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1 Introduction

Within logical expressions, terms can fail to denote proper values and as a result logical formulae involving such terms
may not denote Booleans [Jon90, Jon06, MS97]. Such partial terms arise frequently —for example when applying recur-
sive functions— in the specification of computer programs; more tellingly, reasoning about such terms is required when
discharging the proof obligations generated in justifying development steps (such proof obligations can be very large
for industrial applications). This raises the question of how one can reason about such formulae. Numerous approaches
have been conceived over the years — most are documented in [Che86,CJ90,CJ91,Jon06, Owe85, GSE95,MS97, Fit07,
JL11,Sch11].
The issue of non-denoting terms can be illustrated by the following property using integer division:

ViiZ-(i+i=1)V([i-1)+(i—1)=1) (1)

When 7 has the value 0, the first disjunct fails to denote a value; similarly, the second disjunct fails to denote a value
when ¢ has the value 1. The best way of thinking about the issue is to see that there is a “gap” in the denotation of the
integer division operator (this view is formalised in Section 4).! It is however convenient to illustrate the difficulties by
writing L7 to stand for a missing integer value (and L for a missing Boolean value). The validity of Property 1 relies
on the truth of disjunctions such as (1 +~1 = 1) V (0 =+ 0 = 1), which further reduces to (1 = 1) V (Lz = 1). With
strict (weak/computational) equality (undefined if either operand is undefined), this further reduces to true V Lg which
makes no sense in classical logic since its truth tables only define the logical operators for proper Boolean values.

The approach that the current authors take to reasoning about logical formulae that include partial terms is to employ
a non-classical logic known as the Logic of Partial Functions (LPF) [BCJ84, Che86,CJ91,JM94, Jon06,JL11], where
“gaps” are handled by extending the logical operators. Property 1 is true in LPF and its proof presents no difficulty.
However, Property 1 can be the cause of “issues” in other approaches to coping with non-denoting terms — for example,
with McCarthy’s conditional interpretation? of the logical operators [McC67], where disjunctions and conjunctions are
not commutative and quantifiers are problematic with respect to undefined values.

However, the availability of a large body of (semi-)decision procedures (as well as tool support) for classical logic
presents an argument against the adoption of LPF. The main contribution of this paper (Section 5) is to pinpoint the
issues that arise for the adaption of procedures such as resolution and proof by refutation to cope with LPF.

Structure of the paper: Section 2 provides an introduction to LPF. Section 3 briefly introduces a number of definitions
and results for the mechanisation of classical logic, focusing on techniques such as the clausal form representation,
resolution and proof by refutation. Section 4 provides a semantics for the LPF version of the Predicate Calculus. The
rest of the paper is grounded on this semantic model. Section 5 outlines the issues present —and the changes required—
to cover LPF by the techniques introduced for classical logic in Section 3. Finally, Section 6 provides some conclusions
and an indication of further work.

2 An Introduction to LPF

LPF is a first order predicate logic designed to handle non-denoting logical values that can arise from terms that apply
partial functions and operators. LPF is the logic that underlies the Vienna Development Method (VDM) [Jon90,BFL 94,
Fit07]. The arguments that support the use of LPF are documented in several of the previously cited references, partic-
ulary [CJ91,Jon06,JL11]. There was also an instantiation of LPF on the mural [JJLM91] formal development support
system.

The truth tables in Figure 1 (presented in [Kle52, §64]) illustrate the way in which the propositional operators in LPF
have been extended to handle logical values that may fail to denote. These truth tables provide the strongest possible
monotonic extension of the familiar classical propositional operators with respect to the following ordering on truth
values: lp < true and |l < false. The truth tables can be viewed as describing a parallel lazy evaluation of the
operands, delivering a result as soon as enough information is available; such a result will not be contradicted if a Lp
later evaluates to a proper Boolean value.

The way in which the propositional operators have been extended to handle logical values that may fail to denote
is depicted in Figure 2, writing Z;, (B) for ZU {1z} (B U {Lg}) respectively. Although the conditional operators

1 As explained in earlier papers, the problem of non-denoting terms is pervasive and most of these papers have used example formulae containing
recursive functions; the fact that division is a partial operator (undefined with a zero divisor) is used, in this paper, to present the essential points with
a minimum of extra machinery.

2McCarthy defined, for example, the disjunction of p, ¢ as if p then true else ¢ and referred to the first variable in such conditional expressions as
the “inevitable variable” since the conditionals are strict in their first argument.



\Y, true | lp false A true | 1p false =

true | true | true | true true | true | lgp false true | false
J—IB true J—IB% J—]B J—IB J—]B J—IB false J—IB LB
false | true | Lp false false | false | false | false false | true

Figure 1: The LPF truth tables for disjunction, conjunction and negation.

B
Vi:Z-(i+-i=1)Vv((i—1)=(i—1)=1
@Z-(G+i=1)Vv((i-1)+(E-1)=1)
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Figure 2: An illustration of where “undefinedness” can be “caught” with LPF.

in [McC67] fail to retain familiar properties like the commutativity of disjunctions and conjunctions, they broadly fit the
picture depicted in Figure 2.

The quantifiers of LPF are a natural extension of the propositional operators — viewing existential quantification as
an infinite disjunction (in the worst case) and universal quantification as an infinite conjunction. Thus, an existentially
quantified expression in LPF is true if a witness value exists even if the quantified expression is undefined or false for
some of the bound values. Such an expression is false if the quantified expression is everywhere false; it is undefined
in the remaining case (a mixture of false and undefined). Similar comments apply, mutatis mutandis, for universally
quantified expressions. In LPF quantification is only ever performed over a set of proper (i.e. defined) values.

One issue with the use of LPF is that the, so called, law of the excluded middle [Har09]

pV-op

does not hold because the disjunction of two undefined Boolean values is still undefined: thus (00 =1) V = (00 =1)
is not a tautology in LPF.

LPF includes all of the propositional operators and quantifiers of classical logic. For expressive completeness, LPF
adds a definedness operator A whose truth table is presented in Figure 3. Unlike all of the other operators presented,
the A operator is not monotone. It also gives rise to an alternative property for LPF which is known as the law of the
excluded fourth:

pV-opV-aAp

that is, p is true, false or undefined. (This property is exploited to define a modified version of a refutation procedure for
LPF in Section 5.4.) Adding definedness hypotheses for all terms in some logical expression p is sufficient to make the
validity of p in LPF and classical logic coincide.

The normal notion of a proof is that one proceeds from assumptions and derives their consequences. A sequent
€1,..., e, - e is used to represent the situation when the formula e can be logically derived from the assumptions
€1,-..,€En.

At any point in a proof, a line should be true if all of the assumptions are true. For this reason, “undefinedness” plays
little part in LPF proofs. The only real intrusion is where one wants to use what is, in classical logic, the unrestricted
deduction theorem:

pkgq
p = q

A
true | true
1p false
false | true

Figure 3: The LPF truth table for the definedness operator (A).



fromVi:Z-i=0 = —-((i—1)=0); Vi:Z-=(1=0) = i+i=1

1 from i: Z
1.1 i=0VvV-(i=0) hl,7Z
1.2 from i =0
1.2.1 = ((i—1)=0) = -E-L(V-E(h1,h),hl1.2)
1.2.2 i—-1)=G-1)=1 = -E-L(V-E(h1,h),1.2.1)
infer (1 =i=1)V(i—-1)=(—-1)=1) V-1-L(1.2.2)
1.3 from — (i = 0)
1.3.1 i+-i=1 = -E-L(V-E(h1,h),h1.3)
infer (i =i=1)V(i—-1)=G-1)=1) V-1-R(1.3.1)
infer (i -i=1)V(i—-1)=(—-1)=1) \/E(111213)
infervi:Z-(i+i=1)Vv(i—-1)+@({—-1)=1) v-I(1)

Figure 4: An illustrative proof of Property 1 in LPF.

which does not hold in LPF because p could be an arbitrary (local) assumption that is potentially undefined. Admitting
this form of the deduction rule effectively gives rise to the law of the excluded middle. The use of A provides a sound
“= -I"” rule for LPF:

- Ap;p kg

p = q

However, the non-monotone A operator is not normally used in assertions and is generally considered to be a meta-
level operator; to claim definedness in a proof, the related § operator can be used which is monotone and is defined as A
except that 0 Ly = Lp rather than false, thus dp is equivalent to the assertion p V — p. Therefore, the following “=- -1”
rule for LPF

- op;ptq

p = q

is more common. In practice, there are normally trivial ways of showing definedness since typical implications have
terms like ¢ > j on the left and its definedness follows immediately from the type 7, j: Z. (The observation about proof
only leading to (defined and) true expressions is echoed when it is noted in Section 5.4 that “cancellation” in resolution
is valid on clauses to the left of a turnstile.)

Anyone familiar with natural deduction proofs will find it straightforward to adapt to LPF. The axioms in [JM94]
include extra rules such as — V -1 that ameliorate the loss of (but do not imply) the law of the excluded middle.

To conduct a proof of Property 1, it is necessary to introduce some properties of division and subtraction, since a
proof is a game with symbols — it cannot use the semantics of the operators — /=

Vi:Z-i=0 = =((i—1)=0); Vi:Z--(i=0) = i+i=1F
Vii:Z-(1+=i=1)V((i-1)=+G(-1)=1)
The proof of this property in LPF is straightforward and, as can be seen in Figure 4, does not become complicated

by “undefinedness” issues despite the fact that the example has been deliberately chosen so that either of the disjuncts
could be undefined.

3 A Brief Background to Mechanising Classical Logic

This section briefly recalls a number of definitions and results from classical logic which are considered with respect
to LPF in Section 5, where each is treated more formally. Thus, this section considers key techniques that arise in
automated theorem proving, including: unification, resolution and proof by refutation. For a more detailed description,
the reader is referred to [BAO1] and [Har(09].

In classical logic, a formula is an expression constructed using the standard logical connectives and quantifiers
together with the variable, predicate and function symbols given by the context. Given a formula e, an interpretation
o is a mapping that associates a meaning to all variables, predicates and function symbols in e, thus allowing it to be
evaluated to either true or false. A formula e is said to be satisfiable iff there exists an interpretation for which e evaluates



to true and unsatisfiable iff it is not satisfiable — that is, that there exists no interpretation for which e evaluates to true.
Any interpretation that leads to a formula e being evaluated to true is known as a model of e. Two formulae which have
the same set of models are said to be logically equivalent. A formula e is said to be valid, denoted = e, iff e evaluates
to true for every possible interpretation. The notation [~ e indicates that e is not valid. Two formulae e; and ey are
equi-satisfiable when e is satisfiable iff e, is satisfiable. Note that two equi-satisfiable formulae may have different
models and thus may not be logically equivalent.

LetT' = {ey,..., e,} be a set of formulae then I" is simultaneously satisfiable iff there exists an interpretation that
satisfies each ej,...,e,. Let e be a single formula then e is a logical consequence of T', denoted ' |= e, if every
interpretation that makes ey, .. ., e, true also makes e true [BAO1]. If ' = {}, then logical consequence is the same as

validity. Since T is finite, I' = e is equivalent in classical logic to the assertion = e; A ... A e, = e. The notation
" b~ e is used when e is not a logical consequence of T'.

3.1 Normal Forms

In order to mechanise and to help optimise decision procedures for classical logic, a range of normal forms and repre-
sentations for formulae are used.

A propositional formula is said to be in Conjunctive Normal Form (CNF) iff it is a conjunction of disjunctions of
literals, where a literal is an atomic formula (a positive literal) or the negation of an atomic formula (a negative literal).
In classical logic, any propositional formula can be converted into a logically equivalent formula in CNF.

Any propositional formula in CNF can be represented using a logically equivalent set based notation called clausal
form. A formula in clausal form is represented as a set of clauses { C, ..., C,} which represent the conjunction C; A
...ACy, where each clause C; is a set of literals {l;, , . . ., li, } representing the disjunction l;; V ... V ;. Clausal form
is used extensively in automated theorem proving since it provides a concise and efficient representation for formulae.

A predicate formula is said to be in Prenex Normal Form (PNF) if all of its quantifiers occur on the outside in front
of the rest of the formula (normally referred to as the matrix). So a formula in PNF is of the form Q21 - ... Qpx, - €
where each @); is either a universal or existential quantifier and e is the matrix. Again, in classical logic, any predicate
formula can be converted into a logical equivalent formula in PNF.

The conversion of a closed predicate formula (that is, a formula with no free variables) into clausal form involves first
converting the formula into PNF. The existential quantifiers are then removed through a procedure known as Skolemi-
sation, where each existentially quantified variable is replaced with either a new constant (a Skolem constant) or a new
function (a Skolem function). Note that this Skolemisation results in a formula which is equi-satisfiable to the original
formula but not necessarily logically equivalent. The matrix is then to be converted into CNF and subsequently rep-
resented using clausal form, after removing the universal quantifiers, since the variables in each clause are implicitly
universally quantified.

As an example the formula: Vz -Vy - (P(z,y) V 3z Q(y, 2z)) in clausal form is: {{P(z, y), Q(y, f(z,y))}}, where
f is a Skolem function of the corresponding universally quantified variables.

3.2 Unification

Unification [Rob65,BA01, Har09] is the process of finding, if it exists, a substitution (a map of variables to terms) for
the variables in two terms that makes the terms identical. For example, applying unification to the terms f(g(z), z) and
f(y, (7)) could result in the substitution ¢ = {y — g¢(z), 2 — h(7)} which gives:

olf(9(z),2)] = flg(x), h(7)) = ol (y, h(7))]

where ¢[a] is the application of a substitution ¢ to a term «, which is the simultaneous replacement of each ¢; € dom ¢
in « with the respective ¢(v;). If such a substitution exists then it is known as a unifier for the given terms.

Not all terms can be unified; for example, there is no unifier for the terms f(z) and g(y) where f and ¢ are different
function symbols. There is also no unifier for f(z) and f(g(x)), since the variable = “occurs” within the larger term
g(z) (cf. the occurs check).

It is possible to have more than one unifier for two terms. However, if two terms can be unified, then they have what
is known as a most general unifier (mgu) which is unique up to the renaming of variables. A unifier ¢ is an mgu iff any
other unifier for the terms can be derived by composing ¢ with an appropriate substitution.

3.3 Resolution

Resolution [Rob65,BA01,Har(09] is a widely used decision procedure for checking the satisfiability of a set of clauses.
It works by finding clauses containing contradictions (i.e. literals of the form [ and — ) and then resolving on these



clauses to derive new clause(s). This is formalised by the resolution rule: given two contradictory clauses ) and Cs,
where {I} C C} and {—1} C (5, aresolvent clause can be derived:

G\ UG\ {=1})

The resolution rule maintains satisfiability: if the two “clashing clauses” are simultaneously satisfiable then so is the
resolvent.

The resolution procedure works by taking a set of clauses and then repeatedly applying the resolution rule to derive
new clauses, each time adding the new clause derived to the set of clauses so far accumulated. If the empty clause O is
derived, then the set of clauses is not satisfiable and if no more new clauses can be derived, then the set of clauses must
be satisfiable.

For predicate logic, the ground resolution procedure is inefficient because the set of ground terms is unbounded. The
general resolution procedure addresses this problem by using unification (see Section 3.2) to generate “clashing clauses”
that can be resolved. Since the clauses can contain variables, the aim is to resolve on the most general forms of clauses.
It is this general resolution procedure that is considered for predicate LPF in Section 5.3 onwards. So for instance if
there exist two literals /; and — Iy that can be unified, where {l;} C C; and {— 1k} C C5, then the two clauses C; and
(5 can be resolved. The resolvent will take the form of:

(@I @[{h}]) U (S[Ca) \ d[{= 12 }])

where ¢ is the mgu of [; and k.

A procedure called factoring is often used alongside the resolution procedure to allow for unifiable literals that occur
in a single clause to be merged. Numerous other heuristic techniques have been developed to improve the efficiency
of the resolution procedure (e.g. to guide the search) but these are not considered in this paper (the interested reader is
referred to [WCR64, Cor96)).

3.4 Refutation Procedure

In classical logic, a formula e is valid iff — e is unsatisfiable. This well-known duality between validity and satisfiability
forms the basis of a decision procedure for validity known as a refutation procedure. The idea is that in order to show
thatT = e is valid,? it suffices to show that

etN...Ne, N—e 2)

is unsatisfiable. Suppose Formula 2 is unsatisfiable; then this means in classical logic that every interpretation making
€1, ..., e, simultaneously true must make — e false and therefore e true. However, if formula 2 is satisfiable then there
must exist at least one interpretation that makes ey, . . ., e, simultaneously true and — e true and therefore e false, so the
logical consequence I' |= e cannot be valid (T |~ e).

The above refutation procedure is normally implemented alongside resolution. Resolution is refutationally complete:
if ' = e, then the resolution procedure will be able to derive the empty clause from the set of clauses I'U{— e}. However,
resolution may fail to terminate when given a satisfiable set of predicate logic clauses as input. Indeed, there is no (full)
decision procedure for validity in the predicate calculus [BAO1, §7.5].

4 Semantics of LPF

This section provides a semantics for the LPF version of the Predicate Calculus. The semantics that follows is a simplified
version of what was originally presented in [JL11]. A concrete syntax for LPF —using Extended Backus-Naur Form— is
presented in Figure 5. It is this concrete syntax that is used in the semantic definition of LPF, although when writing
expressions that include references to functions/predicates such as —, + and = in examples, they are written using the
standard infix notation for readability.

Only a subset of the logical operators is considered since all of the other logical operators can be defined in terms
of this subset — just as in two-valued classical logic. Thus, as in classical logic, conjunctions (universal quantifiers)
can be defined in terms of disjunctions (existential quantifiers) along with appropriate use of negations. Furthermore, p
= ¢ is equivalent to - p V q as in classical logic (and dp is equivalent to p V — p).

3The assumptions I" could, for instance, be a consistent set of axioms that are assumed to be true independent of the theorem e that is to be proved.



EXPR = INTEXPR | BOOLEXPR

ID = (* The set of identifiers, see the explanation below. *);
INTEXPR = ID \ INTEGER \ FUNAPP;

INTEGER = NUMBER | [“—"] NONZERO {NUMBER};
NUMBER =“0" | NONZERO;

NONZERO =17 | <27 | «“3” | “4” | “5” | “6” | «“7”
FUNAPP = ID “(” [INTEXPR {“,” INTEXPR}1“)”;
BOOLEXPR = ID | BOOLEAN | PRED | UNARY | BINARY \ QUANT;
BOOLEAN = “true” | “false”;

PRED = ID “(” [INTEXPR {}” INTEXPR}]*)";

UNARY = “(” UNARYOP BOOLEXPR “)”;

UNARYOP = “=" | “A”;

BINARY = “(” BOOLEXPR BINARYOP BOOLEXPR “)”;

BINARYOP = “V”,

QUANT = “(” QUANTIFIER ID “” BOOLEXPR “)”;

QUANTIFIER = “3”;

“87’ “977,
)

Figure 5: The concrete syntax of the language.

The A logical operator is presented in the following semantics as it is necessary to introduce it for the treatment of a
modified refutation procedure in LPF in Section 5. Recall however that A tends not to be used in normal assertions and
is considered to be an operator on the meta-level.

Context conditions for such a language are outlined in [JL11] and spelt out formally in [Lov10]. The context condi-
tions ensure that the semantics only need be given for expressions which are well-formed.

Four sorts of identifiers can occur in expressions, those for propositions (Prop), for integer variables ( Var), for
functions (F'n) and for predicates (Pred):

Id = Prop | Var | Fn | Pred

Prop, Var, Fn and Pred are assumed to be disjoint sets. One of the functions of the context conditions is to ensure
that identifiers are used appropriately. Furthermore, it is required that all integer variables are explicitly captured by
quantifiers. The set X of all maps from identifiers to their values is defined as the union of four maps:

¥ = Prop = B |
Var = 7|
Fn ™ Punction |
Pred - Predicate

where the denotations of Functions and Predicates are relations:

Function = P(Z* x Z)

Predicate = P(Z* x B)

The map involving Prop can be partial in the sense that a propositional identifier can be absent from the domain of
a specific map (o € X) to allow for the possibility of undefined propositional identifiers. However, the maps involving
Var, Fn and Pred are total. Of course the function and predicate denotations themselves can be partial. All functions
and predicates are considered to be strict, that is, if there is a “gap” in an argument then there is a “gap” in the result of
applying function/predicate to that argument.

The semantic function £ yields a relation and is presented formally in Figure 6. The semantics provides a set theoretic
definition of the values that are denoted by expressions. Here the “gaps” that arise from partial terms and propositional
expressions are modelled by choosing relations as the space of denotations. This is in contrast to the use of partial
functions as is classical in denotational semantics [Sto77]. The use of relations might suggest non-determinacy but
Lemma 1 below establishes that all denotations are in fact single valued. The following notes should be enough to make
the £ semantics readable.

e The only constant values in the language are the set of Boolean values and the set of integer values, thus Value =
B|Z.

e There is no undefined value, instead the treatment of undefinedness is as “gaps” in the denotation.



E : Expr — P(3 x Value)

Ele) &
cases ¢ of
e € Value — {(o,¢) | 0 € £}
e € Prop — {(o,0(e))|c € XA ecdomo}
ee Var —{(o,0(e))|oceXx}
flal) = {(or) |
f € (FnU Pred) A
ocEXA
Vi:inds al - (o, vl(7)) € E(al(i)) A
(vl,7) € a(f)}
-p — {(o,true) | (o, false) € £(p)} U
{(o, false) | (o, true) € £(p)}
Ap — {(o,true) | c € dom&(p)} U
{(o,false) | 0 € (X \ domE(p))}
pVq — {(o,true) | (o, true) € £(p)} U
{(o, true) | (o, true) € ( U
{(o, false) | (o, false) € E(p) A (o, false) € E(q)}
Jz-p — {(o,true) |
ceEX A
truecrng({ot{z— i} |i:2}<&(p))} U
{(o, false) |
oceEX A
rng ({oT{z—i}|i:Z} <&(p)) = {false}}
end

Figure 6: The semantic function £ which defines the semantics of LPF.

e Functions/predicates have a fixed arity in any given ¢ and will always return the same result for any given argu-
ment(s) in a given o.

e The way in which “gaps” can be handled can be seen clearly for disjunctions.

e For simplicity, all quantification is performed over the set of integers and, moreover, for LPF the quantified values
range only over the set of proper (i.e. defined) integer values.

e The semantics for quantifiers ensures that “gaps” are handled by non-denoting propositional expressions being
absent from the domain of £.

e Note that dOIl’l{(O’l7 ’Ul), (0'2, 'UQ)} = {01,02} and rng{(al, 1)1), (0'2, ’UQ)} = {1)1, ’UQ}.

(A paper by the current authors [JLS12] compares some of the main approaches to handling partial terms arising in
logical formulae; it presents a similar semantic model to that presented in Figure 6 for each approach considered which
illustrates where “undefinedness” can be caught/handled in each approach. The semantic models are used to compare
and contrast the different approaches.)

It is useful to record that the definition of any relation £(e) is deterministic (or “functional”):

Lemma 1. For any expression e it follows that (o, v1) € £(e) A (0, 1) € E(e) = v = .

Proof. This follows from the fact that there is exactly one rule for each type of expression construct. Even though the
case for the disjunction operator is defined by the use of two set unions, the domains of the relations only overlap in the
case of true V true where the result is the same regardless. ]

To provide intuition for Property 1 the denotations of the (total) subtraction operator, the partial division operator
and the (strict) equality relational operator can be defined as follows (where [op](a, b) is defined to return the standard
result of applying the operator op on the given operands a and b):



o(—) ={((a,b),[~](a, b)) | a, b: Z}
o(+) = {((a, b), [+1(a, b)) | @, b:Z A b £ 0)
) {((av b),[[:]](a, b)) | a,b:Z}

It is the division operator that has been chosen to introduce partial terms in the illustrative examples in this paper.
However, it is important to realise that the hypotheses in the proof in Figure 4 do not actually constrain the denotation of
division (nor that of subtraction or equality) to fit exactly these denotations; they have only been presented for illustrative
purposes.

Making use of the £ semantic function, the notions of validity, satisfiability, unsatisfiability, logical consequence etc.
are now defined more formally for LPF.

o(=

4.1 Validity and Satisfiability

Where e is a Boolean formula, validity, satisfiability and unsatisfiability for LPF can be defined as:

valid(e) iff Vo: 3 - (o, true) € E(e)
satisfiable(e) iff 3o: X - (o, true) € E(e)
unsatisfiable(e) iff = 3o: X - (o, true) € £(e)

(These quantifiers are safe in the sense that there is no “undefinedness” to complicate their semantics.)

A satisfiable interpretation for e is an interpretation o such that (o, true) € £. A valid formula is also satisfiable; a
formula is unsatisfiable iff it is not satisfiable; and a formula e is not valid (j~ e) iff for some o € X it is the case that
(o,true) ¢ E(e).

Since LPF can be thought of as passing the “gaps” from terms into the space of the logic, it is vital that the above
formulation is used for unsatisfiability in LPF. Were, for example, unsatisfiable(e) defined as Vo: 3 - (o, false) € £(e),
the set of unsatisfiable expressions would be smaller since an expression e not evaluating to true is not, in LPF, the same
as it evaluating to false. In classical logic, the only possible outcomes are true and false but in LPF it is necessary to take
a position on the “gaps”, that is, o ¢ dom & (e).

The notion of logical equivalence can be defined in terms of the £ semantics. Two formulae (e; and es) are logically
equivalent if they have the same truth value in every model. Thus e; and ey are logically equivalent iff for all o € X it
is the case that: if (o, v) € E(ey) then (0, v) € E(eq); and if (0, v) € E(ez) then (o, v) € E(e1). In the £ semantics it
thus follows that e; and e are logically equivalent iff £(e;) = £(ez).

Furthermore, two formulae (e; and ey) are equi-satisfiable when e; is satisfiable iff ey is satisfiable, that is, there is
amodel for e, (01, true) € £(ey), iff there is a model for ez, (02, true) € E(es).

As a simple example of reasoning with the £ semantics, consider the following lemma which shows that double
negation can be eliminated in LPF:

Lemma 2. Any formula — — p is logically equivalent to p.

Proof. By the definition of £, £(— — p) expands to

{(o, true) | (o,false) € £(—p)} U{(o,false) | (o, true) € £(—p)}. By the definition of £ this further expands to
{(o,true) | (o,true) € £(p)} U {(o,false) | (o, false) € £(p)}. This immediately reduces to £(p) as required. O

4.2 Judgements

LetT' = {e1,..., e, } be a set of Boolean expressions and e a single Boolean formula. Then I' |= e records that e is
a logical consequence of '.* In terms of the £ semantics presented, this can be formalised through the following set
definitions. Consider all of the interpretations that satisfy each of the hypotheses:

S={o|o:ZA(o,true) € E(e1) N+ A (o, true) € E(ey,)}
then e should be satisfied in all of those interpretations:

S C{o|o:XA(o,true) € E(e)}

4While in classical logic this is equivalent to the assertion e; A ... A e, = e, this does not hold in LPF, cf. = -1.



When I is empty = e is written and every o must make e true since S = X.

In order to avoid writing unnecessarily long set comprehensions in Section 5, a more concise notation is adopted. For
any Boolean expression e € Ezpr, e’ represents (o, true) € £(e) and e represents (o, false) € £(e). Additionally,
7 represents ef A ... A eZ. It can then be defined that e* = {0 | 0: X A e“} and that T = {5 | 0: X AT},

Thus, a Boolean formula e is:

e valid iff e* = ¥;
e satisfiable iff e # {}, (i.e. e evaluates to true in at least one ); and

e unsatisfiable iff e* = {}, (i.e. e does not evaluate to true in any o).

Logical consequence is now I'™ C e*.

5 Decision Procedures

Section 5.1 provides an indication of the issues involved in adapting the techniques described in Section 3 to cope
with LPF; and Sections 5.2-5.4 examine formally each of the techniques introduced in Section 3 detailing any changes
required —from the classical logic case— to cover LPF. All proofs in this section are with respect to the £ semantic
function definition presented in Section 4.

5.1 Problems Created by Gaps

The succeeding sub-sections show that most of the procedures for classical logic work (sometimes with minor modifica-
tions) for LPF. However, refutation is more problematic and is treated in Section 5.4.

Because of the position that is taken on “gaps” in LPF, the law of the excluded middle does not hold. There is,
however, an additional law that holds in LPF, namely the law of the excluded fourth: p* U (= p)* U (- Ap)* = X.

Consider first the obvious approach for propositional logic of writing out truth tables — the number of rows required
in a truth table increases for LPF. In terms of the £ semantics every assignment of values is a ¢ € 3. For propositional
LPF, the truth table method would require checking 3™ instances of o to check a formula for validity, as opposed to just
2" for classical logic. It might not be immediately obvious why it is necessary to check the result when propositional
identifiers fail to denote but consider an example like = Ap - = A-p.

It is immediately clear that there is a problem with refutation procedures in LPF. As an illustrative example consider
the logical consequent = p V — p: after negating the goal formula and converting it into clausal form by applying one of
the de Morgan’s Laws and eliminating a resulting double negation, the set of clauses is {{—p}, {p}}. Performing reso-
lution on this set would immediately result in the empty clause since the two clauses “clash” (they are both unit-clauses
and the only literals “clash™). Thus using a refutation procedure without modification would lead to the conclusion that
= p V - p is valid which is not the case in LPF, since for instance, p could be an undefined propositional identifier.

5.2 Normal Forms

This section outlines how to convert LPF formulae into clausal form. Propositional logic is considered first, followed by
predicate logic. Occurrences of A in LPF require additional conversions to be able to convert a formula into clausal form.
However, as mentioned earlier, A is not usually written in normal assertions, so the use of A is left until Section 5.4
when it is necessary to introduce it (in a restricted form) for the treatment of refutation procedures in LPF.

5.2.1 Propositional Logic

The process of converting a propositional formula into CNF is as follows:

e climinate any propositional operators other than conjunction, disjunction and negation by applying the syntactic
definitions presented in Section 4. For example, replace any p = ¢ with—p V ¢;

e use de Morgan’s Laws to force negations inwards, (cf. Lemma 3);
e climinate all double negations, (cf. Lemma 2); and

o use the distributive laws to remove conjunctions within disjunctions.
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A proof that illustrates the truth of one form of de Morgan’s laws in LPF follows.

Lemma 3. Any formula — (p V ¢) is logically equivalent to (= p) A (= q).
Proof. By the definition of £, £(— (p V ¢)) expands to
{(o,true) | (o,false) € E(p V q)} U { (o, false) | (o,true) € E(p V q)}.
By the definition of £ this further expands to
{(o,true) | (o, false) € £(p) A (o, false) € E(q)} U
{(o,false) | (o, true) € E(p)} U {(o, false) | (o,true) € £(q)}.
By the definition of £, £((— p) A (— ¢)) expands to
{(o,true) | (o,true) € E(—p) A (o, true) € E(—q)} U
{(o,false) | (o, false) € E(—p)} U {(o,false) | (o,false) € £(—q)}.
By the definition of £ this further expands to
{(o, true) | (o, false) € £(p) A (o, false) € E(q)} U
{(o,false) | (o,true) € E(p)} U {(o,false) | (o, true) € E(q)}.

Thus E(=(p V q)) = E((—p) A (- q)) as required. a

All of the equivalences used when converting a formula into CNF hold in LPF so the conversion to CNF is unchanged
providing no use of A is present. Additionally, every propositional formula in LPF can be converted into an equivalent
formula that is in CNF. In the sequel, Ezpr \ A is used to denote the set of expressions constructed without the use of A.

Theorem 4. Every LPF propositional formula e € FExzpr \ A, can be converted into an equivalent formula that is
in CNE.

Proof. This theorem follows immediately from the fact that all of the required conversions hold in LPF (see Lemmas 2
and 3 — other laws whose proofs are not presented in this paper are similar). O

The conversion of a CNF formula into clausal form relies on idempotence and the commutativity of A and V — these
properties hold in LPF and the proof of one of these properties is presented here.

Lemma 5. Any formula p V p is logically equivalent to p.
Proof. By the definition of £, £(p V p) expands to
{(o,true) | (o,true) € E(p)} U {(o,true) | (o,true) € E(p)} U
{(o,false) | (o, false) € E(p) A (o, false) € E(p)}.
By the definition of a set, the first two sets from the set union definition presented above are equivalent (AU A = A)
and the third set additionally can be simplified. The resulting set union immediately reduces to £(p) as required. a

Theorem 6. Every LPF propositional formula e € Ezpr \ A, can be converted into an equivalent clausal form.
Proof. This immediately follows from Theorem 4, Lemma 5, the other idempotent property (E(p A p) = E(p)) as well
as the fact that the commutativity of V and A all hold in LPF which all follow by the definition of £. a

5.2.2 Predicate Logic

In order to derive the clausal form for expressions in predicate LPF, it is necessary to show that dropping quantifiers is
valid. The process of converting a formula into PNF is as follows:

o standardise the variables apart, i.e. rename variables, where necessary, so that no two quantifiers bind the same
variable name;

e push any negation operators inwards so that they only apply to atomic formulas, e.g. through the use of de
Morgan’s Laws and through conversions such as =3z - p to Vz - — p; and

e move any quantifiers out of the matrix, e.g. through conversions such as p V 3z - g to 3z - (p V ¢).

The above process remains valid in LPF; for example, a proof of the final property above is given.

Lemma 7. Let p be a formula that contains no free occurrences of the variable z. Then any formula p V 3z - ¢
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is logically equivalent to 3z - (p V q).
Proof. This proof assumes that all variables are standardised apart. Also remember that, in the £ semantics all quantifi-
cation is performed only over the set of integers (Z).

By the definition of £, £(p V 3z - q) expands to
{(o,true) | (o,true) € £(p)} U
{(o,true) | (o,true) € E(Iz - q)} U
{(o,false) | (o, false) € E(p) A (o, false) € E(Fz - q)}.
By the definition of £ this further expands to
{(o,true) | (o,true) € E(p)} U
{(o,true) |c e X Atrue erng ({ct{z — i} | i:Z} < E(q))} U
{(o,false) | o € 3 A (0, false) € E(p) A
rmg{of{z— i} |i:Z} <&(q) = {false}}.

By the definition of £, £(3z - (p V ¢)) expands to
{(o,true) |c e X Atruecrmng({oct{z— i} |i:Z} <&V q))} U
{(o,false) |c e X Amg{oct{z— i} |i:Z} <E(p V q) = {false}}.
By the definition of £ this further expands to
{(o,true) |c e EAtrue erng ({o t{z — i} | i:Z} <&(p))} U
{(o,true) |c e EAtrueerng ({oct{z — i} | i:Z} <&(q))} U
{(o,false) | c € EArng{o{{z — i} |i:Z} < &(p) = {false} A
rng{ot{z— i} |i:Z} <&(q) = {false}}.

Since the variables have first been standardised apart and by the assumption that z is not free in p, if p denotes true
or false when p contains no reference to z, then quantifying over x causes no change in the result. Thus the two sets
formed are equivalent as required. O

Every first-order LPF formula can be converted into an equivalent formula that is in PNF.

Theorem 8. Every LPF formula e € Fzpr \ A, can be converted into an equivalent formula that is in PNF.

Proof. This follows since the conversions required for converting a classical logic formula into PNF all hold in LPF. The
proofs of these conversions follow in a similar way to the proof of one of the conversions presented in Lemma 7 and the
fact that here the renaming of variables has no effect on logical equivalence. O

Skolemisation also carries over to LPF and furthermore, because satisfiability is being sought there is no question
of any of the Skolem constants (0-ary functions)/functions introduced being partial; all Skolem functions introduced are
total.

Theorem 9. Let S’ be the formula formed by Skolemising the formula S, where it is assumed that every Skolem
function introduced is a distinct function symbol not present in S. It must then follow that S and S’ are equi-satisfiable.
Proof. Recall that quantification is only defined over the set of integer values (Z). If S contains no existential quantifier
then no change results from performing Skolemisation and the result follows immediately. In the case that S contains at
least the one existential quantifier then there are two cases to consider:

1. If S is satisfiable then S’ must be satisfiable: Suppose Vz - Jy - P(z,y)°, where ¢ € X, then show that an
interpretation o’ € X exists such that Vz - P(z, f(z))” . The fact that ¢ is a model here is equivalent to saying
that for every possible value for z there exists a value for y that causes P(z, y) to evaluate to true. A function
f(x) = y can be chosen and the interpretation ¢’ can then be defined as o’ = o 1 {f — (}, where (3 is a Function
object from each possible value for z to a corresponding result y. There may be many witness values for the
existential quantifier, but for a function it requires restricting to the one such witness value (i.e. one specific value
for y for each value of z), cf. the Axiom of Choice [Har09, §3.6]. It then follows that if .S is satisfiable (with
the existential quantifier) then S’ is satisfiable since the f(al) case of the £ semantic function can return a value
that would otherwise have been produced by the existential quantifier case of the £ semantic function (a witness
value), i.e. f can be set up so that it produces a satisfying value given the required values of any argument(s).

2. If S’ is satisfiable then S must be satisfiable: In the example from case 1 if it is the case that Vz - P(z, f(z))”
then ¢’ must have an interpretation for the Skolem function f. Therefore o is also a model for Vz - 3y - P(z, y)

12



by taking y = f () and so on. a

As usual the matrix can now be put into CNF to arrive at the clausal form representation. The universal quantifiers
can be omitted from the clausal form representation, as in LPF the clauses are still considered to be universally quantified
sentences.

Theorem 10. Every closed LPF formula e € Ezpr \ A, can be converted into a formula that is in clausal form,

such that the original formula and the formula in clausal form are equi-satisfiable.

Proof. This is an immediate consequence of Theorems 8 and 9 and, for the conversion of the matrix, Theorems 4 and 6.
O

In order to try to reduce the size of a resulting clausal form formula, the absorption properties can be used, whereby
both p A(p V q) and p V (p A ¢) can be simplified to p. Notice that the following lemma covers more than idempotence.

Lemma 11. Any formula p A (p V ¢) and any formula p V (p A ¢) are both logically equivalent to p.
Proof. First consider the case of p A (p V ¢) being logically equivalent to p.

By the definition of £, £(p A (p V ¢)) expands to

{(o,true) | (o,true) € £(p) A (o,true) € E(p V ¢)} U
{(o,false) | (o, false) € E(p)} U
{(o,false) | (o, false) € E(p V q)}.

By the definition of £ this further expands to

{(o,true) | (o,true) € £(p) A (o, true) € E(p)} U
{(o,true) | (o, true) € £(p) A (o, true) € E(q)} U
{(o,false) | (o, false) € E(p)} U
{(o,false) | (o,false) € E(p) A (o, false) € E(q)}.

The second set from the set union is a subset of the first set; similarly, the fourth set from the set union is a subset
of the third set. The first set (after the trivial simplification) and the third set immediately match the expansion of £(p),
which is: {(c, true) | (o, true) € £(p)} U {(o, false) | (o, false) € £(p)} and this concludes the first case. The proof
of the p V (p A ¢) being logically equivalent to p case is similar to the proof of the case presented above. |

5.3 Resolution

The proofs in this section assume no use of A; the addition of A is considered in Section 5.4.
The key property underlying resolution is the cancellation of contradictory information (literals) from clauses. In
LPF (as in classical logic) an assertion p and its negation — p cannot both be true in an interpretation.

Lemma 12. The set of clauses {{p}, {—~p}} cannot be true in an interpretation, i.e. there exists no ¢ € ¥ such
that (p A = p)“.
Proof. By the definition of £, £(p A — p) expands to
{(o,true) | (o,true) € E(p) A (o,true) € E(-p)} U. ...

By the definition of £ this further expands to
{(o,true) | (o,true) € £(p) A (o,false) € E(p)} U .. ..

By Lemma 1 it follows that p cannot be both true and false in any o and therefore the set above is equivalent to {},
ie.p” N (-p)” ={} O

Recall that, in classical logic, an inferred resolvent holds iff the two clauses resolved on are simultaneously satisfiable
— this also applies to the LPF case. First consider the proof for the propositional case in LPF.

Theorem 13. Given two propositional clauses C; and C5 which are simultaneously satisfiable in a o, where {{} C C}
and {—1} C (5 and [ is a literal, then the resolvent C5 = (Cy \ {l}) U (C2 \ {—1}), is satisfiable in the same o.
Proof. By assumption, C{ and Cy hold for some o € X. For an arbitrary satisfiable o there are three cases to consider:

1. 17: By the definition of £, it follows that both C{ and — [°. Since by assumption it is known that C there must

exist another disjunct (literal, =1 # ') {I'} C C; that satisfies Cs, i.e. (Ca \ {—=1})?. Thus Cj is satisfied (C5)
by the definition of & since {I'} C C5 and [’
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2. [°: This follows by a similar argument to case 1, as there must exist another disjunct (I # ') {I’} C C; that
satisfies Cp, i.e. (C1 \ {l})? and CY holds because = [?. Thus Cj is satisfied (Cy) by the definition of £ since
{I'}C Csand .

3. 0 ¢ dom&(l): By the definition of &, it also follows that o ¢ dom £(— ). Thus another disjunct ({I'} C Cy)
must satisfy Ci, i.e. (C1\{l})? and another disjunct ({I"”} C C5) must satisfy Cs, i.e. (C2\{—{})?, where [ # I’
and -1 # 1”. Thus Cj is satisfied (CY) by the definition of £ since {I’, 1"} C Cs and I’” and I"”.

Thus, in all cases for an arbitrary o where both Cf and C3 hold, it is the case that C5. The proof of the converse
follows by a similar argument. m|

Now the predicate case is considered for LPF which, as mentioned earlier, uses unification.

Corollary 14. Given two clauses C; and C which are simultaneously satisfiable in a o, where {l;} C () and
{=kL} C C, and both }; and — I, are literals which can be unified by an mgu ¢, then a resolvent C5 = (¢[Cy] \
O[{l}]) U (9[Ca] \ #[{— &}]), is satisfiable in the same o.

Proof. By assumption, CY and CY hold for some o € X. Since ¢ can make the two literals /; and / identical (I'),
ie. I = ¢[ly] = ¢[k], it cannot be the case that both I’ and — !’ are true in any o € 3 by Lemma 12. The result then
follows in a similar way to Theorem 13, since satisfiability is being sought. a

Factoring also carries over to LPF.

(When using the resolution decision procedure for satisfiability in a refutation procedure, the use of unification needs
restricting since validity is now being sought. A refutation procedure for LPF is considered in Section 5.4.)

If a resolvent is ever the empty clause then the set of clauses must have been unsatisfiable, i.e. there must be a con-
tradiction. However, if the empty clause cannot be inferred and no more new resolvents can be inferred, then the set of
clauses must have been satisfiable.

Theorem 15. If the empty clause is ever inferred by resolution on the set of clauses S, then S must be unsatisfi-
able.

Proof. The argument is by induction on the number of resolution steps. The fewest number of clauses that can be used
to infer the empty clause is two where the only literal in each clause is identical (same propositional variable or they
unify), only the literal is positive in the one clause and negative in the other. By Lemma 12, it follows that both of these
clauses cannot be true —the set of clauses is unsatisfiable— and thus the empty clause is inferred.

If after £ + 1 resolution steps S is unsatisfiable, then after & resolution steps .S (without the £ + 1 resolvent) must
have been unsatisfiable. After each resolution step only contradictory literals are removed since they cannot both be true
by Lemma 12. It is also known as a corollary of Theorem 13 and of Corollary 14 that if S is satisfiable, then the set of
clauses S’ formed after performing the one resolution step on S must be satisfiable. Thus if the empty clause is ever
inferred, it must follow that the original set of clauses must have been unsatisfiable. O

5.4 Refutation Procedure

The application of refutation procedures in LPF is complicated by the presence of “gaps” in denotations which affect the
duality between validity and satisfiability. In LPF, if — e is satisfiable then e cannot be valid, but if — e is unsatisfiable
then it is not possible to infer that e is valid. The following results clarify the relationship between satisfiability and
validity in LPF.

Lemma 16. In LPF, if e is valid then — e is unsatisfiable.

Proof. By the definition of validity, it is known that e is valid in LPF iff ¢* = ¥ and by the definition of unsatisfiability,
that e is unsatisfiable iff e* = { }. By assumption it is the case that e for each o € X. By the definition of £, if e then
— e and since the truth value false is an unsatisfiable value the result is concluded as required. O

Lemma 17. In LPF, if — e is unsatisfiable then e may not be valid.

Proof. This result is due to the presence of “gaps” in LPF and can be shown using a simple counter example. Consider
the Boolean formula p V — p and its negation — (p V — p) which is unsatisfiable, i.e. = (p V —p)¥ = {}. However,
p V —pis not valid in LPF since any interpretation o € ¥ which has a “gap” for p, that is o ¢ dom &(p), results in a
“gap” for p V —p (0 ¢ domE(p V —p))andso (p V - p)= C X. O
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54.1 Logical Consequence

It is therefore interesting to consider how the results of applying a refutation procedure to a logical consequence state-
ment can be interpreted in LPF (assuming that a well-defined decision procedure for satisfiability is available for LPF).
Consider the logical consequence I' = e in LPF, where " = {ey, ..., e, }:

1. Suppose e; A ... A e, A~ e is shown to be satisfiable. Then there must exist at least one interpretation that makes
all the expressions e1,. .., €,, 7 e true and so I' = e cannot hold.

2. Suppose e; A ... A e, A 7 e is shown to be unsatisfiable. Then there does not exist an interpretation that makes
all the expressions ey, ..., e,, e true. Further information is now needed to be able to use this fact to make a
judgement about the logical consequence. If it can be shown that e is defined in every interpretation that makes I"
true, that is, T' |= Ae, then it can be inferred that T' = e holds.

Resolution is the satisfiability decision procedure that is used in a refutation procedure in this paper. While a refuta-
tion procedure for classical logic need only consider refuting the set of clauses I' U {— e}, in LPF the situation is more
involved as the case that e denotes a “gap” also needs refuting. In other words, if I' U {— e} is unsatisfiable then it is
necessary to ensure that I' = Ae holds in order to be able to conclude that I' |= e holds. An appropriately extended
refutation procedure can be used to check the logical consequent I' = Ae (recall the law of the excluded fourth). Notice
that no circularity is introduced because Ae is guaranteed to always return either true or false. The use of the meta-level
operator A is banned from any formula in I" and from the formula e; A is only to be used when it is introduced around
e for a refutation procedure to refute the “gap” case. The following results formalise the above discussion.

Theorem 18. If I' U {— e} is satisfiable then I" [~ e.
Proof. By assumption e; A ... A e, A — e is satisfiable and so it must be the case that (e; A ... A e, A = e)?, for some

interpretation o € 3. Therefore it follows by the definition of £ that ef, .. ., eJ and — e and thus €. Thus, there is an
interpretation o € I'> that makes the expression e evaluate to false and therefore I'> ¢ e*. By the definition of logical
consequence it follows that T" [~ e. ]

Lemma 19. If I' U {— e} is unsatisfiable then I' |= e may not hold.

Proof. Consider a counter example that illustrates that if ' U {— e} is unsatisfiable then I" |= e does not hold. Given the
logical consequence = p V — p, from which —by Lemma 17— it follows that (p V = p)* C X; butif I' = {} then by the
definition of logical consequence ' = X. O

Theorem 20. If I' U {— e} is unsatisfiable and I' |= Ae, thenI" |= e.

Proof. By assumption I' U {— e} is unsatisfiable and so it follows that (I' U {= e})* = {}. This means that for any
interpretation ¢ € I'> we have either: (1) = ¢7; or (2) o & dom (- ¢). Now, by the assumption I' |= Ace, it follows
that T* C (Ae)*. Therefore, (Ae)? holds for any interpretation ¢ € T'™ and so by the definition of £ it follows that
o € dom E(— ¢) holds. Thus only possibility (1) from above pertains for any o € I'* and so by the definition of & it
follows that €. Therefore, ' C e* and so by the definition of logical consequence it follows that I' = e. a

It is clear from Lemma 19 that as well as refuting the false case as in two-valued classical logic, in LPF the undefined
(“gap”) case also needs refuting. If unsatisfiable is returned by applying the resolution procedure for satisfiability on
I’ U {— e}, then the undefined “gap” case needs refuting. In order to show that I' = Ae holds, one approach is to apply
resolution on the set of clauses I' U {— Ae}. If unsatisfiable is returned from this proof when refuting that e is undefined
then validity (I' = e) can be concluded according to Theorem 20. If satisfiable is returned from this proof when refuting
that e is undefined, then I" = Ae and thus T’ [~ e must be concluded.

The following subsections consider extending using resolution in a refutation procedure to take into account the
additional case needed for LPF. The introduction of the necessary A logical operator into the clausal form representation
of Section 5.2 is considered first.

5.4.2 Introducing A into the Clausal Form

The use of A can lead to larger clausal form formulae, but fortunately the use of A is restricted to being introduced
around the goal of a logical consequent statement for a refutation procedure. Any A that does occur needs pushing
inwards so that eventually any A in a formula that is in CNF/clausal form will only surround an atom. Thus in LPF,
what is meant by a literal is extended to also include Al and — Al as literals, where [ is an literal. Pushing a A operator
inwards is first discussed for CNF and then for PNF.
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CNF: Each A operator used in an LPF formula must be pushed inwards so that a A surrounds only atoms. Notice
that it is tempting to define A(p V ¢) as p V ¢ V (= p A — ¢) but this formula is not two-valued and A is a two-valued
operator, and logical equivalence is being sought. So it is necessary to write:

e A(p V q)islogically equivalent to: = ((=p A= Agq) V (mApA—4q)V (mAp A—Ag)), (i.e. the negation of the
three cases that make A(p V ¢) denote false), which converted into CNFis: (p V Ag) A (Ap V q) A(Ap V Ag);
and

e A(p A q) is logically equivalent to the CNF formula: (—p V Ag) A (Ap V —q) A (Ap V Ag).

Given a formula such as = A(p V ¢) the A should be pushed inwards first and then the negation can be pushed
inwards. For instance, the formula = A(p V ¢) is first converted to: = ((p V Aq) A (Ap V ¢) A (Ap V Ag)), which is
then converted into the CNF formula: (—p V = Ap) A (- gV = Agq) A (= Ap V = Ag).

It is also the case that A— [ can be simplified to Al and this case is handled by the following lemma.

Lemma 21. Any formula A—/ is logically equivalent to Al.
Proof. By the definition of £, £(A—1) expands to
{(o,true) | c € dom&(—1)} U {(o,false) | o € (X \domE(—1))}.
By the definition of £ this further expands to
{(o,true) | c € dom&(1)} U {(o, false) | o € (X \ dom £(1))}, which is equivalent according to the definition of £ to
E(Al) as required. a

Also note that p V —p V = Ap is equivalent to the truth value true, (cf. the law of the excluded fourth), and the
formula A(Ap) is also equivalent to the truth value true. All of these conversions provided for A maintain logical
equivalence.

PNF: Additionally, when considering the predicate LPF, the process outlined in Section 5.2 for converting a classical
logic formula into PNF needs extending, since any A needs pushing into the matrix, before the CNF conversions can be
used as normal on the matrix. Given Ae, where e is a quantified formula, then e should first be put into PNF and then
the A can be pushed inwards using the rules that follow (then any negation that is to the left of the A can be dealt with).
The following conversions are required:

o A(Vi-p(i))islogically equivalent to: — (3i-— Ap(i) AVi-(p(i) V = Ap(i))), (i.e. the negation of the cases that
make A(Vi - p(7)) false, which is when p (%) is always undefined, or when p(4) is true at least once, undefined at
least once and is always true or undefined), which gives rise to: Vi - Ap (i) V Ji - (= p(i) A Ap(i)); and

e A(3i-p(i))is logically equivalent to: = (3i - = Ap(i) AVi- (= p(i) V = Ap(7))).

Again, note that A(V/3i-p(i)) is two-valued, and thus the formulations above are needed since logical equivalence is
being sought. The formula A(Vi - p(4)) is represented in clausal form as: {{—p(c), Ap(z)}, {Ap(c), Ap(x)}}, while
the formula = A(Vi - p(4)) is represented in clausal form as: {{p(z),~Ap(z)},{—Ap(c)}}, where ¢ is a Skolem
constant.

An optimisation to this treatment is considered next since A is only introduced around the goal formula of a logical
consequent statement in a particular circumstance.

Optimisation: So far, a A surrounding a quantifier is replaced with two quantifiers whereby logical equivalence is
maintained and any occurrence of the A operator is now inside the quantifiers. However, this approach leads to an
expensive clausal form. The objective when considering only universal quantifiers is to reduce the resulting clausal form
size, (what follows does not apply to existential quantifiers).

When trying to show I' |= e, the aim is to show that e is true and defined. If unsatisfiable is returned from the
resolution proof on the set of clauses I U {— e}, then it can only be the case that e is either true if defined or undefined.
A resolution proof on the set of clauses I' U {— Ae} would then follow and in this proof it is known that e cannot be
false, otherwise satisfiable would have been returned from the first proof. This second proof is to show definedness by
refuting that it is undefined and recall that A can only return true or false.

Consider that the goal e is Vi - p(i). While A(Vi - p(7)) is not logically equivalent to Vi - Ap(i) —consider the
case that p(7) is false at least once and undefined at least once— they are logically equivalent in the restricted case when
Vi - p(i) is not false. The clausal form of = A(Vi - p(i)) would now be {{=Ap(c)}}.
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5.4.3 Refuting the Possibility of a “Gap”

Following on from the discussion in Section 5.4.1 and from Theorem 20, if unsatisfiable is returned from applying res-
olution on the set of clauses I' U {— e}, then I" = Ae needs to be shown to hold in order to conclude I' |= e. To show
that T' |= Ae holds, the approach taken here is to refute the undefined (“gap”) case by performing resolution on the
set of clauses I' U {— Ae}. This leads to extra “resolvent” possibilities that arise in LPF, which include allowing for
resolving on p and = Ap, and on — p and = Ap. The following result shows that the A “resolvent” possibilities are sound.

Lemma 22. The literal pairs p and = Ap, and —p and — Ap are contradictory and their simultaneous satisfaction
is impossible.
Proof. The goal is to show that p* N (= Ap)* = {} and (= p)* N (- Ap)* = {}. Consider an arbitrary o € 3:

e if o € dom &(p) holds (then also o € dom £(— p) holds) then by the definition of £ it follows that (Ap)? (and
(A—p)? which is equivalent to (Ap)? by Lemma 21); and

e if 0 ¢ dom &(p) holds then by the definition of £ it follows that (Ap)? and thus (= Ap)°.

Thus these literal pairs are contradictory and therefore no o € X can simultaneously satisfy both p and = Ap nor
both - p and — Ap. O

Lemma 22 establishes that in LPF further contradictory literals exist that can be used by the resolution rule. The use
of these “extra” resolvent possibilities provides a way of refuting “undefinedness” by applying resolution on the set of
clauses T'U {— Ae}.

Recall that in this paper only strict functions as well as strict predicates are being considered. Surrounding the goal
with A, however, is not enough to show definedness as can be illustrated by the following simple example:

Ve-z=2EFEb5+0=5=+0

Performing standard resolution and unification (as part of a refutation procedure) on the clausal form of this logical
consequent leads to the empty clause. Surrounding the goal with A and performing a new resolution proof (again as part
of a refutation procedure) to refute the presence of a “gap” this time, again leads to the empty clause by using an “extra”
resolvent possibility. But clearly this formula is not valid in LPF: consider the counter example of a weak equality
predicate and 5 = 0 denoting a “gap”’; a defined term = has been unified with a term 5 < 0 that can be undefined. (The
term = must be defined because it is a quantified variable and quantification can only be over a set of proper values in
LPF.) Therefore the application of unification within a resolution step in LPF (when considering validity — a refutation
procedure) due to the presence of “gaps” needs guarding in certain circumstances.

The approach taken is for constraint(s) to be included as literal(s) in an inferred resolvent when using resolution
as part of a refutation procedure. These constraints effectively take the form of further well-definedness conditions. A
resolvent inferred by resolving on the clauses C; and Cy where {1} C C; and {—} C > is defined to be:

(@G e[{i}]) U (o[ Co] \ p[{—~R}]) U0

where [; and l; unify with an mgu ¢ and where 6 is a set of unification constraint(s), where each ¢/; € 6 is a literal. This
form of the resolvent is needed whenever a clause from the right (goal) side (containing the potentially undefined term
— a function) is resolved (and thus unified) with a clause from the left (assumption) side of the logical consequent. Any
resolvent that is inferred when at least one of the two clauses resolved on is a goal clause is deemed to be a goal clause
for the purposes of introducing unification constraint(s).

The unification constraints 6 can be built up by considering an mgu ¢, where given ¢ = {x; — a1,..., &, — a,},
then 0 = {— (ay € Z),...,~ (an, € Z)}, where each ¢; € 0 is aliteral (a disjunct). For instance, if ¢ = {z — f(...)},
where € Var and f € Fn,then 0 = {— (f(...) € Z)}.

The operator € is defined to be a BOOLEXPR, with the concrete syntax of: DEF = “(” INTEXPR “€” Z “)”;. In £,
a € Zis defined as: o € Z — {(o,true) | 0 € domE(a)}. (Note that the € operator is monotone, and that « € Z is
true if the integer operand « is defined, otherwise it is undefined.) A literal of the form « € Z is to be included only as
a positive literal on the assumption side I' of a logical consequent statement, to state that a function « is defined. This
treatment of adding unification constraints into the resolvent for every maplet in ¢ can, however, be improved upon.

First consider that the function identifiers Fn can be seen as a shorthand for Fn = SkolemFun | Fun, where the
identifier names in SkolemFun and Fun are disjoint. This split is illustrated explicitly for the purposes of including the
unification constraints because a Skolem function can be shown to be total, but a Function mapped to by any Fun can
be a partial function.
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1 |VieZ-i=0 = = ((i—1)=0) assumption

2 | ViiZ--(1=0) = i+i=1 assumption

3 | VieZ-(i+~i=1)V((i—-1)+(i—-1)=1) | goal

4 | {-(=0),-(:i-1)=0)} clausal-form(1)
5 | {i=0,i+i=1} clausal - form(2)
6 | {-(c+ec=1)}

7 o c—1) = (e—1) = 1)} tdeny(clausal-form(3))
8 | {c=0} resolve(5, 6)

9 | {(¢c—1)=0} resolve(5,7)

10| {=((c—=1)=0)} resolve(4, 8)

11| O resolve(9, 10)

Figure 7: An illustrative proof of Property 1 using resolution as part of a refutation procedure.

Therefore in certain circumstances the use of unification requires no additional constraints to be included into a
resolvent, for instance, when unifying = with y when € Var and y € Var and when unifying « with f(...) when
z € Var and f € SkolemFun. However, when unifying = with f(...) when z € Var and f € Fun then a constraint
must be introduced into any inferred resolvent arising from a resolution step. (Notice that a predicate in the semantic
model considered in this paper cannot be unified with any variable, as only integer and propositional variables are being
considered.)

The reason behind including the unification constraints in a resolvent is that in £, for any f € Fun, it can only be
known that f(...) € Z, . If this term is unified with any z € Var, when it is known that all integer variables (Var) are
defined in &, then unification within a resolution step that allows for something that is always defined to be unified and
thus resolved with something that can be undefined from the goal side violates a condition that needs to hold in order
that the result indicated in Theorem 20 follows.

As can be seen in an illustrative example in Section 5.4.4 a unification constraint can be removed (only if it is known
to be defined) by a further resolution step.

5.4.4 Returning to the Illustrative Examples

Consider again the earlier counter example of = p V — p where resolution as part of a refutation procedure infers the
empty clause (unsatisfiability). Therefore in LPF = A(p V —p) needs to be shown to hold to be able to infer that
= p V —p holds. In the modified LPF clausal form the negation = A(p V —p) is represented as {{— Ap}} after
simplification, which cannot be refuted and therefore this example is satisfiable and the result [~ p V — p is inferred.

Returning to the example presented in Property 1, an example proof of this property using a refutation procedure is
presented in Figure 7, where c in this proof is a Skolem constant. This proof makes use of resolution, where unification
is used in a resolution step as needed. Figure 8 presents the same proof but also establishes the definedness of the goal.
(Note that an additional assumption is required for the latter proof, but this assumption states that only interpretations
where subtraction is defined as a total function are to be considered.)

As can be seen from the two proofs the second proof (with A) has a longer clausal form. Additionally, the number
of resolvents inferred en route to the empty clause increases and the size of the search space as expected also increases.
An optimisation is considered next.

5.5 Optimisation

This optimisation considers reducing the number of cases in which A needs to be introduced around the goal. This
optimisation does not concern reducing the introduction of any unification constraints, which still need to be introduced
whenever one of the circumstances mentioned earlier arises.

By the definition of logical consequence, it follows that I'> C e* and thus cancellation of anything from the goal
side in resolution, with anything from the assumption side of the logical consequent, is safe. This follows from the fact
that, when considering using a refutation procedure with resolution, only those o € I'* are of interest. This observation
limits the extent to which A needs to be introduced around the goal (any resolvent inferred when at least one of the two
clauses is an assumption clause can be treated as an assumption clause here — unlike for the unification constraints).
The preceding observation contrasts with cancellation of the goal side with the goal side of the logical consequent;
Section 5.4 illustrates that this causes a problem in LPF and leads to the necessary introduction of A around the goal.
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1 |Vi:Z-i=0 = = ((i—1)=0) assumption

2 | Vi:Z--(i=0) = i+i=1 assumption

3 | Vi:Z-(i1—1)eZ assumption

4 |AVeZ-(i+i=1)V(i-1)+(—-1)=1)) goal

5 | {-(E=0),-((i-1)=0)} clausal-form(1)
6 |{i=0,i+i=1} clausal - form(2)
7T 1 {i-1)eZ} clausal - form(3)
8 | {~(c+c=1),7A(c+c=1)}

9 | {~((c=1)+(c=1)=1),7A((c—=1)+(c—1)=1)} | }deny(clausal-form(4))
10 | {mA(c+c=1),7A(c—1)+(c—1)=1)}

11 | {¢=0,~(c+c=1)} resolve(6, 8)

12 | {e¢ =0} resolve(6,11)
13| {(c=1)=0,-((c=1)+(c=1)=1),-((c=1) € Z)} | resolve(6,9)

14| {(c=1)=0,-((c—-1)€Z)} resolve(6, 13)
15| {=((c—=1)=0)} resolve(5,12)
16 | {-((c—1)€z)} resolve(14, 15)
17 | O resolve(7,16)

Figure 8: An illustrative proof of Property 1 using resolution as part of a refutation procedure which also refutes the
possibility of a “gap”.

If the goal does not need surrounding with A then the unification constraints —which are still needed— could be
considered in the first proof on the set of clauses I' U {— e}.

5.6 Equality

In Section 5 equality has not been constrained to actually mean equality. The equality symbol used so far is just a binary
predicate that is interpreted arbitrarily (that is, when considering validity there are more interpretations for the predicate
written as = than just equality itself). Potential issues when constraining equality are now considered.

One approach of handling the equality relational operator in first-order predicate logic is to add axioms stating that
equality is reflexive Vx - x = x), symmetric Vz -Vy -x =y = y = x) and transitive ¥z -Vy -Vz-x =y ANy ==z
= 1z = z) as well as axioms that assert the congruence (Vz -Vy -z =y = f(x) = f(y)) of each n-ary function used
and similarly for each n-ary predicate used. By providing the equality axioms explicitly, resolution can be used to solve
first-order logic problems with equality. However, particulary due to the congruence axioms, this approach is inefficient
as it leads to an explosion in the number of clauses required.

In LPF the notion of equality is considered to be strict and thus while reflexivity in two-valued classical logic is
defined as:

T =z
in LPF [BFL194] it is defined as:
z: T
T=z

to ensure that z is defined. Additionally, the symmetric axiom and the transitive axiom carry a similar constraint in
LPF. Notice that since quantification is only over defined values, this issue is avoided in £. However, the function (and
predicate) congruence axioms do not hold since it could be the case that z and y are equal to each other but when given
as arguments to a function (or predicate) in the consequent a “gap” may arise, which would propagate up and cause a
“gap” in the equality.

Another approach to handling equality is to make use of the paramodulation rule [RW69, Har09] alongside the
resolution rule. Handling equality in LPF is left as a topic for future work.

6 Conclusions

LPF is a logic designed to provide a way of reasoning about logical formulae that can include partial terms. This paper
has considered applying the classical resolution procedure alongside a refutation procedure in LPF; it has identified the
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pitfalls that arise in doing so and outlined the extensions and the modifications that are required to successfully carry
these techniques over to LPF. Illustrative proofs have been provided which are all based upon a semantic definition of
LPF which provides a set theoretic definition of the values that are denoted by expressions.

Since LPF provides the strongest possible monotonic extension of the familiar classical logic propositional operators,
properties such as the commutativity and the distributivity of disjunction and conjunction are retained. This also means
that the well-known classical logic clausal form conversions carry over to LPF. However, the occurrence of the defined-
ness operator (A) in LPF results in the need for extra conversion rules to be introduced into the clausal form conversion
process, which has the undesired result of leading to more expensive resulting clausal form formulae — fortunately the
use of A is constrained.

The idea of resolution carries over from the classical case to the LPF case when only considering satisfiability.
However, the use of a refutation procedure in LPF brings about “extra” overhead due to the presence of “gaps”. A
refutation procedure forces the introduction of A into the proofs since the definedness of the consequent now needs to
be established when discharging proofs about validity. However, when using resolution within a refutation procedure,
resolution can be extended to cope with the definedness obligations (A) to allow for both the false case and for the “gap”
case to be refuted. The use of resolution within a refutation procedure also means that any use of unification needs
to be carefully guarded. So, while for validity a less efficient procedure is required for LPF, when only considering
satisfiability the existing (semi-)decision procedure of resolution carries over from the classical case to the LPF case
relatively unchanged.

In [KK94] a mechanisation of Kleene logic for partial functions is presented. Kleene’s logic is formalised in an order-
sorted three-valued logic and a resolution calculus is presented. This differs from what is proposed in this paper which
undertakes a thorough investigation of where “undefinedness” arises and this can lead to a reduction in the number of
definedness obligations that are needed (and thus have to be discharged) as well as a reduction in the size of the resulting
clausal form of a formula (when using A).

As discussed in Section 5.6, the modifications required for LPF when constraining equality is left as a topic for
further work. Additional further work is to apply the modified technique(s) to proof obligations from case studies to
see how often “undefinedness” is a problem and whether such proof obligations can be efficiently discharged using the
techniques proposed in this paper for the non-classical LPF.

Acknowledgements

The authors would like to thank Matthias Schmalz for a helpful discussion on work related to the topic of this paper.
(In passing, Schmalz’s forthcoming ETH thesis is strongly related to the subject of the current paper and will be recom-
mended reading as soon as it is approved.) The authors of this paper also gratefully acknowledge the funding for their
research from an EPSRC PhD Studentship, the EPSRC grant for AI4FM, the EPSRC Platform Grant TrAmS-2 and the
EU IP funding for DEPLOY (which last supported the contact with ETH).

References

[BAO1]  Mordechai Ben-Ari. Mathematical Logic for Computer Science. Springer, 2 edition, 2001.

[BCJ84] H. Barringer, J.H. Cheng, and C. B. Jones. A logic covering undefinedness in program proofs. Acta Infor-
matica, 21:251-269, 1984.

[BFL194] Juan Bicarregui, John Fitzgerald, Peter Lindsay, Richard Moore, and Brian Ritchie. Proofin VDM: A Prac-
titioner’s Guide. FACIT. Springer-Verlag, 1994. ISBN 3-540-19813-X.

[Che86] J. H. Cheng. A Logic for Partial Functions. PhD thesis, University of Manchester, 1986.

[CI90] J. H. Cheng and C. B. Jones. On the usability of logics which handle partial functions. Technical Report
UMCS-90-3-1, Manchester University, February 1990. Preprint of [CJ91].

[CI91] J. H. Cheng and C. B. Jones. On the usability of logics which handle partial functions. In C. Morgan and
J. C. P. Woodcock, editors, 3rd Refinement Workshop, pages 51-69. Springer-Verlag, 1991.

[Cor96]  Roberto Cordeschi. The role of heuristics in automated theorem proving j.a. robinsons resolution principle.
Mathware and Soft Computing, 3:281-293, 1996.

20



[Fit07]

[GSE95]

[Har09]

[JJLMO1]

L11]
[JLS12]

[IM94]

[Jon90]
[Jon06]

[KK94]

[Kle52]

[Lov10]

[McC67]

[MS97]

[Owe85]

[Rob65]

[RW69]

[Schll]

[Sto77]

[WCR64]

J. S. Fitzgerald. The Typed Logic of Partial Functions and the Vienna Development Method. In D. Bjgrner
and M. C. Henson, editors, Logics of Specification Languages, EATCS Texts in Theoretical Computer Sci-
ence, pages 427—-461. Springer, 2007.

David Gries, Fred B. Schneider, and Albert Einstein. Avoiding the undefined by underspecification. In
Computer Science Today: Recent Trends and Developments, number 1000 in Lecture Notes in Computer
Science, pages 366—373. Springer-Verlag, 1995.

John Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University Press, 2009.

C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural: A Formal Development Support System.
Springer-Verlag, 1991.

C. B. Jones and M. J. Lovert. Semantic models for a logic of partial functions. IJSI, 5:55-76, 2011.

C. B. Jones, M. J. Lovert, and L. J. Steggles. A semantic analysis of logics that cope with partial terms.
Technical Report CS-TR-1310, Newcastle University, January 2012.

C.B. Jones and C.A. Middelburg. A typed logic of partial functions reconstructed classically. Acta Informat-
ica, 31(5):399-430, 1994.

C. B. Jones. Systematic Software Development using VDM. Prentice Hall International, second edition, 1990.

Cliff B. Jones. Reasoning about partial functions in the formal development of programs. In Proceedings of
AVoCS’05, volume 145, pages 3-25. Elsevier, Electronic Notes in Theoretical Computer Science, 2006.

Manfred Kerber and Michael Kohlhase. A mechanization of strong kleene logic for partial functions. In
Proceedings of the 12th International Conference on Automated Deduction, CADE-12, pages 371-385.
Springer-Verlag, 1994.

S. C. Kleene. Introduction to Metamathematics. Van Nostrad, 1952.

M. J. Lovert. A semantic model for a logic of partial functions. In K. Pierce, N. Plat, and S. Wolff, editors,
Proceedings of the Sth Overture Workshop, number CS-TR-1224 in School of Computing Science Technical
Report, pages 33—45. Newcastle University, 2010.

J. McCarthy. A basis for a mathematical theory for computation. In P. Braffort and D. Hirschberg, editors,
Computer Programming and Formal Systems, pages 33—70. North-Holland Publishing Company, 1967.

O. Miiller and K. Slind. Treating partiality in a logic of total functions. The Computer Journal, 40(10):640-
652, 1997.

0. Owe. An approach to program reasoning based on a first order logic for partial functions. Technical
Report 89, Institute of Informatics, University of Oslo, February 1985.

J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12:23-41, 1965.

G. Robinson and L. Wos. Paramodulation and theorem proving in first order theories with equality. In
B. Meltzer and D. Michie, editors, Machine Intelligence, volume IV, pages 135-150. American Elsevier,
1969.

Matthias Schmalz. Term rewriting in logics of partial functions. In Shengchao Qin and Zongyan Qiu,
editors, Formal Methods and Software Engineering, volume 6991 of Lecture Notes in Computer Science,
pages 633-650. Springer Berlin / Heidelberg, 2011. 10.1007/978-3-642-24559-6_42.

J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT
Press, 1977.

Lawrence Wos, Daniel Carson, and George Robinson. The unit preference strategy in theorem proving. In
Proceedings of the October 27-29, 1964, fall joint computer conference, part I, AFIPS ’64 (Fall, part I),
pages 615-621. ACM, 1964.

21



	TRCover1314
	TRAbstract1314
	TECHNICAL REPORT SERIES
	Abstract

	TRBibliography1314
	1314withoutcovers

