

COMPUTING
SCIENCE

A Semantic Analysis of Logics that Cope with Partial Terms

C. B. Jones, M. J. Lovert and L. J. Steggles

TECHNICAL REPORT SERIES

No. CS-TR-1310 January 2012

TECHNICAL REPORT SERIES

No. CS-TR-1310 January, 2012

A Semantic Analysis of Logics that Cope with Partial Terms

C.B. Jones, M.J. Lovert, L.J. Steggles

Abstract

Specifications of programs frequently involve operators and functions that are not defined
over all of their (syntactic) domains. Proofs about specifications -and those to discharge
proof obligations that arise in justifying steps of design- must be based on formal rules.
Since classical logic deals only with defined values, some extra thought is required. There
are several ways of handling terms that can fail to denote a value – this paper provides a
semantically based comparison of three of the best known approaches. In addition, some
pointers are given to further alternatives.

© 2012 Newcastle University.
Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

JONES, C.B., LOVERT, M.J., STEGGLES, L.J.

A Semantic Analysis of Logics that Cope with Partial Terms
[By] C.B. Jones, M.J. Lovert, L.J. Steggles
Newcastle upon Tyne: Newcastle University: Computing Science, 2012.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1310)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1310

Abstract

Specifications of programs frequently involve operators and functions that are not defined over all of their
(syntactic) domains. Proofs about specifications -and those to discharge proof obligations that arise in justifying
steps of design- must be based on formal rules. Since classical logic deals only with defined values, some extra
thought is required. There are several ways of handling terms that can fail to denote a value – this paper provides
a semantically based comparison of three of the best known approaches. In addition, some pointers are given to
further alternatives.

About the authors

Cliff B. Jones is currently Professor of Computing Science at Newcastle University. As well as his academic
career, Cliff has spent over 20 years in industry. His 15 years in IBM saw among other things the creation –with
colleagues in Vienna– of VDM which is one of the better known “formal methods”. Under Tony Hoare, Cliff
wrote his doctoral thesis in two years. From Oxford, he moved directly to a chair at Manchester University where
he built a world-class Formal Methods group which –among other projects– was the academic lead in the largest
Software Engineering project funded by the Alvey programme (IPSE 2.5 created the “mural” (Formal Method)
Support Systems theorem proving assistant). He is now applying research on formal methods to wider issues of
dependability. Until 2007 his major research involvement was the five university IRC on “Dependability of
Computer-Based Systems” of which he was overall Project Director. He is also PI on an EPSRC-funded project
“AI4FM” and coordinates the “Methodology” strand of the EU-funded DEPLOY project. He also leads the ICT
research in the ITRC Program Grant. Cliff is a Fellow of the Royal Academy of Engineering (FREng), ACM,
BCS, and IET. He has been a member of IFIP Working Group 2.3 (Programming Methodology) since 1973 (and
was Chair from 1987-96).

Matthew is a PhD student at Newcastle University under the supervision of Prof. Cliff Jones and Dr. Jason
Steggles. He is undertaking research on mechanised proof support tools for the Logic of Partial Functions.
Matthew gained his BSc in Computing Science with First Class Honours from Newcastle University in 2008,
during which time he was awarded with a BCS prize, a Scott Logic prize and a British Airways prize for
outstanding performance in each stage of his degree course.

Dr L. Jason Steggles is a lecturer in the School of Computing Science, University of Newcastle. His research
interests lie in the use of formal techniques to develop correct computing systems. In particular, he has worked
extensively on using algebraic methods for specifying, prototyping and validating computing systems.

Suggested keywords

PARTIAL TERMS
PARTIAL FUNCTIONS
CLASSICAL LOGIC
RELATIONAL OPERATORS
LOGIC OF PARTIAL FUNCTIONS
SEMANTIC MODELS

A Semantic Analysis of Logics that
Cope with Partial Terms

C. B. Jones, M. J. Lovert, and L. J. Steggles

School of Computing Science, Newcastle University, NE1 7RU, UK
{cliff.jones,matthew.lovert,l.j.steggles}@ncl.ac.uk

Abstract. Specifications of programs frequently involve operators and functions
that are not defined over all of their (syntactic) domains. Proofs about specifica-
tions –and those to discharge proof obligations that arise in justifying steps of
design– must be based on formal rules. Since classical logic deals only with de-
fined values, some extra thought is required. There are several ways of handling
terms that can fail to denote a value — this paper provides a semantically based
comparison of three of the best known approaches. In addition, some pointers are
given to further alternatives.

1 Introduction

Terms such as the head of an empty sequence (hd []), applying a mapping outside its
actual domain ({1 7→ 1}(2)), or even the obvious 7/0 can be considered to fail to denote
values. Of course, it would be perverse to write such naked terms deliberately but the
fact is that they arise as sub-terms of quite innocent expressions. What some people call
“undefined terms” are ubiquitous in reasoning about realistic program specifications
and designs.

In some uses, it is tempting to try to “guard” dangerous applications by writing
expressions such as:1

∀i : Z · i 6= 0 ⇒ i/i = 1 (1)

But there are other expressions that cannot be rewritten with such guards; consider:

∀i : Z · (i/i = 1) ∨ ((i − 1)/(i − 1) = 1) (2)

Although also verging on the contrived, disjunctions where either term can be undefined
–but only in the case where the other disjunct is true– arise quite naturally in specifica-
tions. The same can be said of conditions under which conjunctions and implications
come into contact with “undefinedness”.

The issue of reasoning about such partial terms in program development has long
been recognised; certainly [McC67] discusses the problem and the issue has since been
tackled in a variety of approaches [Owe85, Che86, Ten87, Bli88, KTB88, Jer88, Spi88,

1 Assume that x/y represents integer division and that it does not yield a defined result with a
zero divisor.

2 Jones, Lovert and Steggles

Jon90, CJ91, MS97, GSE95, Jon06, Fit07, Sch11]. The topic is discussed by logicians
such as in [Łuk20, Wan61, vF66, Kol76, Kol81, Hoo87, Avr88, Far90, Mac01].

The first author of the current paper has long advocated the use of a non-classical
“Logic of Partial Functions” (LPF) [BCJ84]. LPF is a first order predicate logic de-
signed to handle non-denoting values that can arise from terms that apply partial func-
tions and operators. LPF underlies the Vienna Development Method (VDM) [Jon90,
BFL+94, Fit07]. A soundness proof of untyped LPF is given in [Che86] and of the
typed version in [JM94].

Recently, all three authors have been looking at the issue of providing (efficient)
mechanisations of LPF. One fruit of this is [JL11] that presents two semantic models
for LPF. A paper on the adaptation of (semi-)decision procedures such as resolution
and refutation to cope with LPF is about to be submitted to a journal [JLS11]. The
underpinning of that research is a semantics that maps logical expressions to relations
over interpretations and results. This nicely captures Blamey’s [Bla80,Bla86] view that
non-denoting terms correspond to “gaps”: so 7/0 or the head of an empty sequence map
to an empty relation but i/i maps to interpretations which have a gap for i = 0.

In spite of the fact that the “gap” view is key to the semantic models presented later,
it is convenient to first illustrate the three main approaches to handling partial terms
being considered in this paper by using a surrogate for the “undefined” value (which,
of course, can often not be computed). In these illustrations, ⊥Z is written to stand for
a missing integer value and ⊥B for a missing Boolean value; then B⊥ (Z⊥) is taken to
mean B ∪ {⊥B} (Z ∪ {⊥Z}) respectively.

Essentially, the first two approaches below attempt to get by with classical logic
by “catching undefinedness” before it collides with the logical operators to avoid any
contact with non-denoting logical values. In other words providing work-arounds so
that a classical (total) framework can still be used. The third approach considers using
a non-classical (three-valued) logic.

The first approach (see Section 3) is to insist that all terms do in fact denote some-
thing (perhaps 0/0 = 42) and is pictured in Figure 1(a). Another approach (see Sec-
tion 4) is to accept that terms such as i/i can fail to denote but to make any predicates
(e.g. the relational operators) denote, even in those situations where their arguments fail
to denote; this approach is pictured in Figure 1(b).

The third approach uses a non-classical logic, notably LPF (see Section 5), whose
attempt to “catch undefinedness” is pictured in Figure 1(c). Here the gaps from partial
terms are allowed to propagate up so that the problem can be “resolved” by the logical
operators. Although the conditional operators of [McC67] do not retain properties like
the commutativity of disjunctions and conjunctions, they broadly fit the picture depicted
for LPF and this approach is discussed in Section 6.

A semantic model of the sort first presented in [JL11] for LPF is in fact quite conve-
nient for comparing different approaches to handling partial terms and this is the focus
of this paper. Using the definitions and ideas introduced in Section 2, a semantic model
is developed for each of the three approaches to handling partial terms described above
(see Sections 3–5). These are then used to compare and contrast the three approaches
in Section 6, which also highlights further approaches of interest.

A Semantic Analysis of Logics that Cope with Partial Terms 3

∀i : Z · (

∈Zz}|{
i/i = 1) ∨ (

∈Zz }| {
(i − 1)/(i − 1) = 1) (a)

∀i : Z ·

∈Bz }| {
(i/i|{z}
∈Z⊥

=∃ 1) ∨

∈Bz }| {
((i − 1)/(i − 1)| {z }

∈Z⊥

=∃ 1) (b)

∀i : Z ·

∈Bz }| {
(i/i|{z}
∈Z⊥

= 1)

| {z }
∈B⊥

∨ ((i − 1)/(i − 1)| {z }
∈Z⊥

= 1)

| {z }
∈B⊥

(c)

Fig. 1. An illustration of where “undefinedness” can be caught: (a) a classical approach insisting
that all terms denote; (b) a non-strict relational operator approach; and (c) the LPF approach.

2 The Basis of the Semantics

An abstract syntax (using VDM notation [Jon90]) is presented in Figure 2. It is this
abstract syntax that is used in the semantic models presented in this paper (although,
when writing expressions in examples, concrete syntax is used for readability).

As in most logic textbooks, only a few logical operators are considered since fur-
ther logical operators can be defined from this subset — and a logic is unlikely to be
usable unless its operators enjoy connections such as de Morgan’s laws. One predi-
cate –equality, defined only for integer operands– and two functions –subtraction and
division– suffice to illustrate the issues. Finally, quantification is only considered to be
over the set of integer values and the only constant values are Booleans and integers.

Context conditions for such a language are outlined in [JL11] and spelt out formally
in [Lov10]. The context conditions ensure that the semantics only need be given for
expressions that are well-formed thus removing the need to define semantics for ill-
formed expressions such as mk -Exists(x , 5), i.e. ∃x · 5.

Two sorts of identifiers can occur in expressions, those for propositions (Prop) and
those for integer variables (Var). The sets Prop and Var are assumed to be disjoint.
It is one of the functions of the context conditions to ensure that identifiers are used
appropriately. Furthermore, it is required that all integer variables are explicitly bound
by quantifiers.

States (σ ∈ Σ) provide a (possibly partial) interpretation for propositional and inte-
ger variable symbols. Formally, Σ is defined as the union of two sets of maps:

Σ = Prop m−→ B |
Var m−→ Z

where the map involving Prop is partial in the sense that a propositional identifier can
be absent from the domain of a specific map (σ ∈ Σ) to allow for the possibility of
undefined propositional identifiers. However, the Var map must be total since all Var
are explicitly bound by quantifiers and in classical logic and in LPF quantification is
only over defined values.

4 Jones, Lovert and Steggles

Expr = Value | Id | Arith | Equality | Not | Or | Exists

Value = B | Z

Id = Prop | Var

Arith :: a : Expr
op : − | /
b : Expr

Equality :: a : Expr
b : Expr

Not :: a : Expr

Or :: a : Expr
b : Expr

Exists :: bind : Id
body : Expr

Fig. 2. The abstract syntax of the language.

The semantics is given for each of the three approaches to handling partial terms by
defining a semantic function for each with following form:

E : Expr → P(Σ×Value)

E(e) 4 . . .

3 Classical Logic: Making all Terms Denote

As indicated in Figure 1(a), it is possible to get by with classical logical operators by
forcing an extension of functions and operators so that they are total. To make division
yield a result with a zero divisor is a challenge but it is possible to say that 7/0 yields
some arbitrary integer and that perhaps no harm is done by this fiction providing that
it is not possible to know which integer results. Figure 3 presents a formal semantics
for this approach where division by zero is extended to return an arbitrary integer. The
rest of this definition is straightforward in the sense that any feature of the language of
Figure 2 has the obvious classical meaning.

To ensure that all propositional variables do denote, the set of variable state map-
pings needs to be appropriately defined. Let ΣC be the set of mappings that contain
denotations for all used elements of Prop and Var :

ΣC = {σ | σ ∈ Σ ∧ domσ = Id}

Relations are chosen as the space of denotations to facilitate comparison with the
semantics in the next two sections.

A Semantic Analysis of Logics that Cope with Partial Terms 5

Notice that this approach is total as the definition of EC avoids the possibility of
“gaps”. In other words, for every expression e and each σ ∈ ΣC there exists a tuple
(σ, v) ∈ EC (e). This is straightforward to prove by structural induction over Expr .
The relation, however, is not deterministic (or “functional”) since it is not single-valued,
i.e. 7/0 = 7/0 can yield both true and false.

What has been done in EC is to underspecify the partial division function so that
it returns an arbitrary value when applied outside of its actual defined domain. An al-
ternative approach is to overspecify the result, in other words, to define that a partial
function must return a default value when applied outside of its actual defined domain,
e.g. i/0 returns 42.2 The ED semantics presented in Figure 4 documents the small
change needed to instead overspecify the partial division function. The rest of the ex-
pression cases follow as in the EC semantics, if all other occurrences of EC are replaced
with ED .

It is straightforward to show the semantic function ED is total and also deterministic
(for any expression e it follows that (σ, v1) ∈ ED(e) ∧ (σ, v2) ∈ ED(e) ⇒ v1 = v2).

4 Classical Logic: Variant Relational Operators

Figure 1(b) indicates that there is another way to preserve classical logic and that is
by having non-strict relational operators denote even when their arguments fail to de-
note. Non-strict notions of equality include existential equality (=∃) and strong equality
(==). The truth table for existential equality is presented in Figure 5 and strong equal-
ity differs only in the case when both of their operands do not denote, so ⊥Z =∃ ⊥Z is
false, but ⊥Z == ⊥Z is true. Existential equality is the focus throughout this section.

The semantic function E∃ is defined in Figure 6 using a similar approach to EC but
replacing the case for division by the normal partial division definition and by replacing
the case for equality by existential equality. Additionally any further use of EC needs to
be replaced with E∃. Note that the set of variable state mappings remains as ΣC since
propositional variables are not permitted to be a source of non-denoting terms.

The E∃ semantics is total in the sense that for every Boolean expression e and each
σ ∈ ΣC there must be a tuple (σ, v) ∈ E∃(e) but notice that if, as is pointed out in
Section 6, the need for both strict and non-strict equality is recognised, then there still
exists the danger of partial terms being written by mistake. The E∃ semantics is also
deterministic.

5 Non-classical Logic: LPF

If the truth is told about partial functions and operators, there are gaps in the denotations
where they fail to denote: 7/0 is not an integer; furthermore, if discussion is limited to
the one strict notion of equality, 7/0 = 42 fails to denote a Boolean value. Briefly
revisiting Property 2, it should be clear that its truth relies on the truth of disjunctions
such as (1/1 = 1) ∨ (0/0 = 1), which reduces to (1 = 1) ∨ (⊥Z = 1) and further to
true ∨ ⊥B, since the equality is strict (i.e. undefined if either operand is undefined) and

2 0/0 = 42 proof by Douglas Adams.

6 Jones, Lovert and Steggles

EC : Expr → P(ΣC ×Value)

EC (e) 4
cases e of
e ∈ Value → {(σ, e) | σ ∈ ΣC}
e ∈ Prop → {(σ, σ(e)) | σ ∈ ΣC}
e ∈ Var → {(σ, σ(e)) | σ ∈ ΣC}
mk -Arith(a,−, b)→ {(σ, a ′ − b′) | (σ, a ′) ∈ E(a) ∧ (σ, b′) ∈ E(b)}
mk -Arith(a, /, b) → {(σ, a ′/b′) | (σ, a ′) ∈ EC (a) ∧

(σ, b′) ∈ EC (b) ∧ b′ 6= 0} ∪
{(σ,n) | (σ, a ′) ∈ EC (a) ∧

(σ, b′) ∈ EC (b) ∧ b′ = 0 ∧ n ∈ Z}
mk -Equality(a, b)→ {(σ, a ′ = b′) | (σ, a ′) ∈ EC (a) ∧ (σ, b′) ∈ EC (b)}
mk -Not(p) → {(σ,¬ p′) | (σ, p′) ∈ EC (p)}
mk -Or(p, q) → {(σ, p′ ∨ q ′) | (σ, p′) ∈ EC (p) ∧ (σ, q ′) ∈ EC (q)}
mk -Exists(x , p) → {(σ,∃i : Z · (σ † {x 7→ i}, true) ∈ EC (p)) | σ ∈ ΣC}
end

Fig. 3. The semantic function EC — an approach to making all terms denote.

ED : Expr → P(ΣC ×Value)

ED(e) 4
cases e of
...
mk -Arith(a, /, b)→ {(σ, a ′/b′) | (σ, a ′) ∈ ED(a) ∧

(σ, b′) ∈ ED(b) ∧ b′ 6= 0} ∪
{(σ, 42) | (σ, a ′) ∈ ED(a) ∧

(σ, b′) ∈ ED(b) ∧ b′ = 0}
...
end

Fig. 4. The semantic function ED — another approach to making all terms denote.

=∃ 0 1 2 . . . ⊥Z

0 true false false ... false
1 false true false ... false
2 false false true ... false
.
⊥Z false false false ... false

Fig. 5. The truth table for existential equality with integer operands.

A Semantic Analysis of Logics that Cope with Partial Terms 7

E∃ : Expr → P(ΣC ×Value)

E∃(e) 4
cases e of
...
mk -Arith(a, /, b) → {(σ, a ′/b′) | (σ, a ′) ∈ E∃(a) ∧

(σ, b′) ∈ E∃(b) ∧ b′ 6= 0}
mk -Equality(a, b)→ {(σ, a ′ = b′) | (σ, a ′) ∈ E∃(a) ∧ (σ, b′) ∈ E∃(b)} ∪

{(σ, false) | σ ∈ (ΣC \ dom E∃(a))} ∪
{(σ, false) | σ ∈ (ΣC \ dom E∃(b))}

...
end

Fig. 6. The semantic function E∃ for the approach of including a non-strict relational operator.

ultimately to ⊥B. This unfortunately makes no sense in classical logic since its truth
tables only define the logical operators for proper Boolean values.

As can be seen in Figure 1(c), this approach leaves the propositional operators to
take the strain. The truth tables (disjunction, conjunction and negation) in Figure 7
(presented in [Kle52, §64]) illustrate how the propositional operators in LPF have been
extended to handle logical values that may fail to denote. These truth tables provide
the strongest possible monotonic extension of the familiar propositional operators with
respect to the following ordering on the truth values: ⊥B � true and ⊥B � false .
The truth tables can be viewed as describing a parallel lazy evaluation of the operands,
whereby a result is delivered as soon as enough information is available and such a
result cannot be contradicted if a ⊥B later evaluates to a proper Boolean value.

∨ true ⊥B false
true true true true
⊥B true ⊥B ⊥B
false true ⊥B false

∧ true ⊥B false
true true ⊥B false
⊥B ⊥B ⊥B false
false false false false

¬
true false
⊥B ⊥B
false true

∆

true true
⊥B false
false true

Fig. 7. The LPF truth tables for disjunction, conjunction, negation and definedness (∆).

The quantifiers of LPF are a natural extension of the propositional operators —
viewing existential quantification as an infinite disjunction (in the worst case) and uni-
versal quantification as an infinite conjunction. Thus, an existentially quantified expres-
sion in LPF is true if a witness value exists even if the quantified expression is undefined
or false for some of the bound values. Such an expression is false if no witness value
can be shown. Similar comments apply for universally quantified expressions.

For expressive completeness, LPF includes a definedness operator ∆ whose truth
table is also presented in Figure 7. Unlike all of the other operators presented, the ∆

8 Jones, Lovert and Steggles

operator is not monotone. However, ∆ tends not to be used in normal assertions and it
is considered to be an operator on the meta-level.

A semantics for the LPF version of the Predicate Calculus is detailed below. The
abstract syntax is extended to include ∆, thus ExprL = Expr | Delta and where the
abstract syntax for Delta is the same as for Not .

Since in LPF, the logical operators are extended to allow for the possibility that
non-denoting logical values can be “caught”, the standard definition of Σ (given in
Section 2) can be used for LPF, thus allowing for undefined propositional identifiers to
occur in a specific σ.

The semantic function EL is defined as EC , but with the additional and modified
cases presented in Figure 8; also any use of EC needs to be replaced with EL and any
use of ΣC needs to be replaced with Σ. Note that the semantics for quantifiers ensures
that “gaps” are handled by non-denoting propositional expressions being absent from
the domain of EL.

EL : ExprL → P(Σ×Value)

EL(e) 4
cases e of
...
e ∈ Prop → {(σ, σ(e)) | σ ∈ Σ ∧ e ∈ domσ}
e ∈ Var → {(σ, σ(e)) | σ ∈ Σ}
mk -Arith(a, /, b)→ {(σ, a ′/b′) | (σ, a ′) ∈ EL(a) ∧

(σ, b′) ∈ EL(b) ∧ b′ 6= 0}
...
mk -Delta(p) → {(σ, true) | σ ∈ dom EL(p)} ∪

{(σ, false) | σ ∈ (Σ \ dom EL(p))}
mk -Not(p) → {(σ, true) | (σ, false) ∈ EL(p)} ∪

{(σ, false) | (σ, true) ∈ EL(p)}
mk -Or(p, q) → {(σ, true) | (σ, true) ∈ EL(p)} ∪

{(σ, true) | (σ, true) ∈ EL(q)} ∪
{(σ, false) | (σ, false) ∈ EL(p) ∧ (σ, false) ∈ EL(q)}

mk -Exists(x , p) → {(σ, true) |
σ ∈ Σ ∧
true ∈ rng ({σ † {x 7→ i} | i : Z}� EL(p))} ∪

{(σ, false) |
σ ∈ Σ ∧
rng ({σ † {x 7→ i} | i : Z}� EL(p)) = {false}}

end

Fig. 8. The semantic function EL for LPF.

The “gaps” that arise from partial terms and propositional expressions in LPF are
modelled by choosing relations as the space of denotations here. This is in contrast to

A Semantic Analysis of Logics that Cope with Partial Terms 9

the use of partial functions as is classical in denotational semantics [Sto77]. The use of
relations might suggest non-determinacy but all denotations are in fact single valued,
i.e. any relation EL(e) is deterministic (or “functional”), that is, for any expression e it
follows that (σ, v1) ∈ EL(e) ∧ (σ, v2) ∈ EL(e) ⇒ v1 = v2.

6 Discussion

6.1 A Comparison of the Approaches Considered

The “proof of the pudding” for any logic is the ease of proof. Consider constructing a
proof of Property 2 in classical logic; first, it is necessary to introduce some knowledge
about division and subtraction, since a proof is a game with symbols, it cannot use the
semantics of the arithmetic operators:

∀i : Z · i = 0 ⇒ ¬ ((i − 1) = 0); ∀i : Z · ¬ (i = 0) ⇒ i/i = 1 `
∀i : Z · (i/i = 1) ∨ ((i − 1)/(i − 1) = 1)

A proof of the above property in classical logic is presented in Figure 9 and it is pleas-
ingly straightforward even though it hides the fact that the term 0/0 with its undeter-
mined denotation implicitly crops up in a number of places.

from ∀i : Z · i = 0 ⇒ ¬ (i − 1 = 0); ∀i : Z · ¬ (i = 0) ⇒ i/i = 1
1 from i : Z
1.1 i = 0 ∨ ¬ (i = 0) h1,Z
1.2 from i = 0
1.2.1 ¬ (i − 1 = 0) ⇒ -E -L(∀-E(h1, h), h1.2)
1.2.2 (i − 1)/(i − 1) = 1 ⇒ -E -L(∀-E(h1, h), 1.2.1)

infer (i/i = 1) ∨ ((i − 1)/(i − 1) = 1) ∨-I -L(1.2.2)
1.3 from ¬ (i = 0)
1.3.1 i/i = 1 ⇒ -E -L(∀-E(h1, h), h1.3)

infer (i/i = 1) ∨ ((i − 1)/(i − 1) = 1) ∨-I -R(1.3.1)
infer (i/i = 1) ∨ ((i − 1)/(i − 1) = 1) ∨-E(1.1, 1.2, 1.3)

infer ∀i : Z · (i/i = 1) ∨ ((i − 1)/(i − 1) = 1) ∀-I (1)

Fig. 9. A proof of Property 2.

This prompts the question of how a proof of the same property would look in LPF.
The answer is that it would be identical! The proof in Figure 9 is a completely correct
proof in LPF but the point is that nowhere is it necessary in LPF to make assumptions
about the denotation of terms with zero divisors.

However, definedness does need to be established in some LPF proofs. There are
certain constraints on inference rules in LPF. One issue is that the, so called, law of
the excluded middle: p ∨ ¬ p, does not hold because the disjunction of two undefined
Boolean values is still undefined: thus (0/0 = 1) ∨ ¬ (0/0 = 1) is not a tautology in
LPF.

10 Jones, Lovert and Steggles

The non-monotone ∆ operator in LPF does, however, give rise to an alternative
property which is known as the law of the excluded fourth: p ∨ ¬ p ∨ ¬∆p, that is, p
is true, false or undefined. Furthermore, adding definedness hypotheses for all terms in
some logical expression p is sufficient to make the validity of p in LPF and in classical
logic coincide. One place where ∆ arises is when one wants to use what is, in classical
logic, the unrestricted deduction theorem, which does not hold in LPF because knowing
⊥B ` ⊥B is not the same as ⊥B ⇒ ⊥B. The use of ∆ can provide a sound⇒ -I rule
for LPF:3

⇒ -I
∆p; p ` q
p ⇒ q

Interestingly, it can be argued that the law of the excluded middle doesn’t necessar-
ily hold in EC semantics where the partial division function has been underspecified!
If division by 0 yields a non-deterministic result then 7/0 = 0 ∨ ¬ (7/0 = 0) can be
false. Since it is difficult in a logic to pin down a characterisation of “giving the same
value within a context”, the temptation to fix on a result such as 7/0 = 42 becomes
rather strong. Giving in to this temptation however leads to questions such as whether
7/0 = 5/0 (see [Jon95] for further discussion). The law of the excluded middle does,
however, hold in the ED approach.

An obvious reservation about using multiple notions of equality is that anyone rea-
soning in this way has to observe different properties of the two or more notions (note
that a strict (computational) notion of equality still needs to be written in function def-
initions and that a non-strict notion of equality is needed to cope with partial terms4).
Furthermore, although the focus here is on equality, the complications extend to include
all of the other relational operators/predicates. There are also surprises in that, for ex-
ample, existential inequality is not the negation of existential equality — they can both
be false. (There is an interesting formal connection between what can be proved in E∃
and EL which is explored in [FJ08].)

6.2 Further Approaches

A longer discussion of other approaches to handling non-denoting terms can be found
in [CJ91] but it is worth here making a few further points.

McCarthy’s conditional operators The propositional operators are defined by (non-
strict) conditional expressions [McC67], for instance, the conditional disjunction oper-
ator (p cor q) is defined as: if p then true else q and the truth table for cor is presented
in Figure 10. Such a semantics is used in Raise [Gro92, Gro95].

The conditional disjunction operator case of a semantic function (similar to what
has been defined above for the other approaches) for McCarthy’s approach EM (that
would use Σ in the function signature) would be defined as:

3 To claim definedness in a proof, the related δ operator is often used which is monotone and is
the same as ∆ except that δ⊥B = ⊥B, and therefore δp is equivalent to the assertion p ∨ ¬ p.

4 Note that in the E∃ semantics, existential equality has replaced the strict equality. If the strict
equality was to remain –in addition to the existential equality– then the E∃ semantics would
not be total for every Boolean expression.

A Semantic Analysis of Logics that Cope with Partial Terms 11

mk -Or(p, q)→ {(σ, true) | (σ, true) ∈ EM (p)} ∪
{(σ, true) | (σ, false) ∈ EM (p) ∧ (σ, true) ∈ EM (q)} ∪
{(σ, false) | (σ, false) ∈ EM (p) ∧ (σ, false) ∈ EM (q)}

The first variable in the conditional expressions is usually referred to as the “in-
evitable variable” because, if it is undefined, then the entire expression is undefined
since conditional expressions are strict in their first argument. This means that dis-
junction and conjunction are no longer commutative and, additionally, quantifiers are
problematic with respect to undefined values. Thus, ∃i : {0, 1} · i/i = 1 may not have
the same truth value as 1/1 = 1 ∨ 0/0 = 1. So while, Property 1 with the conditional
implication operator can be proved in McCarthy’s approach, neither the contrapositive
of Property 1 nor Property 2 follow for conditionally defined operators.

The conditional form of the logical operators were used in the early IBM Vienna
operational semantics definitions known as VDL (see [W+69, §1.1.6.2]). It was an un-
preparedness to tolerate the loss of properties like commutativity of disjunction and
conjunction that drove the first author of the current paper to experiment with using
both the conditional and the classical operators in [Jon72] (an idea also tried in [Dij76]
and [GS96]). As can be seen from [GS96], the distribution laws become problematic.

cor true ⊥B false
true true true true
⊥B ⊥B ⊥B ⊥B
false true ⊥B false

Fig. 10. The truth table for McCarthy’s conditional disjunction operator.

Avoiding function application: Several authors have tried to avoid writing the expres-
sion f (x) = y and instead write it as (x , y) ∈ f r , where f r is the relation that is the
“graph” of the function f . The key idea is that (x , y) ∈ f r is false when x /∈ dom f r ,
for all y . This idea in not analysed in detail here (see [CJ91, Jon06] for further detail),
because the notation becomes rather heavy5 but it is easy to see how it could be added
to the semantics used above.

Restricting the bounds on quantifiers: Another solution is to restrict quantification to
sets that do not contain any values outside of the actual domains of the functions used.
For example, Property 1 could be written as: ∀i : {i | i : Z ∧ i 6= 0} · i/i = 1. Unfor-
tunately, in general, the type structure becomes both clumsy and undecidable. Refer
to [CJ91,GSE95] for further information. One could even encode the actual defined do-
main of a partial function in its type and make its application with argument(s) outside
of that domain a type error.

5 Property 2 has to be rewritten as: ∀i : Z · ((i , i), 1) ∈ /r ∨ (((i − 1), (i − 1)), 1) ∈ /r and
rewriting g(f (x)) requires an extra existential quantifier.

12 Jones, Lovert and Steggles

Restricting the expressions written: It is possible to view the relation EL as total by
restricting the expressions e to those for which there exists, for all σ ∈ Σ, a tuple
(σ, v) ∈ EL(e). As seen in [Meh08, Sch11] such well definedness (“WD”) restrictions
can be complicated and expand exponentially in size.

7 Conclusions

LPF is a logic designed to handle non-denoting logical values that can arise from terms
that apply partial functions and operators. This paper presents a semantic model for LPF
and two other popular approaches: making all terms denote values; and using non-strict
relational operators. The idea was to use semantic functions which map logical expres-
sions to relations over interpretations and results and this leads naturally to the view of
non-denoting terms corresponding to “gaps”. Each of the approaches attempts to catch
“undefinedness” in a different place (see Figure 1) and the semantic models presented
were used to compare and contrast the approaches. LPF emerges as a strong approach
to handling partial terms and it is to be hoped that the progress reported in [JLS11] on
efficient semi-decision procedures for LPF will lead to its wider use.

Acknowledgements

The authors gratefully acknowledge the funding for their research from an EPSRC grant
for AI4FM and the Platform Grant TrAmS-2 as well an EPSRC PhD Studentship.

References

[Avr88] A. Avron. Foundations and proof theory of 3-valued logics. Technical Report ECS-
LFCS-88-48, LFCS, Department of Computer Science, University of Edinburgh, April
1988.

[BCJ84] H. Barringer, J.H. Cheng, and C. B. Jones. A logic covering undefinedness in program
proofs. Acta Informatica, 21:251–269, 1984.

[BFL+94] Juan Bicarregui, John Fitzgerald, Peter Lindsay, Richard Moore, and Brian Ritchie.
Proof in VDM: A Practitioner’s Guide. FACIT. Springer-Verlag, 1994. ISBN 3-540-
19813-X.

[Bla80] S. R. Blamey. Partial Valued Logic. PhD thesis, Oxford University, 1980.
[Bla86] S. Blamey. Partial logic. In D. Gabbay and F. Guenthuer, editors, Handbook of Philo-

sophical Logic, Volume III, chapter 1. Reidel, 1986.
[Bli88] A. Blikle. Three-valued predicates for software specification and validation. In

R. Bloomfield, L. Marshall, and R. Jones, editors, VDM—The Way Ahead, pages 243–
266. Springer-Verlag, 1988. Lecture Notes in Computer Science, Vol. 328.

[Che86] J. H. Cheng. A Logic for Partial Functions. PhD thesis, University of Manchester,
1986.

[CJ91] J. H. Cheng and C. B. Jones. On the usability of logics which handle partial functions.
In C. Morgan and J. C. P. Woodcock, editors, 3rd Refinement Workshop, pages 51–69.
Springer-Verlag, 1991.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N.J.,
USA, 1976.

A Semantic Analysis of Logics that Cope with Partial Terms 13

[Far90] William M. Farmer. A partial functions version of Church’s simple theory of types.
Journal of Symbolic Logic, 55(3):1269–1291, 1990.

[Fit07] J. S. Fitzgerald. The Typed Logic of Partial Functions and the Vienna Development
Method. In D. Bjørner and M. C. Henson, editors, Logics of Specification Languages,
EATCS Texts in Theoretical Computer Science, pages 427–461. Springer, 2007.

[FJ08] J. S. Fitzgerald and C. B. Jones. The connection between two ways of reasoning about
partial functions. IPL, 107(3–4):128–132, 2008.

[Gro92] The RAISE Language Group. The RAISE Specification Language. BCS Practitioner
Series. Prentice Hall, 1992. ISBN 0-13-752833-7.

[Gro95] The RAISE Method Group. The RAISE Development Method. BCS Practitioner Series.
Prentice Hall, 1995. ISBN 0-13-752700-4.

[GS96] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math. Springer-
Verlag, second edition, 1996.

[GSE95] David Gries, Fred B. Schneider, and Albert Einstein. Avoiding the undefined by under-
specification. In Computer Science Today: Recent Trends and Developments, number
1000 in Lecture Notes in Computer Science, pages 366–373. Springer-Verlag, 1995.

[Hoo87] A. Hoogewijs. Partial-predicate logic in computer science. Acta Informatica, 24:381–
393, 1987.

[Jer88] C.A. Jervis. A Theory of Program Correctness with Three Valued Logic. PhD thesis,
Leeds University, 1988.

[JL11] C. B. Jones and M. J. Lovert. Semantic models for a logic of partial functions. IJSI,
5:55–76, 2011.

[JLS11] C. B. Jones, M. J. Lovert, and L. J. Steggles. Towards a mechanisation of a logic that
copes with partial terms. to be submitted, 2011.

[JM94] C.B. Jones and C.A. Middelburg. A typed logic of partial functions reconstructed clas-
sically. Acta Informatica, 31(5):399–430, 1994.

[Jon72] C.B. Jones. Formal development of correct algorithms: an example based on Earley’s
recogniser. In SIGPLAN Notices, Volume 7 Number 1, pages 150–169. ACM, January
1972.

[Jon90] C. B. Jones. Systematic Software Development using VDM. Prentice Hall International,
second edition, 1990.

[Jon95] C.B. Jones. Partial functions and logics: A warning. Information Processing Letters,
54(2):65–67, 1995.

[Jon06] Cliff B. Jones. Reasoning about partial functions in the formal development of programs.
In Proceedings of AVoCS’05, volume 145, pages 3–25. Elsevier, Electronic Notes in
Theoretical Computer Science, 2006.

[Kle52] S. C. Kleene. Introduction to Metamathematics. Van Nostrad, 1952.
[Kol76] G. Koletsos. Sequent calculus and partial logic. Master’s thesis, Manchester University,

1976.
[Kol81] G. Koletsos. Notational and logical completeness in three-valued logic. Bull. of the

Greek Mathematical Society, 22:121–141, 1981.
[KTB88] B. Konikowska, A. Tarlecki, and A. Blikle. A three-valued logic for software specifi-

cation and validation. In R. Bloomfield, L. Marshall, and R. Jones, editors, VDM—The
Way Ahead, pages 218–242. Springer-Verlag, 1988. Lecture Notes in Computer Science,
Vol. 328.

[Lov10] M. J. Lovert. A semantic model for a logic of partial functions. In K. Pierce, N. Plat,
and S. Wolff, editors, Proceedings of the 8th Overture Workshop, number CS-TR-1224
in School of Computing Science Technical Report, pages 33–45. Newcastle University,
2010.

14 Jones, Lovert and Steggles

[Łuk20] J. Łukasiewicz. O logice trójwartościowej. Ruch Filozoficzny, pages 169–171, 1920.
Translated as (On three-valued logic) in Polish Logic 1920–39, S. McCall (ed.), Oxford
U.P., 1967.

[Mac01] H. MacColl. A report on MacColl’s three-valued logic. In E.O. Lovett, editor, Mathe-
matics at the Intern. Congress of Philosophy, volume 7, pages 157–183. Bulletin of the
American Mathematical Society, 1901.

[McC67] J. McCarthy. A basis for a mathematical theory for computation. In P. Braffort
and D. Hirschberg, editors, Computer Programming and Formal Systems, pages 33–70.
North-Holland Publishing Company, 1967.

[Meh08] Farhad Dinshaw Mehta. Proofs for the Working Engineer. PhD thesis, ETH Zuerich,
2008.

[MS97] O. Müller and K. Slind. Treating partiality in a logic of total functions. The Computer
Journal, 40(10):640–652, 1997.

[Owe85] O. Owe. An approach to program reasoning based on a first order logic for partial
functions. Technical Report 89, Institute of Informatics, University of Oslo, February
1985.

[Sch11] Matthias Schmalz. Term rewriting in logics of partial functions. In Shengchao Qin
and Zongyan Qiu, editors, Formal Methods and Software Engineering, volume 6991 of
Lecture Notes in Computer Science, pages 633–650. Springer Berlin / Heidelberg, 2011.
10.1007/978-3-642-24559-6 42.

[Spi88] J.M. Spivey. Understanding Z—A Specification Language and its Formal Semantics.
Cambridge Tracts in Computer Science 3. Cambridge University Press, 1988.

[Sto77] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Lan-
guage Theory. MIT Press, 1977.

[Ten87] R.D. Tennent. A note on undefined expression values in programming logic. Informa-
tion Processing Letters, 24(5), March 1987.

[vF66] B.C. van Fraasen. Singular terms, truth-value gaps and free logic. J. Philosophy, 63:481–
495, 1966.

[W+69] K. Walk et al. Abstract syntax and interpretation of PL/I. Technical Report TR25.098,
IBM Laboratory Vienna, 1969.

[Wan61] H. Wang. The calculus of partial predicates and its extension to set theory. Math. Logic,
7:283–288, 1961.

	TRCover1310
	TRAbstract1310
	TECHNICAL REPORT SERIES
	Abstract

	TRBibliography1310
	1310withoutcovers

