
 

 

COMPUTING 
SCIENCE 

Reasoning about concurrent programs: Refining rely-guarantee 
thinking 
 
 
I.J. Hayes, C.B. Jones and R.J. Colvin 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TECHNICAL REPORT SERIES 
 

No. CS-TR-1395 September 2013 



TECHNICAL REPORT SERIES 
              
 
No. CS-TR-1395  September, 2013 
 
Reasoning about concurrent programs: Refining rely-guarantee 
thinking 
 
I.J. Hayes, C.B. Jones and R.J. Colvin 
 
Abstract 
 
Interference is the essence of concurrency and it is what makes reasoning about 
concurrent programs difficult. The fundamental insight of rely-guarantee thinking is 
that stepwise design of concurrent programs can only be compositional in 
development methods that offer ways to record and reason about interference. In this 
way of thinking, a rely relation records assumptions about the behaviour of the 
environment, and a guarantee relation records commitments about the behaviour of 
the process.  The standard application of these ideas is in the extension of Hoare-like 
inference rules to quintuples that accommodate rely and guarantee conditions. In 
contrast, in this paper, we embed rely-guarantee thinking into a refinement calculus 
for concurrent programs, in which programs are developed in (small) steps from an 
abstract specification. As is usual, we extend the implementation language with 
specification constructs (the extended language is sometimes called a wide-spectrum 
language), in this case adding (in addition to pre and postconditions) two new 
commands: a guarantee command guar(g)(c) whose valid behaviours are in accord 
with the command c but all of whose atomic steps also satisfy the relation g, and a 
rely command rely(r)(c) whose behaviours are like c provided any interference steps 
from the environment satisfy the relation r. The theory of concurrent program 
refinement is based on a theory of atomic program steps and more powerful 
refinement laws, most notably, a law for decomposing a specification into a parallel 
composition, are developed from a small set of more primitive lemmas, which are 
proved sound with respect to an operational semantics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2013 Newcastle University. 
Printed and published by Newcastle University, 
Computing Science, Claremont Tower, Claremont Road, 
Newcastle upon Tyne, NE1 7RU, England. 



Bibliographical details 
 
HAYES, I.J., JONES, C.B., COLVIN, R.J. 
 
Reasoning about concurrent programs: Refining rely-guarantee thinking 
[By] I.J. Hayes, C.B. Jones, R.J. Colvin 
 
Newcastle upon Tyne: Newcastle University: Computing Science, 2013. 
 
(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1395) 
 
Added entries 
 
NEWCASTLE UNIVERSITY 
Computing Science. Technical Report Series.  CS-TR-1395 
 
Abstract 
 
Interference is the essence of concurrency and it is what makes reasoning about concurrent programs difficult. The 
fundamental insight of rely-guarantee thinking is that stepwise design of concurrent programs can only be 
compositional in development methods that offer ways to record and reason about interference. In this way of 
thinking, a rely relation records assumptions about the behaviour of the environment, and a guarantee relation 
records commitments about the behaviour of the process.  The standard application of these ideas is in the 
extension of Hoare-like inference rules to quintuples that accommodate rely and guarantee conditions. In contrast, 
in this paper, we embed rely-guarantee thinking into a refinement calculus for concurrent programs, in which 
programs are developed in (small) steps from an abstract specification. As is usual, we extend the implementation 
language with specification constructs (the extended language is sometimes called a wide-spectrum language), in 
this case adding (in addition to pre and postconditions) two new commands: a guarantee command guar(g)(c) 
whose valid behaviours are in accord with the command c but all of whose atomic steps also satisfy the relation g, 
and a rely command rely(r)(c) whose behaviours are like c provided any interference steps from the environment 
satisfy the relation r. The theory of concurrent program refinement is based on a theory of atomic program steps 
and more powerful refinement laws, most notably, a law for decomposing a specification into a parallel 
composition, are developed from a small set of more primitive lemmas, which are proved sound with respect to an 
operational semantics. 
 
About the authors 
 
Prof. Ian J. Hayes has spent several periods at the School of Computing Science and these have resulted in joint 
publications (including several with Prof. Cliff Jones). He is now pursuing joint research which will result in 
further papers. Prof. Hayes also gives seminars at the School. He has given keynote presentations at five 
conferences in the last ten years including: the International Conference on Theoretical Aspects of Computing 
2010 and the International Symposium on Unifying Theories of Programming 2006. He also won the best paper 
(joint with Dr. R. Colvin) at the 7th International Conference on Integrated Formal Methods in 2009. Prof. Hayes’s 
interests include: Software engineering; formal specification of computing systems; software development based 
on mathematical principles; real-time systems; fault-tolerant systems; concurrent systems. 
 
Cliff B. Jones is currently Professor of Computing Science at Newcastle University. As well as his academic 
career, Cliff has spent over 20 years in industry. His 15 years in IBM saw among other things the creation –with 
colleagues in Vienna– of VDM which is one of the better known “formal methods”. Under Tony Hoare, Cliff 
wrote his doctoral thesis in two years. From Oxford, he moved directly to a chair at Manchester University where 
he built a world-class Formal Methods group which –among other projects– was the academic lead in the largest 
Software Engineering project funded by the Alvey programme (IPSE 2.5 created the “mural” (Formal Method) 
Support Systems theorem proving assistant). He is now applying research on formal methods to wider issues of 
dependability. He is PI of two EPSRC-funded responsive mode projects “AI4FM” and "Taming Concurrency", CI 
on the Platform Grant TrAmS-2 and also leads the ICT research in the ITRC Program Grant. Cliff is a Fellow of 
the Royal Academy of Engineering (FREng), ACM, BCS, and IET. He has been a member of IFIP Working 
Group 2.3 (Programming Methodology) since 1973. 
 
Dr Robert Colvin completed a PhD in theoretical computer science in 2002, followed by a postdoc position 
researching analysis techniques for highly parallel algorithms, before taking a postdoc position at the ARC Centre 
for Complex Systems, using mathematically-based approaches to modelling large software and hardware systems. 
In addition, he began collaborating with neuroscientists in applying modelling techniques to the behaviour of the 
brain, looking specifically at fear conditioning in rats. In 2009 he started work for the Queensland Brain Institute, 
building on his experience in cross-disciplinary and neuroscience research: connecting neuroscience, psychology, 
and education, towards the new international research initiative, The Science of Learning. 
 
Suggested keywords 
 
REFINEMENT CALCULUS 
RELY-GUARANTEE REASONING 

http://www.ncl.ac.uk/computing/people/profile/cliff.jones


Reasoning about concurrent programs:
Refining rely-guarantee thinking

Ian J. Hayes∗, Cliff B. Jones†, Robert J. Colvin‡

5 October 2013

Abstract

Interference is the essence of concurrency and it is what makes reasoning about concurrent pro-
grams difficult. The fundamental insight of rely-guarantee thinking is that stepwise design of con-
current programs can only be compositional in development methods that offer ways to record and
reason about interference. In this way of thinking, a rely relation records assumptions about the be-
haviour of the environment, and a guarantee relation records commitments about the behaviour of
the process. The standard application of these ideas is in the extension of Hoare-like inference rules
to quintuples that accommodate rely and guarantee conditions. In contrast, in this paper, we embed
rely-guarantee thinking into a refinement calculus for concurrent programs, in which programs are
developed in (small) steps from an abstract specification. As is usual, we extend the implementation
language with specification constructs (the extended language is sometimes called a wide-spectrum
language), in this case adding (in addition to pre and postconditions) two new commands: a guarantee
command (guar g • c) whose valid behaviours are in accord with the command c but all of whose
atomic steps also satisfy the relation g, and a rely command (rely r • c) whose behaviours are like c
provided any interference steps from the environment satisfy the relation r. The theory of concurrent
program refinement is based on a theory of atomic program steps and more powerful refinement laws,
most notably, a law for decomposing a specification into a parallel composition, are developed from a
small set of more primitive lemmas, which are proved sound with respect to an operational semantics.

Keywords Refinement calculus, rely-guarantee reasoning

∗School of Information Technology and Electrical Engineering, The University of Queensland, Australia
†School of Computing Science, Newcastle University, UK
‡Queensland Brain Institute, The University of Queensland, Australia

1



Contents
1 Introduction 3

2 Programming language and refinement 5
2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Program refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Basic properties of the refinement calculus . . . . . . . . . . . . . . . . . . . . . . . . 8

3 The guarantee command 11
3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Defining the guarantee command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Properties of atomic steps and iterations . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Properties of strict conjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5 Laws for refining guarantee commands . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Tests and control structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 Frames and assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.8 Local variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9 Guarantee invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10 Extended example (sequential version) . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 The rely command 24
4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Properties of interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Fundamental properties of rely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Laws for refining rely commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Parallel refinement 33

6 Trading postconditions with rely and guarantee 35

7 Specifications and rely commands 37
7.1 Local variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8 Control structures and rely commands 41

9 Extended example (concurrent version) 45
9.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.2 Representing t using two variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.3 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.4 Refining the branches to code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.5 Collected code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

10 Conclusions 48

A A rely-able semantics 51
A.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2 Interpretation of programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.3 Operational semantics of expression evaluation . . . . . . . . . . . . . . . . . . . . . 52
A.4 Operational semantics of primitive code commands . . . . . . . . . . . . . . . . . . . 52
A.5 Semantics of tests and specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.6 Propagating terminated behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B Proofs of lemmas 56

2



1 Introduction

The rely-guarantee rules of Jones (1981, 1983) provide a compositional approach to reasoning about
concurrent processes (the most accessible reference is (Jones 1996); an exhaustive analysis of various
compositional and non-compositional approaches can be found in (de Roever 2001)). Based on many
other contributions such as (Stølen 1990; Collette and Jones 2000; Coleman and Jones 2007) these rules
have been absorbed into a more general rely-guarantee “thinking” as exemplified in (Jones and Pierce
2011).

The basic rely-guarantee idea is simple: in order to develop a concurrent process c separately from
its surrounding components, one needs to take into account interference from the processes which form
the (parallel) environment of c. This is done by assuming that any interleaving step of the environment
of c satisfies a rely condition r. The rely condition records assumptions the developer is invited to
make about possible interference from the environment. Conversely, each process is associated with a
guarantee condition, which must be proved to be the limit of interference that it can inflict on the other
processes in its environment. Both rely and guarantee are expressed as binary relations over states.

When an (abstract) specification is refined into a parallel composition of specified components,
each component specification, s, has an associated rely condition, r, and guarantee condition, g. A
specification s is refined assuming the interference steps of the environment are bounded by r, but the
refinement must also ensure every atomic step taken by the implementation is bounded by g. From
a developer’s point of view, the stronger the rely and the weaker the guarantee of s the easier it is to
implement; the trade off is that s “works” in fewer contexts, and can cause more interference to other
processes, each of which reduces its usefulness.

The aim of this paper is to develop a theory of concurrent program refinement based on a theory of
atomic program steps. To support rely-guarantee reasoning, separate specification language constructs
are introduced to support guarantee (guar g • c) and rely conditions (rely r • c). These constructs are
defined in terms of the theory of atomic program steps and a set of program refinement laws are proven
in terms of the basic algebraic laws of the underlying theory.

To simplify reasoning about types and invariants in the refinement calculus, Morgan and Vickers
(1994) introduced an “invariant command”: (inv p • c). A step of the execution of c is allowed by
(inv p • c) only if the step maintains the invariant p (a predicate of a single state). If in a particular
state the only steps available to c would all break p, then (inv p • c) is infeasible (in refinement calculus
terms; also known as unsatisfiable in VDM).

The way in which an invariant constrains a program is similar to the way in which a guarantee con-
strains a program: an invariant constrains each state, while a guarantee constrains each atomic transition
between states. This was already noted in (Collette and Jones 2000) but here the similarity is taken
further in that a novel command of the form (guar g • c) is introduced. The idea behind this new com-
mand was motivated by the analogy with the invariant command of Morgan and Vickers. The command
(guar g • c) behaves as c but it only allows atomic program steps which either stutter or satisfy the rela-
tion g between their before-state and after-state. Any step that c alone could take that does not stutter or
satisfy g is not a valid step for (guar g • c). If in a particular state σ the only steps available to c would
neither stutter nor satisfy g, then (guar g • c) is not feasible in σ. The stuttering steps allow a process
to perform internal steps that do not affect the shared state. The definition of the guarantee command is
given in terms of a more primitive strict conjunction operator (c e d) in which every atomic step of c e d
must be a valid atomic step of both c and d.

The sequential refinement calculus makes use of a specification command of the form
[
p, q

]
, in

which p is a predicate giving its precondition and q is a relation (expressed as a two-state predicate)
giving its postcondition (Morgan 1988). When started in a state satisfying p any implementation of[
p, q

]
must terminate in a state such that the initial and final states are related by q. For any initial state

that satisfies p, the command (guar g •
[
p, q

]
) not only satisfies the postcondition q but also only uses

atomic steps which each satisfy the relation g or stutter. At this level there is no particular notion of
granularity of atomicity; all that is required is that the atomic program steps (whatever they turn out to
be) of any implementation of (guar g •

[
p, q

]
) all individually satisfy g or stutter, while the complete

3



sequence of steps satisfies q.
The main advantage in introducing the guarantee command is that it facilitates the separation of

the concern of refining a command from that of showing that the refined code adheres to a guarantee.
Because the guarantee command is monotonic with respect to refinement of the command in its body, the
body can be refined and then a separate set of refinement laws can be used to distribute and eliminate the
guarantee.1 There is one caveat though: a valid refinement of the body may introduce steps that become
infeasible when constrained by the guarantee. This means that in doing the refinement one needs to be
aware of the enclosing guarantee context in order to ensure that the refinement respects it. The guarantee
command also provides a novel simple definition of framing for a command c, i.e. specifying the set of
variables c may modify. Section 3 explores guarantee commands in detail.

Standard sequential refinements are only valid if the interference from the environment is restricted
to stuttering steps and hence in order to preserve sequential refinements in our concurrent theory, a
specification is defined to abort if the environment does a non-stuttering step. In order to specify a
construct that meets a pre-post specification in the context of interference from the environment bounded
of a relation r, we make use of a novel command of the form (rely r • c), which is an “implementation”
of c provided interference from the environment respects the rely condition r. The relation r records
an assumption about every atomic step of the environment of the command: either the step satisfies r
or it stutters. The command 〈r ∨ id〉∗ represents any finite number, zero or more, of atomic steps that
satisfy the relation r or the identity relation id (i.e. stuttering). For a specification

[
p, q

]
, the command

(rely r •
[
p, q

]
) if run in parallel with interference bounded by r refines (v) the specification

[
p, q

]
,

i.e. [
p, q

]
v (rely r •

[
p, q

]
) ‖ 〈r ∨ id〉∗ .

The stronger the rely condition, the more constrained the acceptable environments and hence the easier
it is to implement

[
p, q

]
. The empty relation is the strongest rely condition: it represents only stuttering

interference from the environment. Common rely conditions are those that require certain variables are
not modified, or those that restrict the way in which variables may change (e.g. only increase). Section
4 explores rely commands in detail as well as combining rely and guarantee commands.

Earlier justifications of the proof obligation generation for rely/guarantee conditions had to confront
the complete set of assumptions and commitments at once. Prensa Nieto (2001, 2003) limits the task
both by making rather draconian limits on the nesting of parallelism and by simplifying assumptions
about atomicity; she does however succeed in providing a complete Isabelle-checked proof. In con-
trast, (Jones 1981; Coleman and Jones 2007) only offer proof outlines but do make minimal atomicity
assumptions and use a language with arbitrarily nested parallelism. In this paper, it is only necessary
to justify that about two dozen basic lemmas respect the semantic model: all of the laws are derived
from this basic set. Section 5 gives derivations of the laws for introducing parallel compositions from
the properties of the guarantee and rely commands and Section 6 extends these laws to allow trading
of conditions between the postcondition of a specification and rely and guarantee conditions. These
proofs give further insight into the way in which rely and guarantee combine to enable reasoning about
concurrent programs.

As well as introducing parallel compositions, our laws need to handle refining the individual pro-
cesses in the presence of interference. Refining specifications to sequential compositions, atomic steps
and assignments is treated in Section 7. In situations in which the environment does not modify any of
the variables used (read or written) by a process, sequential refinement laws can be used. To accom-
modate this in the theory another command, (uses X • c), is introduced; it restricts c to only access
variables in the set X. Reasoning about control structures in the presence of interference requires ac-
cepting that interference can affect test evaluation; furthermore, showing termination of loops requires
reasoning about the effect of the interference on a well-founded relation. These issues are addressed in
Section 8. Section 9 applies the laws to a concurrent example. The semantics of the language is given
in Appendix A and proofs of the basic lemmas are contained in Appendix B.

1In saying this, there is no suggestion that the advantages of “rely-guarantee thinking” in providing a top-down development
method should be forgotten.

4



Our motivation is to provide a theory for reasoning about concurrent programs based on a set of
basic laws for primitives that allow more complex laws to be derived as needed. Hence –to illustrate
that the theory does allow this– we have given the proofs of the derived laws in terms of the basic laws
and other derived laws. To get a flavour for the theory, the reader could skip the proofs on first reading.

2 Programming language and refinement

Expressions Let v be a value, x be a variable, “⊕” stand for a binary operator and “	” stand for a
unary operator.

e ::= v | x | e1 ⊕ e2 | 	 e

Basic commands Let p be a predicate, q be a relation, C a set of commands, b a boolean expression,
X a set of variables, x a variable, and v a value.

c ::= nil | abort | 〈p, q〉 |
[
q
]
| {p}c | ⊔C | c1 e c2 | c1 ; c2 | c1 ‖ c2 | [[b]] |

c∗ | c∞ | cω | uses X • c | state x 7→ v • c | env r • c

Figure 1: Syntax of expressions and basic commands

2.1 Syntax
Assume a set of variables Var and values Val. The syntax of expressions and commands is given in Fig-
ure 1. The primitive nil represents a terminated command and abort a command that has gone astray.
The command 〈p, q〉, where p is a single state precondition and q is a relation, may abort if p does not
hold but otherwise performs a single atomic step that satisfies relation q between its before and after
states. The specification command

[
q
]

may take any finite number (zero or more) of atomic steps to
achieve the relation q between its before and after states. The preconditioned command {p}c behaves
as c if p holds initially, otherwise it aborts. The operator “ ⊔” is used for (demonic) nondeterministic
choice from a set of commands, “e” is used for strict conjunction of commands (a specification rather
than implementation construct — see Section 3), and “;” and “‖” are used for sequential and parallel
composition, respectively. Sequential composition has a higher precedence than the other binary op-
erators. The command [[b]] tests condition b and may either succeed or fail depending on whether b
evaluates to true or false, or it may abort if evaluation of the expression is undefined, (e.g. division by
zero); tests are used to define the “if” and “while” commands. A command may be iterated a finite num-
ber of times (c∗ for zero or more and c+ for one or more), an infinite number of times (c∞), and either
a finite or infinite number of times (cω). The “uses” command restricts its body to only use (read and
write) variables within the set X. A local state command (state x 7→ v • c) behaves as c but encapsulates
x as a local variable with initial value v. The command (env r • c) behaves as c if all the environment
steps satisfy r but otherwise aborts; it is used to simplify some proofs in the theory.

Figure 2 gives a set of derived commands that are defined in terms of the basic commands. Note that
assignment is not a primitive but is defined in terms of a nondeterministic choice over all possible values,
v, such that the test [[e = v]] succeeds, followed by an atomic update of x to be v. The nondeterminism
is needed because the evaluation of e may take place in an environment in which the variables in e are

2The notation {v ∈ V • f} is often written {f | v ∈ V} but it is preferable not to use the latter because it is ambiguous as to
whether v is bound within the set comprehension or a free variable being tested for membership of V .

5



Let p be a predicate, q be a relation, c, c0 and c1 be commands, b a boolean expression, e an expression,
x a variable, and Val the set of values. For a set of variables X, the relation id(X) is the identity relation
on X. For a variable x, x̄ is the set of all variables other than x.

〈q〉 =̂ 〈true, q〉 (1)[
p, q

]
=̂ {p}

[
q
]

(2)
magic =̂ ⊔{} (3)

c0 u c1 =̂ ⊔{c0, c1} (4)
c+ =̂ c∗ ; c (5)

cω+ =̂ cω ; c (6)
if b then c0 else c1 =̂ ([[b]] ; c0) u ([[¬ b]] ; c1) (7)

while b do c =̂ ([[b]] ; c)ω ; [[¬ b]] (8)
x := e =̂ ⊔{v ∈ Val • [[e = v]] ; 〈x′ = v ∧ id(x̄)〉} (9)

var x • c =̂ ⊔{v ∈ Val • (state x 7→ v • c)} (10)

The notation {v ∈ V • f} stands for the set of values of the expression f for v in the set V .2

Figure 2: Derived commands

being (concurrently) modified, and so there may be many possible final values v which can be assigned
to x. A local variable block (var x • c) encapsulates x as a local variable with an arbitrarily chosen
initial value.

The language does not include procedures but (as usual) the main concern with adding procedures
is the possibility of introducing variable aliasing via the parameter passing mechanism. To simplify the
presentation, our language does not allow aliasing but we note below any places that would be impacted
by aliasing.

The syntax of predicates and relations is not given in detail here. A relation is expressed as a
predicate over a pair of states: the before state is represented by unprimed variables and the after state
by primed variables. The notation p0 V p1 means p0 implies p1 for all states, and q0 V q1 means q0

implies q1 for pairs of before and after states. The composition of two relations q0 and q1 is defined by

q0
o
9 q1 =̂ (∃Var′′ • q0[Var′′/Var′] ∧ q1[Var′′/Var]) (11)

in which the final state variables of the first relation (Var′) and the initial state variables of the second
relation (Var) are identified by replacing them both with fresh intermediate state variables Var′′. The
reflexive, transitive closure of a relation r is denoted by r∗.

2.2 Program refinement
The refinement calculus (Back 1981; Morris 1987; Morgan 1988; Morgan 1994; Morgan and Vickers
1994; Back and von Wright 1998) provides a systematic approach to program development based on
step-wise refinement from a specification to code. A key concept is that the development takes place
using a wide-spectrum language, which includes implementation constructs as well as specification
constructs that are not directly executable. The process of refinement is to transform the specification
into code in small steps, some of which may generate proof obligations.

The sequential refinement calculus introduced a specification as a command
[
p, q

]
in the language,

encapsulating pre and post conditions. In this paper as well as the specification command we introduce
two new commands (guar g • c) and (rely r • c) which extend the expressive power of specifications to
allow reasoning about interference between concurrently executing commands. The most general form

6



of specification is thus (guar g • (rely r •
[
p, q

]
)). The statement that this specification is refined by a

command c is written

(guar g • (rely r •
[
p, q

]
)) v c

and is equivalent to the Jones-style five tuple {p, r} c {g, q}.
In the standard sequential refinement calculus, refinement of a command c by a command d, written

c v d, is defined in terms of weakest precondition predicate transformers but because we wish to deal
with concurrent execution of processes, this form of semantics is inadequate. Instead we use an opera-
tional semantics based on traces formed from atomic steps (detailed in Appendix A). In order to handle
specifications with rely conditions, we use a form a trace invented by Aczel (1983), which distinguishes
program steps and environment steps (de Boer, Hannemann, and de Roever 1999; de Roever 2001). We
use the word “step” to always mean atomic step.

A state is a total mapping from program variable names (Var) to values (Val). Each atomic step of
a program, α ∈ L, is either a program step, π(σ, σ′), or an environment step, ε(σ, σ′), where σ and σ′

represent the pre (before) and post (after) states of a step.

Σ =̂ Var → Val
pre(π(σ, σ′)) =̂ σ post(π(σ, σ′)) =̂ σ′

pre(ε(σ, σ′)) =̂ σ post(ε(σ, σ′)) =̂ σ′

A trace t is a sequence of steps, which may be finite or infinite in length (i.e. t ∈ Lω), and which must
be consistent, that is, the post state of any step in t always matches the pre state of the next step in t.
Indices of sequences start from zero.

consistent(t) =̂ ∀ i ∈ dom(t)− {0} • post(t(i− 1)) = pre(t(i)) (12)
Trace =̂ {t : L ω | consistent(t)} (13)

The domain, dom(t), of a sequence is the set of valid indices of t and its range, ran(t), is the set of
elements in the sequence. The semantics of a command c is represented by a set of traces, [[c]], which
is determined by the operational semantics given in Appendix A. Often we wish to restrict ourselves to
traces of c in a particular environment; given a trace t, its environment may be extracted by collecting
the pairs of states in each environment step.

env(t) =̂ {(σ, σ′) | ε(σ, σ′) ∈ ran(t)} (14)

The traces of c for which the environment steps are restricted to satisfy r or stutter (i.e. satisfy id) are
defined as follows.

[[c]]r =̂ {t ∈ [[c]] | env(t) ⊆ r ∨ id} (15)

Refinement of a command c by a command d in environment r requires that all traces of d in environment
r are traces of c. Refinement is a pre-order.

Definition 1 (refinement-in-context) For any relation r and commands c and d,

c vr d =̂ [[d]]r ⊆ [[c]] (16)
c =r d =̂ (c vr d) ∧ (d vr c) (17)

Note that (16) is also equivalent to [[d]]r ⊆ [[c]]r. Sequential refinement corresponds to refinement in a
context in which the environment may only stutter: c vid d. Refinement in any context corresponds to
choosing r to be the universal relation true because this allows any environment steps.3

3Because our specification constructs allow for stuttering steps in their traces and we are concerned with refinement from a
specification to program code, rather than program equivalence, our refinement relation does not need to be complicated by issues
of stuttering and mumbling equivalence (Brookes 2007; Dingel 2002).

7



Definition 2 (refinement) For and commands c and d,

c v d =̂ c vtrue d

c = d =̂ (c v d) ∧ (d v c)

Strengthening the environment assumption preserves refinement. In particular, if c v d then c vr d, for
any r.

Law 3 (refinement-monotonic) For any commands c and d and relations r0 and r1, if r0 V r1 ∨ id
and c vr1 d, then c vr0 d.

Proof. As r0 V r1 ∨ id by (15), [[d]]r0 ⊆ [[d]]r1 and by Definition 1 (refinement-in-context) [[d]]r1 ⊆ [[c]]
and hence the result follows by transitivity. 2

A trace t has only a finite number of program steps if an index in t may be found after which all
steps are environment steps.

finite pgm steps(t) =̂ (∃ i ∈ dom(t) • (∀ j ∈ dom(t) • i < j⇒ (∃σ, σ′ • t(j) = ε(σ, σ′))))

We say a command c stops from an initial state σ in environment r if all traces of c in environment r that
start from σ have only a finite number of program steps. We use the abbreviations pre(t) for pre(t(0))
and post(t) for post(t(#t − 1)).

Definition 4 (stops) For any relation r and command c,

stps(c, r)(σ) =̂ (∀ t ∈ [[c]]r • (σ = pre(t))⇒ finite pgm steps(t))

Note that we do not make any fairness assumptions in the semantics, and hence the set of traces of c
may include traces where c is interrupted forever by the environment. Such traces are “stopped” by the
above definition. However the presence of these traces does not change the set of states stps(c, r), as the
corresponding uninterrupted traces must also be considered in determining which states are in the set.

2.3 Basic properties of the refinement calculus

We use the term “lemma” to refer to a basic property of a language construct for which the proof is
dependent on the operational semantics of that construct, and the term “law” for more general properties
of all constructs or properties that are proven from the basic lemmas and other laws. Proofs of most of
the basic lemmas may be found in Appendix B.

A preconditioned command {p}c aborts if p is false in the initial state (i.e. before any execution
steps, even environment steps, have taken place); if p holds in the initial state, the behaviour of {p}c is
identical to that of c.4

Lemma 5 (precondition-traces) For any predicate p and command c,

[[{p}c]] = {t ∈ Trace | pre(t) ∈ p⇒ t ∈ [[c]]}
{p}c vr d ⇔ (∀ t ∈ [[d]]r • pre(t) ∈ p⇒ t ∈ [[c]])

Hence preconditioned commands satisfy the properties in Law 6 (precondition). As these properties are
so basic, we often make use of them without explicit reference to this lemma.

4In the sequential refinement calculus, often {p} is defined as a separate command and {p}c as a sequential composition of
{p} and c. Here that is not the case: {p}c is a preconditioned command. The difference is that there may be (environment)
execution steps associated with {p} if it is treated as a separate command; that is not the case with the preconditioned command
form used here.

8



Law 6 (precondition) For any predicates p, p0 and p1, relation r and commands c and d,

{true}c = c (18)
{false}c = abort (19)
{p0}{p1}c = {p0 ∧ p1}c (20)
(p0 V p1) ⇒ ({p0}c v {p1}c) (21)

({p}c vr {p}d) ⇔ ({p}c vr d) (22)
stps({p}c, r) ≡ p ∧ stps(c, r) (23)

Lemma 7 (parallel-precondition) For any predicate p, and commands c and d,

{p}(c ‖ d) = ({p}c) ‖ ({p}d)

A specification
[
p, q

]
is defined to achieve q between its before and after states provided p holds

initially and the environment only stutters; if the environment does a non-stuttering step the specification
aborts. To handle an environment other than stuttering, a specification needs to be enclosed in a rely
command (rely r •

[
p, q

]
), where the relation r bounds the interference from the environment. The only

interesting case for refinement of a specification without a rely condition is refinement in an environment
of id, because a specification command is defined to abort in any other environment.

Lemma 8 (refine-specification) For any predicate p, relation q, and command c,

(
[
p, q

]
v c) ⇔ (

[
p, q

]
vid c)

As a result of this property one can use “v” in place of “vid” whenever the left side of a refinement is
a specification.

Lemma 9 (specification-term) For any predicate p and relations q and r,

stps(
[
p, q

]
, r) = p, if r V id

stps(
[
p, q

]
, r) = false, if r 6V id

Lemma 10 (make-atomic) For any predicate p and relation q,
[
p, q

]
v 〈p, q〉.

Some basic laws from the sequential refinement calculus are still valid in our extended language.

Lemma 11 (consequence) For any predicates p0 and p1, and relations q0 and q1, provided p0 V p1

and p0 ∧ q1 V q0,

〈p0, q0〉 v 〈p1, q1〉 (24)[
p0, q0

]
v

[
p1, q1

]
(25)

Lemma 12 (sequential) For any predicates p0 and p1, and relations q, q0 and q1, such that p0 ∧
((q0 ∧ p′1) o

9 q1) V q,[
p0, q

]
v

[
p0, q0 ∧ p′1

]
;
[
p1, q1

]
The traces of a nondeterministic choice over a set of commands consists of the union of their traces.

Lemma 13 (nondeterminism-traces) For a set of commands C,

[[ ⊔C ]] =̂
⋃
{c ∈ C • [[c]]}

Nondeterministic choice has a unit of magic and a zero of abort. Nondeterministic choice is the greatest
lower bound with respect to the refinement ordering and hence satisfies the following laws.

9



Law 14 (nondeterministic-choice) For any relation r, command c and set of commands C,

(∀ d ∈ D • (∃ c ∈ C • c vr d)) ⇒ ( ⊔C) vr ( ⊔D) (26)
c ∈ C ⇒ ( ⊔C) vr c (27)

(∀ d ∈ D • c vr d) ⇒ c vr ( ⊔D) (28)

Proof. The proof of (26) follows from Lemma 13 (nondeterminism-traces) and Definition 1 (refinement-
in-context). The other two parts are special cases of (26) given that c = ⊔{c}. 2

In the sequential refinement calculus the specification
[
def (b), b ∧ id

]
, where predicate def (b)

holds if and only if b is defined (e.g. not the result of a division by zero), can be used to represent
test evaluation in the definitions of conditional and loop commands. Such a definition is inadequate
in the context of concurrent interference and hence here test evaluation is represented by the separate
command [[b]], which is defined operationally in Appendix A. A test [[b]] refines

[
def (b), b ∧ id

]
in an

environment consisting of only stuttering. If b evaluates to false the test is infeasible.

Lemma 15 (introduce-test) For any boolean expression b,
[
def (b), b ∧ id

]
v [[b]] .

Finite iteration (c∗), infinite iteration (c∞) and possibly infinite iteration (cω) of commands are defined
via greatest (ν) and least (µ) fixed points with respect to the refinement ordering (Cohen 2000; von
Wright 2004).

Definition 16 (iteration) For any command c,

c∗ =̂ νx • nil u c ; x (29)
c∞ =̂ µ x • c ; x (30)
cω =̂ µ x • nil u c ; x (31)

The following laws can be derived from Definition 16 (iteration) (von Wright 2004).

Law 17 (fold/unfold-iteration) For any command c,

c∗ = nil u c ; c∗ (32)
c∞ = c ; c∞ (33)
cω = nil u c ; cω (34)

Law 18 (iteration-induction) For any relation r and commands c, d and x,

x vr d u c ; x ⇒ x vr c∗ ; d (35)
c ; x vr x ⇒ c∞ vr x (36)

d u c ; x vr x ⇒ cω ; d vr x (37)

Proof. Standard fixed point theory gives

y v d u c ; y ⇒ y v c∗ ; d . (38)

To show (35), note that using (38)

(x vr c∗ ; d)⇐ (∃ y • (x vr y) ∧ (y v c∗ ; d))⇐ (∃ y • (x vr y) ∧ (y v d u c ; y))

As a witness for y choose (env r • x), where [[env r • c]] = {t ∈ Trace | env(t) ⊆ r ⇒ t ∈ [[c]]}, which
gives x vr (env r • x) by Definition 1 (refinement-in-context). The refinement y v d u c ; y also holds
as follows.

([[d u c ; (env r • x)]] ⊆ [[env r • x]])⇐ ([[d u c ; x)]]r ⊆ [[x]]r)⇐ (x vr d u c ; x)

Hence (35) holds. The proofs of (36) and (37) are similar, except for the witness y for the existential
quantifier they use a process with traces equal to [[x]]r. 2

10



Law 19 (iteration-monotonic) For any relation r and commands c and d, if c vr d then both c∗ vr d∗

and cω vr dω .

All our commands are conjunctive (i.e. c ;(d0ud1) = c ;d0uc ;d1) and hence cω can be decomposed
into a choice between finite and infinite iteration (von Wright 2004).

Law 20 (isolation) For any command c, cω = c∗ u c∞ .

The follow lemma allows reasoning about fixed points (Back and von Wright 1998).

Law 21 (iteration-fusion) For monotonic functions f and k on complete lattices and a function h, if
h ◦ f = k ◦ h then

h(µ f ) = µ k provided h is continuous and

h(νf ) = νk provided h is co-continuous.

3 The guarantee command
The guarantee command (guar g • c) constrains the possible implementations of the command c such
that each atomic step must either satisfy the relation g or stutter. Intuitions for its semantics are provided
by some examples in Section 3.1 before its definition in terms of a strict conjunction operator and
iteration of atomic steps is given in Section 3.2. Sections 3.3 and 3.4 give some properties of atomic steps
and strict conjunction. Sections 3.5, 3.6, 3.7 and 3.8 give laws for manipulating guarantees. Section 3.9
introduces a special case when the guarantee preserves an invariant. Section 3.10 applies guarantees and
guarantee invariants to a novel development of a simple search algorithm (which is revisited when we
consider concurrency in Section 9).

3.1 Examples
The laws referred to in the following examples are given later in Section 3.

1. Refine a specification enclosed in a guarantee by an assignment which respects the guarantee and
implements the specification.

guar x < x′ •
[
x′ = x + 1

]
v by Law 60 (guarantee-assignment) as x′ = x + 1 V x < x′

x := x + 1

2. Use two atomic steps that both satisfy the guarantee.

guar x < x′ •
[
x′ = x + 2

]
v by Law 41 (guarantee-monotonic) as

[
x′ = x + 2

]
v
[
x′ = x + 1

]
;
[
x′ = x + 1

]
guar x < x′ • (

[
x′ = x + 1

]
;
[
x′ = x + 1

]
)

= by Law 47 (distribute-guarantee) over sequential (55)

(guar x < x′ •
[
x′ = x + 1

]
) ; (guar x < x′ •

[
x′ = x + 1

]
)

v by example (1) above (twice)
x := x + 1 ; x := x + 1

3. A guarantee may restrict a choice. As every atomic step must satisfy the relation x < x′ or stutter,
the whole must satisfy the reflexive transitive closure of this relation: (x < x′)∗.

guar x < x′ •
[
x′ = x + 1 ∨ x′ = x− 1

]
= by Law 52 (trading-post-guarantee) and as (x < x′)∗ = (x ≤ x′)

guar x < x′ •
[
(x′ = x + 1 ∨ x′ = x− 1) ∧ x ≤ x′

]
= guar x < x′ •

[
x′ = x + 1

]
11



4. A specification constrained by a guarantee g cannot be implemented if there is no sequence of
atomic steps satisfying g that satisfy the postcondition of the specification overall.

guar x < x′ •
[
x′ = x− 1

]
= by Law 52 (trading-post-guarantee) and as (x < x′)∗ = (x ≤ x′)

guar x < x′ •
[
x′ = x− 1 ∧ (x ≤ x′)

]
= guar x < x′ •

[
false

]
=
[
false

]
3.2 Defining the guarantee command
The definition of the guarantee command makes use of the strict conjunction operator “e”, where c e d
defines a command that behaves as both c and d in the sense that each atomic step of taken by ced must
be an atomic step that both c and d can make. The conjunction is strict in the sense that if either c or d
can abort, then c e d can also abort.

Every atomic step of a guarantee command, (guar g • c), must satisfy g or stutter. The command
〈g ∨ id〉 represents a single atomic step that satisfies g or the identity relation (i.e. a stuttering step), and
〈g ∨ id〉ω represents the iteration of 〈g ∨ id〉 any number of times, zero or more, including infinitely
many times. The strict conjunction operator “e” is used to conjoin 〈g ∨ id〉ω with c to define the
guarantee command.

Definition 22 (guarantee) For any relation g and command c,

guar g • c =̂ 〈g ∨ id〉ω e c .

3.3 Properties of atomic steps and iterations
Law 23 (strengthen-iterated-atomic) For any relations g0 and g1, if g0 V g1 then both 〈g1〉∗ v 〈g0〉∗
and 〈g1〉ω v 〈g0〉ω .

Proof. The proof follows by combining Lemma 11 (consequence) for atomic steps with Law 19
(iteration-monotonic). 2

Law 24 (refine-iterated-relation) For any relation g,
[
g∗
]
v 〈g〉∗.

Proof. The proof follows using Law 18 (iteration-induction) for finite iteration (35) provided,
[
g∗
]
v

nil u 〈g〉 ;
[
g∗
]
, which as holds as follows.[

g∗
]

= as g∗ = id ∨ (g o
9 g∗)[

id ∨ (g o
9 g∗)

]
v by Law 14 (nondeterministic-choice) and Lemma 12 (sequential)[

id
]
u
[
g
]

;
[
g∗
]

v by Lemma 10 (make-atomic)
nil u 〈g〉 ;

[
g∗
]
.

2

A terminating command can only perform a finite number of atomic steps. As in the sequential
refinement calculus, a command may be guaranteed to terminate only from starting states satisfying
a precondition p. Further, in the context of concurrency, it may be guaranteed to stop only if every
interference step of the environment satisfies a relation r or stutters.

Law 25 (stops) For any predicate p, command c and relation r,

(p V stps(c, r)) ⇔ ({p}〈true〉∗ vr c) .

12



Proof. The proof follows directly from Definition 4 (stops). First assume p V stps(c, r). If p holds in
state σ, c will stop from σ in environment r, and hence it will perform a finite number of program steps,
each of which refines 〈true〉. If {p}〈true〉∗ vr c then from any state satisfying p, c performs only a
finite number of program steps in environment r and hence p V stps(c, r). 2

Law 26 (term-monotonic) For any commands c and d and relations r, r0 and r1,

(r0 V r1 ∨ id) ⇒ (stps(c, r1) V stps(c, r0)) (39)
(c vr d) ⇒ (stps(c, r) V stps(d, r)) (40)

Proof. For (39) by Law 25 (stops),

{stps(c, r1)}〈true〉∗ vr1 c

⇒ by Law 3 (refinement-monotonic) as r0 V r1 ∨ id
{stps(c, r1)}〈true〉∗ vr0 c

and hence by Law 25 (stops), stps(c, r1) V stps(c, r0). For (40) from Law 25 (stops)

{stps(c, r)}〈true〉∗ vr c vr d

and hence by Law 25 (stops), stps(c, r) V stps(d, r). 2

3.4 Properties of strict conjunction
Strict conjunction “e” is an associative, commutative and idempotent operator with identity 〈true〉ω and
zero abort. It is monotonic with respect to refinement in each of its arguments.

Lemma 27 (conjunction-monotonic) For any relation r and commands c0, c1, d0 and d1,

(c0 vr d0) ∧ (c1 vr d1) ⇒ (c0 e c1) vr (d0 e d1)

Law 28 (refine-conjunction) For any commands c0, c1 and d, if c0 vr d and c1 vr d, then c0ec1 vr d.

Proof. Any trace of d in environment r must also be a trace of both c0 and c1, and hence it is a trace of
c0 e c1, noting that if either c0 or c1 can abort their conjunction also can. 2

Law 29 (simplify-conjunction) For commands c and d, if c vr d, c e d vr d .

Proof. The proof follows from Law 28 (refine-conjunction) as c vr d and d vr d. 2

Lemma 30 (conjunction-strict) For any predicate p and commands c and d,

{p}(c e d) = c e ({p}d) = c e ({p}d) = ({p}c) e ({p}d) .

Law 31 (conjunction-term) For any relation r and commands c0 and c1,

stps(c0, r) ∧ stps(c1, r) V stps((c0 e c1), r) .

Proof. Let p ≡ stps(c0, r) ∧ stps(c1, r), then by Law 25 (stops) both {p}〈true〉∗ vr c0 and {p}〈true〉∗ vr
c1 and hence by Lemma 27 (conjunction-monotonic)

{p}〈true〉∗ e {p}〈true〉∗ vr c0 e c1.

and hence as strict conjunction is idempotent by Law 25 (stops), p V stps((c0 e c1), r). 2

13



Lemma 32 (conjunction-atomic) For any predicates p0 and p1, relations q0 and q1, and commands
c0 and c1,

nil e nil = nil (41)
(〈p0, q0〉 ; c0) e nil = 〈p, false〉 (42)
〈p0, q0〉 e 〈p1, q1〉 = 〈p0 ∧ p1, q0 ∧ q1〉 (43)

(〈p0, q0〉 ; c0) e (〈p1, q1〉 ; c1) = (〈p0, q0〉 e 〈p1, q1〉) ; (c0 e c1) (44)

A relation g only depends on a set of variables X, if the effect of g in a state is independent of all
variables other than X. Recall that id(X) is the identity relation on X that allows chaos for variables
other than X.

Definition 33 (depends-only) For any relation g and set of variables X,

depends only(g,X) =̂ (id(X) o
9 g o

9 id(X)) ≡ g .

Note that the above is equivalent to (id(X) o
9 g o

9 id(X)) V g because the reverse implication holds any
any g and X. Furthermore depends only(g,X) implies (id(X) o

9 g) ≡ g ≡ (g o
9 id(X)).

Strict conjunction distributes through both itself and nondeterministic choice, and conjunction of
an iterated atomic step 〈g〉ω distributes through both sequential and parallel composition, as well as
through local variable blocks and iterations.

Lemma 34 (distribute-conjunction) For any relations g and g1, commands c, d, d0 and d1, nonempty
set of commands D, and variable x, such that g1 does not depend on x, i.e. depends only(g1, x̄),

c e (d0 e d1) = (c e d0) e (c e d1) (45)
c e ( ⊔D) = ⊔{d ∈ D • (c e d)} (46)

〈g〉ω e (c ; d) = (〈g〉ω e c) ; (〈g〉ω e d) (47)
〈g〉ω e (c ‖ d) = (〈g〉ω e c) ‖ (〈g〉ω e d) (48)

〈g1〉ω e (var x • c) = var x • (〈g1〉ω e c) (49)
〈g〉ω e (cω) = (〈g〉ω e c)ω (50)

Proof. Property (45) holds since strict conjunction is associative, commutative and idempotent.
For (46), a nonaborting trace of the left side is both a trace of c and a trace of ⊔D, and hence for

some d ∈ D a trace of d. Hence it is a trace of c e d and hence a trace of the right side. Note that if
D is empty and hence ⊔D = magic, the left side becomes c e magic and the right magic and hence
one only gets a refinement (e.g. when c is abort). The reverse inclusion of traces is similar, as is the
argument for aborting traces.

For (47) a nonaborting trace of the left side is a trace t of (c ;d) in which every program step satisfies
g. Either t is an infinite trace of c or t = tc a td, where tc is a finite trace of c and td is a trace of d. If t is
an infinite trace of c, as every program step of t satisfies g, it is an infinite trace of (〈g〉ω e c), and hence
a trace of the right side. Otherwise, tc is a finite trace of c for which every program step satisfies g and
hence tc is a trace of (〈g〉ω e c); similarly td is a trace of (〈g〉ω e d). Hence t is a trace of the right side.

For (48) a nonaborting trace of the left side is a trace t of (c ‖ d) for which every program step
satisfies g. Hence there must exist traces tc of c and td of d such that t is an “interleaving” of tc and td.
As every program step of t satisfies g, so does every program step of tc and td and hence tc is a trace of
(〈g〉ω e c) and td is a trace of (〈g〉ω e d). Hence t is a trace of the right side.

For (49) (〈g1〉ω e c) can do a program step π(σ, σ′) if and only if c can do π(σ, σ′) and (σ, σ′) ∈ g1.
In which case (var x • (〈g1〉ω e c)) can do a step π(σ[v/x], σ′[v/x]) for any v. If c can do a step
π(σ, σ′) then (var x • c) can do a step π(σ[v/x], σ′[v/x]) for any v and as g1 is independent of x,
(σ[v/x], σ′[v/x]) ∈ g1 ⇔ (σ, σ′) ∈ g1. Hence the traces of the left and right sides are the same.

Law 21 (iteration-fusion) can be applied to prove (50) by choosing f = (λ x • nil u c ; x) and
hence µ f = cω , choosing k = (λ x • nil u (〈g〉ω e c) ; x), and hence µ k = (〈g〉ω e c)ω , and choosing

14



h = (λ x • 〈g〉ωex), and hence h(µ f ) = 〈g〉ωecω . By Law 21 (iteration-fusion) 〈g〉ωecω = (〈g〉ωec)ω

if,

〈g〉ω e (nil u c ; x) = nil u (〈g〉ω e c) ; (〈g〉ω e x)

which holds by parts (46) and (47), Law 17 (fold/unfold-iteration) and Lemma 32 (conjunction-atomic).
The function h is continuous because strict conjunction is continuous. 2

Law 35 (conjunction-with-atomic) For any relations g and q,

〈g〉ω e 〈p, q〉 = 〈p, g ∧ q〉 .

Proof.

〈g〉ω e 〈p, q〉
= by Law 17 (fold/unfold-iteration)

(nil u 〈g〉 ; 〈g〉ω) e 〈p, q〉
= by Lemma 34 (distribute-conjunction) over choice (46) and 〈p, q〉 = 〈p, q〉 ; nil

(nil e 〈p, q〉) u (〈g〉 ; 〈g〉ω e 〈p, q〉 ; nil)
= by (42), (44) and (43) of Lemma 32 (conjunction-atomic); Law 17 (fold/unfold-iteration)
〈p, false〉 u (〈p, g ∧ q〉 ; ((nil u 〈g〉 ; 〈g〉ω) e nil))

= by Lemma 34 (distribute-conjunction) over choice (46); (41)
〈p, false〉 u (〈p, g ∧ q〉 ; (nil u (〈g〉 ; 〈g〉ω e nil))

= by Lemma 32 (conjunction-atomic) part (42)
〈p, false〉 u (〈p, g ∧ q〉 ; (nil u 〈false〉)

= as nil u 〈false〉 = nil and 〈p, false〉 v 〈p, g ∧ q〉
〈p, g ∧ q〉

2

Law 36 (terminating-iteration) For any relation q,

〈true〉∗ e 〈q〉ω = 〈q〉∗ .

Proof. Law 21 (iteration-fusion) can be applied by choosing f = (λ x • nilu 〈true〉 ; x) and hence νf =
〈true〉∗, and choosing k = (λ x • nilu〈q〉 ; x), and hence νk = 〈q〉∗, and choosing h = (λ x • xe 〈q〉ω),
and hence h(νf ) = 〈true〉∗ e 〈q〉ω . By Law 21 (iteration-fusion) 〈true〉∗ e 〈q〉ω = 〈q〉∗ if,

(nil u 〈true〉 ; x) e 〈q〉ω = nil u 〈q〉 ; (x e 〈q〉ω)

which we show as follows starting from the left side.

(nil u 〈true〉 ; x) e 〈q〉ω
= by Law 17 (fold/unfold-iteration)

(nil u 〈true〉 ; x) e (nil u 〈q〉 ; 〈q〉ω)
= by Lemma 34 (distribute-conjunction) over choice (46)

(nil e nil) u ((〈true〉 ; x) e nil) u (nil e (〈q〉 ; 〈q〉ω)) u ((〈true〉 ; x) e (〈q〉 ; 〈q〉ω))
= by Lemma 32 (conjunction-atomic) parts (41), (42), (44) and (43)

nil u 〈false〉 u 〈false〉 u (〈q〉 ; (x e 〈q〉ω))
= as nil v 〈false〉

nil u (〈q〉 ; (x e 〈q〉ω))

The function h is co-continuous because strict conjunction with 〈q〉ω is co-continuous. 2

Law 37 (conjunction-atomic-iterated) For any relations g0 and g1 both the following hold.

〈g0〉ω e 〈g1〉ω = 〈g0 ∧ g1〉ω (51)
〈g0〉∗ e 〈g1〉∗ = 〈g0 ∧ g1〉∗ (52)

15



Proof. By Law 23 (strengthen-iterated-atomic) both the refinements 〈g0〉ω v 〈g0 ∧ g1〉ω and 〈g1〉ω v
〈g0 ∧ g1〉ω hold and hence by Law 28 (refine-conjunction) 〈g0〉ω e 〈g1〉ω v 〈g0 ∧ g1〉ω . The reverse
refinement for (51) holds by Law 18 (iteration-induction) provided

nil u 〈g0 ∧ g1〉 ; (〈g0〉ω e 〈g1〉ω) v 〈g0〉ω e 〈g1〉ω

which we show by expanding the right side as follows.

〈g0〉ω e 〈g1〉ω
= by Law 17 (fold/unfold-iteration) unfolding

(nil u 〈g0〉 ; 〈g0〉ω) e (nil u 〈g1〉 ; 〈g1〉ω)
= by Lemma 34 (distribute-conjunction) over choice (46)

(nil e nil) u (nil e 〈g1〉 ; 〈g1〉ω) u (〈g0〉 ; 〈g0〉ω e nil) u ((〈g0〉 ; 〈g0〉ω) e (〈g1〉 ; 〈g1〉ω)
= by Lemma 32 (conjunction-atomic) parts (41), (42), (44) and (43)

nil u 〈false〉 u 〈false〉 u 〈g0 ∧ g1〉 ; (〈g0〉ω e 〈g1〉ω)
= as nil v 〈false〉

nil u 〈g0 ∧ g1〉 ; (〈g0〉ω e 〈g1〉ω)

To prove (52) we start by using (51).

〈g0〉ω e 〈g1〉ω = 〈g0 ∧ g1〉ω
⇒ by Lemma 27 (conjunction-monotonic)
〈true〉∗ e 〈g0〉ω e 〈g1〉ω = 〈true〉∗ e 〈g0 ∧ g1〉ω

⇒ by Law 36 (terminating-iteration) as conjunction is idempotent and associative
〈g0〉∗ e 〈g1〉∗ = 〈g0 ∧ g1〉∗

2

Law 38 (conjunction-with-terminating) For any predicate p, relations r and g, and command c, such
that p V stps(c, r),

{p}〈g〉∗ vr 〈g〉ω e ({p}c) .

Proof. Law 25 (stops) gives {p}〈true〉∗ vr {p}c, which is used in the last step.

{p}〈g〉∗
= by Law 36 (terminating-iteration) and Lemma 30 (conjunction-strict)
〈g〉ω e ({p}〈true〉∗)

vr by Lemma 27 (conjunction-monotonic)
〈g〉ω e ({p}c)

2

Law 39 (conjoined-specifications) For any relations q0 and q1,[
q0 ∧ q1

]
=

[
q0

]
e
[
q1

]
.

Proof. In any environment other than id both sides may abort and hence by Lemma 8 (refine-specification)
one only needs to consider equivalence in environment id. A trace of

[
q0

]
e
[
q1

]
must be a trace of both[

q0

]
and a trace of

[
q1

]
, and hence it satisfies both q0 and q1 end-to-end and hence it satisfies q0 ∧ q1

end-to-end, and thus it is a trace of
[
q0 ∧ q1

]
. By Lemma 11 (consequence) both

[
q0

]
v
[
q0 ∧ q1

]
and[

q1

]
v
[
q0 ∧ q1

]
and hence by Law 28 (refine-conjunction)

[
q0

]
e
[
q1

]
v
[
q0 ∧ q1

]
. 2

16



3.5 Laws for refining guarantee commands
Law 40 (guarantee-true) For any command c, (guar true • c) = c .

Proof. The proof relies on the fact that 〈true〉ω is the identity of “e”.
(guar true • c) = 〈true ∨ id〉ω e c = 〈true〉ω e c = c 2

Law 41 (guarantee-monotonic) For any commands c and d, and relations g and r,

c vr d ⇒ (guar g • c) vr (guar g • d) .

Proof. The proof relies on Lemma 27 (conjunction-monotonic). If c vr d,
(guar g • c) = 〈g ∨ id〉ω e c vr 〈g ∨ id〉ω e d = (guar g • d) . 2

Law 42 (strengthen-guarantee) For any command c and relations g0 and g1,

(g0 V g1 ∨ id) ⇒ (guar g1 • c) v (guar g0 • c) .

Proof. The proof relies on Lemma 27 (conjunction-monotonic) and Law 23 (strengthen-iterated-atomic).
Assume g0 V g1 ∨ id,

(guar g1 • c) = 〈g1 ∨ id〉ω e c v 〈g0 ∨ id〉ω e c = (guar g0 • c) . 2

Law 43 (guarantee-precondition) For any predicate p, relation g and command c,

(guar g • {p}c) = {p}(guar g • c) .

Proof. From Lemma 30 a strict conjunction aborts if either of its operands aborts,
(guar g • {p}c) = 〈g ∨ id〉ω e {p}c = {p}(〈g ∨ id〉ω e c) = {p}(guar g • c) . 2

Law 44 (introduce-guarantee) For any command c and relation g, c v (guar g • c) .

Proof. The proof follows from Law 40 (guarantee-true) and Law 42 (strengthen-guarantee). c =
(guar true • c) v (guar g • c) 2

The traces of (guar g • c) are a subset of the traces of c and hence if c stops from some state σ,
(guar g • c) must also stop (or it is infeasible).

Law 45 (guarantee-term) For any command c, and relations g and r,

stps(c, r) V stps((guar g • c), r)

Proof. By Law 25 (stops) it is sufficient to show {stps(c, r)}〈true〉∗ vr (guar g • c), which holds using
Law 25 (stops) and Law 44 (introduce-guarantee) as follows.
{stps(c, r)}〈true〉∗ vr c v (guar g • c) . 2

Law 46 (nested-guarantees) For a command c and relations g0 and g1,

(guar g0 • (guar g1 • c)) = (guar g0 ∧ g1 • c) .

Proof. The proof relies on the property of relations: (g0 ∨ id) ∧ (g1 ∨ id) = (g0 ∧ g1) ∨ id.

(guar g0 • (guar g1 • c))
= by Definition 22 (guarantee) twice, “e” is associative
〈g0 ∨ id〉ω e 〈g1 ∨ id〉ω e c

= by Law 37 (conjunction-atomic-iterated) part (51) as property of relations
〈(g0 ∧ g1) ∨ id〉ω e c

= (guar g0 ∧ g1 • c)

2 A guarantee on a composite command may be distributed to its component commands.

17



Law 47 (distribute-guarantee) For any relations g and g1, commands c and d, set of command C, and
variable x such that g1 does not depend on x, i.e. depend only(g, x̄), the following hold.

guar g • (c e d) = (guar g • c) e (guar g • d) (53)
guar g • ( ⊔C) = ⊔{c ∈ C • (guar g • c)} (54)
guar g • (c ; d) = (guar g • c) ; (guar g • d) (55)

guar g • (c ‖ d) = (guar g • c) ‖ (guar g • d) (56)
guar g1 • (var x • c) = var x • (guar g1 • c) (57)

guar g • (cω) = (guar g • c)ω (58)

Proof. The proofs of (53)-(58) follow directly from Lemma 34 (distribute-conjunction) properties (45)-
(50) respectively. 2 A guarantee g on an atomic step that satisfies q must satisfy both q and the guaran-
tee.

Law 48 (guarantee-atomic) For any predicate p and relations g and q,

(guar g • 〈p, q〉) = 〈p, (g ∨ id) ∧ q〉 .

Proof. The proof follows using Law 35 (conjunction-with-atomic).
(guar g • 〈p, q〉) = 〈g ∨ id〉ω e 〈p, q〉 = 〈p, (g ∨ id) ∧ q〉 2

Law 49 (refine-to-guarantee) For any predicate p, relation g, and command c such that p V stps(c, r),

{p}〈g ∨ id〉∗ vr (guar g • {p}c) .

Proof.

{p}〈g ∨ id〉∗

vr by Law 38 (conjunction-with-terminating) as p⇒ stps(c, r)
〈g ∨ id〉ω e ({p}c)

= by Definition 22 (guarantee)
(guar g • {p}c)

2

The following law is a fundamental property of guarantees used in a parallel composition and is
used in proving the main parallel introduction laws in Section 5.

Lemma 50 (refine-in-guarantee-context) For any relations g and r and commands c0, c1 and d, such
that c0 vg∨r c1,

c0 ‖ (guar g • d) vr c1 ‖ (guar g • d) .

Law 51 (refine-in-context) For any relations r0 and r1 and commands c0 and c1, if c0 vr0∨r1 c1,

c0 ‖ 〈r0 ∨ id〉∗ vr0∨r1 c1 ‖ 〈r0 ∨ id〉∗ .

Proof. Using Lemma 50 (refine-in-guarantee-context) taking d to be 〈true〉∗, g to be r0 and r to be
r0 ∨ r1 gives the following.

c0 ‖ (guar r0 • 〈true〉∗) vr0∨r1 c1 ‖ (guar r0 • 〈true〉∗)
≡ by Definition 22 (guarantee)

c0 ‖ (〈r0 ∨ id〉ω e 〈true〉∗) vr0∨r1 c1 ‖ (〈r0 ∨ id〉ω e 〈true〉∗)
≡ by Law 36 (terminating-iteration) twice

c0 ‖ 〈r0 ∨ id〉∗ vr0∨r1 c1 ‖ 〈r0 ∨ id〉∗

18



2

The execution of any command enclosed in a guarantee consists of zero or more atomic steps each
of which must satisfy g or stutter and hence any such finite execution sequence satisfies the reflexive,
transitive closure of g. The following law allows a postcondition ensuring g∗ to be traded for a guarantee
of g on every atomic step.

Law 52 (trading-post-guarantee) For any relations g and q,

(guar g •
[
g∗ ∧ q

]
) = (guar g •

[
q
]
) .

Proof. By Lemma 11 (consequence)
[
q
]
v
[
g∗ ∧ q

]
and hence by Law 41 (guarantee-monotonic) the

refinement holds from right to left. The refinement from left to right below uses the fact that 〈g ∨
id〉∗ vid 〈g ∨ id〉ω e

[
q
]

by Law 38 (conjunction-with-terminating).

guar g •
[
g∗ ∧ q

]
= by Definition 22 (guarantee), Law 39 (conjoined-specifications)

〈g ∨ id〉ω e
[
g∗
]
e
[
q
]

= by Law 24 (refine-iterated-relation) and (g ∨ id)∗ = g∗

〈g ∨ id〉ω e 〈g ∨ id〉∗ e
[
q
]

vid by Law 29 (simplify-conjunction) as 〈g ∨ id〉∗ vid 〈g ∨ id〉ω e
[
q
]

〈g ∨ id〉ω e
[
q
]

= Definition 22 (guarantee)

guar g •
[
q
]

2

Definition 53 (feasible-guarantee-specification) A specification command within a guarantee (guar g •[
p, q

]
) is feasible if and only if for all states that satisfy the precondition, there exists some final state

that satisfies the postcondition and the reflexive transitive closure of the guarantee, i.e. p V (∃Var ′ •
g∗ ∧ q).

When g is the universal relation true, (guar true •
[
p, q

]
) =

[
p, q

]
, and the feasibility condition

becomes p V (∃Var ′ • q), which is the same as that used by Morgan (1988).

3.6 Tests and control structures
In order to define conditionals and loops, a primitive test command, [[b]], is used. It evaluates the boolean
expression b and if it evaluates to true the test terminates normally, however if it evaluates to false the
test is equivalent to magic and hence eliminates that trace of behaviour. We assume that expressions
are evaluated in any order as opposed to a strict left-to-right evaluation. One may enforce the order of
evaluation by defining boolean operators, such as “conditional and” (cand)5 and “conditional or” (cor),
that evaluate their second operand depending on the evaluation of the first. Tests satisfy the following
laws.

Lemma 54 (tests) For any boolean expressions a and b

[[a ∧ b]] = [[a]] ‖ [[b]] v [[a]] ; [[b]] = [[a cand b]]
[[a ∨ b]] = [[a]] u [[b]] v [[a]] u [[¬ a]] ; [[b]] = [[a cor b]]

and for variables x and y assuming atomic access to a single variable,

[[x < y]] = ⊔{v ∈ Val,w ∈ Val | v < w • 〈x = v ∧ id〉 ‖ 〈y = w ∧ id〉}

and other relational operators are treated similarly.
5In languages deriving their syntax from C, cand and cor are written “&&” and “||” but we reserve “||” for the parallel

operator here.

19



Because a test does not modify any variables, it ensures any guarantee. Note that because tests only
stutter they do not have to be atomic in order to satisfy a guarantee.

Law 55 (test-guarantee) For any relation g and test predicate b,

(guar g • [[b]]) = [[b]].

Proof. Refinement from right to left holds by Law 44 (introduce-guarantee). Because a test does not
modify any variables (guar id • [[b]]) = [[b]], which is used in the following refinement.

(guar g • [[b]])
v by Law 42 (strengthen-guarantee) as id V g ∨ id

(guar id • [[b]])
= [[b]]

2

For the conditional and loop control structures, because guarantees distribute over program combi-
nators, they distribute into conditionals and loops.

Law 56 (guarantee-conditional) For any relation g, boolean expression b, and commands c and d,

(guar g • if b then c else d) = if b then (guar g • c) else (guar g • d) .

Proof. The proof is mechanical: it expands the left side conditional using its definition (7), applies Law
47 (distribute-guarantee) to distribute the guarantee over the nondeterministic choice and sequential
compositions, then applies Law 55 (test-guarantee) twice to eliminate the guarantee around the tests,
and finally rewrites the result as a conditional using definition (7). 2

Law 57 (guarantee-loop) For any relation g, boolean expression b, and command c,

(guar g • while b do c) = while b do(guar g • c) .

Proof. The proof is mechanical: it expands the left side loop using its definition (8), then applies Law
47 (distribute-guarantee) to distribute the guarantee over the sequential composition and iteration, then
applies Law 55 (test-guarantee) to eliminate the guarantees around the tests, and finally rewrites the
result as a while loop using definition (8). 2

3.7 Frames and assignment
The refinement calculus as described by Morgan (1988) includes a version of a specification command
x :
[
q
]

with an explicit frame x representing the set of variables that may be changed by it. Using
the notation x̄ to stand for all variables other than x, and id(x̄) to stand for the identity relation on all
variables other than x, in Morgan’s sequential refinement calculus x :

[
q
]

is defined as
[
q ∧ id(x̄)

]
, where

this latter specification implicitly has all variables in its frame. In the context of concurrent programs
this definition is not strong enough as it allows the following refinement,

x :
[
x′ = y + 1

]
v y := y + 1; x := y; y := y− 1

which, although it modifies y, leaves its final value the same as its initial value and hence satisfies
the specification on the left. If a concurrent process accesses y during the execution this may lead
to unexpected results. However, if the specification is strengthened by making id(x̄) a guarantee, i.e.
(guar id(x̄) •

[
x′ = y + 1

]
), the above refinement is no longer valid. Hence, rather than Morgan’s

definition above, a frame on a specification satisfies the following.

x :
[
q
]

= (guar id(x̄) •
[
q
]
) .

It turns out to be simple to allow a frame on any command, not just a specification.

20



Definition 58 (frame) For any set of variables x and command c,

x : c =̂ (guar id(x̄) • c) .

The importance of framing in reasoning about concurrency is highlighted here by the fact that framing
is defined in terms of a guarantee which is central to our approach to concurrency.

Note that one needs to avoid nested frames because by Law 46 (nested-guarantees)

x : (y : c) = (guar id(x̄) ∧ id(ȳ) • c) = (guar id • c) 6= (guar id(x, y) • c) = (x, y : c) .

Law 59 (guarantee-frame) For any set of variables x, relation g and command c,

x : (guar g • c) = guar g • (x : c) .

Proof. The proof follows from Definition 58 (frame) and Law 46 (nested-guarantees).

x : (guar g • c) = (guar id(x̄) ∧ g • c) = guar g • (x : c)

2 An assignment is defined (9) in terms of a test [[e = v]] representing the expression evaluation,
followed by an atomic update of x.

x := e =̂ ⊔{v ∈ Val • [[e = v]] ; 〈x′ = v ∧ id(x̄〉}
If the expression e is undefined (e.g. via a division by zero) the test [[e = v]] aborts and hence so does
the assignment. No variables other than x may be modified and the only modification allowed to x is to
set it to v; this rules out an implementation that sets x to some intermediate value before assigning x its
final value v. This interpretation is required in the context of concurrency because if x can be set to an
intermediate value, a parallel process may observe the intermediate value and alter its behaviour. The
update made by the assignment x := e satisfies the relation x′ = e ∧ id(x̄) and hence this relation must
imply g ∨ id in order for the assignment to implement the guarantee.

Law 60 (guarantee-assignment) For any precondition p, relation g, variable x and expression e, such
that p V def (e) and such that p ∧ x′ = e ∧ id(x̄) V q ∧ (g ∨ id),

guar g •
[
p, q

]
v x := e .

Proof.

guar g •
[
p, q

]
v by Lemma 11 (consequence) as p ∧ x′ = e ∧ id(x̄) V q

guar g •
[
p, x′ = e ∧ id(x̄)

]
v by Law 14 (nondeterministic-choice) and Lemma 12 (sequential)

guar g • ⊔{v ∈ Val •
[
p, p ∧ v = e ∧ id

]
;
[
p ∧ v = e, x′ = v ∧ id(x̄)

]}
v by Law 47 (distribute-guarantee) into choice (54) and sequential (55)⊔{v ∈ Val • (guar g •

[
p, p ∧ v = e ∧ id

]
) ; (guar g •

[
p ∧ v = e, x′ = v ∧ id(x̄)

]
)
}

v by Lemma 15 (introduce-test) as p V def (e); Lemma 10 (make-atomic)⊔{v ∈ Val • (guar g • [[e = v]]) ; (guar g • 〈p ∧ v = e, x′ = v ∧ id(x̄)〉)}
v by Law 55 (test-guarantee); Law 48 (guarantee-atomic) as p ∧ x′ = e ∧ id(x̄) V (g ∨ id)⊔{v ∈ Val • [[e = v]] ; 〈x′ = v ∧ id(x̄)〉}
= by the definition of an assignment (9)

x := e

2 In the standard sequential refinement calculus
[
def (e), x′ = e ∧ id(x̄)

]
is equivalent to x := e but

here it is a strict refinement. The standard refinement calculus gives the following equivalences.

x := x + 2 = x :
[
x′ = x + 2

]
= x :

[
x′ = x + 1

]
; x :
[
x′ = x + 1

]
= x := x + 1 ; x := x + 1

However, if x is initially even, a process running in parallel with x := x + 1 ; x := x + 1 may observe
an odd value of x, whereas a process running in parallel with x := x + 2 will not, and hence they are not
equivalent in a concurrent programming context.

21



3.8 Local variables
A local variable declaration introduces a new local variable for its scope and adds the variable to the
frame.

Lemma 61 (introduce-variable) For any variable x, set of variables y, and command c, such that x is
not in y and does not occur free in c,

y : c v (var x • x, y : c) .

Commands within the scope of a local variable declaration guarantee not to change any non-local vari-
able with the same name.6

Law 62 (guarantee-variable) For any command c, and local variable x,

(var x • c) = (guar id(x) • (var x • c)) .

Proof. Because (id(x) ∨ id) = id(x), from Definition 22 (guarantee),

(guar id(x) • (var x • c)) = 〈id(x)〉ω e (var x • c)

but because x is local to (var x • c) every program step of (var x • c) maintains id(x) on the global
variable x, and hence the conjunction with 〈id(x)〉ω has no effect. 2

3.9 Guarantee invariants
A special case of a guarantee relation is that a single-state predicate is an invariant of every atomic step.
The following notation is used as an abbreviation in this case.

Definition 63 (guarantee-invariant) For a single-state predicate p and command c,

(guar-inv p • c) =̂ (guar(p⇒ p′) • c) .

where by convention p′ stands for the predicate p with all program variables replaced by their primed
counterparts, i.e. p in the after state.

An interesting aspect of an invariant predicate is that the relation (p⇒ p′) is both reflexive and transitive
and hence

(p⇒ p′)∗ ≡ (p⇒ p′) (59)

that is, for any number of steps (zero or more) if each step maintains the invariant, then the whole does.
This fact can be combined with Law 52 (trading-post-guarantee) to give the following law.

Law 64 (trade-guarantee-invariant) For any predicate p and relation q,[
p, p′ ∧ q

]
v (guar-inv p •

[
p, q

]
)

The effect of this law is to take a property p that is required to be invariant overall and require it to be
invariant for every atomic step of the computation – a stronger requirement. Proof.[

p, p′ ∧ q
]

v by Lemma 11 (consequence) using (59); Law 44 (introduce-guarantee)

guar(p⇒ p′) •
[
p, (p⇒ p′)∗ ∧ q

]
= by Law 52 (trading-post-guarantee); Definition 63 (guarantee-invariant)

guar-inv p •
[
p, q

]
6Additional care would be needed with a language that allowed variable aliasing because the non-local variable may be

accessible via an alias. Aliasing is excluded throughout this paper.

22



2

Part of the motivation for inventing a guarantee command came from the invariant command of
Morgan and Vickers (1994), which is closely related to a guarantee-invariant command. The invariant
command was originally defined within the sequential refinement calculus in terms of weakest precon-
dition semantics. In our concurrent programming context it can be defined as follows:

(inv p • c) =̂ 〈p, p′〉ω e c .

Note that (inv p • c) v (guar-inv p • c).

3.10 Extended example (sequential version)
Sect. 9 presents, in a new style, the development of a well-known concurrent algorithm. To cement
the material so far, this section offers an unconventional development of a sequential program from the
same specification. The objective is, given an array v with indices starting from one, to find the least
index t for which a predicate p holds,7 or if p does not hold for any element of v, to set t to len(v) + 1.
As shown in Sect. 9, the unconventional approach using guarantee invariants is useful when deriving a
concurrent implementation from the same specification. The specification of the findp program is

findp =̂ t :
[
(t′ = len(v) + 1 ∨ satp(v, t′)) ∧ notp(v, dom(v), t′)

]
C

where

satp(v, t) =̂ t ∈ dom(v) ∧ p(v(t))
notp(v, s, t) =̂ (∀ i ∈ s • i < t⇒ ¬ p(v(i)))

No explicit laws have been given above to handle frames on a specification but any construct involving
a frame can be converted to an equivalent guarantee command and the corresponding refinement law
used. In the development below such steps are elided. The first refinement step introduces an invariant
(t = len(v) + 1 ∨ satp(v, t)) and an initialisation of t that establishes the invariant, using Lemma 12
(sequential) and Law 60 (guarantee-assignment) to handle the frame. We follow the convention that a
refinement applies to the most recent command marked with “C”.

v t := len(v) + 1;
t :
[
t = len(v) + 1 ∨ satp(v, t), (t′ = len(v) + 1 ∨ satp(v, t′)) ∧ notp(v, dom(v), t′)

]
C

The second specification can be refined using Law 64 (trade-guarantee-invariant).

v guar-inv t = len(v) + 1 ∨ satp(v, t) •
t :
[
notp(v, dom(v), t′)

]
C

The body of this involves a quantification within notp which can be refined using a loop with fresh
control variable c and loop invariant notp(v, dom(v), c). The invariant is also strengthened by bounds
on c, where

bnd(c, v) =̂ 1 ≤ c ≤ len(v) + 1

The invariant is trivially established if c is set to one. We use Lemma 61 (introduce-variable) for c and
initialise it using Lemma 12 (sequential), and Law 60 (guarantee-assignment).

v var c • c := 1;
c, t :

[
notp(v, dom(v), c) ∧ bnd(c, v), notp(v, dom(v), c′) ∧ bnd(c′, v) ∧ t′ = c′

]
C

7For brevity, it is assumed here that p(x) is always defined (undefinedness is considered in (Coleman and Jones 2007) but it
has little bearing on the actual design).

23



This can be refined using Law 64 (trade-guarantee-invariant);

v guar-inv notp(v, dom(v), c) ∧ bnd(c, v) •
c, t :

[
t′ = c′

]
C

This would appear to say that all that is required is that the final values of t and c are equal, how-
ever, this is in the context of an accumulated guarantee invariant (t = len(v) + 1 ∨ satp(v, t)) ∧
notp(v, dom(v), c) ∧ bnd(c, v), which must be preserved by every atomic step. The body can be refined
to a loop with a well founded relation that reduces t − c.

v while c < t do
c, t :

[
c < t, 0 ≤ t′ − c′ < t − c

]
C

Note that this is in the context of the accumulated guarantee invariant, which also acts as an invariant
of the loop. The well-founded relation can be achieved either by increasing c or by decreasing t. If
c is increased the invariant notp(v, dom(v), c) must be maintained. To increase c by one this requires
¬ p(v(c)). If t is decreased the invariant t′ = len(v) + 1 ∨ satp(v, t′) must be maintained. To decrease t
to c this requires p(v(c)). Hence the body of the loop is refined by

v if p(v(c)) then t :
[
p(v(c)), t′ = c

]
else c :

[
¬ p(v(c)), c′ = c + 1

]
If the guarantee invariants are distributed into the program this becomes.

if p(v(c)) then
guar-inv(t = len(v) + 1 ∨ satp(v, t)) ∧ notp(v, dom(v), c) ∧ bnd(c, v) •

t :
[
p(v(c)), t′ = c

]
else

guar-inv(t = len(v) + 1 ∨ satp(v, t)) ∧ notp(v, dom(v), c) ∧ bnd(c, v) •
c :
[
¬ p(v(c)), c′ = c + 1

]
The branches of the conditional can be refined using Law 60 (guarantee-assignment) to give the follow-
ing final program.

t := len(v) + 1 ; c := 1;
while c < t do

if p(v(c)) then t := c else c := c + 1

4 The rely command
Given a parallel composition (c ‖ d), it is not possible to use the sequential refinement laws to refine
one branch, say c, because d may interfere with execution of c by modifying variables shared between c
and d. Jones (1981, 1983) addressed this issue by introducing the notion of a rely condition, which is a
relation r that bounds the tolerable interference acceptable from the environment (either d or the wider
environment of both c and d). Every atomic step of the environment is assumed to satisfy the relation r
or stutter.

In this paper a new command (rely r • c) is introduced; when it is put in an environment in which
every atomic interference step satisfies the relation r or stutters, the composite behaviour implements
c from states in which c terminates with no interference. Finite interference can be represented by the
process 〈r ∨ id〉∗, that is, the process that can do any finite number, zero or more, of atomic steps,
each of which satisfies the relation r or stutters. Hence, for a command c that terminates from states
satisfying p (i.e. p V stps(c, id)) the rely command satisfies the following property.

{p}c vid (rely r • c) ‖ 〈r ∨ id〉∗

A rely command should be thought of as giving a designer permission to assume that the environment
in which an implementation will run is at least as benign as r records. The motivation for the rely
command is similar to that for the weakest pre-specification of Hoare and He (1986), although they deal
with sequential composition rather than parallel composition.

24



4.1 Examples
To understand better the rely command and whether it is feasible, a few examples are examined.

1. (rely x < x′ •
[
x + 1 ≤ x′

]
) guarantees that, when it is put in an environment that may increase

x, the value of x is increased by at least one. A possible implementation of this rely command is
to increment x by one. The environment may further increase x but together they ensure that it is
increased by at least one.

2. (rely x < x′ •
[
x′ = x

]
) guarantees that, when it is put in an environment that may increase x,

the value of x is unchanged. There is no possible implementation of this. Even the “obvious”
implementation, nil, which does nothing is not a valid implementation because when put in an
environment that may increase x, the overall effect may be to increase x.

3. (rely x = x′ •
[
x′ = x + 1

]
) guarantees that, when put in an environment in which each inter-

ference step does not modify x, x is incremented by exactly one. It may be implemented by the
assignment x := x + 1. This assignment does not have to be performed atomically, i.e. it may
be interleaved with interference that satisfies x = x′, which guarantees not to modify x but may
arbitrarily modify any variables other than x. Because none of the interference steps modify x, the
evaluation of x + 1 and its assignment to x are not affected.

4. (rely x = x′ ∧ y = y′ •
[
x′ = x + 1

]
) guarantees that, when put in an environment in which each

interference step does not modify either x or y (although it may modify variables other than x and
y), x is incremented by one. It puts no constraints on the final value of y. It may be implemented
by the (non-atomic) assignments (y := x + 1; x := y), but note that this sequence of assignments
does not implement example (3) above because the environment in (3) may arbitrarily modify y
between the two assignments.

4.2 Properties of interference
Before delving into the rely command in detail, we look at some basic properties of interference as rep-
resented by iteration of atomic steps. Two sets of interference in parallel corresponds to the disjunction
of the interferences.

Lemma 65 (parallel-interference) For any relations r0 and r1,

〈r0〉∗ ‖ 〈r1〉∗ = 〈r0 ∨ r1〉∗ .

Interference on an atomic command can only precede or follow it.

Lemma 66 (interference-atomic) For any predicate p and relations q and r,

〈p, q〉 ‖ 〈r〉∗ = 〈r〉∗ ; 〈p, q〉 ; 〈r〉∗ .

Law 67 (term-in-context) For any relations r0 and r1, and command c,

stps(c, r0 ∨ r1) V stps(c ‖ 〈r1 ∨ id〉∗, r0 ∨ r1)

Proof. By Law 25 (stops) it is sufficient to show

{stps(c, r0 ∨ r1)}〈true〉∗ vr0∨r1 c ‖ 〈r1 ∨ id〉∗

which holds as follows.

{stps(c, r0 ∨ r1)}〈true〉∗
v by Lemma 65 (parallel-interference) and Lemma 7 (parallel-precondition)
{stps(c, r0 ∨ r1)}〈true〉∗ ‖ 〈r1 ∨ id〉∗
vr0∨r1 by Law 51 (refine-in-context) as {stps(c, r0 ∨ r1)}〈true〉∗ vr0∨r1 c

c ‖ 〈r1 ∨ id〉∗

25



2

During design, the inherited interference must be passed on to sub-components. Thus, parallel
must satisfy the following distribution properties. Note that except for nondeterministic choice and
conjunction one can only distribute interference (rather than an arbitrary command).

Lemma 68 (distribute-parallel) For any commands c, c0, c1, d, d0, and d1, set of commands C and
relation r,

( ⊔C) ‖ d = ⊔{c ∈ C • (c ‖ d)} (60)
(c0 ‖ d0) e (c1 ‖ d1) v (c0 e c1) ‖ (d0 e d1) (61)

(c0 ; c1) ‖ 〈r〉∗ = (c0 ‖ 〈r〉∗) ; (c1 ‖ 〈r〉∗) (62)
(c0 ‖ c1) ‖ 〈r〉∗ = (c0 ‖ 〈r〉∗) ‖ (c1 ‖ 〈r〉∗) (63)

For (61), distribution is valid only in one direction because, on the left, a step of c0 may synchronise
with either c1 or d1, whereas on the right a step of c0 always synchronises with a step of c1.

4.3 Fundamental properties of rely
Our theory makes use of a generalisation of the rely command discussed above. The more general
command (rely r • cz) adds an extra parameter relation z which represents the rely context within c.
When run in parallel with finite interference that is bounded by the relation r, (rely r • cz) implements
c in an environment bounded by z if started in a state from which c terminates in environment z, i.e.

{stps(c, z)}c vz (rely r • cz) ‖ 〈r ∨ id〉∗ . (64)

The additional parameter z is necessary to determine the states from which the rely command is required
to terminate, which corresponds to stps(c, z). The default value for the relation z is id, i.e.

(rely r • c) =̂ (rely r • cid) (65)

Condition (64) does not cover the case of (rely r • cz) failing to terminate in the presence of infinite
interference from its environment. For example, the left loop in

(while 0 < i do i := i− 1) ‖ (while i < 10 do i := i + 1)

is guaranteed to terminate in the presence of finite interference satisfying (i′ = i + 1 ∨ id) but not in
the presence of potentially infinite interference as represented by the right loop. Hence condition (64) is
not sufficient to characterise the rely command and we need a further termination condition, which we
now investigate.

The specification command
[
p, q

]
is guaranteed to terminate from states satisfying p in an environ-

ment that satisfies id, i.e. only stuttering interference. Hence (rely r •
[
p, q

]
) must be guaranteed to

terminate from states satisfying p in an environment that satisfies r. This is captured by the following
termination condition.

stps((rely r •
[
p, q

]
), r) ≡ stps(

[
p, q

]
, id) ≡ p

If the specification is included in nested relies, this leads to the following.

p ≡ stps(
[
p, q

]
, id)

≡ stps((rely r1 •
[
p, q

]
), r1)

≡ stps((rely r0 • (rely r1 •
[
p, q

]
)r1), r0 ∨ r1)

The rely command (rely r • cz) is the weakest command such that (rely r • cz) in parallel with
interference 〈r ∨ id〉∗ refines c in an environment z from initial states from which c terminates in
environment z.

26



Definition 69 (rely) For any command c and relations r and z,

rely r • cz =̂ ⊔{d | ({stps(c, z)}c vz d ‖ 〈r ∨ id〉∗) ∧ (stps(c, z) V stps(d, z ∨ r))}

For particular r, z and c, the command (rely r • cz) may not be feasible because all d satisfying the
conditions in the nondeterministic choice in Definition 69 (rely) are infeasible, as in example (2) in
Section 4.1. In fact, any “code” consisting of control structures and assignments becomes infeasible
within any rely context.

The first basic law for the rely command determines when it terminates.

Law 70 (rely-stops) For any relations z and r and command c,

stps((rely r • cz), z ∨ r) ≡ stps(c, z) .

Proof.

stps((rely r • cz), z ∨ r)
≡ by Definition 69 (rely)

stps(( ⊔{d | ({stps(c, z)}c vz d ‖ 〈r ∨ id〉∗) ∧ (stps(c, z) V stps(d, z ∨ r))}), z ∨ r)
≡ termination of non-deterministic choice
∀ d • ({stps(c, z)}c vz d ‖ 〈r ∨ id〉∗) ∧ (stps(c, z) V stps(d, z ∨ r))⇒ stps(d, z ∨ r)
≡ stps(c, z)

For the last step the reverse direction is straightforward. In the forward direction, take d to be “{stps(c, z)}magic”
and hence stps(d, z ∨ r) ≡ stps(c, z) and d satisfies the conditions on the left of the implication in the
quantification and hence stps(d, z ∨ r) and hence stps(c, z). 2

The following law provides the fundamental property of a rely command. It is used as the basis
for the remaining laws involving rely commands. It transforms refinement of a rely command into a
refinement to a parallel composition with the interference corresponding to the rely condition. Finite
interference, as represented by 〈r ∨ id〉∗, only handles terminating constructs and hence the rely com-
mand in the context of the interference only needs to refine c from initial states for which c terminates
in environment z.

Law 71 (rely-refinement) For any relations z and r, and commands c and d,

((rely r • cz) v d) ⇔ ({stps(c, z)}c vz d ‖ 〈r ∨ id〉∗) ∧ (stps(c, z) V stps(d, z ∨ r)).

Proof. The reverse implication holds as follows.

(rely r • cz) v d
≡ by Definition 69 (rely)⊔{d0 | ({stps(c, z)}c vz d0 ‖ 〈r ∨ id〉∗) ∧ (stps(c, z) V stps(d0, z ∨ r))} v d
W by Law 14 (nondeterministic-choice) part (27)
∃ d0 • ({stps(c, z)}c vz d0 ‖ 〈r ∨ id〉∗) ∧ (stps(c, z) V stps(d0, z ∨ r)) ∧ (d0 v d)

W a witness for the existential quantifier is d
({stps(c, z)}c vz d ‖ 〈r ∨ id〉∗) ∧ (stps(c, z) V stps(d, z ∨ r))

For the forward implication by Law 3 (refinement-monotonic)

((rely r • cz) v d) ⇒ ((rely r • cz) vz∨r d) (66)

and hence it is sufficient to show the following.

((rely r • cz) vz∨r d) ⇒ ({stps(c, z)}c vz d ‖ 〈r ∨ id〉∗) ∧ (stps(c, z) V stps(d, z ∨ r))(67)

27



We show each of the conjuncts on the right holds separately. To make the steps more readable we
abbreviate stps(c, z) by p.

{p}c vz d ‖ 〈r ∨ id〉∗
W by Law 51 (refine-in-context) as (rely r • cz) vz∨r d
{p}c vz (rely r • cz) ‖ 〈r ∨ id〉∗

≡ by Definition 69 (rely)
{p}c vz ⊔{d | ({p}c vz d ‖ 〈r ∨ id〉∗) ∧ (p V stps(d, z ∨ r))} ‖ 〈r ∨ id〉∗

≡ by Lemma 68 (distribute-parallel) part (60)
{p}c vz ⊔{d | ({p}c vz d ‖ 〈r ∨ id〉∗) ∧ (p V stps(d, z ∨ r)) • d ‖ 〈r ∨ id〉∗}

W by Law 14 (nondeterministic-choice)
∀ d • ({p}c vz d ‖ 〈r ∨ id〉∗) ∧ (p V stps(d, z ∨ r))⇒ ({p}c vz d ‖ 〈r ∨ id〉∗)

The last condition trivially holds. The termination condition is shown as follows.

stps(d, z ∨ r)
W by Law 26 (term-monotonic) as (rely r • cz) vz∨r d

stps((rely r • cz), z ∨ r)
≡ by Law 70 (rely-stops)

stps(c, z)

2

Law 72 (rely-environment) For any relations z and r, and commands c and d,

(rely r • cz) v d ⇔ (rely r • cz) vz∨r d

Proof. The forward implication holds by Law 3 (refinement-monotonic). For the reverse implication by
Law 71 (rely-refinement) it is sufficient to show

((rely r • cz) vz∨r d) ⇒ ({stps(c, z)}c vz d ‖ 〈r ∨ id〉∗) ∧ (stps(c, z) V stps(d, z ∨ r))

which was shown as property (67) above. 2 Law 72 (rely-environment) allows one to use the stronger
“v” instead of “vz∨r” when dealing with rely commands.

Law 73 (rely-refinement-precondition) For any predicate p, relations z and r, and commands c and
d, such that p V stps(c, z) ∧ stps(d, z ∨ r),

(rely r • {p}cz) v d ⇔ {p}c vz d ‖ 〈r ∨ id〉∗ .

Proof. Because stps({p}c, z) ≡ p ∧ stps(c, z) ≡ p V stps(d, z ∨ r), the law follows by Law 71
(rely-refinement) . 2

Law 74 (rely-specification) For any predicate p, relations q and r, and command d, such that p V
stps(d, r),

(rely r •
[
p, q

]
) v d ⇔

[
p, q

]
v d ‖ 〈r ∨ id〉∗

Proof. The law follows from Law 73 (rely-refinement-precondition) and Lemma 8 (refine-specification)
because stps(

[
p, q

]
, id) ≡ p. 2

Law 75 (rely) For any predicate p, relations z and r, and command c, such that p V stps(c, z),

{p}c vz (rely r • {p}cz) ‖ 〈r ∨ id〉∗ .

28



Proof. Because by Law 70 (rely-stops), stps((rely r • {p}cz), z ∨ r) ≡ stps({p}c, z) ≡ p, the law
follows from Law 73 (rely-refinement-precondition) by taking d to be (rely r • {p}cz). 2

There may be any finite number, zero or more, of interference steps (each of which satisfies r or
stutters) between any two program steps. Hence the interference between any two program steps satisfies
r∗. For this reason most formulations of the rely-guarantee approach (including (Coleman and Jones
2007)) require r to be reflexive and transitive, so that r∗ = r. Here we do not require r to be either
reflexive or transitive but use its reflexive transitive closure where necessary.

Note that care needs to be taken with the order of guarantee and rely clauses. The form usually
required is a rely nested within a guarantee. The problem with using a guarantee command nested
within a rely is that to show (rely r • (guar g •

[
p, q

]
)) v d, Law 71 (rely-refinement) requires one

to show (guar g •
[
p, q

]
) v d ‖ 〈r ∨ id〉∗, which requires the interference r to guarantee g as well

as d guaranteeing g. However, for a rely nested within a guarantee, only d is required to satisfy the
guarantee. A guarantee within a rely should therefore be avoided, although there are situations in which
it is allowed: a trivial case is if the rely is id but the more general case is if the rely condition happens
to imply the guarantee; this sometimes happens with a set of operations handling a shared data structure
(Collette and Jones 2000).

Law 76 (guarantee-plus-rely) For any relations g, z and r, and commands c and d,

(guar g • (rely r • cz)) v d, (68)

if both the following hold

(rely r • cz) v d (69)
(guar g • d) v d . (70)

Proof. Applying Law 41 (guarantee-monotonic) to (69) gives the following.

(guar g • (rely r • cz)) v (guar g • d)

When combined with (70) this implies (68). 2

4.4 Laws for refining rely commands
Law 77 (weaken-rely) For any command c, and any relations z, r0 and r1, such that r0 V r1 ∨ id,

(rely r0 • cz) v (rely r1 • cz) .

Proof. By Law 71 (rely-refinement) the theorem holds provided

({stps(c, z)}c vz (rely r1 • cz) ‖ 〈r0 ∨ id〉∗) ∧ (stps(c, z) V stps((rely r1 • cz), z ∨ r0))
W Law 23 (strengthen-iterated-atomic) and Law 26 (term-monotonic) as r0 V r1 ∨ id

({stps(c, z)}c vz (rely r1 • cz) ‖ 〈r1 ∨ id〉∗) ∧ (stps(c, z) V stps((rely r1 • cz), z ∨ r1)

which follow by Law 75 (rely) and Law 70 (rely-stops). 2

Note that for relations q and r we have the following relationships.[
q
]

= (rely id •
[
q
]
) v (rely r •

[
q
]
) v (rely true •

[
q
]
)

In particular,
[
false

]
is infeasible in an environment of just stuttering (id) but aborts in any non-id

environment, whereas (rely true •
[
false

]
) is infeasible in any environment.

Law 78 (rely-monotonic) For any relations z and r, and commands c and d, such that {stps(c, z)}c vz
d,

(rely r • cz) v (rely r • dz) .

29



Proof. The theorem holds by Law 71 (rely-refinement) provided the following holds.

({stps(c, z)}c vz (rely r • dz) ‖ 〈r ∨ id〉∗) ∧ (stps(c, z) V stps((rely r • dz), z ∨ r))
W by Law 75 (rely), {stps(d, z)}d vz (rely r • dz) ‖ 〈r ∨ id〉∗ and Law 70 (rely-stops)

({stps(c, z)}c vz {stps(d, z)}d) ∧ (stps(c, z) V stps(d, z))

By assumption {stps(c, z)}c vz d and hence by Law 26 (term-monotonic) stps(c, z) V stps(d, z). 2

Note that refining the body of a rely command does not necessarily preserve feasibility. For example,[
x = 0, x < x′

]
v
[
x′ = 1

]
is a valid refinement but while (rely x ≤ x′ •

[
x = 0, x < x′

]
) is feasible,

(rely x ≤ x′ •
[
x′ = 1

]
) is not feasible because the interference may increase x beyond one.

Law 79 (rely-precondition) For any predicate p, relations z and r, and command c, such that p V
stps(c, z),

(rely r • {p}cz) = {p}(rely r • {p}cz) .

Proof. Refinement from right to left is simply removing the precondition. Refinement from left to right
holds by Law 73 (rely-refinement-precondition) provided both the following hold.

{p}c vz ({p}(rely r • {p}cz)) ‖ 〈r ∨ id〉∗ (71)
p V stps({p}(rely r • {p}cz), z ∨ r) (72)

Because by Law 6 (precondition) part (20), {p}c = {p}{p}c, (71) can be shown as follows.

{p}{p}c
vz by Law 75 (rely) using assumption p V stps(c, z)
{p}((rely r • {p}cz) ‖ 〈r ∨ id〉∗)

v by Lemma 7 (parallel-precondition) and Law 6 (precondition)
({p}(rely r • {p}cz)) ‖ 〈r ∨ id〉∗

One can use Law 70 (rely-stops) to show (72) as follows.

stps({p}(rely r • {p}cz), z ∨ r) ≡ p ∧ stps((rely r • {p}cz), z ∨ r) ≡ p ∧ stps({p}c, z) ≡ p

2

Law 80 (nested-rely) For any command c and relations z, r0 and r1,

(rely r0 • (rely r1 • cz)z∨r1) = (rely r0 ∨ r1 • cz) .

Proof. The proof uses the fact that stps(d, z ∨ r0 ∨ r1) V stps(d ‖ 〈r0 ∨ id〉∗, z ∨ r1) by Law 67
(term-in-context).

(rely r0 • (rely r1 • cz)z∨r1)
= by Definition 69 (rely)⊔{d | ({stps((rely r1 • cz), z ∨ r1)}(rely r1 • cz) vz∨r1 d ‖ 〈r0 ∨ id〉∗) ∧

(stps((rely r1 • cz), z ∨ r1) V stps(d, z ∨ r0 ∨ r1))}
= by Law 70 (rely-stops)⊔{d | ({stps(c, z)}(rely r1 • cz) vz∨r1 d ‖ 〈r0 ∨ id〉∗) ∧ (stps(c, z) V stps(d, z ∨ r0 ∨ r1))}
= by Law 71 (rely-refinement)⊔{d | ({stps(c, z)}c vz d ‖ 〈r0 ∨ id〉∗ ‖ 〈r1 ∨ id〉∗) ∧

(stps(c, z) V stps(d ‖ 〈r0 ∨ id〉∗, z ∨ r1)) ∧ (stps(c, z) V stps(d, z ∨ r0 ∨ r1))}
= by Lemma 65 (parallel-interference) and Law 67 (term-in-context)⊔{d | ({stps(c, z)}c vz d ‖ 〈r0 ∨ r1 ∨ id〉∗) ∧ (stps(c, z) V stps(d, z ∨ r0 ∨ r1))}
= by Definition 69 (rely)

(rely r0 ∨ r1 • cz)

30



2

In a development process, the permission to make assumptions must be passed on to sub-components,
so a rely on a composite command may be distributed to its component commands.

Law 81 (distribute-rely-choice) For any relations z and r, and set of commands C,

rely r • ( ⊔C)z v ⊔{c ∈ C • (rely r • cz)} .

Proof. By Law 71 (rely-refinement) we must show both the following.

{stps( ⊔C, z)}( ⊔C) vz ( ⊔{c ∈ C • (rely r • cz)}) ‖ 〈r ∨ id〉∗ (73)
stps( ⊔C, z) V stps( ⊔{c ∈ C • (rely r • cz)}, z ∨ r) (74)

The proof of (73) follows starting from the right side.

( ⊔{c ∈ C • (rely r • cz)}) ‖ 〈r ∨ id〉∗

= by Lemma 68 (distribute-parallel) over nondeterministic choice (60)⊔{c ∈ C • (rely r • cz) ‖ 〈r ∨ id〉∗}
wz by Law 14 (nondeterministic-choice) part (26) and Law 75 (rely) using assumption⊔{c ∈ C • {stps(c, z)}c}
= {stps( ⊔C, z)}( ⊔C)

The proof of (74) follows.

stps( ⊔{c ∈ C • (rely r • cz)}, z ∨ r)
≡ termination of a nondeterministic choice

(∀ c ∈ C • stps((rely r • cz), z ∨ r))
≡ by Law 70 (rely-stops)

(∀ c ∈ C • stps(c, z))
≡ termination of nondeterministic choice

stps( ⊔C, z)
2

Law 82 (distribute-rely-sequential) For any predicate p, relations z and r, commands c0 and c1, such
that (p V stps((c0 ; c1), z)

rely r • ({p}c0 ; c1)z v (rely r • ({p}c0)z) ; (rely r • (c1)z) .

Proof. By Law 73 (rely-refinement-precondition) we must show both the following.

{p}c0 ; c1 vz ((rely r • ({p}c0)z) ; (rely r • (c1)z)) ‖ 〈r ∨ id〉∗ (75)
p V stps(((rely r • ({p}c0)z) ; (rely r • (c1)z)), z ∨ r) (76)

Note that p V stps((c0 ; c1), z) V stps(c0, z). The proof of (75) follows starting from its right side.

((rely r • ({p}c0)z) ; (rely r • (c1)z)) ‖ 〈r ∨ id〉∗

= by Lemma 68 (distribute-parallel) over sequential (62)
((rely r • ({p}c0)z) ‖ 〈r ∨ id〉∗) ; ((rely r • (c1)z) ‖ 〈r ∨ id〉∗)
wz by Law 75 (rely) twice as p V stps(c0, z)
{p}c0 ; {stps(c1, z)}c1

=z as p V stps((c0 ; c1), z)
{p}c0 ; c1

31



For the proof of (76) we note because p V stps((c0 ; c1), z) that {p}c0 ; c1 =z {p}c0 ; {stps(c1, z)}c1

and hence by Law 75 (rely)

{p}c0 ; c1 vz ((rely r • ({p}c0)z) ‖ 〈r ∨ id〉∗) ; {stps(c1, z)}((rely r • (c1)z) ‖ 〈r ∨ id〉∗)
⇒ by Law 26 (term-monotonic) and assumption p V stps((c0 ; c1), z)

p V stps(((rely r • ({p}c0)z) ‖ 〈r ∨ id〉∗) ; {stps(c1, z)}((rely r • (c1)z) ‖ 〈r ∨ id〉∗), z)
⇒ by Lemma 83 (term-sequential)

p V stps(((rely r • ({p}c0)z) ; {stps(c1, z)}(rely r • (c1)z)), z ∨ r)

For the last step Law 70 (rely-stops) gives p V stps((rely r • ({p}c0)z), z ∨ r) and stps(c1, z) V
stps((rely r • (c1)z), z ∨ r). 2

Lemma 83 (term-sequential) For any predicate p, relations r and z, and commands c0 and c1, such
that p V stps(c0, z ∨ r) and p1 V stps(c1, z ∨ r),

stps(({p}(c0 ‖ 〈r ∨ id〉∗) ; {p1}(c1 ‖ 〈r ∨ id〉∗)), z) V stps(({p}c0 ; {p1}c1), z ∨ r) .

Law 84 (distribute-rely-conjunction) For any predicate p, relations z and r, and commands c0 and
c1, such that p V stps(c0, z) ∧ stps(c1, z),

rely r • {p}(c0 e c1)z v (rely r • ({p}c0)z) e (rely r • ({p}c1)z) .

Proof. By Law 73 (rely-refinement-precondition) we must show both the following.

{p}(c0 e c1) vz ((rely r • ({p}c0)z) e (rely r • ({p}c1)z)) ‖ 〈r ∨ id〉∗ (77)
p V stps(((rely r • ({p}c0)z) e (rely r • ({p}c1)z)), z ∨ r)) (78)

The proof of (77) follows starting from the right side.

((rely r • ({p}c0)z) e (rely r • ({p}c1)z)) ‖ 〈r ∨ id〉∗

w by Lemma 68 (distribute-parallel) over conjunction (61) and conjunction is idempotent
((rely r • ({p}c0)z) ‖ 〈r ∨ id〉∗) e ((rely r • ({p}c1)z) ‖ 〈r ∨ id〉∗)

wz by Law 75 (rely) twice using termination assumptions
({p}c0) e ({p}c1)

= by Lemma 30 (conjunction-strict)
{p}(c0 e c1)

For the proof of termination property (78), using Law 70 (rely-stops) one can deduce p V stps((rely r •
({p}c0)z), z ∨ r) ∧ stps((rely r • ({p}c1)z), z ∨ r) and hence that (78) holds by Law 31 (conjunction-
term). 2

Law 85 (distribute-rely-iteration) For any predicate p, relations z and r, and command c, such that
p V stps(({p}c)ω+, z),

rely r • (({p}c)ω+)z v (rely r • {p}cz)ω+

Proof. Because p V stps(({p}c)ω+, z), we have p V stps({p}c ; ({p}c)ω, z) V stps(c, z). Using Law
73 (rely-refinement-precondition) one must show both the following.

({p}c)ω+ vz (rely r • {p}cz)ω+ ‖ 〈r ∨ id〉∗ (79)
p V stps((rely r • {p}cz)ω+, z ∨ r) (80)

For cω+ iteration we use Law 18 (iteration-induction) for ω-iteration (37). In general,

c u (c ; d) vrx d ⇒ cω+ vrx d (81)

32



and hence (79) holds if

{p}c u ({p}c ; ((rely r • {p}cz)ω+ ‖ 〈r ∨ id〉∗)) vz (rely r • {p}cz)ω+ ‖ 〈r ∨ id〉∗

which we show as follows.

{p}c u ({p}c ; ((rely r • {p}cz)ω+ ‖ 〈r ∨ id〉∗))
vz by Law 75 (rely) twice as p V stps(c, z)

((rely r • {p}cz) ‖ 〈r ∨ id〉∗) u
(((rely r • {p}cz) ‖ 〈r ∨ id〉∗);((rely r • {p}cz)ω+ ‖ 〈r ∨ id〉∗))

= by Lemma 68 (distribute-parallel) over choice (60) and sequential (62)
((rely r • {p}cz) u ((rely r • {p}cz) ; (rely r • {p}cz)ω+)) ‖ 〈r ∨ id〉∗

= by Law 17 (fold/unfold-iteration)
(rely r • {p}cz)ω+ ‖ 〈r ∨ id〉∗

For termination condition (80) by Law 75 (rely)

{p}c vz (rely r • {p}cz) ‖ 〈r ∨ id〉∗
⇒ by Law 19 (iteration-monotonic)

({p}c)ω+ vz ((rely r • {p}cz) ‖ 〈r ∨ id〉∗)ω+

⇒ by Law 26 (term-monotonic) and assumption
p V stps(({p}c)ω+, z) V stps(((rely r • {p}cz) ‖ 〈r ∨ id〉∗)ω+, z)

⇒ by Lemma 86 (term-iteration) as p V stps((rely r • {p}cz), z ∨ r) by Law 70 (rely-stops)
p V stps((rely r • {p}cz)ω+, z ∨ r)

2

Lemma 86 (term-iteration) For any predicate p, relations r and z, and command c, such that p V
stps(c, z ∨ r),

stps(({p}c ‖ 〈r ∨ id〉∗)ω+, z) V stps(({p}c)ω+, z ∨ r) .

Note that Law 85 (distribute-rely-iteration) applies to cω+ but not cω because (rely r • nil) is not
refined by nil.

5 Parallel refinement
This section develops laws for refining to a parallel composition making use of rely and guarantee
commands to handle interference between the parallel processes. For command conjunction one has the
identity[

x′ = 1
]
e
[
y′ = 2

]
=
[
x′ = 1 ∧ y′ = 2

]
.

However, for parallel composition
[
x′ = 1

]
‖
[
y′ = 2

]
aborts because each of the specifications implic-

itly has a rely condition of id but each also must modify either x or y, thus breaking the rely of the other.
Hence in refining from a conjunction of commands to a parallel composition one must introduce rely
and guarantee conditions to control the interference.

A guarantee on a command bounds the interference the command can impose on its environment
(Law 87). This allows a command to be refined by a parallel combination with any command that
respects the rely (Law 88) and hence a conjunction of commands to be implemented by a parallel
combination of commands provided each respects the rely of the other (Law 89). Law 90 extends that
to handle a conjunction of commands within a rely context, and Law 91 specialises this to refining a
specification (with a conjunction of postconditions) by a parallel composition.

33



Law 87 (guarantee-bounds-interference) For any predicate p1, relations z, g0 and g1 and command
c1 such that p1 V stps(c1, z),

{p1}〈g1 ∨ id〉∗ vz∨g0 (guar g1 • (rely g0 • ({p1}c1)z)) .

Proof. By Law 70 (rely-stops), p1 V stps((rely g0 • ({p1}c1)z), z ∨ g0).

{p1}〈g1 ∨ id〉∗

vz∨g0 by Law 49 (refine-to-guarantee) as p1 V stps((rely g0 • ({p1}c1)z), z ∨ g0)
(guar g1 • (rely g0 • ({p1}c1)z))

2

The following law makes use of a fundamental property of rely commands (Law 75 (rely)) to intro-
duce a parallel composition and a fundamental property of guarantee commands (Lemma 50 (refine-in-
guarantee-context)) to develop a symmetric parallel refinement law.

Law 88 (refine-by-parallel) For any predicates p and p1, relations z, g0 and g1, such that p V p1, and
commands c0 and c1 such that p V stps(c0, z) and p1 V stps(c1, z),

{p}c0 vz (guar g0 • (rely g1 • ({p}c0)z)) ‖ (guar g1 • (rely g0 • ({p1}c1)z)) .

Proof.

{p}c0

vz by Law 75 (rely) using assumption p V stps(c0, z)
{p}((rely g1 • ({p}c0)z) ‖ 〈g1 ∨ id〉∗)

v by Law 44 (introduce-guarantee) and Lemma 7 (parallel-precondition) and p V p1

(guar g0 • (rely g1 • ({p}c0)z)) ‖ {p1}〈g1 ∨ id〉∗

vz by Law 87 (guarantee-bounds-interference) and Lemma 50 (refine-in-guarantee-context)
(guar g0 • (rely g1 • ({p}c0)z)) ‖ (guar g1 • (rely g0 • ({p1}c1)z))

2 The following law captures the core of the rely-guarantee approach to developing a parallel program.

Law 89 (introduce-parallel) For any predicates p, p0 and p1, relations z, g0 and g1, such that p V
p0 ∧ p1, and commands c0 and c1, such that p0 V stps(c0, z) and p1 V stps(c1, z),

{p}(c0 e c1) vz (guar g0 • (rely g1 • ({p0}c0)z)) ‖ (guar g1 • (rely g0 • ({p1}c1)z)) .

Proof. First one can distribute the precondition using Lemma 30 (conjunction-strict).

{p}(c0 e c1) = ({p}c0) e ({p}c1)

Using Law 88 (refine-by-parallel) as p V p0 ∧ p1 and the termination assumptions, one can deduce
both the following.

{p}c0 vz (guar g0 • (rely g1 • ({p0}c0)z)) ‖ (guar g1 • (rely g0 • ({p1}c1)z))
{p}c1 vz (guar g1 • (rely g0 • ({p1}c1)z)) ‖ (guar g0 • (rely g1 • ({p0}c0)z))

Because parallel is commutative the right sides of both these refinements are the same and hence by
Law 28 (refine-conjunction) the right side refines the conjoined left sides.

({p}c0) e ({p}c1) vz (guar g0 • (rely g1 • ({p0}c0)z)) ‖ (guar g1 • (rely g0 • ({p1}c1)z))

2

34



Law 90 (introduce-parallel-with-rely) For any predicates p, p0 and p1, relations z, r, g0 and g1, such
that p V p0 ∧ p1, and commands c0 and c1 such that p0 V stps(c0, z) and p1 V stps(c1, z)

(rely r • ({p}(c0 e c1))z)
v (guar g0 • (rely g1 ∨ r • ({p0}c0)z)) ‖ (guar g1 • (rely g0 ∨ r • ({p1}c1)z))

(82)

Proof. From the assumptions one can deduce both p0 V stps((rely r • ({p0}c0)z), z ∨ r) and p1 V
stps((rely r • ({p1}c1)z), z ∨ r). These are used in the application of Law 89 (introduce-parallel) below.
By Law 72 (rely-environment) it is sufficient to show (82) in context z ∨ r.

(rely r • {p}(c0 e c1)z)
v by Lemma 30 (conjunction-strict) and as p V p0 and p V p1

(rely r • ({p0}c0 e {p1}c1)z)
v Law 84 (distribute-rely-conjunction) using termination conditions

(rely r • ({p0}c0)z) e (rely r • ({p1}c1)z)
v by Law 79 (rely-precondition) twice using termination conditions

({p0}(rely r • ({p0}c0)z)) e ({p1}(rely r • ({p1}c1)z))
= by Lemma 30 (conjunction-strict)
{p0 ∧ p1}((rely r • ({p0}c0)z) e (rely r • ({p1}c1)z)

vz∨r by Law 89 (introduce-parallel) using termination conditions
(guar g0 • (rely g1 • (rely r • ({p0}c0)z)z∨r)) ‖ (guar g1 • (rely g0 • (rely r • ({p1}c1)z)z∨r))

= by Law 80 (nested-rely) twice
(guar g0 • (rely g1 ∨ r • ({p0}c0)z)) ‖ (guar g1 • (rely g0 ∨ r • ({p1}c1)z))

2

The following law applies Law 90 to specifications. This corresponds to the parallel introduction
law of Jones (1983).

Law 91 (introduce-parallel-spec-with-rely) For predicates p, p0 and p1, and relations r, q, q0, q1, g0

and g1, such that p V p0 ∧ p1 and p ∧ q0 ∧ q1 V q,

(rely r •
[
p, q

]
) v (guar g0 • (rely g1 ∨ r •

[
p0, q0

]
)) ‖ (guar g1 • (rely g0 ∨ r •

[
p1, q1

]
)) .

Proof. The termination assumptions for the application of Law 90 (introduce-parallel-with-rely) below
are p V stps(

[
q0

]
, id) and p V stps(

[
q1

]
, id), which are trivial.

(rely r •
[
p, q

]
)

v by Lemma 11 (consequence) as p ∧ q0 ∧ q1 V q and Law 78 (rely-monotonic)

(rely r • {p}
[
q0 ∧ q1

]
)

= by Law 39 (conjoined-specifications)

(rely r • {p}(
[
q0

]
e
[
q1

]
))

v by Law 90 (introduce-parallel-with-rely)

((guar g0 • (rely g1 ∨ r •
[
p0, q0

]
)) ‖ (guar g1 • (rely g0 ∨ r •

[
p1, q1

]
)))

2

6 Trading postconditions with rely and guarantee
Any command in a guarantee context of g and a rely context of r will only execute atomic program
steps satisfying (g ∨ id) and assumes the environment only executes atomic steps satisfying (r ∨ id)

35



and hence any single step (whether program or environment) satisfies (g ∨ r ∨ id) and hence any
sequence of steps satisfies (g ∨ r)∗. We first apply this property to a specification and then to augment
the law for introducing a parallel composition.

Law 92 (trade-rely-guarantee) For any predicate p and relations g, r and q,

guar g • (rely r •
[
p, q ∧ (g ∨ r)∗

]
) = guar g • (rely r •

[
p, q

]
) .

Proof. Refinement from right to left is just a strengthening of the postcondition. The refinement from
left to right can be shown using Law 76 (guarantee-plus-rely). The guarantee proviso (70) of Law 76
is trivial; to prove the other proviso (69) one can use Law 74 (rely-specification) which requires one to
show both the following.[

p, q ∧ (g ∨ r)∗
]
v (guar g • (rely r •

[
p, q

]
)) ‖ 〈r ∨ id〉∗ (83)

p V stps((guar g • (rely r •
[
p, q

]
)), r) (84)

The proof for (84) follows by Law 70 (rely-stops) and Law 45 (guarantee-term).

p ≡ stps(
[
p, q

]
, id) ≡ stps((rely r •

[
p, q

]
), r) V stps((guar g • (rely r •

[
p, q

]
)), r)

The proof of the refinement (83) follows.[
p, q ∧ (g ∨ r)∗

]
v by Law 44 (introduce-guarantee) of g ∨ r and Law 52 (trading-post-guarantee)

guar g ∨ r •
[
p, q

]
v by Law 75 (rely)

guar g ∨ r • ((rely r •
[
p, q

]
) ‖ 〈r ∨ id〉∗)

= by Law 47 (distribute-guarantee) over parallel (56)

(guar g ∨ r • (rely r •
[
p, q

]
)) ‖ (guar g ∨ r • 〈r ∨ id〉∗)

v by Law 42 (strengthen-guarantee) twice

(guar g • (rely r •
[
p, q

]
)) ‖ (guar r • 〈r ∨ id〉∗)

= by Law 37 (conjunction-atomic-iterated) part(52) and Law 36 (terminating-iteration)

(guar g • (rely r •
[
p, q

]
)) ‖ 〈r ∨ id〉∗

Because conjunction is idempotent the last step holds as

(guar r • 〈r ∨ id〉∗) = 〈r ∨ id〉ω e 〈r ∨ id〉∗ = 〈r ∨ id〉ω e 〈true〉∗ e 〈r ∨ id〉∗ = 〈r ∨ id〉∗ .
2

Law 93 (introduce-parallel-spec-with-trading) For any predicates p, p0 and p1, and relations r, q,
q0, q1, g0 and g1, such that p V p0 ∧ p1 and p ∧ q0 ∧ q1 V q,

(rely r •
[
p, q ∧ (g0 ∨ g1 ∨ r)∗

]
)

v (guar g0 • (rely g1 ∨ r •
[
p0, q0

]
)) ‖ (guar g1 • (rely g0 ∨ r •

[
p1, q1

]
))

Proof. We use Law 92 (trade-rely-guarantee) and then introduce a parallel composition.

(rely r •
[
p, q ∧ (g0 ∨ g1 ∨ r)∗

]
)

v by Law 44 (introduce-guarantee) of g0 ∨ g1 and Law 92 (trade-rely-guarantee)

(guar g0 ∨ g1 • (rely r •
[
p, q

]
))

v by Law 91 (introduce-parallel-spec-with-rely) as p V p0 ∧ p1 and p ∧ q0 ∧ q1 V q

(guar g0 ∨ g1 • ((guar g0 • (rely g1 ∨ r •
[
p0, q0

]
)) ‖ (guar g1 • (rely g0 ∨ r •

[
p1, q1

]
))))

= by Law 47 (distribute-guarantee) and Law 46 (nested-guarantees)

(guar g0 • (rely g1 ∨ r •
[
p0, q0

]
)) ‖ (guar g1 • (rely g0 ∨ r •

[
p1, q1

]
))

2

36



Law 94 (introduce-parallel-spec-weakened-relies) For any predicates p, p0 and p1 and relations r,
r0, r1, q, q0, q1, g0 and g1, such that p V p0 ∧ p1 and p ∧ q0 ∧ q1 V q and g0 ∨ r V r1 ∨ id and
g1 ∨ r V r0 ∨ id,

(rely r •
[
p, q ∧ (g0 ∨ g1 ∨ r)∗

]
)

v (guar g0 • (rely r0 •
[
p0, q0

]
)) ‖ (guar g1 • (rely r1 •

[
p1, q1

]
))

Proof. The law follows from Law 93 (introduce-parallel-spec-with-trading) and two applications of Law
77 (weaken-rely). 2

Trading can also be applied to a guarantee invariant.

Law 95 (trade-rely-guarantee-invariant) For predicate p and relations r and q, such that r V (p ⇒
p′),

rely r •
[
p, p′ ∧ q

]
v guar-inv p • (rely r •

[
p, q

]
)

Proof.

rely r •
[
p, p′ ∧ q

]
v by Lemma 11 (consequence) as r V (p⇒ p′)

rely r •
[
p, ((p⇒ p′) ∨ r)∗ ∧ q

]
v by Law 44 (introduce-guarantee)

guar(p⇒ p′) • rely r • (
[
p, ((p⇒ p′) ∨ r)∗ ∧ q

]
)

= by Law 92 (trade-rely-guarantee) and Definition 63 (guarantee-invariant)
guar-inv p • (rely r •

[
p, q

]
)

2

7 Specifications and rely commands
A specification placed in an environment that can generate interference steps that satisfy r or stutter
must at least be able to tolerate any finite number of r steps (zero or more) both before and after its
execution. Hence we introduce the following definition.

Definition 96 (tolerate-interference) A specification
[
p, q

]
tolerates interference r provided

r V (p⇒ p′) (85)
p ∧ (r o

9 q) V q (86)
p ∧ (q o

9 r) V q (87)

Law 97 (tolerate-interference) If a specification
[
p, q

]
tolerates interference r then[

p, q
]
v 〈r ∨ id〉∗ ;

[
p, q

]
; 〈r ∨ id〉∗

Proof. Properties (85), (86) and (87) imply both the following.

r∗ V (p⇒ p′) (88)
p ∧ (r∗ o

9 q o
9 r∗) V q (89)[

p, q
]

v by Lemma 11 (consequence) as p ∧ (r∗ o
9 q o

9 r∗) V q[
p, r∗ o

9 q o
9 r∗
]

v by Lemma 12 (sequential) twice as r∗ V (p⇒ p′)[
r∗
]

;
[
p, q

]
;
[
r∗
]

v by Law 24 (refine-iterated-relation) twice as (r ∨ id)∗ = r∗

〈r ∨ id〉∗ ;
[
p, q

]
; 〈r ∨ id〉∗

37



2 Conditions (85), (86) and (87) are slight generalisations of conditions PR-ident, RQ-ident, and QR-
ident used by Coleman and Jones (2007, Sect. 3.3) in which r is assumed to be reflexive and transitive.
They are also closely related to the the concept of stability of p and q in the sense of Wickerson, Dodds,
and Parkinson (2010), although that paper limits postconditions to single state predicates rather than
relations.

If
[
p, q

]
can be implemented by a single atomic step, tolerating interference is sufficient to show

overall feasibility but, in general, tolerating interference does not guarantee that
[
p, q

]
can be imple-

mented because the conditions do not address interference while
[
p, q

]
is executing, only before and

after. Interference during
[
p, q

]
is handled by distributing the rely. We may have that

[
p, q

]
tolerates

interference r and[
p, q

]
v

[
p, q0

]
;
[
p1, q1

]
but, when these are placed in a rely context and the rely is distributed, one gets

(rely r •
[
p, q

]
) v (rely r •

[
p, q0

]
) ; (rely r •

[
p1, q1

]
)

but there is no guarantee that either
[
p, q0

]
or
[
p1, q1

]
tolerate interference r. Hence, as expected,

a feasible refinement in the standard sequential refinement calculus may no longer be feasible in the
context of a rely condition.

The following law corresponds to Jones-style sequential introduction (Jones 1983); note that by Law
41 (guarantee-monotonic) both sides of the law may be enclosed in the same guarantee, which may then
be distributed to the two components on the right using Law 47 (distribute-guarantee) over sequential
(55).

Law 98 (rely-sequential) For preconditions p0 and p1, and relations r, q0 and q1, such that p0 ∧
((q0 ∧ p′1) o

9 q1) V q,

(rely r •
[
p0, q

]
) v (rely r •

[
p0, q0 ∧ p′1

]
) ; (rely r •

[
p1, q1

]
)

Proof.

(rely r •
[
p0, q

]
)

v by Lemma 12 (sequential) and Law 78 (rely-monotonic)

(rely r •
[
p0, q0 ∧ p′1

]
;
[
p1, q1

]
)

v by Law 82 (distribute-rely-sequential)

(rely r •
[
p0, q0 ∧ p′1

]
) ; (rely r •

[
p1, q1

]
)

2

A specification command within a rely may be refined to an atomic step satisfying the specification
provided it can tolerate interference satisfying the rely before and after the atomic step.

Law 99 (rely-to-atomic) For any predicate p, and relations r and q, such that
[
p, q

]
tolerates interfer-

ence r,

(rely r •
[
p, q

]
) v 〈p, q〉 .

Proof. Note that the precondition p in the specification
[
p, q

]
must hold in the initial state before

any steps, including environment steps, whereas the precondition p in 〈p, q〉 must hold in the state in
which the atomic step is executed, which may be after a number of environment steps. As r preserves
p, if p holds initially, it holds after any number of environment steps that respect r, and hence p V
stps(〈p, q〉, r).

(rely r •
[
p, q

]
) v 〈p, q〉

≡ by Law 74 (rely-specification) as p V stps(〈p, q〉, r)

38



[
p, q

]
v 〈p, q〉 ‖ 〈r ∨ id〉∗

≡ by Lemma 66 (interference-atomic)[
p, q

]
v 〈r ∨ id〉∗ ; 〈p, q〉 ; 〈r ∨ id〉∗

W by Lemma 10 (make-atomic)[
p, q

]
v 〈r ∨ id〉∗ ;

[
p, q

]
; 〈r ∨ id〉∗

The last refinement holds by Law 97 (tolerate-interference) as
[
p, q

]
tolerates r. 2

If
[
p, q

]
tolerates interference id(X), where X contains the free variables of p and q, it is tempting

to use a non-atomic specification on the right in Law 99. However, recall that a specification without a
rely condition is treated as if the rely is the identity relation, i.e. only stuttering interference is allowed.
In this case a refinement of

[
p, q

]
is free to make use of variables outside X and these variables are not

guaranteed to be stable according to the rely condition id(X). However, if any refinement of
[
p, q

]
is

restricted to use only variables in X, it will be an implementation of the left side. To address this issue
we introduce a new language construct (uses X • c) that can be refined by a command d only if c v d
and d exclusively uses (reads or writes) variables in X.

The set of traces of (uses X • c) contains just those traces of c such that each atomic step is depen-
dent on only the variables in X. When c has been refined to code this requirement can be discharged
syntactically. The uses construct distributes through all language constructs in a straightforward man-
ner, although a little care is required with local variable declarations. The rules are straightforward and
hence they are not spelled out here.8

Law 100 (uses-atomic-effective) For any predicate p, relation q, command c, and set of variables X,[
p, q

]
v (uses X • c) ‖ 〈id(X)〉∗ ⇔

[
p, q

]
v 〈id(X)〉∗ ; (uses X • c) ; 〈id(X)〉∗

Proof. The implication from left to right is straightforward. For the reverse implication, any trace of the
(uses X • c) must be a trace of c in which every atomic step does not modify or depend on variables
outside X. As there are only a finite number of interference steps each satisfying id(X) in a trace of
(uses X • c) ‖ 〈id(X)〉∗, the above property allows all such interference steps to be moved to the left or
right to give an equivalent trace (in terms of the overall relation) consisting of a trace of c surrounded
by traces of 〈id(X)〉∗ on either side. 2

Law 101 (rely-uses) For any predicate p, relation q, and set of variables X, such that
[
p, q

]
tolerates

interference id(X),

(rely id(X) •
[
p, q

]
) v (uses X •

[
p, q

]
) .

Proof. Noting that id(X) ∨ id = id(X) and p ≡ stps((uses X •
[
p, q

]
), id(X)), by Law 74 (rely-

specification) the theorem holds if,[
p, q

]
v (uses X •

[
p, q

]
) ‖ 〈id(X)〉∗

W by Law 100 (uses-atomic-effective)[
p, q

]
v 〈id(X)〉∗ ; (uses X •

[
p, q

]
) ; 〈id(X)〉∗

W by Law 97 (tolerate-interference) as
[
p, q

]
tolerates id(X)[

p, q
]
v (uses X •

[
p, q

]
)

which holds as c v (uses X • c) for any command c. 2 Because the “uses” construct is monotonic with
respect to refinement, if

[
p, q

]
v c, then the refinement (uses X •

[
p, q

]
) v (uses X • c) is also valid;

that allows sequential refinement rules to be used to refine (uses X •
[
p, q

]
) provided the final code

respects the “uses” clause restriction.

8Care would be needed for a language which allowed aliasing of variable names because a uses clause involving a variable x
would implicitly include any aliases of x.

39



Law 102 (assignment-rely-guarantee) For any variable x, expression e, set of variables X, predicate
p and relations g and q, such that

[
p, q

]
tolerates interference id(X), p V def (e) and p ∧ x′ = e ∧

id(x̄) V q ∧ (g ∨ id) and vars(e) ∪ {x} ⊆ X

x : (guar g • (rely id(X) •
[
p, q

]
)) v x := e .

Proof. Many of the steps in the proof implicitly use Law 41 (guarantee-monotonic).

x : guar g • (rely id(X) •
[
p, q

]
)

v by Law 101 (rely-uses) as
[
p, q

]
tolerates id(X)

x : guar g • (uses X •
[
p, q

]
)

= as uses distributes through guarantees and Law 59 (guarantee-frame)

uses X • (guar g • x :
[
p, q

]
)

v by Law 60 (guarantee-assignment) as p V def (e) and p ∧ x′ = e ∧ id(x̄) V q ∧ (g ∨ id)
uses X • x := e

v as vars(e) ∪ {x} ⊆ X

x := e

The restriction on the variables of e and x ensures that every atomic step of x := e does not modify or
access variables outside X. 2

The VDM rules for rely-guarantee handle this issue via disjoint sets of read and write variables. The
union of the variables in VDM read and write sets corresponds to the set of “used” variables, and the
variables in the VDM write set correspond to the set of variables in the frame here.

7.1 Local variables
A local variable is immune from interference from its environment. Hence when refining the body of a
local variable block, the environment will not change the local variable. Furthermore the values of x in
environment steps of a local variable block have no effect on its behaviour.

Lemma 103 (refine-var) For any variable x, and commands c and d,

c vid(x) d ⇒ (var x • c) v (var x • d) .

Law 104 (strengthen-rely-in-context) For any relations r, rx and z, and command c,

(rely r • cz) vrx (rely rx ∧ r • cz) .

Proof. By Definition 69 (rely) the law holds provided

⊔{d1 | ({stps(c, z)}c vz d1 ‖ 〈r ∨ id〉∗) ∧ (stps(c, z) V stps(d1, z ∨ r))}
vrx ⊔{d0 | ({stps(c, z)}c vz d0 ‖ 〈(rx ∧ r) ∨ id〉∗) ∧ (stps(c, z) V stps(d0, z ∨ (rx ∧ r)))}

W by Law 14 (nondeterministic-choice)
∀ d0 • ({stps(c, z)}c vz d0 ‖ 〈(rx ∧ r) ∨ id〉∗) ∧ (stps(c, z) V stps(d0, z ∨ (rx ∧ r)))⇒
∃ d1 • ({stps(c, z)}c vz d1 ‖ 〈r ∨ id〉∗) ∧ (stps(c, z) V stps(d1, z ∨ r)) ∧ d1 vrx d0

As the witness for the existential quantifier choose d1 to be the same as d0 except that d1 only allows
environment steps satisfying rx ∨ id, that is, [[d1]] = [[d0]]rx. By Definition 1 (refinement-in-context) one
can deduce d0 v d1 vrx d0. Because the environment steps of d1 only allow interference satisfying
rx ∨ id, it follows that

{stps(c, z)}c vz d0 ‖ 〈(rx ∧ r) ∨ id〉∗ v d1 ‖ 〈(rx ∧ r) ∨ id〉∗ = d1 ‖ 〈r ∨ id〉∗ .

In addition, [[d1]]z∨r = [[d0]]rx∧(z∨r) ⊆ [[d0]]z∨(rx∧r). Hence stps(c, z) V stps(d0, z ∨ (rx ∧ r)) V
stps(d1, z ∨ r). 2

40



Law 105 (variable-rely) For any command c, relations z and r, variable x, and set of variables y,
where x is not in y,

(var x • x, y : (rely r • cz)) = (var x • x, y : (rely id(x) ∧ r • cz)) .

Proof. The refinement from right to left follows by Law 77 (weaken-rely). The refinement from left to
right holds as follows.

(var x • x, y : (rely r • cz)) v (var x • x, y : (rely id(x) ∧ r • cz))
W by Lemma 103 (refine-var)

x, y : (rely r • cz) vid(x) x, y : (rely id(x) ∧ r • cz)
W by Law 41 (guarantee-monotonic) applied to the frames

(rely r • cz) vid(x) (rely id(x) ∧ r • cz)

The latter follows by Law 104 (strengthen-rely-in-context). 2

In the following law the guarantee on the left applies to any global occurrence of x, which cannot be
modified by any implementation of c on the right because all its references to x are to the new local x9,
while the rely on the right refers to the local variable x, which because it is local to the process cannot
be subject to external interference.

Law 106 (variable-rely-guarantee) For a command c, relations z, g and r, a set of variables y, and a
variable x that is not in y and that does not occur free in any of g, r, z and c,

(guar g ∧ id(x) • y : (rely r • cz)) v (var x • x, y : (guar g • (rely id(x) ∧ r • cz)))

Proof.

guar g ∧ id(x) • y : (rely r • cz)
v by Lemma 61 (introduce-variable) as x not in y and not used by c or r

guar g ∧ id(x) • (var x • x, y : (rely r • cz))
= by Law 46 (nested-guarantees) and Law 62 (guarantee-variable)

guar g • (var x • x, y : (rely r • cz))
= by Law 105 (variable-rely) as variable declaration ensures rely id(x) locally

guar g • (var x • x, y : (rely id(x) ∧ r • cz))
= by Law 47 (distribute-guarantee) over variable declaration (57) as g is independent of x

var x • x, y : (guar g • (rely id(x) ∧ r • cz))

The last step also uses Law 59 (guarantee-frame). 2

8 Control structures and rely commands
Evaluation of an expression becomes nondeterministic if, during its evaluation, a concurrent process
can modify variables used within the expression. Properties of nondeterministic expression evaluation
have been investigated elsewhere (Coleman and Jones 2007; Coleman 2008; Wickerson, Dodds, and
Parkinson 2010; Hayes, Burns, Dongol, and Jones 2013); here we use the results of those investigations.
Our treatment of nondeterministic expressions considers a common special case where there is at most
a single reference within an expression e to a single variable y that may be modified by the environment
and all variables in e other than y are stable (unchanged by the environment) during the evaluation of
e. For example, the test x ≤ y satisfies the single reference property provided x is a local variable (and
hence may not be modified by the environment) and y is a global variable (which may be modified by
the environment). For expressions that do not satisfy this property, such as x ≤ y when both x and y
are global variables, the development typically requires the use of rely conditions that are specific to the
application and the refinement needs to use more primitive rules such as Lemma 54 (tests).

9This can be violated in a language that allows another variable to be an alias for the global variable x.

41



If an expression e satisfies the single reference property, the value of e is its value in the state in
which y is sampled. If the environment respects a rely condition r (which preserves all variables in e
other than y), the evaluation state is related to the initial state by r∗. This property is encapsulated by
the following law, which is similar in structure to Law 100 (uses-atomic-effective).

Law 107 (test-single-reference) Given any predicate p, relations q and r, and a boolean expression
b, if there is at most one variable y such that r V id(vars(b) − {y}), and if there is at most a single
reference to y within b,[

p, q
]
v [[b]] ‖ 〈r ∨ id〉∗ ⇔

[
p, q

]
v 〈r ∨ id〉∗ ; [[b]] ; 〈r ∨ id〉∗ .

Proof. The implication from left to right is straightforward. For the reverse implication, any trace of
[[b]] consists of a single atomic step that references y together with other steps that are either stuttering
(calculation) steps or reference variables that are stable under r. For any trace of [[b]] ‖ 〈r ∨ id〉∗, the
stable steps of [[b]] occurring before (or after) the reference to y may all be shifted right or left over the
interference steps so that all the steps of [[b]] are together and the overall end-to-end relation between
the initial and final states is unchanged. Hence the whole trace of [[b]] is preceded and followed by the
interference steps and hence is a trace of 〈r ∨ id〉∗ ; [[b]] ; 〈r ∨ id〉∗. 2

In practice, it is not enough to simply evaluate a test, but rather one would like to be able to use
the successful evaluation as an assumption within the body of a conditional or loop. In the presence
of interference this requires some care. For instance, if x is a shared variable that may be modified
arbitrarily by the environment and the test [[x ≤ 0]] succeeds, that does not allow one to assume that
x ≤ 0 continues to hold after its evaluation because the environment may increase x. However, the
property is preserved if the environment respects the rely condition x′ ≤ x. More generally, if [[b]] is
a test then one may subsequently assume a weaker condition b0, provided b0 is preserved by r, i.e.,
r V (b0 ⇒ b′0). This weakening of a test may be useful for various purposes; in Section 9 it is used to
allow an early exit from a loop. We now consider this special case for introducing a test, before using it
to prove the laws for introducing conditionals and loops.

Law 108 (rely-test) For any relation r, predicate p that is preserved by r, boolean expression b that
has the single reference property and predicate b0 such that p ∧ b V b0 and p ∧ r V (b0 ⇒ b′0) and
p V def (b),

(rely r •
[
p, r∗ ∧ b′0

]
) v [[b]] .

Proof. Note that due to the assumption that p is preserved by r and the assumption on b0,

p ∧ r∗ V (b0 ⇒ b′0) .

Hence the specification
[
p, r∗ ∧ b′0

]
tolerates interference r. The termination condition, p V stps([[b]], r),

holds because p V def (b) and p is preserved by r. Hence by Law 74 (rely-specification) the theorem
holds if,[

p, r∗ ∧ b′0
]
v [[b]] ‖ 〈r ∨ id〉∗

≡ by Law 107 (test-single-reference)[
p, r∗ ∧ b′0

]
v 〈r ∨ id〉∗ ; [[b]] ; 〈r ∨ id〉∗

W by Law 97 (tolerate-interference)[
p, r∗ ∧ b′0

]
v [[b]]

W by Lemma 11 (consequence) as p V def (b) and p ∧ b V b0 and id V r∗[
def (b), b ∧ id

]
v [[b]]

which holds by Lemma 15 (introduce-test). 2 As discussed above, a boolean expression b satisfying
the single reference property may not be invariant under r but it may imply a weaker predicate b0, that
is invariant under r. Similarly, ¬ b may imply a weaker predicate b1 that is invariant under r. Hence in

42



a conditional command, if b evaluates to true, b may no longer hold at the start of the “then” part, but
b0 will hold. Similarly, if b evaluates to false, ¬ b may no longer hold at the start of the “else” part, but
b1 will hold. Note that p ∧ (b ∨ ¬ b) V b0 ∨ b1 that is, p V b0 ∨ b1, and that b0 and b1 may overlap
to give nondeterminism in the choice of branch.

Law 109 (rely-conditional) For any predicate p, relations r and q, such that
[
p, q

]
tolerates interfer-

ence r, and boolean expressions b, b0 and b1 such that b satisfies the single-reference property and
p ∧ b V b0 and p ∧ r V (b0 ⇒ b′0), and p ∧ ¬ b V b1 and p ∧ r V (b1 ⇒ b′1) and p V def (b),

(rely r •
[
p, q

]
) v if b then (rely r •

[
p ∧ b0, q

]
else (rely r •

[
p ∧ b1, q

]
)

Proof.

rely r •
[
p, q

]
= as nondeterministic choice is idempotent

(rely r •
[
p, q

]
) u (rely r •

[
p, q

]
)

v by Law 98 (rely-sequential) twice as
[
p, q

]
tolerates interference r; hence p ∧ r∗ o

9 q V q

((rely r •
[
p, r∗ ∧ b′0

]
);(rely r •

[
p ∧ b0, q

]
)) u ((rely r •

[
p, r∗ ∧ b′1

]
);(rely r •

[
p ∧ b1, q

]
))

v by Law 108 (rely-test) twice using the assumptions on b0 and b1

([[b]] ; (rely r •
[
p ∧ b0, q

]
)) u ([[¬ b]] ; (rely r •

[
p ∧ b1, q

]
))

= by the definition of a conditional (7)

if b then (rely r •
[
p ∧ b0, q

]
)) else (rely r •

[
p ∧ b1, q

]
)

2 If the rely condition implies that all the variables used in the boolean expression b are stable, then
b0 and b1 can be chosen to be b and ¬ b, respectively. Note that this law may be combined with Law
56 (guarantee-conditional) to handle refinement of a specification to a conditional in both guarantee and
rely contexts.

The proof of Law 112 (rely-loop) below depends on properties of an iteration of a specification
with a postcondition satisfying a well-founded relation. Iteration of a specification that establishes a
well-founded relation terminates.

Law 110 (well-founded-termination) For any predicate p and relation w, such that w is well founded
on p, [

p, p′ ∧ w
]ω+ =

[
p, p′ ∧ w

]+
.

Proof.[
p, p′ ∧ w

]ω+

= by Law 20 (isolation)[
p, p′ ∧ w

]+ u [p, p′ ∧ w
]∞

= as w is well founded on p,
[
p, p′ ∧ w

]∞ =
[
p, false

][
p, p′ ∧ w

]+
2 A relation ω+ may be established by finitely iterating a specification that establishes ω+.

Law 111 (refine-to-iteration) For any precondition p and relation w,[
p, p′ ∧ w+

]
v
[
p, p′ ∧ w+

]+
43



Proof. By Law 18 (iteration-induction) for Kleene-iteration (35)

d v c u (c ; d) ⇒ d v c+ (90)

Applying this to the theorem requires one to show,[
p, p′ ∧ w+

]
v

[
p, p′ ∧ w+

]
u
[
p, p′ ∧ w+

]
;
[
p, p′ ∧ w+

]
which holds as w+ o

9 w+ V w+. 2

The law for a “while” loop treats the test in a similar manner to the test in a conditional. To guarantee
termination of a loop a well-founded relation w is required. The body of the loop must satisfy w and in
addition any interference step satisfying r must either satisfy the transitive closure w+ or not change any
variables in some set X, where w depends only on the variables in X and hence satisfies (id(X) o

9 w) ≡
w ≡ (w o

9 id(X)). The reflexive transitive closure w∗ would be too strong here because it would require
that r implies no variables at all are changed if r did not satisfy w+. We define w∗X =̂ w+ ∨ id(X) and
note that if w is well founded then so is w+.

Law 112 (rely-loop) For any predicate p, relations r, w and q, and set of variables X, such that r V
(p⇒ p′) and w is well-founded on p and depends only(w,X) and p ∧ r V w∗X and boolean expressions
b, b0 and b1 such that b satisfies the single-reference property and p ∧ b V b0 and p ∧ r V (b0 ⇒ b′0),
and p ∧ ¬ b V b1 and p ∧ r V (b1 ⇒ b′1) and p V def (b),

(rely r •
[
p, p′ ∧ b′1 ∧ w∗X

]
) v while b do(rely r •

[
p ∧ b0, p′ ∧ w

]
)

Proof. Note that w+ o
9 w∗X V w∗X because w o

9 id(X) ≡ w.

rely r •
[
p, p′ ∧ b′1 ∧ w∗X

]
v as nondeterministic choice is idempotent and Lemma 12 (sequential) as w+ o

9 w∗X V w∗X
rely r • (

[
p, p′ ∧ w+

]
;
[
p, p′ ∧ b′1 ∧ w∗X

]
u
[
p, p′ ∧ b′1 ∧ w∗X

]
)

v by Law 81 (distribute-rely-choice) and Law 82 (distribute-rely-sequential)
((rely r •

[
p, p′ ∧ w+

]
) ; (rely r •

[
p, p′ ∧ b′1 ∧ w∗X

]
)) u (rely r •

[
p, p′ ∧ b′1 ∧ w∗X

]
)

= distribute sequential over nondeterministic choice
((rely r •

[
p, p′ ∧ w+

]
) u nil) ; (rely r •

[
p, p′ ∧ b′1 ∧ w∗X

]
)

v by Lemma 11 (consequence) as p ∧ r∗ V p′ ∧ w∗X
((rely r •

[
p, p′ ∧ w+

]
) u nil) ; (rely r •

[
p, r∗ ∧ b′1

]
)

v by Law 108 (rely-test) as p ∧ ¬ b V b1 and p ∧ r V (b1 ⇒ b′1)
((rely r •

[
p, p′ ∧ w+

]
) u nil) ; [[¬ b]]

v by Law 111 (refine-to-iteration)
((rely r •

[
p, p′ ∧ w+

]+) u nil) ; [[¬ b]]
= as w+ is well founded using Law 110 (well-founded-termination) but with w+ rather than w

((rely r •
[
p, p′ ∧ w+

]ω+) u nil) ; [[¬ b]]
v by Law 85 (distribute-rely-iteration)

((rely r •
[
p, p′ ∧ w+

]
)ω+ u nil) ; [[¬ b]]

v by Law 17 (fold/unfold-iteration) and cω+ = cω ; c
(rely r •

[
p, p′ ∧ w+

]
)ω ; [[¬ b]]

v by Law 98 (rely-sequential) as w∗X o
9 w ≡ w+ because id(X) o

9 w ≡ w
((rely r •

[
p, p′ ∧ b′0 ∧ w∗X

]
) ; (rely r •

[
p ∧ b0, p′ ∧ w

]
))ω ; [[¬ b]]

v by Lemma 11 (consequence) as p ∧ r∗ V p′ ∧ w∗X
((rely r •

[
p, r∗ ∧ b′0

]
) ; (rely r •

[
p ∧ b0, p′ ∧ w

]
))ω ; [[¬ b]]

v by Law 108 (rely-test) as p ∧ b V b0 and p ∧ r V (b0 ⇒ b′0)
([[b]] ; (rely r •

[
p ∧ b0, p′ ∧ w

]
))ω ; [[¬ b]]

= by the definition of a loop (8)
while b do(rely r •

[
p ∧ b0, p′ ∧ w

]
)

44



2 If the rely condition implies that all the variables used in the boolean expression b are stable, then b0

and b1 can be chosen to be b and ¬ b, respectively. Also note that if r V id(X) then r V w∗X . This law
may be combined with Law 57 (guarantee-loop) to handle refinement of a specification to a loop in both
guarantee and rely contexts.

9 Extended example (concurrent version)
The task here is as described in Section 3.10; here, however, the focus is on refining to a concurrent
algorithm. This choice of example facilitates comparison with other publications: it is taken from
Susan Owicki’s thesis (1975) (and is also used by Jones (1981) and de Roever (2001) to contrast the
compositional rely/guarantee approach with the “Owicki/Gries” method).

9.1 Specification
The specification requires that findp sets the final value of variable t to the lowest index of array v such
that p(v(t)) for some predicate p; it assumes that neither v nor t is changed by the environment; the
frame prefix guarantees no changes to variables other than t are made.

findp =̂ t : rely id({v, t}) •
[
(t′ = len(v) + 1 ∨ satp(v, t′)) ∧ notp(v, dom(v), t′)

]
C

For a parallel implementation the essential change from Sect. 3.10 is the addition of a rely condition
which records the assumption that the key variables v and t experience no interference.

The majority of the laws developed above do not explicitly handle frames, however, a frame of x
corresponds to a guarantee of id(x̄), and hence the laws using guarantees can be used wherever needed.

9.2 Representing t using two variables
The implementation developed in Section 3.10 uses one process with an index c and loops from one
upwards until either p(v(c)) is satisfied or the index goes beyond len(v). Utilising concurrency, one can
split the task into two10 processes and have each process consider a subset of the domain of v.

One danger here is to end up with a design that needs to “lock” the result variable t during updates
and there is a better approach followed here. One can avoid the difficulties of sharing t by having a
separate index for each of the concurrent processes and representing t by min(ot, et).11 A poor solution
would then use disjoint parallelism where the two processes ignore each other’s progress — our aim is
an algorithm where the processes “interfere” to achieve better performance. Two local variables ot and
et are introduced with the intention that on termination the minimum of ot and et will be the least index
satisfying p.

v by Law 106 (variable-rely-guarantee) for ot and et and Lemma 11 (consequence)
var ot, et •

ot, et, t : rely id({v, t, ot, et}) •
[
(min(ot′, et′) = len(v) + 1 ∨ satp(v,min(ot′, et′))) ∧

notp(v, dom(v),min(ot′, et′)) ∧ t′ = min(ot′, et′)

]
C

Note that reducing a frame corresponds to strengthening the corresponding guarantee.

v by Law 98 (rely-sequential), Law 47 (distribute-guarantee) and Law 77 (weaken-rely)

ot, et : rely id({v, ot, et}) •
[
(min(ot′, et′) = len(v) + 1 ∨ satp(v,min(ot′, et′))) ∧

notp(v, dom(v),min(ot′, et′))

]
; C

t : rely id({t, ot, et}) •
[
t′ = min(ot, et)

]
10Generalising to an arbitrary number of threads presents no conceptual difficulties; in common with the earlier papers using

this example, a two way split of the index values into even and odd is considered because this keeps formulae short.
11Jones (2007) observes that achieving rely and/or guarantee conditions is often linked with data reification, for instance,

viewing min(ot, et) as a representation of the abstract variable t; this point is not pursued here.

45



The specification t : rely id({t, ot, et}) •
[
t′ = min(ot, et)

]
can be refined to t := min(ot, et) using

Law 102 (assignment-rely-guarantee) because all the variables involved are stable in the rely condition.
A guarantee invariant can be employed in a manner similar to the use in Sect. 3.10; the invariant is
established by setting both ot and et to len(v) + 1 using Law 102 (assignment-rely-guarantee).

v by Law 95 (trade-rely-guarantee-invariant); Law 98 (rely-sequential)
ot := len(v) + 1 ; et := len(v) + 1;
guar-inv min(ot, et) = len(v) + 1 ∨ satp(v,min(ot, et)) •

ot, et : rely id({v, ot, et}) •
[
notp(v, dom(v),min(ot′, et′))

]
C

9.3 Concurrency
The motivation for the parallel algorithm comes from the observation that the set of indices to be
searched, dom(v), can be partitioned into the odd and even indices of v, namely evens(v) and odds(v),
respectively, which can be searched in parallel.

notp(v, odds(v),min(ot′, et′)) ∧ notp(v, evens(v),min(ot′, et′)) V notp(v, dom(v),min(ot′, et′))

The next step is the epitome of rely-guarantee refinement: splitting the specification command.

v by Law 94 (introduce-parallel-spec-weakened-relies)
ot, et : guar ot′ ≤ ot ∧ et′ = et • rely et′ ≤ et ∧ id({ot, v}) •[

notp(v, odds(v),min(ot′, et′))
]

C
‖
ot, et : guar et′ ≤ et ∧ ot′ = ot • rely ot′ ≤ ot ∧ id({et, v}) •[

notp(v, evens(v),min(ot′, et′))
]

The above is all in the context of the guarantee invariant given above. As with Sect. 3.10, the guarantee
invariant will eventually need to be discharged for each atomic step but it is only possible to do that
when the final code has been developed. However, during the development one needs to be aware
of this requirement to avoid making design decisions that result in code that is inconsistent with the
guarantee invariant.

9.4 Refining the branches to code
For the first branch of the parallel, the guarantee et′ = et is by Definition 58 (frame) equivalent to
removing et from the frame of the branch.

= guar ot′ ≤ ot •
ot : rely et′ ≤ et ∧ id({ot, v}) •

[
notp(v, odds(v),min(ot′, et′))

]
C

The body of this can be refined to sequential code in a manner similar to that used in Sect. 3.10, however,
because the specification refers to et′ it is subject to interference from the parallel (evens) process which
may update et. That interference is however bounded by the rely condition which assumes the parallel
process only ever decreases et.

v by Law 106 (variable-rely-guarantee) for oc
var oc •

oc, ot : rely et′ ≤ et ∧ id({oc, ot, v}) •
[
notp(v, odds(v),min(ot′, et′))

]
C

As in Sect. 3.10, a loop invariant is introduced as a (stronger) guarantee invariant

notp(v, odds(v), oc) ∧ bnd(oc, v)

46



where the bounding conditions on oc are not quite the same as earlier because oc only takes on odd
values.

bnd(oc, v) =̂ 1 ≤ oc ≤ len(v) + 2

This invariant is established by setting oc to one. The guarantee invariant combined with the post-
condition oc′ ≥ min(ot′, et′) implies the postcondition of the above specification. The postcondition
oc′ ≥ min(ot′, et′) uses “≥” rather than “=” because the parallel process may decrease et. The above
can be refined using Law 98 (rely-sequential), Law 95 (trade-rely-guarantee-invariant) and Law 102
(assignment-rely-guarantee) as follows.

v oc := 1;
guar-inv notp(v, odds(v), oc) ∧ bnd(oc, v) •

oc, ot : rely et′ ≤ et ∧ id({oc, ot, v}) •
[
oc′ ≥ min(ot′, et′)

]
C

A while loop is introduced using Law 112 (rely-loop). Although the loop guard is oc < ot ∧ oc < et,
only the first conjunct of this is preserved by the rely condition because et may be decreased. Hence
the boolean expression b0 for this application of the law is oc < ot. However, the loop termination
condition oc ≥ ot ∨ oc ≥ et is preserved by the rely condition as decreasing et will not falsify it. Hence
b1 is oc ≥ ot ∨ oc ≥ et, which ensures oc ≥ min(ot, et) as required. For loop termination a well
founded relation reducing ot − oc is used.

v by Law 112 (rely-loop)
while oc < ot ∧ oc < et do

oc, ot : rely et′ ≤ et ∧ id({oc, ot, v}) •
[
oc < ot, 0 ≤ ot′ − oc′ < ot − oc

]
C

The specification of the loop body only involves variables which are stable under interference.

v by Law 77 (weaken-rely)
oc, ot : rely id({oc, ot, v}) •

[
oc < ot, 0 ≤ ot′ − oc′ < ot − oc

]
C

At this stage one could use Law 101 (rely-uses) to introduce a “uses” clause and allow a sequential
refinement to be used; we follow an alternative path in order to illustrate other laws. The refinement is
now similar to that used in Sect. 3.10 but uses Law 109 (rely-conditional).

v if p(v(oc)) then oc, ot : rely id({oc, ot, v}) •
[
p(v(oc)) ∧ oc < ot, 0 ≤ ot′ − oc′ < ot − oc

]
else oc, ot : rely id({oc, ot, v}) •

[
¬ p(v(oc)) ∧ oc < ot, 0 ≤ ot′ − oc′ < ot − oc

]
Finally, Law 102 (assignment-rely-guarantee) can be applied to each of the branches. Each assignment
ensures the guarantee invariant (min(ot, et) = len(v)+1 ∨ satp(v,min(ot, et)) ∧ notp(v, odds(v), oc) ∧
bnd(oc, v) is maintained.

v if p(v(oc)) then ot := oc else oc := oc + 2

9.5 Collected code
The development of the “evens” branch of the parallel composition follows the same pattern as that of
the “odds” branch given above. The collected code follows.

var ot, et •
ot := len(v) + 1 ;
et := len(v) + 1 ;

var oc •
oc := 1 ;
while oc < ot ∧ oc < et do

if p(v(oc)) then ot := oc
else oc := oc + 2

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
var ec •
ec := 2 ;
while ec < ot ∧ ec < et do

if p(v(ec)) then et := ec
else ec := ec + 2

 ;

t := min(ot, et)

47



The two branches (odds/evens) step through their respective subsets of the indices of v looking for
the first element that satisfies p. The efficiency gain over a sequential implementation comes from
allowing one of the processes to exit its loop early if the other has found an index i such that p(v(i)) that
is lower than the remaining indexes that the first process has yet to consider. The extra complications for
reasoning about this interprocess communication manifests itself particularly in the steps that introduce
concurrency and the while loop because the interference affects variables mentioned in the test of the
loop.

This implementation is guaranteed to satisfy the original specification due to its use at every step
of the refinement laws. In many ways, this mirrors the development in (Coleman and Jones 2007). In
particular, the use of Law 94 (introduce-parallel-spec-weakened-relies) in Section 9.3 mirrors the main
thrust of “traditional” rely/guarantee thinking. What is novel in the new development is both the use
of a guarantee invariant and the fact that there are rules for every construct used. Moreover, because
all of the results are derived from a small number of basic lemmas, it is possible to add new styles of
development without needing to go back to the semantics.

10 Conclusions

Summary

The idea of adding state assertions to imperative programs is crucial to the ability to decompose proofs
about such program texts. The most influential source of this idea is due to Floyd (1967) although
it is interesting to note that pioneers such as Turing and von Neumann recognised that something of
the sort would aid reasoning (Jones 2003a). The key contribution of Hoare (1969) was to change the
viewpoint away from program annotations to a system of judgements about “Hoare triples”. One huge
advantage of this viewpoint was that it offered a notion of compositional development. This is not the
place to attempt a complete history but it is important to note that the refinement calculus (Back 1981;
Morris 1987; Morgan 1988; Morgan 1994; Back and von Wright 1998) brings together the strands of
development for sequential programs into an elegant calculus in which algebraic properties are clear.
Other key developments include the idea of data refinement (or reification) and the importance of data
type invariants.

There are several extra challenges when one moves from confronting sequential programs to their
concurrent counterparts. Here again, this is not the place for a complete catalogue of the issues — and
certainly not a history. The aspect of parallelism that goes under the heading of data races can be divided
into avoiding such races and reasoning about those that are unavoidable. Conventional wisdom indicates
that concurrent separation logic (O’Hearn, Yang, and Reynolds 2009) is useful for the former way of
reasoning and that rely-guarantee thinking is useful for the latter.

The current paper shows how the sort of explicit reasoning about interference that underlies rely-
guarantee thinking can be recast into a refinement calculus mould. It transpires that there is a very good
fit of basic objectives. This includes the simple observation that the refinement calculus also embraced
relations (rather than single state predicates) as the cornerstone of specifications; more important is the
shared acknowledgement that compositional reasoning is a necessity if a method is to scale up to large
problems.

Rather than treat a specification of a program as a four-tuple of pre, rely, guarantee and postcondi-
tion, the approach taken here has been to consider initially guarantees and relies separately and, rather
than just apply them to a pre-post specification, allow them to be applied more generally to commands.
The guarantee command (guar g • c) constrains the behaviour of c so that only atomic program steps
that respect g are permitted. It generalises nicely to being applied to an arbitrary command. Refin-
ing a guarantee command can be decomposed into refining the body of the command, distributing the
guarantee into the components of the refinement and then checking that each atomic step maintains the
guarantee. Alternatively, in order to ensure that the guarantee is not broken, one can interleave refine-
ment steps with checking that the guarantee is preserved. The choice of strategies is up to the developer.

48



The guarantee command also provides a neat way to define a frame for a command in a manner suitable
to handle concurrency. Motivation for the guarantee construct was drawn from the invariant construct of
Morgan and Vickers (1994) and its behaviour in restricting the possible atomic steps mirrors the restric-
tions introduced by the invariant command on possible states. The guarantee construct is also related
to a form of enforced property used in action system refinement in which every action of a system is
constrained to satisfy a relation (Dongol and Hayes 2010). The guarantee construct can be thought of
as providing a context in which its body is refined. Nickson and Hayes (1997) have investigated tool
support for contexts such as preconditions and the Morgan-Vickers invariant, and it is clear that the
guarantee context could be treated similarly in tool support.

Invariants play an important role in reasoning about “while” loops because if a single iteration of a
loop maintains an invariant, any finite number of iterations of the loop will also maintain the invariant. In
a similar vein, if every atomic step of a computation maintains an invariant, the whole computation will
also maintain the invariant. This motivates the introduction of the guarantee invariant construct (Sect.
3.9). As illustrated in the developments of findp as both sequential (Sect. 3.10) and concurrent (Sect. 9)
programs, one can make use of guarantee invariants to ensure that every atomic step of a computation
maintains the invariant, and hence the whole computation (including any loops within it) also maintains
the invariant. The negative is that one must ensure every atomic step maintains the invariant, although
in many cases this is trivial if no variables within the invariant are modified by the step. Guarantee
invariants also play a role in the context of concurrency because if every atomic step of a process c
maintains an invariant, then a concurrent process d can rely on the invariant being maintained by any
interference generated by c.

The thesis by Jürgen Dingel (2000) and the more accessible (Dingel 2002) offer an approach towards
a “refinement calculus” view of rely/guarantee reasoning. There are however clear differences about
what constitutes such a view in Dingel’s writings and in the current paper. Dingel (2000, 2002) has also
produced a refinement calculus that supports rely-guarantee style reasoning. One difference between his
approach and that presented here is that he used a four-tuple of pre, rely, guarantee and post conditions
rather than the separate rely and guarantee constructs used here; in fact, his writings do not follow Jones’
original relational view because he, for example, has post conditions that are sets of predicates of single
states — on this point he follows Stirling (1986). To the current authors, the key reason for a refinement
calculus view is to get away from any fixed packaging of the assertions that comprise a specification
and to view guarantee/rely commands in a way that opens up a relational view of the constructs. Given
a basic set of commands and their basic laws, it is possible to derive more specific laws that often show
nice algebraic properties. To give just one specific example, Law 92 (trade-rely-guarantee) presents an
intuitive rule for what often appear to be arbitrary manipulations in earlier papers.

The rely command (rely r •
[
p, q

]
) guarantees to implement

[
p, q

]
under interference bounded by

the relation r. The generalisation of a rely command to allow a body containing any arbitrary command
c is complicated by the need to make the rely context z of c explicit. The explicit context is required
because the termination set of (rely r • cz) in context z ∨ r is stps(c, z), which depends on the context z.

In order for (rely r • c) to be feasible c must allow inference bounded by r, and this usually requires
c to be in the form of a pre-post specification (or a composition of such specifications) rather than more
basic commands like assignments because the latter are too restrictive to be feasible when included in a
rely.

The advantage of treating the guarantee and rely constructs separately is that we have been able to
develop sets of laws specific to each. This has the advantage of providing a better understanding of the
role of guarantees and relies. In particular the main defining property of the rely construct

{stps(c, z)}c v (rely r • cz) ‖ 〈r ∨ id〉∗

given in Section 4.3 brings out the essence of the role of the rely condition.
Of course, the main point of introducing rely and guarantee constructs is to allow them to be used

to express the bounds on interference in parallel compositions. To this end, in Section 5, we have
developed refinement laws for parallel composition that have been proved using the more fundamental
laws for guarantee and rely constructs along with basic laws about conjoined specifications/commands.

49



Our theory of rely and guarantee commands is built on a more basic theory of atomic steps. The
guarantee command is defined in terms of a strict conjunction with an iteration of atomic steps, each
of which satisfies the guarantee. The rely command again makes use of atomic steps but this time
to represent that the interference is bounded by the rely condition. This shows the basic relationship
required for the parallel composition law in which the atomic steps of one process must guarantee the
assumed interference of all other processes. All the refinement laws have been proven in terms of these
more basic theories, and from our experience it is clear that it is much easier to develop new refinement
laws using the theory than proving new laws directly from the semantics.

Further work
In the sequential refinement calculus because one is only concerned with the end-to-end behaviour from
the initial state to the final state, any program can be reduced to an equivalent specification statement.
However for concurrent programs the intermediate behaviour of a process can be as important as its
overall effect. The rely-guarantee approach augments pre-post specifications with rely and guarantee
relations which allow a pre-rely-guarantee-post specification to express both the assumption it makes
of steps by its environment and the guarantee about the steps its takes. As rely (guarantee) conditions
abstract all interference (program) steps, pre-rely-guarantee-post specifications are not rich enough to
be able to express precisely the behaviour of all processes.12 One challenge is to increase the expres-
sive power of rely and guarantee conditions to allow a more precise specification of a greater range of
processes, while retaining the elegance of the rely-guarantee approach.

As should be clear from the preceding material, the reformulation of rely/guarantee thinking in a
refinement calculus mould has suggested new notation and laws. A nice example is the shift from the
heavy VDM-like keyword framing in which read/write access is declared to the compact prefix listing
of write variables. There is however much scope for further research and progress. In the same area as
framing, it would be useful to have a direct notation that showed that a “variable” essentially became a
constant throughout a portion of code; in the same vein, Jones and Pierce (2011) use owns. Furthermore,
the hope for deep links to Separation Logic could be advanced by laws that directly indicate separate
access (cf. ot, et in Sect. 9.3).

There is also a clear case for reconsidering data reification in the new framework. The concept
of “possible values” was introduced by Jones and Pierce (2011) and linked to non-deterministic states
in (Hayes, Burns, Dongol, and Jones 2013) — re-examining the idea in the new framework might also
be enlightening.

Acknowledgements
The authors would like to thank our colleagues Joey Coleman, Larissa Meinicke, Jeff Sanders and
(anonymous) referees for feedback on our earlier work.

This research was supported by Australian Research Council Grants DP130102901 and LP0989643
and the EPSRC (UK) TrAmS-2 Platform grant and Taming Concurrency responsive mode grant.

12Technically this can be overcome by adding some form of program counter to each process and labels to each step of the
program but such an approach destroys the elegance of the rely/guarantee abstractions.

50



APPENDIX

A A rely-able semantics

A.1 Basic definitions
Memory is represented by a state that maps variables to their values, type Σ =̂ Var → Val . We use
σ, σ′, σi for elements of Σ. A sequence t of type T , t ∈ Tω , may be either finite (t ∈ T∗) or infinite
(t ∈ T∞). The domain of a finite sequence of length n is the set of natural numbers 0..n − 1, and the
domain of an infinite sequence t is the entire set of natural numbers (dom(t) = N).

A.2 Interpretation of programs
A semantics for sequential programs is classically given in terms of a binary relation between the pre-
state and post-state (perhaps augmented by a termination set as in VDM (Jones 1987)). However to
handle concurrency and the possibility of interference, we need to divide a program’s behaviour – its
trace– into its atomic steps. Moreover, to conveniently represent the behaviour of a program c in the
presence of interference from the environment, we include the steps of the environment within the traces
of c, distinguishing program steps, π(σ, σ′), from environment steps, ε(σ, σ′), where each step has an
associated pair of states, (σ, σ′), representing the pre- and post-states of the step (de Boer, Hannemann,
and de Roever 1999).13 A step α ∈ L may label a transition arrow, and its syntax follows.

α ::= π(σ, σ′) | ε(σ, σ′) (A.91)

Recall a trace is a consistent (12) sequence of steps. An execution of a command c is of the form

c
π(σ0,σ1)−−−−−→ c′

ε(σ1,σ2)−−−−−→ c′′
π(σ2,σ3)−−−−−→ c′′′

π(σ3,σ4)−−−−−→ . . .

where c, c′, . . . is the successive evolution of c as it is executed, and each transition represents an
atomic step from state σi to state σi+1. The trace generated by the above execution is the sequence
π(σ0, σ1), ε(σ1, σ2), π(σ2, σ3), π(σ3, σ4), . . . .

An operational semantics defining the above transition relation via a set of inference rules is used
below to define the behaviour of the basic commands in the language; the transition relation is the small-
est relation induced by those rules. The style of placing pairs of states on the transition arrows follows
that of Modular Structural Operational Semantics (MSOS) (Mosses 2004a; Mosses 2004b), which has
some advantages over the seminal Plotkin-style operational semantics (Plotkin 2004) in which the states
form part of the configuration rather than the label: 〈c0, σ0〉 −→ 〈c1, σ1〉. Of particular importance for
the semantics presented here is that by collecting the actions in the trace we are able to more succinctly
describe properties of the traces and hence interference.

The single-step transition relation induces a (multi-step) trace relation in the obvious way. For a

finite trace of steps, t, the relation is written c t=⇒ c′ and if t is infinite, it is written c t=⇒∞. The meaning
of a command c, [[c]], is the collection of all (finite and infinite) complete traces it may generate that
either terminate or are non-terminating. A command c that can terminate immediately is indicated by
(c)X. The predicate (c)X is defined in Appendix A.6.

[[c]] =̂ {t ∈ Trace | (∃ c′ • c t=⇒ c′ ∧ (c′)X) ∨ c t=⇒∞}

We start with the semantics of expressions (Appendix A.3) and commands that can be described by a
small-step semantics (Appendix A.4). We then move on to commands that require a big-step semantics
(A.5). We prefer the operational semantics style to direct denotational semantics as the former is gen-
erally held to be more readable (Jones 2003b), although the latter is certainly possible (as demonstrated
by Brookes (2007)).

13The use of explicit environment steps goes back to Peter Aczel’s use of direct (program) and interference (environment) steps
in traces to give a semantics for rely-guarantee inference rules (Aczel 1983).

51



A.3 Operational semantics of expression evaluation
The evaluation of a variable x to a value v generates a single program step (label) which is allowed only
when x has the value v in state σ; the step does not change the value of any variables.

σ(x) = v v ∈ Val

x
π(σ,σ)−−−−→ v

To evaluate a binary expression e1⊕ e2 the operands may be evaluated to values in any order.14 The
final value is found by applying the underlying mathematical operator to the values, which we write
eval(⊕, (v1, v2)). The function eval may return the undefined value ⊥ if the operator is not defined for
those values (e.g., division by zero). Unary operators are evaluated similarly.

e1
α−→ e′1

e1 ⊕ e2
α−→ e′1 ⊕ e2

e2
α−→ e′2

e1 ⊕ e2
α−→ e1 ⊕ e′2

v1, v2 ∈ Val

v1 ⊕ v2
π(σ,σ)−−−−→ eval(⊕, (v1, v2))

e α−→ e′

	e α−→ 	e′
v ∈ Val

	v
π(σ,σ)−−−−→ eval(	, v)

In addition, the evaluation of an expression may be interrupted by an environment step at any time,
as given by the following rule.

e
ε(σ,σ′)−−−−→ e (A.92)

The interference step does not change the expression, but may change the state, possibly affecting
subsequent evaluations of variables. Note that this rule allows any finite or infinite interference in the
trace generated by the evaluation.

A.4 Operational semantics of primitive code commands
The most basic terminated command is nil. A terminated command may allow further environment
steps, including an infinite number to handle the case that it is in parallel with a non-terminating loop.

(nil)X
(c)X

c
ε(σ,σ′)−−−−→ nil

(A.93)

The interference may be infinite, that is, unfair. In our model, unfairness results in a trace that ends with
an infinite number of environment steps; the definition of refinement, c v d, requires that d preserves
behaviours of c under unfair interference, but this does not affect the set of commands related by v,
because the behaviours of d that occur without interruption must also be behaviours of c. Note the
distinction between nil and magic: the former allows traces containing environment steps only, while
the latter allows no traces whatsoever.

A command c that has aborted may partake in any further behaviour.

abort α−→ c′ (A.94)

Note that command c′ on the right may be any command, including nil or abort.

14Operators like “conditional and” (which only evaluates its second operand if its first operand evaluates to true) are not covered
by these rules and would need separate specific rules.

52



For a single state predicate p and relation q, the atomic step 〈p, q〉 can do a q program step if p
holds or can abort if p does not hold. The execution of the step may be preceded by any number of
environment steps.

σ ∈ p ∧ (σ, σ′) ∈ q

〈p, q〉 π(σ,σ′)−−−−→ nil

σ 6∈ p

〈p, q〉 π(σ,σ′)−−−−→ abort
〈p, q〉 ε(σ,σ′)−−−−→ 〈p, q〉 (A.95)

Note that if the precondition p does not hold, there is no constraint on the final state, and that 〈true, false〉
has no program transitions: all its traces are infinite in length and contain only environment steps.

A preconditioned command {p}c requires the precondition p to hold on the first step of c, whether
that be a program or environment step.

c α−→ c′ pre(α) ∈ p

{p}c α−→ c′

pre(α) 6∈ p

{p}c α−→ abort
(A.96)

Nondeterministic choice between a set of commands C, ( ⊔C), can behave as any command within
C.

c ∈ C c α−→ c′

( ⊔C) α−→ c′
(A.97)

A sequential composition, (c1 ; c2), is defined to execute c1 until it terminates, after which c2 may
begin. If c1 aborts, the sequential composition aborts.

c1
α−→ c′1

c1 ; c2
α−→ c′1 ; c2

(c1)X c2
α−→ c′2

c1 ; c2
α−→ c′2

c1
α−→ abort

c1 ; c2
α−→ abort

(A.98)

Note that sequential composition implicitly fails to terminate if c1 fails to terminate, i.e., c2 is never
executed.

A strict conjunction of two commands c e d behaves in a manner consistent with both c and d. If
either can abort, so can their conjunction.

c1
α−→ c′1 c2

α−→ c′2
c1 e c2

α−→ c′1 e c′2

c1
α−→ abort

c1 e c2
α−→ abort

c2
α−→ abort

c1 e c2
α−→ abort

(A.99)

A parallel composition c ‖ d matches a program step of c with an environment step of d (or vice
versa) to give a program step of the composition. It can also match environment steps of both commands
to give an environment step of their composition. If either command can abort on a step matched
by the other, the parallel composition can abort. To define parallel composition we define a relation
match between a pair of steps (representing the transitions of the two components) and a single step
(representing the the transition of the parallel composition) as follows.

(π(σ, σ′), ε(σ, σ′)) match π(σ, σ′) (A.100)
(ε(σ, σ′), π(σ, σ′)) match π(σ, σ′) (A.101)
(ε(σ, σ′), ε(σ, σ′)) match ε(σ, σ′) (A.102)

The rule for the normal case allows any combinations that match while if either of the commands can
abort on matching transitions, the whole can.

c1
α1−−→ c′1 c2

α2−−→ c′2 (α1, α2) match α

(c1 ‖ c2) α−→ (c′1 ‖ c′2)
(A.103)

53



c1
α1−−→ abort c2

α2−−→ c′2 (α1, α2) match α

(c1 ‖ c2) α−→ abort
(A.104)

c1
α1−−→ c′1 c2

α2−−→ abort (α1, α2) match α

(c1 ‖ c2) α−→ abort
(A.105)

A local state command (state y 7→ v • c) limits the scope of y. Modifications to y are kept locally
(and have no effect on any (global) declarations of y) and the environment is explicitly prevented from
modifying the local variable y (but may modify other non-local variables called y). The state σ[y 7→ v]
is the state σ with the value at y updated to v.

c
π(σ[y7→v],σ′[y7→v′])−−−−−−−−−−−−→ c′ σ′(y) = σ(y)

(state y 7→ v • c)
π(σ,σ′)−−−−−→ (state y 7→ v′ • c′)

(A.106)

c
ε(σ[y7→v],σ′[y7→v])−−−−−−−−−−−→ c′

(state y 7→ v • c)
ε(σ,σ′)−−−−→ (state y 7→ v • c′)

(A.107)

c
π(σ[y7→v],σ′[y 7→v′])−−−−−−−−−−−−→ abort

(state y 7→ v • c)
π(σ,σ′)−−−−−→ abort

(A.108)

c
ε(σ[y7→v],σ′[y7→v])−−−−−−−−−−−→ abort

(state y 7→ v • c)
ε(σ,σ′)−−−−→ abort

(A.109)

Rule (A.106) states that if c transitions with a program step in which the global pre-post values for
y are overwritten by the local values, then the new post-state local value for y becomes v′, but to an
external observer the global value of y is unchanged. The latter is enforced by the premise of the rule.

Rule (A.107) states that environment steps within the scope of the declaration of y may not modify
y, however environment steps outside the scope of the local y may modify some global y. Thus, the local
declaration of y protects it from interference.

Promoted program steps of the body of a local state construct cannot modify any non-local variable
y. To remove this restriction in the case in which the body of the command can abort in environment
id(y), Rule (A.108) and Rule (A.109) promote a local state with a body that aborts in id(y) to abort.

A program step π(σ, σ′) of (uses X • c) is permitted provided c may take essentially the same
program step for every pair of states that is equal to (σ, σ′) in X. Let σ X= σ′ abbreviate (σ, σ′) ∈ id(X),
and similarly lifted to pairs of states.

c
π(σ,σ′)−−−−−→ c′ σ

X= σ′ ∀σ1, σ
′
1 • (σ1, σ

′
1) X= (σ, σ′) ∧ σ1

X= σ′1 ⇒ c
π(σ1,σ′

1)−−−−−→ c′

(uses X • c)
π(σ,σ′)−−−−−→ (uses X • c′)

(A.110)

c
ε(σ,σ′)−−−−→ c′

(uses X • c)
ε(σ,σ′)−−−−→ (uses X • c′)

(A.111)

c α−→ abort

(uses X • c) α−→ abort
(A.112)

Environment steps for the body of a uses command are simply promoted and if the body of a “uses”
command can abort, the “uses” command aborts.

54



A.5 Semantics of tests and specifications

We now turn our attention to commands that cannot be adequately described using a small-step seman-
tics. The test command [[b]] evaluates its boolean expression b. Only terminating traces that evaluate
to true will survive; evaluations to false are eliminated. If the evaluation of b results in undefined, the
test aborts, and a non-terminating expression evaluation results in non-terminated test. Variations in the
evaluation strategy used in an implementation may lead to evaluation traces that differ only in stuttering
steps. For example, stuttering steps allow equivalences like [[a ∧ b]] = [[a]] ‖ [[b]] and refinements
like [[b ∧ b]] v [[b]]. The semantics of the test command allows traces that are equivalent to the trace
defined by the expression evaluation modulo finite stuttering. The notation t0

st= t1 states that t0 and t1
are identical modulo finite stuttering of program steps.

b t0=⇒ true t0
st= t1

[[b]] t1=⇒ nil

b t0=⇒ ⊥ t0
st= t1

[[b]] t1=⇒ abort

b t0=⇒∞ t0
st= t1

[[b]] t1=⇒∞
(A.113)

If b t=⇒ false, that trace is not promoted to a trace of [[b]]. The exclusion of evaluations to false is
required for the definition of the conditional command, in which there is a nondeterministic choice
between a branch with test [[b]] and another with [[¬b]]. Whichever branch evaluates to false must
“lose”, which is modelled by a lack of traces, or magic.

A specification command
[
q
]

can perform any finite sequence of program steps that end-to-end
satisfies q, provided all environment steps are stuttering steps. However, if the environment changes the
state, then

[
q
]

aborts. Recall from (14) that env(t) ⊆ id holds if every environment step in t satisfies id
and that pre(t) abbreviates pre(t(0)) and post(t) abbreviates post(t(#t − 1)).

env(t) ⊆ id (pre(t), post(t)) ∈ q t ∈ L∗[
q
] t=⇒ nil

env(t) 6⊆ id t ∈ L∗[
q
] t=⇒ abort

env(t) ⊆ id interrupted(t) t ∈ L∞[
q
] t=⇒∞

(A.114)

The premises of the first rule require the first and final states in t to satisfy q. Any behaviour may occur
in between as long as q is established on termination. The final two rules state that a specification may
fail to meet its postcondition if the environment changes any variable or if the environment unfairly
interrupts execution. The latter case uses the predicate interrupted(t), which holds if t ends with an
infinite sequence of environment steps.

interrupted(t)⇔ (t ∈ L∞ ∧ finite pgm steps(t)) (A.115)

The command (env r • c) behaves as c in an environment that respects r but aborts otherwise. It is
defined directly in terms of its set of traces.

[[env r • c]] =̂ {t ∈ Trace | env(t) ⊆ r ∨ id⇒ t ∈ [[c]]} (A.116)

All other commands in the language are built out of these basic operators.

A.6 Propagating terminated behaviour

One method of reducing to terminated commands is to use explicit id steps, however we wish to reduce
the amount of stuttering induced by the semantics so as to relate as many commands as possible by the

55



refinement relation. Hence we inductively define the set of terminated commands, for use primarily in
the sequential composition rule.

(nil)X
(c)X

({p}c)X

∀ c ∈ C • (c)X

( ⊔C)X

(c0)X (c1)X

(c0 e c1)X

(c0)X (c1)X

(c0 ; c1)X

(c0)X (c1)X

(c0 ‖ c1)X

(c)X

(uses X • c)X

(c)X

(state y 7→ v • c)X

(A.117)

B Proofs of lemmas

In this section we prove soundness of some of the lemmas in the body of the paper.

Proof technique

Refinement is defined as reverse trace inclusion (Definition 2 (refinement)). As such it has elements
of both sequential program refinement and notions such as (bi)simulation from the process algebra
literature (Milner 1989). For the majority of the proofs of laws of the form c v d we enumerate all

possible transitions d α−→ d′, check that there exists a corresponding transition c α−→ c′, requiring
furthermore that d′ is a refinement of c′.

Theorem 113 The refinement c vr d holds if, for all α and d′ such that d α−→ d′ and if α is of the form
ε(σ, σ′) then (σ, σ′) ∈ r ∨ id, there exists a c′ such that both

c α−→ c′ (B.118)
c′ vr d′ (B.119)

Proof. It is straightforward by induction that any complete trace of d generated by the small-step op-
erational semantics must be a trace of c under the above conditions. This is similar to the definition of
bisimulation given by Milner (1989), but in only one direction (d is a simulation of c). 2

Proofs using Theorem 113 proceed by first discharging B.118 by case-analysis on the possible tran-
sitions of d, of which there are typically two, and sometimes three: a program step, an environment step,
and a step that ends in abort. Condition B.119 is usually trivial because the basic laws are defined so
that c and d (and hence c′ and d′) are structurally similar.

Theorem 113 is applied when c and d are commands defined using the small-step operational seman-
tics rules; for the remaining commands, defined using big-step operational semantics rules, in particular
the specification command

[
q
]
, we instead justify refinements against complete traces.

For convenience, when proving a refinement of the form c v d, we refer to c as the source and d as
the target, and use the same terms when proving an equality c = d.

Lemma 5 (precondition-traces)

For any predicate p and command c,

[[{p}c]] = {t ∈ Trace | pre(t) ∈ p⇒ t ∈ [[c]]} (B.120)
{p}c vr d ⇔ (∀ t ∈ [[d]]r • pre(t) ∈ p⇒ t ∈ [[c]]) (B.121)

Proof. By Rule (A.96), if pre(t) 6∈ p then t ∈ [[{p}c]], otherwise t ∈ [[{p}c]] if and only if t ∈ [[c]]. Hence
(B.120) holds. Property (B.121) follows directly from (B.120) and Definition 1 (refinement-in-context).
2

56



Lemma 13 (nondeterminism-traces)

[[ ⊔C ]] =
⋃
c∈C

[[c]]

Proof. By Rule (A.97) any trace of ⊔C is a trace of a command c ∈ C and hence the set of traces
of ⊔C is the union of the traces of all c ∈ C. If the set C is empty no behaviour is possible, i.e., as
expected, the empty set of choices is equivalent to magic. 2

Lemma 7 (parallel-precondition)

{p}(c ‖ d) = ({p}c) ‖ ({p}d)

Proof. Assume c ‖ d α−→ c′ ‖ d′, where α may be a program step of either c or d, or an environment
step of both (by Rule (A.103)). For α to be a non-aborting step of the source, then pre(α) ∈ p. This is
step is matched exactly by the target, since α is a step of either or both of c and d. In the aborting case
of Rule (A.96), the steps on each side are straightforwardly matched. 2

Lemma 8 (refine-specification)

(
[
p, q

]
v c) ⇔ (

[
p, q

]
vid c)

Proof. By Lemma 5 (precondition-traces) {p}
[
q
]
v c if and only if

∀ t ∈ [[c]] • pre(t) ∈ p⇒ t ∈ [[
[
q
]
]]

If t ∈ [[c]] and env(t) 6⊆ id then by Rule (A.114), t ∈ [[
[
q
]
]]. The remaining case is when env(t) ⊆ id and

requires

∀ t ∈ [[c]]id • pre(t) ∈ p⇒ t ∈ [[
[
q
]
]]

which by Lemma 5 (precondition-traces) is equivalent to {p}
[
q
]
vid c. 2

Lemma 11 (consequence)
Assuming p0 V p1, and p0 ∧ q1 V q0,

〈p0, q0〉 v 〈p1, q1〉[
p0, q0

]
v

[
p1, q1

]
Proof. From Theorem 113 and Rule (A.95), consider three cases.

• Case 〈p1, q1〉
ε(σ,σ′)−−−−→ 〈p1, q1〉. This is directly matched by a step of the source.

• Case 〈p1, q1〉
π(σ,σ′)−−−−−→ nil. It must be the case the σ ∈ p1 and (σ, σ′) ∈ q1. In the case where

σ ∈ p0 also, because p0 ∧ q1 V q0, then 〈p0, q0〉
π(σ,σ′)−−−−−→ nil by the first case of Rule (A.95). If

σ 6∈ p0, then 〈p0, q0〉
π(σ,σ′)−−−−−→ abort . Since abort v nil, condition (B.119) holds.

• Case 〈p1, q1〉
π(σ,σ′)−−−−−→ abort. We may assume σ 6∈ p1, and hence σ 6∈ p0, thus the source also

transitions to abort.

57



For specifications we need to show
[
p0, q0

]
v
[
p1, q1

]
. By Lemma 8 (refine-specification) and

Law 6 (precondition) as p0 V p1 it is sufficient to show {p0}
[
q0

]
vid

[
q1

]
and hence by Lemma 5

(precondition-traces) to show that

∀ t ∈ [[
[
q1

]
]]id • pre(t) ∈ p0 ⇒ t ∈ [[

[
q0

]
]] . (B.122)

By Rule (A.114), t ∈ [[
[
q1

]
]]id if and only if interrupted(t) or t is finite and (pre(t), post(t)) ∈ q1. If

interrupted(t) then by Rule (A.114) we also have t ∈ [[
[
q0

]
]], otherwise if pre(t) ∈ p0 then t ∈ [[

[
q0

]
]]

because p0 ∧ q1 V q0. 2

Lemma 9 (specification-term)

stps(
[
p, q

]
, r) ≡ p, if r V id (B.123)

stps(
[
p, q

]
, r) ≡ false, if r 6V id (B.124)

Proof. By Rule (A.114), every trace t of
[
q
]

in environment id is finite (or interrupted) and hence
stps(

[
q
]
, id) ≡ true. If r 6V id, then in an environment satisfying r, by Rule (A.114),

[
q
]

can abort and
hence has a nonterminating trace and hence stps(

[
q
]
, r) ≡ false. For property (B.123), if r V id, by

Law 6 (precondition) and as r ∨ id ≡ id, we have

stps({p}
[
q
]
, r) ≡ p ∧ stps(

[
q
]
, id) ≡ p ∧ true ≡ p

and for property (B.124), if r 6V id,

stps({p}
[
q
]
, r) ≡ p ∧ stps(

[
q
]
, r) ≡ p ∧ false ≡ false .

2

Lemma 10 (make-atomic)

[
p, q

]
v 〈p, q〉

Proof. By Lemma 8 (refine-specification) is is sufficient to show {p}
[
q
]
vid 〈p, q〉 and hence by

Lemma 5 (precondition-traces) that

∀ t ∈ [[〈p, q〉]]id • pre(t) ∈ p⇒ t ∈ [[
[
q
]
]]

By Rule (A.95) and Rule (A.93), any complete trace t ∈ [[〈p, q〉]]id has one of the following forms: a) a
finite number of id environment steps, followed by a single program step (satisfying p and q), followed
by a finite number of further id environment steps; b) a finite number of id environment steps, followed
by a single program step (satisfying p and q), followed by an infinite number of further id environment
steps; c) a finite number of id environment steps, followed by a single program step that does not satisfy
p, followed by any trace; or d) an infinite number of id environment steps.

In case a), because all environment steps of t satisfy id, (pre(t), post(t)) ∈ q holds (due to the single
program step) and hence t is a finite trace of

[
q
]
.

In case b), interrupted(t) holds, and hence t is an interrupted trace of
[
q
]
.

In case c), because every environment step satisfies id, if pre(t) ∈ p holds then p holds for the
program step and hence there are no traces for which case c) applies.

Case d) is similar to case b).
2

58



Lemma 12 (sequential)
Assume p0 ∧ ((q0 ∧ p′1) o

9 q1) V q,[
p0, q

]
v

[
p0, q0 ∧ p′1

]
;
[
p1, q1

]
Proof. By Law 6 (precondition) and Lemma 8 (refine-specification) it is sufficient to show {p0}

[
q
]
vid[

q0 ∧ p′1
]

;
[
p1, q1

]
and hence by Lemma 5 (precondition-traces) to show that

∀ t ∈ [[
[
q0 ∧ p′1

]
;
[
p1, q1

]
]]id • pre(t) ∈ p0 ⇒ t ∈ [[

[
q
]
]] .

A trace t of
[
q0 ∧ p′1

]
;
[
p1, q1

]
in environment id is either an interrupted trace of

[
q0 ∧ p′1

]
or a finite

trace t0 of
[
q0 ∧ p′1

]
followed by a trace t1 of

[
p1, q1

]
. If interrupted(t) then t is also a trace of

[
q
]
,

otherwise t = t0 a t1. Because t0 is a finite trace of
[
q0 ∧ p′1

]
, it follows that (pre(t0), post(t0)) ∈

(q0 ∧ p′1) and hence post(t0) ∈ p1. Because t is consistent (12), pre(t1) ∈ p1 and hence as t1 is
a trace of

[
q1

]
, either interrupted(t1) or t1 is finite and (pre(t1), post(t1)) ∈ q1. If interrupted(t1),

then interrupted(t) and hence t is a trace of
[
q
]
, otherwise as t = t0 a t1, both pre(t) ∈ p0 and

(pre(t), post(t)) ∈ ((q0 ∧ p′1) o
9 q1) and because p0 ∧ ((q0 ∧ p′1) o

9 q1) V q, (pre(t), post(t)) ∈ q and
hence t is a trace of

[
q
]
. 2

Lemma 15 (introduce-test)[
def (b), b ∧ id

]
v [[b]]

Proof. By Lemma 8 (refine-specification) and Lemma 5 (precondition-traces) it is sufficient to show

∀ t ∈ [[[[b]]]]id • pre(t) ∈ def (b)⇒ t ∈ [[
[
b ∧ id

]
]]

By Rule (A.113) a trace of the target ([[b]]) is any evaluation of b to true using the expression evaluation
rules (Appendix A.3), or an evaluation ending in abort if b is not defined. Because the evaluation of b
does not change the state and neither do the environment steps, if def (b) holds initially then it holds for
all states in the trace, and hence the evaluation to ⊥ is not possible. Moreover, because the state does
not change in any finite trace of [[b]], b must be true for all states in the trace, including in the final state.
Therefore, all finite traces of [[b]] are traces of

[
b ∧ id

]
. Finally, any interrupted trace of [[b]] is also a

possible behaviour of the
[
b ∧ id

]
(by Rule (A.114)). 2

Lemma 30 (conjunction-strict)
We focus on {p}(c e d) = ({p}c) e d, the other cases follow similarly.
Proof. By Rule (A.99) there are two cases of c e d to consider: 1) when both c and d may take the same
step α, and 2) when either may take a step to abort. The precondition p requires a further two subcases
by Rule (A.96): a) when p is satisfied by the α, and b) when it is not.

• Case 1a. In this case α is trivially a step of each side of the equality.

• Case 1b. If α does not satisfy p then the source may take a step ending in abort. The subcommand
{p}c may similarly take a step ending in abort, and hence so may the conjunction.

• Case 2a. The aborting step of the conjunction is promoted to an aborting step of the source. If
the aborting step is due to c, this is promoted to an aborting step of {p}c, which is promoted to
an aborting step of the target. If the aborting step is due to d, both source and target promote this
label.

• Case 2b. As with case 2a above, the aborting step is either promoted by the conjunction, or
permits an aborting step of the precondition.

2

59



Lemma 50 (refine-in-guarantee-context)
For any relations g and r and commands c0, c1 and d, such that c0 vg∨r c1,

c0 ‖ (guar g • d) vr c1 ‖ (guar g • d) .

Proof. We use Theorem 113, recalling that (guar g • d) =̂ d e 〈g ∨ id〉ω . We first show (B.118).

Assume d α−→ d′. In the case where d′ is abort then both source and target may abort (Rule (A.99)
and Rule (A.103)). In the case where d′ is not abort, then we may further assume that a program step α
satsifies g ∨ id.

Because the context is r, by Definition 1 (refinement-in-context) we need only consider traces of the
target where the environment steps satsify r. Consider the case where the target takes an environment
step,

c1 ‖ (guar g • d)
ε(σ,σ′)−−−−→ c′1 ‖ (guar g • d′)

assuming (σ, σ′) ∈ r ∨ id. By Rule (A.103) both subprocesses must have also taken this step, and

hence c1
ε(σ,σ′)−−−−→ c′1. By assumption (σ, σ′) ∈ r ∨ id, which immediately implies (σ, σ′) ∈ g ∨ r ∨ id.

Hence from the assumption c0 vg∨r c1, we have that ε(σ, σ′) is a step of c0, and therefore by extension
is also a step of the source.

Now consider a program step of the target.

c1 ‖ (guar g • d)
π(σ,σ′)−−−−−→ c′1 ‖ (guar g • d′)

This is a program step of either operand. If π(σ, σ′) is a program step of c1 (matched by an environment
step of (guar g • d)), then it is also a step of the source, by assumption. The interesting case of the
proof is when π(σ, σ′) is a program step of (guar g • d). Such a program step must be matched by
a corresponding environment step of c1. By the reasoning above, any program step of (guar g • d)
satisfies g ∨ id, and hence also satisfies g ∨ r ∨ id. The corresponding environment step of c1 therefore
also satisfies g ∨ r ∨ id, and by assumption this is a valid step of c0 in the context g ∨ r ∨ id. This
completes the proof of (B.118). To prove (B.119) is straightforward as both source and target evolve
similarly. 2

Lemma 61 (introduce-variable)
Assuming x nfi c and x 6∈ y,

y : c v (var x • x, y : c)

Proof. From the definition of a local variable block (10), the statement in the law is equivalent to
showing that for all v ∈ Val,

y : c v (state x 7→ v • x, y : c) .

Expanding the definition of the frame and hence guarantee gives:

c e 〈id(ȳ)〉ω v (state x 7→ v • c e 〈id(x, y〉)ω)

For clarity we use the following equivalent version of Rule (A.106).

c
π(σ,σ′)−−−−−→ c′ v = σ(y) v′ = σ′(y) w ∈ Val

(state y 7→ v • c)
π(σ[y7→w],σ′[y 7→w])−−−−−−−−−−−−→ (state y 7→ v′ • c′)

Consider an arbitrary environment step ε(σ, σ′) of c. There are no restrictions on the allowed environ-
ment step of the source. However by Rule (A.107) environment steps ε(σ, σ′) of c in the target will

60



be disallowed unless σ(x) = σ′(x). By Rule (A.107) the promoted step overrides the values of x with
any arbitrary values; and by the argument above, these are allowed also by the source. This reasoning
shows how the semantics of the local variable command prevent the environment from modifying the
local declaration, but allow it to modify other declarations at a higher level of scope.

The more interesting cases are for arbitrary program steps π(σ, σ′) of the target. If this is an aborting
step then by Rule (A.99) and Rule (A.108) this is an aborting step of both source and target. If π(σ, σ′)
is not an aborting step, then it must be a step of both c and 〈id(x, y)〉, that is, (σ, σ′) ∈ id(x, y). By the
version of Rule (A.106) above, the value σ′(x) becomes the new local value for x, and in addition the
promoted label sets the value of x in both pre- and post-states to be arbitrary and equal. Hence, because
(σ, σ′) ∈ id(x, y), then (σ[x 7→ w], σ′[x 7→ w]) ∈ id(ȳ), that is, the promoted label is stronger in the
sense that x does not change. This is now a step of the source. 2

Lemma 65 (parallel-interference)
Proof. Follows straightforwardly from Rule (A.95) and Rule (A.103). 2

Lemma 66 (interference-atomic)
Proof. Follows straightforwardly from Rule (A.95), Rule (A.103), and Rule (A.98). 2

Lemma 103 (refine-var)

c vid(x) d ⇒ (var x • c) v (var x • d)

Proof. Using the definition of a local variable block (10) and Law 14 (nondeterministic-choice) part
(26), it is sufficient to show

c vid(x) d ⇒ ∀ v • (state x 7→ v • c) v (state x 7→ v • d) .

We assume the property on the left of the implication and show the property on the right holds for all v
using Theorem 113. For property (B.118) for program steps

(state x 7→ v • d)
π(σ,σ′)−−−−−→ (state x 7→ v′ • d′)

≡ by Rule (A.106)

(d
π(σ[x 7→v],σ′[x 7→v′])−−−−−−−−−−−−→ d′) ∧ σ′(x) = σ(x)

V as c vid(x) d

(c
π(σ[x 7→v],σ′[x 7→v′])−−−−−−−−−−−−→ c′) ∧ σ′(x) = σ(x)

≡ by Rule (A.106)

(state x 7→ v • c)
π(σ,σ′)−−−−−→ (state x 7→ v • c′)

and for environment steps

(state x 7→ v • d)
ε(σ,σ′)−−−−→ (state x 7→ v • d′)

≡ by Rule (A.107)

d
ε(σ[x 7→v],σ′[x 7→v])−−−−−−−−−−−→ d′

V as c vid(x) d and (σ[x 7→ v], σ′[x 7→ v]) ∈ id(x)

c
ε(σ[x 7→v],σ′[x 7→v])−−−−−−−−−−−→ c′

≡ by Rule (A.107)

(state x 7→ v • c)
ε(σ,σ′)−−−−→ (state x 7→ v • c′)

Property (B.119) is straightforward as both source and target evolve similarly. The proofs for the abort-
ing cases are similar using Rule (A.108) and Rule (A.109). 2

61



Index
Definition

depends-only, 14*
feasible-guarantee-specification, 19*
frame, 21*, 21, 46
guarantee, 12*, 17–19, 22
guarantee-invariant, 22*, 22, 37
iteration, 10*, 10
refinement, 8*, 56
refinement-in-context, 7*, 8, 10, 40, 56, 60
rely, 27*, 27, 28, 30, 40
stops, 8*, 13
tolerate-interference, 37*

Law
assignment-rely-guarantee, 40*, 46, 47
conjoined-specifications, 16*, 19, 35
conjunction-atomic-iterated, 15*, 17, 36
conjunction-term, 13*, 32
conjunction-with-atomic, 15*, 18
conjunction-with-terminating, 16*, 18, 19
distribute-guarantee, 11, 18*, 20, 21, 36, 38,

41, 45
distribute-rely-choice, 31*, 44
distribute-rely-conjunction, 32*, 35
distribute-rely-iteration, 32*, 33, 44
distribute-rely-sequential, 31*, 38, 44
fold/unfold-iteration, 10*, 15, 16, 33, 44
guarantee-assignment, 11, 21*, 23, 24, 40
guarantee-atomic, 18*, 21
guarantee-bounds-interference, 34*, 34
guarantee-conditional, 20*, 43
guarantee-frame, 21*, 40, 41
guarantee-loop, 20*, 45
guarantee-monotonic, 11, 17*, 19, 29, 38, 40,

41
guarantee-plus-rely, 29*, 36
guarantee-precondition, 17*
guarantee-term, 17*, 36
guarantee-true, 17*, 17
guarantee-variable, 22*, 41
introduce-guarantee, 17*, 17, 20, 22, 34, 36,

37
introduce-parallel, 34*, 35
introduce-parallel-spec-weakened-relies, 37*,

46, 48
introduce-parallel-spec-with-rely, 35*, 36
introduce-parallel-spec-with-trading, 36*, 37
introduce-parallel-with-rely, 35*, 35
isolation, 11*, 43

iteration-fusion, 11*, 14, 15
iteration-induction, 10*, 12, 16, 32, 44
iteration-monotonic, 11*, 12, 33
nested-guarantees, 17*, 21, 36, 41
nested-rely, 30*, 35
nondeterministic-choice, 10*, 12, 21, 27, 28,

31, 40, 61
precondition, 8, 9*, 30, 58, 59
refine-by-parallel, 34*, 34
refine-conjunction, 13*, 13, 16, 34
refine-in-context, 18*, 25, 28
refine-iterated-relation, 12*, 19, 37
refine-to-guarantee, 18*, 34
refine-to-iteration, 43*, 44
refinement-monotonic, 8*, 13, 27, 28
rely, 28*, 29–34, 36
rely-conditional, 43*, 47
rely-environment, 28*, 28, 35
rely-loop, 43, 44*, 47
rely-monotonic, 29*, 35, 38
rely-precondition, 30*, 35
rely-refinement, 27*, 28–31
rely-refinement-precondition, 28*, 28–32
rely-sequential, 38*, 43–47
rely-specification, 28*, 36, 38, 39, 42
rely-stops, 27*, 28–34, 36
rely-test, 42*, 43, 44
rely-to-atomic, 38*, 39
rely-uses, 39*, 40, 47
simplify-conjunction, 13*, 19
stops, 12*, 13, 16, 17, 25
strengthen-guarantee, 17*, 17, 20, 36
strengthen-iterated-atomic, 12*, 16, 17, 29
strengthen-rely-in-context, 40*, 41
term-in-context, 25*, 30
term-monotonic, 13*, 28–30, 32, 33
terminating-iteration, 15*, 16, 18, 36
test-guarantee, 20*, 20, 21
test-single-reference, 42*, 42
tolerate-interference, 37*, 39, 42
trade-guarantee-invariant, 22*, 23, 24
trade-rely-guarantee, 36*, 36, 37, 49
trade-rely-guarantee-invariant, 37*, 46, 47
trading-post-guarantee, 11, 12, 19*, 22, 36
uses-atomic-effective, 39*, 39, 42
variable-rely, 41*, 41
variable-rely-guarantee, 41*, 45, 46
weaken-rely, 29*, 37, 41, 45, 47
well-founded-termination, 43*, 44

62



Lemma
conjunction-atomic, 14*, 15, 16
conjunction-monotonic, 13*, 13, 16, 17
conjunction-strict, 13*, 16, 17, 32, 34, 35, 59
consequence, 9*, 12, 16, 19, 21, 22, 35, 37,

42, 44, 45, 57
distribute-conjunction, 14*, 15, 16, 18
distribute-parallel, 26*, 28, 31–33
interference-atomic, 25*, 39, 61
introduce-test, 10*, 21, 42, 59
introduce-variable, 22*, 23, 41, 60
make-atomic, 9*, 12, 21, 39, 58
nondeterminism-traces, 9*, 10, 57
parallel-interference, 25*, 25, 30, 61
parallel-precondition, 9*, 25, 30, 34, 57
precondition-traces, 8*, 56–59
refine-in-guarantee-context, 18*, 18, 34, 60
refine-specification, 9*, 16, 28, 57–59
refine-var, 40*, 41, 61
sequential, 9*, 12, 21, 23, 37, 38, 44, 59
specification-term, 9*, 58
term-iteration, 33*, 33
term-sequential, 32*, 32
tests, 19*, 41

63



References
P. H. G. Aczel. 1983. On An Inference Rule for Parallel Composition. (1983). private communica-

tion.

R.-J. R. Back. 1981. On Correct Refinement of Programs. J. Comput. System Sci. 23, 1 (Feb. 1981),
49–68.

R.-J. R. Back and J. von Wright. 1998. Refinement Calculus: A Systematic Introduction. Springer.

S. Brookes. 2007. A semantics for concurrent separation logic. Theoretical Computer Science 375,
13 (2007), 227 – 270.

Ernie Cohen. 2000. Separation and Reduction. In Mathematics of Program Construction, 5th In-
ternational Conference, Portugal, July 2000. Springer-Verlag, 45–59.

Joey W. Coleman. 2008. Expression Decomposition in a Rely/Guarantee Context. In VSTTE (Lec-
ture Notes in Computer Science), Natarajan Shankar and Jim Woodcock (Eds.), Vol. 5295.
Springer, 146–160.

J. W. Coleman and C. B. Jones. 2007. A Structural Proof of the Soundness of Rely/guarantee
Rules. Journal of Logic and Computation 17, 4 (2007), 807–841. DOI:http://dx.doi.
org/10.1093/logcom/exm030

Pierre Collette and Cliff B. Jones. 2000. Enhancing the Tractability of Rely/Guarantee Specifi-
cations in the Development of Interfering Operations. In Proof, Language and Interaction,
Gordon Plotkin, Colin Stirling, and Mads Tofte (Eds.). MIT Press, Chapter 10, 277–307.

F. de Boer, U. Hannemann, and W. de Roever. 1999. Formal justification of the rely-guarantee
paradigm for shared-variable concurrency: a semantic approach. In FM99 Formal Methods,
Jeannette Wing, Jim Woodcock, and Jim Davies (Eds.). Lecture Notes in Computer Science,
Vol. 1709. Springer Berlin / Heidelberg, 714–714.

W. P. de Roever. 2001. Concurrency Verification: Introduction to Compositional and Noncompo-
sitional Methods. Cambridge University Press.

Jürgen Dingel. 2000. Systematic Parallel Programming. Ph.D. Dissertation. Carnegie Mellon Uni-
versity. CMU-CS-99-172.

J. Dingel. 2002. A Refinement Calculus for Shared-Variable Parallel and Distributed Program-
ming. Formal Aspects of Computing 14, 2 (2002), 123–197. DOI:http://dx.doi.org/
10.1007/s001650200032

Brijesh Dongol and Ian J. Hayes. 2010. Compositional Action System Derivation Using Enforced
Properties. In Mathematics of Program Construction (MPC) (Berlin) (LNCS), C. Bolduc, J. De-
sharnais, and B. Ktari (Eds.), Vol. 6120. Springer Verlag, 119–139. DOI:http://dx.doi.
org/10.1007/978-3-642-13321-3_9

R. W. Floyd. 1967. Assigning Meanings to Programs. In Proc. Symp. in Applied Mathematics,
Vol.19: Mathematical Aspects of Computer Science. American Mathematical Society, 19–32.

I. J. Hayes, A. Burns, B. Dongol, and C. B. Jones. 2013. Comparing Degrees of Non-Deterministic
in Expression Evaluation. Comput. J. 56, 6 (2013), 741–755. doi: 10.1093/comjnl/bxt005.

C.A.R. Hoare and Jifeng He. 1986. The Weakest Prespecification. Fundamenta Informaticae IX
(1986), 51–84.

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10
(October 1969), 576–580, 583.

C. B. Jones. 1981. Development Methods for Computer Programs including a Notion of Interfer-
ence. Ph.D. Dissertation. Oxford University. Printed as: Programming Research Group, Tech-
nical Monograph 25.

64



C. B. Jones. 1983. Tentative Steps Toward a Development Method for Interfering Programs.
Transactions on Programming Languages and System 5, 4 (1983), 596–619. DOI:http:
//dx.doi.org/10.1145/69575.69577

C. B. Jones. 1987. Program Specification and Verification in VDM. In Logic of Programming
and Calculi of Discrete Design, M. Broy (Ed.). NATO ASI Series F: Computer and Systems
Sciences, Vol. 36. Springer-Verlag, 149–184.

C. B. Jones. 1996. Accommodating Interference in the Formal Design of Concurrent Object-Based
Programs. Formal Methods in System Design 8, 2 (March 1996), 105–122. DOI:http://
dx.doi.org/10.1007/BF00122417

Cliff B. Jones. 2003a. The Early Search for Tractable Ways of Reasonning about Programs. IEEE,
Annals of the History of Computing 25, 2 (2003), 26–49. DOI:http://dx.doi.org/10.
1109/MAHC.2003.1203057

Cliff B. Jones. 2003b. Operational semantics: Concepts and their expression. Inf. Process. Lett. 88,
1-2 (2003), 27–32.

C. B. Jones. 2007. Splitting Atoms Safely. Theoretical Computer Science 375, 1–3 (2007), 109–
119. DOI:http://dx.doi.org/10.1016/j.tcs.2006.12.029

Cliff B. Jones and Ken G. Pierce. 2011. Elucidating concurrent algorithms via layers of abstraction
and reification. Formal Aspects of Computing 23, 3 (2011), 289–306. DOI:http://dx.
doi.org/10.1007/s00165-010-0156-1

R. Milner. 1989. Communication and Concurrency. Prentice Hall.

C. C. Morgan. 1988. The Specification Statement. ACM Trans. on Prog. Lang. and Sys. 10, 3 (July
1988).

C. C. Morgan. 1994. Programming from Specifications (second ed.). Prentice Hall.

C. C. Morgan and T. N. Vickers. 1990. Types and Invariants in the Refinement Calculus. Science
of Computer Programming 14 (1990), 281–304.

C. C. Morgan and T. N. Vickers (Eds.). 1994. On the Refinement Calculus. Springer-Verlag.

C. C. Morgan and T. N. Vickers. 1994. Types and Invariants in the Refinement Calculus. See
Morgan and Vickers (1994), 127–154. Originally published as (Morgan and Vickers 1990).

J. M. Morris. 1987. A Theoretical Basis for Stepwise Refinement and the Programming Calculus.
Science of Computer Programming 9, 3 (1987), 287–306.

Peter D. Mosses. 2004a. Exploiting Labels in Structural Operational Semantics. Fundam. Inform.
60, 1-4 (2004), 17–31.

Peter D. Mosses. 2004b. Modular structural operational semantics. J. Log. Algebr. Program. 60-61
(2004), 195–228.

R. Nickson and I. J. Hayes. 1997. Supporting Contexts in Program Refinement. Science of Com-
puter Programming 29, 3 (1997), 279–302.

P. W. O’Hearn, H. Yang, and J. C. Reynolds. 2009. Separation and Information Hiding. ACM
TOPLAS 31(3) (April 2009). Preliminary version appeared in 31st POPL, pp268-280, 2004.

S. Owicki. 1975. Axiomatic Proof Techniques for Parallel Programs. Ph.D. Dissertation. Depart-
ment of Computer Science, Cornell University.

Gordon D. Plotkin. 2004. A structural approach to operational semantics. Journal of Logic and
Algebraic Programming 60–61 (July–December 2004), 17–139. DOI:http://dx.doi.
org/doi:10.1016/j.jlap.2004.03.002

Leonor Prensa Nieto. 2001. Verification of Parallel Programs with the Owicki-Gries and Rely-
Guarantee Methods in Isabelle/HOL. Ph.D. Dissertation. Institut für Informatic der Technis-
chen Universitaet München.

65



Leonor Prensa Nieto. 2003. The Rely-Guarantee Method in Isabelle/HOL. In Proceedings of ESOP
2003 (LNCS), Vol. 2618. Springer-Verlag.

C. Stirling. 1986. A Compositional Reformulation of Owicki-Gries’ Partial Correctness Logic for
a Concurrent While Language. In ICALP’86. Springer-Verlag. LNCS 226.

K. Stølen. 1990. Development of Parallel Programs on Shared Data-Structures. Ph.D. Dissertation.
Manchester University. Available as UMCS-91-1-1.

J. von Wright. 2004. Towards a refinement algebra. Sci. of Comp. Prog. 51 (2004), 23–45.

John Wickerson, Mike Dodds, and Matthew Parkinson. 2010. Explicit stabilisation for modular
rely-guarantee reasoning. Technical Report 774. Computer Laboratory, University of Cam-
bridge.

66


	TRCover1395
	TRAbstract1395
	TECHNICAL REPORT SERIES
	Abstract

	TRBibliography1395
	1395withoutcovers

