a rather low-level lemma that arose in the Isabelle version of the HEAP proof and looks
at how it fits into the guts of Σ of Section 3.5.1. The important topic of how strategies help in
constructing this proof is postponed to Section 3.3.2.1.

A lemma that arises during the proof of feasibility of DISPOSE1 concerns a situation where
below = { } ∧ above 6= { }2 — for brevity, this is referred to as “L99”:

L99
inv -Free1(f ); disj (locs-of (d , s), all -locs(f )); d + s ∈ dom f
disj (locs-of (d , s + f (d + s)), all -locs({d + s} −C f ))

2The lemma here is one of the four subgoals within z F1 inv dispose1 Disjoint (l. 757 of HEAP1Proofs.thy).
This is part of the DISPOSE1 feasibility proof: postcondition update Disjoint invariant subgoal 5? 1. PO-
DISPOSE 2. PO-DISPOSE-POST 3. PO-DISPOSE-POST-DISJOINT 4. PO-DISPOSE-POST-DISJOINT-
LEMMA-APPL 5. SUBGOAL 5 of that case when below = {} ∧ above 6= {}.
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This will be a Conjecture (that happens not to get proved automatically by Isabelle) in an
appropriate Body but first let’s look at the Body that contains information about (finite) maps
from Loc to N1.

We assume that the following basic lemmas have been proved (their numbering is to do with
the order in which they arose):

L3

m: Loc
m−→ N1

s: Loc-set
all -locs(s −C m) ⊆ all -locs(m)

L3.5

m: Loc
m−→ N1

s ∈ dom m
∀l , l ′ ∈ dom m · l 6= l ′ ⇒ disj (locs-of (l ,m(l)), locs-of (l ′,m(l ′)))
all -locs(s −C m) = all -locs(m)− locs-of (s,m(s))

L4

d : Loc
n,m:N1

locs-of (d ,n + m) = locs-of (d ,n) ∪ locs-of (d + n,m)

These three lemmas are stored as Judgements. Here again, establishing apposite lemmas3

ensures that the proofs about the model itself can be conducted at a high level of discourse.

Presented as an outline of a natural deduction proof, the Conjecture of interest (mapped to
by L99) is:

from inv -Free1(f ); disj (locs-of (d , s), all -locs(f )); d + s ∈ dom f
infer disj (locs-of (d , s + f (d + s)), all -locs({d + s} −C f )) ??

When created, this will have an empty collection of justifs — this is indicated above by the
“??” where one would expect to see a justification. As repeatedly stated above, the first thing
to do is to let one or more TPAs have a go at proving the conjecture. Unsurprisingly (see
specific functions such as all -locs and a non-trivial invariant), Isabelle fails to discharge this
automatically.

The Isabelle transcript in Appendix C shows that the expert made several attempts be-
fore completing the proof; this is precisely why justifs is a mapping. For brevity in this first
exposition, a “perfect” proof is envisaged (but see Section 3.3.2.1).

Lemma L4 provides a convenient equality to expand locs-of (d , s+f (d +s)) in the hypothesis.
This effectively completes the proof of L99 in that we can fill in its justification — but it has
spawned two new unproven conjectures S1 and S3 (the numbering of steps Si is again indicative
of the order of creation); it so happens that S1 has a side condition but this is immediately
discharged leading to the following state of proof:

3The proof of L3.5 would use inv -Free1 to get:
∀l , l ′ ∈ dom f · l 6= l ′ ⇒ disj (locs-of (l , f (l)), locs-of (l ′, f (l ′)))

which specialises to:
∀l ∈ dom f · l 6= d + s ⇒ disj (locs-of (d + s, f (d + s)), locs-of (l , f (l)))
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from inv -Free1(f ); disj (locs-of (d , s), all -locs(f )); d + s ∈ dom f
S2 f (d + s) ∈ N1 h[4], Free1
S1 locs-of (d , s + f (d + s)) =

locs-of (d , s) ∪ locs-of (d + s, f (d + s)) L4(S2)
S3 disj ((locs-of (d , s) ∪ locs-of (d + s, f (d + s))),

all -locs({d + s} −C f )) ??
infer disj (locs-of (d , s + f (d + s)), all -locs({d + s} −C f )) = -subs(S1,S3)

Effectively, the current state σ2 has four conjectures in guts — its domain is {L99,S3,S1,S2}.
Turning to the unjustified Conjecture indexed by S3; L2 provides a way of splitting this

task into two sub-tasks. Thus we can discharge S3 by generating two sub-conjectures S4 and
S6.

from inv -Free1(f ); disj (locs-of (d , s), all -locs(f )); d + s ∈ dom f
S4 disj (locs-of (d , s), all -locs({d + s} −C f )) ??
S6 disj (locs-of (d + s, f (d + s)), all -locs({d + s} −C f )) ??
S2 f (d + s) ∈ N1 h[4], Free1
S1 locs-of (d , s + f (d + s)) =

locs-of (d , s) ∪ locs-of (d + s, f (d + s)) L4(S2)
S3 disj ((locs-of (d , s) ∪ locs-of (d + s, f (d + s))),

all -locs({d + s} −C f )) L2(S4,S6)
infer disj (locs-of (d , s + f (d + s)), all -locs({d + s} −C f )) = -subs(S1,S3)

Leo confirms my hope that proofs of S4 and S6 are found by Isabelle thus completing the
justification. For reference, a natural deduction proof that is a “picture” of the final proof is:

from inv -Free1(f ); disj (locs-of (d , s), all -locs(f )); d + s ∈ dom f
S5 all -locs({d + s} −C f )) ⊆ all -locs(f ) L3, Free1
S4 disj (locs-of (d , s), all -locs({d + s} −C f )) L1(S5, h[2])
S7 all -locs({d + s} −C f ) =

all -locs(f )− locs-of (d + s, f (d + s)) L3.5, h[1], h[4]
S6 disj (locs-of (d + s, f (d + s)), all -locs({d + s} −C f )) L1.5, S7
S2 f (d + s) ∈ N1 h[4], Free1
S1 locs-of (d , s + f (d + s)) =

locs-of (d , s) ∪ locs-of (d + s, f (d + s)) L4(S2)
S3 disj ((locs-of (d , s) ∪ locs-of (d + s, f (d + s))),

all -locs({d + s} −C f )) L2(S4,S6)
infer disj (locs-of (d , s + f (d + s)), all -locs({d + s} −C f )) = -subs(S1,S3)

The numbering of proof steps above is, of course, different from their linear order; the
numbering indicates something of the creation order but this should be clear from the text of
the preceding section.4

Two Isabelle versions of this proof are contained in Appendix C.

4 It is of course possible to build a larger strategy by combining several steps.
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3.3 Strategies

3.3.1 Data

The capture, modification and replay of strategies is central to AI4FM (cf. Chapter 1 and
Figures 3.1/3.2). Such strategies are part of a Body :

Body :: · · ·
strats : StrId

m−→ Strategy

The purpose of a strategy is to progress proofs. This can be done either by using a tool or
by using a previously extracted strategy. (Tools can either be part of the ATP of choice or can
by separately developed “apps” within AI4FM— e.g. [GKL13].)

Strategy :: function : (ToolIP | · · ·)
· · ·

As with ToolOP above, the input required by different tools will vary and it is difficult to
pin down its content beyond:

ToolIP :: name : · · ·
support : ConjId -set
other : · · ·

We have made a special case of identifying that some tools –such as SMT solvers– will require
a selection of lemmas as support .

Previously acquired strategies will split a problem
Strategy :: function : (· · · | Split)

justif : ConjId
· · ·

Split = Conjecture → Conjecture-set

Just as in all LCF-like systems, the flip side of split is the justif that proves the decompo-
sition.

Notice that split is a (general) function (cf. Section 3.3.4). Were it the case that –each time
a new strategy was conceived– there was a programmer “in the loop”, a new chunk of code
would realise the split of a proof task (Conjecture) into sub-tasks. But in AI4FM we want to
achieve the learning process without a programmer in the loop. So one possibility is that a
single, more general, chunk of code could analyse previous uses of a strategy and figure out the
required split. This code will essentially be trying to generalise (to the stored function) the
instance that the “expert” has just executed. In an example like “multi-base-case” induction,
this generalisation should not be too difficult to spot but this clearly requires more thought in
general.

A low level strategy might involve splitting a problem into sub-cases; another could reduce
an expression to a normal form; an important collection of strategies will be for induction; an
interesting form might shift the representation of an object of interest to a different body of
knowledge.

The identification of the most useful strategy builds on the (repeated) “why” of our writings
(e.g. [JFV13]).

Strategy :: · · ·
intent :

[
Why

]
rank : Conjecture → Score
· · ·

The set Why will never be closed — a user can always add a new concept — examples of
Why are listed in Section 3.5.2.1. Notice that there is a layering among the strategies — see
below on their taxonomy.

The collection of strategies can be thought of as representing “and” and “or” information.
The “or” function is represented by having alternative strategies. For example, we do not
explicitly say that StructuralIndn, NPeanoIndn and NCompleteIndn are options —
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they are just three strategies that might be applicable in similar circumstances. The choice
(“or”) function is, in a sense, underneath the covers for the user (it might be pursued by
(limited) parallelism).

An “and” split in a Strategy shows that in order to justify a conjecture, multiple sub-
conjectures must be discharged (although in some cases it will just be a reformulation and
generate only one sub-task — e.g. contrapositives of implications, use of an isomorphic model
— of course, at the leaves of a strategy there are no sub-tasks).

Strategies can be organised into a “taxonomy”. The idea is perhaps best illustrated by an
example:

NPeanoIndn specialises InductionProof
NCompleteIndn specialises InductionProof

So the final field becomes:
Strategy :: · · ·

specialises : [StrId ]

3.3.2 Selecting strategies

This section builds the bridge from the data structure in Section 3.3.1 to the arcs numbered 1
and 3 in Figure 3.2.

Remember that “in the beginning”, there will be no strategies and few lemmas! Clearly,
there has to be some “seeding” by an initial set of strategies to make an AI4FM system useful.

Of course, the whole point of recording strategies is to be able to replay them to provide
justifications for new conjectures. So the situation considered here is that automatic proof has
failed. At the top level, a conjecture will be a PO and the names of the POs are contained
in Why — so AI4FM can look for strategies that have been captured (see Section 3.3.4).
Typically, a strategy just decomposes a proof task to several (hopefully simpler) conjectures.
Here again, the first step is to see if the chosen TP(s) can discharge these. If not, strategies for
the sub-problems are sought.

We are assuming that the most specific strategy is the most promising: where it fails, an
option is to go to the next less “specific” strategy (cf. specialises).

The order in which strategies are tried is governed by its Score and this is an area where we
hope to use some form of “machine learning”. If/when all options for a strategy have proved
fruitless, AI4FM will be able to trace a higher point in the “proof tree” and try alternatives
from there.

When the TP system fails, the process of exploring known strategies starts. As indicated,
the Origin of the PO is an important guide.

Given a collection of strategies, we need a way of selecting the one that is most likely to
succeed. This is a place where machine learning ought be of use.

The applicability of a particular strategy to a putative result (Conjecture) is to be evaluated
by the test function

Strategy :: · · ·
rank : Conjecture → Score
· · ·

Notice that rank is a (general) function; it will be a piece of code that uses the weights learnt
in application.

The way in which we envisage learning playing a part in the deployment of strategies is in
the function from Conjecture to Score (which latter is just some ordered set). This will choose
how to weight information contained in the Features part of Conjecture.

Conjecture :: · · ·
match : Features

The data on which such learning will be based will be something like:
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Features :: provenance : (Origin |Why)∗

mainTps : BdId -set
mainFns : FnId -set
blocks : ConjId -set
other : · · ·

A conjecture that arises directly from POG will have a provenance which contains the name
of the POG as it’s provenance (for any development method, there will be at least one strategy
for each class of PO). As steps are made the Why entries of strategies that have been applied
are concatenated to the provenance fields of the subsidiary conjectures.

Furthermore, in the above:

• knowing what gave rise to a particular conjecture is expected to be key for matching; if
a Why is contained here, it indicates that the conjecture came from a named strategy

• the types of mainTps and mainFns indicate what they contain but the pragmatics are
more interesting — we think the user often knows that “the action” is on something
deeply embedded in a formula — for now, we’re assuming that the user will mark these
manually

• we have discussed trying to analyse where a conjecture gets blocked — i.e. which generated
sub-conjectures get blocked

• within Features, the other area might include things like the number of operators —
hopefully, many/most of these can be extracted automatically. Leo and Cliff have joked
about other containing information like the number of coffees the user has drunk that
session — the point is that new factors can arise that were not planned when the AI4FM
instantiation was initiated.

3.3.2.1 Strategies and the example in §3.2.3

Looking back at the proof in Section 3.2.3, we can now consider how strategies might match
the evolving proof task. At the first step, there is a general strategy to “rephrase” a conjecture.
The user can use this strategy by choosing an equality that (hopefully) simplifies a goal by
substitution. There are two non-trivial expressions in the goal that could be expanded, the
user tries locs-of (d , s + f (d + s)) perhaps because there is a convenient lemma (L4). This
effectively completes the proof of the overall goal but spawns two new unproven conjectures S1
and S3. It so happens that S1 has a side condition but this is automatically discharged leading
to the state described as σ2 in Section 3.2.3.

Isabelle still fails to find a proof. Here there is a generic “split” strategy. Of course, the
simplest instance of this generic strategy is “and introduction”; but L2 has the same shape5

and what the “split strategy” needs is a way of decomposing a conjecture into some number
(here two) simpler conjectures. Thus we can discharge S3 by generating two sub-conjectures
S4 and S6.

Leo confirms my hope that S5 and S7 in the full proof are found by Isabelle thus completing
the justification.

As mentioned above, two Isabelle versions of this proof are contained in Appendix C.

3.3.2.2 Outline of a higher-level example

A strategy that is used in several of the proofs about HEAP (examples listed below to explain
how they match the general strategy) is to “uncover a hidden case distinction” (this is its

5Don’t be fooled by the shape of the symbol in the conclusion of L2 it does work like an “and introduction”
rule.
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intent). It is useful when a proof has to proceed by cases but there is no obvious disjunction
in the hyps of the current Conjecture. The clue is often hidden in the goal of the Conjecture.

Take, for example, NEW 1-feas. Here post-NEW 1 has a disjunction on whether
↼−
f1 (r) is

greater than or equal to the requested size s. What is needed here is a special case of the cut
strategy which generates the disjunction that is not visible in the hypotheses of the current
conjecture. Once this is found the generic strategy for “reasoning by cases” can take over.

In the case of NEW 1-feas, the new hypothesis is neither hard to discover nor prove (it
follows from the pre-NEW 1).

The proof of DISPOSE1-feas benefits from the same strategy but post-DISPOSE1 hides
the case distinction more thoroughly. Here, the essential distinction is whether below and/or
above are empty or singleton maps.

The same strategy is again invaluable to the validity proof that NEW 1 followed by DISPOSE1
is an identity over Free1.

3.3.2.3 Example: HEAP feasibility POs

In Section 2.3, we discuss the feasibility proof obligations for the heap model. How might
the meta-modelling in this chapter help? Well, the above Conjecture has a provenance of
[VPO-Feas,Expand]. We might have a Strategy for case distinctions that looked at relations
like ≥ and proposed a split into >,=. If this is the first time we’ve used it in this context, the
expert might have to fire it; but if so, the knowledge will be added that this can be a useful
strategy in this context. (If this has been done before, presumably it will get a good Score and
get selected automatically.) Either way, the strategy ought spawn two conjectures — the first
being:

↼−
f ∈ (Loc

m−→ N1), s ∈ N1

∀l , l ′ ∈ dom
↼−
f · sep(l , l ′,

↼−
f )

∃l ∈ dom
↼−
f ·↼−f (l) = s

∃f ∈ (Loc
m−→ N1), r ∈ Loc ·

r ∈ dom
↼−
f ∧

↼−
f (r) = s ∧ f = {r} −C

↼−
f ∧

∀l , l ′ ∈ dom f · sep(l , l ′, f )

Now, we want to assume this still doesn’t go through by some automatic tool. (this might be
pessimistic but our assumption lets us make a point about lemmas). Providing the TP system
still fails, we assume the expert offers a lemma:

f1 ∈ (Loc
m−→ N1), s ∈ N1

r ∈ dom f1
f1(r) = s
∀l , l ′ ∈ dom f1 · sep(l , l ′, f1)
f2 = {r} −C f1
∀l , l ′ ∈ dom f2 · sep(l , l ′, f2)

assuming sep is defined as the second predicate in the Free1-inv definition.

The second spawned conjecture from the case split would be:
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↼−
f ∈ (Loc

m−→ N1), s ∈ N1

∀l , l ′ ∈ dom
↼−
f · sep(l , l ′,

↼−
f )

∃l ∈ dom
↼−
f ·↼−f (l) > s

∃f ∈ (Loc
m−→ N1), r ∈ Loc ·

r ∈ dom
↼−
f ∧

↼−
f (r) > s ∧ f =

↼−
f † {r 7→↼−

f (r)− s} ∧
∀l , l ′ ∈ dom f · sep(l , l ′, f )

Now, assuming this gets stuck in the same way, AI4FM ought be able to notice that a lemmas
is a “good thing”; is it wildly optimistic to expect that we can detect the earlier pattern and
spot that the “right” lemma should be:

f1 ∈ (Loc
m−→ N1), s ∈ N1

r ∈ dom f1
f1(r) > s
∀l , l ′ ∈ dom f1 · sep(l , l ′, f1)
f2 = f1 † {r 7→ f1(r)− s}
∀l , l ′ ∈ dom f2 · sep(l , l ′, f2)

This lemma involves arithmetic and we are less sure what TP systems will make of it. The PO
for DISPOSE1 is similar.

3.3.3 Facing lemma gaps

The proof discussed in Sections 3.2.3 and 3.3.2.1 was simplified by the presence of useful lemmas.
A key issue for a no-expert user is the difficulty of predicting what lemmas will be useful.
Without the lemmas, a user can well stumble into nested proofs that –for example– bring in
confusing extra quantifiers.

There is much more experimentation required here. One hope is that replaying old strategies
will be able to prompt where they rely on lemmas.

Our basic position is that we ought to be able to do something with a good (specific) strategy
or an apposite lemma — but can’t achieve much if both are missing. Of course, if we have both,
we’d hope that the proof would go through.

3.3.4 Capturing strategies

This section expands on Figure 3.1.
After a failure to obtain an automatic proof, we “call an expert” (or even: have a cup of

coffee, go for a walk, etc.). Assuming we chose the right expert, she says “it’s obvious” and
makes a different choice in some step of the proof.

This new choice has to be captured. Generalising from a specific split performed by the
expert might not be as difficult as we/I feared. The expert is faced with a recalcitrant conjecture;
she performs a specific split; this means that we have the goal and several hypotheses at hand;
finding a generalisation of these (that takes the specific instance) to a more general split function
for the new Strategy is something like “anti-unification” (but cbj is pretty sure it is not identical).
Of course, said expert might be able to provide an even more useful generalisation. My guess
is that the justif field will often be filled in as Trusted at first — with a proof of the new
strategy being provided later (maybe when reviewed?).

Hopefully, the expert comes up with a better name than Eureka but actually more impor-
tant is providing the specialises link. I don’t yet see any way of generating this automatically.

A different, but related, scenario is where the expert stares at the troublesome conjecture
and decides that a lemma is the key to progress. Clearly, AI4FM needs to capture the fact that
the process was moved forward by finding/generating a lemma. Again, we need experiments
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but my hunch is that useful generalisations will be harder here than with simple splits. For
example, an “equivalent” lemma might involve operators in a different theory. In fact, I think
this is back to the territory of bdrels.

3.3.5 An analogy (formally known as “Leo’s 2c worth”)

Perhaps a useful analogy to interpret Conjecture is to discuss the notion of (and difference
from) a tactic. In a prover like Isabelle, a tactic is an (ML) program taking a list of goals
(as Isabelle Terms), which include hypothesis, together with a justification function (as an ML
program named as part of a proof script) [AD10]. Such tactic returns a new set of goals with
an updated justification, until it reaches true and thm. In MWhy, goals (and hypothesis) are
Judgments representing the term language, with extra (meta-level and structural) information
added, whereas Justification are brought as a series of (proof) attempts through proof scripts
(Attempt) or external tools (Tool), etc. (see next Section). This way, we are bringing to the
surface of user modelling intent information about the way tactics might change or update
goals.

For instance, if Justification brings to the surface the user intent of a proof attempt, the
status of a conjecture is given by the user as (structural) meta-level information for the prover
about the way the user expects the conjecture to be used. This is already present in various
provers as tags associated with declarations. In Isabelle, the user can give to definitions and
lemmas various kinds of status, such as simplification, introduction, elimination, congruence,
transitivity rule and so on. Similarly, in Z/EVES the user can tell the prover whether the
lemma is to be used as a proof context (hypothesis) enhancer, hence influence forward proof
steps, or else as a backward chaining (goal matching) rewrite rule.

3.4 Relations between bodies

The final part of the state:
Σ :: bdm : BdId

m−→ Body

bdrels : BdId
m−→ (BdId × Relationship)-set

concerns relationships between bodies of knowledge. Like Why itself, this will have to be
expandable by the user. Some examples that we can see include:

Relationship = Specialisation | Morphism | Isomorphism |
Inherits | Sub | Similarity | · · ·

We might, for example, have some very abstract items in Body such as Larch’s “collector”;
sets, sequences and maps would all then be specialisations of collector. Another abstract item
might be “inductable” — it is here that the more general knowledge about setting up inductive
proofs would reside.

Morphism and Isomorphism will be used for precise mathematical relationships — the latter
for where results can be used in either direction.

Similarity will be for less precise connections (fuzzy matches).
In all of these cases, the idea is that inspiration for a proof strategy might come from a

related body of knowledge.
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3.5 Summary of “Model”

3.5.1 Data structure

Σ :: bdm : BdId
m−→ Body

bdrels : BdId
m−→ (BdId × Relationship)-set

Body :: uses : BdId -set
domain : {Rail,Auto, . . .}
functions : FnId

m−→ FnDefn

guts : ConjId
m−→ Conjecture

strats : StrId
m−→ Strategy

FnDefn :: type : Signature
defn :

[
Definition

]
Conjecture :: hyps : Judgement∗

goal : Judgement
status : {Lemma,RewriteL2R,NegativeProperty, · · ·}
justifs : JusId

m−→ (Axiom | Trusted | Justification)
match : Features

Judgement = Typing | Sequent | Equation | Ordering | · · ·
Justification :: claim : (ConjId | ToolOP)

subst : Term
m−→ Term

sub-probs : ConjId -set

ToolOP = · · ·
Features :: provenance : (Origin |Why)∗

mainTps : BdId -set
mainFns : FnId -set
blocks : ConjId -set
other : · · ·

Origin = Token

Why = Token

Strategy :: function : (ToolIP | Split)
justif : ConjId
intent : [Why ]
rank : Conjecture → Score
specialises : [StrId ]

ToolIP :: name : · · ·
support : ConjId -set
other : · · ·

Split = Conjecture → Conjecture-set

Why = Token

Relationship = Specialisation | Morphism | Isomorphism |
Inherits | Sub | Similarity | · · ·
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3.5.2 Discussion of the model

3.5.2.1 Comments on some specific elements of Origin/Why

The origins of conjecture are important in selecting an appropriate strategy. The set Origin will
include names of POGs for a method (e.g. VPO-Adequacy, VPO-WidenPre, VPO-RestrictPost,
ZPO-ComputePre).

Indications of what a strategy is “good for” (Why) will include:

ExtractSubState: This is here as reminder that large records can confuse a ATP system
(if only because of the number of selector/constructor functions and lemmas relating them) —
so a useful strategy is to split a large (state) record into independent (wrt the invariant) chunks
and to have properties for using results on the sub-states to draw conclusions about the whole
state.

∀Needed is an example of a Why with an obvious strategy but it might be worth taking the
step via SetUpInduction and InductionProof; remember also that an alternative strategy
could be to apply de Morgan’s law.

∃Needed is similar — and GenWitness is one potential sub-strategy (but so is applying de
Morgan’s laws).

SetUpInduction, InductionProof, InductionRule are general — more specific are
NPeanoIndn and NCompleteIndn — these are there to remind us that there is more than
one way to do induction over the natural numbers.

DistributeOperators, CommuteOperands, etc. should be obvious and might be sub-
strategies of NormalFormReduction

CaseSplit, ∨-E are just reminders of low-level strategies.

CutRule could be problematic — see Section 3.1.1.

3.5.2.2 Minor clarifications

1. After a discussion with Aaron Sloman, we were considered storing important non-fact
such as that list concatenation is, in general, not commutative. We hoped that this would
provide clues as to when, say, properties from set theory should not be sought in the
theory of sequences. We’re now minded to store

∃s, t ∈ N∗ · s y t 6= t y s

but to mark its status as NegativeProperty.

2. One issue for the implementation is that the large recursive function for checking whether
a proof is “complete” (in the sense that all subsidiary conjectures are axioms or Trusted)
could be made more efficient by some form of “memoising”.

3. It will be useful to be able to locate instances of strategy use — but, for the time being
at least, the model stores the pointers in the other direction (see Features).

4. We found in mural [JJLM91] that records (in the VDM sense) can be difficult in that
there is really a different Body for each record shape. But records are so ubiquitous that
we have to do something for them and we do not favour expanding out “axioms” for all
of the constructors/selectors.
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5. Earlier internal notes have suggested that inference rules can usefully be generated from
(recursive) function definitions (as done in various LPF papers [JLS12]); these would also
be examples of Tool justifications.

6. As indicated in Footnote 4, it is possible to build “multi-step” strategies. Remember that:

A ` B ; B ` C
A ` C

is likely to hold for any logic we want to use. So it is possible to build larger strategies
from multiple steps. There might well be a problem with the number of combinations:
we don’t want to store all possible (matching) pairs.

7. With any ATP systems that can be persuaded to disgorge its (incomplete?) proofs, we
would have extra material from which AI4FM could learn.

8. There is a question about how much we are prepared to use/control parallel attempts: in
Section 3.3.2, the discussion is simplified by assuming a sequential deployment of strategies
— obviously this is a choice where many-core (and/or clouds) could prompt reconsidera-
tion.

3.5.2.3 Known issues in the model

The Σ model in Section 3.5.1 should be regarded as “work in progress”6 — some of the issues
that we are still debating include:

1. Probably the most surprising aspect of our current model –at least to anyone schooled in
“tactic thinking”– is that Attempt deals with a single step in a proof. Before going into
more detail, it is worth re-reading Point 6 of Section 3.5.2.2: inference steps can be made
as high level as the user wishes.

There is, however, still a case for expressing strategies that consist of sequential compo-
sition, case splits and repetition in for example the style of [GKL13]. The place in our
model for such expressions is in ToolInv .

Our suspicion is that any such expression of procedural startegies will be more “brittle”
than strategies that are matched to the current situation.

On the other hand, it must be conceded that developing a useful hierarchy of strategies
as envisaged in the current Σ will require great taste and care.

This still leaves the question of how scripts in either approach are learnt — but only
experimentation will show which form is easier to learn.

2. We have discussed at various stages the idea that some putative lemmas could be spotted
by looking at the form of recursive function definitions.

3. We’ve deliberately avoided ordering sub-goals in the split field of Strategy . We’re assuming
that only graph shape matters but accept that there are cases where order might be
important. In fact, echoing J, Leo suggested on an earlier version that any Conjecture
should be time stamped (one can always write a function that drops this information
where not needed). We like this idea but have not yet added it.

4. Thierry Lecomte argued for considering the domain of application in Features.

6Furthermore, this model is a slight evolution of that in [JFV13].
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Chapter 4

How we got to where we are

In this Chapter we describe the process around evolving the model, from the originals presented
in Section 4.1 through its modifications done in the Z/EVES model up to the versions within
the Isabelle development. These modifications were mostly a combination of error correction
and clearer abstractions. For instance, the notions of separability, non-abutingness and dis-
jointness of Pieces in original level 1 are all mingled within a single definition of the invariant.
Similarly, the retrieve function between level 0 and 1, as well as postconditions for level 1 are
suspiciously interlinked for the aid of proof (i.e. no design decision is documented in DISPOSE1
postcondition, but rather the “right” after state through the retrieve usage).

There were many versions of our (re-)formulation. This was due to both our increasing
understanding of the problem and the variations across different theorem provers. The one
showed in Chapter 2, and subsequently in Chapter 5, is our final/current version. We kept this
history for the sake of exposure of how a typical formal development evolves.

The discussion style described in this chapter is inspired by Naur’s description of his solution
of Writh’s N-Queens problem as described in [Nau72]. Another interesting view / discussion
about these models was also developed as an advanced MSc at Newcastle as an pedagogical
exercise on the viability of our ideas for a (non-proof expert) well trained engineer [Sle13].
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4.1 Models of a heap: VDM originals

The original VDM development of a Heap describes two key operations: NEW and DISPOSE
to allocate and deallocate memory, respectively. The complete development can be found
in [JS90, Chapter 7]. It shows how refinement works in VDM by gradually making successive
commitments to data structures and algorithms. We chose this as an example given it is a
problem of which most programmers are aware whilst still not having trivial proofs.

Firstly, we typeset the models using the VDM Overture tools and fixed a few typos and type
errors, like the one in the definition of the is sequential auxiliary function below. Then, using
results from [WF08] we encoded the model and proof obligations using the Z/EVES theorem
prover to discharge VDM proof obligations within it (see Appendix G).

4.1.1 Heap as a set of locations (L0)

Initially, the heap (level 0) is modelled as abstractly as possible: free-space as a set of locations
modelled as natural numbers represents the system state (Free0) with no invariant, and the two
operations are defined over sets of locations. Recall that the set constructor in VDM represents
a finite set.

Loc = N

Free0 = Loc-set

The following auxiliary functions are required in the definitions of the operations: they model
predicate testing whether a contiguous (is sequential) sequence of locations (s ∈ Loc∗) of a
particular size (n) is within the free memory (free)1.

has seq : Loc∗ × N× Loc-set→ B

has seq(s,n, free) 4
elems s ⊆ free
∧ len s = n ∧ is sequential(s)

is sequential :N∗ → B

is sequential(s) 4 ∃i , j ∈ N · elems s = {i , . . . , j}

For our purposes, we prove the state has been initialised with a given amount of free memory
(i.e. f0 = Loc). Allocation is defined by the next operation (NEW 0). It is straightforward: pro-
viding there is as a contiguous sequence of locations of sufficient length.

NEW 0 (req :N) res: Loc-set

ext wr f0 : Loc-set

pre ∃s ∈ Loc∗ · has seq(s, req , f0)

post ∃s ∈ Loc∗ · (has seq(s, req ,
↼−
f0 ) ∧

res = elems s ∧ f0 =
↼−
f0 − res)

DISPOSE0 (ret : Loc-set)

ext wr f0 : Loc-set

pre ret ∩ f0 = { }

post f0 =
↼−
f0 ∪ ret

1In VDM, sequences are indexed from 1; len returns the sequence size (or length); and elems returns the
sequence (range) values as a set.
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To dispose memory, a set of locations is given to be returned to the free state (i.e. it will be
updated, wr f0), providing it is not already free (see pre). It is assumed that dispose operations
will be called only with locations returned by NEW 0. It takes some (positive) quantity and
returns a set of usable memory locations, providing values returned were free, are exactly the
size requested and are in sequence (Loc∗). This is modelled using auxiliary function has seq ,
which finds a sequence of locations of a given size.

Comments on the model. Subsequent refinement proofs performed using Z/EVES high-
lighted issues with the model. The input to NEW 0 allows for zero-memory allocation, which
does not seem right (e.g. why not N1 instead of N?). The issue surfaces as an extra case split
because of overlapping location ranges. The interface of the operations also changes across
model levels, which leads to unnecessary complications in the refinement setup. For instance,
the result from NEW 1 is a memory Piece, instead of a memory Location.

The auxiliary function (has seq) creates a protracted “jump” between types (e.g. from a set
to a sequence of locations). In our final reformulation of level 0 (see Section 2.1), we simplify
that decision with a clearer (equivalent) notion of free location numeric ranges, which is not
only simpler, but also usually has more automation lemmas available.

Comments on proofs. With explicit equations for the after state, proof obligations at level
0 were straightforward in Z/EVES.

4.1.2 Heap as a set of pieces (L1)

Level 1 tackles NEW 0 inefficiency for a search of a suitable set of locations. The state (Free1)
is defined as a set of Pieces that neither overlap nor abut their corresponding locations, where
Piece is a two-field record containing a location (of type Loc) and size (of type N). In VDM,
projection functions are defined for record types (e.g. LOC (p) returns a Loc given a p ∈ Piece).

Piece :: LOC : Loc
SIZE : N

Free1 = Piece-set

inv (ps)4 ∀p1, p2 ∈ ps ·
(p1 = p2 ∨ locs of (p1) ∩ locs of (p2) = { }
∧ LOC (p1) + SIZE (p1) 6= LOC (p2))

The abutting property over Free1 is needed in order to ensure that the precondition of NEW 0
is enough to establish the applicability of NEW 1 during the refinement proof. The definition
of NEW 1 needs to find a new suitable Piece, whereas DISPOSE1 returns the locations of a
piece to the free set.

NEW 1 (req :N) res: Piece

ext wr f1 : Free1

pre ∃p ∈ f1 · SIZE (p) ≥ req

post locs(f1) = locs(
↼−
f1 )− locs of (res)

∧ locs of (res) ⊆ locs(
↼−
f1 )

∧ SIZE (res) = req

DISPOSE1 (ret : Piece)

ext wr f1 : Free1

pre locs of (ret) ∩ locs(f1) = { }

post locs(f1) = locs(
↼−
f1 ) ∪ locs of (ret)
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This model employs two auxiliary functions that project a set of locations out of Free1 and
Piece. Moreover, locs is used as the refinement retrieve function linking Free0 (set of locations)
to Free1 (set of pieces).

locs : Free1→ Loc-set

locs(ps) 4 ⋃
{locs of (p) | p ∈ ps}

Comments on the model. The non-zero sizes and heterogeneous operation interfaces are
issues that justify adjusting the model accordingly (i.e. SIZE ∈ N1). Beyond the unhelpful
non-linear equations, which introduce confusing case-analysis, the non-abutting property of the
state invariant introduces the complication of Piece ordering. It fails to deal with the case
where different pieces share the same location with different sizes, which should not be allowed.

Perhaps the most serious issue is that the operations are defined in terms of the chosen
retrieve function (locs). This hides the design decision of ordering pieces and introduces com-
plicated existential witnesses over the feasibility of the after state in the proof process for
the sake of an easier refinement proof (i.e. find an f1 such that properties of locs(f1) hold is
non-trivial).

Actual design decisions about ordering on the original models are only taken at the last
layer of refinement (level 4), which has no proof in [JS90] and is rather complicated. This lead
us to reformulate the model with such decisions being explicitly given, instead of modelling to
cater for refinement proofs (see final version in Chapters 2, and 5, and intermediate versions in
this Chapter and in Appendix G).

Comments on proofs. The proof of feasibility and later refinement between Free0 and
Free1 revealed problems with the Free1 invariant as it confuses design decisions within the
same defining predicate using non-linear equations, which leads to unnecessarily complicated
reasoning during proof. Because the retrieve function (locs) between levels is used for specifi-
cation of level 1, the inadequacy of the invariant does not become immediately apparent. This
is due to implicit non-linear equations from the invariant of Free1. Given locs of is defined in
terms of a range of locations, we prove a weakening lemma2 stating that from the definition of
subrange and locs of , goals involving the Free1 invariant can be rewritten as

SIZE (p1) = 0 ∨ SIZE (p2) = 0 ∨
LOC (p1) + SIZE (p1) ≤ LOC (p2) ∨ LOC (p2) + SIZE (p2) ≤ LOC (p1)

Considering the predicates involved, say in NEW 1, the before/after state and pre/post con-
ditions lead to 9 non-linear equations with various buried case distinctions to deal with. This
lead us to rethink both the invariant, as well as strategies to simplify the proof process. The
result was a series of lemmas about algebraic properties of auxiliary functions (see Chapter 3.

4.2 Theorem proving experiences

In the following subsections, we describe the interesting details involved in the way the Z and
Isabelle developments of the VDM Heap models evolved. We focus on specific aspects related
to model changes or errors, rather than full details. For Z/EVES models, full details can be
found in Appendix G. The discussion style here is inspired by [Nau72].

4.2.1 Z/EVES v0 — warts and all

Our first model in Z (see Appendix G) was exactly the same as the original VDM, where
auxiliary B-valued functions were defined using set comprehension as usual in Z. They looked

2In Isabelle’s parlance, this is known as a congruence lemma; and Z/EVES rewrite rule.
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like

is ssequential 4{s:N∗ | ∃i , j ∈ Loc · ran (s) = i . . . j}

has seq 4{s: Loc∗; n:N; f : Free0 | is sequential(s) ∧ ran (s) ⊆ f ∧ dom (s) = 1 . . .n}

Satisfiability proofs at level 0 are trivial. For level one, it leads to the following goal on

. . . ⇒ ∃f ∈ Free1 · . . . ∧ locs(f ) =
↼−−−−
locs(f )− locs-of (res!) . . .

Finding such witness for f is unnecessarily complicated by the interference of locs. And in
any case, why should the definition of NEW 1 be in terms of locs instead of manipulating the
set of Piece that is Free1? A similar scenario happens for DISPOSE1. When coming to the
refinement proof, we also realised about the interface differences between level 0 (talking about
size ∈ N) and level 1 (talking about Piece).

4.2.2 Z/EVES v1 — interface and postcondition change

In our first adjustment to the model, we made the interfaces homogeneous by having a Piece
as output to NEW 0 and input to DISPOSE0. This dispenses the use of auxiliary functions at
level 0 and the use of locs at level 1. This resolved the issue of interface refinement between
levels from the original, and also simplified the notion of location ranges, given that locs-of was
now defined in terms of Piece as

locs of : Piece → Loc-set

locs of (p) 4 {LOC (p), . . . ,LOC (p) + SIZE (p)−1}

Added automation lemma on numeric ranges

To aid automation, we also proved a (rewrite rule) lemma saying that
lemma locsOfPiece:
∀p ∈ Piece · locs-of (p) = LOC (p) . . .LOC (p) + SIZE (p)-1

Interface and postcondition modifications to level 0

These modifications make the operations for level 0 look like this:
NEW 0 (req :N) res: Piece

ext wr f0 : Loc-set

pre ∃r ∈ Piece · req = SIZE (r)

post SIZE (res) = req ∧ f0 =
↼−
f0 − locs-of (res)

DISPOSE0 (ret : Piece)

ext wr f0 : Loc-set

pre locs-of (ret) ∩ f0 = { }

post f0 =
↼−
f0 ∪ locs-of (ret)

The interface to NEW 0 now returns a Piece instead of a Loc-set, and its precondition is
simpler: no use of auxiliary functions, and instead it depends on finding a suitable size Piece
(which is the one being returned), instead of a set of locations in the original. The postcondition
is similar, but relies on the version of locs-of for Piece. For DISPOSE0, the input is now a
Piece instead of Loc-set. The pre/postconditions are adjusted to use locs-of for making a Piece
into a contiguous set of locations.
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Identifying hidden case split in NEW 1 precondition

For level 1, we the invariant is encoded equivalently to VDM using sets and the operations need
modification to avoid having locs in the postcondition. At first we wanted to keep the precon-
ditions similar and saw that the equal case for NEW 0 above. This together with satisfiability
proof for NEW 1 led us to spot the hidden case split on the precondition for NEW 1.

NEW 1 (req :N) res: Piece

ext wr f1 : Free1

pre ∃r ∈ f1 · SIZE (r) ≥ req

post ∃p ∈ Piece · p ∈↼−f1 ∧
locs-of (res) ⊆ locs-of (p) ∧ SIZE (res) = req

f1 = (
↼−
f1 − {p}) ∪ (locs-of (p)− locs-of (res))

The postcondition is clearly different: instead of relying on locs it explicitly removes the new

Piece p ∈ ↼−f1 to allocated, where the resulting res ∈ Piece takes just enough out of the piece
(p) chosen. Given locs-of (res) ⊆ locs-of (p), it is true that SIZE (res) = req . The result f1
removes the whole chosen piece p first then adds the remainder amount from p not used by res
(i.e. when SIZE (p) > SIZE (res) = req). This makes explicit the design decision to have the
state at level 1 using set of pieces instead of locations. We have also declared two operations
with the hidden case split as NEW 1Equal and NEW 1Bigger and proved that their disjunction
is equivalent to NEW 1. This simplifies the satisfiability proof for NEW 1 considerably.

Proving satisfiability and lemma discovery

Now the satisfiability witness is trivial through the one point rule. The hard part of this
proof for NEW 1 is to show that the invariant holds for the updated model. The equal case is
trivial: p = res, hence

. . . ∧ p ∈↼−f1 ⇒ (
↼−
f1 − {p}) ∪ (locs-of (p)− locs-of (res))

simplifies to

(
↼−
f1 − {p})

which is trivially true, providing p is instantiated with r ∈ ↼−f1 from the precondition. Never-
theless, this part of the proof led to the following simplification rule lemmas being suggested:

lemma lFree1UnitDiff
∀f ∈ Free1, p ∈ Piece · f − {p} ∈ Free1

lemma? lFree1UnitUnion
∀f ∈ Free1, p ∈ Piece · {p} ∪ f ∈ Free1

The first one states that removing a Piece from the state does not violate the invariant,
which we prove without difficulty. It is useful in simplifying the NEW 1Equal case. The second
lemma is not true (in general), and it states you can always add a Piece to the state satisfying
the invariant. Although this second lemma is not true, it brought to our attention the key issue
behind the NEW 1Bigger proof: what are the conditions to make singleton extension
to Free1?

4.2.2.1 General properties about locs-of and locs

When we turned to DISPOSE1, it became clear that it would be trickier, given the non-
abuttingness property would lead to chasing locations potentially to be freed to avoid frag-
mented memory. In the original, this detail is elided by the cheeky use of locs! This led to
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the modification on DISPOSE1. Nevertheless, in the process we also found some other useful
lemmas linking the precondition of DISPOSE1 and the Free1 invariant, as well as some general
properties about locs-of and locs.

lemma lLocsWithin
∀p, q ∈ Piece ·

LOC (p) ≤ LOC (q) ∧ LOC (q) + SIZE (q) ≤ LOC (p) + SIZE (p)
⇒ locs-of (q) ⊆ locs-of (p)

lemma lLocsReminder
∀rem, res, p ∈ Piece ·

LOC (rem) = LOC (p) + SIZE (res) ∧
SIZE (rem) = SIZE (p)-SIZE (res) ∧
SIZE (p) ≥ SIZE (res) ∧
LOC (res) = LOC (p) ⇒ locs-of (rem) = locs-of (p)− locs-of (res)

Lemmas lLocsWithin and lLocsReminder weakens any goal term involving locs-of subset and
set difference as a conjunction of non-linear equations. This is useful when dealing with the
postconditions of NEW 1 and DISPOSE1. It is also useful as it suggest we might need to think
about more general lemmas about loc-of and other involved set and map operators, if we are
to avoid having to go down to various non-linear equations.

From the lemmas about set union and difference for Free1 comes the suggestion for having
a similar structure for locs, given that it operates on a set of Piece just like Free1 at this point.
So the next two lemmas enforce the Free1 invariant through locs regarding the two set function
symbols involved ( − and ∪ ).

lemma lLocsUnitDiff
∀f ∈ Free1, p ∈ Piece ·

p ∈ f ⇒ locs(f − {p}) = locs(f )− locs-of (p)

lemma lLocsUnitUnion
∀f ∈ Free1, p ∈ Piece ·

locs-of (p) ∩ locs(f ) = { } ⇒ locs({p} ∪ f ) = locs(f ) ∪ locs-of (p)

4.2.2.2 Lemma shaping and prover technicalities

A technical note on lemma shapes: notice that we had the goal conclusion declared
quite prescriptively with respect to singleton sets. For instance, we used {p} ∪ f ∈ Free1
in lFree1UnitUnion instead of f ∪{p} ∈ Free1, and we used locs({p}∪ f ) = . . . in lLocsUnitUnion
instead of locs(f ∪ {p}) = . . .. This is deliberate and crucial. And that is because we want
to use these lemmas as automatic rewrite rules. Provers tend to rewrite terms like f ∪ {p}
as {p} ∪ f at the earliest opportunity (i.e. first simplification step), hence for our rules to be
automatically picked during proof search, they also need to match what the prover expect,
despite being unassumingly simple choices such as this.

Conversely, if one wants to “tame” the use of a lemma by the automatic reasoners available,
you could explicit state it in a way that would never (automatically) pick up, unless the user
fiddles with the goal slightly. For instance, Z/EVES has the lemmas on sequence sizes given as
card s = 0 ⇔ s = [ ] because one does not want to automatically rewrite every occurrence of
s = [ ] into card s = 0, yet this is an important useful result.

The same considerations are true in Isabelle, if with slight variations in style and level of
detail and control.

Rethinking Free1 invariant

From the lemmas about locs-of above and from the new postconditions for NEW 1 and DISPOSE1,
satisfiability proofs entailed a lengthy (and messy) amount of non-linear equations coming from
both side conditions of applying weakening lemmas above, and from direct handling of the
Free1 invariant itself. For NEW 1 the (almost 16) non-linear equations in the proof were okay,
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but for DISPOSE1, this was clearly unmanageable. We need to rethink the invariant of Free1
using clearer abstractions for the predicates, even if with the same formulae: it was a mat-
ter of packing up the concepts a bit more. This motivated the final version of the Z/EVES
development.

4.2.3 Z/EVES v2 — invariant packaging and abstraction

In this final Z/EVES development, we did two new things: the packaging up of invariants more
clearly, and the addition of key sanity checks. There were barely no changes to NEW 0, and
most changes to the invariant were guided to improve the clarity of what was being modelled
by the DISPOSE1 postcondition.

Sanity checks

We wrote the following sanity checks for the model so far after we realised there was a bug in
one part of the development as a result of a typo. The typo enabled all proofs to go through
correctly, but they were for the wrong model! The key sanity check we added was that NEW
followed by DISPOSE under both levels would lead to the identity. Upon failing this proof,
the typo(s) in the model involving things like +1 or ≤ errors (instead of +0 and <).

Inventing new concepts

Firstly, let us remember the original invariant:
Free1 = Piece-set

inv (ps)4 ∀p1, p2 ∈ ps ·
(p1 = p2 ∨ locs of (p1) ∩ locs of (p2) = { }
∧ LOC (p1) + SIZE (p1) 6= LOC (p2))

It states different Pieces must have disjoint and non-abutting locations. Technically, provers
tend to normalise terms, so the disjunction above actually appears in goals as

∀p1, p2 ∈ ps ·
(p1 6= p2) ⇒ locs of (p1) ∩ locs of (p2) = { }

∧ LOC (p1) + SIZE (p1) 6= LOC (p2)

For the invariant, we created the following (new, organising) concepts about the invari-
ant; they can be given in VDM as B-valued functions, which in Z appear as just sets. They
were:

unique == {fr : Piece-set | ∀p1, p2 ∈ fr ·LOC (p1) = LOC (p2) ⇒ p1 = p2}
before == {p1, p2 ∈ Piece | LOC (p1) + SIZE (p1) < LOC (p2)}

sep == {fr : Piece-set | ∀p1, p2 ∈ fr ·LOC (p1) < LOC (p2) ⇒ p1 before p2}
inv -Free1 == {fr : Piece-set | sep (fr) ∧ unique (fr)}

The original invariant has too weak an invariant for uniqueness of Piece (p1 = p2). What re-
ally matters is that their locations are unique, rather than the whole Piece (i.e. mk -Piece(0, 5) 6=
mk -Piece(0, 3), yet sharing the same location is undesirable). Instead, first we define unique-
ness ( unique ) with respect to piece’s location! Next, to avoid non-linear equations around,
we wrap up non-abuttingness by creating the concept of a Piece coming before another by
stating their locations are apart beyond just the SIZE . Next, we generalise this notion to a
whole set of Piece and call it separateness between all pieces of a set. Finally, the new invariant
for Free1 is defined in terms of a set of Piece where all elements have unique locations and are
explicitly separate.

The notion of separation and before survived and is used in Section 2.2. For uniqueness,
the next step was to think up a better data type representation that documented the design
decision of location uniqueness more clearly. The obvious solution is to use a function from
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Loc
m−→ N1, where each mapping represent a unique Piece. This would lead to necessary

changes to auxiliary functions locs-of and locs, as well as to the new concept of before and
sep .

New concepts for DISPOSE1 postcondition

The definition of NEW 1 carried through from Z/EVES v1 with the slight adjustment about
Piece sizes being N1 (i.e. it carried a disjunction over each case for equal and greater than, as
featured in Section 2.2), but DISPOSE1 also needed new concepts to become both clearer and
without the need to refer to locs in the postcondition. Like with NEW 1, we needed to declare
its behaviour explicitly.

We toyed around with two concepts:
wellplaced == {p1, p2 ∈ Piece | unique ({p1, p2}) ∧

(p1 before p2 ∨ p2 before p1)}

fuse == {p1, p2 ∈ Piece | LOC (p1) + SIZE (p1) = LOC (p2)}

They we were useful for proofs of lemmas involving separability, and in the old definition of
DISPOSE1 for Z/EVES v1 of the model. fuse in particular, features in the final definition
of DISPOSE1 given in Section 2.2. Furthermore, we also added the notion of abutting pieces
explicitly, again as a (VDM) B-valued function represented as a set (in Z).

abutt == {p1, p2 ∈ Piece | p1 fuse p2 ∨ p2 fuse p1}

The new definition of NEW 1 and DISPOSE1 are given as follows. Note the interface change
that requested sizes cannot be zero. Also for NEW 1, instead of leaving the implicit choice in
the post condition as

f1 = (
↼−
f1 − {p}) ∪ (locs-of (p)− locs-of (res))

covering both cases of equal and greater than, we make it explicit with implications instead. We
also made a specific design decision for choosing the new location to be within the rightmost part
of the (possibly larger) peace. We could have made this more non-deterministic by arbitrary
choosing either (left or right most) side. Curiously, when translating the models to Isabelle, we
missed this issues and made a mistaken implementation of NEW 1, as described below in the
next Sections 4.2.4 onwards

NEW 1 (req :N1) res: Piece

ext wr f1 : Free1

pre ∃r ∈ f1 · SIZE (r) ≥ req

post ∃p ∈ Piece · p ∈↼−f1 ∧
SIZE (p) ≥ req ∧
res = mk -Piece(LOC (p), req) ∧
SIZE (p) = req ⇒ f1 = (

↼−
f1 − {p}) ∧

SIZE (p) > req

⇒ f1 = (
↼−
f1 − {p}) ∪ {mk -Piece(LOC (p) + req ,SIZE (p)-req)}

DISPOSE1 (ret : Piece)

ext wr f1 : Free1

pre locs of (ret) ∩ locs(f1) = { }
post ∃join, abut ∈ Piece-set ·

abt = {q ∈ Piece | q ∈ f1 ∧ ret abutt q} ∧
join = {ret} ∪ abt ∧
f1 = (

↼−
f1 − join) ∪ {mk -Piece(min-loc(join), sum-size(join))}
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The definition of DISPOSE1 postcondition now explicitly declares how the locations are
affected as a result of returning memory to Free1. The stat update first remove a larger set
of joined pieces composed of any (possibly) abutting pieces to the one returned, together with
the piece being returned. In the best case, nothing abuts, and the join is removed to be added
straight after. If any piece locations abut, then a calculation is made to pick out the minimal
location with the summed sizes of involved pieces as the new (larger) piece returned to Free1.

The abutting set is defined as any piece within the before state (q ∈ ↼−
f1 ) that abutt ts.

The new abutt concept ensures that the involved pieces fuse at either side, which entails
specific alignment of locations as defined by the new concepts given above.

Lemmas about the new concepts

This process led to some new lemmas involving the novel concepts that were useful in under-
standing the problems within proofs. For instance, we proved these lemmas about before
and unique that were useful

lemma lPieceExcludedMiddle
∀p, q ∈ Piece ·

p before q ⇒ ¬ q before p

lemma lFree1UniqueUnion
∀f ∈ Free1, p ∈ Piece ·

unique (f ∪ {p})
⇔
(∀q ∈ f · LOC (q) = LOC (p) ⇒ SIZE (q) = SIZE (p))

The first lemma captures the asymmetry between abutting pieces (below and above) that we
were trying to get a symmetric description of. This was an attempt at too strong a simplification
to the concepts that led to more confusing outcome (i.e. we needed both the concepts of before
and after pieces).

Finally, now with the notion of uniqueness clearly stated for the new version of the Free1
invariant, we managed to prove what are the conditions for extending Free1 under union. which
we had failed before (see Lemma lFree1UnitUnion above). The notion of abutt was not ideal,
though. It kept a hidden case analysis on fuse on either side that was unhelpful.

With this we finalise our historical reconstruction of the problem of developing the heap
through a Z theorem prover in order to discharge both satisfiability and refinement proofs.

4.2.4 Isabelle v0 — warts and all

This first Isabelle encoding of the problem faced more challenging issues regarding the problem
representation because of a significant difference in the Logic (HOL) and the type system (i.e. no
explicit support for dependant types). In itself this is interesting, as it highlights the pitfalls of
using non-native theorem provers for discharging formal proofs.

For instance, in Isabelle, if we want to define VDM’s N1 as just a subset of Isabelle’s nat it is
not adequate. That is because our subtype cannot be used as part of any other type declaration
or in signature of functions. The appropriate way would be to instantiate our own encoding
of N1 to the corresponding type classes representing commutative mono ids, so that we would
enjoy all the Isabelle machinery for non-linear arithmetic and natural number induction.

We also worked out ways to use Isabelle’s locale to keep track of underlying type invariants,
type assumptions, and preconditions, which we needed to record explicit everywhere needed.
In fact, we missed the type invariant in a few satisfiability proof obligations. To our surprise
when the proof went through easily, we were readily suspicious something had gone wrong in
the quick and dirty translation. This led to a more systematic approach, as the one described
later in Chapter 5.
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We basically had two versions within this bracket, that mimicked the updates / evolutions
discussed above for the Z/EVES theorem prover. That was until we got to the use of VDM maps
within Isabelle’s own type system, where we needed to carefully rethink our whole strategy.

Using Isabelle maps was fruitful yet not entirely satisfactory, and it became clear a VDM
library for map operations would be necessary. For instance, we needed to explicitly define
VDM map union as well as domain subtraction (or anti-restriction). All this was not needed
in Z/EVES given the Z mathematical toolkit is already quite close to VDM’s.

4.2.5 Isabelle v1 — Sledgabelle lemmas

This version included B-valued functions to represent type restricting predicates, we introduced
a basic VDM maps library, and a structured locale hierarchy for the heap hypothesis. Moreover,
we started structuring the specification according to VDM’s pre defined functions for each
operation. That is, we defined functions pre, post, and invariant for each involved operation
and restricted type. One key aspect is to ensure the type invariant is kept in the after state
when defining post conditions, which we had missed initially.

Some lemmas from the Z/EVES development involving locs-of were translated, and we
started making extensive use of Isabelle’s sledgehammer tool, an automatic proof finder that
makes use of various SAT/SMT solvers. We started dividing and structuring lemmas in small
enough chunks, such that sledgehammer would find the proofs for them. Thus, the proof of
NEW 1 postcondition in Isabelle became a matter of slicing the goal in small enough chunks for
sledgehammer to smash them away. Up to the feasibility proof of DISPOSE1, we had almost
2/3 of lemmas “sledgehammerable”.

Many such lemmas were not quite general, but rather intermediary steps in a larger proof.
Nevertheless, this “strategy” proved effective in resolving the easier proofs within the heap proof
obligations. It also highlighted the most effective way to shape lemmas for Isabelle’s simplifier
to use. Such lemma shaping is crucial, and quite different from the way on would shape lemmas
in Z/EVES. This highlights the some key differences between both provers used in the problem.

Modelling map comprehension for partial VDM maps

For the proof of DISPOSE1, this strategy was not going to work so well. That is because
VDM map representation in Isabelle was tricker than Z/EVES: in Isabelle all functions are
total, whereas in Z/EVES partial functions are common. Isabelle handles partiality (in their
implementation of VDM maps) as a function to an optional type3.

At first we used λ-abstractions to represent map comprehension and the various map op-
erators. This proved to be a ill-chosen representation, as most of the machinery available to
handle Isabelle maps were not prescribed for such choice. This made it clear for us that in
order to effectively use Isabelle, we would need to model according to the prescribed choices in
the Isabelle’s libraries we were using.

Another key problem in DISPOSE1 was to represent map comprehension, which was hard to
write in Isabelle (for us). Instead, we kept the λ-abstractions isolated to the map operators like
domain subtraction, and tried to use set theory (and set comprehension) for needed definitions,
instead. This solved the problem and enable us to progress with our proofs.

Finally, after discovering mistakes in the translation, we realised a more systematic (if still
informal) approach was needed. We created a set of translation templates to ensure that naming
conventions (and variable capture within the locale) were not producing the wrong models in
Isabelle. Added sanity checks ensured that the translation was as good as it was going to get
without mechanised assistance.

3Arguably, there are alternative approaches to handling partial functions. Using Isabelle’s Map.thy library
was our choice.
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At this stage, for the proof of DISPOSE1 satisfiability (and later refinement between level 0
and 1), proofs became quite large and laborious. At this stage, we decided to review the whole
development and start afresh, now we have understood the problem well.

Once we had the models described (as explained in the next Chapter 5), we decided to fork
our proof development in two parts side-by-side: one using procedural Isabelle proofs, and the
other using declarative Isar proofs; both of which we would use our ProofProcess tool [Vel12] (see
Section 7.2) to capture data about the proof attempts. As we had already collected such data
for the Z/EVES development, we wanted to compare the data within (two independent) Isabelle
developments as well. The proof process data is subset of what is described in Chapter 3.

4.3 Summary

In this Chapter we presented a brief summary of the development history of our heap models
using both Z/EVES and Isabelle. In the end, we favoured the Isabelle implementation for
further discussion for various reasons.

One, Isabelle is a more general and widely used theorem prover, and it is also within the
remit of AI tools developed by our partners within AI4FM. Second, Isabelle has more powerful
tools to aid proof description and discovery. Having said that, the representation of the heap
in Z/EVES was easier and more natural, given VDM is closer to Z than to HOL!

In coming Chapters we describe the details of our final and complete formalisation of levels
0 and 1 in Isabelle, including satisfiability, refinement, and sanity checks.

We also use Z/EVES and Isabelle development as a way of collecting proof process informa-
tion. Our Eclipse-based tool for capturing the proof process was used to collect data to inform
the development of the meta-model described in Chapter 3.
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Chapter 5

Heap in Isabelle

5.1 Introduction

This chapter and the next continue the exposition of the heap storage case study by describing
the formalisation and formal verification in the Isabelle proof assistant [NPW02b] of the latest
heap model presented in Chapter 2.

In the next section (Section 5.2), we briefly introduce the Isabelle proof assistant and its
proof languages. Then, in Section 5.2.4 we give a general description of how VDM operations
and functions are formalised in Isabelle, giving details of the important differences. Section 5.3
presents the Isabelle models for level 0 and level 1. The latex code that presents these models
is directly generated from the proof developement. This section is paired with Appendix B,
which details our naming and stylistic conventions in the formalisation.

Chapter 6 describes the proof obligations and provides a broad overview of the formal
verification. We pursued two parallel verification efforts in Isabelle: Freitas, using a procedural
style of proof, leveraging Isabelle’s automation; Whiteside used the declarative Isar language.
We provide a broad comparison of the two proof efforts. The full proofs can be found on in
Appendices F and E.

5.2 The Isabelle proof assistant

Isabelle is a generic theorem prover or, rather, a logical framework with a meta-logic called
Isabelle/Pure (minimal intuitionistic higher order logic) in which object logics are encoded. We
use the most popular, and best supported, object logic: classical higher order logic (referred to
as Isabelle/HOL).

In this section, we describe the elements of Isabelle required to understand the rest of this
technical report. Section 5.2.1 details the proof languages used by Freitas and Whiteside, pro-
viding a brief comparison of their features. Then Section 5.2.2 introduces the Sledgehammer
and Nitpick tools which are important in harnessing automation and checking for counterexam-
ples, respectively. Section 5.2.4 introduces our VDM library and highlights three key differences
between the Isabelle representations and the VDM logic that are important to understand the
formalisation that follows. Finally, we summarise in Section 5.2.5.

5.2.1 Isabelle proof languages

The core proof language for Isabelle is called Isar [Wen02]. Broadly speaking, it permits two
styles of proof: declarative, where the state of the proof is encoded in the proof script; and,
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procedural, where the state of the proof can only be seen upon replay. As a simple illustra-
tion, we give two proofs in Isabelle using each style. The proof shown is part of the proof of
commutativity of addition for natural numbers.

theorem natcom-procedural :
(a::nat) + b = b+a
apply (induct a)
apply (subst add-0 )
apply (subst add-0-right)
apply (rule refl)
sorry

theorem natcom-dec: (a::nat) + b = b+a
proof (induct a)

show 0 + b = b + 0
proof -

have 0+b=b by (simp)
also have ...=b+0 by (simp)
finally show ?thesis .

qed
next
fix a
assume in-hyp: a + b = b + a
show Suc a + b = b + Suc a

sorry
qed

As can be seen, the prodedural style is more compact, but it is not clear without re-running
the proof what the goals being operated on are. Furthermore, it is difficult to see the branching
structure of the proof because of the linear structure and the fact that some tactics apply to
just a single subgoal, while others apply to several.

The declarative style is longer, but can be read without needing to run the system; fur-
thermore, it enables a natural forwards style of proof that is closer to normal mathematical
practice. For a more detailed comparison of both styles of proof, Harrison’s ‘Proof Style’ is
recommended [Har96].

5.2.2 Sledgehammer and Nitpick

Isabelle also has two important external tools that have been used extensively in this project:
Sledgehammer [PB10] and Nitpick [BN09].

5.2.2.1 Sledgehammer

Sledgehammer is a tool to find automatic proofs of goals. Invoking sledgehammer will send the
current goal to multiple automated theorem provers, like Z3, Vampire, Spass, etc along with
a set of lemmas from the library that sledgehammer “thinks”1 will be useful. If one of the
ATPs succeeds, then it can be translated to an Isabelle proof, using a tactic called ‘metis’. As
a simple example, the following lemma (a lemma from the VDM maps library) has been proved
automatically by sledgehammer, and requires three lemmas (facts) to be passed to metis.

lemma metis-example:
assumes ∗: x /∈ dom f
shows x /∈ dom (s -/ f )

1The selection process/criteria here is itself interesting and worth further investigation. How does sledge-
hammer know what to use/filter?
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by (metis ∗ domIff dom-antirestr-def )

Sledgehammer can be more powerful than Isabelle’s automated tactics (such as simp and
auto) on domain reasoning because it can automatically select the appropriate lemmas to use,
rather than performing time-consuming configuration of the simplifier. However, it can fail
in domains where Isabelle has been finely tuned, such as sets, since there are many potential
lemmas that can be selected.

5.2.2.2 Nitpick

Nitpick is a powerful counterexample checker for Isabelle and can be invoked to check the
validity of the lemma you are attempting to prove. For example, running nitpick on the lemma
above without the assumption ∗:
lemma nitpick-example:
shows x /∈ dom (s -/ f )
nitpick

gives the following counterexample: f = [a1 7→ b1, a2 7→ b1], s = {a2}, and x = a1, which
makes clear the issue with the current conjecture.

5.2.3 Proof styles

In this section, we elaborate a little on the top-level proof styles (patterns) used by Whiteside
and Freitas.

5.2.3.1 Proof sketches - Whiteside

The general method for proof used by Whiteside is akin to Wiedjik’s formal proof sketches [Wie02].
The main idea is to write all the main proofs in a declarative style and start with a rough sketch
and gradually fill it in. To construct the proof sketch, Whiteside has in mind how the proof
should go (either from intuition or a pencil and paper version) and writes out the main steps
(using the sorry command to omit the proof) . Then, the main steps should be combined to
solve the goal using the default automation of Isabelle. For example, a proof of a subgoal (that
occurs in a few places) could be sketched as follows:

have disjoint (locs-of (l + s) (the (f l) - s)) (locs ({l} -/ f ))
proof -

have (locs-of (l + s) (the (f l) - s)) ⊆ locs-of l (the (f l))
sorry

moreover have disjoint (locs-of l (the (f l))) (locs ({l} -/ f ))
sorry

ultimately show ?thesis by auto
qed

This type of sketch is called a combinatory sketch, because all the facts introduced are
combined to solve the goal using the isabelle auto tactic. From inspection, it is clear that the
sketched facts are enough to give the gist of the proof: to show A ∩ B = { }, we note that A
⊆ A ′ and that A ′ ∩ B = { } (recall that two sets are disjoint if their intersection is empty).

It is important to note that the proofs of the sketched elements may be arbitrarily compli-
cated and will often be solved with further sketches, but they may also be solved by automation.
The advantages of the sketching pattern is that it provides a clear route through the proof from
the outset; a disadvantage is that the ‘clear route’ may lead up a blind alley if the, e.g., nth
step is not valid and a lot of wasted time is spent on the n-1 prior steps. In practice this doesn’t
occur much and when it does, the n-1 are usually useful in a revised sketch.
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5.2.3.2 Sledgabelle - Freitas

This is as discussed in Section 4.2.5.

5.2.4 VDM library

Our model of the heap is built upon the core VDM datatypes and operators: natural numbers,
positive natural numbers, sets, and (finite, partial) maps. The Isabelle/HOL library already
supports most of these concepts, but in some cases we needed to define further operators. We
needed to define domain subtraction (or antirestriction) on maps, for example:

s -/ m ≡ λx . if x ∈ s then None else m x

and proved associated lemmas that would be considered part of a VDM Library, such as the
domain of an anti-restricted map:

dom (S -/ f ) = dom f - S

which links some map operators to set operators. The table in Figure 5.1 gives an overview
of the VDM library. Each operator is shown, alongside its syntax, with the number of lemmas
about it (as the root of the term tree) and the number of times that lemmas about this operator
were used in both proof developments2.

Operator Symbol Number Lemmas Freitas Total Whiteside Total
Domain restriction / 15 15 28
Domain anti-restriction -/ 23 80 61
Map override † 22 54 20
Map union ∪m 24 71 39
Total 92 220 148

Figure 5.1: The VDM Library in Isabelle

We note three important differences between VDM and the representation in Isabelle/HOL:

1. Isabelle support partial functions is involved/limited, and not a basic concept, like Z’s set
of pairs of VDM’s primitive (partial maps) type. Thus, the partiality of maps is achieved
using the option datatype. Thus, elements of the map are accessed using the special the
operator, for example:

{x} / f = [x 7→ the (f x )]

describes the result of domain restriction on a singleton set (under the assumption x ∈
dom f ). the operator is used for accessing an actual value within a map. That is, the
domain element is known and we have a value. When map application happens on an
element outside the domain, Isabelle returns None, a bottom element that totalises VDM
maps in Isabelle.

2. Secondly, maps (and sets) are not necessarily finite. Thus, lemmas about finiteness of
composite maps are required, for example:

finite (dom (f ∪m g))

2Approximately.
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if finite (dom f ) and finite (dom g).

3. Finally, there is no IN1 datatype in Isabelle. To get around this, we define a predicate
nat1 and extend it to operate on sets and maps (see Section 5.3.2 for the definitions on
sets and maps).

definition
nat1 :: nat ⇒ bool

where
nat1 n ≡ n > 0

To make IN1 a type with access to non-linear arithmetic operators and automation, one
needs to instantiate that new type to various type classes, hence effectively create an algebra
for IN1!

There is an important difference between the finiteness requirement and the IN1 requirement.
The finiteness is not part of the heap model, per se, but required as preconditions for many
standard Isabelle lemmas that we need (defining sum-size, for instance)3. On the other hand,
IN1 is very much a part of the model; this means that we need to keep track of the VDM IN1

type by introducing predicates in many places, resulting in a slightly messy specification and
conditional VDM functions, such as:

definition
locs-of :: Loc ⇒ nat ⇒ (Loc set)

where
locs-of l n ≡ (if nat1 n then { i . i ≥ l ∧ i < (l + n) } else undefined)

which would not be required if we could specify:

definition
locs-of-nat1 :: Loc ⇒ nat1 ⇒ (Loc set)

where
locs-of-nat1 l n ≡ { i . i ≥ l ∧ i < (l + n) }

Using this definition, we would need to instantiate nat1 through various type classes in
Isabelle, which was beyond what we wanted to do.

These conditions add to the complexity of the proof somewhat, but we use Isabelle’s au-
tomation to reduce the burden considerably. The remaining effort is managable (both in terms
of proof effort and effort ensuring the model is correct) in a project of comparable size to the
heap. However, we expect that proper support for the VDM datatypes would be required for
any larger model verification.

5.2.5 Summary

This section has introduced Isabelle, its proof languages, and tools for improving automation
and counterexample checking. We also discussed the VDM library that we built as part of
the heap case study. This library represents a considerable chunk of our proof effort (about
20%) and was used extensively throughout the heap verification. Fortunately, these results are
transferable to any other VDM model verification4. We have not yet built in any automation
support—simplifier sets for example—for the library as of yet. In the heap case study, all
lemmas were explicitly specified when used, leading to a larger proof, but with explicit data-
flow which allowed us to collect some statistics about the proofs. For a concrete framework for
VDM verification, finely tuned automation would considerably ease the burden of proof.

3In VDM all sets (and maps) are finite by definition.
4Though, we note that this library is expected to grow slightly as lemmas that we missed the first time round

suggest themselves, and because we only cover a few of the available VDM map operators
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Finally, in this section, we detailed the three main differences between Isabelle and VDM
and our (or Isabelle’s) techniques for bridging the difference. Again, for proper support for
VDM verification in Isabelle, more permanaent support for the VDM datatypes, such as IN1

and partial maps would be required, but that is beyond the scope of this project.

5.3 The models in Isabelle

We now turn to the actual model of the heap as specified in Isabelle. The next section details
Level 0 (Section 5.3.1), and Section 5.3.2 details Level 1, as presented in Chapter 2. The
justifications for the formalisation are given when they are first introduced, and Section 5.3.3
summarises the general transformation strategy. A detailed account of our naming conventions
is provided in Appendix B.

5.3.1 Heap level 0

In analogy with the VDM specification (see Section 2.1), we first define some type synonyms
to represent locations and the state:

type-synonym Loc ′ = nat
type-synonym F0 ′ = Loc ′ set

The auxiliary definitions of locs-of (shown above) and is-block can then be defined with
appropriate guards on any instances of the IN1 type in VDM.

definition is-block :: Loc ⇒ nat ⇒ (Loc set) ⇒ bool
where
is-block l n ls ≡ nat1 n ∧ locs-of l n ⊆ ls

The next step in specifying the model is to create definitions for the invariant, preconditions,
and post-conditions for each operation. We encode the finiteness requirement in Isabelle as an
invariant on level 0 (note that this doesn’t exist and is not required, since all sets are finite in
VDM).

definition
F0-inv :: F0 ⇒ bool

where
F0-inv f ≡ finite f

definition
new0-pre :: F0 ⇒ nat ⇒ bool

where
new0-pre f s ≡ (∃ · l . (is-block l s f ))

definition
new0-post :: F0 ⇒ nat ⇒ F0 ⇒ Loc ⇒ bool

where
new0-post f s f ′ r ≡ (is-block r s f ) ∧ f ′ = f - (locs-of r s)

definition
dispose0-pre :: F0 ⇒ Loc ⇒ nat ⇒ bool

where
dispose0-pre f d s ≡ locs-of d s ∩ f = {}

definition
dispose0-post :: F0 ⇒ Loc ⇒ nat ⇒ F0 ⇒ bool

where
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dispose0-post f d s f ′ ≡ f ′ = f ∪ locs-of d s

As can be seen, the definitions are identical to the VDM specification, except that these
definitions require all parameters to be explicitly provided. We now encode variants of the pre
and postconditions where the inputs and state are implicit using locales. They make for an
Isabelle theory that is closer to the VDM model and is also less repetitive.

VDM operations are defined using locales to keep hold of the state and its invariant as
part of the locale assumptions, and similarly for inputs. Locales provide a uniform technique
for packagaing together a VDM ‘operation’. The encoding is not perfect, however, because
post-conditions need to be specified separately (though, within the locale context).

We use layered locales to avoid repetition of the state invariant across each operation of
interest and to provide a natural context for the adaquecy proof (which is independent of the
individual operations).

locale level0-basic =
fixes f0 :: F0
and s0 :: nat

assumes l0-input-notempty-def : nat1 s0
and l0-invariant-def : F0-inv f0

In level0-basic, we introduce the state f0 and an input s0, which corresponds to the size of
the heap memory required to be allocated or disposed. Then, we ensure that the size is non-zero
with a locale assumption (corresponding to the type in VDM) and the invariant representing
finiteness. We consider l0-input-notempty-def as an assumption because it is a property of the
input; the finiteness is an invariant because it is defined over the state.

The actual VDM operations are then defined by locale extension and a definition for the
postcondition:

locale level0-new = level0-basic +
assumes l0-new0-precondition-def : new0-pre f0 s0

definition (in level0-new)
new0-postcondition :: F0 ⇒ nat ⇒ bool

where
new0-postcondition f ′ r ≡ new0-post f0 s0 f ′ r ∧ F0-inv f ′

The locale level0-new extends the locale level0-basic with the precondition, where the pa-
rameters have been supplied by the fixed variables for this level. Note there is no need to check
the invariant for f0 at the new0-precondition, since it is already stated as a locale assumption
at level0-basic. The postcondition new0-postcondition is then specified in the context of the
level0-new (meaning all the fixed variables are available) and is defined to take two parameters:

1. The updated state f ′;

2. and, the result r that represents the start location for the allocated block.

These two parameters are the variables to be existentially quantified when proving satisfiability
(a.k.a feasibility) proofs for NEW . The definition consists of a conjunction of the new0-post
definition, with the appropriate parameters instantiated, and the invariant predicate on the
updated state. Note that an updated invariant condition is necessary and is hidden in a VDM
operation specification (and appears when POs are generated, by Overture5, for example), but
must be manually added in Isabelle.

The dispose operation is similarly defined, additionally requiring an extra input variable:
the start location d0 of the block the add back to the heap, as in Chapter 2.

locale level0-dispose = level0-basic +

5See http://www.overturetool.org
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fixes d0 :: Loc
assumes l0-dispose0-precondition-def : dispose0-pre f0 d0 s0

definition (in level0-dispose)
dispose0-postcondition :: F0 ⇒ bool

where
dispose0-postcondition f ′ ≡ dispose0-post f0 d0 s0 f ′ ∧ F0-inv f ′

Given totalisation and definedness of the VDM model here, only feasibility proof obligations
per level are needed. These are also given as definitions within the locale (where the fixed
variables can be seen as universally quantified, and assumptions can be seen as assumption of
the theorem).

definition (in level0-new)
PO-new0-feasibility :: bool

where
PO-new0-feasibility ≡ (∃ · f ′ r ′ . new0-postcondition f ′ r ′)

definition (in level0-dispose)
PO-dispose0-feasibility :: bool

where
PO-dispose0-feasibility ≡ (∃ · f ′ . dispose0-postcondition f ′)

These PO definitions are the top-level goals to be discharged using Isabelle. We provide
more details of the proof obligations in Chapter 6.

Finally, it is worth explaining that within the locale structure, we are actually proving the
usual proof obligation setup, which would be more familiar if given outside the locale as:

definition
PO-new0-fsb :: bool

where
PO-new0-fsb ≡ (∀ · f s . F0-inv f ∧ nat1 s ∧ new0-pre f s −→

(∃ · f ′ r ′ . new0-post f s f ′ r ′ ∧ F0-inv f ′))

definition
PO-dispose0-fsb :: bool

where
PO-dispose0-fsb ≡ (∀ · f d s . F0-inv f ∧ nat1 s ∧ dispose0-pre f d s −→

(∃ · f ′ . dispose0-post f d s f ′ ∧ F0-inv f ′))

The locale based definitions are implied by the generic version, which universally quantify
what is localy assumed.

These locale-based PO definitions are the top-level goals to be discharged using Isabelle.
We provide more details of the proof obligations in Chapter 6.

5.3.2 Heap level 1

Firstly, we define a type type synonym for the state of the free store at level 1 to be a map
from locations to sizes:

type-synonym F1 = Loc ⇀ nat

5.3.2.1 Auxillary functions

Note that the size is only nat here so, as mentioned earlier, we must extend the nat1 predicate
to operate on maps and sets to ensure that the model is consistent with VDM:

definition
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nat1-map :: F1 ⇒ bool
where

nat1-map f ≡ (∀ · x . x ∈ dom f −→ nat1 (the (f x )))

definition
nat1-set :: (nat set) ⇒ bool

where
nat1-set S ≡ (∀ · x . x ∈ S −→ nat1 x )

The level 1 model introduces a new auxiliary function, locs that returns the set of all free
locations withing a given map. We define the locs function using a union over the elements in
the domain of the VDM map. It is wrapped inside a conditional expression, however, in order
to ensure that the map is appropriately a nat1-map:

definition
locs :: (Loc ⇀ nat) ⇒ Loc set

where
locs sm ≡ (if nat1-map sm then⋃

s ∈ dom sm. locs-of s (the (sm s))
else

undefined)

It is otherwise undefined, which is a polymorphic constant in Isabelle. That is, the VDM
model uses a total map to IN1, whereas here we can only use a map to IN as a parameter. Thus,
we totalise the definition of locs by giving it a bottom element (as Isabelle’s undefined) when
the expected type fails.

It is important to emphasise this is not VDM’s notion of undefinedness. For instance, it
is possible to prove that undefined = undefined in Isabelle, which is not true in VDM’s three-
valued logic. Thus, undefined should never feature in our proofs. If it does, it means we made
some mistake somewhere by applying a function to the wrong type. For further discussion on
the subtleties of handling partial functions, see [Jon95, Sch12].

5.3.2.2 Invariant

Recall the level 1 invariant in Section 2.2:
Free1 = Loc

m−→ N1

inv (f ) 4
∀l , l ′ ∈ dom f ·

l 6= l ′ ⇒ is-disj (locs-of (l , f (l)), locs-of (l ′, f (l ′))) ∧
∀l ∈ dom f · (l + f (l)) /∈ dom f

It contains two components (a conjunction):

• Disjoint : that the locations defined by each element in the map are disjoint;

• and, sep: that the locations defined by elements do not abut on any end.

We encode these as individual definitions in Isabelle:

definition
Disjoint :: F1 ⇒ bool

where
Disjoint f ≡

(∀ · a ∈ dom f . ∀ · b ∈ dom f . a 6= b −→ disjoint (Locs-of f a) (Locs-of f b))

definition
sep :: F1 ⇒ bool
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where
sep f ≡ (∀ · l ∈ dom f . l + the(f l) /∈ dom f )

where disjoint A B is the same as A ∩ B = { }, and Locs-of f a is the same as locs-of a (the (f
a)).

Albeit trivial, this decomposition into separate concepts is invaluable in taming the goal
complexity during proofs (see discussion in Section 4.2). They create what we call “zoom”
levels of interest/discourse. For instance, we create various lemmas about these definitions and
their relationship with, say locs-of and locs or set theory and map operators. So, in actual
POs, these issues of mechanisation are already distilled and resolved.

We must also, however, have additional components to the invariant. They are the implicit
VDM notion of finiteness of maps and sets, and the subtype checking on map range type for
IN1.

• nat1 map: that the state doesn’t contain any locations that map to size 0.

• finite domain: that the domain of the map is finite, similarly to level 0 state.

Thus, the invariant definition is as follows:

definition
F1-inv :: F1 ⇒ bool

where F1-inv f ≡ Disjoint f ∧ sep f ∧ nat1-map f ∧ finite(dom f )

definition
VDM-F1-inv :: F1 ⇒ bool

where
VDM-F1-inv f ≡ Disjoint f ∧ sep f

We also define the VDM invariant, as we may wish to discharge the Isabelle parts the invariant
first (finiteness etc), as they are often simpler. We provide a lemma to ‘shape’ the goal as such:

lemma invF1-shape: nat1-map f =⇒ finite (dom f ) =⇒ VDM-F1-inv f =⇒ F1-inv f
unfolding F1-inv-def VDM-F1-inv-def by simp

Such proof decomposition is again essential for automation and proof strategy reuse, as it
informs (meta-)data collection (see Chapter 3 on meta-data and Chapter 6 on Isabelle proofs).

Furthermore, we define introduction and elimination rules to help unfold the invariant; we
also provide weakening rules for the case that only one part of the invariant is required (we
only show the sep version here):

lemma invF1E [elim!]: F1-inv f =⇒ (sep f =⇒ Disjoint f =⇒ nat1-map f =⇒ finite (dom f ) =⇒ R)
=⇒ R
unfolding F1-inv-def by simp

lemma invF1I [intro!]: sep f =⇒ Disjoint f =⇒ nat1-map f =⇒ finite (dom f ) =⇒ F1-inv f
unfolding F1-inv-def by simp

lemma invF1-sep-weaken: F1-inv f =⇒ sep f
unfolding F1-inv-def by simp

5.3.2.3 NEW operation

Following the style of level 0 in Section 5.3.1, we create definitions for the pre and post-conditions
for the operations. We split the NEW post-condition into two separate definitions, correspond-
ing to each disjunct in the VDM operation. Again, this is useful for proof decomposition within
POs and also to help identify hidden case analysis, another of our proof patterns.
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definition
new1-pre :: F1 ⇒ nat ⇒ bool

where
new1-pre f s ≡ (∃ · l ∈ dom f . the(f l) ≥ s)

definition
new1-post-eq :: F1 ⇒ nat ⇒ F1 ⇒ Loc ⇒ bool

where
new1-post-eq f s f ′ r ≡ r ∈ dom f ∧ the(f r) = s ∧ f ′ = {r} -/ f

definition
new1-post-gr :: F1 ⇒ nat ⇒ F1 ⇒ Loc ⇒ bool

where
new1-post-gr f s f ′ r ≡ r ∈ dom f ∧ the(f r) > s ∧

f ′ = ({r} -/ f ) ∪m [r + s 7→ the(f r) - s]

definition
new1-post :: F1 ⇒ nat ⇒ F1 ⇒ Loc ⇒ bool

where
new1-post f s f ′ r ≡ new1-post-eq f s f ′ r ∨ new1-post-gr f s f ′ r

5.3.2.4 DISPOSE operation

Before showing the locale definitions corresponding to the DISPOSE1 operation, we create
auxiliary definitions for dispose. The way these came about is discussed in Section 4.2. First
are the two auxilliary functions called sum size and min loc which are used in the postcondition
are defined using Isabelle’s operators for set minimal and summation, respectively.

definition
min-loc :: (Loc ⇀ nat) ⇒ nat

where
min-loc sm = (if sm 6= empty then

Min (dom sm)
else

undefined)

definition
sum-size :: (Loc ⇀ nat) ⇒ nat

where
sum-size sm = (if sm 6= empty then

(
∑

x∈(dom sm) . the (sm x ))
else

undefined)

Once again, we used Isabelle’s undefined to enable a total function over a subtype, as we
did for locs.

We have two versions of the postconditions: the exact translation from the VDM specification
and a version where above, below, and ext are given as definitions. The latter definition makes
proof more straightforward since we can refer to the maps by name and unfold where necessary.
We do, of course, prove both definitions equivalent. This is another example of zooming: the
use of different levels of interest in involved operators, that is based on the problem at hand,
and is useful in helping proof decomposition and lemma discovery for higher automation.

definition
dispose1-pre :: F1 ⇒ Loc ⇒ nat ⇒ bool

where
dispose1-pre f d s ≡ disjoint (locs-of d s) (locs f )
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definition
dispose1-post :: F1 ⇒ Loc ⇒ nat ⇒ F1 ⇒ bool

where
dispose1-post f d s f ′ ≡

(∃ · below above ext .
below = { x ∈ dom f . x + the(f x ) = d } / f ∧
above = { x ∈ dom f . x = d + s } / f ∧
ext = (above ∪m below) ∪m [d 7→ s] ∧
f ′ = ((dom below ∪ dom above) -/ f ) ∪m ([min-loc(ext) 7→ sum-size(ext)]))

In our alternative formulation, the three existential variables are given as definitions, for
example:

definition
dispose1-below :: F1 ⇒ Loc ⇒ F1

where
dispose1-below f d ≡ { x ∈ dom f . x + the(f x ) = d } / f

These encoding considerations are crucial to ensure proofs are not complicated by technicalities
unrelated to the problem. One must not, however, fall for the temptation to chisel the model
into whatever the theorem prover would be happier with. Our modification is clearly equivalent,
and can be proved as such if that’s the case, we we have done for the layered definition of dispose
with respect to the original one.

The other two definitions are:

definition
dispose1-above :: F1 ⇒ Loc ⇒ nat ⇒ F1

where
dispose1-above f d s ≡ { x ∈ dom f . x = d + s } / f

definition
dispose1-ext :: F1 ⇒ Loc ⇒ nat ⇒ F1

where
dispose1-ext f d s ≡ (dispose1-above f d s ∪m dispose1-below f d) ∪m [d 7→ s]

which allows us to write and prove:

definition
dispose1-post2 :: F1 ⇒ Loc ⇒ nat ⇒ F1 ⇒ bool

where
dispose1-post2 f d s f ′ ≡

(f ′ = ((dom (dispose1-below f d) ∪ dom (dispose1-above f d s)) -/ f )
∪m ([min-loc(dispose1-ext f d s) 7→ sum-size(dispose1-ext f d s)]))

lemma dispose1-equiv :
dispose1-post f d s f ′ = dispose1-post2 f d s f ′

unfolding dispose1-post-defs dispose1-post2-defs
by auto

5.3.2.5 VDM operation definitions and feasibility goals

Finally, we put everything together in locales and construct definitions relating to the feasibility
proofs. As with level 1, we encode the shared inputs, state, assumptions and invariant in a
separate locale:

locale level1-basic =
fixes f1 :: F1
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and s1 :: nat
assumes l1-input-notempty-def : nat1 s1
and l1-invariant-def : F1-inv f1

The individual operations are then specified as localte extensions and the post-conditions
are given as definitions within the locale:

locale level1-new = level1-basic +
assumes l1-new1-precondition-def : new1-pre f1 s1

locale level1-dispose = level1-basic +
fixes d1 :: Loc

assumes l1-dispose1-precondition-def : dispose1-pre f1 d1 s1

definition (in level1-new)
new1-postcondition :: F1 ⇒ nat ⇒ bool

where
new1-postcondition f ′ r ≡ new1-post f1 s1 f ′ r ∧ F1-inv f ′

definition (in level1-dispose)
dispose1-postcondition :: F1 ⇒ bool

where
dispose1-postcondition f ′ ≡ dispose1-post f1 d1 s1 f ′ ∧ F1-inv f ′

definition (in level1-dispose)
dispose1-postconditionpsg :: F1 ⇒ bool

where
dispose1-postconditionpsg f ′ ≡ dispose1-post2 f1 d1 s1 f ′ ∧ F1-inv f ′

As in level 0, the feasibility proof operations are encoded as definitions as follows:

definition (in level1-new)
PO-new1-feasibility :: bool

where
PO-new1-feasibility ≡ (∃ · f ′ r ′ . new1-postcondition f ′ r ′)

definition (in level1-dispose)
PO-dispose1-feasibility :: bool

where
PO-dispose1-feasibility ≡ (∃ · f ′ . dispose1-postcondition f ′)

definition (in level1-dispose)
PO-dispose1-feasibilitypsg :: bool

where
PO-dispose1-feasibilitypsg ≡ (∃ · f ′ . dispose1-postconditionpsg f ′)

5.3.3 Summary

The translation from VDM to Isabelle is relatively straightforward and faithful to the original
model. Operations in VDM have a fairly natural translation to Isabelle’s locale module system,
where definitions can be used for the post-condition. It is future work to build a VDM package
on top of Isabelle that would enable a syntactic emulation of VDM operations, thus reducing
the chance of a human error in the translation (we, for example, forgot the invariant on our
first iteration). While our strategy of packaging up preconditions, postconditions, and the
invariants in definitions makes for additional proof steps, it ensures a comparmentalised proof
and constructs explicit ‘zoom’ levels to have a clear domain of discourse. Additionally, our
naming scheme makes it relatively straightforward to pick a definition ‘from the air’ and have
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it be the right one, an oft overlooked but crucial requirement when models become large. The
next section details the Isabelle proofs of the proof obligations for the above model, including:

• Feasibility proofs for both operations for both levels;

• Adaquecy proof for the reification;

• Widen-precondition for both operations;

• Narrow-postcondition for both operations;

• Sanity proofs that state that, for example, DISPOSE (NEW ) = Id .

5.4 Proof of some properties of interest

In this section we prove some properties about the state invariant and operations that should
hold. These kind of properties are problem specific and are useful to test the usefulness of the
model (i.e. it’s pragmatics). They are quite important, since we could prove something useless
that is feasible and sound6!

5.4.1 Invariant testing

First, we test the Isabelle maps are good enough for our need to represent VDM maps in
Isabelle. It would be useful to use the Isabelle value feature wrapping values with predicates
like the invariant or the post condition.

Unfortunately, they are not enumerable (? TODO: Or just code not proved yet?). Instead,
we prove that the invariant holds (and fails to hold) for certain values. This performs both
positive and negative testing on the invariant. Proofs are automatic by auto.

value [0 7→ 4 , 6 7→ 11 ]

definition
F1-ex :: F1

where
F1-ex ≡ [0 7→ 4 , 6 7→ 11 ]

definition
F1-ex-inv :: F1 ⇒ bool

where
F1-ex-inv f ≡ F1-inv f

lemmas F1-ex-inv-defs = F1-ex-inv-def F1-inv-defs F1-ex-def

5.4.2 Operations properties

Next, we prove some useful properties that operators at level 1 must satisfy. Incidentally, the
proof of these properties helped hightlight various (general) lemmas about VDM maps missing
in Isabelle.

6This has actually happened in a first version of the (wrong) model. That is we build the model right, but
we didn’t build the right model!

58



CHAPTER 5. HEAP IN ISABELLE

5.4.2.1 NEW 1 shrinks the memory

Upon memory allocation the resulting available memory must shrink. At first we tried some-
thing hard that often happens during proof: to prove a non-theorem (!) That is, to show that
f1 ′ ⊆m f1, which is of course false for the greater case. Nonetheless, this was useful to identify
key missing lemmas for VDM maps, which were added to our library in theory VDMMaps.

In normal practice, it’s important to use nitpick and quickcheck to try and invalidate our
theorem by finding counter examples: these tools are much better at spotting non-theorems
(with complicated assumptions) than normal users.

Our current version states that the resulting map must be different from the original (i.e. the
allocation operation does something), and that its result leads to a subset of available locations
(locs f1 ′ ⊂ locs f1 ). Incidentally, locs f1 is the retrieve function between level 0 and 1.

Proving proper subset is divided in two cases as subset and not equal. In these proofs, we
decided to follow some advice given by Alan Bundy: “it is often useful [for learning/generalising]
to have more than one proof for the same goal”. We decided to take his suggestion and produce
such variety, and in a truly novel form rather than just an artificial “reproving”. Leo proved
these goals as: i) “head-on”, i.e. expanding and simplifying as we went; ii) “planned”, i.e having
an idea of what we wanted to achieve at each step and convincing Isabelle (often with extra
lemmas) along the way; iii) “algebraically”, i.e. having lemmas that chisel away operators to
achieve what Alan calls “get rid of difficult operators”7.

Moreover, independently, Iain is doing proofs by trying to “explain” the proof through
Isar’s declarative features to unpick the problem in yet another format. We also set it as
a task for an MSc student that was not exposed to proof before (i.e. what we could expect
of a well educated and motivated engineer): she (Nataliia) is doing them on her own after
discussion and advice from Leo. The result [Sle13] is a pedagogical explanation of the proof
process in line with Naur’s [Nau72] from the perspective of a non-expert, well trained engineer.
This last interaction could be taken us an expert training an engineer to handle/tackle proof
and collecting the effort. Both Nataliia and Leo are running the proofs through Andrius’
Isabelle/Eclipse-PP8 [Vel12, Vel14], which captures the proof process by having a history log
and encoding of attempts and features according to our MWhy models [JFV13].

Next, our aim is to study this data and try to infer general patterns from both PP data for
comparison and fine tuning for learning techniques to take over [Gro12, GKL13, HK13]

context level1-new
begin

definition
PO-new1-postcondition-state-changes :: nat ⇒ bool

where
PO-new1-postcondition-state-changes r ≡ (∀ · f1 ′ . new1-postcondition f1 ′ r −→ f1 ′ 6= f1 )

definition
PO-new1-postcondition-state-locs-subset :: nat ⇒ bool

where
PO-new1-postcondition-state-locs-subset r ≡ (∀ · f1 ′ . new1-postcondition f1 ′ r −→ locs f1 ′ ⊆ locs

f1 )

definition
PO-new1-postcondition-diff-f-locs :: nat ⇒ bool

where

7This is a reference to trick by mathematicians trying to avoid complex operators. For instance, instead of
proving the square root (e.g

√
2 = x) of something they get rid of the square root by squaring both sides (e.g.

2=x2).
8Our Eclipse-based proof process (PP) collection environment that wraps around Isabelle’s kernel for “tapping

the wire” for information. It can be downloaded at https://github.com/andriusvelykis/proofprocess.
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PO-new1-postcondition-diff-f-locs r ≡ (∀ · f1 ′ . new1-postcondition f1 ′ r −→ locs f1 ′ 6= locs f1 )

definition
PO-new1-postcondition-shrinks-f-locs :: nat ⇒ bool

where
PO-new1-postcondition-shrinks-f-locs r ≡ (∀ · f1 ′ . new1-postcondition f1 ′ r −→ locs f1 ′ ⊂ locs f1 )

definition
PO-new1-postcondition-f-equiv :: nat ⇒ bool

where
PO-new1-postcondition-f-equiv r ≡ (∀ · f1 ′ . new1-postcondition f1 ′ r ∧ the(f1 r) = s1 −→ {r} -/

f1 ′ = {r} -/ f1 )

end

definition
PO-new1-dispose1-identity-post :: F1 ⇒ nat ⇒ nat ⇒ bool

where
PO-new1-dispose1-identity-post f n r ≡ (∀ · f ′ f ′′ . new1-post f n f ′ r ∧ dispose1-post f ′ r n f ′′ ∧

F1-inv f ∧ nat1 n −→ f = f ′′)

definition
PO-new1-dispose1-identity-pre :: F1 ⇒ nat ⇒ nat ⇒ bool

where
PO-new1-dispose1-identity-pre f n r ≡ (∀ · f ′ . new1-pre f r ∧ new1-post f n f ′ r ∧ F1-inv f ∧ nat1

n −→ dispose1-pre f r n)
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Chapter 6

Heap proofs in Isabelle

6.1 Introduction

In this chapter, we describe the proof obligations and their proofs in Isabelle. For each of the
main proof obligations, we give a high-level overview of the proof in terms of informal proof
strategies, including the ‘expert’ motivations behind each proof step, corresponding to strategies
and ‘whys’ in Chapter 3.

6.2 Feasibility proofs

There are four feasibility proofs: one for each operation of each level. Level 0 POs are trivial since
there is no state invariant: they involve basic set theory. Isabelle can (almost) automatically
discharge them. We just need to guide the necessary definition unfoldings. Level 1 POs, on the
other hand, are more interesting and we concentrate on them below.

6.2.1 NEW 1 feasibility

The feasibility PO for the NEW operation states that (when all definitions have been unpacked):

∀ ·f s. F1-inv f ∧ nat1 s ∧ (∃ ·l∈dom f . s ≤ the (f l)) −→
(∃ ·f ′ r .

r ∈ dom f ∧
(the (f r) = s ∧ f ′ = {r} -/ f ∨
s < the (f r) ∧ f ′ = {r} -/ f ∪m [r + s 7→ the (f r) - s]) ∧

F1-inv f ′)

This is not dissimilar to expanding definitions from the general PO form given in Appendix A.
The first thing to note is that the conclusion contains a disjunction and can be rewritten to:

∀ ·f s. F1-inv f ∧ nat1 s ∧ (∃ ·l∈dom f . s ≤ the (f l)) −→
(∃ ·f ′ r . r ∈ dom f ∧ the (f r) = s ∧ f ′ = {r} -/ f ∧ F1-inv f ′) ∨
(∃ ·f ′ r .

r ∈ dom f ∧
s < the (f r) ∧
f ′ = {r} -/ f ∪m [r + s 7→ the (f r) - s] ∧ F1-inv f ′)

This can be seen as a semantics preserving transformation on the feasibility goal. It can be
proved as an identity to be applied. The reason (why) for performing this transformation,
which we could call ‘distribute existentials over disjunctions’ is because it is possible that each
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part of the disjunction would need a slightly different witness. In fact, in this case, it is pretty
obvious that we might want to do this, since there are explicit single-point instantiations for
the existential on each part of the disjunction: f ′ = {r} -/ f and f ′ = {r} -/ f ∪m [r + s 7→
the (f r) - s]. In general, this is not the case and the user may be required to provide a more
subtle (non-deterministic) witness.

In a larger example what usually happens is that some variables are one-point-ruled away,
hence constraining remaining existentialy quantified variables values to be given by the user in
an explicit existential introduction step. Worse, depending on the layers of definitions used,
the disjunction might not be obvious. For instance, top-level feasibility POs in the Mondex
case study [FW08] have over 1200 existentially quantified variables too many predicates to
count, of which 729 explicit instantiation need to be provided by the user, if done naively.
Careful consideration and attention to various layers of interest was crucial to cope with the
goal complexity. Identifying such proof intent (“why” meta-data) would guide our tools in the
search for similar proof strategies for such goals.

Just choosing one side of the disjunction is going to lead us into difficulty, because of the s
< the (f r) or the (f r) = s part of the goals. In the assumptions we have only s ≤ the (f r).
This suggests a hidden case analysis on the ≤, leading to the revised goal (which is then split
into two subgoals using disjunction elimination):

∀ ·f s. F1-inv f ∧ nat1 s ∧ (∃ ·l∈dom f . the (f l) = s ∨ s < the (f l)) −→
(∃ ·f ′ r . r ∈ dom f ∧ the (f r) = s ∧ f ′ = {r} -/ f ∧ F1-inv f ′) ∨
(∃ ·f ′ r .

r ∈ dom f ∧
s < the (f r) ∧
f ′ = {r} -/ f ∪m [r + s 7→ the (f r) - s] ∧ F1-inv f ′)

which give us a natural choice of disjunct for introduction in each goal.
We use the term “hidden case distinction” (another ‘why’) here, because there is no explicit

disjunction in the assumptions. Rather, we apply a lemma which states:

(y ≤ x ) = (x = y ∨ y < x )

to make it clear. In general, we may need to apply some additional transformations or deeper
analysis to make clear the disjunction. Or, it may require a complicated theorem. In this case,
we simply need to apply the intro tactic to deal with the universal quantifiers, implication, and
conjunctions to expose the new disjunction. The final step of the hidden case analysis is to apply
disjunction elimination. In the DISPOSE operation there are two hidden case distinctions. We
discuss this (reused) strategy further there. We now have two subgoals:

1. The first goal we use disjunction introduction and choose to solve the equals case, instan-
tiating r as the l in the assumptions and f ′ as the appropriate one point witness i.e. f ′

= {r} -/ f allows us to discharge the first two conjuncts of the goal trivially. The third
— the invariant — is basically F1-inv ({r} -/ f ), which unfolds as:

Disjoint ({r} -/ f ) ∧
sep ({r} -/ f ) ∧ nat1-map ({r} -/ f ) ∧ finite (dom ({r} -/ f ))

under the assumption Disjoint f ∧ sep f ∧ nat1-map f ∧ finite (dom f ).

Attempting to solve one of these suggests the general structure of lemmas to solve them
all:

Disjoint f =⇒ Disjoint (s -/ f )
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where s is a set of locations. The idea here is a strategy called invariant breakdown 1 which
conjectures lemmas about the invariant over the map operators. The idea being that it can
be eventually broken down to the extent where the assumption about the invariant on the
original domain will hold. The ‘why’ for using this strategy is when the updated state is
constructed from modifications to the original (map operators in our case). This, of course,
need not necessarily be the case, but turns out to be true for all the operations in this
case study, and is often the case in other larger examples [FW08, WF08, BFW09, FW09].

Because we encoded the individual parts of our invariant as definitions, we can apply this
strategy in a modular fashion for each of the four invariant parts. That is a key reason
“why” having zoom levels is useful: the updated invariant without the zoom-layers of
definitions would look like this:

(∀ ·a∈dom ({r} -/ f ).
∀ ·b∈dom ({r} -/ f ).

a 6= b −→ disjoint (Locs-of ({r} -/ f ) a) (Locs-of ({r} -/ f ) b)) ∧
(∀ ·l∈dom ({r} -/ f ). l + the (({r} -/ f ) l) /∈ dom ({r} -/ f )) ∧
(∀ ·x . x ∈ dom ({r} -/ f ) −→ nat1 (the (({r} -/ f ) x ))) ∧
finite (dom ({r} -/ f ))

In a more complicated situation like the Mondex example, a naive full exapansion of the
predicate goal needs GB of memory loads of CPU time and 45 pages of A4! Creating this
layers in examples like this is vital. Here, it keeps proof repetition and drudgery to a
minimum. It also aids our (still under development) strategy matching algorithms with
new goals given previously known/declared “why”s.

The proofs of the lemmas for nat1-map ({r} -/ f ) and finite (dom ({r} -/ f )) are trivial;
the other two are more complicated, but can still be solved by Isabelle’s automation and
do not require any additional side conditions. In the development, these are represented
as four lemmas

nat1-map f =⇒ nat1-map (s -/ f )

finite (dom f ) =⇒ finite (dom (s -/ f ))

Disjoint f =⇒ Disjoint (s -/ f )

and sep f =⇒ sep (s -/ f ).

For the map anti-restriction operation, we only require the P f assumption to show P
(s -/ f ); in general, subtle side-conditions may be required, which is where the work
of this proof really lies. Finally, we mention that Isabelle can prove these four lemmas
automatically beased on the VDM Maps library that we have provided. More realistically,
at first iteration, these goals served to shape what kind of general map lemmas we needed!

2. For the second goal, we again use invariant breakdown. In this case, however, the updated
state is more complicated. As a result the invariant conditions are more complicated:

Disjoint ({r} -/ f ∪m [r + s 7→ the (f r) - s])

Again, in this case, a single lemma suggests the approach for all the rest, under the
assumption Disjoint f :

1Could also be seen as a poor mans rippling
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Disjoint (f ∪m [a 7→ b])

Now, this lemma is suggested in analogy with the previous sub-goal case. We can prove
that the assumption holds using the lemma from the first goal and our assumption. To
prove this lemma, we need extra conditions, however:

a /∈ dom f

nat1-map f

nat1 b

disjoint (locs-of a b) (locs f )

The first comes from the side condition that map union domains must be disjoint. The
second and third comes from the definition of Disjoint, which involves locs-of (x (the (f
x ))) that requires the map is on IN1 range and the second argument being greater than
zero. The final condition relates to the precondition of dispose, which is required in order
to make the state update under the invariant possible.

To show that these hold in the current proof obligation is relatively straightforward and
each can be solved by Isabelle’s automation. To prove the lemma itself, on the other
hand, is not so straightforward. It needs case analysis and some detailed reasoning.

The sep part of the invariant is similar to Disjoint and needs an analagous lemma al-
beit with different conditions, which are likewise mostly solved by Isabelle’s automation.
Another part of the AI4FM project dealing with implicit strategies hopes to develop
techniques for learning analagous lemmas; we hope that we can utilise this approach to
suggest side-conditions. The invariant breakdown strategy provides a clear route through
this proof. Now, most of the work by an ‘expert’ is in conjecturing the right conditions for
the lemmas, as well as any needed (VDM map) datatype general lemmas. An alternative
approach, though naive and cumbersome, would be to include all global assumptions in
the suggested lemma. Once the lemma has been proved (if it is valid) one can analyse for
unused assumptions. Such a transformation has been suggested by Whiteside as a proof
refactoring [Whi13]. In this case study, we attempted to gain an understanding of ‘why’
the lemma was true to arrive at a natural set of assumptions (especially as we envisage it
may be reused). Another important consideration in the specification of lemma conditions
involves the ‘zoom-level’ of the assumptions. For example, a lemma can be specified as2:

VDM-F1-inv f =⇒ P ({r} -/ f )

or

[[sep f ; Disjoint f ]] =⇒ P ({r} -/ f )

which are equivalent, but the unfolding of VDM-F1-inv must occur at the top-level or
in the proof of the lemma; similarly, we could decide to weaken the lemma by passing a
strong assumption (the full F1-inv for example) if we always expect it to be used in a
context where the invariant holds.

2Isabelle represents chains of assumptions using [[A;B ;C ]] =⇒ D to mean A,B ,C ` D
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6.2.2 DISPOSE 1 feasibility

Far more complicated in appearance, but only requiring one new idea is the DISPOSE feasibility
proof. The PO is as follows:

∀ ·f d s.
F1-inv f ∧ nat1 s ∧ disjoint (locs-of d s) (locs f ) −→
(∃ ·f ′. f ′ =

(dom (dispose1-below f d) ∪ dom (dispose1-above f d s)) -/ f ∪m
[min-loc (dispose1-ext f d s) 7→
HEAP1 .sum-size (dispose1-ext f d s)] ∧

F1-inv f ′)

which, when the appropriate introduction rules and the one-point existential witness is supplied,
is basically the following goal:

F1-inv
((dom (dispose1-below f d) ∪ dom (dispose1-above f d s)) -/ f ∪m
[min-loc (dispose1-ext f d s) 7→ HEAP1 .sum-size (dispose1-ext f d s)])

It is actually of the same shape as the second case for NEW feasibility (an anti-restricted map
extended with a singleton set). Pause to think how would this goal look like without the folded
definitions for above and below :

F1-inv
((dom ({x ∈ dom f | x + the (f x ) = d} / f ) ∪

dom ({x ∈ dom f | x = d + s} / f )) -/
f ∪m
[min-loc

({x ∈ dom f | x + the (f x ) = d} / f ∪m {x ∈ dom f | x = d + s} / f ∪m
[d 7→ s])
7→ HEAP1 .sum-size

({x ∈ dom f | x + the (f x ) = d} / f ∪m {x ∈ dom f | x = d + s} / f ∪m
[d 7→ s])])

It is clearly more difficult to spot such similarities with NEW 1 without the zoom layers around
key concepts in formulae. Moreover, if we (naively) throw Isabelle’s heaviest tool (auto) at the
goal, we would get 4 subgoals fitting a two page of A4!

Thus, the same invariant breakdown strategy could be used here, using the lemmas that
the expert conjectured for the NEW 1 feasibility proof. However, we do not apply this strategy
just yet. The reason behind this is that there are two hidden case distinctions that significantly
simplify the proof obligations. These are on the shape of dispose1-below f d and dispose1-above
f d s. Recall the definitions:

dispose1-below f d ≡ {x ∈ dom f | x + the (f x ) = d} / f

dispose1-above f d s ≡ {x ∈ dom f | x = d + s} / f

The filtering equalities force above and below to either be empty or a singleton set. Thus, the
top level strategy here is to perform case analysis on these maps. For the case that both are
empty, things simplify out nicely (e.g. the anti restriction

(dom (dispose1-below f d) ∪ dom (dispose1-above f d s)) -/ f

disappears because domain of empty is empty and subtracing empty is unit law for antirestric-
tion).

We describe the technique for solving the case where dispose1-below f d = {} and
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dispose1-above f d s 6= {}

. From the definition of dispose1-above we know that it is a singleton with domain {d+s}. This
also allows us to reason about min-loc (dispose1-ext f d s) and HEAP1 .sum-size (dispose1-ext
f d s). Recall the definition of dispose1-ext :

dispose1-ext f d s ≡ dispose1-above f d s ∪m dispose1-below f d ∪m [d 7→ s]

This means that we also know that the min-loc (dispose1-ext f d s) = d. We also know
that HEAP1 .sum-size (dispose1-ext f d s) = s + the (f (d + s)). Putting this information
together, we get the proof obligation (for sep) as:

sep ({d1 + s1} -/ f1 ∪m [d1 7→ the (f1 (d1 + s1 )) + s1 ])

which is considerably simpler. In order to expose this as the true proof obligation (under the
case analysis), a strategy called we call shaping (or directed substitution) is used. In a shaping
strategy, subterms of the goal are proved to be equal to expert-supplied terms and substituted
in to form the new (simpler) goal, under (locale) specific assumptions. In this case there are
three shaping lemmas:

dom (dispose1-below f d) ∪ dom (dispose1-above f d s) = {d + s}

min-loc (dispose1-ext f d s) = d

and

HEAP1 .sum-size (dispose1-ext f d s) = s + the (f (d + s))

The same techniques apply to the other cases to get slightly different ‘shaped’ lemmas. At
this point, with the shaped PO, we can begin the invariant breakdown strategy. As before, the
nat1 and finite parts of the invariant are trivial. The difficulty is with sep and Disjoint.

For example, the side-conditions for

[[a /∈ dom f ; sep f ; ∀ ·l∈dom f . l + the (f l) /∈ dom [a 7→ b]; a + b /∈ dom f ;
nat1 b]]

=⇒ sep (f ∪m [a 7→ b])

are:

1. d1 /∈ dom ({d1 + s1} -/ f1 ), which is easy to solve by automation.

2. sep ({d1 + s1} -/ f1 ) is solved by further application of invariant breakdown using the
before-state invariant hypothesis (F1-inv f ).

3. nat1 (the (f1 (d1 + s1 )) + s1 ), which is straightforward for automation to solve.

4. ∀ ·l∈dom ({d1 + s1} -/ f1 ). l + the (({d1 + s1} -/ f1 ) l) /∈ dom [d1 7→ the (f1 (d1 +
s1 )) + s1 ], which requires some work.

5. d1 + (the (f1 (d1 + s1 )) + s1 ) /∈ dom ({d1 + s1} -/ f1 ), which also requires effort.

The last two generated subgoals correspond to showing that a) there is no chunk of memory
in the free store that touches the start (domain) of the singleton to be added; and, b) the
last element in the singleton does not touch any start locations in the free store (i.e. the
following element must not be in the domain). That is to say, adding this new element to the
map really does keep it separate: it does not touch anything on either end. It is at this point
that Freitas introduced a new concept called sep0 that gave a uniform definition for reasoning
about this concept. In Whiteside’s development, however, these subgoals were solved manually.
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In retrospect, a definition to refer to the loction straight after a chunk of memory may have
clarified these conditions e.g. after s f = s + the (f s) would simplify the first tricky condition
to:
∀ ·l∈dom ({d1 + s1} -/ f1 ). after l ({d1 + s1} -/ f1 ) /∈ dom [d1 7→ the (f1 (d1 + s1 )) +

s1 ]
For this condition, the goal comes down to showing that for any l ∈ dom f we have l + the

(f1 l) 6= d1 3. This is because we can rewrite membership of a singleton domain as an equality
and because if l + the (f1 l) 6= d1 then l + the (({d1 + s1} -/ f1 ) l) 6= d1 and we assume
that l 6= d1 + s1. Now, since we are under the assumption that dispose1-below f d = {} and
since dispose1-below f d ≡ {x ∈ dom f | x + the (f x ) = d} / f, the result follows easily.

For the final goal, the sep part of the invariant allows us to conclude that d1 + s1 + the
(f1 (d1 + s1 )) /∈ dom f1, which implies that d1 + s1 + the (f1 (d1 + s1 )) /∈ dom ({d1 +
s1} -/ f1 ) since the antirestricted domain is a subset of the full domain; we can conclude by
simple associative/commutative-rewriting with plus. For the other cases, where dispose1-above
f d s 6= {} etc, we follow exactly the same strategies, with minor differences, but with loads of
drudgery (e.g. about 3/4 of the proof script) and fewer, if any, new ideas needed.

6.3 Level 0 and level 1 reification

The next set of proof obligations are the reification proof obligations between levels 0 and 1.
There are three types of proof obligation:

• Adaquecy: shows that there is a level 1 state to match every level 0 state (and such that
the invariant holds). Because the retrieve is a function, it also means such chosen link
between types in this case is unique.

• Widen-precondition: concrete assumptions must be the same as or weaker than abstract
assumptions.

• Narrow-postcondition: concrete commitments must be the same as or stronger than ab-
stract commitments.

They justify the change in datatype representation by keeping models between levels compatible.

6.3.1 Adequacy

The proof obligation is ∃ ·!f1 . f0 = retr0 f1 ∧ F1-inv f1 (where the uniqueness isn’t required,
but we have it anyway as we can prove it). The goal states that the retrieve function linking the
two state representations is unique and satisfy the concrete invariant. The top level strategy
for this proof is a custom induction rule applied to f0 that operates on finite, contiguous,
non-abutting sets. The rule looks like

[[finite F ; P { };∧
F F ′.
[[finite F ; finite F ′; F ′ 6= { }; contiguous F ′; non-abut F F ′; P F ]]
=⇒ P (F ∪ F ′)]]

=⇒ P F

and is provided and proved by the expert. Then, the empty case is simple to prove: the required
witness for f1 is the empty map. For the step case, we need to show, under the induction
hypotheses:

F = retr0 f1hook

3Or after l f1 6= d1.
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F1-inv f1hook

contiguous F ′

non-abut F F ′

that

∃ ·!f1 . F ∪ F ′ = retr0 f1 ∧ F1-inv f1

The key observation is to apply the witnessing strategy with the appropriate value of a witness.
In this case, we do not have a one-point rule that makes it clear. Instead, the expert has to
provide it:

f1 = f1hook ∪m [Min F ′ 7→ card F ′]

As a justification for pulling this witness out of the air, recall the definition of the retrieve
function:

retr0 f1 = locs f1

and note that it is a reasonable ‘intuition’, perhaps, that this conjecture is true:

locs (f ∪m g) = locs f ∪ locs g

therefore we just need to show that:

F = locs f1hook

and

F ′ = locs [Min F ′ 7→ card F ′]

The first is precisely the induction hypothesis. For the second subgoal, we conjecture that
F ′ = locs-of (Min F ′) (card F ′), which is intuitively true. Recall that the cardinality of a set
is the number of elements and the Min function in Isabelle returns the minimum element of a
finite set. Thus, locs-of (Min F ′) (card F ′) gives us a contiguous set of length card F ′ starting
from Min F ′.

Recall the induction assumption states that F ′ is contiguous (as defined by contiguous ?F ≡
∃ ·m l . nat1 l ∧ ?F = locs-of m l), and allows us to solve the goal (since the locs of a singleton
is simply locs-of ). This leaves us with two lemmas to prove (with possible side-conditions):

1. locs (f ∪m g) = locs f ∪ locs g. Actually, we proved a more specific lemma:

locs (f ∪m [x 7→ y ]) = locs f ∪ locs-of x y

which just requires the assumption

x /∈ dom f

to ensure the map union is well-formed. The proof of this lemma is a straightforward
piece of algebraic reasoning. Unfolding the definition of locs, we get a union of all locs-of
over the domain of the map:

locs (f ∪m [x 7→ y ]) =
(
⋃

s∈dom (f ∪m [x 7→ y]) locs-of s (the ((f ∪m [x 7→ y ]) s)))

68



CHAPTER 6. HEAP PROOFS IN ISABELLE

Now, we can easily show that the dom (f ∪m [x 7→ y ]) = {x} ∪ dom f, and then that:

(
⋃

s∈{x} ∪ dom f locs-of s (the ((f ∪m [x 7→ y ]) s))) =

locs-of x (the ((f ∪m [x 7→ y ]) x )) ∪
(
⋃

s∈dom f locs-of s (the ((f ∪m [x 7→ y ]) s)))

where the second union is simply locs f and we are done.

2. contiguous F ′ =⇒ locs-of (Min F ′) (card F ′) = F ′ is solved with the help of two lemmas:
one showing that Min (locs-of m l) = m and the other that card (locs-of m l) = l. Both
these lemmas are proved by a simple induction on l.

Both these lemmas allow us to conclude the first part of the proof. The overall idea of this
part of the proof was to translate the ∪m operator to ∪ and show that both sides were equal
in:

F ∪ F ′ = locs (f1hook ∪m [Min F ′ 7→ card F ′])

The next step is then to show that the invariant holds. That is:

F1-inv (f1hook ∪m [Min F ′ 7→ card F ′])

To solve this goal, we break down the definition and solve each individual invariant part
separately. We take sep (f1hook ∪m [Min F ′ 7→ card F ′]) as an example, and we follow the same
invariant breakdown strategy as both the feasibility proof obligations (a map union extending
a map with a singleton map). The two difficult side conditions for this invariant breakdown
require effort. For example, one has to prove that:

Min F ′ + card F ′ /∈ dom f1hook

We show this by a contradiction. Why do we try proof by contradiction here? Because of the /∈,
certainly4. The contradiction constructed uses the abuttedness property of the induction rule:

non-abut F F ′

where

non-abut s1 s2 ≡
disjoint s1 s2 ∧ (∀ ·l1∈s1 . ∀ ·l2∈s2 . l1 + 1 < l2 ∨ l2 + 1 < l1 )

First, we know that l1 =Min F ′ + card F ′ - 1 ∈ F ′ and that l2 =Min F ′ + card F ′ ∈ dom
f1hook and that dom f1hook ⊆ F therefore Min F ′ + card F ′ ∈ F. Now, by non-abuttedness,
we know that l1 + 1 < l2 ∨ l2 + 1 < l1, but this is a contradiction since l1 + 1 = l2.
To prove the (optional) uniqueness of the retrieve function, we use the theorem

[[locs f = locs g ; F1-inv f ; F1-inv g ; f 6= Map.empty ; g 6= Map.empty ]] =⇒ f = g

which states that under the invariant equality of the locations implies equality of the maps.

4One might reasonably question why we didn’t try proof by contradiction in the equivalent step in the
feasibility POs?
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6.3.2 Widen-precondition

For the NEW operations, the widen precondition proof requires us to show that if the NEW0
precondition holds then the NEW1 precondition holds:

PO-l01-new-widen-pre ≡
∀ ·f1 s1 . F1-inv f1 ∧ nat1 s1 ∧ new0-pre (retr0 f1 ) s1 −→ new1-pre f1 s1

which unfolds to saying (under additional preconditions) if ∃ ·l . is-block l s1 (retro f1 ) then
∃ ·l∈dom f1 . s1 ≤ the (f1 l). That is, if there is a block in the set of locations defined by
the retrieve function, then there is an element in the map that has a size large enough. It is
tempting to assume that the l gained from existential elimination on the assumption is the one
required as the witness in the conclusion, but this is not the case since there is no way to prove
that l ∈ dom f. This was the first attempt at solving this proof and the incorrentess of the proof
step showed itself immediately. Rather, the approach is more subtle: one has to maneuvere the
goal to find the appropriate witness. The proof sketch used by Whiteside is as follows:

have locs-subset : locs-of l s1 ⊆ locs f1
sorry — Show that the locations are indeed with the free space

then have l ∈ locs f1
sorry — Specifically, the first element is in it

then have l ∈ (
⋃

s∈dom f1 . locs-of s (the (f1 s)))
sorry — Unfold the definition of locs

then have ∃ · m∈ dom f1 . locs-of l s1 ⊆ locs-of m (the (f1 m))
sorry — Show that locs-of l s1 must be contained in one other locs-of

then obtain m where mindom: m∈dom f1 and
locssubm: locs-of l s1 ⊆ locs-of m (the (f1 m))

sorry — Then find an arbitrary m that contains the locations from l
then have mgrs1 : s1 ≤ the (f1 m)

sorry — Show that s1 must be s1 ≤ m

Note that the two facts mindom and mgrs1 defined in the sketch5 are exactly what is
required to solve the goal. Most of the intermediate steps in this sketch are easily solved by
automation. The final step requires extra work, as does showing:

∃ ·m∈dom f1 . locs-of l s1 ⊆ locs-of m (the (f1 m))

which is proved as a lemma that depends precisely on the invariant (requiring nested proof by
contradictions). Before describing this final part of the proof, we consider the ‘why’ behind the
above sketch. It is directly motivated by the original failed proof: we know that the locations
are in the free store, and by the invariant, they must be within one other (possibly larger) set
of locations. The bad assumption initially was simply that they were taken from the front of
a set (l ∈ dom f ). Thus, we really needed to find the domain element (i.e. witnessing), then
show that its range is greater than or equal to s1.

To show this requires another hidden case analysis that is hinted at in the preconditions:
either l = m or l < m. In fact, our case analysis simply is on equals or not equals. For the
equals case, we have a lemma

[[0 < x ; 0 < y ; locs-of l x ⊆ locs-of l y ]] =⇒ x ≤ y

and that does the job for us. For the not equals case, we first show that m < l by contradiction,
since if this is true then l would not be in the locations, but we have already shown that it is.
After we have established this fact, we use another lemma

[[0 < x ; 0 < y ; l ′ < l ; locs-of l x ⊆ locs-of l ′ y ]] =⇒ x ≤ y

5Recall the discussion about proof sketching in Section 5.2.3.1.
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which is similar (analagous) to the previous case, and this completes the proof.
The dispose case is trivial since the preconditions are identical (once the retrieve function

has been unfolded to locs.

6.3.3 Narrow postcondition

The narrow postcondition proof obligations state that if the post condition holds at level 1
then it will also hold at level 0 under the retrieve function. That is, for NEW 1 is states that if
new1-post f1 s1 f1 ′ r then

new0-post (retr0 f1 ) s1 (retr0 f1 ′) r

We start by unfolding the NEW 1 post condition, whcih is a disjunction (the equals case or the
greater than case). This gives us an explicity case split. For each case we need to show the two
parts of the NEW 0 postcondition holds as:

is-block r s1 (locs f1 )

and

locs f1 ′ = locs f1 - locs-of r s1

where the locs f1 ′ corresponds to the updated free store. The first subgoal is straightforward.
For the second goal, we have the assumption that f1 ′ = {r} -/ f1 and so we use the dom-ar-locs
lemma to rewrite the locs(f 1′) as:

[[finite (dom f ); nat1-map f ; Disjoint f ; l ∈ dom f ]]
=⇒ locs ({l} -/ f ) = locs f - locs-of l (the (f l))

The second case is more difficult but follows the same pattern:

f1 ′ = {r} -/ f1 ∪m [r + s1 7→ the (f1 r) - s1 ]

and we rewrite the locs of this using two lemmas. To complete the proof simply requires some
algebraic manipulation and discharging the side-conditions, which is mostly automatable???.

For the dispose operation, the proof follows a similar technique. Instead of the case distinc-
tion on the postcondition (using an explicit disjunction) we have case analysis on below and
above being the Map.empty map. Then, for each of the case we apply the same locs distribution
lemmas as for new, perform algebraic manipulations, and discharge side-conditios. This is one
of the longest proofs in the level 1, but requires the least thought!

tht properly discuss the strategies and reusability.

6.4 Summary

We have formalised level 0 and level 1 of the VDM model and their reification, including all of
the generated proof obligations. We further satisfied ourselves of the validity of the model by
proving various indentities that we expected to exist in the model: so-called ‘sanity checks’.

Furthermore, we performed two parallel proof attempts. Freitas leveraged his experience
in the Z method and the Z/Eves theorem prover [Saa97, Fre04], and pursued a traditional,
procedural tactic-based style of proof6. Whiteside, who comes from the Isar school of Isabelle
proof [Wen02], took a declarative, forwards approach to the proof obligations that was centered
around proof sketches: high-level proof steps that solve the problem, but have gaps that must

6In fact, Freitas has also formalised the heap store in Z. See Appendix G and model evolution discussion in
Chapter 4.
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gradually be filled in. Our goal in pursuing parallel, stylistically different proof attempts was
to understand more clearly how different experts would proceed and to gather additional data
on the strategies employed. We wish to find if proof ideas (whys) transcend the details of a
proof language and if particular patterns of proof have instantiations in different styles.

The result is an interesting story: broadly speaking, the proofs have the same idea, or why,
but often diverge in some critical places. This divergance is mostly due to the proof language’s
style itself. In one proof, for example, Whiteside has a case distinction over the DISPOSE
post-condition for proving the invariant holds on the updated state, resulting in an easy to
understand proof; Freitas, on the other hand, introduces a specific lemma which crunches the
case distinction by having complex side-conditions, losing understandability but shortening the
proof considerably. In other cases it is the expert taking a different approach. For example, one
‘expert’ (Freitas) introduces a new concept that simplifies (and makes clearer) the sep part of
the invariant proofs. In a final example, Whiteside uses expert knowledge of the proof situation
to eliminate a complicated case distinction.

The Isabelle formalisation of the heap store also provided a compelling example of the
need for formalisation, throwing up several issues with our original VDM model and requiring
modifications to the model to be made. In several cases, the changes were trivial (a ‘+ 1’
removed, for example); the NEW post-condition required a fairly substantial change. This
chapter will not dwell on our failings, however, and we will only describe the final, correct
model7. We will, however, reiterate that we did not make any changes to the model to ‘ease’
the proofs through: the levels of the model document design decisions only.

Issues regarding VDM’s logic of partial functions and handling of 3-valued logic (undefined)
values were handled with care, but informally. They should not be of concern for this problem,
certainly not for our goals (of finding general proof strategies). They would be of concern for a
general translation strategy from VDM to Isabelle.

7Chapter 4 discusses the evolution of the model.
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Conclusion

This report acts as a source document and summarises a case study in the use of verification
tools to determine how realistic the ambition is of extracting the “why” from experts’ use of
such tools and provides a revision of an earlier description of an abstract model of an AI4FM
system that is linked to the case studies. We briefly discuss two important facets of our work
below:

7.1 Patterns of proof

As noted above, there are many common patterns of proof in formal methods. Reification
proofs, for example, always follow the same idea; furthermore, these proof patterns transfer
across different formalisms, since they are often based around similar notions of refinement.
Part of the goal in AI4FM is to learn new proof patterns for domain problems (then reuse them
in similar proofs). In the heap example, we developed strategies for proving lemmas about the
separateness and disjointedness properties of the invariant. These strategies, though informal,
were very useful and transferred , for example, from feasibility proofs of NEW to DISPOSE.
Another important observation, though, is that some of the proof patterns (or strategies) used
by an expert are more general and well-known (case analysis, for example), but the system
needs to learn when and why to apply the pattern. As part of this project, we are attempting
to catalogue some of these more general formal methods proof patterns, as we believe them to
be of interest outside the project.

7.2 System to capture proof process

Capturing the interactive proof process and identifying the necessary abstractions –the expert’s
“whys”– is a cumbersome process if done without tool support. A large amount of proof process
data presented in Chapter 3 can be captured and inferred automatically, by “listening” to the
interactive proof and recording expert’s insight. With this initial aim, the ProofProcess system
has been developed alongside –and in support of– the interactive proof effort presented in this
report. The system aims to facilitate proof analysis and strategy extraction.

The overall goal with the ProofProcess system is to develop a generic framework for captur-
ing, analysing and inferring different proof processes. At the core, it provides a generic approach
to represent proof processes.1 The proposed “whys” and proof features provide high-level ab-
stractions of the captured interactive proof. The system supports capturing the full history of

1The current model employed by the ProofProcess system corresponds to a subset of the abstract model
presented in Chapter 3. The model focuses on representing proof process and currently lacks support for
partitioning the data into bodies of knowledge or constructing the hierarchy of strategies.
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formal proof development, including multiple (unfinished or alternative) proof attempts. Fur-
thermore, the proofs can be recorded at variable granularity with different levels of abstraction.
These features can be used in a generic manner and are applicable to proof processes from
different theorem proving systems.

The generic core is extended with prover-specific integrations, creating the proof capture sys-
tems for particular theorem provers. These extensions provide prover-specific representations,
such as the actual proof terms or proof commands used by the prover. Furthermore, they are
responsible for integrating with the theorem prover –“wire-tapping” it– to record the low-level
proof process details, such as expert interactions, provided proof commands, their results, asso-
ciated proof context, used lemmas and other necessary information. A close integration records
all activities in the prover, providing a full history of proof development. Currently, prototype
ProofProcess extensions are available for two theorem proving systems: Isabelle [NPW02a] (via
new Isabelle/Eclipse proof assistant2) and Z/EVES [Saa97] (via new Z/EVES integration with
Community Z Tools3).

The ProofProcess tools have extensible and modular architecture. They are built on mod-
ern platforms of Eclipse4 and EMF [SBPM08], using Java and Scala programming languages.
The captured data is recorded as EMF objects and stored using the CDO framework.5 This
provides convenient data modelling functionality with a reliable embedded database solution.
The storage implementation has been upgraded to cope with scaling issues arising when cap-
turing industrial-type proofs, e.g. to achieve low memory usage and reasonable storage size.
The implementation code for the ProofProcess framework and prover integrations is available
as open-source.6

The captured proof process activities are subjected to analysis in order to try to infer cer-
tain information about the proof process automatically. Some of analysis techniques already
available in the ProofProcess framework include recognition of proof re-runs, capturing back-
tracking and when a new proof attempt diverges, inferring basic proof structure (e.g. parallel
case splits), finding certain kinds of important proof terms (e.g. identifying changed parts of
the goals), etc. Furthermore, other high-level proof insight can be marked interactively by the
expert, in order to indicate the important parts of the proof that “drive” the expert’s decisions.

The main use of the captured proof process data is extracting reusable proof strategies.
However, because the captured data presents a comprehensive account of the proof process
with high-level proof descriptions, other uses and benefits are also expected. These include
proof maintenance, proof metrics, teaching and training interactive theorem proving and others.

The architecture and implementation of the ProofProcess framework are part of the PhD
research by the third author of this report [Vel14].

7.2.1 Future work

The research on “Rippling” [BBHI05b] will be incorporated into some future version of AI4FM.
We believe that adding a Why of StuckInduction could trigger such proof failure analysis.

We are currently working on the tools for capturing and evaluating proof process (MWhy)
(meta-)data (c.f. Chapter 3), and tools are available7 as part of one of the authors’ PhD [Vel14].

We have the database of MWhy data for both the Z/EVES and Isabelle proofs discussed
here, but that is incomplete, and was used to drive tool development. Many (engineering)
features were added and many more are still needed.

2Isabelle/Eclipse is available at http://andriusvelykis.github.io/isabelle-eclipse.
3Z/EVES integration via Community Z Tools (CZT) [MU05] and the new Eclipse-based IDE are part of the

CZT 2.0 release. It is available at http://czt.sourceforge.net.
4Eclipse platform. http://www.eclipse.org
5Connected Data Objects (CDO) model repository. http://www.eclipse.org/cdo
6ProofProcess framework is available at https://github.com/andriusvelykis/proofprocess.
7http://andrius.velykis.lt/ and https://github.com/andriusvelykis/proofprocess
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We are also in the process of analysing the data with data mining algorithms, akin to the
work done in [HK13].
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Appendix A

General form of proof obligations
(POs)

This summary of proof obligation templates comes from [Jon90, Appendix C].

A.1 Satisfiability

Each operation precondition needs to be strong enough to make the postcondition feasible. It
is also known as feasibility proof.

satisfiable

↼−σ ∈ Σ, i ∈ I

pre-OP(↼−σ , a)

∃σ ∈ Σ, o ∈ O · post-OP(↼−σ , i , σ, o)

A.2 Reification

When moving between data type representations (from level 0 sets to level 1 maps or set of
pieces), we need to show that such a type jump keeps the properties of interest (i.e. types reify).
To do that we need to define a retrieve relation (or function) mapping each representation, and
then prove that their link is adequate. This is known as the adequacy proof.

adequacy
σa ∈ Σa

∃σr ∈ Σr · σa = retr(σr )

We also need to show that, for every operation involved, the abstract (A) precondition needs to
encompass the concrete (R) one. That is, the abstract precondition (or what you can assume)
is wide enough to encompass all the cases discussed in the concrete precondition under the
retrieve function mapping both data type domains. Adequacy proof is useful because it needs
to be proved once and can be used on all operations involving the data types being refined.

In other words, the concrete operation preconditions can only assume as much as the abstract
preconditions. This is known as the widening of the precondition and is defined next for every
operation.

widen-pre

σr ∈ Σr , i ∈ I
pre-OP -A(retr(σr ), i)
pre-OP -R(σr , i)

Similarly, the concrete postcondition (or what is to be delivered) is within what was promised
by the abstract postcondition. That is, using the assumption that the abstract precondition
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holds, under the adequate retrieve function, the concrete postcondition is sufficient to establish
the abstract postcondition contract.

narrow-post

σr ,
↼−σr ∈ Σr , i ∈ I , o ∈ O

pre-OP -A(retr(↼−σr ), i)

post-OP -R(↼−σr , i , σr , o)

post-OP -A(retr(↼−σr ), i , retr(σr ), o)

A.3 Sanity checks

Beyond satisfiability and reification of operations, it is also important to prove that our model
actually reflect what we want/expect from a memory manager. These sanity checks can be
state as conjectures to be proved at all levels in order to establish their usefulness in practice.
Otherwise, we could have a feasible and (refinement) adequate model that does not do what
the requirements/user wants.

For instance, it is desirable that NEW followed by DISPOSE on the same sizes is the
identity memory. It is also desirable to enforce that NEW /DISPOSE shrink/grow memory
accordingly with specific characteristics. The discussion in [JS90] does not include any sanity
check proof obligations.
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Appendix B

Isabelle formalisation
nomenclature

B.1 The heap in Isabelle

B.1.1 Introduction

This section introduces the formal encoding of the heap storage case study in the Isabelle proof
assistant. We do not introduce Isabelle in detail, but rather refer the reader to the Isabelle
documentation [NPW02b, P+94].

In the next section, we explain the naming conventions for our development and the overall
architecture of the formalisation. Then, Section 5.3.1 describes the formalisation of level 0.

B.1.2 Background

We use locales to describe the VDM models of a Heap. This increases the modularity and clarity
of the POs we are using Isabelle to prove, given of course the locale universally quantifying
assumptions and preconditions.

For example, we can state:

lemma (in LOCALE) Op1-FSB :
∃ · after-state result . invariant after-state ∧ post after-state result

We also use definition to capture VDM features. This is useful for the folding/unfolding of
zooming pattern. For example, a property for an operation is stated as a definition:

definition
OP-N-X :: STATE-N ⇒ IN1 ⇒ INn ⇒ bool

where
OP-N-X S i-1 i-n ≡ pre-without-state-invariant-or-input-subtype S i-1 i-n

and things like the invariant are also packaged up as definitions.

B.1.2.1 Naming conventions

We use the following conventions:

• auxilliary functions are capitilised and have a “ ” between each part of the name

• In the construction of the VDM operations macros, we introduce definitions of the following form,
for each part of an operation and state. We use short names (pre, post, inv) for the various parts.
definition
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STATE-N-inv :: STATE-N ⇒ bool

where

STATE-N-inv S-n ≡ invariant S-n

definition

OP-N-pre :: STATE-N ⇒ IN1 ⇒ INn ⇒ bool

where

OP-N-pre S i-1 i-n ≡ pre-without-state-invariant-or-input-subtype S i-1 i-n

definition

OP-N-post :: STATE-N ⇒ IN1 ⇒ INn ⇒ STATE-N ⇒ Out ⇒ bool

where

OP-N-post S i-1 i-n S ′ out ≡ post-without-state-invariant-or-IO-subtype S i-1 i-n S ′ out

• We also introduce an Isabelle shortcut to unfold all the names that occur in a definition, as
follows:
lemmas OP-N-pre-defs = OP-N-pre-def OP-N-pre-OP1-def OP-N-pre-OP2-defetc.

• Finally, the specification of the VDM oerations themselves is given in a locale, where the inputs,
invariant and preconditions are provided, and given long names. We use a locale levelN basic to
encode the common state and any common inputs and the invariant.

This is a useful construct as we also have common preconditions that arise in the translation of
VDM types to Isabelle (and we need some predicates to enforce subtyping). This is discussed in
more detail later.
locale level-N-basic =

fixes f :: STATE-N — common state

and s1 :: IN1 — common inputs

and sn :: INn

assumes l-N-input1-PROP : pred-input1 -subtype

and l-N-inputn-PROP : pred-inputn-subtype

and l-N-invariant : STATE-inv f

locale level-N-OP = level-N-basic +

fixes i :: IN1 — specific inputs

assumes OP-precondition : OP-pre f s i ∧ STATE-inv fThe post-condition is then expressed
as a definition within the locale:
definition (in level-N-OP)

OP-N-postcondition :: STATE-N ⇒ Out ⇒ bool

where

OP-N-postcondition f ′ r ≡ OP-N-post f s1 sn f ′ r ∧ STATE-N-inv f ′

• Next, the proof obligations are specified using the following form and nomenclature:
definition (in level-N-OP)

OP-N-feasibility :: bool

where

OP-N-feasibility ≡ (∃ · f ′ r ′ . OP-N-postcondition f ′ r ′)which is then stated as a lemma:
lemma (in level-N-OP) OP-N-Feasibility : OP-N-feasibility
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Appendix C

Proofs of Cliff’s “that-lemma”

C.1 Procedural ‘that lemma’

This is the Isabelle mechanisation of the proof in Section 3.2.3 on page 21.
theory HEAP1CBJNoLemmas
imports HEAP1
begin

lemma l1 : disjoint s1 s2 =⇒ s3 ⊆ s2 =⇒ disjoint s1 s3
by (metis Int-absorb2 Int-assoc Int-empty-right disjoint-def le-infI1 order-refl)

lemma l2v0 : disjoint s1 s2 =⇒ disjoint s2 s3 =⇒ disjoint (s1 ∪ s2 ) s3
nitpick
oops
lemma l2v1 : s2 6= {} =⇒ disjoint s1 s2 =⇒ disjoint s2 s3 =⇒ disjoint (s1 ∪ s2 ) s3
nitpick
oops

lemma l2v2 : s2 ⊆ s1 =⇒ disjoint s1 s3 =⇒ disjoint (s1 ∪ s2 ) s3
oops

lemma l2 : disjoint s1 s2 =⇒ disjoint s1 s3 =⇒ disjoint s2 s3 =⇒ disjoint (s1 ∪ s2 ) s3
by (metis Un-empty-left disjoint-def inf-sup-distrib2 )

lemma l2o: disjoint s1 s3 =⇒ disjoint s2 s3 =⇒ disjoint (s1 ∪ s2 ) s3
apply (metis Int-commute Un-empty-left disjoint-def inf-sup-distrib1 )
done

lemma l3-1 : nat1-map f =⇒ nat1-map(S -/ f )
by (metis Diff-iff f-in-dom-ar-apply-subsume l-dom-dom-ar nat1-map-def )

lemma l3-2 : l ∈ dom (S -/ f ) =⇒ l ∈ dom f
unfolding dom-antirestr-def
by (cases l∈S , auto)

lemma l3-3 : l ∈ dom (S -/ f ) =⇒ the ((S -/ f ) l) = the (f l)
unfolding dom-antirestr-def
by (cases l∈S , auto)

lemma l3 : nat1-map f =⇒ locs(S -/ f ) ⊆ locs f
apply (rule subsetI )
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unfolding locs-def
apply (simp add : l3-1 )
apply (erule bexE)
apply (frule l3-2 )
apply (frule l3-3 ,simp)
apply (rule-tac x=s in bexI )
by (simp-all)

lemma l4 : nat1 n =⇒ nat1 m =⇒ locs-of d (n+m) = (locs-of d n) ∪ (locs-of (d+n) m)
unfolding locs-of-def
by auto

— New lemmas (relatively trivial)
lemma l5 : nat1-map f =⇒ x ∈ dom f =⇒ nat1 (the(f x ))
by (metis nat1-map-def )

lemma l6 : nat1 y =⇒ y < s =⇒ locs-of (d+s) y ⊆ locs-of d s
unfolding locs-of-def
apply simp
apply (rule subsetI )
find-theorems - ∈ {- . -}
apply (elim conjE CollectE)
apply (intro conjI CollectI )
apply (simp)
oops

lemma l6-1 : x ∈ dom f =⇒ nat1-map f =⇒ x ∈ locs-of x (the(f x ))
unfolding locs-of-def
apply (frule l5 )
by auto

lemma l6 : x ∈ dom f =⇒ nat1-map f =⇒ x ∈ locs f
unfolding locs-def
by (metis UN-iff l6-1 )
— UNUSED, but discovered through the failure to prove l6 above, which led to change in l2v2

lemma l7v0 : d ∈ dom f =⇒ x ∈ locs-of d s =⇒ nat1-map f =⇒ x ∈ locs f
unfolding locs-def
apply simp
oops

lemma l7 : d ∈ dom f =⇒ x ∈ locs-of d (the(f d)) =⇒ nat1-map f =⇒ x ∈ locs f
unfolding locs-def
by (simp,rule bexI ,simp-all)

— Going directly top bottom of proof - used wrong l2 lemma!
theorem try1 : F1-inv f =⇒ nat1 s =⇒ d+s ∈ dom f =⇒ disjoint (locs-of d s) (locs f ) =⇒

disjoint (locs-of d (s+ (the(f (d+s))))) (locs ({d+s} -/ f ))
unfolding F1-inv-def
apply (elim conjE)

apply (frule l3 [of f {d+s}]) — S4 : L3
apply (frule l1 [of locs-of d s locs f (locs ({d+s} -/ f ))],simp) — S5 : L1(S4,h)
— step 6 is strange: it is already what you want to conclude, yet it comes from h?

— here S6 comes from Disjoint f
oops

82



APPENDIX C. PROOFS OF CLIFF’S “THAT-LEMMA”

— Going in the order of steps
theorem try2 :

— h1 h2 h3 h4
F1-inv f =⇒ nat1 s =⇒ d+s ∈ dom f =⇒ disjoint (locs-of d s) (locs f ) =⇒

disjoint (locs-of d (s+ (the(f (d+s))))) (locs ({d+s} -/ f ))
unfolding F1-inv-def
apply (elim conjE)

apply (frule l4 [of s the(f (d+s)) d ]) — S1 : L4(S2)
apply (rule l5 ,simp,simp) — S2 : L5(h1[3],h3)
apply (erule ssubst) — infer : subs(S1) ; Nothing about S6

thm l2 [of locs-of d s
locs-of (d+s)

(s+(the(f (d+s))))
locs ({d+s} -/ f )]

apply (rule l2 ) — S3 : L2(S5, S6)
defer

thm l1 [of locs-of d s
locs f
locs ({d+s} -/ f )]

l3 [of f {d+s}]
pr

apply (frule l3 [of f {d+s}]) — S4 : L3
apply (frule l1 [of locs-of d s

locs f
(locs ({d+s} -/ f ))],
simp) — S5 : L1(S4,h)

— To me the backward steps towards the goal are harder to follow? How about S6? Will try backward

oops

— Just like try2 but going underneath disjoint definition
theorem try3 :

— h1 h2 h3 h4
F1-inv f =⇒ nat1 s =⇒ d+s ∈ dom f =⇒ disjoint (locs-of d s) (locs f ) =⇒

disjoint (locs-of d (s+ (the(f (d+s))))) (locs ({d+s} -/ f ))
unfolding F1-inv-def
apply (elim conjE)

apply (frule l4 [of s the(f (d+s)) d ]) — S1 : L4(S2)
apply (rule l5 ,simp,simp) — S2 : L5(h1[3],h3)
apply (erule ssubst) — infer : subs(S1) ; Nothing about S6
apply (rule l2 ) — S3 : L2(S5, S6)
defer
apply (rule l1 [of - locs f -],simp) — S5 : L1(S4,h4)
apply (rule l3 ,simp) — S4 : L3(h1[3])
defer

— If I had a lemma (should create? no general enough?);
unfolding disjoint-def

apply (simp add : disjoint-iff-not-equal)
apply (intro ballI )
apply (erule-tac x=x in ballE ,simp-all)
apply (erule-tac x=y in ballE ,simp)
apply (erule notE)
apply (rule l7 [of d+s f -],simp-all)

apply (fold disjoint-def )
apply (unfold disjoint-def )
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apply (simp add : disjoint-iff-not-equal)
apply (frule l6 ,simp)
apply (intro ballI )
apply (frule l3-1 [of f {d+s}])
unfolding locs-def
apply simp
apply (elim bexE)

thm l3 l3-1 l3-2 l5
apply (frule l3-2 )
apply (simp add : l3-3 )
apply (frule l5 [of - d+s],simp)
apply (frule l5 ,simp) back
apply (frule l5 ,simp) back back
apply (erule ballE)+

apply simp
prefer 3
apply (erule notE)
unfolding locs-of-def
apply simp
nitpick

oops

— Version shown to Cliff - in step order and using l2 new
theorem try4 :

— h1 h2 h3 h4
F1-inv f =⇒ nat1 s =⇒ d+s ∈ dom f =⇒ disjoint (locs-of d s) (locs f ) =⇒

disjoint (locs-of d (s+ (the(f (d+s))))) (locs ({d+s} -/ f ))
unfolding F1-inv-def
apply (elim conjE)

apply (frule l4 [of s the(f (d+s)) d ]) — S1 : L4(S2)
apply (rule l5 ,simp,simp) — S2 : L5(h1[3],h3)
apply (erule ssubst) — infer : subs(S1) ; Nothing about S6
apply (rule l2 ) — S3 : L2(S5, S6)
defer
apply (rule l1 [of - locs f -],simp) — S5 : L1(S4,h4)
apply (rule l3 ,simp) — S4 : L3(h1[3])
defer
unfolding disjoint-def

apply (simp add : disjoint-iff-not-equal)
apply (intro ballI )
apply (erule-tac x=x in ballE ,simp-all)
apply (erule-tac x=y in ballE ,simp)
apply (erule notE)
apply (rule l7 [of d+s f -],simp-all)

oops

lemma l3half-1 : nat1-map f =⇒ (x ∈ locs f ) = (∃ ·y ∈ dom f . x ∈ locs-of y (the(f y)))
unfolding locs-def
by (metis (mono-tags) UN-iff )

— Version shown to Cliff - in step order and using l2original + new lemma
lemma l3half :
— see lemma l locs dom ar iff:

nat1-map f =⇒ Disjoint f =⇒ r ∈ dom f =⇒ locs({r} -/ f ) = locs f - locs-of r (the(f r))
apply (rule equalityI )
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apply (rule-tac [1 -] subsetI )
apply (frule-tac [1 -] l3-1 [of - {r}])
apply (simp-all add : l3half-1 )
defer
apply (elim conjE)
defer
apply (intro conjI )
apply (metis f-in-dom-ar-subsume f-in-dom-ar-the-subsume)
apply (erule-tac [1 -] bexE)
defer
apply (rule-tac x=y in bexI )
apply (metis f-in-dom-ar-apply-not-elem singleton-iff )
apply (metis l-dom-dom-ar member-remove remove-def )
apply (frule f-in-dom-ar-subsume)
apply (frule f-in-dom-ar-the-subsume)
unfolding Disjoint-def disjoint-def Locs-of-def
apply (simp)
by (metis disjoint-iff-not-equal f-in-dom-ar-notelem)

thm f-in-dom-ar-subsume
f-in-dom-ar-the-subsume
f-in-dom-ar-notelem
f-in-dom-ar-apply-not-elem
l-dom-dom-ar

lemma l8 : disjoint A (B - A)
unfolding disjoint-def
by (metis Diff-disjoint)

— LATEST version from Cliff that avoids expanding locs def through lemmas (caveat: 3.5 is hard to
prove
theorem try7 :

— h1 h2 h3 h4
F1-inv f =⇒ nat1 s =⇒ d+s ∈ dom f =⇒ disjoint (locs-of d s) (locs f ) =⇒

disjoint (locs-of d (s+ (the(f (d+s))))) (locs ({d+s} -/ f ))
unfolding F1-inv-def
apply (elim conjE)

apply (frule l4 [of s the(f (d+s)) d ]) — S1 : L4(S2)
apply (rule l5 ,simp,simp) — S2 : L5(h1[3],h3)
apply (erule ssubst) — infer : subs(S1) ; Nothing about S6
apply (rule l2o) — S3 : L2(S4, S6)
apply (metis (full-types) l1 l3 )
by (metis l3half l8 )

— trial lemma extracted from the last part of the next try proofs (try5/6 below)
lemma trial : nat1-map f =⇒ Disjoint f =⇒ d+s ∈ dom f =⇒ disjoint (locs-of (d + s) (the (f (d
+ s)))) (locs ({d+s} -/ f ))
unfolding Disjoint-def Locs-of-def

apply (erule-tac x=d+s in ballE) — S6 : S8
apply (simp-all)

unfolding disjoint-def
apply (simp add : disjoint-iff-not-equal)
apply (intro ballI )
unfolding locs-def
apply (frule l3-1 [of - {d+s}])
apply simp
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apply (erule bexE)
apply (frule l3-2 )
apply (frule f-in-dom-ar-notelem)
apply (erule-tac x=sa in ballE ,simp-all)
apply (metis f-in-dom-ar-apply-subsume)

done

theorem try5 :
— h1 h2 h3 h4

F1-inv f =⇒ nat1 s =⇒ d+s ∈ dom f =⇒ disjoint (locs-of d s) (locs f ) =⇒
disjoint (locs-of d (s+ (the(f (d+s))))) (locs ({d+s} -/ f ))
unfolding F1-inv-def
apply (elim conjE)

apply (frule l4 [of s the(f (d+s)) d ]) — S1 : L4(S2)
apply (rule l5 ,simp,simp) — S2 : L5(h1[3],h3)
apply (erule ssubst) — infer : subs(S1) ; Nothing about S6
apply (rule l2o) — S3 : L2(S4, S6)
apply (rule l1 [of - locs f -],simp) — S4 : L1(S5,h4)
apply (rule l3 ,simp) — S5 : L3(h1[3])

apply (frule l3half ,simp,simp,simp) — S8 : L3.5(h1[1])

oops

theorem try6 :
— h1 h2 h3 h4

F1-inv f =⇒ nat1 s =⇒ d+s ∈ dom f =⇒ disjoint (locs-of d s) (locs f ) =⇒
disjoint (locs-of d (s+ (the(f (d+s))))) (locs ({d+s} -/ f ))
unfolding F1-inv-def
apply (elim conjE)

apply (frule l4 [of s the(f (d+s)) d ]) — S1 : L4(S2)
apply (rule l5 ,simp,simp) — S2 : L5(h1[3],h3)
apply (erule ssubst) — infer : subs(S1) ; Nothing about S6
apply (rule l2o) — S3 : L2(S4, S6)
apply (rule l1 [of - locs f -],simp) — S4 : L1(S5,h4)
apply (rule l3 ,simp) — S5 : L3(h1[3])
apply (rule trial ,simp,simp,simp)
done

end

C.2 Isar ‘that lemma’

This is an Isar-style mechanisation of the proof in Section 3.2.3 on page 21.
lemma L1 :

assumes disjoint s1 s2
and s3 ⊆ s2
shows disjoint s1 s3
using assms unfolding disjoint-def
by blast

lemma L1pt5 :
shows disjoint s2 (s1 - s2 )

unfolding disjoint-def by simp
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lemma L2 :
assumes disjoint s1 s3
and disjoint s2 s3
shows disjoint (s1 ∪ s2 ) s3
using assms unfolding disjoint-def
by blast

lemma L3 :
assumes ∗: nat1-map f
shows locs (S -/ f ) ⊆ locs f

proof
fix x assume xin-domar : x ∈ locs (S -/ f )
then have x ∈ (

⋃
s∈dom (S -/ f ). locs-of s (the ((S -/ f ) s)))

by (simp add : locs-def ∗ dom-ar-nat1-map)
then have x ∈ (

⋃
s∈dom f . locs-of s (the (f s)))

by (smt UN-iff f-in-dom-ar-apply-not-elem l-dom-ar-notin-dom-or)
thus x ∈ locs f by (simp add : locs-def ∗)

qed

lemma L3pt5 :
assumes s∈ dom f
and Disjoint f
and nat1-map f
shows locs ({s}-/ f ) = locs f - locs-of s (the (f s))

using assms by (simp add : l-locs-of-dom-ar)

lemma L4 : nat1 n =⇒ nat1 m =⇒ locs-of d (n+m) = (locs-of d n) ∪ (locs-of (d+n) m)
unfolding locs-of-def
by auto

lemma that-lemma:
assumes a1 : F1-inv f
and a2 : disjoint (locs-of d s) (locs f )
and a3 : d+s ∈ dom f
and a4 : nat1 s
shows disjoint (locs-of d (s + (the (f (d+s)))))

(locs ({d+s} -/ f ))
proof -

from a1 show ?thesis
proof
assume Disj : Disjoint f
and n1map: nat1-map f
show ?thesis — Standard set-up of the problem complete
proof(subst L4 ) — Step 1: backwards application of L4

show nat1 s by (rule a4 ) — Direct from assm
next
show nat1 (the (f (d + s))) — Step 2: solved (almost) directly from our hyp
using n1map nat1-map-def a3 by simp

next — Resulting goal
show disjoint (locs-of d s ∪ locs-of (d + s) (the (f (d + s))))

(locs ({d + s} -/ f ))
proof(rule L2 ) — Step 3: backward application of L2

from a2 show disjoint (locs-of d s) (locs ({d+s} -/f )) — Step 4
proof (rule L1 )

from n1map show locs ({d + s} -/ f ) ⊆ locs f — Step 5
by(rule L3 )
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qed
next
show disjoint (locs-of (d + s) (the (f (d + s))))

(locs ({d + s} -/ f ))
proof (subst L3pt5 ) — Step 6: Substition of L3.5

from a3 Disj n1map show d + s ∈ dom f Disjoint f nat1-map f
by simp-all

next
show disjoint (locs-of (d + s) (the (f (d + s))))

(locs f - locs-of (d + s) (the (f (d + s))))
by (rule L1pt5 ) — Step 7

qed
qed

qed
qed
qed
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Appendix D

VDM Maps auxiliary library

theory VDMMaps
imports Main
begin

ML 〈〈 quick-and-dirty := true 〉〉

D.1 Extra map operators

definition
dom-restr :: ′a set ⇒ ( ′a ⇀ ′b) ⇒ ( ′a ⇀ ′b) (infixr / 110 )

where
[intro!]: s / m ≡ m |‘ s

definition
ran-restr :: ( ′a ⇀ ′b) ⇒ ′b set ⇒ ( ′a ⇀ ′b) (infixl . 105 )

where
m . s ≡ (λx . if (∃ · y . m x = Some y ∧ y ∈ s) then m x else None)

definition
dom-antirestr :: ′a set ⇒ ( ′a ⇀ ′b) ⇒ ( ′a ⇀ ′b) (infixr -/ 110 )

where
s -/ m ≡ (λx . if x : s then None else m x )

definition
ran-antirestr :: ( ′a ⇀ ′b) ⇒ ′b set ⇒ ( ′a ⇀ ′b) (infixl .- 105 )

where
m .- s ≡ (λx . if (∃ · y . m x = Some y ∧ y ∈ s) then None else m x )

definition
dagger :: ( ′a ⇀ ′b) ⇒ ( ′a ⇀ ′b) ⇒ ( ′a ⇀ ′b) (infixl † 100 )

where
[intro!]: f † g ≡ f ++ g

definition
munion :: ( ′a ⇀ ′b) ⇒ ( ′a ⇀ ′b) ⇒ ( ′a ⇀ ′b) (infixl ∪m 90 )

where
[intro!]: f ∪m g ≡ (if dom f ∩ dom g = {} then f † g else undefined)

And by the way, this use of Isabelle’s undefined value is a bit of a cheeky cheat. It basically
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means we shouldn’t get to undefined, rather than we are handling undefinedness. That’s because
the value is comparable (see next lemma). In effect, if we ever reach undefined it means we have
some partial function application outside its domain somewhere within any rewriting chain. As
one cannot reason about this value, it can be seen as a flag for an error to be avoided.

D.2 Set operators lemmas

lemma l-psubset-insert : x /∈ S =⇒ S ⊂ insert x S
by blast

lemma l-right-diff-left-dist : S - (T - U ) = (S - T ) ∪ (S ∩ U )
by (metis Diff-Compl Diff-Int diff-eq)

thm Diff-Compl
Diff-Int
diff-eq

lemma l-diff-un-not-equal : R ⊂ T =⇒ T ⊆ S =⇒ S - T ∪ R 6= S
by auto

D.3 Map operators lemmas

lemma l-map-non-empty-has-elem-conv :
g 6= empty ←→ (∃ · x . x ∈ dom g)

by (metis domIff )

lemma l-map-non-empty-dom-conv :
g 6= empty ←→ dom g 6= {}

by (metis dom-eq-empty-conv)

lemma l-map-non-empty-ran-conv :
g 6= empty ←→ ran g 6= {}

by (metis empty-iff equals0I
fun-upd-triv option.exhaust
ranI ran-restrictD restrict-complement-singleton-eq)

D.3.0.2 Domain restriction weakening lemmas [EXPERT]

lemma l-dom-r-iff : dom(S / g) = S ∩ dom g
by (metis Int-commute dom-restr-def dom-restrict)

lemma l-dom-r-subset : (S / g) ⊆m g
by (metis Int-iff dom-restr-def l-dom-r-iff map-le-def restrict-in)

lemma l-dom-r-accum: S / (T / g) = (S ∩ T ) / g
by (metis Int-commute dom-restr-def restrict-restrict)

lemma l-dom-r-nothing : {} / f = empty
by (metis dom-restr-def restrict-map-to-empty)

lemma l-dom-r-empty : S / empty = empty
by (metis dom-restr-def restrict-map-empty)
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lemma l-dom-r-nothing-empty : S = {} =⇒ S / f = Map.empty
by (metis l-dom-r-nothing)

lemma f-in-dom-r-apply-elem: x ∈ S =⇒ ((S / f ) x ) = (f x )
by (metis dom-restr-def restrict-in)

lemma f-in-dom-r-apply-the-elem: x ∈ dom f =⇒ x ∈ S =⇒ ((S / f ) x ) = Some(the(f x ))
by (metis domD f-in-dom-r-apply-elem the.simps)

lemma l-dom-r-disjoint-weakening : A ∩ B = {} =⇒ dom(A / f ) ∩ dom(B / f ) = {}
by (metis dom-restr-def dom-restrict inf-bot-right inf-left-commute restrict-restrict)

lemma l-dom-r-subseteq : S ⊆ dom f =⇒ dom (S / f ) = S unfolding dom-restr-def
by (metis Int-absorb1 dom-restrict)

lemma l-dom-r-dom-subseteq : (dom ( S / f )) ⊆ dom f
unfolding dom-restr-def by auto

lemma l-the-dom-r : x ∈ dom f =⇒ x ∈ S =⇒ the (( S / f ) x ) = the (f x )
by (metis f-in-dom-r-apply-elem)

lemma l-in-dom-dom-r : x ∈ dom (S / f ) =⇒ x ∈ S
by (metis Int-iff l-dom-r-iff )

lemma l-dom-r-singleton: x ∈ dom f =⇒ ({x} / f ) = [x 7→ the (f x )]
unfolding dom-restr-def
by auto

lemma singleton-map-dom:
assumes dom f = {x} shows f = [x 7→ the (f x )]
proof -
from assms obtain y where f = [x 7→ y ]

by (metis dom-eq-singleton-conv)
then have y = the (f x ) by (metis fun-upd-same the.simps)
thus ?thesis by (metis 〈f = [x 7→ y ]〉)
qed

lemmas restr-simps = l-dom-r-iff l-dom-r-accum l-dom-r-nothing l-dom-r-empty
f-in-dom-r-apply-elem l-dom-r-disjoint-weakening l-dom-r-subseteq
l-dom-r-dom-subseteq

D.3.0.3 Domain anti restriction weakening lemmas [EXPERT]

lemma f-in-dom-ar-subsume: l ∈ dom (S -/ f ) =⇒ l ∈ dom f
unfolding dom-antirestr-def
by (cases l∈S , auto)

lemma f-in-dom-ar-notelem: l ∈ dom ({r} -/ f ) =⇒ l 6= r
unfolding dom-antirestr-def
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by auto

lemma f-in-dom-ar-the-subsume:
l ∈ dom (S -/ f ) =⇒ the ((S -/ f ) l) = the (f l)

unfolding dom-antirestr-def
by (cases l∈S , auto)

lemma f-in-dom-ar-apply-subsume:
l ∈ dom (S -/ f ) =⇒ ((S -/ f ) l) = (f l)

unfolding dom-antirestr-def
by (cases l∈S , auto)

lemma f-in-dom-ar-apply-not-elem: l /∈ S =⇒ (S -/ f ) l = f l
by (metis dom-antirestr-def )

lemma f-dom-ar-subset-dom:
dom(S -/ f ) ⊆ dom f

unfolding dom-antirestr-def dom-def
by auto

lemma l-dom-dom-ar :
dom(S -/ f ) = dom f - S

unfolding dom-antirestr-def
by (smt Collect-cong domIff dom-def set-diff-eq)

lemma l-dom-ar-accum:
S -/ (T -/ f ) = (S ∪ T ) -/ f

unfolding dom-antirestr-def
by auto

lemma l-dom-ar-nothing :
S ∩ dom f = {} =⇒ S -/ f = f

unfolding dom-antirestr-def
apply (simp add : fun-eq-iff )
by (metis disjoint-iff-not-equal domIff )

lemma l-dom-ar-empty-lhs:
{} -/ f = f

by (metis Int-empty-left l-dom-ar-nothing)

lemma l-dom-ar-empty-rhs:
S -/ empty = empty

by (metis Int-empty-right dom-empty l-dom-ar-nothing)
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lemma l-dom-ar-everything :
dom f ⊆ S =⇒ S -/ f = empty

by (metis domIff dom-antirestr-def in-mono)

lemma l-map-dom-ar-subset : S -/ f ⊆m f
by (metis domIff dom-antirestr-def map-le-def )

lemma l-dom-ar-none: {} -/ f = f
unfolding dom-antirestr-def
by (simp add : fun-eq-iff )

lemma l-map-dom-ar-neq : S ⊆ dom f =⇒ S 6= {} =⇒ S -/ f 6= f
apply (subst fun-eq-iff )
apply (insert ex-in-conv [of S ])
apply simp
apply (erule exE)
unfolding dom-antirestr-def
apply (rule exI )
apply simp
apply (intro impI conjI )
apply simp-all
by (metis domIff set-mp)

lemma l-dom-ar-not-in-dom:
assumes ∗: x /∈ dom f
shows x /∈ dom (s -/ f )

by (metis ∗ domIff dom-antirestr-def )

lemma l-dom-ar-not-in-dom2 : x ∈ F =⇒ x /∈ dom (F -/ f )
by (metis domIff dom-antirestr-def )

lemma l-dom-ar-notin-dom-or : x /∈ dom f ∨ x ∈ S =⇒ x /∈ dom (S -/ f )
by (metis Diff-iff l-dom-dom-ar)

lemma l-in-dom-ar : x /∈ F =⇒ x ∈ dom f =⇒ x ∈ dom (F -/ f )
by (metis f-in-dom-ar-apply-not-elem domIff )

lemma l-dom-ar-insert : ((insert x F ) -/ f ) = {x} -/ (F -/ f )
proof

fix xa
show (insert x F -/ f ) xa = ({x} -/ F -/ f ) xa
apply (cases x= xa)
apply (simp add : dom-antirestr-def )
apply (cases xa∈F )
apply (simp add : dom-antirestr-def )

93



D.3. MAP OPERATORS LEMMAS

apply (subst f-in-dom-ar-apply-not-elem)
apply simp
apply (subst f-in-dom-ar-apply-not-elem)
apply simp
apply (subst f-in-dom-ar-apply-not-elem)
apply simp
apply simp
done

qed

lemma l-dom-ar-absorb-singleton: x ∈ F =⇒ ({x} -/ F -/ f ) =(F -/ f )
by (metis l-dom-ar-insert insert-absorb)

lemma l-dom-ar-disjoint-weakening :
dom f ∩ Y = {} =⇒ dom (X -/ f ) ∩ Y = {}

by (metis Diff-Int-distrib2 empty-Diff l-dom-dom-ar)

lemma l-dom-ar-singletons-comm: {x}-/ {y} -/ f = {y}-/ {x} -/ f
by (metis l-dom-ar-insert insert-commute)

lemmas antirestr-simps = f-in-dom-ar-subsume f-in-dom-ar-notelem f-in-dom-ar-the-subsume
f-in-dom-ar-apply-subsume f-in-dom-ar-apply-not-elem f-dom-ar-subset-dom
l-dom-dom-ar l-dom-ar-accum l-dom-ar-nothing l-dom-ar-empty-lhs l-dom-ar-empty-rhs
l-dom-ar-everything l-dom-ar-none l-dom-ar-not-in-dom l-dom-ar-not-in-dom2
l-dom-ar-notin-dom-or l-in-dom-ar l-dom-ar-disjoint-weakening

D.3.0.4 Map override weakening lemmas [EXPERT]

lemma l-dagger-assoc:
f † (g † h) = (f † g) † h

by (metis dagger-def map-add-assoc)
thm ext option.split fun-eq-iff

lemma l-dagger-apply :
(f † g) x = (if x ∈ dom g then (g x ) else (f x ))

unfolding dagger-def
by (metis (full-types) map-add-dom-app-simps(1 ) map-add-dom-app-simps(3 ))

lemma l-dagger-dom:
dom(f † g) = dom f ∪ dom g

unfolding dagger-def
by (metis dom-map-add sup-commute)

lemma l-dagger-lhs-absorb:
dom f ⊆ dom g =⇒ f † g = g

apply (rule ext)
by(metis dagger-def l-dagger-apply map-add-dom-app-simps(2 ) set-rev-mp)

lemma l-dagger-lhs-absorb-ALT-PROOF :
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dom f ⊆ dom g =⇒ f † g = g
apply (rule ext)
apply (simp add : l-dagger-apply)
apply (rule impI )
find-theorems - /∈ - =⇒ - name:Set
apply (drule contra-subsetD)
unfolding dom-def
by (simp-all)

lemma l-dagger-empty-lhs:
empty † f = f

by (metis dagger-def empty-map-add)

lemma l-dagger-empty-rhs:
f † empty = f

by (metis dagger-def map-add-empty)

lemma dagger-notemptyL: f 6= empty =⇒ f † g 6= empty by (metis dagger-def map-add-None)

lemma dagger-notemptyR: g 6= empty =⇒ f † g 6= empty by (metis dagger-def map-add-None)

lemma l-dagger-dom-ar-assoc:
S ∩ dom g = {} =⇒ (S -/ f ) † g = S -/ (f † g)

apply (simp add : fun-eq-iff )
apply (simp add : l-dagger-apply)
apply (intro allI impI conjI )
unfolding dom-antirestr-def
apply (simp-all add : l-dagger-apply)
by (metis dom-antirestr-def l-dom-ar-nothing)
thm map-add-comm

lemma l-dagger-not-empty :
g 6= empty =⇒ f † g 6= empty

by (metis dagger-def map-add-None)

lemma in-dagger-domL:
x ∈ dom f =⇒ x ∈ dom(f † g)

by (metis dagger-def domIff map-add-None)

lemma in-dagger-domR:
x ∈ dom g =⇒ x ∈ dom(f † g)

by (metis dagger-def domIff map-add-None)

lemma the-dagger-dom-right :
assumes x ∈ dom g
shows the ((f † g) x ) = the (g x )

by (metis assms dagger-def map-add-dom-app-simps(1 ))
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lemma the-dagger-dom-left :
assumes x /∈ dom g
shows the ((f † g) x ) = the (f x )

by (metis assms dagger-def map-add-dom-app-simps(3 ))

lemma the-dagger-mapupd-dom: x 6=y =⇒ (f † [y 7→ z ]) x = f x
by (metis dagger-def fun-upd-other map-add-empty map-add-upd)

lemma dagger-upd-dist : f † fa(e 7→ r) = (f † fa)(e 7→ r) by (metis dagger-def map-add-upd)

lemma antirestr-then-dagger-notin: x /∈ dom f =⇒ {x} -/ (f † [x 7→ y ]) = f
proof

fix z
assume x /∈ dom f
show ({x} -/ (f † [x 7→ y ])) z = f z
by (metis 〈x /∈ dom f 〉 domIff dom-antirestr-def fun-upd-other insertI1 l-dagger-apply singleton-iff )

qed
lemma antirestr-then-dagger : r∈ dom f =⇒ {r} -/ f † [r 7→ the (f r)] = f
proof

fix x
assume ∗: r∈dom f
show ({r} -/ f † [r 7→ the (f r)]) x = f x
proof (subst l-dagger-apply ,simp,intro conjI impI )

assume x=r then show Some (the (f r)) = f r using ∗ by auto
next
assume x 6=r then show ({r} -/ f ) x = f x by (metis f-in-dom-ar-apply-not-elem singleton-iff )

qed
qed

lemma dagger-notin-right : x /∈ dom g =⇒ (f † g) x = f x
by (metis l-dagger-apply)

lemma dagger-notin-left : x /∈ dom f =⇒ (f † g) x = g x
by (metis dagger-def map-add-dom-app-simps(2 ))

lemma l-dagger-commute: dom f ∩ dom g = {} =⇒f † g = g † f
unfolding dagger-def

apply (rule map-add-comm)
by simp

lemmas dagger-simps = l-dagger-assoc l-dagger-apply l-dagger-dom l-dagger-lhs-absorb
l-dagger-empty-lhs l-dagger-empty-rhs dagger-notemptyL dagger-notemptyR l-dagger-not-empty
in-dagger-domL in-dagger-domR the-dagger-dom-right the-dagger-dom-left the-dagger-mapupd-dom
dagger-upd-dist antirestr-then-dagger-notin antirestr-then-dagger dagger-notin-right
dagger-notin-left
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D.3.0.5 Map update weakening lemmas [EXPERT]

without the condition nitpick finds counter example

lemma l-inmapupd-dom-iff :
l 6= x =⇒ (l ∈ dom (f (x 7→ y))) = (l ∈ dom f )

by (metis (full-types) domIff fun-upd-apply)

lemma l-inmapupd-dom:
l ∈ dom f =⇒ l ∈ dom (f (x 7→ y))

by (metis dom-fun-upd insert-iff option.distinct(1 ))

lemma l-dom-extend :
x /∈ dom f =⇒ dom (f1 (x 7→ y)) = dom f1 ∪ {x}

by simp

lemma l-updatedom-eq :
x=l =⇒ the ((f (x 7→ the (f x ) - s)) l) = the (f l) - s

by auto

lemma l-updatedom-neq :
x 6=l =⇒ the ((f (x 7→ the (f x ) - s)) l) = the (f l)

by auto

— A helper lemma to have map update when domain is updated
lemma l-insertUpdSpec-aux : dom f = insert x F =⇒ (f0 = (f |‘ F )) =⇒ f = f0 (x 7→ the (f x ))
proof auto

assume insert : dom f = insert x F
then have x ∈ dom f by simp
then show f = (f |‘ F )(x 7→ the (f x )) using insert

unfolding dom-def
apply simp
apply (rule ext)
apply auto
done

qed

lemma l-the-map-union-right : x ∈ dom g =⇒dom f ∩ dom g = {} =⇒ the ((f ∪m g) x ) = the (g x )
by (metis l-dagger-apply munion-def )

lemma l-the-map-union-left : x ∈ dom f =⇒dom f ∩ dom g = {} =⇒ the ((f ∪m g) x ) = the (f x )
by (metis l-dagger-apply l-dagger-commute munion-def )

lemmas upd-simps = l-inmapupd-dom-iff l-inmapupd-dom l-dom-extend
l-updatedom-eq l-updatedom-neq

D.3.0.6 Map union (VDM-specific) weakening lemmas [EXPERT]

lemma k-munion-map-upd-wd :
x /∈ dom f =⇒ dom f ∩ dom [x 7→ y ] = {}

by (metis Int-empty-left Int-insert-left dom-eq-singleton-conv inf-commute)

lemma l-munion-apply :
dom f ∩ dom g = {} =⇒ (f ∪m g) x = (if x ∈ dom g then (g x ) else (f x ))

unfolding munion-def
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by (simp add : l-dagger-apply)

lemma l-munion-dom:
dom f ∩ dom g = {} =⇒ dom(f ∪m g) = dom f ∪ dom g

unfolding munion-def
by (simp add : l-dagger-dom)

lemma b-dagger-munion-aux :
dom(dom g -/ f ) ∩ dom g = {}

apply (simp add : l-dom-dom-ar)
by (metis Diff-disjoint inf-commute)

lemma b-dagger-munion:
(f † g) = (dom g -/ f ) ∪m g

find-theorems (300 ) - = (-::(-⇒ -)) -name:Predicate -name:Product -name:Quick -name:New -name:Record
-name:Quotient
-name:Hilbert -name:Nitpick -name:Random -name:Transitive -name:Sum-Type -name:DSeq -name:Datatype

-name:Enum
-name:Big -name:Code -name:Divides

thm fun-eq-iff [of f † g (dom g -/ f ) ∪m g ]
apply (simp add : fun-eq-iff )
apply (simp add : l-dagger-apply)
apply (cut-tac b-dagger-munion-aux [of g f ])
apply (intro allI impI conjI )
apply (simp-all add : l-munion-apply)
unfolding dom-antirestr-def
by simp

lemma l-munion-assoc:
dom f ∩ dom g = {} =⇒ dom g ∩ dom h = {} =⇒ (f ∪m g) ∪m h = f ∪m (g ∪m h)

unfolding munion-def
apply (simp add : l-dagger-dom)
apply (intro conjI impI )
apply (metis l-dagger-assoc)
apply (simp-all add : disjoint-iff-not-equal)
apply (erule-tac [1 -] bexE)
apply blast
apply blast
done

lemma l-munion-commute:
dom f ∩ dom g = {} =⇒ f ∪m g = g ∪m f

by (metis b-dagger-munion l-dagger-commute l-dom-ar-nothing munion-def )

lemma l-munion-subsume:
x ∈ dom f =⇒ the(f x ) = y =⇒ f = ({x} -/ f ) ∪m [x 7→ y ]

apply (subst fun-eq-iff )
apply (intro allI )
apply (subgoal-tac dom({x} -/ f ) ∩ dom [x 7→ y ] = {})
apply (simp add : l-munion-apply)
apply (metis domD dom-antirestr-def singletonE the.simps)
by (metis Diff-disjoint Int-commute dom-eq-singleton-conv l-dom-dom-ar)Perhaps add g ⊆m f instead?
lemma l-munion-subsumeG:
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dom g ⊆ dom f =⇒ ∀ ·x ∈ dom g . f x = g x =⇒ f = (dom g -/ f ) ∪m g

unfolding munion-def
apply (subgoal-tac dom (dom g -/ f ) ∩ dom g = {})
apply simp
apply (subst fun-eq-iff )
apply (rule allI )
apply (simp add : l-dagger-apply)
apply (intro conjI impI )+
unfolding dom-antirestr-def
apply (simp)
apply (fold dom-antirestr-def )
by (metis Diff-disjoint inf-commute l-dom-dom-ar)

lemma l-munion-dom-ar-assoc:
S ⊆ dom f =⇒ dom f ∩ dom g = {} =⇒ (S -/ f ) ∪m g = S -/ (f ∪m g)

unfolding munion-def
apply (subgoal-tac dom (S -/ f ) ∩ dom g = {})
defer 1
apply (metis Diff-Int-distrib2 empty-Diff l-dom-dom-ar)
apply simp
apply (rule l-dagger-dom-ar-assoc)
by (metis equalityE inf-mono subset-empty)

lemma l-munion-empty-rhs:
(f ∪m empty) = f

unfolding munion-def
by (metis dom-empty inf-bot-right l-dagger-empty-rhs)

lemma l-munion-empty-lhs:
(empty ∪m f ) = f

unfolding munion-def
by (metis dom-empty inf-bot-left l-dagger-empty-lhs)

lemma k-finite-munion:
finite (dom f ) =⇒ finite(dom g) =⇒ dom f ∩ dom g = {} =⇒ finite(dom(f ∪m g))

by (metis finite-Un l-munion-dom)

lemma l-munion-singleton-not-empty :
x /∈ dom f =⇒ f ∪m [x 7→ y ] 6= empty

apply (cases f = empty)
apply (metis l-munion-empty-lhs map-upd-nonempty)
unfolding munion-def
apply simp
by (metis dagger-def map-add-None)

lemma l-munion-empty-iff :
dom f ∩ dom g = {} =⇒ (f ∪m g = empty) ←→ (f = empty ∧ g = empty)

apply (rule iffI )
apply (simp only : dom-eq-empty-conv [symmetric] l-munion-dom)
apply (metis Un-empty)
by (simp add : l-munion-empty-lhs l-munion-empty-rhs)

lemma l-munion-dom-ar-singleton-subsume:
x /∈ dom f =⇒ {x} -/ (f ∪m [x 7→ y ]) = f

apply (subst fun-eq-iff )
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apply (rule allI )
unfolding dom-antirestr-def
by (auto simp: l-munion-apply)

lemma l-munion-upd : dom f ∩ dom [x 7→ y ] = {} =⇒ f ∪m [x 7→ y ] = f (x 7→y)
unfolding munion-def

apply simp
by (metis dagger-def map-add-empty map-add-upd)

lemma munion-notemp-dagger : dom f ∩ dom g = {} =⇒ f ∪m g 6=empty =⇒ f † g 6= empty
by (metis munion-def )

lemma dagger-notemp-munion: dom f ∩ dom g = {} =⇒ f † g 6=empty =⇒ f ∪m g 6= empty
by (metis munion-def )

lemma munion-notempty-left : dom f ∩ dom g = {} =⇒ f 6= empty =⇒ f ∪m g 6= empty
by (metis dagger-notemp-munion dagger-notemptyL)

lemma munion-notempty-right : dom f ∩ dom g = {} =⇒ g 6= empty =⇒ f ∪m g 6= empty
by (metis dagger-notemp-munion dagger-notemptyR)

lemma unionm-in-dom-left : x ∈ dom (f ∪m g) =⇒ (dom f ∩ dom g) = {} =⇒ x /∈ dom g =⇒ x ∈
dom f
by (simp add : l-munion-dom)

lemma unionm-in-dom-right : x ∈ dom (f ∪m g) =⇒ (dom f ∩ dom g) = {} =⇒ x /∈ dom f =⇒ x ∈
dom g
by (simp add : l-munion-dom)

lemmas munion-simps = k-munion-map-upd-wd l-munion-apply l-munion-dom b-dagger-munion
l-munion-subsume l-munion-subsumeG l-munion-dom-ar-assoc l-munion-empty-rhs
l-munion-empty-lhs k-finite-munion l-munion-upd munion-notemp-dagger
dagger-notemp-munion munion-notempty-left munion-notempty-right

lemmas vdm-simps = restr-simps antirestr-simps dagger-simps upd-simps munion-simps

D.3.0.7 Map finiteness weakening lemmas [EXPERT]

— Need to have the lemma options, otherwise it fails somehow
lemma finite-map-upd-induct [case-names empty insert , induct set : finite]:

assumes fin: finite (dom f )
and empty : P Map.empty
and insert :

∧
e r f . finite (dom f ) =⇒ e /∈ dom f =⇒ P f =⇒ P (f (e 7→ r))

shows P f using fin
proof (induct dom f arbitrary : f rule:finite-induct) — arbitrary statement is a must in here, otherwise
cannot prove it

case goal1 then have dom f = {} by simp — need to reverse to apply rules
then have f = Map.empty by simp
thus ?case by (simp add : empty)

next
case goal2
— Show that update of the domain means an update of the map
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assume domF : insert x F = dom f then have domFr : dom f = insert x F by simp
then obtain f0 where f0Def : f0 = f |‘ F by simp
with domF have domF0 : F = dom f0 by auto
with goal2 have finite (dom f0 ) and x /∈ dom f0 and P f0 by simp-all
then have PFUpd : P (f0 (x 7→ the (f x ))) by (rule insert)
from domFr f0Def have f = f0 (x 7→ the (f x )) by (auto intro: l-insertUpdSpec-aux )
with PFUpd show ?case by simp

qed

lemma finiteRan: finite (dom f ) =⇒ finite (ran f )
proof (induct rule:finite-map-upd-induct)

case goal1 thus ?case by simp
next

case goal2 then have ranIns: ran (f (e 7→ r)) = insert r (ran f ) by auto
assume finite (ran f ) then have finite (insert r (ran f )) by (intro finite.insertI )
thus ?case apply (subst ranIns)

by simp
qed

lemma l-dom-r-finite: finite (dom f ) =⇒ finite (dom ( S / f ))
apply (rule-tac B=dom f in finite-subset)
apply (simp add : l-dom-r-dom-subseteq)
apply assumption
done

lemma dagger-finite: finite (dom f ) =⇒ finite (dom g) =⇒ finite (dom (f † g))
by (metis dagger-def dom-map-add finite-Un)

lemma finite-singleton: finite (dom [a 7→ b])
by (metis dom-eq-singleton-conv finite.emptyI finite-insert)

lemma not-in-dom-ar : finite (dom f ) =⇒ s ∩ dom f = {} =⇒ dom (s -/ f ) = dom f
apply (induct rule: finite-map-upd-induct)
apply (unfold dom-antirestr-def ) apply simp
by (metis IntI domIff empty-iff )

lemma not-in-dom-ar-2 : finite (dom f ) =⇒ s ∩ dom f = {} =⇒ dom (s -/ f ) = dom f
apply (subst set-eq-subset)
apply (rule conjI )
apply (rule-tac[!] subsetI )
apply (metis l-dom-ar-not-in-dom)
by (metis l-dom-ar-nothing)

lemma l-dom-ar-commute-quickspec:
S -/ (T -/ f ) = T -/ (S -/ f )

by (metis l-dom-ar-accum sup-commute)

lemma l-dom-ar-same-subsume-quickspec:
S -/ (S -/ f ) = S -/ f
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by (metis l-dom-ar-accum sup-idem)

end
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Appendix E

Heap lemmas and proofs (Leo)

theory HEAP0Lemmas
imports HEAP0
begin

E.1 HEAP0 Isabelle (automation) lemmas

E.1.1 locs of weakening lemmas [EXPERT]

lemma b-locs-of-as-set-interval :
nat1 n =⇒ locs-of l n = {l ..<l+n}

unfolding locs-of-def
by (metis Collect-conj-eq atLeastLessThan-def atLeast-def lessThan-def )

lemma b-locs-of-finite:
nat1 n =⇒ finite(locs-of i n)

by (metis finite-atLeastLessThan b-locs-of-as-set-interval)

lemma b-locs-of-non-empty :
nat1 n =⇒ locs-of l n 6= {}

unfolding locs-of-def
by (metis (lifting) Collect-empty-eq le-add1 nat1-def nat-add-left-cancel-less)

lemma l-locs-of-card :
nat1 n =⇒ card(locs-of l n) = n

by (metis add-diff-cancel-left ′ b-locs-of-as-set-interval card-atLeastLessThan)

end

theory HEAP0Proofs
imports HEAP0 HEAP0Lemmas
begin

E.2 Feasibility proof obligations for HEAP level 0

context level0-new
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begin

theorem
locale0-new-FSB : PO-new0-feasibility

unfolding PO-new0-feasibility-def
by (metis F0-inv-defs

finite-Diff
l0-invariant-def
new0-post-def
new0-postcondition-def
new0-pre-def
l0-new0-precondition-def )

end

context level0-dispose
begin

theorem
locale0-dispose-FSB : PO-dispose0-feasibility

unfolding PO-dispose0-feasibility-def dispose0-postcondition-def dispose0-post-defs
by (metis (full-types) F0-inv-defs finite-M-bounded-by-nat finite-Un l0-input-notempty-def l0-invariant-def )

end

end

theory HEAP0SanityProofs
imports HEAP0Sanity HEAP0Proofs
begin

E.3 Proof of some properties of interest

E.3.1 Invariant

lemma l-F0-inv-example: F0-ex-inv F0-ex
unfolding F0-ex-inv-defs by auto

lemma l-F0-inv-counter-example: ¬ F0-ex-inv UNIV
unfolding F0-ex-inv-defs by auto

E.3.2 Operations

lemma new0-post-shrinks-f :
PO-new0-post-shrinks-f

unfolding PO-new0-post-shrinks-f-def new0-post-defs
by (smt Diff-subset mem-Collect-eq nat1-def set-diff-eq set-mp subset-iff-psubset-eq)

context level0-new
begin

lemma new0-postcondition-shrinks-f :
PO-new0-postcondition-shrinks-f

by (smt PO-new0-post-shrinks-f-def PO-new0-postcondition-shrinks-f-def new0-post-shrinks-f new0-postcondition-def )

end
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thm card-Diff-subset [of locs-of r n f ]

lemma new0-post-shrinks-f-exactly :
PO-new0-post-shrinks-f-exactly

unfolding PO-new0-post-shrinks-f-exactly-def new0-post-def is-block-def
apply safe
by (simp add : card-Diff-subset b-locs-of-finite b-locs-of-as-set-interval)

context level0-dispose
begin

lemma dispose0-postcondition-extends-f :
PO-dispose0-postcondition-extends-f

unfolding PO-dispose0-postcondition-extends-f-def
dispose0-postcondition-def
dispose0-post-def

by (metis Un-commute b-locs-of-non-empty
dispose0-pre-def inf-sup-absorb
inf-sup-ord(3 ) l0-dispose0-precondition-def
l0-input-notempty-def less-le)

lemma
dispose0-postcondition f ′ =⇒ f0 ⊂ f ′

unfolding dispose0-postcondition-def dispose0-post-def
by (metis b-locs-of-non-empty dispose0-pre-def

l0-dispose0-precondition-def inf-absorb2
inf-commute inf-sup-ord(4 ) l0-input-notempty-def
le-iff-sup less-le sup.left-idem)

thm card-Un-disjoint [of f0 locs-of d0 s0 ]

lemma dispose0-postcondition-extends-f-exactly :
PO-dispose0-postcondition-extends-f-exactly

unfolding PO-dispose0-postcondition-extends-f-exactly-def
dispose0-postcondition-def dispose0-post-def F0-inv-def

by (metis Int-commute add-0-iff card-Un-Int card-empty
dispose0-pre-def finite-Un l0-dispose0-precondition-def
l0-input-notempty-def l-locs-of-card)

lemma
dispose0-postcondition f ′ =⇒ card f ′ = card f0 + s0

unfolding dispose0-postcondition-def dispose0-post-def F0-inv-def
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by (metis card .union-inter card-empty comm-monoid-add-class.add .left-neutral
dispose0-pre-def finite-Un inf-commute l0-dispose0-precondition-def
l0-input-notempty-def l-locs-of-card nat-add-commute)

end

lemma PO-new0-dispose-0-identity
unfolding PO-new0-dispose-0-identity-def

new0-post-def dispose0-post-def F0-inv-def
apply (safe)
apply (metis is-block-def set-mp)
apply (metis finite-Diff )
by (metis b-locs-of-finite is-block-def )

lemma new0-dispose-0-identity :
PO-new0-dispose-0-identity

by (metis PO-new0-dispose-0-identity-def
Un-Diff-cancel dispose0-post-def
is-block-def new0-post-def sup-absorb1 sup-commute)

end

theory HEAP1Lemmas
imports HEAP1 HEAP0Lemmas
begin

This theory provides various lemmas for breaking the problem into managelable chunks

E.4 General Lemmas

These lemmas are used in the context of NEW1 FSB locale proofs. Prefixes determine the
intent (our whys?) as given by the expert. Depending on context, some intents could have more
than one prefix or even change prefix (as determined by the expert). These ”tags” should serve
as clues for strategy languages and learning mechanisms to infer new (useful) lemmas or indeed
strategies (proof patterns).

Prefixes: “k ” = weakening goal (barkward reasonsing) “f ” = deduction from asm (forward
reasonsing) “b ” = type/concept bridges “l ” = expert lemmas

E.4.0.1 nat1 map weakening lemmas [EXPERT]

lemma f-nat1-map-nat1-elem:
nat1-map f =⇒ x ∈ dom f =⇒ 0 < (the(f x ))

by (metis nat1-def nat1-map-def )

lemma f-nat1-map-extends-map-le:
g ⊆m f =⇒ nat1-map f =⇒ nat1-map g

apply (frule map-le-implies-dom-le)
unfolding map-le-def nat1-map-def
apply (intro allI impI )
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apply (drule bspec, assumption)
apply (drule spec, drule mp)
apply simp-all
by (drule subsetD , assumption)

lemma k-nat1-map-dom-ar :
nat1-map f =⇒ nat1-map (S -/ f )

by (metis nat1-map-def f-in-dom-ar-subsume f-in-dom-ar-the-subsume)

lemma k-nat1-map-dom-ar-specific:
nat1-map f =⇒ nat1-map ({r} -/ f )

by (metis k-nat1-map-dom-ar)

lemma l-nat1-map-dagger : nat1-map f =⇒ nat1-map g =⇒ nat1-map(f † g)
unfolding nat1-map-def
apply (intro allI impI )
apply (simp add : l-dagger-dom l-dagger-apply)
by metis

lemma l-nat1-map-munion: nat1-map f =⇒ nat1-map g =⇒ dom f ∩ dom g = {} =⇒ nat1-map(f
∪m g)
unfolding nat1-map-def
apply (intro allI impI )
apply (simp add : l-munion-dom l-munion-apply)
by metis

lemma l-nat1-map-singleton: nat1 y =⇒ nat1-map([x 7→ y ])

by (metis fun-upd-triv map-add-empty map-add-upd map-le-map-add nat1-map-def f-nat1-map-extends-map-le
the.simps)

lemma l-nat1-map-empty : nat1-map empty
by (metis dom-empty empty-iff nat1-map-def )

E.4.0.2 locs of weakening lemmas [EXPERT]

These lemmas were useful in the Z/EVES development and now here. At first we had difficulties
with the style of declaration as intro/elim/dest rules. I tried to keep them as iff is possible.

lemma l-locs-of-Locs-of-iff :
l ∈ dom f =⇒ Locs-of f l = locs-of l (the (f l))

unfolding Locs-of-def
by simp

lemma k-locs-of-arithIff :
nat1 n =⇒ nat1 m =⇒ (locs-of a n ∩ locs-of b m = {}) = (a+n ≤ b ∨ b+m ≤ a)

unfolding locs-of-def
apply simp
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apply (rule iffI )
find-theorems - ∩ - = {}
apply (erule equalityE)
apply (simp-all add : disjoint-iff-not-equal)
apply (metis (full-types) add-0-iff le-add1 le-neq-implies-less nat-le-linear not-le)
by (metis le-trans not-less)

lemma k-locs-of-dom-ar-subset :
nat1-map f =⇒ x ∈ dom (S -/ f ) =⇒ locs-of x (the((S -/ f ) x )) ⊆ locs-of x (the(f x ))

apply (frule k-nat1-map-dom-ar [of - S ])
apply (frule f-nat1-map-nat1-elem[of S -/ f -],assumption)

apply (rule subsetI )
by (metis f-in-dom-ar-apply-subsume)

lemma k-Locs-of-arithIff :
nat1-map f =⇒ l ∈ dom f =⇒ k ∈ dom f =⇒ (Locs-of f l ∩ Locs-of f k = {}) = (l+the(f l) ≤ k ∨

k+the(f k) ≤ l)
unfolding Locs-of-def
by (simp add : f-nat1-map-nat1-elem k-locs-of-arithIff )

E.4.0.3 locs weakening lemmas [EXPERT]

lemma k-in-locs-iff : nat1-map f =⇒ (x ∈ locs f ) = (∃ ·y ∈ dom f . x ∈ locs-of y (the(f y)))
unfolding locs-def
by (metis (mono-tags) UN-iff )

lemma l-locs-of-within-locs:
nat1-map f =⇒ x ∈ dom f =⇒ locs-of x (the(f x )) ⊆ locs f

by (metis k-in-locs-iff subsetI )

lemma k-inter-locs-iff : nat1 s =⇒ nat1-map f =⇒ (locs-of x s ∩ locs f = {}) = (∀ · y ∈ dom f .
locs-of x s ∩ locs-of y (the(f y)) = {})
unfolding locs-def
by (smt UNION-empty-conv(1 ) inf-SUP)

lemma l-locs-subset :
nat1-map f =⇒ g ⊆m f =⇒ locs g ⊆ locs f

apply (frule f-nat1-map-extends-map-le, assumption)
apply (rule subsetI )
unfolding locs-def
apply (simp)
apply (erule bexE)
apply (frule map-le-implies-dom-le)
unfolding map-le-def
apply (drule bspec, assumption)
thm in-mono set-rev-mp set-mp
by (metis set-mp)
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lemma l-locs-dom-ar-iff :
nat1-map f =⇒ Disjoint f =⇒ r ∈ dom f =⇒ locs({r} -/ f ) = locs f - locs-of r (the(f r))

apply (rule equalityI )
apply (rule-tac [1 -] subsetI )
apply (frule-tac [1 -] k-nat1-map-dom-ar [of - {r}])
apply (simp-all add : k-in-locs-iff )
defer
apply (elim conjE)
defer
apply (intro conjI )
apply (metis f-in-dom-ar-subsume f-in-dom-ar-the-subsume)
apply (erule-tac [1 -] bexE)
defer
apply (rule-tac x=y in bexI )
apply (metis f-in-dom-ar-apply-not-elem singleton-iff )
apply (metis l-dom-dom-ar member-remove remove-def )
apply (frule f-in-dom-ar-subsume)
apply (frule f-in-dom-ar-the-subsume)
unfolding Disjoint-def disjoint-def
apply (simp add : l-locs-of-Locs-of-iff )
by (metis disjoint-iff-not-equal f-in-dom-ar-notelem)

lemma l-locs-dom-ar-general-iff :
nat1-map f =⇒ Disjoint f =⇒ S ⊆ dom f =⇒ locs(S -/ f ) = locs f - (

⋃
r∈S . locs-of r (the(f r)))

apply (rule equalityI )
apply (rule-tac [1 -] subsetI )
apply (frule-tac [1 -] k-nat1-map-dom-ar [of - S ])
apply (simp-all add : k-in-locs-iff )
defer
apply (elim conjE)
defer
apply (intro conjI )
apply (metis f-in-dom-ar-subsume f-in-dom-ar-the-subsume)
apply (erule-tac [1 -] bexE)
apply (rule ballI )
apply (metis Disjoint-def disjoint-def disjoint-iff-not-equal f-in-dom-ar-apply-subsume l-dom-ar-notin-dom-or
l-locs-of-Locs-of-iff set-rev-mp)
apply (cases S = {})

apply (simp add : l-dom-ar-none)
apply metis

find-theorems simp:- 6= {}
apply (simp add : nonempty-iff )
apply (elim exE conjE)
by (metis f-in-dom-ar-apply-not-elem l-in-dom-ar)

lemma l-locs-empty-iff :
locs empty = {}

apply (rule equalityI )
apply (rule-tac [1 -] subsetI )
apply simp-all
apply (subgoal-tac nat1-map empty)
apply (simp add : locs-def )
by (rule l-nat1-map-empty)
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lemma l-locs-singleton-iff :
nat1 y =⇒ locs [x 7→ y ] = locs-of x y

unfolding locs-def locs-of-def nat1-map-def
by simp

lemma f-dom-locs-of : nat1-map f =⇒ (x ∈ dom f ) =⇒ (x ∈ locs-of x (the (f x )))
unfolding locs-of-def
by (simp add : f-nat1-map-nat1-elem)

lemma f-in-dom-locs: nat1-map f =⇒ x ∈ dom f =⇒ x ∈ locs f
apply (simp add : k-in-locs-iff )
apply (rule bexI )
by (simp-all add : f-dom-locs-of )

lemma l-locs-munion-iff :
nat1-map f =⇒ nat1-map g =⇒ dom f ∩ dom g = {} =⇒ locs(f ∪m g) = locs f ∪ locs g

apply (rule equalityI )
apply (rule-tac [1 -] subsetI ) — Little trick to cover all goals
apply simp-all
apply (rule disjCI ) — Keep the contrapositive information; it’s useful later
defer
apply (erule disjE)
apply (simp-all add : k-in-locs-iff l-nat1-map-munion l-munion-dom l-munion-apply)
apply (erule-tac [1 -] bexE)
apply (rule-tac [1 -2 ] x=y in bexI )
apply (simp-all)
apply (metis disjoint-iff-not-equal)

thm all-not-in-conv
apply (erule disjE)
apply (rule-tac x=y in bexI )
apply (metis (full-types))
apply assumption
by (metis (full-types))

lemma l-locs-dagger-union-subset :
nat1-map f =⇒ nat1-map g =⇒ locs(f † g) ⊆ locs f ∪ locs g

apply (rule subsetI )
apply simp
apply (rule disjCI )
apply (simp-all add : k-in-locs-iff l-nat1-map-dagger l-dagger-dom l-dagger-apply)
apply (erule bexE)
apply simp
apply (erule disjE)
apply (metis (full-types))
by (metis (full-types))
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lemma l-locs-dagger-iff :
nat1-map f =⇒ nat1-map g =⇒ (∀ · x ∈ dom f ∩ dom g . the(f x ) ≤ the(g x )) =⇒ locs(f † g) =

locs f ∪ locs g
apply (rule equalityI )
apply (simp add : l-locs-dagger-union-subset)
apply (rule subsetI )
apply simp
apply (erule disjE)
apply (simp-all add : k-in-locs-iff l-nat1-map-dagger l-dagger-dom l-dagger-apply)
apply (erule-tac [1 -] bexE)
apply (rule-tac [1 -] x=y in bexI )
apply (simp-all)
apply (rule impI )
apply (simp add : b-locs-of-as-set-interval f-nat1-map-nat1-elem)
apply (erule conjE)
apply (erule-tac x=y in ballE)
by simp-all

E.4.0.4 min loc lemmas [EXPERT]

lemma k-min-loc-munion:
finite (dom f ) =⇒ finite (dom g) =⇒

g 6= empty =⇒ dom f ∩ dom g = {} =⇒
min-loc(f ∪m g) = (if f = empty then min-loc g else min (min-loc f ) (min-loc g))

unfolding min-loc-def munion-def
by (simp add : l-dagger-not-empty l-dagger-dom Min-Un)

lemma l-min-loc-singleton:
min-loc [d 7→ s] = d

unfolding min-loc-def
by simp
— by (metis dom empty finite.emptyI inf bot left k min loc munion singleton l munion empty lhs)
= Overkill!

lemma k-min-loc-munion-singleton:
finite (dom f ) =⇒

dom f ∩ dom [d 7→ s] = {} =⇒
min-loc(f ∪m [d 7→ s]) = (if f = empty then d else min (Min (dom f )) d)

apply (simp add : k-min-loc-munion l-min-loc-singleton)
by (metis min-loc-def )

E.4.0.5 sum size lemmas [EXPERT]

lemma l-sum-size-munion:
finite (dom f ) =⇒ finite (dom g) =⇒

g 6= empty =⇒ dom f ∩ dom g = {} =⇒
sum-size(f ∪m g) = (if f = empty then sum-size g else (sum-size f ) + (sum-size g))

unfolding sum-size-def munion-def
apply (simp add : l-dagger-not-empty l-dagger-empty-lhs l-dagger-dom l-dagger-apply)
apply (rule impI )

find-theorems (
∑

- ∈ - . -) = ((
∑

- ∈ - . -) + (
∑

- ∈ - . -))
thm setsum.F-Un-neutral [of dom f dom g (λ x . the (if x ∈ dom g then g x else f x )),simplified ]
thm setsum-Un-disjoint [of dom f dom g (λ x . the (if x ∈ dom g then g x else f x )),simplified ]

apply (simp add : setsum-Un-disjoint)
apply (rule setsum-cong ,simp)
by (metis (full-types) disjoint-iff-not-equal)
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lemma l-sum-size-singleton:
sum-size [d 7→ s] = s

unfolding sum-size-def
by simp

lemma l-sum-size-munion-singleton:
finite (dom f ) =⇒

dom f ∩ dom [d 7→ s] = {} =⇒
sum-size(f ∪m [d 7→ s]) = (if f = empty then s else sum-size f + s)

by (simp add : l-sum-size-munion l-sum-size-singleton)

E.4.0.6 Other (less useful) lemmas [EXPERT]

lemma l-disjoint-comm:
(disjoint A B) = (disjoint B A)

by (metis disjoint-def inf-commute)

lemma f-F1-inv-disjoint :
F1-inv f =⇒ Disjoint f

by (metis F1-inv-def )

lemma f-F1-inv-nat1-map:
F1-inv f =⇒ nat1-map f

by (metis F1-inv-def )

lemma f-F1-inv-sep:
F1-inv f =⇒ sep f

by (metis F1-inv-def )

lemma f-F1-inv-finite:
F1-inv f =⇒ finite(dom f )

by (metis F1-inv-def )

E.5 Goal-oriented - invariant update

E.5.0.7 Lemmas for invariant sub parts over known operators

This is a great example of repeated patterns.

lemma l-sep-singleton: nat1 y =⇒ sep([x 7→ y ])
unfolding sep-def
by simp

definition
sep0 :: F1 ⇒ F1 ⇒ bool

where
sep0 f g ≡ (∀ · l ∈ dom f . l + the(f l) /∈ dom g)

lemma sep0 f f = sep f
unfolding sep0-def sep-def
by simp

lemma l-sep-singleton-upd :
nat1-map f =⇒ x /∈ dom f =⇒ x+y /∈ dom f =⇒ nat1 y =⇒ sep f =⇒

sep0 f [x 7→y ] =⇒ sep(f ∪m [x 7→ y ])
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unfolding sep-def sep0-def
apply (rule ballI )
apply (simp add : l-munion-dom l-munion-apply)
apply (erule disjE)
by (simp-all)

lemma l-sep-munion:
dom f ∩ dom g = {} =⇒ sep f =⇒ sep g =⇒ sep0 f g =⇒ sep0 g f =⇒ sep(f ∪m g)

unfolding sep-def sep0-def
by (auto simp: l-munion-dom l-munion-apply)

lemma nat1-map f =⇒ x /∈ dom f =⇒ nat1 y =⇒ Disjoint f =⇒
(∀ · c ∈ dom f . x+y ≤ c ∨ c+the(f c) ≤ x ) =⇒ Disjoint(f ∪m [x 7→ y ])

unfolding Disjoint-def
apply (simp add : l-locs-of-Locs-of-iff )
apply (intro ballI impI )
apply (simp add : l-munion-dom l-munion-apply)
apply (intro conjI impI )
apply (simp-all add : l-disjoint-comm)
unfolding disjoint-def
find-theorems locs-of - - ∩ - = {}
by (simp-all add : k-locs-of-arithIff f-nat1-map-nat1-elem)

thm k-locs-of-arithIff [of y the(f c) x c,symmetric]

lemma l-disjoint-singleton-upd :
nat1-map f =⇒ x /∈ dom f =⇒ nat1 y =⇒ Disjoint f =⇒

disjoint (locs-of x y) (locs f ) =⇒ Disjoint(f ∪m [x 7→ y ])
unfolding Disjoint-def
apply (simp add : l-locs-of-Locs-of-iff )
apply (intro ballI impI )
apply (simp add : l-munion-dom l-munion-apply)
apply (intro conjI impI )
apply (simp-all)
unfolding disjoint-def
find-theorems locs -
find-theorems locs-of - - ∩ - = {}
apply (metis k-inter-locs-iff nat1-def )
by (metis inf-commute k-inter-locs-iff nat1-def )

lemma l-disjoint-singleton: Disjoint([x 7→ y ])
unfolding Disjoint-def
by simp

lemma l-disjoint-munion:
nat1-map f =⇒ nat1-map g =⇒ Disjoint f =⇒ Disjoint g =⇒

dom f ∩ dom g = {} =⇒ disjoint (locs f ) (locs g) =⇒ sep0 f g =⇒ sep0 g f =⇒ Disjoint (f ∪m
g)
unfolding Disjoint-def
apply (intro impI ballI )
apply (simp add : l-locs-of-Locs-of-iff l-munion-apply l-munion-dom)
apply (intro impI conjI )
apply simp-all
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apply (simp-all add : l-locs-of-Locs-of-iff [symmetric])
apply (fold Disjoint-def )
apply (simp-all add : l-locs-of-Locs-of-iff )
unfolding disjoint-def
find-theorems name:arith name:loc
apply (frule-tac [1 -] f-in-dom-locs[of f ],simp-all)
apply (frule-tac [1 -] f-in-dom-locs[of g ],simp-all)
find-theorems name:disjoint name:iff
find-theorems locs -
apply (simp-all add : k-in-locs-iff )
apply (erule-tac [1 -] bexE)+
apply (simp-all add : k-locs-of-arithIff f-nat1-map-nat1-elem)
unfolding sep0-def
apply (erule-tac x=b in ballE ,simp-all)
apply (erule-tac x=a in ballE ,simp-all)
oops

lemma l-nat1-map-singleton-upd : nat1 y =⇒ x /∈ dom f =⇒ nat1-map f =⇒ nat1-map(f ∪m [x 7→
y ])
unfolding nat1-map-def
by (simp add : l-munion-dom l-munion-apply)

lemma l-finite-singleton-upd :
nat1 y =⇒ x /∈ dom f =⇒ finite(dom f ) =⇒ finite(dom(f ∪m [x 7→ y ]))

by (simp add : l-munion-dom)

E.5.0.8 NEW1 update - equal case

Most lemmas are marked as weakening rules. That’s because they used by the top-level goals
for the proof obligations. In other scenarios, they could be used a deduction (FD) rules as well.

lemma k-Disjoint-dom-ar :
Disjoint f =⇒ Disjoint (S -/ f )

by (smt Disjoint-def Locs-of-def domIff dom-antirestr-def )

lemma k-sep-dom-ar :
sep f =⇒ sep (S -/ f )

by (metis (full-types) f-in-dom-ar-subsume f-in-dom-ar-the-subsume sep-def )

lemma k-finite-dom-ar :
finite (dom f ) =⇒ finite (dom (S -/ f ))

by (metis finite-subset f-in-dom-ar-subsume subsetI )

lemma k-F1-inv-dom-ar :
F1-inv f =⇒ F1-inv(S -/ f )

by (metis F1-inv-def k-Disjoint-dom-ar k-finite-dom-ar k-nat1-map-dom-ar k-sep-dom-ar)
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E.5.0.9 NEW1 update - greater than case

In this final subsection, we get to the actual lemmas used by top-level goals. These lemmas
were first defined in terms of f † g, which later turned into f ∪ g.

The proof strategy here is the same for each of the four parts of the invariant, providing we
expose a key fact about the specific (greater than update) case: the updated value cannot be
in dom f. This is crucial for the (f ∪m g) operation to be well-defined.

A more specific lemma, useful only for the Disjoint invariant, is proved. It shows that the
locations of the update are within the locations prior to the update, as expected. That is, we
lift/bridge the update locations from the given value (r+s) to original (r).

lemma l-disjoint-mapupd-keep-sep:
nat1-map f =⇒ Disjoint f =⇒ r ∈ dom f =⇒ nat1 s =⇒ the(f r) > s =⇒ (r+s) /∈ dom f

unfolding Disjoint-def
apply (erule-tac x=r in ballE)
apply (erule-tac x=(r+s) in ballE)
apply (erule impE)
apply (simp-all)
apply (rule notI )
apply (simp add : l-locs-of-Locs-of-iff )
unfolding disjoint-def
by (smt k-locs-of-arithIff nat1-map-def )

lemma k-new1-gr-dom-ar-dagger-aux2 :
nat1-map f =⇒ Disjoint f =⇒ r ∈ dom f =⇒ nat1 s =⇒ the(f r) > s =⇒ r+s /∈ dom ({r} -/ f )

by (metis f-in-dom-ar-subsume l-disjoint-mapupd-keep-sep)

lemma k-new1-gr-dom-ar-dagger-aux :
nat1-map f =⇒ Disjoint f =⇒ r ∈ dom f =⇒ nat1 s =⇒ the(f r) > s =⇒ dom ({r} -/ f ) ∩ dom [r

+ s 7→ the (f r) - s] = {}
apply (subst disjoint-iff-not-equal)
by (metis dom-eq-singleton-conv f-in-dom-ar-subsume l-disjoint-mapupd-keep-sep singletonE)

lemma b-new1-gr-upd-within-req-size:
r ∈ dom f =⇒ the (f r) > s =⇒ nat1-map f =⇒
locs-of (r+s) (the (f r) - s) ⊆ locs-of r (the(f r))

by (simp add : b-locs-of-as-set-interval)

find-theorems {- ..< -} ⊆ {- ..< -}
thm b-locs-of-as-set-interval [of the(f r) - s r + s]

b-locs-of-as-set-interval [of the(f r) r ]
ivl-subset [of r + s r + s + the(f r) - s r the (f r)]

lemma b-new1-gr-upd-psubset-req-size:
nat1 s =⇒ r ∈ dom f =⇒ the (f r) > s =⇒ nat1-map f =⇒
locs-of (r+s) (the (f r) - s) ⊂ locs-of r (the(f r))

apply (rule psubsetI )
apply (simp add : b-new1-gr-upd-within-req-size)
apply (simp add : b-locs-of-as-set-interval)
by (metis add-0-iff add-lessD1 add-less-cancel-left atLeastLessThan-inj (1 ) not-less0 )
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lemma k-Disjoint-dom-ar-dagger :
r ∈ dom f =⇒ the (f r) > s =⇒ nat1-map f =⇒ Disjoint f =⇒ Disjoint (({r} -/ f ) † [r + s 7→ the

(f r) - s])
unfolding Disjoint-def disjoint-def
apply (intro impI ballI )+
apply (simp add : l-locs-of-Locs-of-iff l-dagger-apply)
apply (intro impI conjI )+
apply (simp-all add : l-dagger-dom)
prefer 3
apply (metis f-in-dom-ar-subsume f-in-dom-ar-the-subsume)
apply (simp-all add : f-in-dom-ar-the-subsume)
apply (erule-tac x=r in ballE)
apply (erule-tac x=b in ballE)
apply (frule-tac [1 -4 ] f-in-dom-ar-notelem)
apply (frule-tac [1 -4 ] f-in-dom-ar-subsume)
apply (simp-all)

thm b-new1-gr-upd-within-req-size[of r f s]
f-nat1-map-nat1-elem[of f r ]
b-locs-of-as-set-interval [of the(f r)]

apply (simp-all add : b-new1-gr-upd-within-req-size f-nat1-map-nat1-elem b-locs-of-as-set-interval)
apply (metis add-lessD1 )

done

lemma k-Disjoint-dom-ar-munion:
r ∈ dom f =⇒ the (f r) > s =⇒ nat1 s =⇒ nat1-map f =⇒ Disjoint f =⇒ Disjoint (({r} -/ f ) ∪m

[r + s 7→ the (f r) - s])
apply (frule l-disjoint-mapupd-keep-sep[of f r s])
apply (assumption)+
unfolding munion-def
apply (simp add : k-Disjoint-dom-ar-dagger)
by (metis f-in-dom-ar-subsume)

lemma k-sep-dom-ar-dagger-aux2 :
nat1 s =⇒ {r} ∩ dom [r + s 7→ the (f r) - s] = {}

apply (subst disjoint-iff-not-equal)
by auto

lemma k-sep-dom-ar-dagger :
r ∈ dom f =⇒ the (f r) > s =⇒ nat1 s =⇒ sep f =⇒ Disjoint f =⇒ sep ({r} -/ f † [r + s 7→ the

(f r) - s])
apply (insert k-sep-dom-ar-dagger-aux2 [of s r f ])
apply (simp add : l-dagger-dom-ar-assoc)
apply (rule k-sep-dom-ar)
unfolding sep-def
apply (intro ballI )
apply (simp add : l-dagger-apply l-dagger-dom)
apply (intro impI conjI )
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apply (simp-all)
apply (erule-tac x=l in ballE)
apply (simp-all)
unfolding Disjoint-def disjoint-def
by (smt l-locs-of-Locs-of-iff k-locs-of-arithIff nat1-def )

lemma k-sep-dom-ar-munion:
nat1-map f =⇒ r ∈ dom f =⇒ the (f r) > s =⇒ nat1 s =⇒ sep f =⇒ Disjoint f =⇒ sep ({r} -/

f ∪m [r + s 7→ the (f r) - s])
unfolding munion-def
apply (simp add : k-sep-dom-ar-dagger)
by (metis l-disjoint-mapupd-keep-sep f-in-dom-ar-subsume nat1-def )

lemma k-nat1-map-dom-ar-dagger :
nat1 s =⇒ r ∈ dom f =⇒ the (f r) > s =⇒ nat1-map f =⇒ nat1-map ({r} -/ f † [r + s 7→ the (f

r) - s])
unfolding nat1-map-def
apply (intro allI impI )
apply (simp add : l-dagger-dom l-dagger-apply)
apply (intro conjI impI )+
apply (simp)
by (metis f-in-dom-ar-subsume f-in-dom-ar-the-subsume)

lemma k-nat1-map-dom-ar-munion:
nat1 s =⇒ r ∈ dom f =⇒ the (f r) > s =⇒ Disjoint f =⇒ nat1-map f =⇒ nat1-map ({r} -/ f ∪m

[r + s 7→ the (f r) - s])
unfolding munion-def
apply (simp add : k-nat1-map-dom-ar-dagger)
by (metis l-disjoint-mapupd-keep-sep f-in-dom-ar-subsume nat1-def )

lemma k-finite-dom-ar-dagger :
r ∈ dom f =⇒ the (f r) > s =⇒ finite (dom f ) =⇒ finite (dom({r} -/ f † [r + s 7→ the (f r) - s]))

by (simp add : l-dagger-dom l-dagger-apply k-finite-dom-ar)

lemma k-finite-dom-ar-munion:
r ∈ dom f =⇒ the (f r) > s =⇒ nat1 s =⇒ nat1-map f =⇒ Disjoint f =⇒ finite (dom f ) =⇒

finite (dom({r} -/ f ∪m [r + s 7→ the (f r) - s]))
unfolding munion-def
apply (simp add : k-finite-dom-ar-dagger)
by (metis l-disjoint-mapupd-keep-sep f-in-dom-ar-subsume nat1-def )

lemma k-finite-dom-ar-munion-ALT-PROOF :
r+s /∈ dom f =⇒ r ∈ dom f =⇒ the (f r) > s =⇒ finite (dom f ) =⇒ finite (dom({r} -/ f ∪m [r
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+ s 7→ the (f r) - s]))
thm l-munion-dom[of {r} -/f [r + s 7→ the(f r) - s]]

apply (insert l-munion-dom[of {r} -/f [r + s 7→ the(f r) - s]])
apply (insert f-dom-ar-subset-dom[of {r} f ])
apply (simp)
by (metis finite-Diff finite-insert l-dom-dom-ar f-in-dom-ar-subsume)

lemma k-F1-inv-dom-munion:
F1-inv f =⇒ nat1 s =⇒ r ∈ dom f =⇒ the(f r) > s =⇒ F1-inv({r} -/ f ∪m [r + s 7→ the (f r) -

s])
by (metis F1-inv-def k-Disjoint-dom-ar-munion k-finite-dom-ar-munion k-nat1-map-dom-ar-munion
k-sep-dom-ar-munion)

E.6 Goal-oriented - DISPOSE1 invariant update

E.6.0.10 DISPOSE1 update - equal case

lemma l-min-loc-dom-r-iff :
S / g 6= empty =⇒ min-loc (S / g) = Min (S ∩ dom g)

by (metis min-loc-def l-dom-r-iff )

lemma k-Min-subset :
S 6= {} =⇒ finite T =⇒ S ⊆ T =⇒ Min S ∈ T

by (metis Min-in finite-subset set-mp)

lemma k-min-loc-dom:
g 6= empty =⇒ finite(dom g) =⇒ dom g ⊆ dom f =⇒ min-loc g ∈ dom f

unfolding min-loc-def
by (metis Min-in dom-eq-empty-conv set-mp)

lemma k-dispose-abovebelow-dom-disjoint :
nat1 s1 =⇒ dom (dispose1-above f1 d1 s1 ) ∩ dom(dispose1-below f1 d1 ) = {}

find-theorems - ∩ - = {} name:disjoint name:equal
apply (subst disjoint-iff-not-equal)
apply (rule ballI )+
unfolding dispose1-above-def dispose1-below-def
apply (simp only : l-dom-r-iff )
using [[simp-trace]] apply simp

done

lemma f-d1-not-dispose-above :
nat1 s1 =⇒ d1 /∈ dom (dispose1-above f1 d1 s1 )

unfolding dispose1-above-def
find-theorems dom(- / -)
by (simp add : l-dom-r-iff )

lemma f-d1-not-dispose-below :
nat1-map f1 =⇒ nat1 s1 =⇒ d1 /∈ dom (dispose1-below f1 d1 )

unfolding dispose1-below-def
find-theorems dom(- / -)
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apply (simp add : l-dom-r-iff )
apply (rule impI )

by (metis f-nat1-map-nat1-elem)

lemma f-d1-not-dispose-abovebelow-ext :
nat1-map f1 =⇒ sep f1 =⇒ nat1 s1 =⇒ d1 /∈ dom (dispose1-above f1 d1 s1 ∪m dispose1-below f1

d1 )
by (metis UnE f-d1-not-dispose-above f-d1-not-dispose-below k-dispose-abovebelow-dom-disjoint l-dagger-dom
munion-def )

lemma k-dispose-abovebelow-munion-dom:
nat1 s1 =⇒ dom(dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 )

=
{ x ∈ dom f1 . x + the(f1 x ) = d1 ∨ x = d1 + s1 }

apply (rule equalityI )
apply (simp-all add : l-munion-dom k-dispose-abovebelow-dom-disjoint)
unfolding dispose1-above-def dispose1-below-def
apply (simp-all add : l-dom-r-iff )
apply (rule conjI )
apply (rule-tac [1 -] subsetI )
by auto

lemma k-finite-dispose-above:
finite(dom f1 ) =⇒ finite (dom (dispose1-above f1 d1 s1 ))

unfolding dispose1-above-def
by (metis finite-Int l-dom-r-iff )

lemma k-finite-dispose-below :
finite(dom f1 ) =⇒ finite (dom (dispose1-below f1 d1 ))

unfolding dispose1-below-def
by (smt finite-Int l-dom-r-iff )

lemma k-finite-dispose-abovebelow-munion:
finite (dom f1 ) =⇒ nat1 s1 =⇒ finite (dom (dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 ))
thm k-finite-munion[of dispose1-above f1 d1 s1 dispose1-below f1 d1 ]

by (metis k-dispose-abovebelow-dom-disjoint k-finite-dispose-above k-finite-dispose-below k-finite-munion)

lemma k-empty-dispose-above:
d1 + s1 /∈ dom f1 =⇒ (dispose1-above f1 d1 s1 ) = empty

unfolding dispose1-above-def
by (smt disjoint-iff-not-equal l-dom-r-iff l-map-non-empty-dom-conv mem-Collect-eq)

lemma k-nonempty-dispose-below :
x ∈ dom f1 =⇒ x + the(f1 x ) = d1 =⇒ (dispose1-below f1 d1 ) 6= empty

unfolding dispose1-below-def
by (smt dom-def f-in-dom-r-apply-elem mem-Collect-eq)

lemma k-dispose1-abovebelow-nonempty :
nat1 s1 =⇒ d1 + s1 ∈ dom f1 ∨ x ∈ dom f1 ∧ x + the(f1 x ) = d1 =⇒

dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 6= Map.empty
apply (erule disjE)
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apply (rule notI )
apply (simp only : dom-eq-empty-conv [symmetric] k-dispose-abovebelow-munion-dom)
apply blast

by (metis domIff k-dispose-abovebelow-dom-disjoint k-nonempty-dispose-below l-munion-apply)

lemma k-dispose1-abovebelow-empty :
nat1 s1 =⇒ sep0 [d1 7→ s1 ] f1 =⇒ sep0 f1 [d1 7→ s1 ] =⇒

dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 = Map.empty
unfolding sep0-def
apply (simp only : dom-eq-empty-conv [symmetric] k-dispose-abovebelow-munion-dom)
apply simp
by blast

lemma k-dispose1-sep0-above-empty :
sep0 [d1 7→ s1 ] f1 =⇒ dispose1-above f1 d1 s1 = empty

apply (simp only : dom-eq-empty-conv [symmetric])
unfolding sep0-def dispose1-above-def
find-theorems dom(- / -)
apply (simp add : dom-eq-empty-conv [symmetric] l-dom-r-iff )
by blast

lemma k-dispose1-sep0-below-empty :
sep0 f1 [d1 7→ s1 ] =⇒ dispose1-below f1 d1 = empty

apply (simp only : dom-eq-empty-conv [symmetric])
unfolding sep0-def dispose1-below-def
apply (simp add : dom-eq-empty-conv [symmetric] l-dom-r-iff )
by blast

lemma l-dispose1-sep0-above-empty-iff :
(dispose1-above f1 d1 s1 = empty) = sep0 [d1 7→ s1 ] f1

apply (rule iffI )
defer
apply (rule k-dispose1-sep0-above-empty ,assumption)
unfolding sep0-def dispose1-above-def
apply (rule ballI )
apply simp
apply (rule notI )
apply (simp add : fun-eq-iff )
apply (erule-tac x=d1+s1 in allE)
find-theorems (- / -) -
apply (simp add : f-in-dom-r-apply-elem)
by (metis domIff )

lemma l-dispose1-sep0-below-empty-iff :
(dispose1-below f1 d1 = empty) = sep0 f1 [d1 7→ s1 ]

apply (rule iffI )
defer
apply (rule k-dispose1-sep0-below-empty ,assumption)
unfolding sep0-def dispose1-below-def
apply (rule ballI )
apply simp
apply (rule notI )
apply (simp add : fun-eq-iff )
apply (erule-tac x=l in allE)
find-theorems (- / -) -
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apply (simp add : f-in-dom-r-apply-elem)
by (metis domIff )

lemma f-dispose1-pre-not-in-dom:
nat1-map f =⇒ nat1 s =⇒ locs-of d s ∩ locs f = {} =⇒ d /∈ dom f

apply (rule notI )
find-theorems name:disjoint name:iff
find-theorems - ∈ locs-of - -
find-theorems - ∈ locs -
apply (simp add : disjoint-iff-not-equal)
apply (frule f-dom-locs-of ,assumption)
apply (frule f-in-dom-locs,assumption)
apply (erule-tac x=d in ballE)
apply (erule-tac x=d in ballE)
unfolding locs-of-def
by simp-all

lemma l-dispose1-above-singleton:
d1+s1 ∈ dom f1 =⇒ dispose1-above f1 d1 s1 = [d1+s1 7→ the(f1 (d1+s1 ))]

unfolding dispose1-above-def
apply (subst fun-eq-iff )
apply (rule allI )
find-theorems (- / -) -
unfolding dom-restr-def
by auto

lemma l-dispose1-nonempty-above-singleton:
dispose1-above f1 d1 s1 6= empty =⇒ dispose1-above f1 d1 s1 = [d1+s1 7→ the(f1 (d1+s1 ))]

by (metis k-empty-dispose-above l-dispose1-above-singleton)

lemma a = x =⇒ ([x 7→ y ] a) = Some y
by simp

lemma a 6= x =⇒ ([x 7→ y ] a) = None
by simp

definition
fbelow :: F1

where
fbelow ≡ [0 7→4 , 5 7→ 6 , 15 7→ 3 ]

lemma F1-inv fbelow
unfolding fbelow-def F1-inv-defs
by auto

lemma dispose1-below fbelow 11 = [5 7→6 ]
unfolding fbelow-def dispose1-below-def
apply (simp add : fun-eq-iff )
apply (intro conjI allI impI )
apply (simp add : f-in-dom-r-apply-elem)
unfolding dom-restr-def restrict-map-def
using [[simp-trace]] apply simp
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apply auto
done

lemma l ∈ dom fbelow =⇒ l+the(fbelow l)=11 =⇒ dispose1-below fbelow 11 = [l 7→the(fbelow l)]
unfolding fbelow-def dispose1-below-def
apply safe
apply (simp add : fun-eq-iff )
apply (intro conjI allI impI )
apply (simp-all split : split-if-asm)
unfolding dom-restr-def restrict-map-def
apply simp
apply auto
done

lemma l-dispose1-below-singleton-useless:
l ∈ dom f =⇒ l+the(f l) = d =⇒ nat1-map f =⇒ sep f =⇒ Disjoint f =⇒ dispose1-below f d = [l
7→ the(f l)]
unfolding dispose1-below-def
find-theorems simp:- = (-::( ′a ⇒ ′b)) -name:HEAP -name:VDM
apply (subst fun-eq-iff )
apply simp
apply (intro allI impI conjI )
apply (simp add : f-in-dom-r-apply-the-elem)
unfolding dom-restr-def restrict-map-def
apply (simp-all)
apply (rule impI )
apply (erule conjE)
unfolding Disjoint-def disjoint-def
apply (erule-tac x=l in ballE)
apply (erule-tac x=x in ballE)
find-theorems locs-of - - ∩ locs-of - -
apply (simp-all add : l-locs-of-Locs-of-iff

k-locs-of-arithIff f-nat1-map-nat1-elem)
by (metis antisym le-iff-add sep-def )

lemma l-dispose1-below-singleton-useful :
nat1-map f =⇒ sep f =⇒ Disjoint f =⇒ ∀ · l ∈ dom f . l+the(f l) = d −→ dispose1-below f d = [l
7→ the(f l)]
by (metis l-dispose1-below-singleton-useless)

lemma l-sum-size-upd :
finite(dom f ) =⇒ x /∈ dom f =⇒ sum-size(f (x 7→y)) = (if f = empty then y else sum-size f + y)

unfolding sum-size-def
apply simp
apply (intro impI )
by (rule setsum-cong ,simp-all ,rule impI ,simp)
thm setsum-cong [of dom f dom f (λ xa . the (if xa = x then Some y else f xa)) (λ x . the (f x ))]

lemma l-nat1-sum-size-dispose1-ext :
nat1-map f1 =⇒ finite (dom f1 ) =⇒ sep f1 =⇒ nat1 s1 =⇒ nat1 (sum-size (dispose1-ext f1 d1

s1 ))
unfolding dispose1-ext-def
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apply (subst l-munion-upd)
apply (simp add : l-munion-dom k-dispose-abovebelow-dom-disjoint)
apply (rule conjI )
apply (rule f-d1-not-dispose-above,simp)
apply (rule f-d1-not-dispose-below ,simp-all)
apply (frule f-d1-not-dispose-abovebelow-ext [of f1 s1 d1 ],simp-all)
apply (frule k-finite-dispose-abovebelow-munion[of f1 s1 d1 ],simp)
by (simp add : l-sum-size-upd)

lemma l-d1-s1-not-dispose1-below :
nat1-map f =⇒ sep f =⇒ Disjoint f =⇒ nat1 s =⇒ d + s /∈ dom (dispose1-below f d)

apply (cases dispose1-below f d = empty)
apply simp
apply (simp add : l-dispose1-sep0-below-empty-iff [of f d s])
unfolding sep0-def
apply (simp,erule bexE)
thm l-dispose1-below-singleton-useful
by (simp add : l-dispose1-below-singleton-useful)

lemma l-min-loc-dispose1-ext-absorb-above:
finite(dom f ) =⇒ nat1-map f =⇒ Disjoint f =⇒ sep f =⇒ nat1 s =⇒

min-loc (dispose1-ext f d s) = min-loc(dispose1-below f d ∪m [d 7→ s])
unfolding dispose1-ext-def
apply (cases dispose1-above f d s = empty)
apply (simp add : l-munion-empty-lhs)
apply (simp add : l-dispose1-nonempty-above-singleton)
thm l-munion-commute[of [d + s 7→ the (f (d + s))] dispose1-below f d ∪m [d 7→ s]]
apply (subst l-munion-commute)
apply (metis (full-types) k-dispose-abovebelow-dom-disjoint l-dispose1-nonempty-above-singleton nat1-def )

apply (subst l-munion-assoc)
apply (metis (full-types) inf .commute k-dispose-abovebelow-dom-disjoint l-dispose1-nonempty-above-singleton

nat1-def )

apply (simp add : disjoint-iff-not-equal)

apply (subst l-munion-commute)
back

apply (simp add : disjoint-iff-not-equal)
apply (subst l-munion-assoc[symmetric])
apply (frule f-d1-not-dispose-below ,simp-all)

find-theorems min-loc (- ∪m -)
thm k-min-loc-munion-singleton[of dispose1-below f d ∪m [d 7→ s] d + s the (f (d + s))]
apply (subst k-min-loc-munion-singleton)

apply (rule k-finite-munion, simp-all)
apply (metis k-finite-dispose-below)
apply (metis f-d1-not-dispose-below nat1-def )
apply (subst l-munion-dom)

apply (frule f-d1-not-dispose-below ,simp-all add : l-d1-s1-not-dispose1-below)
apply (intro conjI impI )
apply (simp add : l-munion-singleton-not-empty f-d1-not-dispose-below)
apply (cases dispose1-below f d = empty)
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apply (simp add : l-munion-empty-lhs l-min-loc-singleton)
apply (simp add : l-dispose1-sep0-below-empty-iff [of f d s])
unfolding sep0-def
apply simp
apply (erule bexE)
apply (simp add : l-dispose1-below-singleton-useless) — so the useless version works?! hum...
apply (subst k-min-loc-munion-singleton)

apply (metis finite-singleton)
apply (frule f-nat1-map-nat1-elem,simp-all)
apply (metis sep-def )

apply (subst l-munion-dom)
apply (frule f-nat1-map-nat1-elem,simp-all)
apply (metis sep-def )

done

lemma l-sep0-dispose1-abovebelow-ext :
finite(dom f1 ) =⇒ nat1-map f1 =⇒ Disjoint f1 =⇒ sep f1 =⇒ nat1 s1 =⇒
sep0 ((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 )

[min-loc (dispose1-ext f1 d1 s1 ) 7→ HEAP1 .sum-size (dispose1-ext f1 d1 s1 )]
unfolding sep0-def
apply (rule ballI )
apply (simp add : l-min-loc-dispose1-ext-absorb-above)
find-theorems - ∈ dom( - -/ -)
apply (simp add : f-in-dom-ar-subsume f-in-dom-ar-the-subsume)
apply (cases dispose1-below f1 d1 = empty)
apply (simp add : l-min-loc-singleton l-munion-empty-lhs)
apply (metis k-nonempty-dispose-below l-dom-ar-not-in-dom)

apply (simp add : l-dispose1-sep0-below-empty-iff [of f1 d1 s1 ])
unfolding sep0-def
apply simp
apply (erule bexE)
apply (simp add : l-dispose1-below-singleton-useless) — so the useless version works?! hum...
apply (subst k-min-loc-munion-singleton,simp-all)

apply (metis sep-def )
apply (metis l-dom-ar-notin-dom-or le-add1 min-max .le-iff-inf sep-def )

done

lemma l-sep0-dispose1-ext-abovebelow :
finite(dom f1 ) =⇒ nat1-map f1 =⇒ Disjoint f1 =⇒ sep f1 =⇒ nat1 s1 =⇒
sep0 [min-loc (dispose1-ext f1 d1 s1 ) 7→ HEAP1 .sum-size (dispose1-ext f1 d1 s1 )]
((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 )

unfolding sep0-def
apply (rule ballI )
apply (simp add : l-min-loc-dispose1-ext-absorb-above)
find-theorems simp:- ∈ dom( - -/ -)
apply (subst l-dom-ar-not-in-dom,simp-all)
unfolding dispose1-ext-def
apply (subst l-sum-size-munion-singleton)

apply (metis k-finite-dispose-abovebelow-munion nat1-def )
apply (simp add : k-dispose-abovebelow-dom-disjoint f-d1-not-dispose-abovebelow-ext)

apply (cases dispose1-below f1 d1 = empty)
apply (simp add : l-min-loc-singleton l-munion-empty-rhs l-munion-empty-lhs)

apply (intro conjI impI )
apply (simp add : l-dispose1-sep0-above-empty-iff )
apply (metis k-dispose1-abovebelow-empty k-dispose1-abovebelow-nonempty l-dispose1-sep0-below-empty-iff
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nat1-def )
apply (simp add : l-dispose1-nonempty-above-singleton l-sum-size-singleton)
apply (simp add : l-dispose1-sep0-above-empty-iff )
unfolding sep0-def sep-def
apply simp
apply (rule notI )
apply (erule-tac x=d1+s1 in ballE ,simp-all)
apply smt
apply (fold sep-def )

apply (cases dispose1-above f1 d1 s1 = empty)
apply (simp add : l-min-loc-singleton l-munion-empty-rhs l-munion-empty-lhs)
apply (simp add : l-dispose1-sep0-above-empty-iff

l-dispose1-sep0-below-empty-iff [of f1 d1 s1 ])
unfolding sep0-def
apply simp
apply (erule bexE)

thm l-dispose1-below-singleton-useful
k-min-loc-munion-singleton[simplified ]

apply (simp add : l-dispose1-below-singleton-useful
l-sum-size-singleton)

apply (subst k-min-loc-munion-singleton)
apply (metis finite-singleton)
apply (frule f-nat1-map-nat1-elem,simp)

apply (simp add : disjoint-iff-not-equal)
apply (frule f-nat1-map-nat1-elem,simp)
unfolding min-def
apply (simp)
unfolding sep-def
apply (rule notI )
apply (erule-tac x=la in ballE ,simp-all)
apply smt — ???? How is this being proved ????
apply (fold sep-def )

apply (simp add : l-munion-empty-iff k-dispose-abovebelow-dom-disjoint)
apply (simp add : l-dispose1-nonempty-above-singleton l-sum-size-singleton)
apply (simp add : l-dispose1-sep0-above-empty-iff

l-dispose1-sep0-below-empty-iff [of f1 d1 s1 ])
unfolding sep0-def
apply simp
apply (erule bexE)
thm k-min-loc-munion-singleton[simplified ]
apply (frule f-nat1-map-nat1-elem,simp)

back
apply (simp add : l-dispose1-below-singleton-useful

l-sum-size-munion-singleton l-sum-size-singleton
k-min-loc-munion-singleton)

unfolding min-def sep-def
apply simp
apply (rule notI )
apply (erule-tac x=d1+s1 in ballE ,simp-all)
apply smt — ???? How is this being proved ????

done

lemma l-disjoint-dispose1-ext :
finite(dom f1 ) =⇒ nat1-map f1 =⇒ Disjoint f1 =⇒ sep f1 =⇒ nat1 s1 =⇒ dispose1-pre f1 d1 s1
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=⇒
disjoint (locs-of (min-loc (dispose1-ext f1 d1 s1 )) (HEAP1 .sum-size (dispose1-ext f1 d1 s1 )))

(locs ((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 ))
apply (simp add : l-min-loc-dispose1-ext-absorb-above)
find-theorems simp:(- -/ -)
thm l-locs-dom-ar-iff l-dom-ar-accum
apply (simp add : l-dom-ar-accum[symmetric])
unfolding disjoint-def dispose1-ext-def dispose1-pre-def
apply (cases dispose1-below f1 d1 = empty)
apply (simp add : l-munion-empty-lhs l-min-loc-singleton l-munion-empty-rhs l-dom-ar-none)

apply (cases dispose1-above f1 d1 s1 = empty)
apply (simp add : l-munion-empty-lhs l-sum-size-singleton l-dom-ar-none)

apply (simp add : l-dispose1-nonempty-above-singleton l-dispose1-sep0-above-empty-iff
l-sum-size-munion l-sum-size-singleton)

unfolding sep0-def
apply (simp add : l-locs-dom-ar-iff )
apply (simp add : disjoint-iff-not-equal)
apply (rule ballI )+
apply (frule f-nat1-map-nat1-elem,simp)
unfolding locs-of-def
apply simp
apply (fold locs-of-def )
apply smt

apply (cases dispose1-above f1 d1 s1 = empty)
apply (simp add : l-munion-empty-lhs l-sum-size-singleton l-dom-ar-none)
apply (simp add : l-dispose1-sep0-below-empty-iff [of f1 d1 s1 ])
unfolding sep0-def
apply simp
apply (erule bexE)
apply (simp add : l-dispose1-below-singleton-useful)

thm l-sum-size-munion-singleton[simplified ] l-sum-size-singleton
k-min-loc-munion-singleton[simplified ]
l-dispose1-nonempty-above-singleton

apply (subst k-min-loc-munion-singleton)
apply (metis finite-singleton)
apply (simp add : disjoint-iff-not-equal)
apply (metis sep-def )

apply (subst l-sum-size-munion-singleton)
apply (metis finite-singleton)
apply (simp add : disjoint-iff-not-equal)
apply (metis sep-def )

apply (simp add : l-sum-size-singleton l-locs-dom-ar-iff )

apply (simp add : disjoint-iff-not-equal)
apply (rule ballI )+
apply (frule f-nat1-map-nat1-elem,simp)
unfolding locs-of-def
apply simp
apply (fold locs-of-def )
apply smt

apply (simp add : l-dispose1-nonempty-above-singleton l-dispose1-sep0-above-empty-iff
l-dispose1-sep0-below-empty-iff [of f1 d1 s1 ]
l-sum-size-munion l-sum-size-singleton)

unfolding sep0-def
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apply simp
apply (erule bexE)
apply (simp add : l-dispose1-below-singleton-useful)
apply (subst k-min-loc-munion-singleton)

apply (metis finite-singleton)
apply (simp add : disjoint-iff-not-equal)
apply (metis sep-def )
apply (simp add : min-def )

apply (subst l-sum-size-munion-singleton)
apply (metis (lifting) k-finite-dispose-abovebelow-munion l-dispose1-above-singleton l-dispose1-below-singleton-useless

nat1-def )

apply (simp add : disjoint-iff-not-equal)
apply (rule ballI )+
apply (simp add : l-munion-dom)
apply (metis sep-def )

apply (simp add : l-munion-empty-iff )
apply (subst l-sum-size-munion-singleton)

apply (metis finite-singleton)
apply (simp add : disjoint-iff-not-equal)
apply (simp add : l-sum-size-singleton l-dom-ar-accum l-locs-dom-ar-general-iff )

— Perhaps use l right diff left dist? Nah... just follow previous strategy
apply (simp add : disjoint-iff-not-equal)
apply (rule ballI )+
apply (frule f-nat1-map-nat1-elem,simp)
apply (frule f-nat1-map-nat1-elem)
apply simp back
unfolding locs-of-def
apply simp
apply smt

done

find-theorems - ∈ locs -

lemma l-locs-maximal-quickspec:
(locs f ) -/ f = (locs g) -/ g

oops

lemma l-locs-maximal-quickspec:
(locs f ) -/ f = empty

oops

lemma l-locs-empty-quickspec:
(locs empty = {})

oops

find-theorems locs empty

end

theory HEAP1Proofs
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imports HEAP1 HEAP1Lemmas
begin

Add lemmas k in dom locs = l in dom locs for when the same lemma (“l ”) has multiple
uses in a theory?

E.7 NEW 1 proofs

As part of the strategy for mechanisation with sledgehammer we rely on a few patterns for
“zooming”, “witnessing”, “bridging”, and “weakening”. To easily identify what lemma partic-
ipate in what pattern, we use some name conventions as below. Prefixes can be combined to
indicate patterns are being combined.

1. Zooming: lemma mames prefixed with “z ”

Pattern that takes into account a (sub-)set of definitions of interest to unfold and tackle at
different stages. These are problem dependant and require expert annotation (of defs?).

The pattern is applied by decomposing the goal, top-down, into its suggoal parts declared
as lemmas with appropriate instantiations.

It achieves separation of concerns given one concentrate at the right level of abstraction
during a proof.

2. Witnessing: lemma mames prefixed with “w ”

Type1: strip defs the user tagged to; try and get 1-point-rule to work Type2: Type1 where
you need an explicit instantiation from user

Most POs involve instantiating some (difficult) existential quantifier or interest. With this
pattern we instantiate variables to uninterpreted constants following by the application
of the zooming pattern. On many models, this leaves to obvious witness to choose under
certain conditions, to be added as lemmas for the subcases of interest given the model at
hand.

Another approach is to instantiate the quantified after state as simply the before state (i.e.
as if we were dealing with a SKIP-OP). This is clearly wrong, yet after (safe-)simplification
often gives insight into what the correct (or approximate) instantiation should be. This
is useful to when the model does not provide equations for the quantified after state.

For instance, we use uninterpreted witnessing for the proof of NEW1 feasibility. This
leads to the instantiations of the suggested lemmas zw new1 post and zw F1 inv.

3. Bridges: lemma mames prefixed with “b ”

Certain information about types and predicates (e.g. invariant, pre/post) are “obvious”
yet not immediately known/available to Isabelle. The choice to what is to be put into
the “goal context” by default requires some practice, yet is pretty deterministic: all the
type-related parts of goals that keep occurring in the middle of proofs, yet are not the
relevant goal to be proved.

For these scenarios, we add type or definition “bridges” that tell Isabelle to take them
(or a variation of them) into account during simplification (i.e. declare some tags to
definitions like intro).

For instance, lemmas are needed to prove the feasibility of NEW1. They all require some
knowledge about the before state invariant and the precondition under the appropriate
instantiations, or the fact the map f is finite and with a nat1 range. We add these as
lemmas below to ensure these required information is not hampering automation.
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4. Weakening: lemma mames prefixed with “k ”

One usually do not have enough information about goals function symbols in order to
directly discharge them. Adding specific lemmas to that effect is often unlikely (and leads
to lemmas that are too specific to be reused).

Instead, we often need lemmas that much at specific parts of the goal (backward chaining)
or at specific part of the hypothesis (forward chaining) to weaken the overall task to pieces
manageable by the theorem prover.

TODO: explain Naur’s N-Queen approach to explaining the problem!

E.7.1 NEW 1 FSB

These lemmas rely on general (expert) lemmas about maps and Other mathematical toolkit
operatos, many of which Isabelle already has useful lemmas for.

In this development, we need to create these from scratch. Yet, although a bit artificial, we
shield the development from these general goals/proofs by having them in a separate theory.

In practice, we antecipate that these lemmas will be reused in other VDM-style map prob-
lems. As indeed is already evident from the various lemmas “stolen” from ZEves’ mathematical
toolkit (i.e. the FM style of model and proof transfer across provers too). Or else, we might
be having some outcome bias, given authors expertise in this other prover. Either way, it does
show that proof patterns do exist beyond specific provers and examples.

E.7.1.1 NEW 1 FSB weakening lemmas for equal case

For new1 eq case lemmas are easier: we just need to show the submap satisfy the various parts
of the state invariant. We prove a lemma for each such subpart below. They follow directly
from general lemmas about the involved operators and are all sledgehammered.

To allow for our lemma collection/analysis tool to work, we avoid (in X) and explicitly
collect the locale-specific lemmas.

context level1-new
begin

lemma k-new1-Disjoint-dom-ar :
Disjoint ({x} -/ f1 )

by (metis F1-inv-def k-Disjoint-dom-ar l1-invariant-def )

lemma k-new1-sep-dom-ar :
sep ({r} -/ f1 )

by (metis F1-inv-def k-sep-dom-ar l1-invariant-def )

lemma k-new1-nat1-map-dom-ar :
nat1-map ({r} -/ f1 )

by (metis F1-inv-def k-nat1-map-dom-ar l1-invariant-def )

lemma k-new1-finite-dom-ar :
finite (dom ({r} -/ f1 ))

by (metis F1-inv-def k-finite-dom-ar l1-invariant-def )
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E.7.1.2 NEW 1 FSB weakening lemmas for greater than case

For new1 gr case lemmas are not as easy. Our definition of VDM map union rely on a side
condition about disjointness of map’s domains, which will feature in all proofs for new1 gr .

Historically, we had made a mistake (oops): we defined the models in Isabelle using a version
of VDM dagger (- † - or - ++ - in Isabelle) instead of map union. After correcting the mistake
we had a throve of lemmas for dagger, which are useful for proving map union, so we kept both.

Isabelle does not have map union but (Isabelle) map update (- ++ -). We define VDM
map union with map update where domains are disjoint, or undefined otherwise. Thus, having
had these lemmas about map update were quite useful for a general strategy for proving VDM
map union in Isabelle (with this encoding): prove it for dagger then establish the disjointness
of domains for the maps involved and it does work, in most cases (i.e. an example where it does
not occurs for certain algebraic rules about our locs function, see below in ???).

Given that, as before for new eq , we show show the submap (--/-) updated (-†-) or extended
(- ∪m -) satisfy the various parts of the state invariant. We prove a lemma for each such
subpart below. They follow directl from general lemmas about the involved operators and are
all sledgehammered.

lemma k-new1-Disjoint-dom-ar-munion:
r ∈ dom f1 =⇒ the (f1 r) > s1 =⇒ Disjoint ({r} -/ f1 ∪m [r + s1 7→ the (f1 r) - s1 ])

by (smt F1-inv-def k-Disjoint-dom-ar-munion l1-input-notempty-def l1-invariant-def )

lemma k-new1-sep-dom-ar-munion:
r ∈ dom f1 =⇒ the (f1 r) > s1 =⇒ sep ({r} -/ f1 ∪m [r + s1 7→ the (f1 r) - s1 ])

by (smt F1-inv-def k-sep-dom-ar-munion l1-input-notempty-def l1-invariant-def )

lemma k-new1-nat1-map-dom-ar-munion:
r ∈ dom f1 =⇒ the (f1 r) > s1 =⇒ nat1-map ({r} -/ f1 ∪m [r + s1 7→ the (f1 r) - s1 ])

by (metis F1-inv-def k-nat1-map-dom-ar-munion l1-invariant-def l1-input-notempty-def )

lemma k-new1-finite-dom-ar-munion:
r ∈ dom f1 =⇒ the (f1 r) > s1 =⇒ finite (dom({r} -/ f1 ∪m [r + s1 7→ the (f1 r) - s1 ]))

by (metis (mono-tags) F1-inv-def k-finite-dom-ar-munion l1-input-notempty-def l1-invariant-def )

E.7.1.3 NEW 1 FSB goal-splitting lemmas

From the top-down strategy for the feasibility proof, we need to provide zooming-weakening
lemmas to enable sledgehammer to work for our given witnesses, which also determine the key
step in the proof: the splitting of cases for exact and surplus memory allocation.

As it happened for the invariant parts for each case, these lemmas operate on each part of
the feasibility proof this time, namely the postcondition, the state invariant and the outputs.
Obviously, the zooming strategy works well given this setup since the lemmas above are already
in the shape needed.

That is, when working top-down as we did, the unpicking of the various parts of the feasibility
proof obligation leads to the suggestion of these lemma shapes up to the point where available
(and general) mathematical toolkit lemmas apply, modulo a few new ones needed. That’s
usually where expert input is needed.

Call it what you like, this top-down strategy/pattern/tactic, repeats across problems in the
formal methods domain, where automation depends on the quality and shape of the general
lemmas available. Our hope is that, with enough data about expert choices regarding specialised
versions of general lemmas (as well as new general lemmas themselves), AI4FM tools would be
able to spot the similarities/features/patterns and suggest them to new/novice users.

130



APPENDIX E. HEAP LEMMAS AND PROOFS (LEO)

lemma zw-new1-post-eq :
r ∈ dom f1 =⇒ the (f1 r) = s1 =⇒ new1-post-eq f1 s1 ({r} -/ f1 ) r

unfolding new1-post-eq-def
by auto

lemma zw-F1-inv-new1-eq :
r ∈ dom f1 =⇒ the (f1 r) = s1 =⇒ F1-inv ({r} -/ f1 )

by (metis F1-inv-def k-new1-Disjoint-dom-ar k-new1-finite-dom-ar k-new1-nat1-map-dom-ar k-new1-sep-dom-ar)

lemma zw-new1-post-gr :
r ∈ dom f1 =⇒ the (f1 r) > s1 =⇒ new1-post-gr f1 s1 ({r} -/ f1 ∪m [r + s1 7→ the (f1 r) - s1 ]) r

unfolding new1-post-gr-def
by auto

lemma zw-F1-inv-new1-gr :
r ∈ dom f1 =⇒ the (f1 r) > s1 =⇒ F1-inv ({r} -/ f1 ∪m [r + s1 7→ the (f1 r) - s1 ])

by (metis (full-types) F1-inv-def
k-new1-Disjoint-dom-ar-munion
k-new1-finite-dom-ar-munion
k-new1-nat1-map-dom-ar-munion
k-new1-sep-dom-ar-munion)

E.7.1.4 NEW 1 FSB main theorem

Finally, the top-down strategy applies zomming and weakening patterns, once the key point
about splitting exact and surplus memory allocation is observed1.

theorem locale1-new-FSB : PO-new1-feasibility
unfolding PO-new1-feasibility-def new1-postcondition-def
apply (insert l1-new1-precondition-def )
unfolding new1-pre-def new1-post-def
apply (erule bexE)
find-theorems - ≤ - = ((- < -) ∨ -)
apply (simp only : le-eq-less-or-eq)
apply (erule disjE)
apply (metis zw-new1-post-gr zw-F1-inv-new1-gr)
apply (metis zw-new1-post-eq zw-F1-inv-new1-eq)
done

end

E.8 DISPOSE 1 proofs

The strategy for the finiteness proof was the first one to be constructed. It generated various
lemmas in different theories, some general missing lemmas about maps, other problem-specific
lemmas missing that are useful for other goals.

We had various attempts and they operate on the main function symbols in different order.
The bottom line is the case analysis around the DISPOSE1 auxiliary functions being empty or
not. After finishing the proof, we minimised the number of lemmas needed as much as possible
by cleaning up / deleting unused thms.

The proofs rely entirely on the ability to distribute over munion, which requires the side
condition that domains involved are disjoint. This is the hard part on all invariant proofs,
which has been extracted as a lemma, namely l dispose1 munion disjoint .

context level1-dispose

1Oddly enough, we are saying “finally” for where usually is the place work begins!
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begin

lemma k-dispose-above-ext-dom-disjoint-aux :
d1 /∈ dom (dispose1-above f1 d1 s1 )

by (metis f-d1-not-dispose-above l1-input-notempty-def )

lemma k-dispose-below-ext-dom-disjoint-aux :
d1 /∈ dom (dispose1-below f1 d1 )

by (metis f-d1-not-dispose-below l1-invariant-def F1-inv-def l1-input-notempty-def )

lemma k-finite-dispose-above-aux :
finite (dom (dispose1-above f1 d1 s1 ))

by (metis f-F1-inv-finite k-finite-dispose-above l1-invariant-def )

lemma k-finite-dispose-below-aux :
finite (dom (dispose1-below f1 d1 ))

by (metis f-F1-inv-finite k-finite-dispose-below l1-invariant-def )

Now for the *KEY* lemma, which is used on all F1 inv DISPOSE1 proofs! It was discovered
during the finiteness proof (the first part of the invariant tackled). It was then used for nat1 map
and sep (and possibly Disjoint).

Still, through the proof for sep, we found that there is an underlying lemma within this
one, which is about the possible values for min loc (l min loc dispose1 ext iff). These values
underlie the complicated case analysis here.

TODO: we could refactor this proof in terms of the one for min loc, yet we will keep it as
is as an example of how these more complex lemmas come to the surface.

Therefore, this lemma is the weakening rule to enable the application of various operators
over map union, whereas the one on min loc performs the appropriate case analysis.

lemma l-dispose1-munion-disjoint :
dom ((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 ) ∩

dom [min-loc (dispose1-ext f1 d1 s1 ) 7→ HEAP1 .sum-size (dispose1-ext f1 d1 s1 )] = {}
— simp would do as well
find-theorems - ∩ - = {}

apply (simp add : l-dom-dom-ar)
— simp alone already simplified goal; LEMMA about dom ar improves on result

unfolding dispose1-ext-def
apply (rule impI )
apply (cases dispose1-below f1 d1 = empty) — prefer cases instead of subgoal tac
apply (simp-all add : l-munion-empty-rhs)

apply (cases dispose1-above f1 d1 s1= empty)
apply (simp-all add : l-munion-empty-lhs)
— nothing to adjoin: below=above=empty

apply (simp add : l-min-loc-singleton)
apply (insert l1-dispose1-precondition-def )
unfolding dispose1-pre-def disjoint-def
apply (insert l1-input-notempty-def )
apply (insert l1-invariant-def )
apply (frule f-F1-inv-nat1-map)
apply (simp add : f-dispose1-pre-not-in-dom)

— above to adjoin: below=empty; not above = empty
find-theorems min-loc (- ∪m -)
thm k-min-loc-munion-singleton[of dispose1-above f1 d1 s1 d1 s1 ]
find-theorems name:contrapos

thm k-min-loc-munion-singleton[THEN subst , of dispose1-above f1 d1 s1 d1 s1 (λ x . x ∈ dom f1 )]
apply (simp add : k-min-loc-munion-singleton[simplified ]
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k-finite-dispose-above-aux
k-dispose-above-ext-dom-disjoint-aux

split : split-if-asm)
apply (simp add : l-dispose1-sep0-above-empty-iff )
unfolding sep0-def
apply (simp add : l-dispose1-above-singleton)
unfolding min-def

thm f-dispose1-pre-not-in-dom[of f1 s1 d1 ]
apply (simp split : split-if-asm

add : f-dispose1-pre-not-in-dom
f-F1-inv-nat1-map

l1-invariant-def )
— below to adjoin: not below = empty; above=empty
apply (cases dispose1-above f1 d1 s1= empty)
apply (simp-all add : l-munion-empty-lhs)

thm k-min-loc-munion-singleton[THEN subst , of dispose1-below f1 d1 d1 s1 (λ x . x ∈ dom f1 )]
apply (simp add : k-min-loc-munion-singleton[simplified ]

k-finite-dispose-below-aux
k-dispose-below-ext-dom-disjoint-aux

split : split-if-asm)
apply (simp add : l-dispose1-sep0-above-empty-iff )
unfolding sep0-def
apply (simp add : l-dispose1-above-singleton)
unfolding min-def

thm f-dispose1-pre-not-in-dom[of f1 s1 d1 ]
apply (simp split : split-if-asm

add : f-dispose1-pre-not-in-dom
f-F1-inv-nat1-map

l1-invariant-def )
apply (metis Min-in dom-eq-empty-conv k-finite-dispose-below-aux ) — TODO: study Min in inter-

pret proof!
— both to adjoin: not below = above = empty

— NOTE: unfortunately, because dispose1 below has a free variable l, we need something different
apply (simp add : l-dispose1-sep0-below-empty-iff [of f1 d1 s1 ])
apply (frule l-dispose1-nonempty-above-singleton)
unfolding sep0-def
apply simp
unfolding F1-inv-def
apply (elim conjE bexE)
thm l-dispose1-below-singleton-useful
apply (frule l-dispose1-below-singleton-useful)
apply assumption+
apply (erule-tac x=l in ballE)
apply (erule impE)
apply (simp-all)+ — Funny: simp all doesn’t quite work here
find-theorems min-loc(- ∪m -)
thm k-min-loc-munion-singleton[of [d1 + s1 7→ the (f1 (d1 + s1 ))] ∪m [l 7→ the (f1 l)],simplified ]
apply (frule f-dispose1-pre-not-in-dom,simp-all)
apply (frule f-nat1-map-nat1-elem)
apply simp

back

unfolding munion-def
apply (simp add : l-dagger-dom)
unfolding min-loc-def
apply (simp add : l-dagger-dom split : split-if-asm)
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apply smt
by (metis l-dagger-not-empty map-upd-nonempty)

lemma z-F1-inv-dispose1-finite:
finite (dom ((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 ∪m

[min-loc (dispose1-ext f1 d1 s1 ) 7→ HEAP1 .sum-size (dispose1-ext f1 d1 s1 )]))
find-theorems simp:finite(dom(- ∪m -))

apply (rule k-finite-munion)
apply (metis F1-inv-def finite-Diff l1-invariant-def l-dom-dom-ar)
apply (metis dom-eq-singleton-conv finite.simps)
by (rule l-dispose1-munion-disjoint)

lemma z-F1-inv-dispose1-nat1-map:
nat1-map

((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 ∪m
[min-loc (dispose1-ext f1 d1 s1 ) 7→ HEAP1 .sum-size (dispose1-ext f1 d1 s1 )])

find-theorems simp: - ∪m -
find-theorems nat1-map (- ∪m -)
thm l-munion-dom-ar-assoc[of (dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) f1

[min-loc (dispose1-ext f1 d1 s1 ) 7→ HEAP1 .sum-size (dispose1-ext f1 d1
s1 )]]

find-theorems simp: nat1-map(- -/ -)
find-theorems nat1-map [- 7→ -]

apply (rule l-nat1-map-munion)
apply (metis f-F1-inv-nat1-map k-nat1-map-dom-ar l1-invariant-def )
apply (metis F1-inv-def l1-input-notempty-def l1-invariant-def l-nat1-map-singleton l-nat1-sum-size-dispose1-ext)
by (metis l-dispose1-munion-disjoint)

lemma z-F1-inv-dispose1-sep:
sep ((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 ∪m

[min-loc (dispose1-ext f1 d1 s1 ) 7→ HEAP1 .sum-size (dispose1-ext f1 d1 s1 )])
find-theorems sep (- ∪m -)
apply (rule l-sep-munion)
apply (metis l-dispose1-munion-disjoint)
apply (metis f-F1-inv-sep k-sep-dom-ar l1-invariant-def )
apply (metis F1-inv-def l1-input-notempty-def l1-invariant-def l-nat1-sum-size-dispose1-ext l-sep-singleton)
apply (insert l1-invariant-def )
apply (insert l1-input-notempty-def )
apply (frule-tac [1 -2 ] f-F1-inv-finite)
apply (frule-tac [1 -2 ] f-F1-inv-nat1-map)
apply (frule-tac [1 -2 ] f-F1-inv-disjoint)
apply (frule-tac [1 -2 ] f-F1-inv-sep)
by (simp-all add : l-sep0-dispose1-abovebelow-ext l-sep0-dispose1-ext-abovebelow)
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lemma z-F1-inv-dispose1-Disjoint :
Disjoint

((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 ∪m
[min-loc (dispose1-ext f1 d1 s1 ) 7→ HEAP1 .sum-size (dispose1-ext f1 d1 s1 )])
find-theorems simp:Disjoint(- ∪m -)

apply (rule l-disjoint-singleton-upd)
apply (metis f-F1-inv-nat1-map k-nat1-map-dom-ar l1-invariant-def )
apply (smt Collect-empty-eq Un-empty-left dom-eq-singleton-conv inf-commute

inf-sup-absorb insert-absorb insert-def l-dispose1-munion-disjoint singleton-conv2 sup-commute)
apply (metis F1-inv-def l1-input-notempty-def l1-invariant-def l-nat1-sum-size-dispose1-ext)
apply (metis f-F1-inv-disjoint k-Disjoint-dom-ar l1-invariant-def )
by (metis F1-inv-def l1-dispose1-precondition-def l1-input-notempty-def l1-invariant-def l-disjoint-dispose1-ext)

lemma z-F1-inv-dispose1-post :
F1-inv ((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 ∪m

[min-loc (dispose1-ext f1 d1 s1 ) 7→ HEAP1 .sum-size (dispose1-ext f1 d1 s1 )])
by (metis F1-inv-def

z-F1-inv-dispose1-Disjoint
z-F1-inv-dispose1-finite
z-F1-inv-dispose1-nat1-map
z-F1-inv-dispose1-sep)

theorem locale1-dispose-FSB : PO-dispose1-feasibility
unfolding PO-dispose1-feasibility-def dispose1-postcondition-def — dispose1 post def
apply (simp add : dispose1-equiv)

— Apply equivalence LEMMA to tame the proof
unfolding dispose1-post2-def
by (simp add : z-F1-inv-dispose1-post)

end

end

theory HEAP1SanityProofs
imports HEAP1Sanity HEAP1Proofs
begin

E.9 Proof of some properties of interest

E.9.1 Invariant testing

lemma l-F1-inv-example: F1-ex-inv F1-ex
unfolding F1-ex-inv-defs by auto

lemma F1-inv [0 7→ 4 , 5 7→ 11 ]
unfolding F1-inv-defs by auto

lemma F1-inv [0 7→ 4 , 10 7→ 6 , 20 7→ 2 ]
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unfolding F1-inv-defs by auto

lemma ¬ F1-inv [0 7→ 4 , 4 7→ 11 ]
unfolding F1-inv-defs by auto

E.9.2 Operations properties

E.9.2.1 NEW 1 shrinks the memory

context level1-new
beginf1 ′ ⊆m f1 not true of course on the new gr lemma new1-postcondition-state-changes-headon:
PO-new1-postcondition-state-changes r

unfolding PO-new1-postcondition-state-changes-def new1-postcondition-def new1-post-defs
apply (intro allI impI )
apply (elim conjE disjE)
apply (simp-all (no-asm-simp) add : l-map-dom-ar-neq)
apply (insert l1-invariant-def )
apply (insert l1-input-notempty-def )
unfolding F1-inv-def
apply (elim conjE)
apply (subst fun-eq-iff )
apply (insert l-disjoint-mapupd-keep-sep[of f1 r s1 ])
apply (simp (no-asm-simp))
apply simp
apply (subgoal-tac dom ({r} -/ f1 ) ∩ dom [r + s1 7→ the (f1 r) - s1 ] = {})
apply (simp add : l-munion-apply)
unfolding dom-antirestr-def
by auto

lemma new1-postcondition-state-locs-subset-headon:
PO-new1-postcondition-state-locs-subset r

unfolding PO-new1-postcondition-state-locs-subset-def
apply (intro allI impI )
apply (insert l1-invariant-def )
apply (insert l1-input-notempty-def )

— prepare goal: add invariants
apply (rule subsetI )

— prepare goals: expand main ops
— G1: locs-subset

unfolding new1-postcondition-def F1-inv-def locs-def
apply simp-all

— prepare goals: expand main defs (no disjunctions)
unfolding new1-post-defs
apply (elim conjE disjE bexE)

— prepare goal: flatten assumptions of G1
apply (metis f-in-dom-ar-subsume f-in-dom-ar-the-subsume)

— G1.1: new1 eq locs-subset
apply (subgoal-tac dom ({r} -/ f1 ) ∩ dom [r+s1 7→ the(f1 r) - s1 ] = {})

— G1.2: new1 gr locs-subset (assuming munion WD)
apply (simp add : l-munion-dom l-munion-apply)
apply (insert l-disjoint-mapupd-keep-sep[of f1 r s1 ])
apply (erule disjE)
apply simp-all
apply (rule-tac x=r in bexI )
apply (smt b-new1-gr-upd-within-req-size l1-input-notempty-def set-mp)

— G1.2.1: new1 gr locs-subset RHS-munion
apply assumption
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— G1.2.1.1: bexI impI of G1.2.1
apply (split split-if-asm)

apply simp
— G1.2.1: repeated because of the if-asm

apply (metis f-in-dom-ar-subsume f-in-dom-ar-the-subsume)
— G1.2.2: new1 gr locs-subset LHS-munion

apply (metis f-in-dom-ar-subsume)
— G1.2.3: subgoal-tac discharge

done

lemma new1-postcondition-state-locs-subset-planned :
PO-new1-postcondition-state-locs-subset r

unfolding PO-new1-postcondition-state-locs-subset-def
apply (intro allI impI )
unfolding new1-postcondition-def F1-inv-def locs-def
apply (elim conjE)
apply simp
apply (intro conjI impI )
defer 1
apply (metis F1-inv-def l1-invariant-def )
apply (rule subsetI )
apply simp
apply (erule bexE)
unfolding new1-post-defs
apply (elim conjE disjE)
apply simp-all
thm Diff-iff l-dom-dom-ar
apply (metis f-in-dom-ar-subsume f-in-dom-ar-the-subsume)

apply (insert l1-input-notempty-def )
apply (insert l1-invariant-def )
unfolding F1-inv-def
apply (erule conjE)+
apply (frule l-disjoint-mapupd-keep-sep[of f1 r s1 ])
apply assumption+
thm l-munion-apply
apply (subgoal-tac dom f1 ∩ dom [r + s1 7→ the (f1 r) - s1 ] = {})
apply simp
apply (simp add : l-munion-dom-ar-assoc l-munion-apply f-in-dom-ar-the-subsume)

— NOTE: the above simp is VERY slow :-(
apply (split split-if-asm)
apply simp-all
apply (rule-tac x=r in bexI )
apply (smt b-new1-gr-upd-within-req-size l1-input-notempty-def set-mp)

— NOTE: sledgehammer didn’t find this! I just used a previous case that it succeeded and it worked!

apply assumption
apply (frule f-in-dom-ar-subsume)
apply (simp add : l-munion-dom)
by metis

lemma new1-postcondition-state-locs-subset-algebraic:
PO-new1-postcondition-state-locs-subset r

unfolding PO-new1-postcondition-state-locs-subset-def
apply (intro allI impI )
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apply (insert l1-invariant-def )
unfolding new1-postcondition-def new1-post-defs
apply (elim conjE disjE)
apply simp-all
thm l-locs-dom-ar-iff [of f1 r ]

— expanding dom ar: depends on nat1 map and disjoint explicitly
l-locs-munion-iff [of {r}-/f1 [r + s1 7→ the (f1 r) - s1 ]]

— expanding munion: depends on specialised nat1 map (i.e. dom ar and singleton) and aux
lemma above

— expanding dom ar: depends on same as above (but for the 2nd goal as well)
l-nat1-map-singleton[of the(f1 r) - s1 r+s1 ]

— Given nat1 iff rule and given assumtpions, just depend on nat1 s1
l-locs-singleton-iff [of the(f1 r) - s1 r+s1 ]

— expanding locs: singleton depends on nat1 s1

apply (simp add : l-locs-dom-ar-iff
f-F1-inv-disjoint f-F1-inv-nat1-map

Diff-subset)
apply (subst l-locs-munion-iff )

apply (simp add : f-F1-inv-nat1-map k-nat1-map-dom-ar-specific)
apply (simp add : l-nat1-map-singleton)
apply (metis f-F1-inv-disjoint f-F1-inv-nat1-map l1-input-notempty-def k-new1-gr-dom-ar-dagger-aux )
apply (simp add : l-locs-dom-ar-iff

f-F1-inv-disjoint f-F1-inv-nat1-map
l-locs-singleton-iff
Diff-subset)

by (metis F1-inv-def b-new1-gr-upd-within-req-size l-locs-of-within-locs subset-trans)

lemma new1-postcondition-diff-f-locs-headon:
PO-new1-postcondition-diff-f-locs r

unfolding PO-new1-postcondition-diff-f-locs-def
apply (intro allI impI )
unfolding new1-postcondition-def new1-post-defs
apply (elim conjE disjE)

thm l-locs-dom-ar-iff
f-F1-inv-disjoint
l1-invariant-def

apply (simp add : l-locs-dom-ar-iff — rely on the two inv properties
f-F1-inv-disjoint
f-F1-inv-nat1-map — rely on invariant over f1 not f1’ !

l1-invariant-def )
apply (metis Diff-iff F1-inv-def k-in-locs-iff l1-invariant-def f-dom-locs-of )

find-theorems - -/ - ∪m -
thm l-munion-dom-ar-assoc[of {r} f1 [r + s1 7→ the (f1 r) - s1 ],simplified ]

l-disjoint-mapupd-keep-sep[of f1 r s1 ]
l1-input-notempty-def

find-theorems locs (- ∪m -)
find-theorems nat1-map [- 7→ -]
find-theorems nat1-map (- -/ -)

thm l-locs-munion-iff [of {r} -/ f1 [r + s1 7→ the (f1 r) - s1 ],simplified ]
thm l-nat1-map-singleton[of the(f1 r) - s1 r+s1 ,simplified ]

k-new1-nat1-map-dom-ar
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apply (insert l1-invariant-def )
apply (frule f-F1-inv-disjoint [of f1 ])
apply (frule f-F1-inv-nat1-map[of f1 ])
apply (insert l1-input-notempty-def )
apply (insert l-disjoint-mapupd-keep-sep[of f1 r s1 ])

find-theorems simp:(- =⇒ False)
apply (insert k-new1-nat1-map-dom-ar [of r ])
apply (insert f-in-dom-ar-subsume[of r+s1 {r} f1 ])
apply (insert l-nat1-map-singleton[of the(f1 r) - s1 r+s1 ,simplified ])

find-theorems locs [- 7→ -]
apply (simp add : l-locs-munion-iff

atomize-not
l-locs-dom-ar-iff
l-locs-singleton-iff )

find-theorems (- - -) ∪ -
find-theorems - - - = - name:Set

thm Un-Diff
Diff-Un[of locs f1 locs-of r (the (f1 r)) locs-of (r + s1 ) (the (f1 r) - s1 )]

apply (simp add : l-diff-un-not-equal
l-locs-of-within-locs
b-new1-gr-upd-psubset-req-size)

done

lemma new1-postcondition-shrinks-f-locs:
PO-new1-postcondition-shrinks-f-locs r

unfolding PO-new1-postcondition-shrinks-f-locs-def
find-theorems - ⊂ -
apply (intro allI impI )
apply (rule psubsetI )
apply (metis PO-new1-postcondition-state-locs-subset-def new1-postcondition-state-locs-subset-planned)
by (metis PO-new1-postcondition-diff-f-locs-def new1-postcondition-diff-f-locs-headon)

lemma new1-postcondition-f-equiv :
PO-new1-postcondition-f-equiv r

unfolding PO-new1-postcondition-f-equiv-def new1-postcondition-def new1-post-defs
apply (intro allI impI )
apply (elim conjE disjE)
by (simp-all add : Un-absorb l-dom-ar-accum)

end”case 2.2.2 [14]: new1-gr ; above 6= empty ; below 6= empty lemma l-new1-dispose-1-identity-case-14 :
0 < n =⇒ r ∈ dom f =⇒ sep f =⇒ Disjoint f =⇒ r + n /∈ dom ({r} -/ f ) =⇒

l ∈ dom ({r} -/ f ∪m [r + n 7→ the (f r) - n]) =⇒
l + the (({r} -/ f ∪m [r + n 7→ the (f r) - n]) l) = r =⇒
f = ( {r + n, l}

-/
(({r} -/ f ) ∪m [r + n 7→ the (f r) - n])

)
∪m
[l 7→ the (({r} -/ f ∪m [r + n 7→ the (f r) - n]) (r + n)) + the (({r} -/ f ∪m [r + n 7→
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the (f r) - n]) l) + n]
apply (simp add : l-munion-apply l-munion-dom f-in-dom-ar-apply-subsume)
apply (cases l=r+n)
apply (simp del : diff-is-0-eq ′ diff-is-0-eq)

apply (simp add : f-in-dom-ar-apply-subsume)
by (metis l-dom-ar-not-in-dom sep-def )

thm l-munion-dom-ar-assoc[of {r} f [r + n 7→ the (f r) - n], symmetric,simplified ]
l-munion-dom-ar-assoc[of {r+n,l} (({r} -/ f ) ∪m [r + n 7→ the (f r) - n])

[l 7→ the (f r) - n + the (({r} -/ f ) l) + n],symmetric,simplified ]

lemma new1-dispose1-identity :
PO-new1-dispose1-identity-post f n r

unfolding PO-new1-dispose1-identity-post-def
apply (intro allI impI )
apply (erule conjE)
apply (simp only : dispose1-equiv)
unfolding new1-post-def dispose1-post2-def
apply (elim disjE conjE exE)+

— case1 [1]: new1 eq
apply (simp-all)
apply (frule k-F1-inv-dom-ar [of - {r}])
unfolding new1-post-eq-def F1-inv-def
apply (elim conjE)
apply (simp add : l-min-loc-dispose1-ext-absorb-above)
unfolding dispose1-ext-def
— case1.1 [2]: new1 eq; below=empty

apply (cases dispose1-below ({r} -/ f ) r = empty)
thm l-sum-size-munion-singleton[simplified ] f-d1-not-dispose-above[of n r {r} -/ f ,simplified ]
apply (frule f-d1-not-dispose-above[of n r {r} -/ f ,simplified ])
apply (subst l-sum-size-munion-singleton)

apply (metis k-finite-dispose-abovebelow-munion nat1-def )
apply (smt Un-commute disjoint-iff-not-equal empty-iff insert-is-Un l-dom-extend l-map-non-empty-dom-conv

singleton-iff unionm-in-dom-right)
apply (simp add : l-munion-empty-lhs l-munion-empty-rhs

l-min-loc-singleton)

— case 1.1.1 [3]: new1 eq; below=above=empty
apply (cases dispose1-above ({r} -/ f ) r n = empty)
apply (simp-all add : l-munion-empty-lhs l-dom-ar-none)
apply (metis l-munion-subsume)

— case 1.1.2 [4]: new1 eq; below=empty; not above = empty
apply (simp add : l-dispose1-nonempty-above-singleton l-sum-size-singleton)
apply (metis (full-types) k-empty-dispose-above l-dom-ar-notin-dom-or sep-def )

— case1.2 [5]: new1 eq; not below = empty
— case 1.2.1 [6]: above=empty; not below = empty

apply (cases dispose1-above ({r} -/ f ) r n = empty)
apply (simp add : l-dispose1-sep0-below-empty-iff [of {r} -/ f r n])
apply (unfold sep0-def )
apply simp
apply (erule bexE)
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find-theorems - -/ - -/ -
thm k-min-loc-munion-singleton[simplified ]
apply (simp add : l-munion-empty-lhs l-dispose1-below-singleton-useful l-dom-ar-accum)

apply (subst k-min-loc-munion-singleton)
apply (metis finite-singleton)
apply (simp add : disjoint-iff-not-equal f-in-dom-ar-notelem)
apply (simp)

apply (subst l-sum-size-munion-singleton)
apply (metis finite-singleton)
apply (simp add : disjoint-iff-not-equal f-in-dom-ar-notelem)
apply (simp add : l-sum-size-singleton min-def )

apply (metis f-in-dom-ar-apply-subsume l-dom-ar-not-in-dom sep-def )

— case 1.2.2 [7]: new1 eq; not above = empty; not below = empty
apply (simp add : l-dispose1-sep0-below-empty-iff [of {r} -/ f r n])
apply (unfold sep0-def )
apply simp
apply (erule bexE)
find-theorems - -/ - -/ -
thm k-min-loc-munion-singleton[simplified ]
apply (simp add : l-dispose1-below-singleton-useful

l-dispose1-nonempty-above-singleton l-sum-size-singleton)

apply (subst k-min-loc-munion-singleton)
apply (metis finite-singleton)
apply (simp add : disjoint-iff-not-equal f-in-dom-ar-notelem)
apply (simp)

apply (subst l-sum-size-munion-singleton)
— slightly more complicated because there is two munion

apply (smt k-finite-dispose-abovebelow-munion l-dispose1-below-singleton-useless l-dispose1-nonempty-above-singleton
nat1-def )

apply (simp add : disjoint-iff-not-equal)
apply (rule ballI )
apply (simp add : l-munion-dom)
apply (metis sep-def )

apply (subst l-sum-size-munion-singleton)
apply (metis finite-singleton)
apply (simp add : disjoint-iff-not-equal)

apply (simp add : l-sum-size-singleton min-def l-munion-empty-iff )

apply (metis f-in-dom-ar-apply-subsume l-dom-ar-not-in-dom sep-def )

— case 2 [8]: new1 gr
apply (fold F1-inv-def )
apply (fold dispose1-ext-def )
unfolding new1-post-gr-def
apply (elim conjE)
apply (frule k-F1-inv-dom-munion)
apply (simp-all (no-asm))
unfolding F1-inv-def
apply (elim conjE)
apply (simp add : l-min-loc-dispose1-ext-absorb-above)
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unfolding dispose1-ext-def

— case2.1 [9]: new1 gr; below=empty
apply (cases dispose1-below ({r} -/ f ∪m [r + n 7→ the (f r) - n]) r = empty)

apply (simp add : l-munion-empty-rhs l-munion-empty-lhs)
thm l-sum-size-munion-singleton[simplified ] f-d1-not-dispose-above[of n r {r} -/ f ,simplified ]
apply (frule f-d1-not-dispose-above[of n r ({r} -/ f ∪m [r + n 7→ the (f r) - n]),simplified ])
apply (subst l-sum-size-munion-singleton)

apply (metis k-finite-dispose-above)
apply (smt Diff-disjoint Int-commute dom-empty dom-fun-upd l-dom-dom-ar l-munion-dom-ar-singleton-subsume

option.distinct(1 ))
apply (simp add : l-munion-empty-lhs l-munion-empty-rhs

l-min-loc-singleton)

— case 2.1.1 [10]: new1 gr; below=above=empty
apply (cases dispose1-above ({r} -/ f ∪m [r + n 7→ the (f r) - n]) r n = empty)
apply (simp-all add : l-munion-empty-lhs l-dom-ar-none l-sum-size-singleton)

thm l-munion-subsume l-dispose1-sep0-below-empty-iff [of - r n]

pr
apply (simp add : l-dispose1-sep0-above-empty-iff )
unfolding sep0-def
apply (simp)
apply (erule notE)
thm l-munion-dom[of ({r} -/ f ) [r + n 7→ the (f r) - n]]
apply (subst l-munion-dom)
apply simp-all

thm l-disjoint-mapupd-keep-sep k-new1-gr-dom-ar-dagger-aux2
— apply (metis k new1 gr dom ar dagger aux2 nat1 def)
apply (metis l-disjoint-mapupd-keep-sep l-dom-ar-notin-dom-or nat1-def )

— case 2.1.2 [11]: new1 gr; below=empty; not above = empty

apply (simp add : l-dispose1-nonempty-above-singleton)

apply (simp add : l-sum-size-singleton)

thm l-munion-apply [of {r} -/ f [r + n 7→ the (f r) - n],simplified ]
k-new1-gr-dom-ar-dagger-aux2 [of f r n]

apply (simp add : l-munion-apply k-new1-gr-dom-ar-dagger-aux2 [of f r n])
apply (insert k-new1-gr-dom-ar-dagger-aux2 [of f r n])

apply (simp add : l-dispose1-sep0-above-empty-iff l-dispose1-sep0-below-empty-iff [of - r n])
unfolding sep0-def
apply (simp add : l-munion-apply)
apply (erule-tac x=r+n in ballE ,simp-all)
apply (metis l-munion-dom-ar-singleton-subsume l-munion-subsume)

— case2.2 [12]: new1 gr; not below =empty
— case 2.2.1 [13]: new1 gr; above=empty; not below = empty

apply (cases dispose1-above ({r} -/ f ∪m [r + n 7→ the (f r) - n]) r n = empty)
apply (simp add : l-dispose1-sep0-above-empty-iff )
apply (unfold sep0-def )
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apply (simp add : l-munion-dom)

— case 2.2.2 [14]: new1 gr; not above = empty; not below = empty
apply (simp add : l-dispose1-sep0-below-empty-iff [of ({r} -/ f ∪m [r + n 7→ the (f r) - n]) r

n])
apply (unfold sep0-def )
apply simp
apply (erule bexE)
find-theorems - -/ - -/ -
thm k-min-loc-munion-singleton[simplified ]
apply (simp add : l-dispose1-below-singleton-useful

l-dispose1-nonempty-above-singleton
l-sum-size-singleton)

apply (subst k-min-loc-munion-singleton)
apply (metis finite-singleton)
apply (simp add : disjoint-iff-not-equal)

apply (metis sep-def )
apply (simp)

apply (subst l-sum-size-munion-singleton)
— slightly more complicated because there is two munion

apply (smt k-finite-dispose-abovebelow-munion
l-dispose1-below-singleton-useless
l-dispose1-nonempty-above-singleton nat1-def )

apply (simp add : disjoint-iff-not-equal)
apply (rule ballI )
apply (simp add : l-munion-dom)
apply (smt f-in-dom-ar-notelem)

apply (subst l-sum-size-munion-singleton)
apply (metis finite-singleton)
apply (simp add : disjoint-iff-not-equal)

apply (simp add : l-sum-size-singleton min-def l-munion-empty-iff )

— apply (metis f in dom ar apply subsume l dom ar not in dom sep def)
apply (simp add : l-new1-dispose-1-identity-case-14 )

done

lemma l-new1-dispose-1-identity-case-11 :
0 < n =⇒ r ∈ dom f =⇒ nat1-map f =⇒ Disjoint f =⇒ r + n ∈ dom ({r} -/ f ∪m [r + n 7→

the (f r) - n]) =⇒
r + n /∈ dom ({r} -/ f ) =⇒ f = {r + n} -/ ({r} -/ f ∪m [r + n 7→ the (f r) - n]) ∪m [r 7→ the

(f r)]
by (metis l-munion-dom-ar-singleton-subsume l-munion-subsume)

lemma l-new1-dispose-1-identity-case-11-original :
0 < n =⇒ r ∈ dom f =⇒ nat1-map f =⇒ Disjoint f =⇒ r + n ∈ dom ({r} -/ f ∪m [r + n 7→

the (f r) - n]) =⇒
r + n /∈ dom ({r} -/ f ) =⇒ f = {r + n} -/ ({r} -/ f ∪m [r + n 7→ the (f r) - n]) ∪m [r 7→ the

(f r)]
find-theorems simp:- -/ - ∪m -
thm l-munion-dom-ar-assoc[of {r+n} ({r} -/ f ∪m [r + n 7→ the (f r) - n]) [r 7→ the (f r)],simplified ]

l-munion-subsume l-munion-assoc
k-new1-gr-dom-ar-dagger-aux [of - r n]

143



E.9. PROOF OF SOME PROPERTIES OF INTEREST

apply (subst l-munion-dom-ar-assoc[of {r+n} ({r} -/ f ∪m [r + n 7→ the (f r) - n]) [r 7→ the (f
r)],simplified ])

apply simp
apply (simp add : l-munion-dom l-dom-dom-ar)

thm l-munion-assoc[of {r} -/ f [r + n 7→ the (f r) - n] [r 7→ the (f r)]]
apply (subst l-munion-assoc[of {r} -/ f [r + n 7→ the (f r) - n] [r 7→ the (f r)]],simp-all)
thm l-munion-commute[of [r + n 7→ the (f r) - n] [r 7→ the (f r)]]
apply (subst l-munion-commute[of [r + n 7→ the (f r) - n] [r 7→ the (f r)]],simp)
thm l-munion-assoc[of {r} -/ f [r 7→ the (f r)] [r + n 7→ the (f r) - n],symmetric]
apply (subst l-munion-assoc[of {r} -/ f [r 7→ the (f r)] [r + n 7→ the (f r) - n],symmetric])

apply (simp add : l-dom-dom-ar)
apply simp

apply (subst l-munion-subsume[of r f the(f r),symmetric],simp-all)
thm l-munion-subsume[of r+n f (the(f r)) - n,symmetric]

l-munion-dom-ar-assoc[of {r+n} f [r + n 7→ the (f r) - n],simplified ,symmetric]

find-theorems simp:dom(- -/ -)
apply (simp add : l-dom-dom-ar)

thm b-dagger-munion[of f [r + n 7→ the (f r) - n],symmetric,simplified ]
antirestr-then-dagger-notin[of r+n f ]

apply (simp add : l-munion-dom-ar-singleton-subsume)

done

— case 2.2.1 [13]: new1 gr; above=empty; not below = empty
lemma l-new1-dispose-1-identity-case-13-original :

r + n /∈ dom ({r} -/ f ) =⇒
r + n /∈ dom ({r} -/ f ∪m [r + n 7→ the (f r) - n]) =⇒
l ∈ dom ({r} -/ f ∪m [r + n 7→ the (f r) - n]) =⇒
l + the (({r} -/ f ∪m [r + n 7→ the (f r) - n]) l) = r =⇒
f = {l} -/ ({r} -/ f ∪m [r + n 7→ the (f r) - n]) ∪m [l 7→ the (({r} -/ f ∪m [r + n 7→ the (f

r) - n]) l) + n]

by (simp add : l-munion-dom)

find-theorems locs -

thm l-locs-dom-ar-iff
HEAP1SanityProofs.level1-new .new1-postcondition-state-locs-subset-algebraic
l-disjoint-dispose1-ext

HEAP1Proofs.level1-dispose.z-F1-inv-dispose1-Disjoint

thm l-disjoint-singleton-upd
HEAP1Proofs.level1-dispose.z-F1-inv-dispose1-Disjoint

find-theorems locs - = locs -
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end
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Appendix F

Heap lemmas and proofs (Iain)

theory HEAP0ProofsIJW
imports HEAP0
begin

theorem (in level0-new)
locale0-new-FSB : PO-new0-feasibility

unfolding PO-new0-feasibility-def new0-postcondition-def new0-post-def
proof -
from l0-new0-precondition-def new0-pre-def obtain f0new r

where f0wit : f0new = f0 - locs-of r s0 and isb: is-block r s0 f0
by auto

moreover have F0-inv f0new using l0-invariant-def F0-inv-def f0wit by simp
ultimately show ∃ ·f ′ r ′. (is-block r ′ s0 f0 ∧ f ′ = f0 - locs-of r ′ s0 ) ∧ F0-inv f ′ by blast

qed

theorem (in level0-dispose)
locale0-dispose-FSB : PO-dispose0-feasibility

unfolding PO-dispose0-feasibility-def dispose0-postcondition-def dispose0-post-def
proof -

from l0-dispose0-precondition-def dispose0-pre-def obtain f0new
where f0wit : f0new = (f0 ∪ locs-of d0 s0 ) by auto

moreover have F0-inv f0new
proof -
have finite (locs-of d0 s0 ) using locs-of-def l0-input-notempty-def by auto
then have F0-inv (f0 ∪ locs-of d0 s0 )
using l0-invariant-def F0-inv-def by simp

thus F0-inv f0new
using f0wit dispose0-post-def by auto

qed
ultimately show ∃ ·f ′. f ′ = f0 ∪ locs-of d0 s0 ∧ F0-inv f ′ by blast

qed

end
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theory HEAP1LemmasIJW
imports HEAP1
begin

lemma invF1-sep-weaken: F1-inv f =⇒ sep f
unfolding F1-inv-def by simp

lemma invF1-Disjoint-weaken: F1-inv f =⇒ Disjoint f
unfolding F1-inv-def by simp

lemma invF1-nat1-map-weaken: F1-inv f =⇒ nat1-map f
unfolding F1-inv-def by simp

lemma invF1-finite-weaken: F1-inv f =⇒ finite (dom f )
unfolding F1-inv-def by simp

lemma invF1E [elim!]: F1-inv f =⇒ (sep f =⇒ Disjoint f =⇒ nat1-map f =⇒ finite (dom f ) =⇒
R) =⇒ R

unfolding F1-inv-def by simp

lemma invF1I [intro!]: sep f =⇒ Disjoint f =⇒ nat1-map f =⇒ finite (dom f ) =⇒ F1-inv f
unfolding F1-inv-def by simp

lemma invF1-shape: nat1-map f =⇒ finite (dom f ) =⇒ VDM-F1-inv f =⇒ F1-inv f
unfolding F1-inv-def VDM-F1-inv-def by simp

lemma invVDMF1 [intro!]: sep f =⇒ Disjoint f =⇒ VDM-F1-inv f
unfolding VDM-F1-inv-def by simp

lemma ballUnE [elim!]: ∀ ·x∈f ∪g . P x =⇒ (∀ ·x∈ f . P x =⇒ ∀ ·x∈g . P x =⇒ R) =⇒ R
by auto

lemma ballUnI [intro!]: ∀ ·x∈f . P x =⇒ ∀ ·x∈g . P x =⇒ ∀ ·x∈f ∪g . P x
by auto

lemma setminus-trans: X - insert x F = (X - F ) - {x}
by (metis Diff-insert)

lemma UN-minus: ∀ ·x∈X -{y}. P x ∩ P y = {} =⇒ (
⋃

x ∈ X -{y}. P x ) = (
⋃

x∈X . P x ) - P y
by blast

lemma UN-minus-gen:
∀ ·x∈X . ∀ · y∈ Y . P x ∩ P y = {} =⇒ (

⋃
x ∈ X -Y . P x ) = (

⋃
x∈X . P x ) - (

⋃
y∈Y . P y)

by blast

lemma union-comp: {x∈A ∪ B . P x} = {x∈ A. P x} ∪ {x∈ B . P x}
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by auto

lemma nat-min-absorb1 : min ((x ::nat) + y) x = x
by auto

lemma not-dom-not-locs-weaken: nat1-map f =⇒ x /∈ locs f =⇒ x /∈ dom f
apply (unfold locs-def )
apply simp
apply (cases x∈ dom f )
prefer 2
apply simp
apply (erule-tac x=x in ballE)
prefer 2
apply simp
apply (unfold locs-of-def )
apply (subgoal-tac nat1 (the (f x )))
apply simp
by (metis nat1-map-def )

lemma k-locs-of-arithI :
nat1 n =⇒ nat1 m =⇒ a+n ≤ b ∨ b+m ≤ a =⇒ locs-of a n ∩ locs-of b m = {}

unfolding locs-of-def
by auto

lemma k-locs-of-arithIff :
nat1 n =⇒ nat1 m =⇒ (locs-of a n ∩ locs-of b m = {}) = (a+n ≤ b ∨ b+m ≤ a)

unfolding locs-of-def
apply simp
apply (rule iffI )
apply (erule equalityE)
apply (simp-all add : disjoint-iff-not-equal)
apply (metis (full-types) add-0-iff le-add1 le-neq-implies-less nat-le-linear not-le)
by (metis le-trans not-less)

lemma k-locs-of-arithE :
locs-of a n ∩ locs-of b m = {} =⇒ nat1 m =⇒ nat1 n =⇒ (a+n ≤ b ∨ b+m ≤ a =⇒ nat1 n =⇒

nat1 m =⇒ R) =⇒ R
by (metis k-locs-of-arithIff )

lemma l-locs-of-Locs-of-iff :
l ∈ dom f =⇒ Locs-of f l = locs-of l (the (f l))

unfolding Locs-of-def
by simp

lemma k-inter-locs-iff : nat1 s =⇒ nat1-map f =⇒ (locs-of x s ∩ locs f = {}) = (∀ · y ∈ dom f .
locs-of x s ∩ locs-of y (the(f y)) = {})
unfolding locs-def
by (smt UNION-empty-conv(1 ) inf-SUP)
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lemma k-in-locs-iff : nat1-map f =⇒ (x ∈ locs f ) = (∃ ·y ∈ dom f . x ∈ locs-of y (the(f y)))
unfolding locs-def
by (metis (mono-tags) UN-iff )

lemma l-locs-of-within-locs:
nat1-map f =⇒ x ∈ dom f =⇒ locs-of x (the(f x )) ⊆ locs f

by (metis k-in-locs-iff subsetI )

lemma b-locs-of-as-set-interval :
nat1 n =⇒ locs-of l n = {l ..<l+n}

unfolding locs-of-def
by (metis Collect-conj-eq atLeastLessThan-def atLeast-def lessThan-def )

lemma locs-of-subset : nat1 (m - s) =⇒ locs-of (l + s) (m - s) ⊆ locs-of l m
apply (subst b-locs-of-as-set-interval , simp)
apply (subst b-locs-of-as-set-interval ,simp)
by simp

lemma domf-in-locs: nat1-map f =⇒ dom f ⊆ locs f
unfolding locs-def
apply simp
by (metis locs-def not-dom-not-locs-weaken subsetI )

lemma locs-of-finite: nat1 s =⇒ finite (locs-of l s)
unfolding locs-of-def by auto

lemma l-dom-in-locs-of : nat1-map f =⇒ x ∈ dom f =⇒ x ∈ locs-of x (the (f x ))
apply(subst b-locs-of-as-set-interval)

apply (simp add : nat1-map-def )
apply (simp add : nat1-map-def )
done

lemma locs-of-unique: nat1 y =⇒ nat1 y ′ =⇒ locs-of x y = locs-of x ′ y ′ =⇒ x = x ′ ∧ y = y ′

apply (simp add : b-locs-of-as-set-interval)
by (metis add-left-cancel atLeastLessThan-eq-iff

comm-monoid-add-class.add .right-neutral nat-add-left-cancel-less)

lemma locs-of-uniquerange: nat1 y =⇒ nat1 y ′ =⇒ locs-of x y = locs-of x y ′ = (y = y ′)
apply (simp add : b-locs-of-as-set-interval)

by (metis add-left-cancel atLeastLessThan-eq-iff comm-monoid-add-class.add .left-neutral less-add-eq-less)

lemma locs-of-uniquedom: nat1-map f =⇒ nat1-map g =⇒ x∈ dom f =⇒ x ′∈ dom g =⇒ locs-of x
(the (f x )) = locs-of x ′ (the (g x ′)) =⇒ x = x ′

unfolding nat1-map-def
apply (erule-tac x=x in allE)
apply (erule-tac x=x ′ in allE)
apply (erule impE) apply simp
apply (erule impE) apply simp
by (metis locs-of-unique )
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lemma locs-of-edge: x - 1 ∈ locs-of a b =⇒ x /∈ locs-of a b =⇒ nat1 b =⇒ x = a+b
by (auto simp add : b-locs-of-as-set-interval)

lemma locs-empty : locs empty = {} unfolding locs-def
by (metis SUP-empty dom-empty empty-iff nat1-map-def )

lemma empty-locs-empty-map: nat1-map f =⇒ locs f = {} =⇒ f = empty
unfolding locs-def apply simp
by (metis domIff empty-iff l-dom-in-locs-of )

lemma locs-of-pred : x 6=a =⇒ nat1 b =⇒ x ∈ locs-of a b
=⇒ x - 1 ∈ locs-of a b
apply (simp add : b-locs-of-as-set-interval) by auto

lemma locs-of-pred2 : assumes xgr0 : x>0 and nat1f : nat1-map f
and minusone: x - 1 ∈ locs-of a (the (f a))
and xindom: x ∈ dom f and aindom: a ∈ dom f
and Disj : Disjoint f
shows x /∈ locs-of a (the (f a))

proof -
have x∈ locs-of x (the (f x )) by (metis l-dom-in-locs-of nat1f xindom)
from Disj have locs-of x (the (f x )) ∩ locs-of a (the (f a)) = {}
unfolding Disjoint-def disjoint-def Locs-of-def apply simp
apply (erule-tac x = x in ballE)
apply (erule-tac x = a in ballE)
apply (erule impE)
apply (rule notI )
proof -
assume x=a
then have ∗: x - 1 ∈ locs-of x (the (f x )) by (metis minusone)
have ∗∗: x - 1 /∈ locs-of x (the (f x ))
apply (subst b-locs-of-as-set-interval)
apply (metis nat1-map-def nat1f xindom)

using xgr0 by auto
from ∗ ∗∗ show False by auto

next
assume locs-of x (the (f x )) ∩ locs-of a (the (f a)) = {}
then show locs-of x (the (f x )) ∩ locs-of a (the (f a)) = {}
by simp

next
assume a /∈ dom f
then show locs-of x (the (f x )) ∩ locs-of a (the (f a)) = {} using aindom by auto

next
assume x /∈ dom f then show locs-of x (the (f x )) ∩ locs-of a (the (f a)) = {}
using xindom by simp

qed
then show x /∈ locs-of a (the (f a))

by (metis 〈x ∈ locs-of x (the (f x ))〉 disjoint-iff-not-equal)
qed

lemma locs-of-extended : ∃ ·y∈locs-of x a. y /∈ locs-of x b =⇒ nat1 a =⇒ nat1 b =⇒ a > b
apply (erule bexE)
by (simp add : b-locs-of-as-set-interval)
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lemma l-plus-s-not-in-f :
assumes inv : F1-inv f and lindom: l ∈ dom f

and f1biggers: the(f l) > sand nat1s: nat1 s
shows l+s /∈ dom f

proof
assume lsindom: l + s ∈ dom f
then obtain y where the (f (l+s)) = y by auto
have ∗: nat1 (the(f (l+s))) by (metis inv invF1-nat1-map-weaken lsindom nat1-map-def )

from f1biggers have l+ the(f l) > l+s by auto
from inv have inlocs:l+s ∈ locs-of l (the(f l))
proof
have nat1 (the(f l)) by (metis inv invF1-nat1-map-weaken lindom nat1-map-def )
then show ?thesis
unfolding locs-of-def
by (simp add : f1biggers)

qed
have notl : l+s 6= l using nat1s by auto
have notinlocs: l+s /∈ locs-of l (the(f l))
proof -

have locs-of (l+s) (the(f (l+s))) ∩ locs-of l (the(f l)) = {}
by (metis (full-types) Disjoint-def F1-inv-def Locs-of-def

disjoint-def inv lindom lsindom notl)
moreover have l+s ∈ locs-of (l+s) (the(f (l+s)))

unfolding locs-of-def using ∗ by simp
ultimately show ?thesis by auto

qed
from inlocs notinlocs show False by auto

qed

lemma top-locs-of : nat1 y =⇒ x + y - 1 ∈ locs-of x y
unfolding locs-of-def
by simp

lemma top-locs-of2 : (the (f l)) > s =⇒ nat1 s =⇒ l + s - 1 ∈ locs-of l (the (f l))
unfolding locs-of-def

by auto

lemma minor-sep-prop: x ∈ dom f =⇒ l ∈ dom f =⇒ l<x =⇒ F1-inv f =⇒ l + the (f l) ≤ x
apply(erule invF1E)
apply (unfold Disjoint-def )

apply(erule-tac x=x in ballE)
apply(erule-tac x=l in ballE)
apply (erule impE)
apply simp
apply (unfold disjoint-def )
apply (unfold Locs-of-def )
apply simp
apply (erule k-locs-of-arithE)
apply (metis nat1-map-def )
apply (metis nat1-map-def )
apply (metis add-leE not-less)
apply metis
by metis
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theorem locs-unique:
assumes locs-eq : locs f = locs g
and invf : F1-inv f
and invg : F1-inv g
and notempf : f 6= empty and notempg : g 6= empty
shows f = g

proof -
have dom-eq : dom f = dom g
proof (rule ccontr)

assume doms-not-equal : dom f 6= dom g
have elem-in-fnotg-or-gnotf : (∃ · x ∈ dom f . x /∈ dom g) ∨ (∃ · x ∈ dom g . x /∈ dom f )

by (metis (full-types) doms-not-equal subsetI subset-antisym)
then show False
proof(elim bexE disjE)

fix x
assume xinf : x ∈ dom f and xnoting : x /∈ dom g
show False
proof (cases x>0 )

assume xgr0 : x>0
have x ∈ locs-of x (the (f x ))

by (metis invF1-nat1-map-weaken invf l-dom-in-locs-of xinf )
then have x∈ locs f

by (metis invF1-nat1-map-weaken invf not-dom-not-locs-weaken xinf )
then have x ∈ locs g

by (metis locs-eq)
then have ∃ ·y ∈ dom g . x∈ locs-of y (the (g y))

by (metis invF1-nat1-map-weaken invg k-in-locs-iff )
then obtain y where ying : y∈ dom g and xlocsofy : x∈ locs-of y (the (g y))

by auto
from ying xlocsofy have x 6= y by (metis xnoting)
then have x - 1 ∈ locs-of y (the (g y))

by (metis invF1-nat1-map-weaken invg locs-of-pred nat1-map-def xlocsofy ying)
then have x - 1 ∈ locs g by (metis invF1-nat1-map-weaken invg k-in-locs-iff ying)
then have xminus1-in-locsf : x - 1 ∈ locs f by (metis locs-eq)

from invf have sepf : sep f by (rule invF1-sep-weaken)
from invf have Disjf : Disjoint f by (rule invF1-Disjoint-weaken)
have x - 1 /∈ locs f
proof

let ?x ′ = x - 1
assume xminusinlocs: ?x ′ ∈ locs f
then have ∃ · below ∈ dom f . ?x ′ ∈ locs-of below (the (f below))

by (metis invF1-nat1-map-weaken invf k-in-locs-iff )
then obtain below where belowinf : below∈ dom f

and locsofbelow : ?x ′ ∈ locs-of below (the (f below))
by auto

have x∈ dom f by (metis xinf )
have notlocsofx : x /∈ locs-of below (the (f below))

by (metis invF1E belowinf invf locs-of-pred2 locsofbelow xgr0 xinf )
from locsofbelow notlocsofx have x = below + the (f below)

by (metis belowinf comm-monoid-diff-class.diff-cancel le-add-diff-inverse
less-nat-zero-code linorder-neqE-nat locs-of-edge nat1-def order-refl sep-def sepf )

152



APPENDIX F. HEAP LEMMAS AND PROOFS (IAIN)

thus False by (metis belowinf sep-def sepf xinf )
qed
thus False by (metis xminus1-in-locsf )

next
assume ¬ x >0
then have xzero: x = 0 by (metis neq0-conv)
have x ∈ locs-of x (the (f x ))

by (metis invF1-nat1-map-weaken invf l-dom-in-locs-of xinf )
then have x∈ locs f

by (metis invF1-nat1-map-weaken invf not-dom-not-locs-weaken xinf )
then have x ∈ locs g by (metis locs-eq)

then have ∃ ·y ∈ dom g . x∈ locs-of y (the (g y)) by (metis invF1-nat1-map-weaken invg
k-in-locs-iff )

then obtain y where ying : y∈ dom g and xlocsofy : x∈ locs-of y (the (g y))
by auto
have ynoteqx : y 6= x by (metis xnoting ying)

have locs-of y (the (g y)) = {y ..<y + (the (g y))}
by (metis b-locs-of-as-set-interval invF1-nat1-map-weaken invg nat1-map-def ying)

then have x ∈ {y ..<y + (the (g y))} by (metis xlocsofy)
then have xeqy : x = y using xzero by auto
from ynoteqx and xeqy show False by simp

qed
next
fix x
assume xing : x ∈ dom g
and xnotinf : x /∈ dom f
show False
proof (cases x>0 )

assume xgr0 : x>0
have x ∈ locs-of x (the (g x ))
by (metis invF1-nat1-map-weaken xing invg l-dom-in-locs-of )
then have x∈ locs g

by (metis invF1-nat1-map-weaken invg not-dom-not-locs-weaken xing)
then have x ∈ locs f by (metis locs-eq)

then have ∃ ·y ∈ dom f . x∈ locs-of y (the (f y)) by (metis invF1-nat1-map-weaken invf
k-in-locs-iff )

then obtain y where ying : y∈ dom f and xlocsofy : x∈ locs-of y (the (f y))
by auto

from ying xlocsofy have x 6= y by (metis xnotinf )
then have x - 1 ∈ locs-of y (the (f y))
by (metis invF1-nat1-map-weaken invf locs-of-pred nat1-map-def xlocsofy ying)

then have x - 1 ∈ locs f by (metis invF1-nat1-map-weaken invf k-in-locs-iff ying)
then have xminus1ing : x - 1 ∈ locs g by (metis locs-eq)

from invg have sepg : sep g by (rule invF1-sep-weaken)
from invg have Disjg : Disjoint g by (rule invF1-Disjoint-weaken)
have x - 1 /∈ locs g
proof

let ?x ′ = x - 1
assume xminusinlocs: ?x ′ ∈ locs g
then have ∃ · below ∈ dom g . ?x ′ ∈ locs-of below (the (g below))

by (metis invF1-nat1-map-weaken invg k-in-locs-iff )
then obtain below where belowing : below∈ dom g

and locsofbelow : ?x ′ ∈ locs-of below (the (g below))
by auto
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have x∈ dom g by (metis xing)
have notlocsofx : x /∈ locs-of below (the (g below))
by (metis Disjg HEAP1LemmasIJW .invF1-nat1-map-weaken

belowing invg locs-of-pred2 locsofbelow xgr0 xing)
from locsofbelow notlocsofx have x = below + the (g below)
by (metis invF1-nat1-map-weaken belowing invg locs-of-edge nat1-map-def )

thus False by (metis belowing sep-def sepg xing)
qed
thus False by (metis xminus1ing)

next
assume ¬ x >0
then have xzero: x = 0 by (metis neq0-conv)
have x ∈ locs-of x (the (g x ))

by (metis invF1-nat1-map-weaken invg l-dom-in-locs-of xing)
then have x∈ locs g

by (metis invF1-nat1-map-weaken invg not-dom-not-locs-weaken xing)
then have x ∈ locs f by (metis locs-eq)

then have ∃ ·y ∈ dom f . x∈ locs-of y (the (f y)) by (metis invF1-nat1-map-weaken invf
k-in-locs-iff )

then obtain y where yinf : y∈ dom f and xlocsofy : x∈ locs-of y (the (f y))
by auto

have ynotx : y 6= x by (metis xnotinf yinf )

have locs-of y (the (f y)) = {y ..<y + (the (f y))}
by (metis b-locs-of-as-set-interval invF1-nat1-map-weaken invf nat1-map-def yinf )

then have x ∈ {y ..<y + (the (f y))} by (metis xlocsofy)
then have xeqy : x = y using xzero by auto
from ynotx and xeqy show False by simp

qed
qed

qed
show ?thesis
proof

fix x
show f x = g x
proof (cases x ∈ dom f )

assume xinf : x ∈ dom f
show ?thesis
proof (cases x ∈ dom g)

assume xing : x∈ dom g
have (the ( f x )) = (the (g x ))
proof -

have nat1fx : nat1 (the ( f x )) by (metis invF1-nat1-map-weaken dom-eq invf nat1-map-def
xing)

have nat1gx : nat1 (the ( g x )) by (metis invF1-nat1-map-weaken dom-eq invg nat1-map-def
xing)

have locs-of x (the (f x )) = locs-of x (the (g x ))
proof(rule ccontr)

assume locs-of-f-not-g :locs-of x (the (f x )) 6= locs-of x (the (g x ))
then have (∃ · y ∈ locs-of x (the (f x )). y /∈ locs-of x (the (g x )))

∨ (∃ · y ∈ locs-of x (the (g x )). y /∈ locs-of x (the (f x )))
by auto

from this show False
proof

assume ∃ ·y∈locs-of x (the (f x )). y /∈ locs-of x (the (g x ))
then have fgrg : the (f x ) > the (g x )
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by (metis locs-of-extended nat1fx nat1gx )
have firstpartcontr : x + the (g x ) /∈ dom g

by (metis invF1-sep-weaken invg sep-def xing)
then have x + the (g x ) ∈ locs-of x (the (f x ))

by (metis b-locs-of-as-set-interval nat1fx nat1gx locs-of-f-not-g
fgrg locs-of-edge top-locs-of2 )

then have x + the (g x ) ∈ locs f
by (metis invF1-nat1-map-weaken invf k-in-locs-iff xinf )

then have x + the (g x ) ∈ locs g by (metis locs-eq)
then have ∃ ·loc ∈ dom g . x + the (g x ) ∈ locs-of loc (the (g loc))

by (metis invF1-nat1-map-weaken invg k-in-locs-iff )
then obtain loc where locing : loc ∈ dom g and x+ the (g x ) ∈ locs-of loc (the (g loc))

by auto
have x + the (g x ) - 1 ∈ locs-of x (the (g x ))

by (metis nat1gx top-locs-of )
have locnotg : loc 6= x
proof

assume loceqx : loc = x
then have loc+ the (g loc) ∈ locs-of loc (the (g loc))

by (metis 〈x + the (g x ) ∈ locs-of loc (the (g loc))〉)
moreover have loc+ the (g loc) /∈ locs-of loc (the (g loc))

using b-locs-of-as-set-interval by (simp del : nat1-def add : nat1-map-def nat1gx loceqx )
ultimately show False by simp

qed
from invg have Disjoint g by (rule invF1-Disjoint-weaken)
then have locs-of loc (the (g loc)) ∩ locs-of x (the (g x )) = {}
unfolding Disjoint-def Locs-of-def
apply (simp add : locing)
apply (erule-tac x=loc in ballE)
apply (erule-tac x=x in ballE)
apply (erule impE)
apply (rule locnotg)
apply (metis disjoint-def )
apply (simp add : xing)
by (simp add : locing)

have loc = x + the (g x )

by (metis (hide-lams, full-types) F1-inv-def 〈x + the (g x ) - 1 ∈ locs-of x (the (g x ))〉
〈x + the (g x ) ∈ locs-of loc (the (g loc))〉 〈locs-of loc (the (g loc)) ∩ locs-of x (the (g x ))

= {}〉
comm-monoid-add-class.add .right-neutral disjoint-iff-not-equal dom-eq inf .commute

invg locing
locs-of-pred nat1-def neq0-conv sep-def )

then have x + the (g x ) ∈ dom g by (metis locing)
thus False using firstpartcontr by auto

next
assume ∃ ·y∈locs-of x (the (g x )). y /∈ locs-of x (the (f x ))

then have ggrf : the (g x ) > the (f x ) by (metis (full-types) locs-of-extended nat1fx nat1gx )
have firstpartcontr : x + the (f x ) /∈ dom f

by (metis invF1-sep-weaken dom-eq invf sep-def xing)
then have x + the (f x ) ∈ locs-of x (the (g x ))

by (metis ggrf b-locs-of-as-set-interval locs-of-edge
locs-of-f-not-g nat1fx nat1gx top-locs-of2 )

then have x + the (f x ) ∈ locs g
by (metis invF1-nat1-map-weaken invg k-in-locs-iff xing)

then have x + the (f x ) ∈ locs f by (metis locs-eq)
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then have ∃ ·loc ∈ dom f . x + the (f x ) ∈ locs-of loc (the (f loc))
by (metis invF1-nat1-map-weaken invf k-in-locs-iff )

then obtain loc where locinf : loc ∈ dom f and x+ the (f x ) ∈ locs-of loc (the (f loc))
by auto

have x + the (f x ) - 1 ∈ locs-of x (the (f x ))
by (metis nat1fx top-locs-of )

have locnotg : loc 6= x
proof

assume loceqx : loc = x
then have loc+ the (f loc) ∈ locs-of loc (the (f loc))
by (metis 〈x + the (f x ) ∈ locs-of loc (the (f loc))〉)

moreover have loc+ the (f loc) /∈ locs-of loc (the (f loc))
by (simp del : nat1-def add : b-locs-of-as-set-interval nat1fx loceqx )

ultimately show False by simp
qed
from invf have Disjoint f by (metis invF1-Disjoint-weaken)
then have locs-of loc (the (f loc)) ∩ locs-of x (the (f x )) = {}
unfolding Disjoint-def Locs-of-def
apply (simp add : locinf )
apply (erule-tac x=loc in ballE)
apply (erule-tac x=x in ballE)
apply (erule impE)
apply (rule locnotg)
apply (metis disjoint-def )
apply (simp add : xinf )
by (simp add : locinf )

have loc = x + the (f x )
by (metis (hide-lams, full-types) F1-inv-def 〈x + the (f x ) - 1 ∈ locs-of x (the (f x ))〉

〈x + the (f x ) ∈ locs-of loc (the (f loc))〉 〈locs-of loc (the (f loc)) ∩ locs-of x (the (f x ))
= {}〉

comm-monoid-add-class.add .right-neutral disjoint-iff-not-equal dom-eq inf .commute invf
locinf

locs-of-pred nat1-def neq0-conv sep-def )
then have x + the (f x ) ∈ dom f by (metis locinf )
thus False using firstpartcontr by auto

qed
qed
then show ?thesis by (metis (full-types) locs-of-unique nat1fx nat1gx )

qed
thus ?thesis
using xinf xing by auto

next
assume notg : x /∈ dom g then have notf :x /∈ dom f

using dom-eq by simp
from notg notf show ?thesis by auto

qed
next
assume xnotf : x /∈ dom f
then have x /∈ dom g using dom-eq by simp
thus ?thesis using xnotf by auto

qed
qed

qed

lemma locs-singleton:
assumes ∗: nat1 y

156



APPENDIX F. HEAP LEMMAS AND PROOFS (IAIN)

shows locs [x 7→ y ] = locs-of x y
proof -

from ∗ have nat1-map [x 7→ y ]
by (metis dom-empty empty-iff fun-upd-same l-inmapupd-dom-iff nat1-map-def the.simps)

then show ?thesis unfolding locs-def by simp
qed

lemma locs-of-subset-range: x > 0 =⇒ y > 0 =⇒ locs-of l x ⊆ locs-of l y =⇒ y ≥ x
by(simp add : b-locs-of-as-set-interval)

lemma locs-of-subset-range-gr :
shows x>0 =⇒ y > 0 =⇒ l > l ′ =⇒ locs-of l x ⊆ locs-of l ′ y =⇒ y ≥ x

by (simp add : b-locs-of-as-set-interval)

lemma locs-of-subset-top-bottom: b > 0 =⇒ y > 0 =⇒ a ∈ locs-of x y =⇒ a + b - 1 ∈ locs-of x y
=⇒ locs-of a b ⊆ locs-of x y
apply (simp add : b-locs-of-as-set-interval)
by auto

lemma less-a-not-in-locs-of : b>0 =⇒ a > l =⇒ l /∈ locs-of a b
apply (subst b-locs-of-as-set-interval)
apply simp
by simp

lemma edge-not-in-locs-of : b>0 =⇒ a+b /∈ locs-of a b
apply (subst b-locs-of-as-set-interval)
apply simp
by simp

lemma after-locs-of-not-in-locs: assumes invf : F1-inv f1
and mindom: m∈ dom f1

shows m + (the (f1 m)) /∈ locs f1
proof

assume m + the (f1 m) ∈ locs f1
then have ∃ ·n ∈ dom f1 . m + the (f1 m) ∈ locs-of n (the (f1 n))
by (metis invF1-nat1-map-weaken invf k-in-locs-iff )
then obtain n where nindom: n∈ dom f1 and

locsofn: m + the (f1 m) ∈ locs-of n (the (f1 n))
by auto

have m + the (f1 m) /∈ locs-of m (the (f1 m))
apply (rule edge-not-in-locs-of ) by (metis invF1-sep-weaken comm-monoid-add-class.add .right-neutral

invf mindom neq0-conv sep-def )
then have m 6= n by (metis locsofn)
have sep f1 by (metis invF1-sep-weaken invf )
then have m + the (f1 m) /∈ dom f1 by (metis mindom sep-def )
moreover have m + the (f1 m) ∈ dom f1
proof (rule ccontr)

assume m + the (f1 m) /∈ dom f1
have m + the (f1 m) ∈ locs-of n (the (f1 n)) by (metis locsofn)
then have m + the (f1 m) - 1 ∈ locs-of n (the (f1 n))

by (metis invF1-nat1-map-weaken 〈m + the (f1 m) /∈ dom f1 〉 invf locs-of-pred nat1-map-def
nindom)

moreover have m + the (f1 m) - 1 ∈ locs-of m (the (f1 m))
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by (metis invF1-nat1-map-weaken invf mindom nat1-map-def top-locs-of )
moreover have Disjoint f1 by (metis invF1-Disjoint-weaken invf )
moreover have locs-of n (the (f1 n)) ∩ locs-of m (the (f1 m)) = {}

by (metis Disjoint-def 〈m 6= n〉 calculation(3 ) disjoint-def
l-locs-of-Locs-of-iff mindom nindom)

ultimately show False by auto
qed
ultimately show False by auto

qed

lemma locs-of-boundaries: b > 0 =⇒ l∈ locs-of a b =⇒ l≥ a ∧ l < a+b
by (simp add : b-locs-of-as-set-interval)

lemma locs-locs-of-subset :
assumes subset : locs-of l s1 ⊆ locs f1
and invf : F1-inv f1
and nat1s1 : nat1 s1
shows ∃ ·m ∈ dom f1 . locs-of l s1 ⊆ locs-of m (the (f1 m))

proof -
have l ∈ locs-of l s1 using nat1s1

by (simp add : b-locs-of-as-set-interval)
then have l ∈ locs f1 using subset by auto
then have l ∈(

⋃
s∈dom f1 . locs-of s (the (f1 s)))

unfolding locs-def Locs-of-def
by (simp add : invf invF1-nat1-map-weaken)

have ∃ · m∈ dom f1 . l ∈ locs-of m (the (f1 m))
by (metis invF1-nat1-map-weaken 〈l ∈ locs f1 〉 invf k-in-locs-iff )

then obtain m where mindom: m∈dom f1 and
linlocsof : l ∈ locs-of m (the (f1 m))

by auto

have l+s1 - 1 ∈ locs-of l s1
by (metis nat1s1 top-locs-of )

then have l+s1 - 1 ∈ locs f1
by (metis set-mp subset)

then have ∃ · n∈ dom f1 . l+s1 - 1 ∈ locs-of n (the (f1 n))
by (metis invF1-nat1-map-weaken invf k-in-locs-iff )

then obtain n where nindom: n∈dom f1 and
lplusinlocsof : l+s1 - 1 ∈ locs-of n (the (f1 n))

by auto

have meqn: m = n
proof (rule ccontr)

assume noteq : m 6=n
then have m + (the (f1 m)) ∈ locs-of l s1
proof -
have m ≤ l by (metis invF1-sep-weaken comm-monoid-add-class.add .right-neutral invf linlocsof

locs-of-boundaries mindom neq0-conv sep-def )
moreover have l < m + the (f1 m) by (metis invF1-nat1-map-weaken invf linlocsof locs-of-boundaries

mindom nat1-def nat1-map-def )
moreover have n ≤ l + s1 - 1 by (metis invF1-sep-weaken comm-monoid-add-class.add .right-neutral

invf locs-of-boundaries lplusinlocsof neq0-conv nindom sep-def )
moreover have l+s1 - 1 < n + the (f1 n) by (metis invF1-sep-weaken comm-monoid-add-class.add .right-neutral

invf locs-of-boundaries lplusinlocsof neq0-conv nindom sep-def )
moreover have m+the(f1 m) ≤ n
proof(rule ccontr)
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assume ∗: ¬ m + the (f1 m) ≤ n
then have ∗∗: n < m + the (f1 m) by (metis not-less)
moreover have n ≥ m

by (smt 〈l + s1 - 1 < n + the (f1 n)〉 〈m ≤ l 〉 invf mindom minor-sep-prop nat1-def nat1s1
nindom)

moreover have ∗∗∗: n ∈ locs-of m (the (f1 m))
by (metis ∗ calculation(2 ) invf mindom minor-sep-prop neq-le-trans nindom noteq)

moreover have Disjoint f1 by (metis invF1-Disjoint-weaken invf )
moreover have locs-of n (the (f1 n)) ∩ locs-of m (the (f1 m)) = {}
by (smt ∗ ∗∗∗ 〈l < m + the (f1 m)〉 〈m ≤ l 〉 invf less-a-not-in-locs-of mindom minor-sep-prop

nindom noteq)
moreover have n ∈ locs-of n (the (f1 n))

by (metis invF1-nat1-map-weaken invf l-dom-in-locs-of nindom)
ultimately show False

by auto
qed
ultimately show ?thesis by (auto simp: b-locs-of-as-set-interval nat1s1 )

qed
moreover have m + (the (f1 m)) /∈ locs f1

by (metis after-locs-of-not-in-locs invf mindom)
ultimately show False by (metis in-mono subset)

qed
have locs-of l s1 ⊆ locs-of m (the (f1 m))
proof (rule locs-of-subset-top-bottom)

show 0 <s1 by (metis nat1-def nat1s1 )
next
show 0 < the (f1 m) by (metis invF1-sep-weaken invf mindom

monoid-add-class.add .right-neutral neq0-conv sep-def )
next
show l ∈ locs-of m (the (f1 m)) by (rule linlocsof )

next
show l + s1 - 1 ∈ locs-of m (the (f1 m)) by (metis lplusinlocsof meqn)

qed
thus ?thesis by (metis meqn nindom)

qed

lemma nat1-map-empty : nat1-map empty
by (metis dom-empty empty-iff nat1-map-def )

lemma dom-ar-nat1-map:
assumes ∗: nat1-map f
shows nat1-map (s -/ f )

unfolding nat1-map-def dom-antirestr-def
using ∗ nat1-map-def by (simp add : domIff )
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lemma dagger-nat1-map:
nat1-map f =⇒ nat1-map g =⇒ nat1-map (f † g)

unfolding nat1-map-def dagger-def by (metis (full-types) Un-iff dom-map-add map-add-dom-app-simps(1 )
map-add-dom-app-simps(3 ))

lemma unionm-nat1-map:
dom f ∩ dom g = {} =⇒ nat1-map f =⇒ nat1-map g =⇒ nat1-map (f ∪m g)

unfolding munion-def
by (simp add : dagger-nat1-map)

lemma unionm-singleton-nat1-map:
assumes disjdom: a /∈ dom f
and nat1f : nat1-map f
and nat1b: nat1 b

shows nat1-map (f ∪m [a 7→ b])
proof (rule unionm-nat1-map)
show nat1-map f by (rule nat1f )

next
show nat1-map [a 7→ b]

using nat1b by (simp add : nat1-map-def )
next

show dom f ∩ dom [a 7→ b] = {}
using disjdom by simp

qed

lemma locs-of-sum-range: nat1 y =⇒ nat1 z =⇒ locs-of x (y+z ) = (locs-of x y) ∪ (locs-of (x+y) z )
apply (subst b-locs-of-as-set-interval)
apply simp
apply (subst b-locs-of-as-set-interval , simp)
apply (subst b-locs-of-as-set-interval , simp)
by auto

lemma dom-ar-finite:
assumes ∗: finite (dom f )
shows finite (dom (s -/ f ))

proof(rule finite-subset)
show dom (s -/ f ) ⊆ dom f by (rule f-dom-ar-subset-dom)
show finite (dom f ) by (rule ∗)

qed

lemma dagger-finite:
assumes ∗: finite (dom f ) finite (dom g)
shows finite (dom (f † g))
by (simp add : l-dagger-dom ∗)

lemma dagger-singleton-finite:
assumes ∗: finite (dom f )
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shows finite (dom (f † [a 7→ b]))
by (simp add : l-dagger-dom ∗)

lemma unionm-finite:
assumes disjdom: dom f ∩ dom g = {} and ∗: finite (dom f ) finite (dom g)
shows finite (dom (f ∪m g))

by (metis ∗ l-dagger-dom disjdom finite-UnI munion-def )

lemma unionm-singleton-finite:
assumes disjdom: a /∈ dom f
and ∗: finite (dom f )
shows finite (dom (f ∪m [a 7→ b]))

by (simp add : unionm-finite ∗ disjdom)

lemma dom-ar-sep:
assumes ∗:sep f
shows sep (s -/ f )
by (smt ∗ f-in-dom-ar-subsume sep-def f-in-dom-ar-the-subsume)

lemma singleton-sep: nat1 b =⇒ sep [a 7→ b]
unfolding sep-def by simp

lemma dagger-singleton-sep:
assumes ∗: sep f
and ∗∗∗: ∀ ·l∈ dom f . l+the (f l) /∈ dom ([a 7→ b])
and ∗∗∗∗: a+b /∈ dom f
and anotinf : a /∈ dom f
and nat1b: nat1 b
shows sep (f † [a 7→ b])

unfolding sep-def
proof(subst l-dagger-dom, rule ballUnI )

show ∀ ·l∈dom f . l + the ((f † [a 7→ b]) l) /∈ dom (f † [a 7→ b])
by (metis ∗ ∗∗∗ anotinf dagger-def domIff fun-upd-apply map-add-empty map-add-upd sep-def )

next
show ∀ ·l∈dom [a 7→ b]. l + the ((f † [a 7→ b]) l) /∈ dom (f † [a 7→ b])

by (smt singleton-sep nat1b ∗∗∗∗ dagger-def domIff fun-upd-same l-inmapupd-dom-iff
map-add-None map-add-dom-app-simps(1 ) sep-def the.simps)

qed

lemma unionm-singleton-sep:
assumes disjoint-dom: a /∈ dom f
and ∗: sep f
and ∗∗∗: ∀ ·l∈ dom f . l+the (f l) /∈ dom ([a 7→ b])
and ∗∗∗∗: a+b /∈ dom f
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and nat1b: nat1 b
shows sep (f ∪m [a 7→ b])

unfolding munion-def
apply (simp add : disjoint-dom, rule dagger-singleton-sep)
using assms by simp-all

lemma sep-singleton: y>0 =⇒ sep [x 7→ y ]
unfolding sep-def by auto

lemma dom-ar-Disjoint :
assumes Disjoint f
shows Disjoint (s -/ f )

unfolding Disjoint-def
by (metis Disjoint-def Locs-of-def assms f-in-dom-ar-subsume f-in-dom-ar-the-subsume)

lemma singleton-Disjoint : Disjoint [a 7→ b]
by (metis Disjoint-def dom-empty empty-iff l-inmapupd-dom-iff )

lemma disjoint-locs-locs-of-weaken:
assumes ab-f-disj : disjoint (locs-of a b) (locs f )
and yinf : y ∈ dom f
and nat1f : nat1-map f
shows disjoint (locs-of a b) (locs-of y (the (f y)))

proof -
have ∗: (locs-of y (the (f y))) ⊆ locs f
unfolding locs-def apply (simp add : nat1f )
proof
fix x assume x ∈ locs-of y (the (f y))
then show x ∈ (

⋃
s∈dom f . locs-of s (the (f s)))

using yinf by auto
qed
thus ?thesis by (metis Int-empty-right Int-left-commute

ab-f-disj disjoint-def le-iff-inf )
qed

lemma disjoint-comm: disjoint X Y = disjoint Y X
unfolding disjoint-def by auto

lemma unionm-singleton-Disjoint :
assumes anotinf : a /∈ dom f
and disjf : Disjoint f
and nat1f : nat1-map f
and nat1b: nat1 b
and disj : disjoint (locs-of a b) (locs f )
shows Disjoint (f ∪m [a 7→ b])
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unfolding Disjoint-def
proof (intro ballI impI )
fix x y
assume xindom: x ∈ dom (f ∪m [a 7→ b])
and yindom: y ∈ dom (f ∪m [a 7→ b])
and xnoty : x 6= y

have disjoint (locs-of x (the ((f ∪m [a 7→ b]) x ))) (locs-of y (the ((f ∪m [a 7→ b]) y)))

proof (cases x=a)
assume xeqa: x = a
then show ?thesis
proof (cases y = a)

assume yeqa: y = a
then have False using xnoty xeqa by simp
thus ?thesis ..

next
assume ynoteqa: y 6= a

have yinf : y ∈ dom f
by (rule-tac g=[a 7→b] in unionm-in-dom-left , rule yindom, simp add : disj anotinf , simp add :

ynoteqa)
from disj have disjoint (locs-of a b) (locs-of y (the (f y)))
proof(rule disjoint-locs-locs-of-weaken)

show y ∈ dom f by (rule yinf )
next

show nat1-map f by (rule nat1f )
qed
moreover have (locs-of x (the ((f ∪m [a 7→ b]) x ))) = locs-of a b

by (subst l-the-map-union-right , simp-all add : xeqa anotinf )
moreover have (locs-of y (the ((f ∪m [a 7→ b]) y))) = (locs-of y (the (f y)))

by (subst l-the-map-union-left , simp-all add : ynoteqa yinf anotinf )
ultimately show ?thesis by simp

qed
next
assume xnoteqa: x 6= a
then show ?thesis
proof (cases y = a)

assume yeqa: y = a
have xinf : x ∈ dom f

by (rule-tac g=[a 7→b] in unionm-in-dom-left , rule xindom,
simp add : disj anotinf , simp add : xnoteqa)

from disj have disjoint (locs-of x (the (f x ))) (locs-of a b)
proof(subst disjoint-comm, rule disjoint-locs-locs-of-weaken)
show x ∈ dom f by (rule xinf )

next
show nat1-map f by (rule nat1f )

qed
moreover have (locs-of x (the ((f ∪m [a 7→ b]) x ))) = (locs-of x (the (f x )))

by (subst l-the-map-union-left , simp-all add : xnoteqa xinf anotinf )
moreover have (locs-of y (the ((f ∪m [a 7→ b]) y))) = locs-of a b

by (subst l-the-map-union-right , simp-all add : yeqa anotinf )
ultimately show ?thesis by simp

next
assume ynoteqa: y 6= a
then show ?thesis
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proof -
have xinf : x ∈ dom f

by (rule-tac g=[a 7→b] in unionm-in-dom-left ,
rule xindom, simp add : disj anotinf , simp add : xnoteqa)

have yinf : y ∈ dom f
by (rule-tac g=[a 7→b] in unionm-in-dom-left ,

rule yindom, simp add : disj anotinf , simp add : ynoteqa)
have disjoint (locs-of x (the (f x ))) (locs-of y (the (f y)))

by (metis Disjoint-def xinf yinf disjf l-locs-of-Locs-of-iff xnoty)
moreover have (locs-of x (the ((f ∪m [a 7→ b]) x ))) = (locs-of x (the (f x )))

by (subst l-the-map-union-left , simp-all add : xnoteqa xinf anotinf )
moreover have (locs-of y (the ((f ∪m [a 7→ b]) y))) = (locs-of y (the (f y)))

by (subst l-the-map-union-left , simp-all add : ynoteqa yinf anotinf )
ultimately show ?thesis by simp

qed
qed

qed
thus disjoint (Locs-of (f ∪m [a 7→ b]) x ) (Locs-of (f ∪m [a 7→ b]) y)
unfolding Locs-of-def by (simp add : xindom yindom)

qed

lemma l-locs-of-dom-ar :
assumes nat1f : nat1-map f
and disj : Disjoint f
and rinf : r ∈ dom f
shows locs({r} -/ f ) = locs f - locs-of r (the(f r))

proof -
have nat1-ar : nat1-map ({r} -/ f ) using nat1f by (rule dom-ar-nat1-map)
have (

⋃
s∈dom ({r} -/ f ). locs-of s (the (({r} -/ f ) s))) =

(
⋃

s∈dom ({r} -/ f ). locs-of s (the (f s)))
by (simp add : f-in-dom-ar-the-subsume)

also have ... = (
⋃

s∈(dom f - {r}). locs-of s (the (f s)))
by (metis l-dom-dom-ar)

also have ... = (
⋃

s∈(dom f ). locs-of s (the (f s))) - locs-of r (the (f r))
proof (rule UN-minus)
show ∀ ·x∈dom f - {r}. locs-of x (the (f x )) ∩ locs-of r (the (f r)) = {}
proof

fix x assume xdom: x ∈ dom f - {r}
then have xnotr : x 6= r by blast
have xinf : x∈ dom f using xdom by simp
from disj show locs-of x (the (f x )) ∩ locs-of r (the (f r)) = {}

unfolding Disjoint-def disjoint-def Locs-of-def
by (auto simp: xdom xnotr xinf rinf )

qed
qed
also have ... = locs f - locs-of r (the (f r)) by (simp add : locs-def nat1f )
finally show ?thesis by (simp add : locs-def nat1f nat1-ar)

qed

lemma F1-inv-empty : F1-inv empty
unfolding F1-inv-def Disjoint-def sep-def nat1-map-def
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by auto

lemma dom-ar-F1-inv :
assumes inv : F1-inv f1
shows F1-inv ({l} -/ f1 )

proof -
from inv show ?thesis
proof

assume disjf1 : Disjoint f1
and sepf1 : sep f1
and nat1-mapf1 : nat1-map f1
and finitef1 : finite (dom f1 )
show ?thesis
proof

show nat1-conc: nat1-map ({l} -/ f1 ) using nat1-mapf1 by (rule dom-ar-nat1-map)
show finite-conc: finite (dom ({l} -/ f1 )) using finitef1 by (rule dom-ar-finite)
show sep ({l} -/ f1 ) using sepf1 by (rule dom-ar-sep)
show Disjoint ({l} -/ f1 ) using disjf1 by (rule dom-ar-Disjoint)

qed
qed

qed

lemma dom-ar-locs:
assumes finite(dom f )
and nat1f : nat1-map f
and disj : Disjoint f
and lindom: l∈dom f
shows locs ({l} -/ f ) = (locs f ) - locs-of l (the (f l))

proof -
have locs ({l} -/ f ) = (

⋃
s∈dom ({l} -/ f ). locs-of s (the ( ({l} -/ f ) s)))

proof -
have nat1-map ({l} -/ f ) using nat1f by (rule dom-ar-nat1-map)
thus ?thesis unfolding locs-def by simp

qed
also have ... = (

⋃
s∈dom ({l} -/ f ). locs-of s (the (f s)))

by (simp add : f-in-dom-ar-the-subsume)
also have ...= (

⋃
s∈(dom f - {l}). locs-of s (the (f s)))

by (simp add : l-dom-dom-ar)
also have ... = (

⋃
s∈dom f . locs-of s (the (( f ) s))) - locs-of l (the(f l))

proof (rule UN-minus)
show ∀ ·s∈dom f - {l}. locs-of s (the (f s)) ∩ locs-of l (the (f l)) = {}
proof

fix s assume sdom: s ∈ dom f - {l}
then have snotl : s 6= l by blast
have sinf : s∈ dom f using sdom by simp
from disj show locs-of s (the (f s)) ∩ locs-of l (the (f l)) = {}

unfolding Disjoint-def disjoint-def Locs-of-def
by (auto simp: sdom snotl sinf lindom)

qed
qed
finally show ?thesis by (simp add : locs-def nat1f )

qed
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lemma nat1-map-upd : nat1-map f =⇒ nat1 y =⇒ nat1-map ( f (x 7→ y))
unfolding nat1-def nat1-map-def by auto

lemma finite-map-upd : finite (dom f ) =⇒ finite (dom ( f (x 7→ y)))
by auto

lemma min-or : min x y = x ∨ min x y = y by (metis min-def )

lemma sumsize2-mapupd : finite (dom f ) =⇒x /∈ dom f =⇒ f 6= empty =⇒ sum-size (f (x 7→y)) =
(sum-size f ) + y
unfolding sum-size-def apply simp
by (smt setsum-cong2 )

lemma setsum-mapupd : finite (dom fa) =⇒ e /∈ dom fa =⇒ fa 6= empty =⇒(
∑

x∈dom (fa(e 7→ r)).
the ((fa(e 7→ r)) x )) = (

∑
x∈dom fa. the (fa x )) + r

apply simp apply (subst add-commute)
by (smt setsum.F-cong)

lemma sumsize2-weakening : x /∈ dom f =⇒ finite (dom f ) =⇒ y>0 =⇒ sum-size (f (x 7→ y)) > 0
unfolding sum-size-def

by simp

lemma sum-size-singleton: sum-size [x 7→ y ] = y
unfolding sum-size-def

by simp

lemma setsum-dagger : dom f ∩ dom g = {} =⇒finite (dom f ) =⇒ (
∑

x∈dom f . the ((f † g) x )) =
(
∑

x∈dom f . the (f x ))
apply (rule setsum-cong)
apply simp
apply (subst l-dagger-apply)
by auto

lemma sum-size-dagger-single: finite (dom f ) =⇒ f 6= empty =⇒ x /∈ dom f =⇒sum-size (f † [x 7→
y ])

= (sum-size f ) + y
unfolding sum-size-def
apply (simp add : dagger-notemptyL)
apply (subst l-dagger-dom)
apply (subst setsum-Un-disjoint)
apply (simp)
apply simp
apply simp
apply simp
apply (subst setsum-dagger)
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apply simp
apply simp
by (metis dagger-upd-dist map-upd-Some-unfold the.simps)

lemma sum-size-munion: finite (dom f ) =⇒ finite (dom g) =⇒ f 6= empty =⇒ g 6= empty =⇒ dom
f ∩ dom g = {} =⇒sum-size (f ∪m g)

= (sum-size f ) + (sum-size g)
unfolding sum-size-def
apply(simp add : munion-notempty-left)
apply (unfold munion-def )
apply simp
apply (subst l-dagger-dom)
apply (subst setsum-Un-disjoint)
apply (simp)
apply simp
apply simp
apply (simp add : setsum-dagger )
apply (subst l-dagger-commute)
apply simp
apply (subst setsum-dagger)
by auto

lemma dagger-min: finite (dom f ) =⇒ finite (dom g) =⇒ f 6= empty =⇒
g 6= empty =⇒ Min (dom (f † g)) ∈ dom f ∨ Min (dom (f † g)) ∈ dom g

apply (simp add : l-dagger-dom)
apply (subst Min-Un)
apply simp-all
apply (subst Min-Un)
apply simp-all
by (metis (mono-tags) Min-in domIff emptyE less-imp-le min-max .inf-absorb2 min-max .le-iff-inf not-le)

lemma min-loc-munion: finite (dom f ) =⇒ finite (dom g) =⇒ f 6=empty =⇒
g 6= empty =⇒ dom f ∩ dom g = {} =⇒ (min-loc (f ∪m g)) ∈ dom f ∨ (min-loc (f ∪m g)) ∈ dom

g
proof -

assume finf : finite (dom f ) and fing : finite (dom g) and
fnotemp: f 6=empty and gnotemp: g 6= empty and disjoint-dom: dom f ∩ dom g = {}

have Min (dom (f ∪m g)) ∈ dom f ∨ Min (dom (f ∪m g)) ∈ dom g
unfolding munion-def
apply (simp add : disjoint-dom)
apply (rule dagger-min)
by (simp-all add : finf fing fnotemp gnotemp )

then show min-loc (f ∪m g) ∈ dom f ∨ min-loc (f ∪m g) ∈ dom g
unfolding min-loc-def
by (metis dagger-def dagger-notemp-munion disjoint-dom fnotemp map-add-None)

qed

lemma munion-min-loc-nonempty : dom f1 ∩ dom f2 = {} =⇒ finite (dom f1 ) =⇒ finite (dom f2 )
=⇒ f1 6= empty =⇒ f2 6= empty =⇒ min-loc (f1 ∪m f2 ) = min (min-loc f1 ) (min-loc f2 )
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unfolding min-loc-def munion-def apply (simp add : dagger-notemptyL)
by (metis Min.union-idem l-dagger-dom dom-eq-empty-conv)

lemma munion-min-loc-emptyf2 : f2 = empty =⇒ min-loc (f1 ∪m f2 ) = min-loc f1
by (metis Int-empty-right equals0D l-map-non-empty-dom-conv l-munion-apply)

lemma munion-min-loc-emptyf1 : f1 = empty =⇒ min-loc (f1 ∪m f2 ) = min-loc f2
by (metis (full-types) domIff dom-eq-empty-conv inf-bot-left l-dagger-apply munion-def )

lemma dagger-min-loc-nonempty : dom f1 ∩ dom f2 = {} =⇒ finite (dom f1 ) =⇒ finite (dom f2 ) =⇒
f1 6= empty =⇒ f2 6= empty =⇒ min-loc (f1 † f2 ) = min (min-loc f1 ) (min-loc f2 )
unfolding min-loc-def apply (simp add : dagger-notemptyL)
by (metis Min.union-idem l-dagger-dom dom-eq-empty-conv)

lemma dagger-min-loc-emptyf2 : f2 = empty =⇒ min-loc (f1 † f2 ) = min-loc f1
by (metis dom-eq-empty-conv empty-iff l-dagger-apply)

lemma dagger-min-loc-emptyf1 : f1 = empty =⇒ min-loc (f1 † f2 ) = min-loc f2
by (metis (full-types) domIff l-dagger-apply)

lemma min-loc-singleton: min-loc [x 7→ y ] = x
unfolding min-loc-def

by simp

lemma min-loc-dagger : finite (dom f ) =⇒ finite (dom g) =⇒ f 6= empty =⇒ g 6= empty =⇒min-loc
(f † g)

= min (min-loc f ) (min-loc g)
unfolding min-loc-def
apply(simp add : dagger-notemptyL)
apply (subst l-dagger-dom)
apply (subgoal-tac dom f 6= {})
apply (subgoal-tac dom g 6= {})
apply (rule Min-Un)
apply (simp-all)
done

lemma locs-unionm-singleton:
assumes nat1y : nat1 y
and nat1f : nat1-map f
and xnotf : x /∈ dom f
shows locs(f ∪m [x 7→ y ]) = locs f ∪ locs-of x y

proof -
have locs(f ∪m [x 7→ y ]) = (

⋃
s∈dom (f ∪m [x 7→ y ]). locs-of s (the ((f ∪m [x 7→ y ]) s)))

unfolding locs-def
apply (subst unionm-singleton-nat1-map)
apply (simp-all del : nat1-def add : nat1y nat1f xnotf )
done

also have ... = (
⋃

s∈dom (f ) ∪ {x}. locs-of s (the ((f ∪m [x 7→ y ]) s)))
apply (subst l-munion-dom)
apply (simp add : xnotf )
by (simp)
also have ... = (

⋃
s∈ insert x (dom (f )). locs-of s (the ((f ∪m [x 7→ y ]) s)))
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by simp
also have ... = (locs-of x (the ((f ∪m [x 7→ y ]) x )))

∪ (
⋃

s∈dom (f ). locs-of s (the ((f ∪m [x 7→ y ]) s)))
by (rule UN-insert)
also have ... = (locs-of x y)

∪ (
⋃

s∈dom (f ). locs-of s (the ((f ∪m [x 7→ y ]) s)))
apply (subst l-munion-apply)
apply (simp add : xnotf )
by auto

also have ... = (locs-of x y)
∪ (

⋃
s∈dom (f ). locs-of s (the(f s)))

proof -
have (

⋃
s∈dom f . locs-of s (the ((f ∪m [x 7→ y ]) s))) =

(
⋃

s∈dom (f ). locs-of s (the(f s)))
proof (rule UN-cong , rule refl)
fix s
assume ∗: s ∈ dom f
then show locs-of s (the ((f ∪m [x 7→ y ]) s)) = locs-of s (the (f s))
proof (subst l-munion-apply , (simp add : xnotf ))
have s /∈ dom [x 7→ y ] by (metis ∗ dom-empty empty-iff l-inmapupd-dom-iff xnotf )
then show locs-of s (the (if s ∈ dom [x 7→ y ] then [x 7→ y ] s else f s)) = locs-of s (the (f s))
by simp

qed
qed
thus ?thesis by simp

qed
also have ... = locs-of x y ∪ locs f
unfolding locs-def by (simp add : nat1f )
finally show ?thesis by auto

qed

lemma locs-of-minus:
b>0 =⇒ c > 0 =⇒ b<c =⇒ locs-of a b = (locs-of a c) - (locs-of (a+b) (c-b))
apply (simp add : b-locs-of-as-set-interval) by auto

end

theory HEAP1ProofsIJW
imports HEAP1LemmasIJW
begin

lemma F1-inv-restr-unionm:
assumes inv : F1-inv f and nat1s: nat1 s and l-in-dom: l ∈ dom f
and f-bigger-s: the(f l) > s
shows F1-inv (({l} -/ f ) ∪m [l + s 7→ the(f l) - s])
proof -
from inv show ?thesis
proof
assume disjf1 : Disjoint f
and sepf1 : sep f
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and nat1-mapf1 : nat1-map f
and finitef1 : finite (dom f )

have disjoint-dom: l+s /∈ dom ({l} -/ f )
proof (rule l-dom-ar-not-in-dom)

show l+s /∈ dom f
proof (rule l-plus-s-not-in-f )

show F1-inv f and l ∈ dom f and s < the (f l) and nat1 s
by (simp-all del : nat1-def add : inv nat1s l-in-dom f-bigger-s)

qed
qed

have noteqls: ∀ · x ∈ dom f . x + (the (f x )) 6= l + s
proof

fix x assume x-in-dom: x ∈ dom f
show x + the (f x ) 6= l + s
proof (cases x=l)

assume x=l
then show ?thesis using f-bigger-s by simp

next
assume xnotl : x 6= l
from disjf1 have locs-of x (the (f x )) ∩ locs-of l (the (f l)) = {}
unfolding Disjoint-def disjoint-def Locs-of-def
by (auto simp: x-in-dom xnotl l-in-dom)

moreover have l+s - 1 ∈ locs-of l (the (f l))
by (metis f-bigger-s nat1s top-locs-of2 )

moreover have x + the (f x ) - 1 ∈ locs-of x (the (f x ))
by (metis nat1-map-def nat1-mapf1 top-locs-of x-in-dom)

ultimately have x + the (f x ) - 1 6= l+s - 1 by auto
thus ?thesis by simp

qed
qed
show ?thesis
proof

from disjoint-dom show nat1-conc: nat1-map ({l} -/ f ∪m [l + s 7→ the (f l) - s])
proof(rule unionm-singleton-nat1-map)

show nat1-map ({l} -/ f ) using nat1-mapf1 by (rule dom-ar-nat1-map)
next
show nat1 (the (f l) - s) using f-bigger-s by simp

qed
next
from disjoint-dom show finite (dom ({l} -/ f ∪m [l + s 7→ the (f l) - s]))
proof (rule unionm-singleton-finite)

show finite (dom ({l} -/ f ))
using finitef1 by (rule dom-ar-finite)

qed
next

from disjoint-dom show sep ({l} -/ f ∪m [l + s 7→ the (f l) - s])
proof (rule unionm-singleton-sep)

show sep ({l} -/ f ) using sepf1 by (rule dom-ar-sep)
next
show ∀ ·la∈dom ({l} -/ f ). la + the (({l} -/ f ) la) /∈ dom [l + s 7→ the (f l) - s]

by (metis dom-eq-singleton-conv f-in-dom-ar-subsume
f-in-dom-ar-the-subsume noteqls singletonE)
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next
show l + s + (the (f l) - s) /∈ dom ({l} -/ f )
proof -

have myfact : l + the (f l) /∈ dom(f ) using l-in-dom sepf1 sep-def by auto
have l + the (f l) /∈ dom({l} -/ f ) by (metis l-dom-ar-not-in-dom myfact)
then show ?thesis by (smt f-bigger-s)

qed
next
show nat1 (the (f l) - s)

using nat1-mapf1 f-bigger-s by auto
qed

next

show Disjoint ({l} -/ f ∪m [l + s 7→ the (f l) - s])
proof (rule unionm-singleton-Disjoint)

show Disjoint ({l} -/ f ) using disjf1 by (rule dom-ar-Disjoint)
next
show nat1-map ({l} -/ f ) using nat1-mapf1 by (rule dom-ar-nat1-map)

next
show nat1fminuss: nat1 (the (f l) - s) by (simp add : f-bigger-s)

next
show l + s /∈ dom ({l} -/ f )

by (metis f-bigger-s f-in-dom-ar-subsume inv l-in-dom l-plus-s-not-in-f nat1s)
next

have disjoint (locs-of (l + s) (the (f l) - s)) (locs ({l} -/ f ))
proof -

have (locs-of (l + s) (the (f l) - s)) ⊆ locs-of l (the (f l))
sorry

moreover have locs-of l (the (f l)) ∩ (locs ({l} -/ f )) = {}
sorry

ultimately show ?thesis
by (smt Int-absorb1 Int-assoc Int-commute Int-empty-left disjoint-def )

qed

show disjoint (locs-of (l + s) (the (f l) - s)) (locs ({l} -/ f ))
proof -

have (locs-of (l + s) (the (f l) - s)) ⊆ locs-of l (the (f l))
by (rule locs-of-subset ,simp add : f-bigger-s)

moreover have locs-of l (the (f l)) ∩ (locs ({l} -/ f )) = {}
proof (subst l-locs-of-dom-ar)

show nat1-map f and Disjoint f and l ∈ dom f
by (simp-all add : l-in-dom nat1-mapf1 disjf1 )

next
show locs-of l (the (f l)) ∩ (locs f - locs-of l (the (f l))) = {}

by simp
qed

ultimately show ?thesis
by (smt Int-absorb1 Int-assoc Int-commute Int-empty-left disjoint-def )

qed
qed

qed
qed

qed
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lemma (in level1-new) new1-post-feaseq :
assumes pre-eq : ∃ ·l ∈ dom f1 . the (f1 l) = s1
shows ∃ · r f1new . new1-post-eq f1 s1 f1new r ∧ F1-inv f1new

proof -
from pre-eq obtain l where ind : l ∈ dom f1 and preinstance: the (f1 l) = s1 ..
obtain f1new where f1wit : f1new = {l} -/ f1 by auto
from ind and preinstance and f1wit have l ∈ dom f1 ∧ the (f1 l) = s1 ∧ f1new = {l} -/ f1 by

simp
moreover from l1-invariant-def have F1-inv f1new by (simp only : dom-ar-F1-inv f1wit)
ultimately show ?thesis using new1-post-eq-def by auto

qed

lemma (in level1-new) new1-post-feasgr :
assumes pre-gr : ∃ ·l ∈ dom f1 . the (f1 l) > s1
shows ∃ · r f1new . new1-post-gr f1 s1 f1new r ∧ F1-inv f1new

proof -
from pre-gr obtain l where ind : l ∈ dom f1 and preinstance: the (f1 l) > s1 ..
obtain f1new where f1wit : f1new = ({l} -/ f1 ) ∪m [l + s1 7→ the(f1 l) - s1 ] by auto
from ind and preinstance and f1wit

have l ∈ dom f1 ∧ the (f1 l) > s1 ∧ f1new = ({l} -/ f1 ) ∪m [l + s1 7→ the(f1 l) - s1 ]
by simp

moreover have F1-inv f1new
proof -
have F1-inv (({l} -/ f1 ) ∪m [l + s1 7→ the(f1 l) - s1 ])

by (rule F1-inv-restr-unionm, rule l1-invariant-def , rule l1-input-notempty-def , rule ind , rule pre-
instance)
then show ?thesis by (simp only : f1wit)

qed
ultimately show ?thesis using new1-post-gr-def by auto

qed

theorem (in level1-new)
locale1-new-FSB : PO-new1-feasibility

by (metis le-neq-implies-less
PO-new1-feasibility-def
new1-post-def new1-post-feaseq
new1-post-feasgr
new1-postcondition-def
new1-pre-defs
l1-new1-precondition-def )
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lemma(in level1-dispose) disjoint-above-below [simp] :
dom(dispose1-above f1 d1 s1 ) ∩ dom(dispose1-below f1 d1 ) = {}

unfolding dispose1-above-def dispose1-below-def
proof(rule l-dom-r-disjoint-weakening)

show {x ∈ dom f1 . x = d1 + s1} ∩ {x ∈ dom f1 . x + the (f1 x ) = d1} = {}
proof (cases {x ∈ dom f1 . x = d1 + s1} = {})

assume {x ∈ dom f1 . x = d1 + s1} = {}
then show {x ∈ dom f1 . x = d1 + s1} ∩ {x ∈ dom f1 . x + the (f1 x ) = d1} = {}

by auto
next
assume ∗: {x ∈ dom f1 . x = d1 + s1} 6= {}
show {x ∈ dom f1 . x = d1 + s1} ∩ {x ∈ dom f1 . x + the (f1 x ) = d1} = {}
proof (cases {x ∈ dom f1 . x + the (f1 x ) = d1} = {})
assume {x ∈ dom f1 . x + the (f1 x ) = d1} = {}
then show {x ∈ dom f1 . x = d1 + s1} ∩ {x ∈ dom f1 . x + the (f1 x ) = d1} = {}

by auto
next
assume ∗∗: {x ∈ dom f1 . x + the (f1 x ) = d1} 6= {}
show {x ∈ dom f1 . x = d1 + s1} ∩ {x ∈ dom f1 . x + the (f1 x ) = d1} = {}
proof(rule ccontr)

assume nonempty : {x ∈ dom f1 . x = d1 + s1} ∩ {x ∈ dom f1 . x + the (f1 x ) = d1} 6= {}
from ∗ ∗∗ obtain x where xinter : x ∈ {x ∈ dom f1 . x = d1 + s1} ∩ {x ∈ dom f1 . x + the (f1

x ) = d1}
by (smt equals0I nonempty)

from xinter have d1s1 : x = d1 + s1 by auto
from xinter have d1 : x + the (f1 x ) = d1 by auto
from d1s1 d1 have d1 + s1 + the (f1 x ) = d1 by auto
then have s1 + the (f1 x ) = 0 by auto
then have False

by (metis add-is-0 l1-input-notempty-def less-numeral-extra(3 ) nat1-def )
thus False ..

qed
qed

qed
qed

lemma (in level1-dispose) finite-dispose1-above: finite ( dom (dispose1-above f1 d1 s1 ))
unfolding dispose1-above-def
apply (rule l-dom-r-finite)
by (metis invF1-finite-weaken l1-invariant-def )

lemma (in level1-dispose) finite-dispose1-below : finite ( dom (dispose1-below f1 d1 ))
unfolding dispose1-below-def
apply (rule l-dom-r-finite)
by (metis invF1-finite-weaken l1-invariant-def )

lemma(in level1-dispose) d1-not-dispose-above: d1 /∈ dom (dispose1-above f1 d1 s1 )
unfolding dispose1-above-def
proof (subst l-dom-r-subseteq)

show {x ∈ dom f1 . x = d1 + s1} ⊆ dom f1
by auto

next
show d1 /∈ {x ∈ dom f1 . x = d1 + s1}

by (smt l1-input-notempty-def mem-Collect-eq nat1-def )
qed
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lemma (in level1-dispose) d1-not-dispose-below : d1 /∈ dom (dispose1-below f1 d1 )
unfolding dispose1-below-def
proof (subst l-dom-r-subseteq)

show {x ∈ dom f1 . x + the (f1 x ) = d1} ⊆ dom f1
by auto

next
show d1 /∈ {x ∈ dom f1 . x + the (f1 x ) = d1}

by (metis (lifting , mono-tags) invF1-sep-weaken l1-invariant-def mem-Collect-eq sep-def )
qed

lemma (in level1-dispose) d1-not-above-below : d1 /∈ dom (dispose1-above f1 d1 s1 ∪m dispose1-below
f1 d1 )
unfolding munion-def

apply simp
by (metis (full-types) Un-iff d1-not-dispose-above d1-not-dispose-below l-dagger-dom)

lemma (in level1-dispose) dispose1-ext-union: dom (dispose1-ext f1 d1 s1 ) =
dom (dispose1-above f1 d1 s1 ) ∪ dom (dispose1-below f1 d1 ) ∪ {d1}

proof -
have dom (dispose1-ext f1 d1 s1 ) = dom (dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 ) ∪

dom([d1 7→ s1 ])
unfolding dispose1-ext-def
by (rule l-munion-dom, simp add : d1-not-above-below)
also have ... = dom( dispose1-above f1 d1 s1 † dispose1-below f1 d1 ) ∪ {d1}

unfolding munion-def by simp
finally show ?thesis by (simp add : l-dagger-dom)

qed

lemma (in level1-dispose) dispose1-ext-notempty : dispose1-ext f1 d1 s1 6= Map.empty
by (metis Un-commute Un-insert-left dispose1-ext-union dom-eq-empty-conv insert-not-empty)

lemma (in level1-dispose) dispose1-ext-dom-notempty : dom ( dispose1-ext f1 d1 s1 ) 6= {}
by (metis Un-insert-right dispose1-ext-union insert-not-empty)

lemma (in level1-dispose) d1notinf1 : d1 /∈ dom f1
proof -

have dom f1 ⊆ locs f1
proof(rule domf-in-locs)

show nat1-map f1 by (metis invF1-nat1-map-weaken l1-invariant-def )
qed
moreover have d1 ∈ locs-of d1 s1

unfolding locs-of-def apply (simp only : l1-input-notempty-def )
by (smt l1-input-notempty-def mem-Collect-eq nat1-def )

ultimately show ?thesis by (smt Collect-empty-eq Int-def disjoint-def
dispose1-pre-def l1-dispose1-precondition-def set-rev-mp)

qed

lemma (in level1-dispose) min-loc-unfold : min-loc (dispose1-ext f1 d1 s1 )
= Min ((dom (dispose1-above f1 d1 s1 ))
∪ (dom (dispose1-below f1 d1 )) ∪ {d1})

proof -
have min-loc (dispose1-ext f1 d1 s1 ) =
min-loc (dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 ∪m [d1 7→ s1 ])
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unfolding dispose1-ext-def by simp
also have ... = Min (dom (dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 ∪m [d1 7→ s1 ]))

unfolding min-loc-def
by (fold dispose1-ext-def , simp add : dispose1-ext-notempty)

also have ...= Min ((dom (dispose1-above f1 d1 s1 )) ∪ (dom (dispose1-below f1 d1 )) ∪ {d1})
by (fold dispose1-ext-def ,simp add : dispose1-ext-union)

finally show ?thesis by simp
qed

lemma above-dom:
assumes above-notempty : (dispose1-above f1 d1 s1 ) 6= empty
shows dom (dispose1-above f1 d1 s1 ) = {d1 + s1}

proof -
have dispose1-above f1 d1 s1 = { x ∈ dom f1 . x = d1 + s1 } / f1

by (metis dispose1-above-def )
then have { x ∈ dom f1 . x = d1 + s1 } 6= {}

by (metis above-notempty l-dom-r-nothing)
moreover have dom (dispose1-above f1 d1 s1 ) = {d1 + s1}
unfolding dispose1-above-def

proof (subst l-dom-r-iff )
show {x ∈ dom f1 . x = d1 + s1} ∩ dom f1 = {d1 + s1}

by (metis Collect-conj-eq Collect-conv-if Collect-mem-eq
calculation inf-commute singleton-conv)

qed
thus ?thesis .

qed

lemma above-min-loc:
assumes above-notempty : (dispose1-above f1 d1 s1 ) 6= empty
shows min-loc (dispose1-above f1 d1 s1 ) = d1 + s1

unfolding min-loc-def
by (metis Min-singleton assms above-dom)

lemma above-d1s1-in-f1 :
assumes above-notempty : (dispose1-above f1 d1 s1 ) 6= empty
shows d1+s1 ∈ dom f1
proof -

have dom (dispose1-above f1 d1 s1 ) ⊆ dom (f1 )
unfolding dispose1-above-def by (simp add : l-dom-r-dom-subseteq)
moreover have {d1+s1} ⊆ dom f1 by (metis above-dom assms calculation)
ultimately show ?thesis by auto

qed

lemma above-sumsize:
assumes above-notempty : (dispose1-above f1 d1 s1 ) 6= empty
shows sum-size (dispose1-above f1 d1 s1 ) = the (f1 (d1 + s1 ))
unfolding sum-size-def
apply (simp add : above-notempty)
apply (subst above-dom)
apply (rule above-notempty)
unfolding dispose1-above-def
apply (subgoal-tac {x . x = d1 + s1 ∧ x ∈ dom f1} = {d1+s1})
apply (simp)
apply (subst f-in-dom-r-apply-elem)
apply simp-all
by (metis Collect-conj-eq Collect-mem-eq Int-empty-left
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Int-insert-left-if1 above-d1s1-in-f1 assms singleton-conv)

lemma (in level1-dispose) d1-above:
∀ · x∈ dom (dispose1-above f1 d1 s1 ). x > d1

by (metis (mono-tags) above-dom d1-not-dispose-above
l-map-non-empty-has-elem-conv less-le not-add-less1 not-less singletonE)

lemma (in level1-dispose) min-below-empty :
assumes below-empty : dom (dispose1-below f1 d1 ) = {}
shows min-loc (dispose1-ext f1 d1 s1 ) = d1

proof(cases dom (dispose1-above f1 d1 s1 ) = {})
assume dom (dispose1-above f1 d1 s1 ) = {}
then show ?thesis

by (metis min-loc-unfold Min-singleton below-empty sup-bot-left)
next
assume above-notempty : dom (dispose1-above f1 d1 s1 ) 6= {}
have min-loc (dispose1-ext f1 d1 s1 ) = Min (dom (dispose1-above f1 d1 s1 ) ∪ {d1})
by (simp add : below-empty min-loc-unfold)

also have ... = min (Min (dom (dispose1-above f1 d1 s1 ))) (Min({d1}))
by (subst Min-Un, simp-all del : dom-eq-empty-conv add : finite-dispose1-above l-map-non-empty-dom-conv

above-notempty)
also have ... = min (Min (dom (dispose1-above f1 d1 s1 ))) d1 by simp
finally show ?thesis by (metis Min-singleton above-dom above-notempty

l-map-non-empty-dom-conv le-add1 min-absorb1 min-max .inf-commute)
qed

lemma dom-ar-disjoint : (dom f ) ∩ (Y ) = {} =⇒(dom (X -/ f )) ∩ Y = {}
by (metis Diff-Int-distrib2 empty-Diff l-dom-dom-ar)

lemma (in level1-dispose) min-below-notempty :
assumes below-notempty : dom (dispose1-below f1 d1 ) 6= {}
shows min-loc (dispose1-ext f1 d1 s1 ) ∈ dom (dispose1-below f1 d1 )

proof -
have Min (dom (dispose1-above f1 d1 s1 ) ∪ dom (dispose1-below f1 d1 ) ∪ {d1})

=Min (dom (dispose1-below f1 d1 ) ∪ (dom (dispose1-above f1 d1 s1 ) ∪ {d1}))
by (metis Un-insert-left min-loc-unfold sup-bot-left sup-commute)

also have ... = min (Min (dom (dispose1-below f1 d1 )))
(Min (dom (dispose1-above f1 d1 s1 ) ∪ {d1}))

by (subst Min-Un, simp-all del : dom-eq-empty-conv
add : finite-dispose1-above finite-dispose1-below l-map-non-empty-dom-conv below-notempty)

also have ... = min (Min (dom (dispose1-below f1 d1 ))) d1
proof (cases dom (dispose1-above f1 d1 s1 ) = {})

assume dom (dispose1-above f1 d1 s1 ) = {} thus ?thesis by simp
next
assume dom (dispose1-above f1 d1 s1 ) 6= {} then
have Min (dom (dispose1-above f1 d1 s1 ) ∪ {d1}) = Min ({d1+s1} ∪ {d1})
by (metis above-dom l-map-non-empty-dom-conv)

thus ?thesis by (simp add : l1-input-notempty-def )
qed
also have ... = Min (dom (dispose1-below f1 d1 ))
proof -
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have ∗: ∃ · x . x∈dom f1 ∧ x + the (f1 x ) = d1
proof -

have dispose1-below f1 d1 6= empty by (metis below-notempty dom-eq-empty-conv)
then have { x ∈ dom f1 . x + the(f1 x ) = d1 } 6= {}
by (metis (full-types) dispose1-below-def l-dom-r-nothing)

thus ?thesis by (smt empty-Collect-eq)
qed

then obtain x where xinf1 : x ∈ dom f1 and belowplusf1below : x + the (f1 x ) = d1 by metis
then have x < d1 by (metis antisym d1notinf1 leI le-add1 )
moreover have x ∈ dom (dispose1-below f1 d1 )
unfolding dispose1-below-def
proof (subst l-dom-r-iff )

show x ∈ {x ∈ dom f1 . x + the (f1 x ) = d1} ∩ dom f1
by (smt Int-Collect belowplusf1below xinf1 inf-commute)

qed
moreover have Min (dom (dispose1-below f1 d1 )) < d1

by (metis (full-types) Min-def all-not-in-conv
calculation(1 ) calculation(2 ) finite-dispose1-below fold1-strict-below-iff )

ultimately show ?thesis by (simp)
qed
also have ... ∈ dom (dispose1-below f1 d1 )
by (metis Min-in below-notempty finite-dispose1-below)

finally show ?thesis by (metis min-loc-unfold)
qed

lemma (in level1-dispose)
nonzero-inter-dom:

dom ((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 ) ∩
dom [min-loc (dispose1-ext f1 d1 s1 ) 7→ sum-size (dispose1-ext f1 d1 s1 )]

= {}
proof(cases dom (dispose1-below f1 d1 ) = {})

assume below-empty : dom (dispose1-below f1 d1 ) = {}
then have min-loc-shape: min-loc (dispose1-ext f1 d1 s1 ) = d1 by (rule min-below-empty)
have dom-inter : dom f1 ∩ {d1} = {} by (metis Int-insert-left-if0 d1notinf1 inf-bot-left inf-commute)
show ?thesis by (simp add : min-loc-shape dom-inter dom-ar-disjoint)

next
assume below-notempty : dom (dispose1-below f1 d1 ) 6= {}
let ?S = (dom (dispose1-below f1 d1 ))
let ?x = min-loc (dispose1-ext f1 d1 s1 )
have ?S ⊆ dom f1

unfolding dispose1-below-def
by (simp add : l-dom-r-dom-subseteq)

moreover have ?x ∈ ?S by (metis below-notempty min-below-notempty)
moreover have ?x /∈ dom (?S -/ f1 )

by (metis calculation(2 ) l-dom-ar-notin-dom-or)
moreover have ?x /∈ dom ((?S ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 )

by (metis Un-iff calculation(2 ) l-dom-ar-not-in-dom2 )
thus ?thesis by (metis Collect-conj-eq Collect-conv-if2 Int-commute dom-def

dom-eq-singleton-conv mem-Collect-eq singleton-conv2 )
qed

lemma (in level1-dispose) nat1-dispose1-ext : nat1 (sum-size (dispose1-ext f1 d1 s1 ))
unfolding dispose1-ext-def

apply (subst l-munion-upd)
apply (simp add : l-munion-dom)
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apply (rule conjI )
apply (rule d1-not-dispose-above)
apply (rule d1-not-dispose-below)
apply (unfold nat1-def )
apply (rule sumsize2-weakening)
apply (simp add : l-munion-dom)
apply (rule conjI )
apply (rule d1-not-dispose-above)
apply (rule d1-not-dispose-below)

apply (metis disjoint-above-below finite-Un finite-dispose1-above finite-dispose1-below l-munion-dom)
by (metis l1-input-notempty-def nat1-def )

lemma (in level1-dispose) F1-inv-dispose:
assumes f1inv : F1-inv f1
shows F1-inv ((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 ∪m

[min-loc (dispose1-ext f1 d1 s1 ) 7→ sum-size (dispose1-ext f1 d1 s1 )])
proof -

from f1inv show ?thesis
proof
assume disjf1 : Disjoint f1
and sepf1 : sep f1
and nat1-mapf1 : nat1-map f1
and finitef1 : finite (dom f1 )

show ?thesis
proof(rule invF1-shape)

from nonzero-inter-dom show nat1-map ((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1
s1 )) -/ f1
∪m [min-loc (dispose1-ext f1 d1 s1 ) 7→ sum-size (dispose1-ext f1 d1 s1 )])

proof (rule unionm-nat1-map)
show nat1-map ((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 )
using nat1-mapf1 by (rule dom-ar-nat1-map)

next
show nat1-map [min-loc (dispose1-ext f1 d1 s1 ) 7→ HEAP1 .sum-size (dispose1-ext f1 d1 s1 )]

by (metis dom-empty empty-iff l-munion-empty-lhs nat1-dispose1-ext nat1-map-def unionm-singleton-nat1-map)
qed

next
from nonzero-inter-dom show finite (dom ((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1

d1 s1 )) -/ f1 ∪m
[min-loc (dispose1-ext f1 d1 s1 ) 7→ sum-size (dispose1-ext f1 d1 s1 )]))

proof (rule unionm-finite)
show finite (dom ((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 ))
by (metis dom-ar-finite finitef1 )

next
show finite (dom [min-loc (dispose1-ext f1 d1 s1 ) 7→ sum-size (dispose1-ext f1 d1 s1 )])
by (metis dom-empty dom-fun-upd finite.emptyI finite-insert option.distinct(1 ))

qed
next

show VDM-F1-inv
((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 ∪m
[min-loc (dispose1-ext f1 d1 s1 ) 7→ HEAP1 .sum-size (dispose1-ext f1 d1 s1 )])

proof (cases dispose1-below f1 d1 = empty)
assume below-empty : dispose1-below f1 d1 = empty
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then show ?thesis
proof (cases dispose1-above f1 d1 s1 = empty)

assume above-empty : dispose1-above f1 d1 s1 = empty
then show ?thesis

unfolding dispose1-ext-def
proof (simp add : below-empty l-munion-empty-rhs l-munion-empty-lhs l-dom-ar-empty-lhs min-loc-singleton

sum-size-singleton)
show VDM-F1-inv (f1 ∪m [d1 7→ s1 ])
proof

show sep (f1 ∪m [d1 7→ s1 ])
proof (rule unionm-singleton-sep)

show sep f1 by (rule sepf1 )
next
show ∀ ·l∈dom f1 . l + the (f1 l) /∈ dom [d1 7→ s1 ]
proof

fix l
assume l ∈ dom f1
have l + the (f1 l) 6= d1
proof -

have dispose1-below f1 d1 = { x ∈ dom f1 . x + the(f1 x ) = d1 } / f1
unfolding dispose1-below-def by simp

then have { x ∈ dom f1 . x + the(f1 x ) = d1 } = {}
by (smt IntI below-empty dom-def dom-eq-empty-conv

empty-Collect-eq l-dom-r-iff mem-Collect-eq)
thus ?thesis by (smt 〈l ∈ dom f1 〉 empty-Collect-eq)

qed
then show l + the (f1 l) /∈ dom [d1 7→ s1 ]
by simp

qed
next
show d1 + s1 /∈ dom f1
proof -

have dispose1-above f1 d1 s1 = { x ∈ dom f1 . x = d1 + s1 } / f1
unfolding dispose1-above-def by simp

then have { x ∈ dom f1 . x = d1 + s1 } = {}
by (smt Collect-empty-eq above-empty disjoint-iff-not-equal

dom-def l-dom-r-iff mem-Collect-eq)
thus ?thesis by (smt empty-Collect-eq)

qed
next
show d1 /∈ dom f1 by (rule d1notinf1 )

next
show nat1 s1 by (simp only : l1-input-notempty-def )

qed
next
show Disjoint (f1 ∪m [d1 7→ s1 ])
proof (rule unionm-singleton-Disjoint)

show Disjoint f1 by (rule disjf1 )
next
show nat1-map f1 by (rule nat1-mapf1 )

next
show d1 /∈ dom f1 by (rule d1notinf1 )

next
show nat1 s1 by (rule l1-input-notempty-def )

next
from l1-dispose1-precondition-def show disjoint (locs-of d1 s1 ) (locs f1 )
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unfolding dispose1-pre-def by assumption
qed

qed
qed

next
assume above-notempty : dispose1-above f1 d1 s1 6= Map.empty

have abovebelowshape: (dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) = {d1+s1}
by (simp add : below-empty l-munion-empty-rhs l-munion-empty-lhs l-dom-ar-empty-lhs d1notinf1
d1-not-dispose-above d1-not-dispose-below above-dom above-notempty)

have min-loc-shape: min-loc (dispose1-ext f1 d1 s1 ) = d1
by (metis below-empty l-map-non-empty-dom-conv min-below-empty)

have sum-size (dispose1-ext f1 d1 s1 ) = sum-size (dispose1-above f1 d1 s1 ) + s1
by (simp add : dispose1-ext-def below-empty l-munion-empty-rhs

l-munion-empty-lhs l-dom-ar-empty-lhs d1notinf1
d1-not-dispose-above d1-not-dispose-below sum-size-munion
finite-dispose1-above above-notempty sum-size-singleton)

then have sum-size-shape: sum-size (dispose1-ext f1 d1 s1 ) = the(f1 (d1+s1 )) + s1
by (simp add : above-sumsize above-notempty)

show ?thesis
proof (simp add : sum-size-shape min-loc-shape abovebelowshape)

show VDM-F1-inv ({d1 + s1} -/ f1 ∪m [d1 7→ the (f1 (d1 + s1 )) + s1 ])
proof

show sep ({d1 + s1} -/ f1 ∪m [d1 7→ the (f1 (d1 + s1 )) + s1 ])
proof (rule unionm-singleton-sep)

show sep ({d1 + s1} -/ f1 ) using sepf1 by (rule dom-ar-sep)
next
show d1 /∈ dom ({d1 + s1} -/ f1 )
proof -

have d1 /∈ dom f1 by (rule d1notinf1 )
thus ?thesis by (metis l-dom-ar-notin-dom-or)

qed
next
show ∀ ·l∈dom ({d1 + s1} -/ f1 ).

l + the (({d1 + s1} -/ f1 ) l)
/∈ dom [d1 7→ the (f1 (d1 + s1 )) + s1 ]

proof
fix l assume lindom: l∈dom ({d1 + s1} -/ f1 )
then have linf : l∈ dom f1 by (metis l-dom-ar-notin-dom-or)
have l + the (f1 l) 6= d1
proof -

have dispose1-below f1 d1 = { x ∈ dom f1 . x + the(f1 x ) = d1 } / f1
unfolding dispose1-below-def by simp

then have { x ∈ dom f1 . x + the(f1 x ) = d1 } = {}
by (smt IntI below-empty dom-def dom-eq-empty-conv

empty-Collect-eq l-dom-r-iff mem-Collect-eq)
thus ?thesis by (smt linf empty-Collect-eq)

qed
then have l + the (({d1 + s1} -/ f1 ) l) 6= d1

by (metis f-in-dom-ar-apply-subsume lindom)
thus l + the (({d1 + s1} -/ f1 ) l) /∈ dom [d1 7→ the (f1 (d1 + s1 )) + s1 ] by auto

qed
next
show d1 + (the (f1 (d1 + s1 )) + s1 ) /∈ dom ({d1 + s1} -/ f1 )
proof -

have sep f1 by (rule sepf1 )
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then have ∀ ·l∈ dom f1 . l + the (f1 l) /∈ dom f1
using sep-def by auto

moreover have (d1+s1 ) ∈ dom f1 using above-notempty by (rule above-d1s1-in-f1 )
moreover have (d1 + s1 ) + the (f1 (d1+s1 )) /∈ dom f1

by (metis calculation(1 ) calculation(2 ))
ultimately show d1 + (the (f1 (d1 + s1 )) + s1 ) /∈ dom ({d1 + s1} -/ f1 )

by (smt f-in-dom-ar-subsume)
qed

next
show nat1 (the (f1 (d1 + s1 )) + s1 )
by (simp, rule disjI2 , metis l1-input-notempty-def nat1-def )

qed
next
show Disjoint ({d1 + s1} -/ f1 ∪m [d1 7→ the (f1 (d1 + s1 )) + s1 ])
proof (rule unionm-singleton-Disjoint)

show Disjoint ({d1 + s1} -/ f1 ) using disjf1 by (rule dom-ar-Disjoint)
next
show d1 /∈ dom ({d1 + s1} -/ f1 ) using d1notinf1 by (simp add : l-dom-ar-notin-dom-or)

next
show nat1-map ({d1 + s1} -/ f1 ) using nat1-mapf1 by (rule dom-ar-nat1-map)

next
show nat1 (the (f1 (d1 + s1 )) + s1 )

by (metis (mono-tags) add-eq-if l1-input-notempty-def nat1-def zero-less-Suc)
next
show disjoint (locs-of d1 (the (f1 (d1 + s1 )) + s1 )) (locs ({d1 + s1} -/ f1 ))

proof -
from l1-dispose1-precondition-def have disjoint (locs-of d1 s1 ) (locs f1 )

by (simp add : dispose1-pre-def )
moreover have (locs ({d1 + s1} -/ f1 )) = locs f1 - locs-of (d1+s1 ) (the (f1 (d1+s1 )))

by (rule dom-ar-locs, simp-all add : disjf1 finitef1 nat1-mapf1 above-d1s1-in-f1 above-notempty)
moreover have locs-of d1 (the (f1 (d1 + s1 )) + s1 ) =

locs-of d1 s1
∪ locs-of (d1+s1 ) ((the (f1 (d1 + s1 ))))

proof (subst add-commute, rule locs-of-sum-range)
show nat1 (the (f1 (d1 + s1 )))
by (metis (full-types) above-d1s1-in-f1 above-notempty nat1-map-def nat1-mapf1 )

next
show nat1 s1 by (metis l1-input-notempty-def )

qed
ultimately show ?thesis unfolding disjoint-def by auto

qed
qed

qed
qed

qed
next
assume below-notempty : dispose1-below f1 d1 6= empty

from below-notempty have ∃ ·x . x∈dom f1 ∧ x + the (f1 x ) = d1
proof -

have dispose1-below f1 d1 6= empty by (rule below-notempty)
then have { x ∈ dom f1 . x + the(f1 x ) = d1 } 6= {}

by (metis (full-types) dispose1-below-def l-dom-r-nothing)
thus ?thesis by (smt empty-Collect-eq)

qed
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then obtain below where belowinf1 : below∈dom f1
and belowplusf1below : below + the (f1 below) = d1
by metis

then have below-in-dom: below ∈ dom(dispose1-below f1 d1 )
unfolding dispose1-below-def

proof (subst l-dom-r-iff )
show below ∈ {x ∈ dom f1 . x + the (f1 x ) = d1} ∩ dom f1

by (smt Int-Collect belowinf1 belowplusf1below inf-commute)
qed
have below-shape: dispose1-below f1 d1 = [below 7→ the (f1 below)]
proof

fix x
show dispose1-below f1 d1 x = [below 7→ the (f1 below)] x
proof (simp, intro allI impI conjI )

from below-in-dom
show dispose1-below f1 d1 below = Some (the (f1 below))

unfolding dispose1-below-def
proof (subst f-in-dom-r-apply-the-elem)

show below ∈ dom f1 by (rule belowinf1 )
next
show below ∈ {x ∈ dom f1 . x + the (f1 x ) = d1}

by (smt belowinf1 belowplusf1below mem-Collect-eq)
qed(rule refl)

next
assume xnoteqbelow : x 6= below
show dispose1-below f1 d1 x = None
proof(rule ccontr)

assume dispose1-below f1 d1 x 6= None then
have con: x ∈ dom (dispose1-below f1 d1 )

by auto
from con have xindomrset : x ∈ {x ∈ dom f1 . x + the (f1 x ) = d1}
unfolding dispose1-below-def
by (metis (full-types) l-in-dom-dom-r)

then have xinf : x∈ dom f1 by (simp add : xindomrset)
have xeqd1 : x + the (f1 x ) = d1
by (metis (lifting , mono-tags) mem-Collect-eq xindomrset)

from disjf1 have ∗: locs-of x (the (f1 x )) ∩ locs-of below (the (f1 below)) = {}
by (metis xnoteqbelow belowinf1 Disjoint-def

disjoint-def l-locs-of-Locs-of-iff xinf )
have nat1below : nat1 (the (f1 below)) by (metis nat1-map-def nat1-mapf1 belowinf1 )
have nat1x : nat1 (the (f1 x )) by (metis nat1-map-def nat1-mapf1 xinf )
from xinf xeqd1 belowplusf1below belowinf1 nat1x nat1below
have ∗∗: locs-of x (the (f1 x )) ∩ locs-of below (the (f1 below)) 6= {}

by (metis IntI ex-in-conv top-locs-of )
from ∗ ∗∗ show False by simp

qed
qed

qed
then have dom-below : dom (dispose1-below f1 d1 ) = {below} by simp
have sum-size-below : sum-size (dispose1-below f1 d1 ) = the (f1 below)
by (simp add : sum-size-singleton below-shape)

show ?thesis
proof (cases dispose1-above f1 d1 s1 = empty)

assume above-empty : dispose1-above f1 d1 s1 = empty
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have abovebelow-shape: (dom (dispose1-below f1 d1 )) ∪ (dom (dispose1-above f1 d1 s1 ))
= {below}

by (simp add : above-empty dom-below)
have min-loc-shape: min-loc (dispose1-ext f1 d1 s1 ) = below

by (metis dom-below insert-not-empty min-below-notempty singleton-iff )
have sum-size-shape: sum-size (dispose1-ext f1 d1 s1 ) = the (f1 below) + s1
unfolding dispose1-ext-def
by (simp add : above-empty l-munion-empty-lhs sum-size-munion sum-size-singleton

finite-dispose1-below below-notempty d1-not-dispose-below sum-size-below)
show ?thesis
proof (simp add : sum-size-shape min-loc-shape abovebelow-shape)
show VDM-F1-inv ({below} -/ f1 ∪m [below 7→ the (f1 below) + s1 ])
proof
show sep ({below} -/ f1 ∪m [below 7→ the (f1 below) + s1 ])

proof (rule unionm-singleton-sep)
show sep ({below} -/ f1 ) using sepf1 by (rule dom-ar-sep)

next
show below /∈ dom ({below} -/ f1 ) by (metis f-in-dom-ar-notelem)

next
show ∀ ·l∈dom ({below} -/ f1 ).

l + the (({below} -/ f1 ) l) /∈ dom [below 7→ the (f1 below) + s1 ]
proof

fix l assume lin-restr-dom:l ∈ dom ({below} -/ f1 )
have l ∈ dom f1 using lin-restr-dom by (metis l-dom-ar-not-in-dom)
have l + the (({below} -/ f1 ) l) 6= below

by (metis 〈l ∈ dom f1 〉 belowinf1 f-in-dom-ar-apply-subsume
lin-restr-dom sep-def sepf1 )

thus l + the (({below} -/ f1 ) l) /∈ dom [below 7→ the (f1 below) + s1 ]
by (metis dom-empty empty-iff l-inmapupd-dom-iff )

qed
next
show below + (the (f1 below) + s1 ) /∈ dom ({below} -/ f1 )
proof -

have below + (the (f1 below)) = d1
by (metis belowplusf1below)

then have d1 +s1 /∈ dom ({below} -/ f1 )
proof -

have dispose1-above f1 d1 s1 = { x ∈ dom f1 . x = d1 + s1 } / f1
unfolding dispose1-above-def by simp

then have { x ∈ dom f1 . x = d1 + s1 } = {}
by (smt Collect-empty-eq above-empty disjoint-iff-not-equal

dom-def l-dom-r-iff mem-Collect-eq)
thus ?thesis by (metis Collect-conj-eq Collect-mem-eq

Un-empty-left f-in-dom-ar-apply-not-elem l-dom-ar-nothing
domIff l-dom-ar-not-in-dom2 f-in-dom-ar-notelem inf-commute
insert-def sup-commute)

qed
thus ?thesis by (metis belowplusf1below nat-add-commute nat-add-left-commute)

qed
next
show nat1 (the (f1 below) + s1 ) by (metis nat1-dispose1-ext sum-size-shape)

qed
next
show Disjoint ({below} -/ f1 ∪m [below 7→ the (f1 below) + s1 ])
proof(rule unionm-singleton-Disjoint)

show below /∈ dom ({below} -/ f1 )
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by (simp add : below-in-dom dom-below l-dom-ar-notin-dom-or)
next
show Disjoint ({below} -/ f1 ) using disjf1 by (rule dom-ar-Disjoint)

next
show nat1-map ({below} -/ f1 ) using nat1-mapf1 by (rule dom-ar-nat1-map)

next
show nat1 (the (f1 below) + s1 ) by (metis nat1-dispose1-ext sum-size-shape)

next

show disjoint (locs-of below (the (f1 below) + s1 )) (locs ({below} -/ f1 ))
proof -
from l1-dispose1-precondition-def have disjoint (locs-of d1 s1 ) (locs f1 )

by (simp add : dispose1-pre-def )
moreover have (locs ({below} -/ f1 )) = locs f1 - locs-of below (the (f1 (below)))
by (rule dom-ar-locs, simp-all add : disjf1 finitef1 nat1-mapf1 belowinf1 )

moreover have locs-of below (the (f1 below) + s1 ) =
locs-of below (the (f1 below))
∪ locs-of (below + (the (f1 below))) s1

proof (rule locs-of-sum-range)
show nat1 (the (f1 below)) by (metis belowinf1 nat1-map-def nat1-mapf1 )

next
show nat1 s1 by (rule l1-input-notempty-def )

qed
moreover have locs-of (below + (the (f1 below))) s1 = locs-of d1 s1
by (metis belowplusf1below)

ultimately show ?thesis unfolding disjoint-def by auto
qed

qed
qed

qed
next
assume above-notempty : dispose1-above f1 d1 s1 6= Map.empty
have above-below-shape: (dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 ))

= {below ,d1+s1}
by (metis Un-insert-left above-dom above-notempty dom-below sup-bot-left)

have min-loc-shape: min-loc (dispose1-ext f1 d1 s1 ) = below
by (metis dom-below insert-not-empty min-below-notempty singleton-iff )

have sum-size-shape: sum-size (dispose1-ext f1 d1 s1 )
= the (f1 (d1 + s1 )) + the (f1 below) + s1

proof -
have sum-size-above-below : sum-size (dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 )

= the (f1 (d1 + s1 )) + the (f1 below)
by (simp add : sum-size-munion finite-dispose1-above finite-dispose1-below above-notempty

below-notempty above-sumsize sum-size-below)
then show ?thesis unfolding dispose1-ext-def
proof (subst sum-size-munion)

show finite (dom (dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 )) and
finite (dom [d1 7→ s1 ])

by (simp-all add : finite-dispose1-above finite-dispose1-below k-finite-munion)
next
show dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 6= empty
and [d1 7→ s1 ] 6= empty
by (auto simp: munion-notempty-right below-notempty)

next
from d1-not-above-below show dom (dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 ) ∩ dom

[d1 7→ s1 ] = {}
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by simp
next
show sum-size (dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 ) + sum-size [d1 7→ s1 ]

= the (f1 (d1 + s1 )) + the (f1 below) + s1
by (simp add : sum-size-above-below sum-size-singleton)

qed
qed
show ?thesis
proof (simp add : sum-size-shape min-loc-shape above-below-shape)

show VDM-F1-inv ({below , d1 + s1} -/ f1 ∪m [below 7→ the (f1 (d1 + s1 )) + the (f1 below) +
s1 ])

proof
show sep ({below , d1 + s1} -/ f1 ∪m [below 7→ the (f1 (d1 + s1 )) + the (f1 below) + s1 ])
proof (rule unionm-singleton-sep)

show sep ({below , d1 + s1} -/ f1 ) using sepf1 by (rule dom-ar-sep)
next
show below /∈ dom ({below , d1 + s1} -/ f1 )
by (metis insertI1 l-dom-ar-notin-dom-or)

next
show ∀ ·l∈dom ({below , d1 + s1} -/ f1 ).

l + the (({below , d1 + s1} -/ f1 ) l)
/∈ dom [below 7→ the (f1 (d1 + s1 )) + the (f1 below) + s1 ]

proof
fix l assume lin-restr-dom: l ∈ dom ({below , d1 + s1} -/ f1 )
have l ∈ dom f1 using lin-restr-dom by (metis l-dom-ar-not-in-dom)
have l + the (({below , d1 + s1} -/ f1 ) l) 6= below
by (metis 〈l ∈ dom f1 〉 belowinf1 f-in-dom-ar-apply-subsume

lin-restr-dom sep-def sepf1 )
thus l + the (({below ,d1+s1} -/ f1 ) l) /∈ dom [below 7→ the (f1 (d1 + s1 )) + the (f1 below)

+ s1 ]
by (metis dom-empty empty-iff l-inmapupd-dom-iff )

qed
next
show below + (the (f1 (d1 + s1 )) + the (f1 below) + s1 ) /∈ dom ({below , d1 + s1} -/ f1 )
proof -

have below + (the (f1 below)) = d1
by (metis belowplusf1below)

then have (d1 +s1 ) + (the (f1 (d1 + s1 ))) /∈ dom ({below ,d1+s1} -/ f1 )
by (metis above-d1s1-in-f1 above-notempty l-dom-ar-notin-dom-or sep-def sepf1 )

thus ?thesis by (smt belowplusf1below)
qed

next
show nat1 (the (f1 (d1 + s1 )) + the (f1 below) + s1 )

by (metis nat1-dispose1-ext sum-size-shape)
qed

next
show Disjoint ({below , d1 + s1} -/ f1 ∪m [below 7→ the (f1 (d1 + s1 )) + the (f1 below) + s1 ])
proof (rule unionm-singleton-Disjoint)

show below /∈ dom ({below , d1 + s1} -/ f1 )
by (metis insertI1 l-dom-ar-notin-dom-or)

next
show Disjoint ({below , d1 + s1} -/ f1 ) using disjf1 by (rule dom-ar-Disjoint)

next
show nat1-map ({below , d1 + s1} -/ f1 ) using nat1-mapf1 by (rule dom-ar-nat1-map)

next
show nat1 (the (f1 (d1 + s1 )) + the (f1 below) + s1 )
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by (metis nat1-dispose1-ext sum-size-shape)
next

show
disjoint (locs-of below (the (f1 (d1 + s1 )) + the (f1 below) + s1 ))

(locs ( {below , d1 + s1} -/ f1 ))
proof -
have (locs ({below , d1 + s1} -/ f1 )) = locs ( {below} -/ ({d1 + s1} -/ f1 ))

by (metis Un-empty-left Un-insert-left l-dom-ar-accum)
also have ... =

locs ({d1 + s1} -/ f1 ) - locs-of below (the (({d1 + s1} -/ f1 ) below))
proof (rule dom-ar-locs)

show finite (dom ({d1 + s1} -/ f1 )) by (metis dom-ar-finite finitef1 )
next
show nat1-map ({d1 + s1} -/ f1 ) by (metis dom-ar-nat1-map nat1-mapf1 )

next
show Disjoint ({d1 + s1} -/ f1 ) by (metis disjf1 dom-ar-Disjoint)

next
show below ∈ dom ({d1 + s1} -/ f1 ) by (metis belowinf1 belowplusf1below d1notinf1

inf-commute inf-min l-in-dom-ar nat-min-absorb1
singletonE)

qed
also have ... = locs ({d1 + s1} -/ f1 ) - locs-of below (the (f1 below))
proof (subst f-in-dom-ar-apply-not-elem)

show below /∈ {d1 + s1}
by (metis belowinf1 belowplusf1below d1notinf1 empty-iff insert-iff nat-neq-iff not-add-less1 )

qed (rule refl)
also have ... = locs(f1 ) - locs-of (d1+s1 ) (the (f1 (d1+s1 ))) - locs-of below (the (f1 below))

by(subst dom-ar-locs, simp-all add : disjf1 finitef1 nat1-mapf1 belowinf1 above-d1s1-in-f1
above-notempty )

finally have ∗: (locs ({below , d1 + s1} -/ f1 ))
= locs(f1 ) - locs-of (d1+s1 ) (the (f1 (d1+s1 )))

- locs-of below (the (f1 below)) by simp
have locs-of below (the (f1 (d1 + s1 )) + the (f1 below) + s1 ) =

locs-of below (the (f1 below) + ((the (f1 (d1 + s1 ))) + s1 ))
by (metis nat-add-commute nat-add-left-commute)

also have ... = (locs-of below (the (f1 below))) ∪
(locs-of (below + (the (f1 below))) (the (f1 (d1 + s1 )) + s1 ))

proof (rule locs-of-sum-range)
show nat1 (the (f1 below)) by (metis belowinf1 nat1-map-def nat1-mapf1 )

next
show nat1 (the (f1 (d1 + s1 )) + s1 )

by (metis (full-types) l1-input-notempty-def nat1-def trans-less-add2 )
qed
also have ... = (locs-of below (the (f1 below))) ∪

(locs-of d1 (the (f1 (d1 + s1 )) + s1 ))
by (metis belowplusf1below)

also have ... = (locs-of below (the (f1 below))) ∪
locs-of d1 (s1+ (the (f1 (d1 + s1 ))))

by (metis nat-add-commute)
also have ... = (locs-of below (the (f1 below)))

∪ locs-of d1 s1
∪ locs-of (d1+s1 ) (the (f1 (d1 + s1 )))

proof (subst locs-of-sum-range)
show nat1 s1 by (metis l1-input-notempty-def )
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next
show nat1 (the (f1 (d1 + s1 )))

by (metis above-d1s1-in-f1 above-notempty nat1-map-def nat1-mapf1 )
qed (metis sup-commute sup-left-commute)
finally have ∗∗: locs-of below (the (f1 (d1 + s1 )) + the (f1 below) + s1 )

=(locs-of below (the (f1 below)))
∪ locs-of d1 s1
∪ locs-of (d1+s1 ) (the (f1 (d1 + s1 )))

by simp
from l1-dispose1-precondition-def have ∗∗∗: disjoint (locs-of d1 s1 ) (locs f1 )

by (simp add : dispose1-pre-def )
from ∗ ∗∗ ∗∗∗ show ?thesis unfolding disjoint-def by auto

qed
qed

qed
qed

qed
qed
qed
qed
qed

theorem (in level1-dispose)
locale1-dispose-FSB : PO-dispose1-feasibility

unfolding PO-dispose1-feasibility-def dispose1-postcondition-def
proof(subst dispose1-equiv)
obtain f1new where f1wit : f1new = (dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 ))

-/ f1 ∪m
[min-loc (dispose1-ext f1 d1 s1 ) 7→ sum-size (dispose1-ext f1 d1 s1 )]

by auto
from f1wit F1-inv-dispose show ∃ ·f ′. dispose1-post2 f1 d1 s1 f ′ ∧ F1-inv f ′

using dispose1-post2-def by (metis l1-invariant-def )
qed

end

theory HEAP1SanityIJW
imports HEAP1ProofsIJW
begin

lemma new1-dispose-1-identity-isar :
assumes nat1n: nat1 n
and n1-post : new1-post f n f ′ r
and d1-post : dispose1-post f ′ r n f ′′

and inv : F1-inv f
shows f = f ′′

proof -
from n1-post show ?thesis
unfolding new1-post-def
proof

assume n1-eq : new1-post-eq f n f ′ r
then show f = f ′′
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unfolding new1-post-eq-def
proof(elim conjE)

assume r-in-dom: r ∈ dom f
and eq-n: the (f r) = n
and f ′-restr : f ′ = {r} -/ f

have below-shape: dispose1-below ({r} -/ f ) r = empty
unfolding dispose1-below-def
proof (rule l-dom-r-nothing-empty)

from inv show {x ∈ dom ({r} -/ f ). x + the (({r} -/ f ) x ) = r} = {}
proof

assume sepf : sep f
have {x ∈ dom ({r} -/ f ). x + the (({r} -/ f ) x ) = r}

= {x ∈ dom ({r} -/ f ). x + the (f x ) = r}
by (metis (full-types) Diff-iff l-dom-dom-ar f-in-dom-ar-apply-not-elem)

also have ... ⊆ {x ∈ dom (f ). x + the (f x ) = r}
by (smt Collect-empty-eq l-dom-ar-not-in-dom r-in-dom sep-def sepf subsetI )

also have ... = {}
by (smt Collect-empty-eq r-in-dom sep-def sepf )

finally show ?thesis by simp
qed

qed

have above-shape: dispose1-above ({r} -/ f ) r n = empty
unfolding dispose1-above-def

proof (rule l-dom-r-nothing-empty)
from inv show {x ∈ dom ({r} -/ f ). x = r + n} = {}
proof

assume sepf : sep f
have {x ∈ dom ({r} -/ f ). x = r + n} ⊆ {x ∈ dom (f ). x = r + n}

by (smt Collect-cong Collect-empty-eq equals0D l-dom-ar-not-in-dom subsetI )
also have ... = {} by (smt empty-Collect-eq eq-n r-in-dom sep-def sepf )

finally show ?thesis by simp
qed

qed

have min-loc-shape: min-loc (dispose1-ext ({r} -/ f ) r n) = r
unfolding dispose1-ext-def

proof -
have dispose1-above ({r} -/ f ) r n ∪m dispose1-below ({r} -/ f ) r ∪m [r 7→ n]

= [r 7→ n]
by (simp add : above-shape l-munion-empty-lhs below-shape)

moreover have min-loc [r 7→ n] = r
unfolding min-loc-def
by simp
ultimately show min-loc (dispose1-above ({r} -/ f ) r n

∪m dispose1-below ({r} -/ f ) r ∪m [r 7→ n]) = r
by simp

qed

have sum-size-shape: sum-size (dispose1-ext ({r} -/ f ) r n) = the(f r)
unfolding dispose1-ext-def

proof -
have dispose1-above ({r} -/ f ) r n ∪m dispose1-below ({r} -/ f ) r ∪m [r 7→ n]

= [r 7→ n]
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by (simp add : above-shape l-munion-empty-lhs below-shape)
moreover have sum-size [r 7→ n] = n

unfolding sum-size-def by simp
moreover have the (f r) = nby (rule eq-n)
ultimately show sum-size (dispose1-above ({r} -/ f ) r n

∪m dispose1-below ({r} -/ f ) r ∪m [r 7→ n]) = the (f r)
by simp

qed

from d1-post show ?thesis
proof (simp only : dispose1-equiv , unfold dispose1-post2-def )

assume f ′′ = (dom (dispose1-below f ′ r) ∪ dom (dispose1-above f ′ r n)) -/ f ′ ∪m
[min-loc (dispose1-ext f ′ r n) 7→ sum-size (dispose1-ext f ′ r n)]

then have f ′′ = ((dom (empty) ∪ dom (empty)) -/ f ′

∪m [min-loc (dispose1-ext f ′ r n) 7→ sum-size (dispose1-ext f ′ r n)])
by (simp add : f ′-restr below-shape above-shape)

then have f ′′ = {} -/ f ′

∪m [min-loc (dispose1-ext f ′ r n) 7→ sum-size (dispose1-ext f ′ r n)]
by simp

also have ... = f ′

∪m [min-loc (dispose1-ext f ′ r n) 7→ sum-size (dispose1-ext f ′ r n)]
by (metis l-dom-ar-empty-lhs)

also have ...= f ′ ∪m [r 7→ the (f r)]
by (simp add : min-loc-shape sum-size-shape f ′-restr)

also have ... = ({r} -/ f ) ∪m [r 7→ the (f r)]
by (simp add : f ′-restr)

also have ... = ({r} -/ f ) † [r 7→ the (f r)]
proof -

have dom ({r} -/ f ) ∩ dom [r 7→ the (f r)] = {}
by (metis Int-insert-right-if0 dom-eq-singleton-conv f-in-dom-ar-notelem inf-bot-right)

thus ?thesis by (simp add : munion-def )
qed

also have ... = f using r-in-dom by (rule antirestr-then-dagger)
finally show ?thesis ..

qed
qed
next

assume new1-post-gr f n f ′ r
then show ?thesis

unfolding new1-post-gr-def
proof(elim conjE)

assume r-in-dom: r ∈ dom f
and gr-n: the (f r) > n
and f ′-restr : f ′ = {r} -/ f ∪m [r + n 7→ the (f r) - n]

have disjoint-dom: dom f ∩ dom [r + n 7→ the (f r) - n] = {}
proof (simp)
show r + n /∈ dom f
proof (rule l-plus-s-not-in-f )

show F1-inv f by (metis inv)
next
show r ∈ dom f by (rule r-in-dom)
next
show n < the (f r) by (rule gr-n)
next
show nat1 n by (rule nat1n)
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qed
qed

have disjoint-dom-antirestr : dom ({r} -/ f ) ∩ dom [r + n 7→ the (f r) - n] = {}
by (metis disjoint-dom l-dom-ar-disjoint-weakening)

have below-shape: dispose1-below ({r} -/ f ∪m [r + n 7→ the (f r) - n]) r = empty
unfolding dispose1-below-def

proof (rule l-dom-r-nothing-empty)
from inv show {x ∈ dom ({r} -/ f ∪m [r + n 7→ the (f r) - n]).

x + the (({r} -/ f ∪m [r + n 7→ the (f r) - n]) x ) = r} = {}
proof

assume sepf : sep f
have ({r} -/ f ∪m [r + n 7→ the (f r) - n])

=({r} -/ f † [r + n 7→ the (f r) - n])
by (metis disjoint-dom-antirestr munion-def )

then have {x ∈ dom ({r} -/ f ∪m [r + n 7→ the (f r) - n]).
x + the (({r} -/ f ∪m [r + n 7→ the (f r) - n]) x ) = r}

= {x ∈ dom ({r} -/ f † [r + n 7→ the (f r) - n]).
x + the (({r} -/ f † [r + n 7→ the (f r) - n]) x ) = r}
by simp

also have ... = {x ∈ dom ({r} -/ f ).
x + the (({r} -/ f ) x ) = r} ∪ {x∈ dom ([r + n 7→ the (f r) - n]).

x + the ([r + n 7→ the (f r) - n] x ) = r}
proof (subst l-dagger-dom)

show {x ∈ dom ({r} -/ f ) ∪ dom [r + n 7→ the (f r) - n].
x + the (({r} -/ f † [r + n 7→ the (f r) - n]) x ) = r}

= {x ∈ dom ({r} -/ f ). x + the (({r} -/ f ) x ) = r}
∪ {x ∈ dom [r + n 7→ the (f r) - n]. x + the ([r + n 7→ the (f r) - n] x ) = r}

proof (subst union-comp)
show {x ∈ dom ({r} -/ f ). x + the (({r} -/ f † [r + n 7→ the (f r) - n]) x ) = r}
∪ {x ∈ dom [r + n 7→ the (f r) - n]. x + the (({r} -/ f † [r + n 7→ the (f r) - n])

x ) = r}
= {x ∈ dom ({r} -/ f ). x + the (({r} -/ f ) x ) = r}
∪ {x ∈ dom [r + n 7→ the (f r) - n]. x + the ([r + n 7→ the (f r) - n] x ) = r}

proof -
have {x ∈ dom ({r} -/ f ). x + the (({r} -/ f † [r + n 7→ the (f r) - n]) x ) = r}

= {x ∈ dom ({r} -/ f ). x + the (({r} -/ f ) x ) = r}
by (metis Int-iff 〈{r} -/ f ∪m [r + n 7→ the (f r) - n] = {r} -/ f † [r + n 7→ the

(f r) - n]〉

disjoint-dom-antirestr dom-eq-singleton-conv empty-iff f ′-restr the-dagger-dom-left)
moreover have {x ∈ dom [r + n 7→ the (f r) - n]. x + the (({r} -/ f † [r + n 7→

the (f r) - n]) x ) = r}
= {x ∈ dom [r + n 7→ the (f r) - n]. x + the ([r + n 7→ the (f r) - n] x ) = r}
by (metis (lifting) l-dagger-apply)

ultimately show ?thesis by auto
qed

qed
qed

also have ... = {}
proof -

have {x∈ dom ([r + n 7→ the (f r) - n]).
x + the ([r + n 7→ the (f r) - n] x ) = r} = {}

by (smt add-implies-diff comm-monoid-add-class.add .left-neutral
diff-add-zero dom-empty empty-Collect-eq empty-iff gr-n fun-upd-same
l-inmapupd-dom-iff less-nat-zero-code nat-add-commute the.simps)

moreover have {x ∈ dom ({r} -/ f ).
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x + the (({r} -/ f ) x ) = r} = {}
proof -
have {x ∈ dom ({r} -/ f ). x + the (({r} -/ f ) x ) = r}
⊆ {x ∈ dom (f ). x + the (f x ) = r}

by (smt Collect-cong eq-refl f-in-dom-ar-the-subsume l-dom-ar-not-in-dom r-in-dom
sep-def sepf )

also have ... = {}
by (smt Collect-empty-eq r-in-dom sep-def sepf )

finally show ?thesis by simp
qed

ultimately show ?thesis by simp
qed
finally show ?thesis by simp

qed
qed

have above-shape: dispose1-above ({r} -/ f ∪m [r + n 7→ the (f r) - n]) r n = [r + n 7→ the(f
r) - n]

unfolding dispose1-above-def
proof -

have {x ∈ dom ({r} -/ f ∪m [r + n 7→ the (f r) - n]). x = r + n} = {r+n}
proof -

have {x ∈ dom ({r} -/ f ∪m [r + n 7→ the (f r) - n]). x = r + n} =
{x ∈ dom ({r} -/ f † [r + n 7→ the (f r) - n]). x = r + n}
unfolding munion-def by (subst disjoint-dom-antirestr , simp)

also have ... = {x ∈ dom ({r} -/ f ). x = r + n} ∪
{x ∈ dom ([r + n 7→ the (f r) - n]). x = r + n}
by(subst l-dagger-dom,rule union-comp)

also have ... = {x ∈ dom ({r} -/ f ). x = r + n} ∪ {r+n}
by auto

also have ... = {r+n}
proof -

have {x ∈ dom ({r} -/ f ). x = r + n} = {}
by (metis (lifting , mono-tags) Collect-empty-eq gr-n inv l-dom-ar-not-in-dom l-plus-s-not-in-f

nat1n r-in-dom)
thus ?thesis by auto

qed
finally show ?thesis by simp

qed
moreover have {r+n} / ({r} -/ f ∪m [r + n 7→ the (f r) - n]) = [r + n 7→ the (f r) - n]
proof (subst l-dom-r-singleton)

show r + n ∈ dom ({r} -/ f ∪m [r + n 7→ the (f r) - n])
by (smt calculation empty-Collect-eq insert-compr)

next
show [r + n 7→ the (({r} -/ f ∪m [r + n 7→ the (f r) - n]) (r + n))]

= [r + n 7→ the (f r) - n]
by (metis dagger-upd-dist disjoint-dom-antirestr fun-upd-same munion-def the.simps)

qed
ultimately show {x ∈ dom ({r} -/ f ∪m [r + n 7→ the (f r) - n]). x = r + n} / ({r} -/ f

∪m [r + n 7→ the (f r) - n]) = [r + n 7→ the (f r) - n]
by auto

qed
have min-loc-shape: min-loc (dispose1-ext ({r} -/ f ∪m [r + n 7→ the (f r) - n]) r n) = r

unfolding dispose1-ext-def
proof ( simp add : above-shape below-shape)

show min-loc ([r + n 7→ the (f r) - n] ∪m Map.empty ∪m [r 7→ n]) = r
proof -
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have without-empty : [r + n 7→ the (f r) - n] ∪m Map.empty ∪m [r 7→ n]
= [r + n 7→ the (f r) - n] ∪m [r 7→ n]

by (metis l-munion-empty-rhs)
then have min-loc ([r + n 7→ the (f r) - n] ∪m [r 7→ n])

= min-loc ([r + n 7→ the (f r) - n] † [r 7→ n])
proof -
have dom ([r + n 7→ the (f r) - n])∩ dom( [r 7→ n]) = {r+n} ∩ {r}

by auto
also have ... = {} using nat1n by auto
finally show ?thesis by (simp add : munion-def )

qed
also have ... = min (min-loc [r + n 7→ the (f r) - n]) (min-loc [r 7→ n])
by(rule min-loc-dagger ,simp-all)

also have ... = min (r+n) (r) by (simp add : min-loc-singleton)
also have ... = r by simp
finally show ?thesis using without-empty by simp

qed
qed
have sum-size-shape: sum-size (dispose1-ext ({r} -/ f ∪m [r + n 7→ the (f r) - n]) r n) = the(f

r)
unfolding dispose1-ext-def

proof ( simp add : above-shape below-shape)
show sum-size ([r + n 7→ the (f r) - n] ∪m empty ∪m [r 7→ n]) = the (f r)
proof -

have without-empty : [r + n 7→ the (f r) - n] ∪m Map.empty ∪m [r 7→ n]
= [r + n 7→ the (f r) - n] ∪m [r 7→ n]

by (metis l-munion-empty-rhs)
then have sum-size ([r + n 7→ the (f r) - n] ∪m [r 7→ n])

= sum-size ([r + n 7→ the (f r) - n]) + sum-size ([r 7→ n])
apply (subst sum-size-munion, simp-all)
by (metis nat1-def nat1n)

also have ... = the (f r) - n + n by (simp add : sum-size-singleton)
also have ... = the (f r) by (metis gr-n le-add-diff-inverse

nat-add-commute termination-basic-simps(5 ))
finally show ?thesis using without-empty by simp

qed
qed

from d1-post show ?thesis
proof (simp only : dispose1-equiv , unfold dispose1-post2-def )
assume f ′′ = (dom (dispose1-below f ′ r) ∪ dom (dispose1-above f ′ r n)) -/ f ′

∪m [min-loc (dispose1-ext f ′ r n) 7→ sum-size (dispose1-ext f ′ r n)]
then have f ′′ =

{r+n} -/ f ′ ∪m [min-loc (dispose1-ext f ′ r n) 7→ sum-size (dispose1-ext f ′ r n)]
by (simp add : f ′-restr below-shape above-shape)

also have ... = ({r} -/ f ) ∪m [min-loc (dispose1-ext f ′ r n) 7→ sum-size (dispose1-ext f ′ r n)]
proof -

have {r+n} -/ f ′ = {r+n} -/ ({r} -/ f ∪m [r + n 7→ the (f r) - n])
by (simp add : f ′-restr)

also have ... = {r+n} -/ ({r} -/ (f ∪m [r + n 7→ the (f r) - n]))
proof(subst l-munion-dom-ar-assoc)

show {r} ⊆ dom f by (simp add : r-in-dom)
next

show dom f ∩ dom [r + n 7→ the (f r) - n] = {} by (rule disjoint-dom)
next

show {r + n} -/ {r} -/ (f ∪m [r + n 7→ the (f r) - n]) =
{r + n} -/ {r} -/ (f ∪m [r + n 7→ the (f r) - n]) ..
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qed
also have ... = {r} -/ ({r+n} -/ (f ∪m [r + n 7→ the (f r) - n]))

by (metis l-dom-ar-singletons-comm)
also have ... = {r} -/ ({r+n} -/ (f † [r + n 7→ the (f r) - n]))
unfolding munion-def
by (simp only : disjoint-dom,simp)

also have ... = {r} -/ f
proof (subst antirestr-then-dagger-notin)
show r+n /∈ dom f using disjoint-dom by auto
next
show {r} -/ f = {r} -/ f ..

qed
finally show ?thesis by simp

qed
also have ... = ({r} -/ f ) ∪m [r 7→ the (f r)]

by (simp add : min-loc-shape sum-size-shape f ′-restr)
also have ... = ({r} -/ f ) † [r 7→ the (f r)]
proof -

have dom ({r} -/ f ) ∩ dom [r 7→ the (f r)] = {}
by (metis Collect-conj-eq Collect-conv-if2 Collect-mem-eq dom-eq-singleton-conv f-in-dom-ar-notelem

inf-commute singleton-conv2 )
thus ?thesis by (simp add : munion-def )

qed
also have ... = f using r-in-dom by (rule antirestr-then-dagger)
finally show ?thesis ..

qed
qed

qed
qed

end

theory HEAP01ReifyProofsIJW
imports HEAP01Reify HEAP1ProofsIJW
begin

lemma nat-nonzero-induct [case-names base step]:
assumes base: P (1 ::nat)
and grzero: x>0
and step:

∧
(x ::nat). x>0 =⇒ P x =⇒ P(x+1 )

shows P x
using assms
apply induct
sorry

lemma contig-nonabut-finite-set-induct [case-names empty extend , induct set : finite]:
assumes fin: finite F

and empty : P {}
and extend :

∧
F F ′. finite F =⇒

finite F ′ =⇒
F ′ 6= {} =⇒
contiguous F ′ =⇒
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non-abut F F ′ =⇒
(∗ Part of abut-def F ∩ F ′ = {} =⇒ ∗)

P F =⇒
P (F ∪ F ′)

shows P F
sorry

definition
non-abut :: nat set ⇒ nat set ⇒ bool
where
non-abut s1 s2 ≡
disjoint s1 s2 ∧ (∗ Nothing equal ! ∗)

(∀ · l1∈s1 . ∀ ·l2∈s2 . (l2 > l1+1 ) ∨ (l1 > l2+1 ))

lemma non-abut-commute: non-abut F F ′ = non-abut F ′ F
unfolding non-abut-def disjoint-def by auto

lemma non-abut-subset : non-abut F F ′ =⇒ Fsub ⊆ F =⇒ F ′sub ⊆ F ′

=⇒ non-abut Fsub F ′sub
unfolding non-abut-def disjoint-def apply auto
apply (erule-tac x=l1 in ballE)
apply (erule-tac x=l2 in ballE)
apply simp
by auto

lemma (in level1-basic) fin-retrieve: finite (retr0 (f1 ))
proof -
from l1-invariant-def have finf1 : finite (dom f1 )

by (metis invF1-finite-weaken)
from l1-invariant-def have (nat1-map f1 )

by (metis invF1-nat1-map-weaken)
thus ?thesis unfolding retr0-def locs-def
apply simp
apply (simp add : finf1 )
apply (rule ballI )
apply (rule locs-of-finite)
apply (simp add : nat1-map-def )
done
qed

lemma non-abut-sep:
assumes non-abutting : ∀ · l ∈ dom f . ∀ · l ′ ∈ dom f . l 6=l ′ −→ non-abut (locs-of l (the (f l)))

(locs-of l ′ (the (f l ′)))
and nat1f : nat1-map f

shows sep f
unfolding sep-def
proof
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fix l
assume lindom: l ∈ dom f
show l + the (f l) /∈ dom f
proof -

have l + the (f l) - 1 ∈ locs-of l (the (f l))
proof (subst b-locs-of-as-set-interval)

show nat1 (the (f l)) by (metis 〈l ∈ dom f 〉 nat1-map-def nat1f )
next
show (l + the (f l)) - 1 ∈ {l ..<l + the (f l)}

by (metis 〈l ∈ dom f 〉 b-locs-of-as-set-interval nat1-map-def nat1f top-locs-of )
qed
have dom f 6= {} by (metis 〈l ∈ dom f 〉 empty-iff )
have flg0 : the (f l) > 0 by (metis 〈l ∈ dom f 〉 nat1-map-def nat1f nat1-def )
show ?thesis
proof (cases dom f = {l})

assume dom f = {l}
then show l + the (f l) /∈ dom f
using flg0 by simp

next
assume dom f 6= {l}
show ?thesis
proof

assume ∗:l + the (f l) ∈ dom f
then have ∃ · l ′ ∈ dom f . l 6= l ′

by (metis add-diff-cancel-left ′ comm-monoid-diff-class.diff-cancel flg0 gr-implies-not0 )
then obtain l ′ where l ′indom: l ′ ∈ dom f and l ′eq : l ′ = l + the (f l) and noteq : l 6=l ′

using ∗ by (metis add-0-iff flg0 less-not-refl)
then have non-abut

(locs-of l (the (f l)))
(locs-of (l + (the (f l))) (the (f ( (l + (the (f l)))))))

by (metis lindom non-abutting)
then have non-abut-rhs: (∀ ·l1∈locs-of l (the (f l)). ∀ ·l2∈locs-of (l + the (f l)) (the (f (l +

the (f l)))).
l1 + 1 < l2 ∨ l2 + 1 < l1 ) unfolding non-abut-def by simp

obtain l1 where l1locs: l1 ∈ locs-of l (the (f l))

and l1shape: l1 = l + (the (f l)) - 1

by (metis 〈l + the (f l) - 1 ∈ locs-of l (the (f l))〉)
obtain l2 where l2locs: l2∈locs-of (l + the (f l)) (the (f (l + the (f l))))

and l2shape: l2 = l + the (f l)
using ∗ by (auto simp: l-dom-in-locs-of nat1f )

from non-abut-rhs have (l+ the (f l) - 1 ) + 1 < l + the (f l) ∨ l + the (f l) + 1 < (l+ the
(f l) - 1 )

using l1locs apply (erule-tac x=l1 in ballE)
using l2locs apply (erule-tac x=l2 in ballE)

by (simp-all add : l1shape l2shape)
then show False by auto

qed
qed

qed
qed

lemma non-abut-Disjoint :
assumes non-abutting : ∀ · l ∈ dom f . ∀ · l ′ ∈ dom f . l 6=l ′ −→ non-abut (locs-of l (the (f l)))
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(locs-of l ′ (the (f l ′)))
shows Disjoint f
unfolding Disjoint-def

proof(intro ballI impI )
fix l l ′

assume lindom: l ∈ dom f and l ′indom: l ′ ∈ dom f and noteq : l 6= l ′

show disjoint (Locs-of f l) (Locs-of f l ′)
proof -

from non-abutting
have non-abut (locs-of l (the (f l))) (locs-of l ′ (the (f l ′)))

using lindom l ′indom noteq by (auto)
then show ?thesis unfolding non-abut-def Locs-of-def
by (simp add : lindom l ′indom)

qed
qed

lemma non-abut-VDM-inv :
assumes non-abutting : ∀ · l ∈ dom f . ∀ · l ′ ∈ dom f . l 6=l ′ −→ non-abut (locs-of l (the (f l)))

(locs-of l ′ (the (f l ′)))
and nat1f : nat1-map f

shows VDM-F1-inv f
unfolding VDM-F1-inv-def
by (metis nat1f non-abut-Disjoint non-abut-sep non-abutting)

lemma min-contig :
fixes m l :: nat
assumes atleastone: l>0
shows Min {i : :nat . m ≤ i ∧ i < m + l} = m
proof (induct l rule: nat-nonzero-induct)

have {i : :nat . m ≤ i ∧ i < m + (1 : :nat)} = {m} by auto
then show Min {i . m ≤ i ∧ i < m + 1} = m by simp
next
show 0 < l by (rule atleastone)

next
fix x
assume ∗: 0<x
and ind-hyp: Min {i : :nat . m ≤ i ∧ i < m + x} = m
show Min {i : :nat . m ≤ i ∧ i < (m + (x+ 1 ))} = m
proof -

have ∗∗: {i : :nat . m ≤ i ∧ i < (m + (x + 1 ))} = {i : :nat . m ≤ i ∧ i < m + x} ∪ {m+x}
by auto

then have Min {i : :nat . m ≤ i ∧ i < Suc (m + x )} =
Min ({i : :nat . m ≤ i ∧ i < m + x} ∪ {m+x}) by auto

also have ...= min (m+x ) (Min {i : :nat . m ≤ i ∧ i < m + x})
by (subst Min-insert [symmetric], auto simp add : ∗)

also have ...= min (m+x ) m using ind-hyp by auto
finally show ?thesis using ∗ by auto

qed
qed
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lemma card-contig : card {i : :nat . m ≤ i ∧ i < m + l} = l
proof (induct l)

show base: card {i : :nat . m ≤ i ∧ i < m + (0 : :nat)} = (0 : :nat)
by simp

next
fix l
assume ind-hyp: card {i : :nat . m ≤ i ∧ i < m + l} = l
show card {i : :nat . m ≤ i ∧ i < m + Suc l} = Suc l
proof -

have {i : :nat . m ≤ i ∧ i < m + Suc l} = {i : :nat . m ≤ i ∧ i < m + l} ∪ {m+l}
by auto

from this ind-hyp show ?thesis by auto
qed

qed

lemma retr0-empty : retr0 empty = {}
unfolding retr0-def locs-def nat1-map-def
by auto

lemma empty-retr0 : nat1-map x =⇒ retr0 x = {} =⇒ x = empty
unfolding retr0-def locs-def apply simp
by (metis empty-iff k-in-locs-iff l-map-non-empty-has-elem-conv

not-dom-not-locs-weaken)

lemma mapdom-in-retr : x∈dom f =⇒ the (f x ) > 0 =⇒
nat1-map f =⇒ x ∈ (retr0 f )

unfolding retr0-def locs-def locs-of-def by auto

lemma non-empty-nat1-card : finite F =⇒ F 6= {} =⇒ card F > 0
by auto

lemma eq-locs:
assumes finF : finite F ′

and nonempF : F ′ 6= {}
and contig : contiguous F ′

shows locs-of (Min F ′) (card F ′) = F ′

proof -
from finF nonempF have nat1 (card F ′) unfolding nat1-def
by (rule non-empty-nat1-card)

from contig obtain m l where F ′shape: F ′ = locs-of m l and lgrzero: l >0
unfolding contiguous-def by auto

then have m = Min (F ′)
by (simp add : locs-of-def F ′shape min-contig lgrzero)

moreover have l = card F ′

by (simp add : F ′shape locs-of-def lgrzero card-contig)
ultimately show ?thesis using F ′shape by blast

qed
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lemma (in level0-basic) free1-adequacy :
shows ∃ ·! f1 . (f0 = retr0 f1 ∧ F1-inv f1 )
proof -

from l0-invariant-def have finf0 : finite f0 by (metis F0-inv-defs)
from l0-input-notempty-def have nat1s1 : nat1 s0 by metis
from finf0 show ?thesis
proof (induct rule: contig-nonabut-finite-set-induct)

case empty

show ∃ ·!f1 . {} = retr0 f1 ∧ F1-inv f1
proof(rule-tac a=empty in ex1I , rule conjI )

show {} = retr0 Map.empty by (simp only : retr0-empty)
next
show F1-inv Map.empty by (simp only : F1-inv-empty)

next
fix x
assume {} = retr0 x ∧ F1-inv x
then show x = empty

by (metis empty-retr0 invF1-nat1-map-weaken)
qed

next
fix F F ′

assume F ′-finite: finite F ′

and notemp: F ′ 6= {}
and F ′-contig : contiguous F ′

and F ′-nonabut : non-abut F F ′

and exist-hyp: ∃ ·!f1 . F = retr0 f1 ∧ F1-inv f1
from exist-hyp obtain f1hook
where ind-hyp-retr : F = retr0 f1hook
and ind-hyp-inv : F1-inv f1hook
and ind-hyp-nat1 : nat1-map f1hook by auto

show ∃ ·!f1 . F ∪ F ′ = retr0 f1 ∧ F1-inv f1
proof(rule-tac a=(f1hook ∪m [Min(F ′) 7→ card F ′]) in ex1I , rule conjI )

have nonzerorange: ∀ ·l ∈ dom f1hook . (the (f1hook l)) > 0
by (metis nat1-def nat1-map-def ind-hyp-nat1 )

have non-intersect : F ∩ F ′ = {}
by (metis F ′-nonabut non-abut-def disjoint-def )

have domsubsetretr : dom f1hook ⊆ retr0 f1hook
proof

fix x assume indom: x ∈ dom f1hook
then show x ∈ retr0 f1hook
proof (rule mapdom-in-retr)

show 0 < (the (f1hook x ))
using nonzerorange indom by auto

next
show nat1-map f1hook by (rule ind-hyp-nat1 )

qed
qed

then have subsetF : dom f1hook ⊆ F using ind-hyp-retr by auto
have min-notin-f1hook : Min F ′ /∈ dom f1hook
proof -

have Min F ′ ∈ F ′
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using notemp F ′-finite by auto
then have ∗: Min F ′ /∈ F
using non-intersect by auto

have Min F ′ /∈ dom (f1hook) using subsetF ∗ by auto
thus ?thesis by simp

qed
have nat1-card-F ′: nat1 (card F ′)

by (metis F ′-finite bot-less bot-nat-def card-eq-0-iff nat1-def notemp)
show F ∪ F ′ = retr0 (f1hook ∪m [Min F ′ 7→ card F ′])

proof -
have F ∪ F ′ = retr0 (f1hook ∪m [Min(F ′) 7→ card F ′])
proof -

have dom-extend : dom (f1hook ∪m [Min(F ′) 7→ card F ′])
= insert (Min(F ′)) (dom f1hook)

by (simp add : l-munion-dom min-notin-f1hook)
have nat1-upd-state: nat1-map (f1hook ∪m [Min(F ′) 7→ card F ′])
by(rule unionm-singleton-nat1-map,

simp-all add : ind-hyp-nat1 min-notin-f1hook nat1-card-F ′ del : nat1-def )
then have retr0 (f1hook ∪m [Min(F ′) 7→ card F ′])

= (
⋃

s: :nat∈dom (f1hook ∪m [Min F ′ 7→ card F ′]).
locs-of s (the ((f1hook ∪m [Min F ′ 7→ card F ′]) s)))

unfolding retr0-def locs-def by simp
also have (

⋃
s: :nat∈dom (f1hook ∪m [Min F ′ 7→ card F ′]).

locs-of s (the ((f1hook ∪m [Min F ′ 7→ card F ′]) s)))
= (

⋃
s: :nat∈insert (Min F ′) (dom f1hook).
locs-of s (the ((f1hook ∪m [Min F ′ 7→ card F ′]) s)))

by (simp only : dom-extend)
also have ... = locs-of (Min F ′) (the ((f1hook ∪m [Min F ′ 7→ card F ′]) (Min F ′)))

∪ (
⋃

s: :nat∈dom f1hook . locs-of s (the ((f1hook ∪m [Min F ′ 7→ card F ′]) s)))
by (simp only : UN-insert)

also have ... = F ′ ∪ (
⋃

s: :nat∈dom f1hook . locs-of s (the ((f1hook ∪m [Min F ′ 7→ card F ′])
s)))

proof -

have F ′ = locs-of (Min F ′) (card F ′)
by (metis F ′-contig F ′-finite eq-locs notemp)

moreover have the ((f1hook ∪m [Min F ′ 7→ card F ′]) (Min F ′)) = card F ′

apply (subst l-munion-apply)
apply (simp add : min-notin-f1hook)
by simp
ultimately show ?thesis by auto

qed
also have ... =(

⋃
s: :nat∈dom f1hook . locs-of s (the ((f1hook ∪m [Min F ′ 7→ card F ′]) s))) ∪

F ′

by blast
also have ... = F ∪ F ′

proof -
have (

⋃
s∈dom f1hook . locs-of s (the ((f1hook ∪m [Min F ′ 7→ card F ′]) s))) = F

proof -
have ∀ ·s ∈ dom f1hook .
locs-of s (the (f1hook s)) =
locs-of s (the ((f1hook ∪m [Min F ′ 7→ card F ′]) s))
apply (subst l-munion-apply)

199



apply (metis Int-insert-right-if0 dom-eq-singleton-conv inf-bot-right min-notin-f1hook)
by (smt domIff l-inmapupd-dom-iff min-notin-f1hook)

thus ?thesis using ind-hyp-retr retr0-def locs-def nat1-upd-state ind-hyp-nat1
by auto

qed
thus ?thesis by simp

qed
finally show ?thesis ..

qed
thus ?thesis .

qed

from ind-hyp-inv show upd-inv : F1-inv (f1hook ∪m [Min F ′ 7→ card F ′])
proof
assume ind-sep: sep f1hook and ind-Disjoint : Disjoint f1hook
and ind-finite: finite (dom (f1hook)) and ind-nat1-map: nat1-map f1hook
show ?thesis
proof(rule invF1-shape)

from min-notin-f1hook ind-hyp-nat1 nat1-card-F ′

show nat1-ext : nat1-map (f1hook ∪m [Min F ′ 7→ card F ′])
by (rule unionm-singleton-nat1-map)

from min-notin-f1hook ind-finite show finite (dom (f1hook ∪m [Min F ′ 7→ card F ′]))
by (rule unionm-singleton-finite )

show VDM-F1-inv (f1hook ∪m [Min F ′ 7→ card F ′])
proof
from min-notin-f1hook ind-sep show sep (f1hook ∪m [Min F ′ 7→ card F ′])
proof (rule unionm-singleton-sep)

show ∀ ·l∈dom f1hook . l + the (f1hook l) /∈ dom [Min F ′ 7→ card F ′]
proof

fix l assume lindom: l ∈ dom f1hook
show l + the (f1hook l) /∈ dom [Min F ′ 7→ card F ′]
proof

assume ∗: l + the (f1hook l) ∈ dom [Min F ′ 7→ card F ′]
have l + (the (f1hook l)) = Min F ′

by (metis ∗ l-inmapupd-dom-iff l-map-non-empty-has-elem-conv)
then have l + (the (f1hook l)) ∈ F ′

by (metis F ′-finite Min-in notemp)
obtain l1 where l1shape: l1 = l + (the (f1hook l)) - 1 by simp
have l1inF : l1 ∈ F apply (subst ind-hyp-retr)
unfolding retr0-def locs-def using ind-nat1-map apply simp
apply (rule-tac x=l in bexI )
apply (metis 〈l1 = l + the (f1hook l) - 1 〉 lindom nat1-map-def top-locs-of )
apply (rule lindom)
done
obtain l2 where l2shape: l2 = l + the (f1hook l) by simp
have l2inF ′: l2 ∈ F ′

by (metis 〈l + the (f1hook l) ∈ F ′〉 〈l2 = l + the (f1hook l)〉)
from F ′-nonabut have contra: l1 + 1 < l2 ∨ l2 + 1 < l1
unfolding non-abut-def using l1inF l2inF ′ by simp

from contra l1shape l2shape show False
by auto

qed
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qed
show Min F ′ + card F ′ /∈ dom f1hook

proof
assume ∗: Min F ′ + card F ′ ∈ dom f1hook
have Min F ′ + card F ′ - 1 ∈ F ′

by (metis F ′-contig all-not-in-conv contiguous-def eq-locs locs-of-finite nat1-card-F ′

top-locs-of )
obtain l1 where l1shape: l1 = Min F ′ + card F ′ by simp
have l1inF : l1 ∈ F by (metis ∗ 〈l1 = Min F ′ + card F ′〉 set-mp subsetF )
obtain l2 where l2shape: l2 = Min F ′ + card F ′ - 1 by simp
have l2inF ′: l2 ∈ F ′ by (metis 〈Min F ′ + card F ′ - 1 ∈ F ′〉 〈l2 = Min F ′ + card F ′ - 1 〉)
from F ′-nonabut have contra: l1 + 1 < l2 ∨ l2 + 1 < l1
unfolding non-abut-def using l1inF l2inF ′ by simp

from contra l1shape l2shape show False by auto
qed

next
show nat1 (card F ′) by (rule nat1-card-F ′)

qed
from min-notin-f1hook ind-Disjoint ind-nat1-map
show Disjoint (f1hook ∪m [Min F ′ 7→ card F ′])

proof (rule unionm-singleton-Disjoint)
show nat1 (card F ′) by (rule nat1-card-F ′)
next
show disjoint (locs-of (Min F ′) (card F ′)) (locs f1hook)
by (metis F ′-contig F ′-finite disjoint-def eq-locs ind-hyp-retr

inf-commute non-intersect notemp retr0-def )
qed

qed
qed

qed

fix x assume ∗: F ∪ F ′ = retr0 x ∧ F1-inv x
show x = f1hook ∪m [Min F ′ 7→ card F ′]
proof (rule locs-unique)

show locs x = locs (f1hook ∪m [Min F ′ 7→ card F ′])
by (metis ∗

〈F ∪ F ′ = retr0 (f1hook ∪m [Min F ′ 7→ card F ′])〉 retr0-def )
next
show F1-inv x using ∗ by simp

next
show F1-inv (f1hook ∪m [Min F ′ 7→ card F ′]) by (rule upd-inv)

next
show x 6= Map.empty

by (metis (full-types) ∗ empty-subsetI notemp retr0-empty
sup.right-idem sup-absorb1 sup-commute)

next
show f1hook ∪m [Min F ′ 7→ card F ′] 6= Map.empty

by (metis l-munion-singleton-not-empty min-notin-f1hook)
qed

qed
qed

qed
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theorem r-free01-widen-pre:
PO-l01-new-widen-pre
unfolding PO-l01-new-widen-pre-def

new1-pre-def new0-pre-def
proof(intro allI conjI impI , elim conjE exE)

fix f1 s1 l
assume invf1 : F1-inv f1
and nat1s1 : nat1 s1
and new0pre: is-block l s1 (retr0 f1 )
have locs-subset : locs-of l s1 ⊆ locs f1

by (metis is-block-def new0pre retr0-def )
moreover have l ∈ locs-of l s1 using nat1s1
by (simp add : b-locs-of-as-set-interval)

ultimately have l ∈ locs f1 by auto
then have l ∈ (

⋃
s∈dom f1 . locs-of s (the (f1 s)))

unfolding locs-def Locs-of-def
by (simp add : invf1 invF1-nat1-map-weaken)

from locs-subset invf1 nat1s1
have ∃ · m∈ dom f1 . locs-of l s1 ⊆ locs-of m (the (f1 m))

by (rule locs-locs-of-subset)
then obtain m where mindom: m∈dom f1 and

locssubm: locs-of l s1 ⊆ locs-of m (the (f1 m))
by auto

then have mgrs1 : s1 ≤ the (f1 m)
proof (cases l=m)

assume l = m
then have locs-of l s1 ⊆ locs-of l (the (f1 l)) by (metis locssubm)
show ?thesis
proof (rule locs-of-subset-range)

show 0 < s1 by (metis nat1-def nat1s1 )
show 0 < the (f1 m) by (metis invF1-sep-weaken comm-monoid-add-class.add .right-neutral

invf1 mindom neq0-conv sep-def )
show locs-of l s1 ⊆ locs-of l (the (f1 m))
by (metis 〈l = m〉 〈locs-of l s1 ⊆ locs-of l (the (f1 l))〉)

qed
next
assume lnotm: l 6= m
have m < l
proof(rule ccontr)

assume ¬ m < l
then have ∗: m > l by (metis lnotm nat-neq-iff )
have l /∈ locs-of m (the (f1 m))
apply (rule less-a-not-in-locs-of )

apply (metis invF1-sep-weaken comm-monoid-add-class.add .right-neutral invf1 mindom neq0-conv
sep-def )

by (simp add : ∗)
thus False by (metis 〈l ∈ locs-of l s1 〉 locssubm set-mp)

qed
show ?thesis
proof (rule locs-of-subset-range-gr)

show 0 < s1 by (metis nat1-def nat1s1 )
show 0 < the (f1 m) by (metis invF1-sep-weaken comm-monoid-add-class.add .right-neutral

invf1 mindom neq0-conv sep-def )
show locs-of l s1 ⊆ locs-of m (the (f1 m))
by (metis locssubm)

show m < l by (metis 〈m < l 〉)
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qed
qed
thus ∃ ·l∈dom f1 . s1 ≤ the (f1 l)
by (metis mindom)

qed

lemma strangesets: B ⊆ A =⇒ D ⊆ B =⇒ (A - B) ∪ (B-D) = A-D
by auto

theorem r-free01-narrow-post :
assumes invf1 : F1-inv f1
and invf1 ′: F1-inv f1 ′

and nat1s1 : nat1 s1
and new0pre: new0-pre (retr0 f1 ) s1
and new1post : new1-post f1 s1 f1 ′ r
shows new0-post (retr0 f1 ) s1 (retr0 f1 ′) r

proof -
from new0pre new1post show ?thesis
unfolding new0-post-def new1-post-def new0-pre-def new1-post-eq-def new1-post-gr-def retr0-def

proof(elim disjE exE conjE , intro conjI )
assume f1r : the (f1 r) = s1 and rindom: r ∈ dom f1
show is-block r s1 (locs f1 )
unfolding is-block-def

proof
show nat1 s1 by (rule nat1s1 )

next
show locs-of r s1 ⊆ locs f1
by (metis invF1-nat1-map-weaken rindom f1r invf1 l-locs-of-within-locs)

qed
next
assume ∗: f1 ′ = {r} -/ f1 and rindom: r ∈ dom f1 and f1r : the (f1 r) = s1
show locs f1 ′ = locs f1 - locs-of r s1
proof (subst ∗, subst dom-ar-locs)

show finite (dom f1 ) by (metis invF1-finite-weaken invf1 )
next
show nat1-map f1 by (metis invF1-nat1-map-weaken invf1 )

next
show Disjoint f1 by (metis invF1-Disjoint-weaken invf1 )

next
show r ∈ dom f1 by (rule rindom)

next
show locs f1 - locs-of r (the (f1 r)) = locs f1 - locs-of r s1
by (simp add : f1r)

qed
next
fix l
assume isblockl : is-block l s1 (locs f1 )

and rindom: r ∈ dom f1
and s1less: s1 < the (f1 r)
and f1 ′shape: f1 ′ = {r} -/ f1 ∪m [r + s1 7→ the (f1 r) - s1 ]

show is-block r s1 (locs f1 ) ∧ locs f1 ′ = locs f1 - locs-of r s1
proof

show is-block r s1 (locs f1 )
unfolding is-block-def
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proof
show nat1 s1 by (rule nat1s1 )

next
show locs-of r s1 ⊆ locs f1
proof -

have locs-of r s1 ⊆ locs-of r (the (f1 r))
by (metis Diff-subset less-trans locs-of-minus nat1-def nat1s1 s1less)

moreover have locs-of r (the (f1 r)) ⊆ locs f1
by (metis invF1-nat1-map-weaken 〈r ∈ dom f1 〉 invf1 l-locs-of-within-locs)

ultimately show ?thesis by simp
qed

qed
next
show locs f1 ′ = locs f1 - locs-of r s1
proof (subst f1 ′shape, subst locs-unionm-singleton)

show nat1 (the (f1 r) - s1 ) by (metis diff-is-0-eq nat1-def neq0-conv not-le s1less)
next
show nat1-map ({r} -/ f1 ) by (metis invF1-nat1-map-weaken dom-ar-nat1-map invf1 )

next
show r + s1 /∈ dom ({r} -/ f1 ) by (metis invf1 l-dom-ar-notin-dom-or l-plus-s-not-in-f nat1s1

rindom s1less)
next
show locs ({r} -/ f1 ) ∪ locs-of (r + s1 ) (the (f1 r) - s1 ) = locs f1 - locs-of r s1
proof (subst dom-ar-locs)

show finite (dom f1 ) by (metis invF1-finite-weaken invf1 )
next
show nat1-map f1 by (metis invF1-nat1-map-weaken invf1 )

next
show Disjoint f1 by (metis invF1-Disjoint-weaken invf1 )

next
show r ∈ dom f1 by (rule rindom)

next
show locs f1 - locs-of r (the (f1 r)) ∪ locs-of (r + s1 ) (the (f1 r) - s1 ) = locs f1 - locs-of r s1
proof -

have locs-of r s1 = locs-of r (the (f1 r)) - locs-of (r+s1 ) ((the (f1 r)) - s1 )
by (metis add-0-iff invf1 l-plus-s-not-in-f less-trans locs-of-minus nat1s1 neq0-conv rindom

s1less)
have ∗∗: locs-of (r+s1 ) ((the (f1 r)) - s1 ) = locs-of r (the (f1 r)) - locs-of r s1
by (metis 〈locs-of r s1 = locs-of r (the (f1 r)) - locs-of (r + s1 ) (the (f1 r) - s1 )〉 double-diff

locs-of-subset nat1-def s1less subset-refl zero-less-diff )
show ?thesis
proof (subst ∗∗,subst strangesets)

show locs-of r (the (f1 r)) ⊆ locs f1
by (metis invF1-nat1-map-weaken invf1 l-locs-of-within-locs rindom)

next
show locs-of r s1 ⊆ locs-of r (the (f1 r))
by (metis Diff-subset 〈locs-of r s1 = locs-of r (the (f1 r)) - locs-of (r + s1 ) (the (f1 r) -

s1 )〉)
next
show locs f1 - locs-of r s1 = locs f1 - locs-of r s1
by (rule refl)

qed
qed

qed
qed

qed

204



APPENDIX F. HEAP LEMMAS AND PROOFS (IAIN)

qed
qed

lemma PO-l01-new-narrow-post
by (metis PO-l01-new-narrow-post-def r-free01-narrow-post)

lemma g2-subset : B ⊆ A =⇒ (A - B) ∪ (B ∪ C ) = A ∪ C by auto
lemma g3-lemma: Y ⊆ X =⇒ Z ⊆ X =⇒ (X - Y - Z ) ∪ (Z ∪ Y ∪ A) = X ∪ A

by auto

theorem r-free01-dispose-widen-pre:
PO-l01-dispose-widen-pre
unfolding PO-l01-dispose-widen-pre-def

dispose1-pre-def
disjoint-def retr0-def dispose0-pre-def

by simp

lemma (in level1-dispose) r-free01-dispose-narrow-post :
assumes invf1 : F1-inv f1
and invf1 ′: F1-inv f1 ′

and nat1s1 : nat1 s1
and dis0pre: dispose0-pre (retr0 f1 ) d1 s1
and dis1post : dispose1-post2 f1 d1 s1 f1 ′

shows dispose0-post (retr0 f1 ) d1 s1 (retr0 f1 ′)
proof -

from invf1 show ?thesis
proof

assume sepf1 : sep f1 and disjf1 : Disjoint f1
and nat1f1 : nat1-map f1 and finitef1 : finite (dom f1 )
from invf1 ′ show ?thesis
proof

assume sepf1 ′: sep f1 ′ and disjf1 ′: Disjoint f1 ′

and nat1f1 ′: nat1-map f1 ′ and finitef1 ′: finite (dom f1 ′)
from dis1post show ?thesis

unfolding dispose0-post-def
dispose1-post2-def

proof -
assume ∗: f1 ′ = (dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 ∪m

[min-loc (dispose1-ext f1 d1 s1 ) 7→ HEAP1 .sum-size (dispose1-ext f1 d1 s1 )]
show retr0 f1 ′ = retr0 f1 ∪ locs-of d1 s1
proof (subst ∗)

from dis0pre have locs-of d1 s1 ∩ retr0 f1 = {} by (metis dispose0-pre-def )
then have d1notf1 : d1 /∈ dom f1
by (metis IntI empty-iff l-locs-of-within-locs locs-of-extended
nat1-map-def nat1f1 nat1s1 retr0-def set-rev-mp top-locs-of top-locs-of2 )

show retr0 ((dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) -/ f1 ∪m
[min-loc (dispose1-ext f1 d1 s1 ) 7→ HEAP1 .sum-size (dispose1-ext f1 d1 s1 )]) =
retr0 f1 ∪ locs-of d1 s1

proof (cases dispose1-below f1 d1 = empty)
assume belowempty : dispose1-below f1 d1 = Map.empty
show ?thesis
proof (cases dispose1-above f1 d1 s1 = empty)

assume aboveempty : dispose1-above f1 d1 s1 = Map.empty
then show ?thesis unfolding dispose1-ext-def retr0-def
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proof (simp add : aboveempty belowempty l-munion-empty-rhs l-munion-empty-lhs
l-dom-ar-empty-lhs min-loc-singleton sum-size-singleton)

show locs (f1 ∪m [d1 7→ s1 ]) = locs f1 ∪ locs-of d1 s1
proof (rule locs-unionm-singleton)

show nat1 s1 by (metis nat1s1 )
show nat1-map f1 by (metis nat1f1 )
show d1 /∈ dom f1 by (rule d1notf1 )

qed
qed

next
assume abovenotempty : dispose1-above f1 d1 s1 6= Map.empty
have abovebelowshape: (dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 )) =

{d1+s1}
by (simp add : belowempty l-munion-empty-rhs l-munion-empty-lhs l-dom-ar-empty-lhs

d1notf1
d1-not-dispose-above d1-not-dispose-below above-dom abovenotempty)

have min-loc-shape: min-loc (dispose1-ext f1 d1 s1 ) = d1
by (metis belowempty l-map-non-empty-dom-conv min-below-empty)

have sum-size (dispose1-ext f1 d1 s1 ) = sum-size (dispose1-above f1 d1 s1 ) + s1
by (simp add : dispose1-ext-def belowempty l-munion-empty-rhs

l-munion-empty-lhs l-dom-ar-empty-lhs d1notf1
d1-not-dispose-above d1-not-dispose-below sum-size-munion
finite-dispose1-above abovenotempty sum-size-singleton)

then have sum-size-shape: sum-size (dispose1-ext f1 d1 s1 ) = the(f1 (d1+s1 )) + s1
by (simp add : above-sumsize abovenotempty)

show ?thesis unfolding retr0-def
proof (simp add : sum-size-shape min-loc-shape abovebelowshape)

show locs ({d1 + s1} -/ f1 ∪m [d1 7→ the (f1 (d1 + s1 )) + s1 ]) = locs f1 ∪ locs-of
d1 s1

proof (subst locs-unionm-singleton)
show nat1 (the (f1 (d1 + s1 )) + s1 ) by (metis nat1-dispose1-ext sum-size-shape)

next
show nat1-map ({d1 + s1} -/ f1 ) by (metis dom-ar-nat1-map nat1f1 )

next
show d1 /∈ dom ({d1 + s1} -/ f1 ) by (metis d1notinf1 l-dom-ar-notin-dom-or)

next
show locs ({d1 + s1} -/ f1 ) ∪ locs-of d1 (the (f1 (d1 + s1 )) + s1 ) = locs f1 ∪

locs-of d1 s1
proof (subst dom-ar-locs, rule finitef1 ,rule nat1f1 ,rule disjf1 )

show d1 + s1 ∈ dom f1 by (metis above-d1s1-in-f1 abovenotempty)
next
show locs f1 - locs-of (d1 + s1 ) (the (f1 (d1 + s1 ))) ∪ locs-of d1 (the (f1 (d1 +

s1 )) + s1 )
= locs f1 ∪ locs-of d1 s1

proof -
have locs-of (d1 + s1 ) (the (f1 (d1 + s1 ))) ⊆ locs f1 by (metis above-d1s1-in-f1

abovenotempty k-in-locs-iff nat1f1 subsetI )
moreover have locs-of d1 (the (f1 (d1 + s1 )) + s1 ) =

locs-of (d1 + s1 ) (the (f1 (d1 + s1 ))) ∪ locs-of d1 s1
proof -

have locs-of d1 (the (f1 (d1 + s1 )) + s1 ) = locs-of d1 (s1 + the (f1 (d1 +
s1 )))

by (metis nat-add-commute)
also have ... = locs-of d1 s1 ∪ locs-of (d1 + s1 ) (the (f1 (d1 + s1 )))
by (metis above-d1s1-in-f1 abovenotempty locs-of-sum-range nat1-map-def nat1f1

nat1s1 )
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finally show ?thesis by auto
qed
ultimately show ?thesis by (simp add : g2-subset)

qed
qed

qed
qed

qed
next
assume belownotempty : dispose1-below f1 d1 6= Map.empty
from belownotempty have ∃ ·x . x∈dom f1 ∧ x + the (f1 x ) = d1
proof -

have dispose1-below f1 d1 6= empty by (rule belownotempty)
then have { x ∈ dom f1 . x + the(f1 x ) = d1 } 6= {}

by (metis (full-types) dispose1-below-def l-dom-r-nothing)
thus ?thesis by (smt empty-Collect-eq)

qed
then obtain below where belowinf1 : below∈dom f1

and belowplusf1below : below + the (f1 below) = d1
by metis

then have below-in-dom: below ∈ dom(dispose1-below f1 d1 )
unfolding dispose1-below-def

proof (subst l-dom-r-iff )
show below ∈ {x ∈ dom f1 . x + the (f1 x ) = d1} ∩ dom f1
by (smt Int-Collect belowinf1 belowplusf1below inf-commute)

qed
have below-shape: dispose1-below f1 d1 = [below 7→ the (f1 below)]
proof

fix x
show dispose1-below f1 d1 x = [below 7→ the (f1 below)] x
proof (simp, intro allI impI conjI )

from below-in-dom
show dispose1-below f1 d1 below = Some (the (f1 below))
unfolding dispose1-below-def

proof (subst f-in-dom-r-apply-the-elem)
show below ∈ dom f1 by (rule belowinf1 )

next
show below ∈ {x ∈ dom f1 . x + the (f1 x ) = d1}
by (smt belowinf1 belowplusf1below mem-Collect-eq)

qed(rule refl)
next
assume xnoteqbelow : x 6= below
show dispose1-below f1 d1 x = None
proof(rule ccontr)

assume dispose1-below f1 d1 x 6= None then
have con: x ∈ dom (dispose1-below f1 d1 )

by auto
from con have xindomrset : x ∈ {x ∈ dom f1 . x + the (f1 x ) = d1}

unfolding dispose1-below-def
by (metis (full-types) l-in-dom-dom-r)

then have xinf : x∈ dom f1 by (simp add : xindomrset)
have xeqd1 : x + the (f1 x ) = d1

by (metis (lifting , mono-tags) mem-Collect-eq xindomrset)

from disjf1 have ∗: locs-of x (the (f1 x )) ∩ locs-of below (the (f1 below)) = {}
by (metis xnoteqbelow belowinf1 Disjoint-def
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disjoint-def l-locs-of-Locs-of-iff xinf )
have nat1below : nat1 (the (f1 below)) by (metis nat1-map-def nat1f1 belowinf1 )
have nat1x : nat1 (the (f1 x )) by (metis nat1-map-def nat1f1 xinf )
from xinf xeqd1 belowplusf1below belowinf1 nat1x nat1below
have ∗∗: locs-of x (the (f1 x )) ∩ locs-of below (the (f1 below)) 6= {}
by (metis IntI ex-in-conv top-locs-of )
from ∗ ∗∗ show False by simp

qed
qed

qed
then have dom-below : dom (dispose1-below f1 d1 ) = {below} by simp
have sum-size-below : sum-size (dispose1-below f1 d1 ) = the (f1 below)

by (simp add : sum-size-singleton below-shape)
show ?thesis
proof (cases dispose1-above f1 d1 s1 = empty)

assume aboveempty : dispose1-above f1 d1 s1 = Map.empty
have abovebelow-shape: (dom (dispose1-below f1 d1 )) ∪ (dom (dispose1-above f1 d1 s1 ))

= {below}
by (simp add : aboveempty dom-below)

have min-loc-shape: min-loc (dispose1-ext f1 d1 s1 ) = below
by (metis dom-below insert-not-empty min-below-notempty singleton-iff )

have sum-size-shape: sum-size (dispose1-ext f1 d1 s1 ) = the (f1 below) + s1
unfolding dispose1-ext-def
by (simp add : aboveempty l-munion-empty-lhs sum-size-munion sum-size-singleton

finite-dispose1-below belownotempty d1-not-dispose-below sum-size-below)
show ?thesis unfolding retr0-def
proof (simp add : sum-size-shape min-loc-shape abovebelow-shape)

show locs ({below} -/ f1 ∪m [below 7→ the (f1 below) + s1 ]) = locs f1 ∪ locs-of d1 s1
proof (subst locs-unionm-singleton)

show nat1 (the (f1 below) + s1 ) by (metis nat1-dispose1-ext sum-size-shape)
next
show nat1-map ({below} -/ f1 ) by (metis dom-ar-nat1-map nat1f1 )

next
show below /∈ dom ({below} -/ f1 ) by (metis f-in-dom-ar-notelem)

next
show locs ({below} -/ f1 ) ∪ locs-of below (the (f1 below) + s1 ) = locs f1 ∪ locs-of d1 s1
proof (subst dom-ar-locs, rule finitef1 , rule nat1f1 , rule disjf1 )
show below ∈ dom f1 by (metis belowinf1 )

next
show locs f1 - locs-of below (the (f1 below)) ∪ locs-of below (the (f1 below) + s1 ) = locs

f1 ∪ locs-of d1 s1
proof -

have locs-of below (the (f1 below)) ⊆ locs f1
by (metis belowinf1 l-locs-of-within-locs nat1f1 )

moreover have ∗: below + the (f1 below) = d1 by (metis belowplusf1below)
moreover have locs-of below (the (f1 below) + s1 ) = locs-of below (the (f1 below)) ∪

locs-of d1 s1
proof -
have locs-of below ((the (f1 below)) + s1 ) = (locs-of below (the (f1 below))) ∪ (locs-of

(below + (the (f1 below)))) s1
by (metis locs-of-sum-range belowinf1 nat1-map-def nat1f1 nat1s1 )

also have ... = (locs-of below (the (f1 below))) ∪ locs-of d1 s1
by (simp add : ∗)

finally show ?thesis .
qed
ultimately show ?thesis by (simp add : g2-subset)
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qed
qed

qed
qed

next
assume abovenotempty : dispose1-above f1 d1 s1 6= Map.empty
have above-below-shape: (dom (dispose1-below f1 d1 ) ∪ dom (dispose1-above f1 d1 s1 ))

= {below ,d1+s1}
by (metis Un-insert-left above-dom abovenotempty dom-below sup-bot-left)

have min-loc-shape: min-loc (dispose1-ext f1 d1 s1 ) = below
by (metis dom-below insert-not-empty min-below-notempty singleton-iff )

have sum-size-shape: sum-size (dispose1-ext f1 d1 s1 )
= the (f1 (d1 + s1 )) + the (f1 below) + s1

proof -
have sum-size-above-below : sum-size (dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 )

= the (f1 (d1 + s1 )) + the (f1 below)
by (simp add : sum-size-munion finite-dispose1-above finite-dispose1-below abovenotempty

belownotempty above-sumsize sum-size-below)
then show ?thesis unfolding dispose1-ext-def
proof (subst sum-size-munion)

show finite (dom (dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 )) and
finite (dom [d1 7→ s1 ])

by (simp-all add : finite-dispose1-above finite-dispose1-below k-finite-munion)
next
show dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 6= empty
and [d1 7→ s1 ] 6= empty
by (auto simp: munion-notempty-right belownotempty)

next
from d1-not-above-below show dom (dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 ) ∩

dom [d1 7→ s1 ] = {}
by simp

next
show sum-size (dispose1-above f1 d1 s1 ∪m dispose1-below f1 d1 ) + sum-size [d1 7→ s1 ]

= the (f1 (d1 + s1 )) + the (f1 below) + s1
by (simp add : sum-size-above-below sum-size-singleton)

qed
qed
show ?thesis unfolding retr0-def

proof (simp add : sum-size-shape min-loc-shape above-below-shape, subst locs-unionm-singleton)
show nat1 (the (f1 (d1 + s1 )) + the (f1 below) + s1 ) by (metis nat1-dispose1-ext

sum-size-shape)
next
show nat1-map ({below , d1 + s1} -/ f1 ) by (metis dom-ar-nat1-map nat1f1 )

next
show below /∈ dom ({below , d1 + s1} -/ f1 ) by (metis insertI1 l-dom-ar-notin-dom-or)

next
show locs ({below , d1 + s1} -/ f1 ) ∪ locs-of below (the (f1 (d1 + s1 )) + the (f1 below) +

s1 ) = locs f1 ∪ locs-of d1 s1
proof -

have ∗: (locs ({below , d1 + s1} -/ f1 )) = locs ( {below} -/ ({d1 + s1} -/ f1 ))
by (metis Un-empty-left Un-insert-left l-dom-ar-accum)

show ?thesis
proof (subst ∗, subst dom-ar-locs)

show finite (dom ({d1 + s1} -/ f1 )) by (metis finite-Diff finitef1 l-dom-dom-ar)
next
show nat1-map ({d1 + s1} -/ f1 ) by (metis dom-ar-nat1-map nat1f1 )
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next
show Disjoint ({d1 + s1} -/ f1 ) by (metis disjf1 dom-ar-Disjoint)

next
show below ∈ dom ({d1 + s1} -/ f1 )

by (metis (mono-tags) after-locs-of-not-in-locs belowinf1 belowplusf1below
inf .commute inf-nat-def l1-invariant-def l-in-dom-ar nat1f1 nat-min-absorb1
not-dom-not-locs-weaken singletonE)

next
show locs ({d1 + s1} -/ f1 ) - locs-of below (the (({d1 + s1} -/ f1 ) below)) ∪

locs-of below (the (f1 (d1 + s1 )) + the (f1 below) + s1 )
= locs f1 ∪ locs-of d1 s1

proof (subst dom-ar-locs, rule finitef1 , rule nat1f1 , rule disjf1 )
show d1 + s1 ∈ dom f1 by (metis above-d1s1-in-f1 abovenotempty)

next

have ∗: the (({d1 + s1} -/ f1 ) below) = the (f1 below)
by (metis belowplusf1below d1notinf1 domIff dom-antirestr-def inf .commute inf-nat-def

nat-min-absorb1 singletonE)
show locs f1 - locs-of (d1 + s1 ) (the (f1 (d1 + s1 )))

- locs-of below (the (({d1 + s1} -/ f1 ) below))
∪ locs-of below (the (f1 (d1 + s1 )) + the (f1 below) + s1 )
= locs f1 ∪ locs-of d1 s1

proof(subst ∗)
have locs-of below (the (f1 (d1 + s1 )) + the (f1 below) + s1 )

= locs-of below (the (f1 below) + (the (f1 (d1 + s1 )) + s1 ))
by (metis nat-add-commute nat-add-left-commute)

also have ... = (locs-of below (the (f1 below))) ∪
(locs-of (below + (the (f1 below))) (the (f1 (d1 + s1 )) + s1 ))

apply (subst locs-of-sum-range)
apply (metis belowinf1 nat1-map-def nat1f1 )
apply (simp add : nat1s1 )
apply (rule disjI2 )
apply (metis nat1-def nat1s1 )
by simp

also have ... = (locs-of below (the (f1 below)))
∪ (locs-of d1 (s1 + the (f1 (d1 + s1 ))))

by (metis belowplusf1below nat-add-commute)
also have ... = (locs-of below (the (f1 below)))
∪ (locs-of d1 s1 ) ∪ (locs-of (d1+s1 ) (the (f1 (d1 + s1 ))))
apply (subst locs-of-sum-range)
apply (metis nat1s1 )
apply (metis above-d1s1-in-f1 abovenotempty nat1-map-def nat1f1 )
by auto

finally have ∗∗∗: locs-of below (the (f1 (d1 + s1 )) + the (f1 below) + s1 )
= (locs-of below (the (f1 below)))
∪ (locs-of (d1+s1 ) (the (f1 (d1 + s1 )))) ∪ (locs-of d1 s1 )

by auto
show locs f1 - locs-of (d1 + s1 ) (the (f1 (d1 + s1 ))) - locs-of below (the (f1

below)) ∪ locs-of below (the (f1 (d1 + s1 )) + the (f1 below) + s1 ) =
locs f1 ∪ locs-of d1 s1

proof (subst ∗∗∗)
show locs f1 - locs-of (d1 + s1 ) (the (f1 (d1 + s1 ))) - locs-of below (the (f1

below)) ∪
(locs-of below (the (f1 below)) ∪

locs-of (d1 + s1 ) (the (f1 (d1 + s1 ))) ∪ locs-of d1 s1 ) =
locs f1 ∪ locs-of d1 s1
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APPENDIX F. HEAP LEMMAS AND PROOFS (IAIN)

proof(subst g3-lemma)
show locs-of (d1 + s1 ) (the (f1 (d1 + s1 ))) ⊆ locs f1 by (metis above-d1s1-in-f1

abovenotempty l-locs-of-within-locs nat1f1 )
next

show locs-of below (the (f1 below)) ⊆ locs f1 by (metis belowinf1 l-locs-of-within-locs
nat1f1 )

next
show locs f1 ∪ locs-of d1 s1 = locs f1 ∪ locs-of d1 s1 by (rule refl)

qed
qed

qed
qed

qed
qed

qed
qed

qed
qed

qed
qed

qed
qed

end

211



Appendix G

Earlier Heap models using ZEves

In this chapter we refer to the two technical reports / documents about the AI4FM first attempts
at the heap problem. They are available through the AI4FM website1 and include three versions
of the Z/EVES models. The versions can be found at these links below.

• Z/EVES heap level 0 and 1 (v0) = TR-ZEVES-heapL0L1-v0.pdf

• Z/EVES heap level 0 and 1 (v1) = TR-ZEVES-heapL0L1-v1.pdf

• Z/EVES heap level 0 and 1 (v2) = TR-ZEVES-heapL0L1-v2.pdf

1http://www.ai4fm.org/tr
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