

COMPUTING
SCIENCE

Abstraction as a unifying link for formal approaches to concurrency

Cliff B. Jones

TECHNICAL REPORT SERIES

No. CS-TR-1339 June 2012

TECHNICAL REPORT SERIES

No. CS-TR-1339 June, 2012

Abstraction as a unifying link for formal approaches to
concurrency

C.B. Jones

Abstract

Abstraction is a crucial tool in specifying and justifying developments of systems.
This observation is recognised in many different methods for developing sequential
software; it also applies to some approaches to the formal development of concurrent
systems although there its use is perhaps less uniform. The rely/guarantee approach to
formal design has, for example, been shown to be capable of recording the design of
complex concurrent software in a "top down" stepwise process that proceeds from
abstract specification to code. In contrast, separation logics were -at least initially-
motivated by reasoning about details of extant code. Such approaches can be thought
of as "bottom up". The same "top down/bottom up" distinction can be applied to
"atomicity refinement" and "linearisability". Some useful mixes of these approaches
already exist and they are neither to be viewed as competitive approaches nor are they
irrevocably confined by the broad categorisation. This paper reports on recent
developments and presents the case for how careful use of abstractions can make it
easier to marry the respective advantages of different approaches to reasoning about
concurrency.

© 2012 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

JONES, C.B.

Abstraction as a unifying link for formal approaches to concurrency
[By] Cliff B. Jones

Newcastle upon Tyne: Newcastle University: Computing Science, 2012.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1339)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1339

Abstract

Abstraction is a crucial tool in specifying and justifying developments of systems. This observation is recognised
in many different methods for developing sequential software; it also applies to some approaches to the formal
development of concurrent systems although there its use is perhaps less uniform. The rely/guarantee approach to
formal design has, for example, been shown to be capable of recording the design of complex concurrent software
in a "top down" stepwise process that proceeds from abstract specification to code. In contrast, separation logics
were -at least initially- motivated by reasoning about details of extant code. Such approaches can be thought of as
"bottom up". The same "top down/bottom up" distinction can be applied to "atomicity refinement" and
"linearisability". Some useful mixes of these approaches already exist and they are neither to be viewed as
competitive approaches nor are they irrevocably confined by the broad categorisation. This paper reports on recent
developments and presents the case for how careful use of abstractions can make it easier to marry the respective
advantages of different approaches to reasoning about concurrency.

About the authors

Cliff B. Jones is currently Professor of Computing Science at Newcastle University. As well as his academic
career, Cliff has spent over 20 years in industry. His 15 years in IBM saw among other things the creation –with
colleagues in Vienna– of VDM which is one of the better known “formal methods”. Under Tony Hoare, Cliff
wrote his doctoral thesis in two years. From Oxford, he moved directly to a chair at Manchester University where
he built a world-class Formal Methods group which –among other projects– was the academic lead in the largest
Software Engineering project funded by the Alvey programme (IPSE 2.5 created the “mural” (Formal Method)
Support Systems theorem proving assistant). He is now applying research on formal methods to wider issues of
dependability. Until 2007 his major research involvement was the five university IRC on “Dependability of
Computer-Based Systems” of which he was overall Project Director. He is also PI on an EPSRC-funded project
“AI4FM” and coordinates the “Methodology” strand of the EU-funded DEPLOY project. He also leads the ICT
research in the ITRC Program Grant. Cliff is a Fellow of the Royal Academy of Engineering (FREng), ACM,
BCS, and IET. He has been a member of IFIP Working Group 2.3 (Programming Methodology) since 1973 (and
was Chair from 1987-96).

Suggested keywords

CONCURRENCY
FORMAL METHODS
RELY/GUARANTEE THINKING
SEPARATION LOGIC
ATOMICITY REFINEMENT
LINEARISABILITY

Abstraction as a unifying link
for formal approaches to concurrency

Cliff B. Jones

School of Computing Science, Newcastle University, NE1 7RU, UK
cliff.jones@ncl.ac.uk

Abstract. Abstraction is a crucial tool in specifying and justifying developments
of systems. This observation is recognised in many different methods for devel-
oping sequential software; it also applies to some approaches to the formal de-
velopment of concurrent systems although there its use is perhaps less uniform.
The rely/guarantee approach to formal design has, for example, been shown to be
capable of recording the design of complex concurrent software in a “top down”
stepwise process that proceeds from abstract specification to code. In contrast,
separation logics were –at least initially– motivated by reasoning about details
of extant code. Such approaches can be thought of as “bottom up”. The same
“top down/bottom up” distinction can be applied to “atomicity refinement” and
“linearisability”. Some useful mixes of these approaches already exist and they
are neither to be viewed as competitive approaches nor are they irrevocably con-
fined by the broad categorisation. This paper reports on recent developments and
presents the case for how careful use of abstractions can make it easier to marry
the respective advantages of different approaches to reasoning about concurrency.

1 Introduction

There is much research activity around formal support for concurrency. The reasons for
this ought be clear. For non-critical applications, good (semi-formal) engineering meth-
ods are sometimes adequate for sequential programs. Such methods borrow much from
past formal research and, even here, organisations such as Praxis report that adding for-
mal methods to the development process can bring about a return on investment because
of the tighter control and reduction in the late discovery of errors that are expensive to
fix because they result from decisions made much earlier in the design process.

Once one moves to the design of concurrent systems, the enormous increase in
the number of execution paths brought about by thread interaction makes it effectively
impossible to have any confidence in correctness without some form of formal proof.

One might ask why designers should be so rash as to venture into such dangerous
territory. Unfortunately, there is no choice — the pressures to face concurrency be-
come ever greater. First, the (economic) limits for the extrapolation of “Moore’s law”
mean that hardware performance can only be increased by moving from “multi-core”
to “many-core” hardware (i.e. numbers of threads likely to measured in hundreds). Sec-
ondly, embedded systems often run in parallel with physical phenomena that are vary-
ing continuously; control software linked to the physical world by sensors and actuators

cannot ignore these state changes. Thirdly, a class of application has to be implemented
by physically distributed sets of processors.

The combination of a realisation that concurrency cannot be avoided with the ac-
knowledgement that its mastery requires formal tools has generated many research
strands. Notable activity in the areas of rely/guarantee thinking, separation logic, atom-
icity refinement and linearisability is addressed in the body of this paper (citations to
relevant papers are given below). To apply some of these research ideas to the paper
itself, the attempt here is to look for constructive interaction between several threads of
research. In particular, this paper looks to tease out the key concepts from the various
methods and indicate a path to one or more methods that achieve real synergy from
what are currently rather distinct approaches. This is a much deeper exercise than just
seeking combinations of notations.

A key distinction between top-down and bottom-up approaches is used below. Any
such dichotomy must be viewed with care and there is certainly no intention to make
a judgement that one approach is “better” than the other. If the task is to improve the
quality of millions of lines of legacy code, there is little choice but to use bottom-up
methods. On the other hand, faced with the challenge of developing and documenting a
large system from scratch, it would be unwise not to record each stage of design “from
the top” (i.e. the specification).1 One particular form of top-down formal development
that makes solid engineering sense is known as “posit and prove”. The idea is that each
step of design starts by recording an engineering intuition that might be a decomposition
of a problem into sub-tasks or the choice of a data representation for something that
was previously an abstraction that achieved brevity. In suitable formal methods, such a
posited step gives rise to “proof obligations” whose discharge justifies the correctness
of the step. It is well understood that redundancy is essential for dependability and this
posit and prove approach provides constructive redundancy. As discussed below, there
is a technical requirement of “compositionality” for such methods. Although relatively
easy to achieve for sequential systems, compositionality is far more elusive in the world
of concurrent systems.

It is however important to remember that no judgement is being made here about the
relative merits of top-down and bottom-up approaches. There is indeed evidence that, in
(complex) bottom-up analysis, it is necessary to recreate abstractions that are hidden in
the code [Cou08,LS09]. It is hoped, and anticipated, that any new methods devised from
–for example– the combination of concepts from separation logic and rely/guarantee
thinking will provide benefit to both top-down and bottom-up approaches.

1.1 Rely/guarantee thinking

Specifications of sequential programs are normally given as pre and post conditions.2

Floyd showed [Flo67] how predicate calculus assertions could be added to a flowchart
1 Of course, there exists the issue of how to obtain the starting specification. This is not the sub-

ject of the current paper but some contribution to a resolution of this issue is made in [JHJ07].
Interestingly, this joint work with Ian Hayes and Michael Jackson uses rely/guarantee ideas.

2 This paper does not waste space making the case for formality in system design but it is worth
remembering that formal concepts (e.g. data type invariants) are useful even when used in
specifications and developments that are not completely formal.

of a program to present a proof that the program satisfied a specification; Hoare made
the essential step [Hoa69] to give an inference system for asserted texts. Few programs
can tolerate completely arbitrary starting states and it is important to note that pre con-
ditions effectively grant a developer assumptions about the starting states in which the
created software will be deployed; in contrast, post conditions are requirements on the
running code.

The essence of concurrency is interference. In shared variable concurrency, such
interference manifests itself by one thread having to tolerate changes being made to
its state by other processes.3 No useful program can achieve a sensible outcome in the
presence of completely arbitrary interference. This is recognised in the rely/guarantee
approach [Jon81,Jon83a, Jon83b] by recording the acceptable interference as a relation
–known as a rely condition– over pairs of states. (The use of relations fits with the fact
that VDM [Jon80] employs relational post conditions.) Like pre conditions, rely condi-
tions can be seen as permission for the developer to make assumptions about contexts
in which the final code will be deployed. The commitment as to what interference a
running component will impose on its neighbours is recorded in a guarantee condition
(again a relation over states).

Not surprisingly, the proof obligations required in rely/guarantee reasoning are more
complex than for sequential programs. There is also scope for more variability and the
proof obligations concerned with introducing concurrency differ over various publica-
tions. One form (geared to decomposition — see Sect. 2.1) is:

Par-I

{P ,Rl} sl {Gl ,Ql}
{P ,Rr} sr {Gr ,Qr}

R ∨ Gr ⇒ Rl

R ∨ Gl ⇒ Rr

Gl ∨ Gr ⇒ G
↼−
P ∧Ql ∧Qr ∧ (R ∨ Gl ∨ Gr)∗ ⇒ Q

{P ,R} sl || sr {G ,Q}

What is crucial is that rely/guarantee systems of rules can be made “compositional”
in the same sense that Hoare-like methods for sequential programs enjoy this essential
property: a specification with rely/guarantee conditions records all that a developer need
know to create acceptable code. De Roever’s exhaustive survey book [dR01] distin-
guishes between compositional and non-compositional development methods pointing
out that the post-facto “Einmischungsfrei” proof obligation in the Owicki/Gries method
makes it non-compositional.

Examples of rely/guarantee development are postponed to Section 2 where future
issues are explored. The most approachable text on past research in this area might
be [Jon96]; a proof of the soundness of rely/guarantee methods is given in [CJ07].

Compositionality is key to methods that are to be used in a top-down style where
a development is started from an overall specification and decomposed step by step

3 Process algebras might appear to finesse the whole issue of “states” but processes can be
constructed that effectively store values that can be changed and read by interaction; the issue
of interference reappears as reasoning about the traces of such interaction.

until the finest sub-components have been developed into code. Data abstraction is key
to achieving brief and understandable specifications; the corresponding development
method of data reification is also compositional. Interaction between data reification
and rely/guarantee thinking is explored in Section 3.1 below.

1.2 Separation logic(s)

Just as in the preceding section, it is neither the aim to offer a complete description nor
to present a full history of research on separation logics4 and the extension to concur-
rent separation logic here. Some important milestones include [Bur72, OP99, ORY01,
Rey00, IO01, Rey02, O’H07, Bro07, OYR09]. In fact, Peter O’Hearn pointed out at the
Cambridge meeting to mark Tony Hoare’s 75th birthday that the fundamental idea of
disjoint parallelism dates back to [Hoa72]. Of interest for the current paper is the notion
of “separating conjunction” and the emphasis on reasoning about heap variables.5

To show that execution threads do not “race” on access to a particular variable,
it is enough to establish that there is mutual exclusion between any reference from
those threads to the relevant variable. With standard (“stack”) variables, this can be
achieved by ensuring that each variable is visible to at most one thread. Separation
logic is, however, more often applied to programs using dynamic (“heap”) variables
and it offers ways of reasoning about the dynamic “ownership” of their addresses. The
principal tool is the “separating conjunction”: if two conjuncts have disjoint frames,
they can be associated with different threads of execution. Thus, two parallel processes
can achieve a post condition written as a separating conjunction by each achieving one
of the conjuncts. There is no interference and no “race” on addresses.

One important aspect of separation logic is that ownership can change dynamically;
this does however appear to be the reason that the “frame” of an operation is determined
by the alphabet of its assertions. Perhaps more significant for the objectives of the cur-
rent paper is that there are –in addition to separating conjunction– a number of other
operators in separation logic and that all of the operators are linked by useful algebraic
laws. A practical point is that the researchers involved with separation logic have put
considerable effort into providing tool support for their ideas.

The majority of papers on separation logic focus on “heap” variables6 that can be
dynamically allocated and freed. The examples chosen are typically of low-level (oper-
ating system like) code performing tasks like maintaining concurrent queues and deli-
cate manipulations of tree representations. This creates the impression that separation
logic is aimed at “bottom up” analysis of extant code. Furthermore, much of the com-
mendable effort on tool support is aimed at establishing freedom from stated faults such
as race conditions in extant code.

As an example (that is useful in Section 2) Reynolds considers a sequential in place
list reversal in [Rey02]; the introduction of the problem is:

4 The justification for using the plural of “logic” is [Par10].
5 In [PB05] a move to high level programming constructs is made — that paper does not, how-

ever, link the constructs to concurrency.
6 In [PBC06], the ideas of separation logic are applied to “stack” variables but the resulting

system appears less pleasing than that for heap variables.

The following program performs an in-place reversal of a list:

j : = nil; while i 6= nil do
(k : = [i + 1]; [i + 1] : = j ; j : = i ; i : = k).

(Here the notation [e] denotes the contents of the storage at address e .)

The reasoning then employs “separating conjunction” (∗) as in

∃α, β · list(α, i) ∗ list(β, j)

to specify that the lists starting respectively at addresses i and j encompass separate
sets of addresses. The extremely succinct separation logic rule for a parallel construct
is

SL

{Pl} sl {Ql}
{Pr} sr {Qr}

{Pl ∗ Pr} sl || sr {Ql ∗Qr}

There is a lot going on in this compact rule. The separating conjunction (written as
an infix “*” operator) is only valid if the frames of the two disjuncts are disjoint. More-
over, since there is no explicit declaration of the read/write frames of either operand,
these are determined by the alphabets of the expressions.7 It is also the norm that the
SL rule is used on heap variables (i.e. machine addresses that are allocated at run time
rather than names of variables that are translated to machine addresses by a compiler).

Before considering the potential for using the core ideas of such ownership logics
early in the design process, the next section reviews what has already been done to
obtain complementary benefits from the two approaches outlined.

1.3 Existing complementarity

The research around rely/guarantee thinking and separation logics is extremely active.
Both [VP07] and Viktor Vafeiadis’ Cambridge thesis [Vaf07] propose a combination or
rely/guarantee and separation thinking: the “RGSep” rules neatly specialise to either of
the original sets of rules.8

RGSep

{Pl ,R ∪Gr} sl {Gl ,Ql}
{Pr ,R ∪Gl} sr {Gr ,Qr}

{Pl ∗ Pr ,R} sl || sr {Gl ∪Gr ,Ql ∗Qr}

(The brevity of this rule is slightly artificial: see discussion in Sect. 2.1.)
Matt Parkinson’s “Deny/Guarantee” system [DFPV09] extends rely/guarantee ideas

to cope with the dynamic forking of threads. Although it belongs to a later discussion,
it is also worth mentioning here the “RGSim” approach [LFF12].

7 This has the surprising consequence that some expression E and E ∧ x = x do not have an
equivalent effect.

8 Xinyu Feng’s research on SAGL [Fen09] goes in a similar direction to RGSep — for reasons
of space, discussion here is confined to the latter.

An interesting trace of interaction between the two main approaches discussed
so far can be seen in a series of papers that all address “Asynchronous Communi-
cation Methods” in general — and more specifically Hugo Simpson’s “4-slot” algo-
rithm [Sim90]. Richard Bornat is a key figure in Separation Logic research but both
of his papers [BA10, BA11] make use of rely/guarantee descriptions — a fact that
is explicit even in the title of the earlier contribution. The current author’s contribu-
tions [JP08, JP11] interleave in time with Bornat’s and throw an interesting light on a
distinction that has been drawn between methods. The talk by Peter O’Hearn at the 2005
MFPS (published as [O’H07]) suggested that the natural tool for proving the absence
of data races is separation logic — in contrast, rely/guarantee reasoning is appropriate
for “racy” programs. One key feature of Simpson’s 4-slot algorithm is the avoidance of
clashes (or data races) on any of the four slots used as an interface between the entirely
asynchronous read/write processes. However, [JP11] uses rely/guarantee conditions to
describe the non-interference at an abstract level — in fact, this is done before the num-
ber of slots has been determined.

The MFPS categorisation can be useful but it is important to remember that any
such split must be used judiciously. (This warning applies, of course, also to the use of
“top down” versus “bottom up” in the current paper.)

2 Seeking further synergy

It is clear that neither rely/guarantee nor separation logic alone can cope with all forms
of concurrency reasoning. This is precisely the reason that looking for synergy is worth-
while. Lacunae on the rely/guarantee side certainly include the ability to reason about
(dynamic) ownership and discourses about heap variables. (The extent to which the
ideas of Sect. 2.4 below can finesse these gaps is yet to be determined.)

From the other side, there are concepts with which separation logic appears to strug-
gle because interference can be problematic without races. Consider the innocent look-
ing thread, say α:

x ← 1; y ← x

Suppose that some thread control variables are added so that parallel processes do not
interfere during the execution of either assignment in thread α. The classical Hoare rule
would carry the information that x has the value 1 to the precondition of the second
assignment. If there is a concurrent process that increases the value of x by an arbitrary
amount (e.g. a loop that continues to execute x ← x + 1), then this transfer of “knowl-
edge” is certainly invalid. There are no data races here but, if one is to conclude y ≥ 1,
there have to be assumptions (rely conditions) about the context in which thread α will
run.

This section reports on some on-going research and speculates about some further
directions where abstraction might make it possible to get underneath the syntactic de-
tails of both rely/guarantee and separation logic; the hope is that, by really understand-
ing the conceptual contribution, one or more methods will evolve that are intuitive to
the intended users.

2.1 Algebraic laws about rely/guarantee

It has never been the intention to fix on one set of proof rules for rely/guarantee rea-
soning. One cause of differences between rules is the distinction between rules that are
convenient for composition versus those best suited to decomposition. This distinction
can be illustrated even on the standard Hoare-rule for while constructs: the most com-
mon form of the rule gives the post-condition of a while as the conjunction of the loop
invariant (say P) with the negation of the test condition written in the loop construct —
thus P ∧ ¬ b. This is a useful composition rule but it is unlikely that, when faced with
a design step, the post condition will fall neatly into such a conjunction. An equivalent
Hoare rule with an arbitrary post condition of Q to be achieved after the loop requires
an additional hypothesis that P ∧ ¬ b ⇒ Q .9 For pre/post conditions, this distinction
is small and often glossed over in texts but for more complex rely/guarantee specifica-
tions, the difference in presentation between composition and decomposition rules is
greater — as can be seen by contrasting the rules in Sects. 1.1/1.3. Of course, the rules
are related by suitable “weakening rules” but the choice of an appropriate form of the
rule does matter when providing tool support for proof obligation generation.

There are also more interesting differences between versions of rules that generate
proof obligations for rely/guarantee reasoning. In [CJ00], for example, an “evolution
invariant” is used that can be thought of as relating any state that can arise back to
the initial state. Just as (standard, single state) data type invariants have proved useful
intuitive aids in developments that are not necessarily formal, the idea of evolution
invariants has sparked interest in a number of areas.

These points prompted a desire to find something more basic that could be used
to reason about interference in a rely/guarantee style. In [HJC12], inspiration is drawn
from the refinement calculus as presented by Carroll Morgan [Mor94] (and, in particular
the “invariant command” of [MV94]) to employ guar and rely constructs written as
commands. The move away from fixed format presentation of rely/guarantee as in

{P ,R} s {G ,Q}

brings advantages similar to those of the refinement calculus over Hoare-triples.10 In
addition, it makes clear that there is an algebra of the clauses. For example, the trading
of clauses between guarantee and post conditions that appears almost as black magic in
earlier papers becomes a law

(guar G • [Q ∧G∗]) = (guar G • [Q])

Furthermore, the collection of laws in [HJC12] fits with a pleasing refinement calculus
top-down development style (the reader is referred to that paper for the full set of rules
and a worked example — the style of formal semantics used there is that of [HC12]).

9 VDM uses relational post conditions that make it possible to express termination (sometimes
referred to as “total correctness”) via well-founded relations — this feels more natural than the
“variant function” of [Dij76]. Be that as it may, the same distinction between composition and
decomposition presentations remains.

10 Jürgen Dingel has also looked at presenting rely/guarantee ideas in a form of refinement cal-
culus setting — his objective in [Din00, Din02] was not however to separate the commands in
the way done in [HJC12].

2.2 Framing

The early papers on rely/guarantee reasoning used VDM’s keyword style to define the
rd/wr frames. The move to a refinement calculus presentation not only gives a more
linear notation, it also prompts the use of a compact notation to specify the write frame
of a command. Thus:

x : [Q]

requires that the relational post condition Q is achieved with changes only being made
to the variable x . This makes a small step towards the compact notation of separation
logic. Rather than go to the complete determination of frames from the alphabets of
assertions used there, a sensible intermediate step might be to write pre and post con-
ditions as predicates with explicit parameter lists and have the arguments of the former
determine the read frame and the extra parameters of the latter determine the write
frame. The indirection of having named predicates would pose little overhead in large
applications because it is rarely practical to write specifications in a single line.

2.3 Possible values

Another interesting development in [JP11] is the usefulness of being able, in assertions,
to discuss the “possible values” that a variable can take. This idea actually arose from a
flaw in an earlier version of our development of Simpson’s four-slot implementation of
Asynchronous Communication Mechanisms: at some point there was a need to record in
a post condition for a Read (sub-)operation that the variable hold -r acquired the value
from a variable fresh-w that could be set by a Write process. This was written in the

earlier, flawed, version of the development [JP08] as hold -r =
↼−−−−
fresh-w ∨ hold -r =

fresh-w . But allowing that hold -r acquired the initial or final values of fresh-w is
not enough because the sibling (Write) process could execute many assignments to
fresh-w whilst the Read process was executing. This prompted a special notation for
the set of values that can arise and the post condition of the Read process can be cor-
rectly recorded as hold -r ∈ ˚�fresh-w . The possible values notation is equally useful in,
say, guarantee conditions and the full payoff comes in proofs.

An encouraging sign for the utility of the possible values notation (Ûx) is that many
other uses have been found for the same concept. Furthermore, a pleasing link with
Ian Hayes’ on-going research on non-deterministic expression evaluation is formalised
in [HBDJ11].

2.4 Separation as an abstraction

Thus far, several ways in which abstraction can facilitate both cleaner developments
and, more generally, useful concepts for developing programs have been shown. In
this more speculative section, a way of viewing the core concept of separation as an
abstraction is explored.

Returning to Reynolds’ example of reversing a sequence, a top-down development
might start with a post-condition built around the function:

rev :X ∗ → X ∗

rev(s) 4 if s = [] then s else rev(tl s) y [hd s]

The post condition itself only has to require that some variable, say s , is changed so
that

r , s: [r = rev(↼−s)]

(Notice that this specification gives the designer the permission to overwrite the
variable s .)

This can be achieved by the following abstract program:

r ← [];
while s 6= [] do

r , s: [r = [hd↼−s] y↼−r ∧ s = tl↼−s]
{r y rev(s) = rev(↼−s)}

od
Thus far, s and r are assumed to be distinct variables. That they are separate is a

useful and natural abstraction. A design decision to choose a representation in which
both variables are stored in the same vector must maintain the essential points of that
abstraction! The requirement to maintain the abstraction of separation thus moves to a
data reification step. It is yet to be worked out what form of separation logic best suits
this view but it is hoped that is will again be a step towards combining the advantages of
separation logic thinking with ideas from rely/guarantee and data reification. (Sect. 3.1
describes existing links between rely/guarantee reasoning and data reification.)

2.5 Fiction of atomicity as an abstraction for linearisability

There is insufficient space here to go into a complete exploration of a further pair of
approaches but it is worth mentioning that there are other issues that fit the analysis
of two ideas that have evolved from top-down and bottom-up views and look ripe for
reconsideration.

Research on linearisability was put on a firm foundation by [HW90]; recent inter-
esting papers include [GY11,BGMY12]. The basic idea is to look at detailed sub-steps
and to find a larger atomic operation that would have the same effect.

The idea that it is possible, in a top-down design process, to use a “fiction of atom-
icity” is discussed in [Jon03a,Jon07] (for the origins of the ideas see references in these
papers). The development process that links the abstraction to its realisation is known
as “atomicity refinement” (or “splitting (software) atoms safely”). In one particular ver-
sion of this process, equivalences were found that justified enhanced concurrency. What
was crucial to the justification of these equivalences (see, for example, [San99]) was a
careful analysis of the language in which observations can be made. (To make the point
most simply, if the observation language can observe timings, parallel processes are
likely to be seen as running faster; but there are much more subtle dependencies to be
taken into account as well.)

It must again be worthwhile to look at how these top-down and bottom-up views of
varying the level of atomicity of processes can benefit from each other. Furthermore,

both the basic idea of separate sets of addresses and of rely/guarantee-like assumptions
about the effect of the processes look likely to be important when reasoning about the
different granularities.

3 Further observations on abstraction

Much is being made about the virtues of “abstraction” in this paper. It is useful to look
both at some past successes and issues around the use of this panacea in software design.
Section 2 starts out with a confession that the ideas in that section are speculative; it is
likely that “issues” will arise in their development and that past experience might be
useful in their resolution.

3.1 Rely/guarantee thinking and data reification

It is difficult to exaggerate the importance of data abstraction in specifying computer
systems. Whilst it is true that there are cases like sorting where a post condition is much
easier to write than an algorithm, most complex computing tasks can only be described
in a brief and understandable way if their description is couched in terms of abstract
objects that match the problem in hand. Of course, mathematical abstractions11 are not
necessarily available in programming languages. The top-down, stepwise, process of
“reifying” abstractions to data types that are available in implementation languages is
a key tool of formal methods (one of the first books to emphasise this is [Jon80] and it
has been given its due prominence in VDM ever since).

Because the current author had seen this importance, it was completely natural that
–even in the earliest rely/guarantee developments– data abstraction and reification were
deployed. What was less apparent was the strength of the link between the ideas. In
fact, it was not until [Jon07] that full recognition was given to the extent to which the
ability to find a representation affected whether or not granularity assumptions could be
met without locking. Having noticed this –on a range of examples– it can now be used
to help guide the choice of rely and guarantee predicates.

3.2 What happens when abstraction fails?

It is illuminating to sketch the history of data abstraction/reification in VDM.12 Peter
Lucas’ first proof of the equivalence of two distinct (VDL) operational semantic formu-
lations in fact used a “twin machine” idea that amounted to a relation between the two
models. It was only later that the research on VDM focused on the use of a “retrieve”
function that was in effect a homomorphism from the representation back to the abstrac-
tion. This idea became the standard in VDM (e.g. [Jon80]) and there was even a test
devised for “implementation bias”. Everything was rosy in the abstraction garden until

11 It is interesting to remember that all of the formal specification notations VDM [Jon80],
Z [Hay93] and B [Abr96] employ the same collection of abstract objects: sets, sequences,
maps and some form of record.

12 This is done more fully, and in the context of other research, in [Jon03b].

a few contrary examples appeared where, in each, it was impossible to find an unbiased
state that covered all allowable implementations. The essence of the problem was that,
for these rare applications, the abstract state had to contain information that allowed
non-determinacy; but once design decisions removed the non-determinacy, the states
could be simplified in a way that meant they had less information than the abstraction;
this meant that no homomorphism could be found.

The problem of justifying such design decisions was overcome by adding a new
data reification rule to VDM that derives from the research of Tobias Nipkow [Nip86]
(a parallel development in Oxford led to [HHH+87]). The essential point here is that
one should strive for “bias freedom” but that it might not always be attainable. If this is
genuinely the case, there may be a need to devise new proof methods.

One particular “trick” that is often used in reasoning about concurrent programs is
to add “auxiliary” (or “ghost”) variables that record information that is not (readily)
available in the actual variables of a program. The temptation to do this is often strong
but this author has doubts about the wisdom of giving in to it. The danger is that it
is difficult to put precise limits on what it is legitimate to record in ghost variables.
Compositionality can be completely destroyed by recording information about a thread
that one might wish to revise without changing the design of any concurrent threads.
More is said on this topic in [Jon10].

4 Conclusions and next steps

Clearly, much remains to be done to bring about intellectual and software tools that will
contribute to the work of software design for concurrent systems.

In some senses, what marks out a useful formal method is not its ability to ex-
press anything but rather its expressive weakness! One seeks a notation that can cover
a useful class of applications but be weak enough to be tractable. For some applica-
tions rely/guarantee conditions –coupled with liberal amounts of abstraction– fit this
pattern. The basic rely/guarantee relations make it possible to go through a top-down
development of non-trivial algorithms that allow (at least abstract) races on variable
access. Ketil Stølen showed in [Stø90] that the same basic framework can be extended
to handle progress arguments. Similarly, separation logic approaches employ a notation
for which useful tool support has been developed. What one has to seek is a sweet spot
where much can be handled with a (close to) minimum of formal overhead.

Although the current author finds compact notations attractive (and remember the
point made by Christopher Strachey that it is far easier to manipulate a string of symbols
that fit on a line than multi-line texts), it is unavoidable that specifications of large sys-
tems get recorded using long formulae. This author has written many papers extolling
the advantages of abstraction but has seen enough formal specifications of systems such
as “cruise control” to avoid setting “single line specifications” as an objective. What is
important is to have notations whose operators are linked with useful algebraic prop-
erties: separation logic clearly achieves this and, for rely/guarantee, [HJC12] makes a
first step in this direction but the objective must be kept in mind.

Another area where separation logic researchers have been wise is in their emphasis
on tool support for their ideas. This must –and will– be an objective of our research to
bring together different approaches to concurrency reasoning.

It is sadly the case that most currently available programming languages are poor
vehicles for expressing (safe) concurrency. There is, therefore, a temptation to plan to
embody the ideas from the research adumbrated in the body of this paper into yet-
another programming language. Such is not the immediate objective of the current au-
thor who has seen too many languages that offer at most one new idea but implement
many other concepts less well than existing languages. The first step is tractable design
concepts (that might be used to develop programs into patterns in existing languages); it
would be pleasing if these patterns were adopted by some careful language designer(s).

Acknowledgements

It is a pleasure to thank many research collaborators. The most relevant and active con-
tacts on the research reported here are Ian Hayes and Rob Colvin (particularly Sect. 2.1);
Matt Parkinson, Viktor Vafeiadis and Richard Bornat (particularly Sect. 1.3); Hongseok
Yang and Alexey Gotsman (particularly Sect. 2.5); and all attendees at the productive
series of concurrency meetings held in London, Cambridge, Newcastle and Dublin (and
Oxford in July is eagerly anticipated).

The author of this paper gratefully acknowledges the funding for his research from
the EPSRC Platform Grant TrAmS-2.

References

[Abr96] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge University
Press, 1996.

[BA10] Richard Bornat and Hasan Amjad. Inter-process buffers in separation logic with
rely-guarantee, 2010.

[BA11] Richard Bornat and Hasan Amjad. Explanation of two non-blocking shared-variable
communication algorithms. Formal Aspects of Computing, pages 1–39, 2011.

[BGMY12] Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang.
Concurrent library correctness on the TSO memory model. In ESOP, 2012.

[Bro07] S. D. Brookes. A semantics of concurrent separation logic. Theoretical Computer
Science, 375(1-3):227–270, 2007.

[Bur72] R.M. Burstall. Some techniques for proving correctness of programs which alter data
structures. Machine Intelligence, 7:23–50, 1972.

[CJ00] Pierre Collette and Cliff B. Jones. Enhancing the tractability of rely/guarantee spec-
ifications in the development of interfering operations. In Gordon Plotkin, Colin
Stirling, and Mads Tofte, editors, Proof, Language and Interaction, chapter 10, pages
277–307. MIT Press, 2000.

[CJ07] J. W. Coleman and C. B. Jones. A structural proof of the soundness of rely/guarantee
rules. Journal of Logic and Computation, 17(4):807–841, 2007.

[Cou08] Patrick Cousot. The verification grand challenge and abstract interpretation. In
Bertrand Meyer and Jim Woodcock, editors, Verified Software: Theories, Tools, Ex-
periments, volume 4171 of Lecture Notes in Computer Science, pages 189–201.
Springer Berlin / Heidelberg, 2008. 10.1007/978-3-540-69149-5 21.

[DFPV09] Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor Vafeiadis. Deny-guarantee
reasoning. In Giuseppe Castagna, editor, Programming Languages and Systems, vol-
ume 5502 of Lecture Notes in Computer Science, pages 363–377. Springer Berlin /
Heidelberg, 2009.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J.,
USA, 1976.

[Din00] Jürgen Dingel. Systematic Parallel Programming. PhD thesis, Carnegie Mellon Uni-
versity, 2000. CMU-CS-99-172.

[Din02] J. Dingel. A refinement calculus for shared-variable parallel and distributed program-
ming. Formal Aspects of Computing, 14:123–197, 2002.

[dR01] W. P. de Roever. Concurrency Verification: Introduction to Compositional and Non-
compositional Methods. Cambridge University Press, 2001.

[Fen09] Xinyu Feng. Local rely-guarantee reasoning. In Proceedings of the 36th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’09,
pages 315–327, New York, NY, USA, 2009. ACM.

[Flo67] R. W. Floyd. Assigning meanings to programs. In Proc. Symp. in Applied Mathe-
matics, Vol.19: Mathematical Aspects of Computer Science, pages 19–32. American
Mathematical Society, 1967.

[GY11] Alexey Gotsman and Hongseok Yang. Liveness-preserving atomicity abstraction. In
ICALP, 2011.

[Hay93] Ian Hayes, editor. Specification Case Studies. Prentice Hall International, Englewood
Cliffs, N.J., USA, second edition, 1993.

[HBDJ11] Ian J. Hayes, Alan Burns, Brijesh Dongol, and Cliff B. Jones. Comparing models
of nondeterministic expression evaluation. Technical Report CS-TR-1273, School of
Computing Science, University of Newcastle, September 2011. Submitted to Com-
puter Journal, visible on-line at www.cs.ncl.ac.uk/research/pubs/trs/papers/1273.pdf.

[HC12] Ian J. Hayes and Robert J. Colvin. Integrated operational semantics: Small-step, big-
step and multi-step. In J. Derrick et al., editors, ABZ, volume 7316 of LNCS, pages
21–35. Springer Verlag, 2012.

[HHH+87] C. A. R. Hoare, I. J. Hayes, J. He, C. Morgan, A. W. Roscoe, J. W. Sanders, I. H.
Sørensen, J. M. Spivey, and B. A. Sufrin. The laws of programming. Communications
of the ACM, 30:672–687, 1987. see Corrigenda in ibid 30:770.

[HJC12] I. J. Hayes, C. B. Jones, and R. J. Colvin. Refining rely-guarantee thinking. Technical
Report CS-TR-1334, Newcastle University, May 2012. submitted to Formal Aspects
of Computing visible on-line at www.cs.ncl.ac.uk/research/pubs/trs/papers/1334.pdf.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):576–580, 583, October 1969.

[Hoa72] C.A.R. Hoare. Towards a theory of parallel programming. In Operating System
Techniques, pages 61–71. Academic Press, 1972.

[HW90] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[IO01] S. Isthiaq and P. W. O’Hearn. BI as an assertion language for mutable data structures.
In 28th POPL, pages 36–49, 2001.

[JHJ07] Cliff B. Jones, Ian J. Hayes, and Michael A. Jackson. Deriving specifications for
systems that are connected to the physical world. In Cliff B. Jones, Zhiming Liu,
and Jim Woodcock, editors, Formal Methods and Hybrid Real-Time Systems, volume
4700 of Lecture Notes in Computer Science, pages 364–390. Springer Verlag, 2007.

[Jon80] C. B. Jones. Software Development: A Rigorous Approach. Prentice Hall Interna-
tional, Englewood Cliffs, N.J., USA, 1980.

[Jon81] C. B. Jones. Development Methods for Computer Programs including a Notion of
Interference. PhD thesis, Oxford University, June 1981. Printed as: Programming
Research Group, Technical Monograph 25.

[Jon83a] C. B. Jones. Specification and design of (parallel) programs. In Proceedings of
IFIP’83, pages 321–332. North-Holland, 1983.

[Jon83b] C. B. Jones. Tentative steps toward a development method for interfering programs.
Transactions on Programming Languages and System, 5(4):596–619, 1983.

[Jon96] C. B. Jones. Accommodating interference in the formal design of concurrent object-
based programs. Formal Methods in System Design, 8(2):105–122, March 1996.

[Jon03a] C. B. Jones. Wanted: a compositional approach to concurrency. In Annabelle McIver
and Carroll Morgan, editors, Programming Methodology, pages 5–15. Springer Ver-
lag, 2003.

[Jon03b] Cliff B. Jones. The early search for tractable ways of reasonning about programs.
IEEE, Annals of the History of Computing, 25(2):26–49, 2003.

[Jon07] C. B. Jones. Splitting atoms safely. Theoretical Computer Science, 375(1–3):109–
119, 2007.

[Jon10] C. B. Jones. The role of auxiliary variables in the formal development of concurrent
programs. In Cliff B. Jones, A. W. Roscoe, and Kenneth Wood, editors, Reflections
on the work of C.A.R. Hoare, chapter 8, pages 167–188. Springer, 2010.

[JP08] Cliff B. Jones and Ken G. Pierce. Splitting atoms with rely/guarantee conditions cou-
pled with data reification. In ABZ2008, number 5238 in Lecture Notes in Computer
Science, pages 360–377. Springer, 2008.

[JP11] Cliff B. Jones and Ken G. Pierce. Elucidating concurrent algorithms via layers of
abstraction and reification. Formal Aspects of Computing, 23(3):289–306, 2011.

[LFF12] Hongjin Liang, Xinyu Feng, and Ming Fu. A rely-guarantee-based simulation for ver-
ifying concurrent program transformations. In Proceedings of the 39th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’12,
pages 455–468, New York, NY, USA, 2012. ACM.

[LS09] Dirk Leinenbach and Thomas Santen. Verifying the microsoft hyper-v hypervisor
with vcc. In Ana Cavalcanti and Dennis Dams, editors, FM 2009: Formal Methods,
volume 5850 of Lecture Notes in Computer Science, pages 806–809. Springer Berlin
/ Heidelberg, 2009.

[Mor94] C. C. Morgan. Programming from Specifications. Prentice Hall, second edition,
1994.

[MV94] C. C. Morgan and T. N. Vickers. Types and invariants in the refinement calculus. In
C. C. Morgan and T. N. Vickers, editors, On the Refinement Calculus, pages 127–154.
Springer Verlag, 1994.

[Nip86] T. Nipkow. Non-deterministic data types: Models and implementations. Acta Infor-
matica, 22:629–661, 1986.

[O’H07] P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 375(1-3):271–307, May 2007.

[OP99] P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of Symbolic
Logic, 5(2):215–244, June 99.

[ORY01] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter data
structures. In 15th CSL, pp1–19, 2001.

[OYR09] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. ACM
TOPLAS, 31(3), April 2009. Preliminary version appeared in 31st POPL, pp268-280,
2004.

[Par10] Matthew Parkinson. The next 700 separation logics. In Gary Leavens, Peter O’Hearn,
and Sriram Rajamani, editors, Verified Software: Theories, Tools, Experiments, vol-

ume 6217 of Lecture Notes in Computer Science, pages 169–182. Springer Berlin /
Heidelberg, 2010.

[PB05] Matthew Parkinson and Gavin Bierman. Separation logic and abstraction. In POPL
’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 247–258, New York, NY, USA, 2005. ACM.

[PBC06] M. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in Hoare logics. In
Logic in Computer Science, 2006 21st Annual IEEE Symposium on, pages 137–146,
2006.

[Rey00] J. C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In Jim
Davies, Bill Roscoe, and Jim Woodcock, editors, Millennial Perspectives in Com-
puter Science, pages 303–321, Houndsmill, Hampshire, 2000. Palgrave.

[Rey02] John Reynolds. A logic for shared mutable data structures. In Gordon Plotkin, editor,
Proceedings of the Seventeenth Annual IEEE Symp. on Logic in Computer Science,
LICS 2002. IEEE Computer Society Press, July 2002.

[San99] Davide Sangiorgi. Typed π-calculus at work: a correctness proof of Jones’s paralleli-
sation transformation on concurrent objects. Theory and Practice of Object Systems,
5(1):25–34, 1999.

[Sim90] H. R. Simpson. Four-slot fully asynchronous communication mechanism. Computers
and Digital Techniques, IEE Proceedings E, 137(1):17–30, 1990.

[Stø90] K. Stølen. Development of Parallel Programs on Shared Data-Structures. PhD thesis,
Manchester University, 1990. Available as UMCS-91-1-1.

[Vaf07] Viktor Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, Uni-
versity of Cambridge, 2007.

[VP07] Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and separa-
tion logic. In Luı́s Caires and Vasco Vasconcelos, editors, CONCUR 2007 – Concur-
rency Theory, volume 4703 of Lecture Notes in Computer Science, pages 256–271.
Springer Berlin / Heidelberg, 2007.

	TRCover1339
	TRAbstract1339
	TECHNICAL REPORT SERIES
	Abstract

	TRBibliography1339
	1339withoutcovers

