
 

 

COMPUTING 
SCIENCE 

A Specification for ACMs 
 
 
C. B. Jones 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TECHNICAL REPORT SERIES 
 

No. CS-TR-1360 November 2012 



TECHNICAL REPORT SERIES 
              
 
No. CS-TR-1360  November, 2012 
 
A Specification for ACMs 
 
C. B. Jones 
 
Abstract 
 
This note proposes a simple specification for Asynchronous Communication 
mechanisms. In particular, it makes use of rely/guarantee conditions and the newer 
"possible values" notation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© 2012 Newcastle University. 
Printed and published by Newcastle University, 
Computing Science, Claremont Tower, Claremont Road, 
Newcastle upon Tyne, NE1 7RU, England. 



Bibliographical details 
 
JONES, C.B. 
 
A Specification for ACMs  
[By] Cliff B. Jones 
 
Newcastle upon Tyne: Newcastle University: Computing Science, 2012. 
 
(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1360) 
 
Added entries 
 
NEWCASTLE UNIVERSITY 
Computing Science. Technical Report Series.  CS-TR-1360 
 
Abstract 
 
This note proposes a simple specification for Asynchronous Communication Mechanisms. In particular, it makes 
use of rely/guarantee conditions and the newer "possible values" notation. 
 
About the authors 
 
Cliff B. Jones is currently Professor of Computing Science at Newcastle University. As well as his academic 
career, Cliff has spent over 20 years in industry. His 15 years in IBM saw among other things the creation –with 
colleagues in Vienna– of VDM which is one of the better known “formal methods”. Under Tony Hoare, Cliff 
wrote his doctoral thesis in two years. From Oxford, he moved directly to a chair at Manchester University where 
he built a world-class Formal Methods group which –among other projects– was the academic lead in the largest 
Software Engineering project funded by the Alvey programme (IPSE 2.5 created the “mural” (Formal Method) 
Support Systems theorem proving assistant). He is now applying research on formal methods to wider issues of 
dependability. Until 2007 his major research involvement was the five university IRC on “Dependability of 
Computer-Based Systems” of which he was overall Project Director. He is also PI on an EPSRC-funded project 
“AI4FM” and coordinates the “Methodology” strand of the EU-funded DEPLOY project. He also leads the ICT 
research in the ITRC Program Grant. Cliff is a Fellow of the Royal Academy of Engineering (FREng), ACM, 
BCS, and IET. He has been a member of IFIP Working Group 2.3 (Programming Methodology) since 1973 (and 
was Chair from 1987-96). 
 
Suggested keywords 
 
SOFTWARE 
CONCURRENCY 
VERIFICATION 
RELY/GUARANTEE 



A specification for ACMs

Cli↵ B. Jones

School of Computing Science, Newcastle University, UK

cli↵.jones@ncl.ac.uk

November 30, 2012

Abstract

This note proposes a simple specification for Asynchronous Communica-

tion Mechanisms. In particular, it makes use of rely/guarantee conditions and

the newer “possible values” notation.

1 A specification with sequential ordering

In [JP11, Fig. 5], we wrote the specification of Asynchronous Communication Mech-

anisms (ACMs) using two sequentially composed sub operations for both the reader

and the writer.

1

Write(v :Value)

owns wr data-w , fresh-w

start-Write(v :Value)

wr data-w

guar {1..fresh-w} C data-w = {1..fresh-w} C (����
data-w

post data-w =

(����
data-w

y
[v ]

commit-Write()

wr fresh-w

rd data-w

guar
(����
fresh-w  fresh-w

post fresh-w = len data-w

Read()r :Value

owns wr hold -r

start-Read()

wr hold -r

rd fresh-w

rely
(����
fresh-w  fresh-w

post hold -r 2 �̊
fresh-w

end -Read()r :Value

rd data-w , hold -r

rely data-w(hold -r) =

(����
data-w(hold -r)

post r = data-w(hold -r)

The use of “semicolon” in specifications caused some raised eyebrows.

1Actually, there is a “typo” in the cited paper — guar of start-Read in the paper should be
(as here) rely!

1



2 An alternative

We could have written:

2

Write(v :Value)

wr data-w , fresh-w

rely fresh-w =

(����
fresh-w ^ data-w =

(����
data-w

guar fresh-w  len data-w ^ (����
fresh-w  fresh-w ^

{1..len
(����
data-w} C data-w = {1..len

(����
data-w} C (����

data-w

post data-w =

(����
data-w

y
[v ] ^ fresh-w = len data-w

Read()r :Value

rd data-w , fresh-w

rely
(����
fresh-w  fresh-w ^ {1..

(����
fresh-w} C data-w = {1..

(����
fresh-w} C (����

data-w

post 9hold -r 2 �̊
fresh-w · r = data-w(hold -r)

The similarity between guar -Write and rely-Read is deceptive: guar -Write

means that data-w must be changed before extending fresh-w ; rely-Read implies

fresh-w must be read before data-w is accessed.

To see that the above specification has the required behaviour (customers are

assumed to be fully conversant with rely/guarantee conditions and the “possible

values” notation!) note the following:

• the sequential (no interleaving) use is obvious from the post conditions (alone);

• if Read is interrupted by (possibly many) Write, the post condition still shows

that one of the written values is returned and the rely condition ensures that

it cannot be a contaminated value;

• a little thought is required to see that, when two reads overtake a write, the

second read cannot access an older value than the first;

• the Write process is una↵ected by overtaking Read providing its rely condition

is respected.

3 Observations

How did we miss this? My recollection is that the “possible values” notation

only became clear during the steps of development.

Revising proofs An obvious move is simply to prove that our original specifica-

tion is a refinement of the new one: this ought be straightforward. Alternatively, it

doesn’t look di�cult to show that [JP11, Fig. 7] is a refinement of the new specifi-

cation. I guess we should also check whether there are any other simplifications.

References

[JP11] Cli↵ B. Jones and Ken G. Pierce. Elucidating concurrent algorithms via lay-

ers of abstraction and reification. Formal Aspects of Computing, 23(3):289–

306, 2011.

2Here the owns notation has been replaced by a rely condition on Write.

2


