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Abstract

One might think that specifying and reasoning about concurrent pro-
grams would be easier with more expressive languages. This paper ques-
tions that view. Clearly too weak a notation can mean that useful proper-
ties either cannot be expressed or their expression is unnatural. But choos-
ing too powerful a notation also has its drawbacks since reasoning receives
little guidance. For example, few would suggest that programming lan-
guages themselves provide tractable specifications. Both rely/guarantee
methods and separation logic(s) provide useful frameworks in which it is
natural to reason about aspects of concurrency. Rather than pursue an
approach of extending the notations of either approach, this paper starts
with the issues that appear to be inescapable with concurrency and –only
as a response thereto– examines ways in which these fundamental chal-
lenges can be met. Abstraction is always a key tool and its influence on
how the key issues are tackled is examined in each case.

1 Introduction

Concurrency has been an issue in computing for a long time but it becomes ever
more pressing as hardware evolves: the numbers of “cores” per chip is increasing
and “weak memory” architectures are being used. Furthermore computation
increasingly involves distributed data;

Concurrency always magnifies difficulties. The near impossibility of achiev-
ing acceptable sequential programs without using formal methods becomes abso-
lute in the presence of concurrency. Although this points to deploying apposite
formalisms, making them tractable is far more challenging than for purely se-
quential programs. In particular, the important property of compositionality
(see Section 2.1) is harder to achieve. The central concern of this paper is
“expressiveness” and this certainly becomes more delicate with concurrency.
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1.1 Expressiveness

It can be useful to limit the expressive power of formal notations in order to make
them more tractable. Of course, notations are only useful if they can express
something of interest so a balance must be sought. An obvious example is the
use –in programming languages– of type annotations that provide redundant
assertions whose consistency with the rest of a program is decidable and can be
checked at compile time.

This paper presents a study of two key issues in shared-variable concurrency:
interference and separation. It reviews two well-known approaches and considers
how they support reasoning about the aforementioned issues. It is argued that
part of the usefulness of the existing methods derives precisely from limitations
to their expressiveness. Furthermore, cautions are offered about attempts to
take notations –that serve one purpose well– and to artificially bend them in an
attempt to express other concepts. New directions for both existing approaches
are indicated in the hope that understanding what is really going on in their
methods will lead to new ways of combining the underlying concepts.

Another example of where expressive limitations appear to contribute to use-
fulness can be seen in writing specifications themselves. In say Hoare logic [Hoa69],
post conditions are logical expressions that express properties of required results.
Several observations can be made here:

• the use of logical operators (e.g. conjunction and negation) makes it pos-
sible to extend the range of concepts that can be expressed by the basic
operators on types (e.g. GCD in terms of multiplication; sorting in terms
of list operators)

• in contrast, the use of sequencing and iteration is what makes program-
ming languages “Turing complete”; such imperative operators are nor-
mally avoided in specifications because proving the equivalence of pro-
grams is harder than showing that programs satisfy specifications

• there is a minor –but indicative– contrast between methods that use post
conditions that are relations (between initial and final states) and those
that attempt to get by with post conditions of the final state alone; the
latter approach is forced to use free variables to express what are intuitively
relations (cf. Section 5.3).

The widespread use of Hoare logic indicates that it represents a good balance
between expressiveness and tractability.

It is worth taking one last example where limitations on expressiveness can
be seen as positive. The topic is data abstraction and it is almost a leitmotiv of
the current paper playing important roles in particular in Sections 4.1 and 4.2.
Perhaps the point can be best made by an anecdote about where data ab-
straction was not fully used.. The committee that produced the ECMA/ANSI
formal definition of PL/I [ANS76] was persuaded to adopt the basic ideas of
formal modelling but was nervous of the acceptance by practitioners of abstrac-
tions like sets being used in the state of the model; consequently sequence types
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were employed where the natural model would have used sets. Readers of the
resulting PL/I standard who wish to know if the ordering property of a partic-
ular sequence has any observable effect are therefore forced to examine all 300
pages of the document; the use of a set type would have been made it immedi-
ately apparent in the few pages of state description that no use of ordering was
possible. The general point is that abstract objects can be used deliberately in
specifications to limit the properties that can be expressed (e.g the elements of
a set are not ordered) and that this can make for a clearer specification.

The industrial trends listed at the beginning of this section point to study-
ing shared-variable concurrency but this should not be taken as an argument
that communication-based concurrency is uninteresting. Two of the significant
approaches to shared-variable concurrency are “Rely/Guarantee thinking” (nor-
mally abbreviated below as “R/G”) and Separation Logic (abbreviated as “SL”).
More is said about both R/G and SL (including pointers to source references)
when the issues to which they appear to respond are presented — but the cur-
rent argument is to view their respective expressive limitations positively: their
expressiveness indicates which issues they discuss well and should not be viewed
as a prompt to bend useful methods to tasks outside their natural purview.

The analysis in this paper is an early outcome of an attempt to devise
balanced expressive power and provide one or more notations in which it is
natural to reason about key issues in concurrency.

1.2 Structure of the paper

The examples above set out a general case for regarding expressive weakness
in a positive light; the remainder of the paper specialises this argument to
concurrency. Sections 2 and 3 introduce “issues” and then review notations for
reasoning about the issues. Peter O’Hearn proposes a useful dichotomy around
“data races” in [O’H07] arguing that SL is a natural way of showing race freedom
whereas R/G might be the more natural tool for “racy” programs. This useful
observation is refined in Sections 2.2 and 4.1.

Section 4 moves towards a goal that two new projects have set themselves:
to take inspiration from R/G and SL and to look for new ways of deploying
their fundamental insights –together with “abstraction”– to devise one or more
new methods. Interestingly, abstraction appears to subvert O’Hearn’s neat di-
chotomy (see both Sections 4.1 and 4.2).

Section 5 broadens the discussion both by listing some other issues and
referring to additional approaches.

2 Reasoning about interference (race tolerance)

The most fundamental issue with concurrency is interference.1 Data races oc-
cur when two or more processes can refer to the same data. The easiest case

1Although this might be more obvious with shared-variable concurrency, it is easy to
reproduce in the communication-based approach.
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to present is that of normal, named, variables to which multiple processes read
and write values. Even if assignment statements were to be executed atomi-
cally, x ← x + 1 ‖ x ← x ∗ 2 yields non-deterministic results. If –as in most
programming languages– there is no way to enforce the atomicity of assignment
statements, even more non-determinacy arises. Unguarded conflicts between
reads and writes are also problematic and the same issue can be reproduced
with heap variables which are referred to via their addresses.

In spite of this low-level unpredictability, it is possible to write programs
that satisfy sensible specifications despite “interference”. It is pointed out in
Section 4 that dealing with interference (in specifications and designs) using
abstract objects might be more useful than at the code level but the issue of
interference is central to concurrency and any method that can help designers
reason about interference warrants some attention.

Section 2.1 presents how R/G was originally formulated; after a motivating
example, Section 2.3 sketches a more algebraic formulation of the rely/guarantee
idea and revisits the example.

2.1 The original rely/guarantee 5-tuples

VDM was clearly part of the backdrop for the original R/G research. Among the
ideas inherited from [Jon80] was the use of post conditions that were relations
between initial and final states; using the resulting non-determinism to postpone
design decisions; a commitment to proving total correctness (implementations
must terminate when started in any state satisfying the pre condition of their
specification); the preference for a “posit and prove” use of formalism; a strong
commitment to data abstraction/reification; and judging any method against
the test of “compositionality”.

VDM [Jon90], B [Abr96] and Event-B [Abr10] can be classified as “posit and
prove” approaches. They allow a designer to posit a design step which gives rise
to “proof obligations” whose discharge justifies the design step. (The Rodin
tools [Rod08] are an example of integrating such an approach with theorem
proving support.) One of the advantages of such approaches is the inherent
redundancy that increases the chances of early detection of design errors.

Closely allied to posit and prove approaches is the property of composition-
ality. In order for development to be conducted in an organised way, it should be
possible to make, say, a design decomposition into sub-components and move
on with confidence that everything that needs to be achieved is recorded in
the specifications of the sub-components. Of course, mistaken design decisions
might require backtracking because a specification is unsatisfiable but a com-
ponent that meets its specification should never be rejected because of some
unstated requirement. Compositionality is relatively easy to achieve with se-
quential programs but far more difficult in the presence of concurrency.

The issue of developing concurrent programs had not been tackled in the
Vienna work; what was widely thought of as a viable approach to concurrent
programs was the “Owicki/Gries method”. Susan Owicki’s thesis [Owi75] (or
the more accessible [OG76]) sets out an approach in which the proof that two
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threads running concurrently satisfy some specification is tackled in two phases:
in the first phase, each thread is separately developed to satisfy its own pre/post
condition specification; the conjunction of these separate conditions must be
such that they imply the required specification of the combined threads; but,
before this result can be concluded, each thread must be proved not to interfere
with the proof of the other thread. So, in the second of the two phases, one
is asked to discharge a number of proof obligations that is the product of the
number of statements in the two threads — but this is not the most worrying
aspect of the Owicki/Gries approach. Far more serious is that the approach is
fundamentally non-compositional in the sense that if this post-facto interference
freedom (actually called by its authors the “einmischungsfrei”) property is not
true, the separate developments must be repeated. Owicki’s contribution made
progress beyond the earlier work of Ashcroft and Manna [AM71] but failed the
test of being compositional in that the pre/post conditions of the two threads fail
to express all of the requirements for acceptability. In [dR01], de Roever presents
an encyclopedic analysis of compositional and non-compositional development
methods for concurrency.

There is, in fact, a further limitation of the Owicki/Gries approach (shared
with that of Ashcroft and Manna): there is a reliance on a fixed level of granular-
ity. The chosen level happens to be that assignment statements (and expression
evaluation) are assumed to be atomic. It is shown in Section 2.2 below how
decisions on granularity can be put into the hands of the developer.

The basic idea behind rely/guarantee thinking is simple: interference must
be acknowledged and provision made for reasoning about it. Just as few pro-
grams will function properly in a completely arbitrary starting state, almost
no specification could be fulfilled by a program that experiences arbitrary in-
terference. The familiar way of handling the former challenge is to record a
pre condition that defines the set of starting states in which the program must
terminate with a final state that is acceptable. Rely relations record the inter-
ference that a program must tolerate. It is important to note that both pre
and rely conditions are effectively permissions to the designer of an implemen-
tation to ignore some deployment environments (viz. those that do not satisfy
the conditions) they are not things to be tested in the program. Of course, a
program is more robust if it satisfies weaker pre and rely conditions but there
will always be some limitations to record.

The overall function of a terminating program is recorded (at least in VDM)
as a relation between the initial and final states: the post condition is an obliga-
tion on the created implementation. The corresponding obligation that records
limitations on the interference that a component may inflict on its environment
is recorded in a guarantee relation. Figure 1 depicts these roles.

Most people record Hoare triples with the pre and post conditions in braces
wrapped around the program constructs which are claimed to satisfy the speci-
fication — thus {p} S {q}. It is easy to extend these judgements to incorporate
rely and guarantee conditions: {p, r} S {g , q} has the two assumptions in the
left braces and the two commitments on the right. For sequential program-
ming constructs, inference rules are typically given in terms of Hoare-triple
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pre︷︸︸︷
σ0 · · ·

rely︷ ︸︸ ︷
σi σi+1 · · · σj σj+1︸ ︷︷ ︸

guar

· · · σf

︸ ︷︷ ︸
post

Figure 1: The roles of pre, rely, guarantee and post conditions

judgements. Using the 5-tuple judgements, rules for introduction of parallel
constructs can be given — one possible rule is:

‖ -I

{P ,R ∨ G2} S1 {G1,Q1}
{P ,R ∨ G1} S2 {G2,Q2}

{P ,R} S1 ‖ S2 {G1 ∨ G2,Q1 ∧Q2 ∧ (R ∨ G1 ∨ G2)∗}

It should come as no surprise that this rule is more complicated than those for
sequential constructs but it is actually easy to explain. If the overall combi-
nation of statements S1 ‖ S2 has to be able to achieve its post condition with
interference (R) from its environment, then each Si has to be able to tolerate
that degree of interference plus any that can come from the sibling process Sj ;
the overall guarantee condition is the disjunction of the guarantees of the com-
ponents; the overall post condition is at least as strong as the conjunction of
the post conditions of the components but it is possible to add a conjunct that
is the reflexive closure of the guarantees and the overall rely condition.

The simplest class of rely and/or guarantee conditions might state that the
values of some variables remain unchanged but, in fact, such properties are
better handled by some notation for “framing”. The example in the next sub-
section illustrates conditions that express monotonic change. Interesting exam-
ples often combine conditions: Section 3.2 illustrates orderings on flags whose
status, in turn, is used on the left of an implication which constrains changes to
another variable.

Rely conditions discuss interference but do not fix the granularity of op-
erations. This point is difficult to make clear without examples but, both in
the sieve design of Section 2.2 and the more complicated ACM implementation
discussed in Section 4.1, it should be clear that granularity can be fixed by the
designer and is not predefined by the method.

The older references for R/G are [Jon81, Jon83a, Jon83b] but [Jon96] pro-
vides an adequate overview. The ugly soundness proof in [Jon81] has been
replaced in [CJ07, Col08] — Leonor Prensa Nieto provided Isabelle-checked
soundness proofs in [Pre03, Pre01] but the programming language is somewhat
restricted (parallel statements cannot be nested) and there is a simplifying as-
sumption on granularity. Among the numerous other theses on R/G, it is worth
mentioning Ketil Stølen’s because it [Stø90] tackles progress arguments. A dif-
ferent style of R/G rule in [CJ00] uses so-called “evolution invariants”. Although
now becoming slightly dated (in that many relevant theses post-date its publi-
cation), Willem-Paul de Roever’s encyclopedic survey [dR01] offers an excellent
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reference point and carefully argues the distinction between compositional and
non-compositional approaches to shared-variable concurrency.

One idea that is better not regarded as an extension of R/G is the use of
auxiliary (or “ghost”) variables; this point is expanded upon in Section 5.

2.2 A racy example

Section 1 above mentions Peter O’Hearn’s dichotomy that uses the key distinc-
tion between race-free programs and those which are “racy”. One example of
developing a racy program is known as the “Sieve of Eratosthenes”. The spec-
ification requires that all primes are identified up to some maximum value n;
the algorithm attributed to the worthy Greek simply eliminates all composites
by starting at two and progressively eliminating the products of each successive
number (this process can terminate at b

√
nc); after sieving, only the primes re-

main. Data abstraction is useful to make the specification and top-level design
clear: the set of possible primes is stored in a variable s: N-set2. Initialisation
arranges that s contains all natural numbers up to n. With an obvious outer
loop, the post condition of the process (REM (i)) that removes multiples of i
simply requires s ′ = s − ci where ci is all of the multiples of i . It is then
straightforward to see that, over the whole loop, all composites are removed
and the primes remain.

The interest here is in developing a concurrent version of this sieving process.
The design decision to run instances of REM concurrently can be described
sensibly at the level of the s: N-set data representation; but if REM (i) is to run
concurrently with REM (j ), its post condition cannot be the strict equality s ′ =
s − ci because REM (j ) might have removed numbers. In [Jon83a] this example
is used to initiate the reader to juggling tricks with the various conditions — a
more systematic approach is described in the next sub-section. Suffice it here
to say that using the post condition to set a lower bound on what is removed
(i.e. s ′ ∩ ci = { }) has to be reflected in the guarantee condition by defining an
upper bound on deletions (s − s ′ ⊆ ci) and both rely and guarantee conditions
end up needing s ′ ⊆ s as a conjunct.

There are a number of interesting facets of this first level of design for this
sieve example.

1. It is important to note that the granularity of the interference is much
finer than that of the REM operations being specified: many elements
could be removed from the set s by the environment of some instance
REM (i) during its execution.

2. The specification given has not fixed the level of granularity of interaction:
a (rather poor) implementation could meet the specification by having
each instance of REM lock the whole of set s for the duration of its
execution. Of course far better implementations for, say, a many-core
architecture will avoid this locking but the decision is left open by the

2VDM notation [Jon90] is used but should present no difficulty.
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R/G description of this first design step; further steps in the design process
need to make, record and justify the design decisions.

3. The rely and guarantee conditions are used to advantage on abstract types:
they capture the natural intuition of monotonic removal of elements before
the detailed representations are discussed.

4. Notwithstanding the previous point, data reification has an essential part
to play in achieving the guarantee condition. Assuming the set is finally
represented by some indexed vector, the guarantee condition can best be
achieved if the atomicity at the vector level works per indexed element;
locking would be required if, for example, the representation packed eight
bits into a byte and the operations of the machine were at the byte level.
(This intimate connection between R/G and data reification was noted,
in [Jon07], some time after the initial R/G ideas were proposed.)

5. The code developed for this sieve example does exhibit real races on the fi-
nal data representation (cf. the example in Section 4.1). The detailed code
meets the guarantee condition because it is possible to have a “remove”
primitive that is idempotent.

2.3 An algebraic presentation of R/G

Two recently funded research projects are aiming to develop R/G thinking:
“Taming Concurrency” is funded by (UK) EPSRC and “Understanding concur-
rent programmes using rely/guarantee thinking” is led by Ian Hayes and funded
by the Australian Research Council. The former project in particular has made
an explicit aim to “pull apart” both R/G and SL with a view to understanding
what they each express naturally. It is hoped that this understanding can lead
to one or more new combinations of notations that work together well. This
section indicates how “getting under the (syntactic) skin” of R/G could offer a
way forward.

R/G takes the issue of interference head on and uses guarantee conditions to
record the interference an implementation can inflict on its environment; corre-
spondingly, rely conditions record the interference that an implementation must
tolerate. The fixed format 5-tuple for presenting rely and guarantee conditions is
abandoned in [HJC13] in favour of a “refinement calculus” [Mor90, Mor94] style
of presentation which is extended to allow rely and/or guarantee statements to
be added to either specifications or code.

As in the original refinement calculus, pre/post condition specifications are
treated as commands and can be written [p, q ] — identically true pre conditions
are elided as in [q ]. Rely or guarantee conditions can be added to any command
c as follows: rely r · c, guar r · c. The framing conventions from the refinement
calculus are also adopted — this is discussed below in Section 3.3.

Using this notation, the laws relating the various command constructs ex-
press pleasing properties that were invisible in the original R/G presentation.
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Enough laws are presented to revisit the sieve example.3

Three laws that express equalities over commands that involve guarantee
commands are

Nested -G (guar g1 · (guar g2 · c)) = (guar g1 ∧ g2 · c)
Trading-G-Q (guar g · [g∗ ∧ q ]) = (guar g · [q ])
Distribute-G- || guar g · (c ‖ d) = (guar g · c) ‖ (guar g · d)

The first of these should be self-explanatory; that named Trading-G-Q reflects
the fact that, since a guarantee command requires every atomic step to satisfy g ,
the overall execution preserves the transitive closure of that condition g∗. The
third is one of a collection that permits distribution of guarantee commands
over the different program constructs.

The next law is a weakening law in that the right hand side of v will suffice
in any context where the left is acceptable.

Intro-G : c v (guar g · c)
Notice however that the g constraint on the right makes it harder to implement
that command than c alone.

Several laws are given in [HJC13] for the introduction of parallel constructs;
these laws are closest in intent to the 5-tuple law in Section 2.1; the n-ary
parallelism used in the sieve example is symmetric4 and the following simple
form suffices (Intro- ‖ -n is again a weakening law):

Intro- ‖ -n: [q ] v ‖i (guar gr · (rely gr · [qi ]))
providing ∀i · qi ⇒ q .

These laws are enough to develop an implementation of the concurrent ver-
sion of prime sieving — see Figure 2. As above, set s initially contains all
natural numbers up to some n; C is the set of all composite numbers; and

ci = {i ∗ j | 2 ≤ j ∧ (i ∗ j ) ≤ n}
C =

⋃
{ci | 2 ≤ i ≤ b

√
nc}

The first step of the proof development is justified by set theory; Intro-G is
used to require that no atomic step removes prime (non composite) numbers
from s; given that this condition is transitive, Trading-G-Q can be used to drop
the conjunct from the post condition because s − s ′ ⊆ C expresses a transitive
relation; employing Intro- ‖ -n requires the insertion of the (matching rely and
guarantee) condition on monotonic shrinking of the set s; the penultimate step
uses Distribute-G- ||; the final step moves to an equivalent specification with
the nested guarantees combined.

The final line of Figure 2 is essentially the expected rely/guarantee specifica-
tion for REM . The steps of development from there to the detailed code would
not be dissimilar to those in [Jon81] but there are now laws for distributing rely
and guarantee conditions over loop and sequence constructs (in the earlier ver-
sion these were taken as “obvious”) and proper laws for introducing assignments
(which tended to be handled informally in R/G).

3The names used here differ from those for the laws in [HJC13] — the choice here is for
shorter names that suffice for the current example.

4Such symmetric gr is an interesting special case but more interesting parallel decomposi-
tions such as that in Section 4.1 use different predicates for the rely and guarantee conditions.
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[s ′ = s − C ]
= by set theory

[s ′ ∩ C = { } ∧ s − s ′ ⊆ C ]
v by Intro-G

guar s − s ′ ⊆ C · [s ′ ∩ C = { } ∧ s − s ′ ⊆ C ]
= by Trading-G-Q(s − s ′ ⊆ C is transitive)

guar s − s ′ ⊆ C · [s ′ ∩ C = { }]
v by Intro- ‖ -n

guar s − s ′ ⊆ C · (‖i guar s ′ ⊆ s · rely s ′ ⊆ s · [s ′ ∩ ci = { }])
= Distribute-G- ||

guar s − s ′ ⊆ C · guar s ′ ⊆ s · (‖i rely s ′ ⊆ s · [s ′ ∩ ci = { }])
= Nested -G

guar s − s ′ ⊆ C ∧ s ′ ⊆ s · (‖i rely s ′ ⊆ s · [s ′ ∩ ci = { }])

Figure 2: An (extended) refinement calculus development of Sieve

The presentation in the refinement calculus style should not be taken as
a step away from “posit and prove” developments. Small examples such as
that for prime sieving are seductive but, when one is faced with an industrial
post condition that is perhaps a page long, the beauty of a chain of one liners
like those in Figure 2 is no longer an option. It should also be clear that
laws which are not equalities (i.e. they use v) normally require some design
inspiration. Sieve is however a useful illustrative example and the new R/G
laws do have an algebraic form hidden by the original 5-tuple presentation. The
material in [HJC13] includes an operational semantics, a dozen or so lemmas
proved directly from the semantics, over 50 laws derived from the lemmas and an
example that is different from the one used here. Hopefully, the new presentation
affords a clearer understanding of interference.

3 Reasoning about separation (race avoidance)

As stated above, the planned research programme will also try to “pull apart”
separation logic to understand its fundamental contribution. Section 3.1 de-
scribes the issue of separation and sketches how SL helps reason about the
issue; Section 3.2 follows O’Hearn’s discussion in [O’H07] in which he moves
from separation to “ownership” (Section 4 returns to this issue).

3.1 Concurrent Separation Logic

The issue of separation concerns clarifying which parts of the state are of rele-
vance to different concurrent threads. When considered this broadly, separation
can be seen as one way of ensuring (non-)interference. There are two dimensions
in which a more focused analysis is needed. Firstly it is useful to look at read vs.
write access and secondly the problem takes a different complexion depending
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on how elements of the state are identified. For the latter dimension, the term
“stack variables” is used to refer to the normal identifiers declared in high-level
programming languages whereas the phrase “heap variables” is used for access
to store via natural number references.

Tony Hoare made a first attempt to extend the “axiomatic basis” [Hoa69]
to parallelism in [Hoa72]. That paper considers programs using (normal) stack
variables. Assuming separate pieces of code had been proved to satisfy specifi-
cations given in terms of their individual pre/post conditions, the question was
under which conditions the parallel execution of the code segments would sat-
isfy a specification formed by conjoining their pre/post conditions.5 Since Hoare
was concerned with programs using normal variables, requiring that the threads
did not share variables was a simple check of the alphabets of the programs.

Notice that it is not only where two threads write to the same variable that
data races can occur: statements proved to satisfy a specification with a pre
condition that fixes the value of say x cannot conclude that x still has that
value if a concurrent thread can write to x . Read/write conflicts also matter.
For stack variables, the separation of alphabets is straightforward. For example,
each operation in VDM [Jon90] identifies its rd/wr state components and this
would support reasoning about separation in the case of normal variables. In
fact, it could be argued that separation is just an extreme way of achieving
non-interference and that R/G handles more delicate interference requirements.

Separation logic [Rey00, Rey02] tackles the messier case of reasoning about
heap variables: where the portion of the state to be read and/or written is
determined by a natural number, it is clear that checking separation is more
complex.6 Concurrent Separation Logic [O’H07] resolves several technical chal-
lenges in order to get back to a rule that is identical in intent to Hoare’s approach
in [Hoa72]. Suppose it is necessary (presumably in some larger piece of reason-
ing) to draw some conclusion about the concurrent execution of two statements
that refer to the heap:

[x ]← 3 ‖ [y ]← 4

Little can be concluded if it is unknown whether the values in the stack variables
x and y refer to the same address. If however it is a pre-condition that the
addresses are distinct, it would be desirable to be able to prove a post condition
of the combined statement that conjoins the two individual post conditions.
A key SL proof rule permits exactly this reasoning but, rather than normal
conjunction, “separating conjunction” (written P ∗Q) is only defined where P
and Q are separate. The rule is:

SL

{P1} s1 {Q1}
{P2} s2 {Q2}

{P1 ∗ P2} s1 || s2 {Q1 ∗Q2}

Using x 7→ 3 to mean that the element of the heap whose address is the value
5The seeds of [Owi75] and even [AM71] can be detected here.
6Using SL for stack variables (e.g. [PBC06]) is, in most cases, overly heavy.
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of x holds the value 3 and x 7→ to mean that x holds some value, the above
mini-challenge can be proved by an instance of the SL rule:

{x 7→ ∗ y 7→ }
[x ]← 3 ‖ [y ]← 4

{x 7→ 3 ∗ y 7→ 4}
In both the pre and post condition, the separating conjunction is crucial. One
huge benefit of separating conjunction is that the frame rule gives a delightful
way of embedding a component in a larger frame:

SL-frame
{P} s {Q}

{P ∗ R} s {Q ∗ R}

Unsurprisingly, SL is extremely potent for reasoning about disjoint concur-
rency such as is used in parallel merge sort in [O’H07].

3.2 Ownership

Although the authors writing about separation logic always use that adjective,
there is a sense in which it could more usefully be described as “ownership
logic”. Whether said authors agree or not, the issue of “ownership” is certainly
one that has to be faced in many concurrent systems. In particular, there is an
interesting class of concurrent system in which the ownership of some part of the
shared state is passed between threads. SL appears to be well equipped to deal
with such problems and [O’H07] uses the example of passing a value between
writer and reader processes by passing its address (O’Hearn adds the important
observation that this programming pattern is essential to achieve performance
in low-level code).

Interestingly, transfer of ownership of stack variables can easily be specified
using R/G. For example, a rely condition for a reader process might record that
a buffer (b) does not change when the r flag is set together with the fact that
the environment cannot set r to false:

(r ⇒ b′ = b) ∧ (r ⇒ r ′)

the writer process must have a corresponding guarantee condition and might
rely on the fact that its environment cannot make r true (r ′ ⇒ r).

Given that such ownership exchanges are needed for both stack and variables,
it feels as though there ought be one way of expressing the idea in either case
rather than asking users to employ R/G in the former case and SL in the latter.

It would, in fact, be possible to represent the heap as one component of an
overall state and to code assertions about the heap being unchanged using the
various map operators in, say, VDM. This is not the line proposed in this paper;
the interest here is in teasing out the fundamental issues and finding natural
ways of handling the issues.

Probing a little deeper into the issue of ownership, it is worth establishing
exactly what is intended. Complete ownership of a variable might be taken to
mean that only the owner has write or read access. In other situations, it might
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be useful to express finer distinctions. One of many extensions to SL concerns
“fractional permissions” [Boy03] and these can be used to express ownership
distinctions. Fractional permissions do, however, look like a way of “coding”
something deeper. It is for example interesting to compare the use of fractional
permissions in [dRPDYD+11, §4.3] and abstract predicates (see Section 5.2) to
tackle the sieve problem of Section 2.3.

Matt Parkinson’s [Par10] has the title “The next 700 separation logics”7 and
is a hint of how versions of SL are proliferating to meet new challenges. One
laudable property of nearly all SL extensions is the concern shown for algebraic
properties of their operators (e.g. “magic wand”). Hopefully, the developments
in Section 2.3 will help bring SL and R/G researchers even closer together.

3.3 Framing

The early papers on R/G used VDM’s keyword style to define the rd/wr frames.
The move to a refinement calculus presentation not only gives a more linear
notation for assertions, it also prompts the use of a compact notation to specify
the write frame of a command. Thus:

x : [Q ]

requires that the relational post condition Q is achieved with changes only being
made to the variable x . This makes a small step towards the compact notation
of separation logic. Rather than go to the complete determination of frames
from the alphabets of assertions used there, a sensible intermediate step might
be to write pre and post conditions as predicates with explicit parameter lists
and have the arguments of the former determine the read frame and the extra
parameters of the latter determine the write frame. The indirection of having
named predicates would pose little overhead in large applications because it is
impractical to write specifications in a single line.

4 Abstraction as a Key Tool

As well as focusing on the issues around concurrency and what needs to be
expressed in order to cope with them, this paper (and its predecessor [Jon12a])
presents the case that “abstraction” can be a key tool in tackling the issues. It
is pointed out in Section 2.2 above that data abstraction and reification already
play an important role in rely/guarantee methods. This is certainly not surpris-
ing: VDM has emphasised data abstraction in specification and reification in
design since its inception (see [Jon03b, §3.2]) and [Jon80] was probably the first
book to put equal emphasis on data in design and programming constructs. The
current section goes further, both showing that abstraction appears to extend
the domain of R/G (Section 4.1) and offering a new view on reasoning about
separation (Section 4.2).

7Obviously echoing Peter Landin’s [Lan66].
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4.1 Abstract race avoidance

The data race that occurs in the sieve example (cf. Section 2.2) is real in the sense
that multiple threads execute assignments to shared variables without explicit
synchronisation. In other words, only the hardware memory synchronisation
behaviour defines the granularity. That algorithms can be designed to work in
such cases depends on some form of idempotence — in the sieve case, no harm
is done setting a portion of storage to a null value multiple times. A far more
subtle example is treated in [Jon81]: the application is the Fisher/Galler algo-
rithm for recording equivalence relations (sometimes known as the “union/find”
problem); a concurrent clean-up algorithm that compresses trees was designed
in the expectation that some software locking would be required — the analysis
using R/G showed that this can be avoided. The property on which this proof
is built is far more subtle but, in some very general sense, can again be seen as
an idempotent change.

In contrast, this section outlines a case where what appears to be a data race
at an abstract level of design actually disappears in later design decisions giving
rise to a race free implementation. The example is rather intricate and cannot
be fully described here but enough can be sketched to convey the essential point
and cited papers contain the supporting details.

The application is the implementation of so-called “Asynchronous Commu-
nications Mechanisms” (ACMs). Logically, these are just one place buffers with
one writer and one reader but the difficulty derives from the adjective “asyn-
chronous”: neither reader nor writer can ever be delayed and, of course, the
reader must never see incoherent data that is being changed. If the asynchronous
property is to be achieved, it should be obvious that the logical idea of a single
buffer cannot be realised by a single shared piece of store. A little more thought
shows that two pieces of shared store are also inadequate. An ingenious “four
slot” design is due to Hugo Simpson [Sim90]. A strength of his solution is that
synchronisation between reader and writer depends only on two single bits (or
control wires). ACMs are used in applications where sensors are writing into
the buffer and control programs are extracting the values when required (the
independence of the two processes giving rise to the asynchronous requirement).
In such applications, the use of multiple slots must not be such that the reader
ever sees “stale” values. In other words, a value being read must be at least as
fresh as that from the most recent write that completed before the read com-
menced. In particular, it could be disastrous if the reader were ever able to read
a value older than one that it had already seen.

There have been many attempts to offer both correctness arguments and,
more usefully, understandable design explanations of Simpson’s algorithm. Rel-
evant publications that use R/G and/or SL include [JP08, BA10, JP11, BA11,
WW10] and several interesting observations are made below on these attempts.
First, [JP11, §3] is considered because it exhibits an “abstract race”. The initial
specification (of which, more anon) is given in terms of an abstract state (Σa)
that, as well as some pointers, contains a sequence in which is recorded every
value written. An intermediate state (Σi) is used to explain one set of design
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decisions: Σi retains, in general, far fewer values which are stored in a mapping
whose domain is (for now) some unspecified index set X and whose range is
the values being passed.8 The writer and reader processes race on access to
the mapping in the sense that both can make changes to the same map; it is
precisely the role of the rely and guarantee conditions to record enough infor-
mation to show that the same range element of the mapping is never read at
the same time as it is being written; the values of auxiliary pointers are used to
express these assertions. Of course, further conjuncts in the rely and guarantee
expressions state which process can change which pointers and when they can
do so.

The overall effect is that what look like races on the abstraction actually get
removed in the final step of development. So, in this example, R/G is being
used to reason about a program whose whole purpose is to avoid races! The
argument for using R/G is that –at least for the layers of design abstraction
chosen in [JP11]– races on the abstract objects appear to support a convenient
abstraction. There are several further aspects of the development given in [JP11]
that might be worth reviewing but the interest here is in raising the question
whether O’Hearn’s interesting dichotomy actually places R/G correctly. Per-
haps it would be more accurate to say that R/G indeed supports reasoning about
data races but that such races can be abstractions of race-free implementations.

There are, moreover, further interesting comparisons to be made between
the collection of papers relating to Simpson’s algorithm. One natural view of
the 4-slot algorithm is that the ownership of the slots is passed between the
writer and reader processes. Following the train of argument from separation
to ownership in Sections 3.1/3.2, this would make it look to be perfect territory
for SL. It is, therefore, informative to look at some of the relevant papers from
authors who are associated with SL. Most clearly in [BA11], it is stated that “We
don’t use separation or ownership transfer, . . . ”. In fact, this paper uses a logic
that is a combination of R/G and SL known as “RGSep” [VP07, Vaf07]9 but
concedes in the Acknowledgements “And finally we are grateful to the referees,
in particular for forcing us to recognise that we weren’t exploiting separation
logic and should recast our proofs without it.” This is not to claim that [BA11]
uses only R/G; in fact, they also use “linearisability” (cf. Section 5) in a novel
way. The only publication that appears to use SL to reason about ownership
exchange in Simpson’s algorithm is [WW10] but this unfortunately confines
itself to coherence and stops short of proving the essential “freshness” property.

A thesis of the current paper is that one should be clear about the issues
that need to be addressed in concurrency before apposite notations are chosen
for their expression. The subsidiary thesis of this section is that the powerful
tool of abstraction can help most approaches. Before turning in the next sub-
section to how this might be seen achieved with SL, a brief aside is made about
a concept that appears to be useful and which does not appear to have a mode

8One useful bonus of this layering of design decisions is that one can show at this step that
at least three slots are essential. In the final step of the explanatory design history, the set X
is reified as the cross product of two Boolean values thus indexing Simpson’s four slots.

9More is said about this in Section 5.
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of expression in most approaches.
An interesting concept that needed expression in [JP11] is the ability, in as-

sertions, to discuss the “possible values” that a variable can take. This actually
came from spotting a flaw in an earlier version of our development of Simpson’s
4-slot implementation: at some point in [JP08] there was a need to record in
the post condition for a Read sub-operation that one of the pointer variables
(hold -r) acquired the value from another variable (fresh-w) that could be set
by a Write process. This was written in the earlier, flawed, version of the de-
velopment by stating that either the initial or final value of fresh-w could be
captured. But this is not actually general enough because the sibling (Write)
process could be executed any number of times and make many assignments to
its variable whilst the Read process was executing. This prompted the creation
of a special notation in [JP11] for the set of values that can arise and the post
condition of the Read process can be correctly recorded as hold -r ∈ ˚�fresh-w .
The possible values notation is equally useful in, say, guarantee conditions and
the full payoff comes in proofs.

An encouraging sign for the utility of the possible values notation (Ûx ) is
that several other uses have been found for the same concept. Furthermore, a
pleasing link with Ian Hayes’ on-going research on non-deterministic expression
evaluation is formalised in [HBDJ13].

Both [JP08] and [JP11] use a “phased specification” in which the Read and
Write processes are each expressed as the sequential composition of two sub-
operations. The overall system being expressed as the parallel combination of
these two sequential compositions. Despite the fact that the authors claim that
the use of “semicolon” as a specification operator offers a clear intuition of the
freshness requirement in ACMs, it has been shown in [Jon12b] that the possible
values notation can yield a specification without such “phased specifications”;
the possible values notation gives exactly the required expressiveness.

4.2 Separation as abstraction

In view of the added value that abstraction gives to R/G approaches, it looks
worth investigating how much benefit can be drawn by using that same powerful
generic idea to tackle the issues where SL appears to be useful. The proposal
here is more speculative than that outlined in Sections 2.3 and 4.1 but it does
appear to point to a similar “pulling apart” of issues from notation.

In [Rey02], John Reynolds considers a sequential in-place list reversal al-
gorithm. He actually introduces the problem (using the implementation!) as
follows:

The following program performs an in-place reversal of a list:

j : = nil; while i 6= nil do
(k : = [i + 1]; [i + 1] : = j ; j : = i ; i : = k).

(Here the notation [e] denotes the contents of the storage at address
e.)
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Reynolds’ reasoning then employs “separating conjunction” as in

∃α, β · list(α, i) ∗ list(β, j )

to derive the expected specification.
In contrast a top-down development might start with a post condition that

only has to require that some variable, say r , is changed so that

r , s: [r ′ = rev(s)]

Notice (cf. Section 3.3) that this specification gives the designer the permission
to overwrite the variable s. The obvious rev function is defined

rev : X ∗ → X ∗

rev(s) 4 if s = [ ] then s else rev(tl s) y [hd s] fi

The specification is satisfied by the following abstract program

r ← [ ];
while s 6= [ ] do

r , s: [r ′ = [hd s] y r ∧ s ′ = tl s]
od

The argument that this satisfies uses the fact that the loop maintains: r ′ y
rev(s ′) = r y rev(s).

At this stage of design, s and r are assumed to be distinct variables. That
they are separate is a useful and natural abstraction but, of course, fails to
embody the clever part of Reynold’s algorithm. The step from the simple ab-
stract algorithm to the clever pointer reversal can now be viewed as a step of
data reification. A design decision to choose a representation in which both
variables are stored in the same vector must maintain the essential points of the
abstraction of separation.

The requirement to maintain the abstraction of separation thus moves to a
data reification step. It is yet to be worked out what form of “separation logic”
best suits this view but it is hoped that is will again be a step towards combining
the advantages of separation logic thinking with ideas from rely/guarantee and
data abstraction/reification.

5 Other approaches

5.1 SLs meet R/G

Research on SL is extremely active and, perhaps more surprisingly because
of its much earlier inception, R/G research also appears to be accelerating.
One pioneering attempt to look at combining the two approaches is described
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in [VP07, Vaf07]. In his extremely clear thesis, Viktor Vafeiadis gives the fol-
lowing combined rule:

RGSep

{Pl ,R ∪Gr} sl {Gl ,Ql}
{Pr ,R ∪Gl} sr {Gr ,Qr}

{Pl ∗ Pr ,R} sl || sr {Gl ∪Gr ,Ql ∗Qr}

(The brevity of this rule comes in part from the fact that it is presented in a
composition (rather than a decomposition) style.)

Despite the current author’s admiration for this valuable contribution, it
must be said that the RGSep rule presents a rather “syntactic” combination of
the two approaches; the “Taming Concurrency” project is aiming to combine
more fundamental insights from SL and R/G.

In the same vein, Xinyu Feng’s SAGL [FFS07] argues that SL can be viewed
as a specialisation of “assume guarantee” methods for a class of programs. More
recently, Xinyu Feng has proposed “local rely-guarantee reasoning” in [Fen09].

Another interesting contribution to R/G thinking from Matt Parkinson and
his colleagues is the “Deny/Guarantee” idea in [DFPV09]. Jürgen Dingel has
also considered in [Din00, Din02] a “refinement calculus” view of rely/guarantee
thinking. However, unlike the approach sketched in Section 2.3 (and worked
out in [HJC13]), Dingel does not separate the four conditions (P ,R,G ,Q).
There are also technical details concerned with his avoidance of relational post
conditions.

5.2 Another 700 SLs

If it was tempting to regard the “next 700” in the title of [Par10] as a joke,
keeping track of the many developments around SL is becoming a full-time task
and the comments here are only intended to mention those items that might be
candidates for consideration in bridging between SL and R/G. The research on
“(concurrent) abstract predicates” [DYDG+10] sounds as though it might be in
the same groove as the case being made for abstraction in Section 4 above. In
fact, the relationship is certainly more subtle with CAPs being used to handle
subtle ownership questions that there is no obvious way of capturing with R/G.

The recent research on “Views” [DYBG+13] offers a generic way of estab-
lishing the soundness of logics but the way in which the concurrency structure
is created from the base semantics of atomic constructs would not handle sit-
uations as general as in, say, [CJ07]. It would however be worth pursuing the
direction of general properties for soundness since undertaking such proofs on
each logic is time consuming.

5.3 Ghost variables

An approach that is often adopted to extend the natural scope of a notation
is to employ “ghost” or “auxiliary” variables. General words of warning about
this escape route are offered in [Jon10] and need not be repeated here. The
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reservations can be summarised with an anecdote. Early in the history of R/G, a
respected colleague claimed to have a “completeness proof” for the then current
rely/guarantee rule. As has been made clear in this paper, the current author
has never made such a claim. In fact, it was always clear that rely and guarantee
conditions were expressively weak (even if it is only now that the move is made to
view such weakness as a positive attribute). The resolution of the disagreement
revolved around the use of auxiliary variables. Their addition can certainly make
it possible to express properties that are not stateable with relations over the
shared state. Unfortunately it is easy to see that the use of auxiliary variables
can lose the key property of compositionality: auxiliary or ghost variables can
be employed to record arbitrary amounts of information about a process — but
relying on that information means that the implementation of that process is
severely constrained. Sacrificing compositionality is far too high a price to pay
for the cheap thrill of extending a notation to cover issues for which it was not
intended. Whilst not being able to prove that auxiliary variables can always be
avoided, [Jon10] sets out the case for finding sound reasons for their use.

5.4 Actions/Events

Employing “Actions” [BS91] or “Events” [Abr10] can offer an extremely neat
framework for modelling systems. In [HA10], the authors seek to extend “Event-
B” to mimic rely/guarantee style reasoning. It is possible to add environment
events whose post conditions record interfering actions but it is equally clear
that this can only mirror what really goes on in the rely/guarantee approach by
making sure that all events (or actions) are at the granularity of the interference.
In R/G reasoning itself, this is certainly not the case: post conditions express the
overall effect of an “operation” (cf. event) but the granularity of the interference
can be much finer.

5.5 RGITL

The combination of Ben Moszkowski’s “Interval Temporal Logic” (ITL)[Mos85]
with R/G in Gerhard Schellhorn’s RGITL [STER11] provides a seductive com-
bination. On the one hand, temporal logic offers a way of arguing about progress
conditions and even various notions of fairness. In keeping with the concern of
the current paper with expressiveness however it might be the case that RGITL
–or even raw ITL– is too expressive. The fact that a user can write specifi-
cations in a language that can express complete programs may be dangerous
because, in the hands of the unskilled, it moves the task of proving specification
satisfaction to that of program equivalence.

5.6 Linearisability

The discussion above of [BA11] touches on linearisability and another of the
impressive aspects of [Vaf07] it that it addresses this way of reasoning about in-
terleaving. Research on linearisability was put on a firm foundation by [HW90];
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further recent interesting papers include [GY11, BGMY12]. The basic idea is
to look at detailed sub-steps and to find a larger atomic operation that would
have the same effect.

It can be argued that the normal presentations of this idea are “bottom-up”:
they look at the code and try to find a linearised version. In keeping with the
emphasis here on abstraction, it might be preferable to approach interleaving
“top down” from a specification of acceptable behaviours. Earlier work on trying
to do just this throws light clearly on the observational power of programming
languages. The idea that it is possible, in a top-down design process, to use
a “fiction of atomicity” is discussed in [Jon03a, Jon07] (for the origins of the
ideas see references in these papers). The development process that links the
abstraction to its realisation is known as “atomicity refinement” (or “splitting
(software) atoms safely”). In one particular version of this process, equivalences
were found that justified the introduction of concurrency primitives. What was
crucial to the justification of these equivalences (see, for example, [San99]) was
a careful analysis of the language in which observations can be made. (To make
the point most simply, if the observation language can observe timings, parallel
processes are likely to be seen as running faster; but there are much subtler
dependencies to be taken into account as well.)

It must again be worthwhile to look at how these top-down and bottom-
up views of varying the level of atomicity of processes can benefit from each
other. Furthermore, both the basic idea of separate sets of addresses and of
rely/guarantee-like assumptions about the effect of the processes look likely to
be important when reasoning about the different granularities.

6 Conclusions

The current author has a number of prejudices whose exposure might make these
conclusions clearer. Although the case is clear for doing something with the huge
store of “legacy code” on which all users indirectly depend, the real payoff for
formal methods is in the design process. Trying to prove that a finished program
has properties such a deadlock freedom might make sense but deriving its full
post condition would, in general, be impossible even for “correct” programs and
is completely futile with programs that contain errors.

Related to the preceding point, so-called “partial correctness” is inadequate:
if a program is intended to terminate, that fact must be part of its specification.

Also related to the argument for the use of formalism in the design process is
the view that abstractions are best discovered in a “top down” view. Complexity
can only be mastered with abstraction; clever tools might be able to detect
abstractions “bottom up” from code; but, as a careful reading of [Cou08] shows,
useful abstractions have to be discovered top-down.

The case for “posit and prove” methods is also strong in that they permit
engineering intuition to be checked by the discharge of proof obligations. The
inherent redundancy of such methods leads to productive use.

Referring back to the title of the current paper, the main argument here is
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not to regard restrictions on expressiveness as signs of weakness: well-judged
restrictions on the expressive power of notations give might focus on the issues
that can be handled naturally and increase the tractability of reasoning with said
notations. The converse argument is that it is not necessarily an advantage to
employ a notation that is more expressive: it might just result in intractability —
especially in untutored hands. A particular plea has been made to abstain from
using auxiliary variables as a cavalier way of extending the power of notations.
This sin appears to be committed most commonly when authors try to extend
a notation beyond the issues that it handles naturally. Experience suggests that
“abstraction” is not only a key intellectual tool but that its judicious use can
sometimes specifically avoid the need for ghost variables (the material on “when
abstraction fails” in [Jon12a, §3.2] is relevant here).

Much remains to be done to arrive at notations that express naturally the
key issues in concurrency but it is a corollary of the plea to find “natural”
notations that researchers should be explicit about the issues that are being
tackled. One issue not discussed in this paper is that of “progress” arguments.
Other than [Stø90], little work has been done on such reasoning in the R/G
framework; [Mid93] allows the use of temporal logic but reservations about
being too general are covered in Section 5.5; an interesting limitation of the
form of temporal assertion needed is given in [GCPV09]. Another limitation of
R/G is identified in John Wickerson’s thesis [Wic13]: he makes the point that
compositionality does not ensure that a method (specifically R/G) can handle
modular development.

Moving forward, this author’s goal will not be to make arbitrary extensions
to existing R/G notation but rather to understand the issue itself and then look
for apposite notations — almost certainly guided by “abstraction”.

There remains work to be done on the new presentation of R/G but there is
far more to be done to take the initial steps in Section 4.2 to a full analysis of
the issues of separation and ownership. Given the role of abstraction in these
tentative steps on SL and the proven part that abstraction plays in R/G, a more
general theory of abstraction needs investigation.

Two short-term objectives are the analysis of more examples (particularly
those from SL) and the provision of machine support for the ideas in [HJC13].
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