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Abstract

This note proposes a simple specification for Asynchronous Communica-

tion Mechanisms. In particular, it makes use of rely/guarantee conditions and

the newer “possible values” notation.

1 A specification with sequential ordering

In [JP11, Fig. 5], we wrote the specification of Asynchronous Communication Mech-

anisms (ACMs) using two sequentially composed sub operations for both the reader

and the writer.

1

Write(v :Value)

owns wr data-w , fresh-w

start-Write(v :Value)

wr data-w

guar {1..fresh-w} C data-w = {1..fresh-w} C (����
data-w

post data-w =

(����
data-w

y
[v ]

commit-Write()

wr fresh-w

rd data-w

guar
(����
fresh-w  fresh-w

post fresh-w = len data-w

Read()r :Value

owns wr hold -r

start-Read()

wr hold -r

rd fresh-w

rely
(����
fresh-w  fresh-w

post hold -r 2 �̊
fresh-w

end -Read()r :Value

rd data-w , hold -r

rely data-w(hold -r) =

(����
data-w(hold -r)

post r = data-w(hold -r)

The use of “semicolon” in specifications caused some raised eyebrows.

1Actually, there is a “typo” in the cited paper — guar of start-Read in the paper should be
(as here) rely!
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2 An alternative

We could have written:

2

Write(v :Value)

wr data-w , fresh-w

rely fresh-w =

(����
fresh-w ^ data-w =

(����
data-w

guar fresh-w  len data-w ^ (����
fresh-w  fresh-w ^

{1..len
(����
data-w} C data-w = {1..len

(����
data-w} C (����

data-w

post data-w =

(����
data-w

y
[v ] ^ fresh-w = len data-w

Read()r :Value

rd data-w , fresh-w

rely
(����
fresh-w  fresh-w ^ {1..

(����
fresh-w} C data-w = {1..

(����
fresh-w} C (����

data-w

post 9hold -r 2 �̊
fresh-w · r = data-w(hold -r)

The similarity between guar -Write and rely-Read is deceptive: guar -Write

means that data-w must be changed before extending fresh-w ; rely-Read implies

fresh-w must be read before data-w is accessed.

To see that the above specification has the required behaviour (customers are

assumed to be fully conversant with rely/guarantee conditions and the “possible

values” notation!) note the following:

• the sequential (no interleaving) use is obvious from the post conditions (alone);

• if Read is interrupted by (possibly many) Write, the post condition still shows

that one of the written values is returned and the rely condition ensures that

it cannot be a contaminated value;

• a little thought is required to see that, when two reads overtake a write, the

second read cannot access an older value than the first;

• the Write process is una↵ected by overtaking Read providing its rely condition

is respected.

3 Observations

How did we miss this? My recollection is that the “possible values” notation

only became clear during the steps of development.

Revising proofs An obvious move is simply to prove that our original specifica-

tion is a refinement of the new one: this ought be straightforward. Alternatively, it

doesn’t look di�cult to show that [JP11, Fig. 7] is a refinement of the new specifi-

cation. I guess we should also check whether there are any other simplifications.
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2Here the owns notation has been replaced by a rely condition on Write.
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