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F

”Aut inveniam viam aut faciam”

1 INTRODUCTION

R Equirements Engineering is a complex discipline
where “human skills” cannot be relegated to a

secondary role. The process of elicitation, analysis and
specification relies heavily on human ability to collect,
analyse, communicate and interpret information in a
context. That is why aiming at a completely mechaniz-
able procedure leading from requirements to code in one
go is not just an ambitious goal, it is not reasonable and it
is simply not doable. That is also why it is not the goal of
this paper. However, although in the earliest phases of a
project dependable communication between parties may
still be considered the most important aspect to take care
of, the success of the following steps has been proven to
be significantly affected by the use of formal tools, both
conceputal (methods) and software (applications).

It is generally difficult to produce a final artefact which
entirely satisfies customer requirements, but Object Ori-
ented Design [1] and Component Computing [2] are two
well known examples of how rigor and discipline can
improve the final quality besides any human commu-
nication implication. The success of languages like Java
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or C# has to be interpreted from this perspective, i.e.,
they are natural target languages to (formally) organize
and structure problems from the earliest phases of de-
velopment. It is worth remembering that such a success
is due both to the existence of software and rigorous
methodological tools. Semi-formal notations like UML
[3] also helped in creating a language that can be under-
stood by both specialists and non specialists, providing
different views of the system that can be negotiated
between stakeholders with different backgrounds. The
power (and not the limitation) of UML is the absence
of a formal semantics (although many attempts can be
found in literature) and its strong commitment to a way
of reasoning and structuring problems which is the one
disciplined by object orientation.

However, in Object Oriented Design or other tradi-
tional formally structured development methodologies,
the first formal object created is still code. Static anal-
ysis and testing are very effective ways to identify a
number of flaws, but it is still very hard to verify that
code satisfies the original customer requirements. With
this approach, verification is carried out very late in
the development process and, as a consequence, fixing
errors has a higher cost. With these premises, verification
appears to be impractical due to the large gap between
code and requirements. To bridge this gap, several other
approches based on formal methods have emerged over
the decades. Formal/mathematical notations have ex-
isted for a long time and have been used to specify and
verify systems. Examples are process algebras (a short
history by Jos Baeten in [4]), specification languages
like Z (early description in [5]), B [6] and Event-B [7].



The Vienna Development Method (VDM) is one of the
earliest attempts to establish a formal method for the
development of computer systems [8], [9], [10]. A survey
of these (and others) formalisms can be found in [11]
while a discussion on the methodological issues of a
number of formal methods is presented in [12], [13], [14].

All these approaches (and others described in lit-
erature) still leave an open issue, i.e., they are built
around strict formal notations which affect the develop-
ment process from the very beginning. These approaches
demonstrate a low level of flexibility. It is indeed not
reasonable to expect that a single notation can express
all the different aspects encountered during the software
development cycle. Therefore, these methods seem to
work only for small problems, leaving a number of
scalability issues open.

In this paper, following the experience accumulated
during the FP7 DEPLOY project [15], we reject the notion
that any specific notation can solve all the software de-
velopment problems. In our research, we instead made
progress by moving to a very different position where
having a toolkit of notations or formalisms, and using
those we felt could assist us best in each phase (from
requirements to code), shown to be the most viable solu-
tion. The remainder of this paper is structured as follows:
Section 2 describes the context in which this research
has been done and the related issues; Section 3 gives
a short introduction to the different methods on which
the approach proposed is based; Section 4 contains a
description of the application area, i.e., a description
of the important characteristics of automotive systems;
Section 5 describes phases and relative decisions that
have been made; Section 6 describes the formal devel-
opment method in detail; related works and conclusions
complete the paper in Section 7 and Section 8.

2 THE DEPLOY PROJECT

After having experimented over two significant case
studies in Bosch Research (Cruise Control and Start/Stop
System) for the duration of the DEPLOY project [15], the
ideas and thoughts which have evolved are presented
in this paper. DEPLOY was an ambitious project ad-
dressing diverse major industrial areas: automotive, train
transportation, business and aerospace software. Putting
all of them under the same umbrella was a difficult
(if not impossible) task for both instrinsic and extrinsic
reasons. We recognized from the very beginning that
each deployment scenario was different and needed (at
least partially) different approaches, concepts and tools.
Industries were different, development processes dif-
fered, internal organizations varied and, to some extent,
business models were different as well as politics. Most
importantly, target applications and in-house engineer-
ing tools/standards showed little similarity. Therefore,
integration needs were different. Ample documentation
and a strong publication track have been created during
the project, the interested reader can refer to the project

website [15] to find papers describing the train trans-
portation, business and aerospace applications of formal
methods. In this paper we focus on the automotive
scenario and the collaboration with Bosch.

Over the duration of the DEPLOY project, the col-
laboration between Newcastle University and Bosch Re-
search has been close and brought a broader understand-
ing of the problems to both sides. Before the beginning of
the project, Bosch project members had no previous ex-
perience with Problem Frames [16], Requirements State
Machine Language (RSML) [17] and Event-B [7], neither
at the theoretical nor at the application level, which made
this deployment scenario a particularly interesting one.
More specifically, the absence of any previous experience
with the formalisms and tools on which the project was
focusing immediately brought a major requirement to
our attention, i.e., the formalisms applied had to be
understandable by engineers. The actual meaning of this
statement can only be instantiated empirically and work-
ing in the relevant field and it cannot be in any way the
result of intellectual or academic speculation. This was
one of the major barriers to be overcome in achieving the
project objectives. Hard work, close collaboration, will
to communicate and common sense offered a solution
to the problem. Thus we avoided falling into “Maslow’s
hammer thinking trap” [18].1

Traceability is another major issue and the use of a
single notation, even when it comes together with a
rigorous refinement methodology like Event-B, does not
seem to offer a complete solution by itself. Unfortunately,
software development does not offer a panacea to cover
every phase from requirements to code. The use of a
formalism-based toolkit with a varied portfolio showed
to be a viable solution instead. Following this principle, a
specific notation is used only where and when it is really
suitable and not necessarily over the entire lifecycle. In
this work, Jackson’s Problem Frames Approach (PFA)
[16] and the Requirements State Machine Language
(RSML) [17] have been applied before the application of
Event-B in order to progress incrementally from an infor-
mal to a formal description of the system. This method
generates several documents during the development
process (e.g., requirements, specification, formal model,
code), but traceability is not lost since the formality of
the approach permits establishment of links between
requirements and subsequent documents. Errors can be
isolated early thanks to step-wise verification/validation
of results (i.e., the specification is validated against the
requirements; the formal model is validated against the
specification; and, finally, the code can be automatically
generated by the Event-B refinement chain).

3 BACKGROUND

This section gives a short introduction to the different
methods on which the approach proposed is based. It is

1. Maslow, in his book, noted that “It is tempting, if the only tool
you have is a hammer, to treat everything as if it were a nail”.
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not intended to be exhaustive, but it provides the reader
with relevant pointers for further investigation.

3.1 Problem Frames
PFA [16] focuses on systems in which the computer
interacts with the physical world to achieve a required
behaviour there. Stakeholders in the system –users,
sponsors, operators, regulators and others– want this
behaviour to satisfy certain properties. These desired
properties may be expressed in various forms and with
various degrees of exactness: for an industrial press a
vital desire is the operator’s safety; for an electronic
purse system it is conservation of money in any transac-
tion between two purses even if the transaction fails or
is aborted. The requirements engineer must understand
these desires and design a feasible joint behaviour of the
computer and the world that will satisfy them.

In PFA this task is understood in terms of three
principal parts. First, the machine: this is the computer
executing the software that will eventually be developed.
Second, the problem world, seen as an assemblage of dis-
tinct domains interacting with each other and with the
computer. Third, the system requirement, initially seen
as the set of desired properties of the system behaviour.
The system is represented in a problem diagram. The
diagram shows the computer, the problem domains, and
the interfaces of shared phenomea at which they interact;
the requirement is represented by a distinguished block
linked to the problem domains to whose phenomena it
refers. The requirements engineering task is to specify
the given properties W of the problem world domains,
the behaviour M of the computer, and the required
joint behaviour R resulting from their interactions. The
entailment M,W � R must hold, and the behaviour R
must exhibit the properties desired by the stakeholders.

For a realistic system M,W,R and the desired prop-
erties will be complex. The problem is therefore decom-
posed into subproblems, each represented by a problem
diagram. A subproblem is a closed independent pro-
jection of the original problem, ignoring all interactions
with other subproblems. Recombination is deferred until
each subproblem is well enough understood in isolation.
A further task is then to design the temporal composition
of the subproblem behaviours and to resolve any inter-
ference and conflict arising in their resulting interactions.

This specification of system behaviour does not map
directly either to an Event-B specification or to a software
architecture: refactoring is a further step in the path
to implementation. It is a fundamental claim of PFA
that the cost of this refactoring is amply compensated
by the clarity that can be achieved in the requirements
engineering task itself and the consequent improvement
in system quality and dependability.

3.2 Requirements State Machine Language (RSML)
The Requirements State Machine Language (RSML) [17]
is a formal black-box specification language invented

by Nancy Leveson and has been widely applied in the
avionic industry for the specification of complex state-
based embedded systems like the transition collision
avoidance system (TCAS II). RSML was developed in
order to have precise description of the functional be-
haviour of state-based systems which is formal enough
to reason about general aspects like completeness and
consistency of state machines [19] but still easy enough
to be understandable by engineers. The language itself
consists of concepts for structuring a large specification,
i.e., the language supports modules with defined inter-
faces as well as formal concepts for describing state ma-
chines based on statecharts [20] extending state diagrams
with state hierarchies and broadcast communications.

An important concept introduced by RSML is the
concept of AND/OR tables which are used to describe
conditions for state transitions and conditions for the
assignment of variables. Table 1 shows an example for
an AND/OR table. The far-left column of the AND/OR
table lists the logical phrases. Each of the other columns
is a conjunction (logical AND) of those phases and
contains the logical values of the expressions. If one of
the columns is true, then the table evaluates to true. A
column evaluates to true if all of its elements match the
truth values of the associated predicates. A dot denotes
”don’t care”.

TABLE 1
Example of an AND/OR table

X > Y T F •
A < B T F •
S = PRESSED • T T
Y = ON • • T

3.3 Event-B
The Event-B Modelling Language [7] was developed by
J.-R. Abrial and his team at ETHZ as a specialization
of the B-Method [6] and it is used to describe for-
mally systems and reason mathematically about their
properties. Event-B belongs to the category of model-
based formalisms. There is a long tradition of methods
in this category which appeared before Event-B, e.g.,
VDM [8], [9], [10], Z [5] and the B-method itself [6].
The mathematics underlying all these formalisms is set
theory and first order logic. The approach consists of
modeling the system’s state in terms of sets and func-
tions, and modelling state transformation using opera-
tions (or events in the case of Event-B). Predicates are
used to express invariant conditions on the state. In
Z, the emphasis is on formal specification, whilst the
B-method emphasizes the ”method” itself. Both B and
Event-B focus on the application of stepwise refinement
(reification in VDM), that is, the verifiable transformation
of a high-level formal specification into an executable
program. Model-based formalisms are mature, and they
have extensive tool support, for example, Overture for
VDM [21] and Rodin for Event-B [22].

3



In more detail, an Event-B model consists of Machines
(modelling the dynamic behaviour: variables, invariants,
events) and Contexts (static information: constant iden-
tifiers, values and their properties). Variables store the
machine’s state while invariants constrain types and
state logical properties over the variables. Events define
the actual behaviour of the system (state transitions) and
may include a guard, defining the states from which the
transition is allowed to occur. Events also include a set of
actions defining how variables should be updated, i.e.,
state transformation. During the refinement process, new
events are introduced at every refinement step adding
further details to the model and allowing the developer
to get closer and closer to the concrete implementation.
At each refinement step, existing events can be kept
as they are or they can be refined into another event
(for example changing state variables). They can also be
split. These refinement steps come together with specific
proof obligations (which are essentially predicates on
states) and tool support providing help to discharge
them. This means that, in Event-B, refinement steps are
verified with respect to their proof obligations in such a
way that transitivity of refinements guarantees the final
system description being a refinement of the initial one.
Further and deeper explanation of the method, paired
with concrete examples of modelling coming from real
case studies, is presented in Section 6.3.

Event-B offers a framework which claims to be flexible
enough to support system development through step-
wise refinement. In this paper we are partly challenging
this claim. It is worth noting that we are certainly not
undervaluing the Event-B contribution to software engi-
neering, we want only to point out that formal methods,
in general, does not offer a panacea to cover every phase
of the software lifecycle, from requirements to code (and
beyond). The remainder of this paper shows some of the
Event-B limitations.

4 APPLICATION AREA

Automotive applications are embedded systems. This
section outlines some major technical and non-technical
characteristics necessary to understand the bigger pic-
ture in which our results emerged. Technical character-
istics include:

• Most automotive applications are designed as em-
bedded systems to implement one or a few dedi-
cated functions. The coordination and prioritization
of requests is an important task of embedded sys-
tems within the automotive environment. As a con-
sequence of this the concept of finite state machines
is often used.

• On the other hand, automotive systems con-
trol/influence the behaviour of a car which is intrin-
sically continuous. The core functionality of many
automotive applications is a closed loop controller.

• Reacting as quick as possible to driver requests
or changing environmental conditions is another

important task of most applications implemented in
the automotive domain. Thus, an appropriate way
to model time is also an important aspect when
applying formal methods to sytems typical of the
automotive domain.

• Automotive applications are cyclically executed,
with a predefined static priority of the different
tasks. The basis execution scheme is gathering input,
calculating and producing the output.

Non-technical characteristics include:
• Typical software applications in the automotive do-

main may never behave in a way that may endager
the driver, the vehicle, or other vehicles nearby. For
that reason, safety requirements [23] are defined and
the fullfillment of these safety requirements has to
be justified.

• The current development process is best described
as a tailored version of the V-Model. Therefore and
for regulatory reasons (fullfilling of standards [23])
some basic documents have to be produced during
the development.

5 OUR APPROACH

Our approach for a formal development process for
automotive applications 2 evolved after having experi-
mented over two significant case studies in the DEPLOY
project [15]. During these case studies we found that the
gap between informal descriptions (i.e., requirements in
natural language and formal descriptions of the system
in Event-B) is very large. Verifying that the formal de-
scriptions are consistent with the informal descriptions
turned out to be a very difficult task because of the
inevitable vagueness of informal descriptions and miss-
ing traceability links between the informal and formal
descriptions.

In order to bridge this gap and to progress incremen-
tally from an informal to a formal description of the sys-
tem, our approach consists of five phases (requirements,
specification, formal modelling, formal verification, and
code generation) in which carefully selected and appro-
priate (formal) notations are used. A specific formalism
is used only where and when it is really suitable and
not over the complete development cycle. The outcome
of each phase during the development process is an
adequate document which describes the results of each
phase and which can be used to communicate easily with
other stakeholders like managers, customers, and other
developers during the development process. Traceability
between the documents produced in each phase is not
lost since the formality of our approach permits the
establishment of links between requirements and sub-
sequent documents. Step-wise verification/validation of
results allows an early detection and correction of errors

2. Automotive applications contain discrete and continuous parts
(closed loop controllers). In the case studies we concentrated on the
discrete part of the system. We decided not to model the continuous
part and only used an abstract notion of time.
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during the development process (i.e., the specification
is validated against the requirements; the formal model
is validated against the specification; and, finally, the
code can be automatically generated by the Event-B
refinement chain).

Figure 1 graphically depicts our development process.
Table 2 summarizes the five phases of our approach, the
applied (formal) notations, the main activities as well as
the outcomes of each phase.
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Fig. 1. Formal development process

The starting point for our process is an abstract idea
of the system and/or some vague initial requirements
(see step 1 in Figure 1). In order to produce a require-
ments document for further development these vague
initial requirements have to be analyzed and concrete
requirements have to be developed. For this analysis and
development PFA [16] is applied. The main outcome of
this phase is a requirements document in natural lan-
guage which also contains assumptions on the system to
be developed. We deliberately chose to describe require-
ments in natural language in order to make it as easy
as possible to discuss the requirements with different
stakeholders in the development process (e.g., customers
and managers). Section 6.1 describes this phase.

The next phase in the process is the specification phase
in which the desired functional behaviour of the system
and the architecture is described in a precise way using
RSML [17] (see step 2 in Figure 1). Inputs to this phase
are the requirements document as well as the Problem
Frames model. The outcome of the specification phase
is a specification document which contains a description
of the architecture of the solution as well as a detailed
description of the functional behaviour of each compo-
nent. A detailed description of this phase is presented in
Section 6.2.

After the specification phase the formal modelling
phase follows (see step 3 in Figure 1). During this phase
the specification is translated into a formal model written
in a formal language (e.g., Event-B). The main activities
in this phase are the formalization of the functional
behaviour, i.e., how the system is achieving it, as well as
the formalization of requirements, i.e., what the system

should do. Section 6.3 contains a detailed description of
the formal modelling phase.

The next phase in our approach is the formal veri-
fication phase (see step 4 in Figure 1). In this phase
the refinements of the formal model as well as the
formalized requirements are verified on the model using
formal verification techniques such as theorem proving
and model checking. The outcome of the verification
phase is a verified formal model with regard to the
formalized requirements. Details of this phase are de-
scribed in Section 6.4. For a better understanding the
formal verification and the formal modelling phase are
described as two separate sequential tasks in this paper.
However, in practice the formal verification phase goes
hand in hand with the formal modelling phase. Good
integeration of these two tasks helps to find errors as
early as possible and is therefore an important aspect of
the development.

Having obtained a verified formal model of the sys-
tem, the last phase in our approach is code generation
(see step 5 in Figure 1). During this phase the verified
formal model is translated into a programming language
which can then be compiled and run on embedded
devices. The main outcome of this phase is thus the code
which serves as an input to the compiler. A description
of this phase can be found in Section 6.5.

6 FORMAL DEVELOPMENT METHOD

This section presents a detailed description of the five
phases of our approach. For each phase of our approach
the specific requirements and constraints for chosing
an adequate (formal) notation are discussed before we
present the arguments for how the chosen notation fulfils
the requirements of each phase. The description of each
phase is illustrated using an example from our second
case study in the DEPLOY project [15].

The system we analyzed in our second case study
was a Start/Stop System which automatically stops the
engine, e.g., at traffic lights, to save fuel (see also [26]).
The engine will be automatically restarted when the
driver wants to move the car again. The system is
an embedded real time system. However, contrary to
other software functions in the automotive domain, the
Start/Stop System only consists of discrete functionality
containing a complicated state machine for determining
when to stop and when to start the engine.

6.1 Requirements Development
Constraints The starting point for a new product or a
new feature for a product is usually an abstract idea,
some vague initial requirements. To produce a require-
ments document which can be used for further devel-
opment these initial requirements have to be refined.
We used Problem Frames [16] (see Section 3.1) for the
problem analysis and the central idea of this first part
of the development process is to concentrate on the
problem that has to be solved, not on possible solutions.
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TABLE 2
Overview of development phases, formalisms, main activities and outcomes

Phase Formalism/Method Main Activities Outcomes
Requirements Analysis / Devel-
opment

Problem Frames Approach
(PFA) [16] • Problem decomposition

• Development of require-
ments

• Requirements Document

Specification Requirements State Machine
Language (RSML) [17] • Description of desired so-

lution structure
• Description of desired

functional bevahiour

• Specification Document

Formal Modelling Event-B [7]
• Formalization of

functional behaviour
• Formalization of require-

ments

• Formal Model

Formal Verification Theorem Provers (Atelier-B)/
Model Checking (ProB) [24] • Formal proof of desired

properties
• Formal proof of consis-

tency of the model

• Proven Formal Model

Code Generation EB2C [25]
• Generation of executable

code
• Code

During this analysis, having some structure helps to find
a systematic way to analyse the problem. On the other
hand, a completetly formal notation would restrict the
freedom needed during this early phase.
The outcome of the requirements phase of the develop-
ment process is a requirements document, not a Problem
Frames model. Although problem frames are easy to
read some basic knowledge is still needed to understand
the diagrams. The requirements document is written
only in natural language to be as easy to read as pos-
sible. This document is the basis for discussions with
all stakeholders, including customers and engineers. In
the requirements document no information about the
solution structure of the system is used. The system is
described as a black box as this starting point for further
development should not restrict possible solutions for
the system being analyzed.

Description of method In PFA we start with an
abstract diagram, an overview of the world of which
the system to be built is a part. An abstract requirement
describes the effect the system has on the world. Note
that the requirement does not refer to the system itself
(which would be a restriciton of the solution). After
this abstract examination more concrete subproblems
are considered. In these subproblems one aspect of the
overall problem is developed in detail with requirements
that refer only to this specific aspect. The problem of
how to recombine these different aspects is postponed
and adressed after the development of all subproblems.
In every subproblem there is at least one requirement.
This requirement refers only to the subproblem. After
the development of every subproblem in isolation the

recombination must address the priorization of the sin-
gle subproblems.

An interesting question is where to find relevant in-
formation in the Problem Frames model which has to
be included in the requirements document. Of course
the requirements in the model are themselves part of
the requirements document. But this is not enough to
build a solid basis for further development. First of
all the assumptions the model is based on have to be
included. The domain descriptions illustrating the do-
mains surrounding the system are also a very important
part of the requirements document as they state nec-
essary information for the system. In the requirements
document the combination problem has to be solved. In
this document only a black-box description is allowed
and therefore the complete system has to be addressed.
All these different information sources together build the
basis for the requirements document.

Example 1: The Start/Stop System is not allowed to
prevent the driver from moving the car whenever he or
she wishes to do so. Therefore there is a requirement in
the natural language requirements document stating The
Start/Stop System is not allowed to change the engine status
from running to off if the driver wants to move the car. There
is the obvious question of how the Start/Stop System
is supposed to judge when the driver wishes to move
the car. The Start/Stop System does not have access to
the wishes of the driver, but it has access to the steering
wheel, the clutch pedal and the gearbox. The wish of the
driver to move a standing car is modelled as follows:

1) If the engine is running and the driver does not want
to move the car, then the steering wheel is not being
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used, the clutch is released and the gearbox is in
neutral.

2) If the engine is running and the driver does want to
move the car, then the steering wheel is being used,
the clutch is pressed or the gearbox is not in neutral.

In the requirements document not only the require-
ment itself has to be included but also this additional
information.

Example 2: The same aspect of the Start/Stop System
is treated in the Problem Frames subproblem shown
in Figure 2. The machine, i.e., the box with the dou-
ble vertical stripe, is called SSE Driver Needs HMI, re-
ferring to the fact that this subproblem concentrates
of the needs of the driver, which are deduced by
the HMI (Human-Machine Interface). To be able to
solve the recombination problem the engine is not part
of the subproblem. Instead a designed domain called
SSE Driver Needs HMI Model is used and therefore the
requirement does not refer to the engine (as in the
requirements document) but to this designed domain,
i.e., the box with the single vertical stripe. The designed
domain has a phenomenon named HMI Stop Ena (there
is another phenomenon called HMI Strt Req, which is
not relevant for this example but will be used in Exam-
ple 4). The phenomenon stores the information of this
subproblem related to the stopping of the engine, i.e., of
whether this subproblem enables the Start/Stop System
to stop the car or not. For more details please see [26].
In the domain Driver a model of the driver is defined,
which states the connection mentioned in example 1 in
1.) and 2.) between the wishes of the driver and the
steering wheel, the clutch and the gearbox. The steering
wheel can be used or not used, the clutch pedal can be
pressed or released, the gearbox can be in neutral or not
in neutral.

Gearbox 

 

 

Requirement 

Steering 
Wheel 

Clutch Pedal 

 SSE_Driver_ 
Needs_HMI Driver 

 SSE_Driver_ 
Needs_HMI_Model 

Fig. 2. Problem Frames subproblem

Please note that although the two examples above
were presented the other way around PFA precedes the
task of documenting natural language requirements in
the requirements document.

Summary The use of Problem Frames helps to con-
centrate on the problem to solve and develop a better
understanding of how the system to build is supposed
to affect the surrounding world. The additional require-
ments document in natural language is the basis for

discussions with all stakeholders.

6.2 Specification
Constraints After having produced a requirements doc-
ument containing the requirements and assumptions on
the system, the next logical step in the development pro-
cess is to develop a detailed specification which should
include a precise description of the functional behaviour
of the system as well as a description of the general
architecture. Ideally, the specification method should
provide adequate means for describing the functional
behaviour of the system, i.e., what the system will do
and how this can be achieved, as well as means for
describing the architecture of the solution. In our case
this means that the specification method should provide
means for describing state-based functional behaviour as
well as means for describing individual components that
communicate via shared variables. Another important
aspect for our type of systems is the ability to specify
abstract time and the execution order of components
(see also Section 4). On the one hand the specification
method should be formal enough to reason about the
general structure of the solution, e.g., reasoning about
consistency of interfaces between components and for-
mal enough to reason about general aspects of the be-
haviour of state-based systems, e.g., deadlocks in a state
machine and completeness of transitions with regard to
all possible inputs.

On the other hand, the specification method should
still be understandable by engineers who are not familiar
with formal notations like Event-B.
RSML [17] is ideally suited for our task of specifying
the functional behaviour of state-based automotive sys-
tems because it is easy enough to be understandable
for engineers but still formal enough to reason about
general aspects of state-based systems and fulfills the
other constraints described above. The outcome of the
specification phase is a specification document written
in RSML which is then used as input for the formal
modelling phase.

Description of method For the specification of the
system we start with the requirements document and
the Problem Frames model produced during the require-
ments development phase. These documents contain
requirements and assumptions about the system to be
developed but do not contain a precise description of
the desired functional behaviour of the system. Thus,
the task for the specification phase is to specify the
desired functional behaviour such that it fulfills the set of
requirements described in the requirements document.
In order to structure the solution, the first step during
specification is to think about the general architecture of
the system. As with the decomposition of the problem
in the requirements development phase, the solution
is decomposed into components that describe specific
aspects. For each component its interface is precisely
defined using typed input and output variables. Com-
ponents communicate with other components via shared
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variables, e.g., the output variables of component A
serve as input variables to component B and vice versa.
If necessary, a component may also contain internal vari-
ables to store values derived from input variables. Figure
3 shows an exemplary static structure of an embedded
controller consisting of two components A and B and
their interfaces.

Component
A

Component
B

Controller C

IC OC

IA OA

IB OB

Fig. 3. RSML - Static structure with components and
interfaces

The desired functional behaviour of a component is
specified using two concepts. The first concept –called
assignment specification– is to relate output variables di-
rectly with conditions on input variables using AND/OR
tables (see Section 3.2). The following example taken
from the Start/Stop System case study illustrates this
concept.

Example 3: The value of the boolean output vari-
able HMI Stop Ena is dependent on specific conditions
on the input variables Clutch Pedal,Steering Wheel and
Gearbox. These conditions are specified by the assign-
ment specification shown in Figure 4.

Assignment: HMI Stop Ena

Condition: d

Clutch Pedal = PRESSED T • •
Steering Wheel = USED • T •
Gearbox 6= NEUTRAL • • T

Action(s): HMI Stop Ena := FALSE

Condition: ¬d

Action(s): HMI Stop Ena := TRUE

Fig. 4. RSML - Assignment specification for
HMI Stop Ena

The second concept is to define a state machine whose
transitions are guarded with conditions on the input
variables. The state machine serves as an abstraction
on complicated conditions on input variables and is
described using graphical state diagrams showing the
states and transitions but not the conditions on the

transitions. AND/OR tables are used again to specify
the transition conditions.

Another important task of the specification is to define
the execution order of components and assignments to
output variables in these components as well as the
synchronization of parallel state machines. This execu-
tion order is later required for the formal model (see
Section 6.3). In RSML [17] the execution order of transi-
tions in state machines can be specified using so called
triggering events. Triggering events can be produced
by the environment at periodic intervals or as actions
on transitions in other state machines. The inventors of
RSML themselves state that triggering events are a pow-
erful mechanism for specifying execution order but they
may become very difficult to handle if they are applied
to large complex systems [27]. Therefore, we decided
not to use triggering events. Instead we use a simple
language for expressing execution order of components
and assignments in components. The language consists
of the following concepts:

• Names Each assignment of an output, internal or
state variable of a component is assigned a unique
name

• Parallel Execution Operator (||): the assignments
left and right of the operator can be executed in
arbitary order

• Sequential Execution Operator (.): the assignment
to the left of the operator must be executed before
the assignment to the right of the operator

Using this simple notation it is possible to define local
execution orders that specify the order of execution of
assignments within each component. Similarly, a global
execution order specifies the order of execution for the
components of the specification.

Example 4: The following shows a local execution
order for two assignments within the HMI component of
the Start/Stop System: [HMI Strt Req||HMI Stop Ena].
The local execution order specifies that the assignments
to HMI Strt Req and HMI Stop Ena can be executed in
parallel because the variables are independent.

Summary Applying RSML for the specification of
automotive applications showed very promising results.
We were able to express the complete functional be-
haviour of the Start/Stop System in RSML. The language
was formal enough to describe precisely the functional
behaviour yet still readable by engineers which was
very important in order to permit domain engineers
to validate the specification against the requirements
document without needing special training in formal
methods. However, we did not have tool support for
RSML which was both an advantage and a disadvantage.
The advantage of not having a tool was that it allowed
us to have more freedom in the structure of the specifi-
cation. The disadvantage was that we did not have the
possibility of automatically checking the specification for
consistency.
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6.3 Formal Modelling

Constraints There are two purposes of the formal mod-
elling phase: One is to translate the specification into a
formal model, i.e., a mathematically precise description
of the functional behaviour of the system. The second
purpose is to formalize the requirements in order to
make them amenable for formal verification.
Such a formal model should provide the basis for formal
verification (see Section 6.4). Thus, the formal language
used for formal modelling must be formal enough to
describe precisely the functional behaviour specified in
the specification and to formalize the requirements we
would like to prove on the formal model. In order to
make these informal descriptions accessible to formal
verification they have to be stated formally as well. Fur-
thermore, the formal language must suit the application
area (i.e., description of state-based systems) and provide
means for structuring the formal model. In addition to
that, the formal language must be concrete enough to
generate code from the formal model.
Event-B [7] fulfills most of the constraints mentioned
above. It is suited for the description of state-based
systems since it is based on action transition systems and
it is formal enough to describe precisely the functional
behaviour as well as a large number of the properties
we would like to prove about the system as invariants.
Furthermore, it provides a refinement mechanism which
allows us to start with an abstract formal model which
can later be refined to a concrete model which provides
the basis for code generation.

Description of method Formal modelling in the lan-
guage Event-B typically starts with a very abstract model
which is refined step-by-step until the system and the
environment has been completely modelled. For the
Start/Stop System the formal modelling starts with a
very abstract model containing only the output of the
Start/Stop System. This model is then refined step-by-
step. In each refinement step additional components
described in the specification document are added to
the formal model. Typed input and output variables
of components described in the specification are mod-
elled as variables in the Event-B model. The types of
these variables are specified using type invariants. Each
assignment specification and each transition of a state
machine described in the specification is modelled by
events in Event-B, i.e., the conditions for the assignment
are described as guards of the event whereas the assign-
ment itself is described using an action of the event. It
is important to note that the Event-B model also con-
tains events for the system environment which models
changes of system inputs. For example, the Event-B
model for the Start/Stop System contains unguarded
events modelling changes of input variables such as
Clutch Pedal, Gearbox, and Steering Wheel.

Example 5: Figure 5 shows how the assignment speci-
fication for the output variable HMI Stop Ena in RSML
(shown in Example 4) is translated into Event-B syntax.

variables
HMI Stop Ena Clutch Pedal
Gearbox Steering Wheel

invariants
@inv1 HMI Stop Ena ∈ BOOL
@inv2 Clutch Pedal ∈ T Clutch Pedal
@inv3 Steering Wheel ∈ T Steering Wheel
@inv4 Gearbox ∈ T Gearbox

events
event Set HMI Stop Ena FALSE
when
@grd1 Clutch Pedal = PRESSED ∨

Steering Wheel = USED ∨
Gearbox 6= NEUTRAL

then
@act1 HMI Stop Ena := FALSE

event Set HMI Stop Ena TRUE
when
@grd1 Clutch Pedal 6= PRESSED
@grd2 Steering Wheel 6= USED
@grd3 Gearbox = NEUTRAL

then
@act1 HMI Stop Ena := TRUE

end
end

Fig. 5. Event-B model for HMI Stop Ena

As you can see in Figure 5 the output and input
variables are modelled as Event-B variables. Their types
are specified by Event-B invariants. The assignment
specification for the output variable HMI Stop Ena is
modelled as two Event-B events depending whether
HMI Stop Ena is set to TRUE or FALSE.

The execution semantics for events in Event-B does not
define an order in which the events are executed (see also
Section 4). An event is enabled to be executed if its guards
evaluate to TRUE. If more than one event is enabled,
one of them is chosen non-deterministically for execu-
tion [28]. However, this would allow for an arbitrary
order for execution of events which is not desired for
embedded systems. Embedded systems often require a
cyclic execution of events in which the events modelling
the system reaction follow the events modelling the
environment, i.e., it is required that for each change
in the environment (e.g., change of input variables) the
system is reacting by calculating an output. In order to
specify a specific order in which events are executed one
can add a so-called “program counter” to the formal
model, e.g., an integer variable tracking the order. This
integer variable is initialized during initialization of the
formal model. In each event, this program counter is
evaluated in the guard and increased after the execution
of the event. Using this program counter it is possible
to specify a cyclic execution order for events, i.e., the
environment and all events modelling the reaction of the
system to changes in the enviroment are executed in a
cycle.
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Example 6: Figure 6 shows the Event-B model for
the output variable HMI Stop Ena with the added
program counter. As you can see from Figure 6 the
program counter is checked in the guard and in-
creased by one in the action. Thus, in our exam-
ple the event HMI Set HMI Stop Ena FALSE is only
executed if both guards evaluate to TRUE, i.e., the
program counter must equal 10 and the first guard
must evaluate to TRUE. It is assumed that there ex-
ists an environment event changing the input values
Clutch Pedal, Steering Wheel and Gearbox which is exe-
cuted before the events Set HMI Stop Ena FALSE and
Set HMI Stop Ena TRUE. Furthermore, it is assumed
that there exists another event that resets the program
counter to its initial value.

variables
HMI Stop Ena Clutch Pedal
Gearbox Steering Wheel
Program Counter

invariants
@inv1 HMI Stop Ena ∈ BOOL
@inv2 Clutch Pedal ∈ T Clutch Pedal
@inv3 Steering Wheel ∈ T Steering Wheel
@inv4 Gearbox ∈ T Gearbox
@inv5 Program Counter ∈ NAT

events
event Set HMI Stop Ena FALSE

when
@grd1 Clutch Pedal = PRESSED ∨

Steering Wheel = USED ∨
Gearbox 6= NEUTRAL

@grd2 Program Counter = 10
then
@act1 HMI Stop Ena := FALSE
@act2 Program Counter := 11

event Set HMI Stop Ena TRUE
when
@grd1 Clutch Pedal 6= PRESSED
@grd2 Steering Wheel 6= USED
@grd3 Gearbox = NEUTRAL
@grd4 Program Counter = 10

then
@act1 HMI Stop Ena := TRUE
@act2 Program Counter := 11

end
end

Fig. 6. Event-B model for HMI Stop Ena with program
counter

Adding guards that evaluate the program counter and
actions, setting the program counter manually for each
event, is a cumbersome task. In order to automate this
task a FLOW plugin [29] is currently being developed
for Rodin which allows a graphical specification of the
order of events and a generation of program counter
variables for the Event-B model as well as the generation
of proof obligations which, when proven, show that the

flow specified by the FLOW plugin is feasible in the
formal model.

After having produced the requirements document
(see Section 6.1), the formalization of the requirements
can be started, separately from the specification (see
Section 6.2) and the development of the Event-B model
of the system itself which was described in the previous
paragraphs. The formalized requirements are used as the
basis for formal verification of the Event-B model (see
Section 6.4).

The translation of the natural language requirements is
straightforward. The single sentences are analyzed and
mapped to the input and output variables of the system.

The main feature of Event-B with which to state
properties for a model is the concept of invariants.
These invariants describe predicates that are proven to
be always true. Certain safety properties can be easily
described as invariants (e.g., if a defined output of the
system is generally forbidden). An example from the
Start/Stop System is that there should never be the
request to start and the request to stop the engine at the
same time. This kind of property is naturally suitable for
formalization as invariants.
Most of the properties to be proven describe the reaction
of the system to certain inputs (see Section 4). Event-
B does not have a natural way of treating time. For
reactions one has to carefully state a predicate that is
always true, as the system always needs time to react
to a certain input. Example 7: The natural language
requirement presented in Example 1 in Section 6.1 is
formalized as follows:

Engine Status = Running ∧
DriverWantsToMoveCar = TRUE ∧
Program Counter = ReactionTime
⇒
SSE Stop Order = FALSE

Fig. 7. Formalized requirement

The part DriverWantsToMoveCar = TRUE has
to be further defined according to the driver
model described in the example in Section 6.1 and
Program Counter = ReactionTime has to be adjusted
to the actual Event-B model. With SSE Stop Order
the Start/Stop System is able to influence the engine.
To prove this invariant in Event-B it is necessary to
introduce intermediate invariants that guide the proof
(see also Section 6.4). In Figure 6 the main step of
the Event-B model concerning this requirement is
presented. Referring to this part of the model the
following intermediate invariant is proven:

The Program Counter has been adjusted to the
model, i.e., Program Counter = 11 is set. The part
DriverWantsToMoveCar = TRUE is replaced by
the driver model, i.e., (Steering Wheel = USED ∨
Clutch Pedal = PRESSED ∨ Gearbox 6= NEUTRAL).
The only part missing to prove the invariant in
Figure 7 is that if HMI Stop Ena = FALSE then
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Engine Status = Running ∧
(Steering Wheel = USED ∨
Clutch Pedal = PRESSED ∨
Gearbox 6= NEUTRAL) ∧
Program Counter = 11
⇒
HMI Stop Ena = FALSE

Fig. 8. Intermediate invariant in Event-B

SSE Stop Order = FALSE (with some more reaction
time).

Integration of the reaction time in the invariant is not
an elegant solution to formulate invariants which com-
plicate the desired properties. Further work is needed to
increase the readability of these properties.
One difficulty arises in the case studies when require-
ments refer to former values of signals. Invariants should
only refer to signals present at the moment because only
these signals are available in Event-B. Of course these
values can be stored in separate variables in Event-B,
but depending on the modelled system and the desired
property this will be too cumbersome to be feasible.
Problems also occur if the requirement refers to real-
time time limits since there is no real-time in Event-B.
A possibility has to be found to map real-time to a time
concept in Event-B.
Please note there are further types of requirements that
are not suited for formalization as invariants, e.g., re-
quirements that are fulfilled by the execution order of
the system.

Summary With Event-B and Rodin we were able to
model the discrete part of our systems. Rodin has the
great advantage of integrating the formal modelling
phase and the formal verification phase so they can
be treated in parallel — this is important in helping
to eliminate errors as soon as possible. Processes like
configuration management, variant management, team
development, version management etc. have to be better
supported. Scalability for industrial applications and
more flexibility for decomposition and architecture have
to be addressed in the future. For the formalization of
requirements the concept of invariants in Event-B shows
limitations. The concept of FLOWS is a start to address
time and timing in Event-B.

6.4 Formal Verification

Constraints The formal modelling (see Section 6.3) and
the formal verfication which is described in this section
should not be seen as two separate, sequential tasks.
During the development of the formal model the ver-
ification is started as soon as possible to find errors as
early as possible.
The main constraint for formal verification is that effort
needed to perform the proofs should be minimized.
Therefore the selection of suitable tools which support

a high level of automation is a key task to facilitate the
use of formal methods.

The Rodin tool which is used for formal modelling
also provides tool support for formal verification used in
the case study to prove relevant properties of the system
as well as consistency within the model.

Description of method There are the two main
sources for proof obligation in Event-B: the refinement
proofs and the proofs of invariants. Refinement proofs
concentrate on the stepwise development of an Event-B
model. Invariants address (amongst other, more techni-
cal issues) the desired properties of the system which
were derived from the requirements document.

As mentioned in Section 6.3 most of the properties,
i.e., invariants, to be proven describe reaction of the
system to certain inputs. To prove invariants referring
to reactions, a number of supporting intermediate invari-
ants are needed to guide the proof during the different
steps the modelled system performs to react to an input
(see Figure 8). This of course increases the number of
necessary proof obligations. Future work is needed to
investigate easier ways to address this problem.

We had over 4000 generated proof obligations in the
Start/Stop System, around 90% of proof obligations were
proven automatically by the provers integrated in Rodin.
A large majority of the remaining manual proofs were
very simple and might be proven automatically in the
future with better adjustment and further development
of the provers.

Using only the provers integrated in Rodin has one
drawback: if a proof fails it is not always easy to find
the reason: The problem might be in the model itself, in
the invariant or it could be that the prover was simply
not able to find the proof and needs manual support.
One possiblity is to use the model checker ProB [24],
[30] to generate counterexamples to ease the treatment
of the problem.

Summary With Rodin we were able to address for-
mal modelling and formal verification in parallel. The
provers integrated in Rodin support a large number
of automated proofs which is a very promising result.
Using the model-checker ProB in addition to the provers
in Rodin is a possibility to generate counterexamples that
ease the treatment of errors.

6.5 Code Generation
Constraints After having spent considerable effort to
develop a proven formal model it should be used to
generate code. The properties proven for the formal
model have to be preserved in the code. Therefore there
is a strong need for a certified code generator, i.e., a code
generator that is proven to correctly translate Event-B
models into executable code. Furthermore, it would be
desirable if the code generator could be configured to
produce target code for different embedded processors.

Description of method Code generation from Event-
B models is currently ongoing research. Different ap-
proaches for code generation exist [25], [31]. As a proof

11



of concept we have applied the code generator EB2C
[25] to generate C-code from our Event-B models of the
Start/Stop System. Using this approach every event in
the Event-B model is translated into a C-function. De-
pending on the order of events specified in the Event-B
model these functions are called from the main function
of the C-program.

Summary Although we have applied EB2C as a proof
of concept for generating code from our Event-B models
the existing code generators are not yet stable enough to
be used in industry. Further work is required to make
these code generators stable and flexible enough to be
deployed in industry.

7 RELATED WORK

Costs and benefits of model-based development of em-
bedded systems in the automotive industry have been
examined in [32]. The book chapter describes the results
of a global study by Altran Technologies, the chair
of software and systems engineering and the chair of
Information Management of the Technical University of
Munich. This work intends to cover a gap in research
analysing the status quo of model-based development
and its effects on the economics. One of the authors
of this work, Manfred Broy, has a vast literature on
software engineering methods applied to the automotive
sector, for example [33]. In [34] he presents a perspective
which is very close to the one supported by our work.
In his paper, Broy, discusses the need for a portfolio
of models and methods and he emphasizes the im-
portance of tool support. The paper argues that there
is already scientific evidence to support the idea that
solid engineering of software intensive systems can be
achieved in the future, provided a number of issues
are addressed. The problems tackled in our work have
certainly been investigated by other authors as well. For
example, in [35], the authors propose a methodology for
safe integration of automotive software functions while
in [36] Adaptive Cruise Control is discussed and formal
verification results are presented to guarantee collision
freedom (the reader will have to note that Adaptive
Cruise Control is somewhat different from the case study
considered in DEPLOY 3).

As all of these works demonstrate, automotive appli-
cations are now at the centre of several research projects
because of their increasing complexity and relevance
in the car industry. The need for novel design and
validation methods, and also for new tools able to im-
prove robustness and safety led to the organization of
a dedicated workshop [37]. The papers contained in the
proceedings are of great interest for anyone working in
this field. The broader theme of industrial adoption of
formal methods (not limited to the automotive sector)
has been discussed in [38]. This paper starts from the
consideration that, historically, the use of formal meth-
ods originated and concentrated mostly in Europe and

3. to learn more: www.youtube.com/watch?v=alS6EqpqT0E

they have been used only by big companies developing
safety critical applications. However, the author sees the
adoption of formal methods increasing in other parts
of the world and he discusses, in particular, the South
America and Far East scenarios.

8 CONCLUSIONS

This article discusses several software engineering is-
sues, some of which are still open at present. The lack
of a rigorous and repeatable approach of many ”formal
methods” significantly restricts the choice when it comes
to identify a suitable formalism for a specific problem.
In [12] this issue is historically investigated and the
requirements of a ”formal method” are identified to
discover that many so-called “methods” are actually no
more than notations, i.e., just formalisms without an
attached rigorously defined and repeatable, systematic
approach. Event-B is not one of those. Its refinement
strategy has been demonstrated to be useful when ap-
plied to several case studies in a number of projects like
RODIN [39] and DEPLOY itself [15]. However, not even
Event-B is a panacea applicable to every phase of soft-
ware development. In this article, we present a strategy
based on a formalism-based toolkit, i.e., a portfolio of
formalisms where every specific phase of development
has been attacked by a different and suitable notation.
The adoption of a portfolio of instruments is supported
by other research as discussed in Section 7. The overall
strategy proved to be a successful one and, given the
thorough documentation generated by the project ([40],
[41], [26]), it promises to be repeatable by engineers with
an initially limited knowledge of formal methods. The
importance of training here cannot be underestimated.

We believe this work has clarifed several aspects of
industrial deployment of formal methods in automotive
applications. At the same time, the DEPLOY project
also addressed other industrial sectors (transport, busi-
ness and aerospace). The issues discussed in this article
emphasize the importance of scalability and applicabil-
ity/effectiveness of specific methods; the proposed solu-
tions have not ignored these major aspects as explained
in detail in Section 5.

Application of formal methods is still considered con-
troversial by some researchers [42] and we believe that
not addressing at least some of the criticisms here would
be a missed opportunity. Formal methods are considered
attractive by many researchers because concepts such as
theorems, proof obligations, equations and others can be
applied. However, academic attractiveness by itself does
not justify industrial deployment. The work presented in
this article shows how elaborating a methodolgy based
on a portfolio of different formalims, each tuned to a
specific phase of development, allowed for a better set
of requirements and, eventually, better code. Another
criticism is often based on the idea that specifications
fulfilling the requirement of being interpreted formally
are hard to write when compared with learning a new
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programming language. DEPLOY, and in particular the
work presented here, actually demostrated the opposite.
On the other hand, the criticism that it is not possible to
prove that formal methods can offer the same quality for
less is still open, i.e., we have not empirically (numeri-
cally) shown that formal methods are cheaper. There is
high confidence that the quality is better, but the added
value is limited when the quality is already very good.
This research direction is already active [32], collecting
empirical evidence is part of our future objectives.

Overall, this article rejects the idea that a single no-
tation can be a panacea and solve all the problems
encountered in software development. At a first sight,
this conclusion may also appear trivial and not of much
significance but, looking at the amount of research and
publications pointing in the opposite direction, we felt
the need to emphasize this argument more strongly. Not
surprisingly, we made faster progress by moving to the
position of having a toolkit/portfolio of notations and
using those we felt could assist us better in every single
phase. It is very interesting to note how Maslow’s law of
the instrument [18] plays its role here. It is well known
from quantum physics that experimenters do alter their
outcome at the subatomic level. Funnily, at the software
development level, this may also happen for cognitive
reasons and prejudice and DEPLOY brought this point
up quite early and clearly; it is one of the major lessons
learnt from the project.
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