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Abstract. Expression evaluation in programming languages is normally deterministic; however, if expres-
sions involve variables that are being modified by the environment of the process during their evaluation,
the result of the evaluation can be nondeterministic. Two common cases where this occurs are in concur-
rent programs where processes share variables and real-time programs that interact to monitor and/or control
their environment. In these contexts, while any particular evaluation of an expression gives a single result,
there is a range of possible results that could be returned depending on the relative timing of modification
of variables by the environment and their access within expression evaluation. Hence to model the semantics
of expression evaluation one can use the set of possible values the expression evaluation could return. This
paper considers three views of interpreting expressions nondeterministically. The paper formalises the three
approaches, highlights different properties satisfied by the approaches, relates the approaches and explores
conditions under which they coincide. Furthermore, a link is made to a new notation used in reasoning about
interference.

1 Introduction

The motivation for this paper comes from two sources: Burns’ time band framework [3, 2], and Coleman and
Jones’ research on fine-grained expression evaluation [4]. The time band framework is intended to allow a sys-
tem to be viewed in a range of different time bands with different time granularities and precisions. In a time
band, events occur within the precision of that band — or perhaps a better term is “imprecision”. Due to the
timing imprecision, the values of variables may range over a set of possible values and hence evaluation of ex-
pressions and predicates is nondeterministic. To handle this imprecision, Burns and Hayes devised a “sampling”
logic [3], which allows expression evaluation to be nondeterministic, but assumes that for a single evaluation all
occurrences of each variable take on the same (sampled) value (from the set of possible values for that variable).

Coleman and Jones used a fine-grained operational semantics for expression evaluation suitable for reason-
ing about concurrent processes with shared variables [4]. In their semantics, each occurrence of a variable within
an expression may take on a different value (from the set of possible values for that variable) because each oc-
currence of an identifier within an expression results in a lookup in the state (σ) and σ is subject to change by
concurrent threads; furthermore, the order of access is nondeterministic. (This idea has a long history. After Mc-
Carthy [20] crystallised the idea of defining programming languages by “abstract interpreters”, a key contribution
in the early IBM Vienna operational semantics (VDL) approach [19] was to facilitate such nondeterministic ex-
pression evaluation. Plotkin’s “Structural Operational Semantics” (SOS) was described in his “Aarhus notes” —
now conveniently republished as [22]. Here the nondeterminacy was factored out to the meta level by making the
choice of which rule to fire nondeterministic. Useful comparative discussions are in [21, 16].)

Both approaches address nondeterministic expression evaluation, but in subtly different ways. It was the
realisation that there are different ways to approach nondeterminism in expression evaluation that led to the
research reported here, which aims to explore more fully the relationships between the approaches.

In a context in which the environment of a process is modifying variables shared with the process, evalu-
ating expressions involving those variables within the process is nondeterministic: differing relative timings of
modifications and accesses can lead to different results. Hence the semantics of expression evaluation is given



in terms of the set of all possible results that can be returned. This paper considers three approaches to handling
nondeterminism that in general give different sets of possible results.

Sets of states. The first approach considers the set of states that actually occur over the time interval during
which the expression is being evaluated. The set of possible values for an expression in this approach is
the set of its evaluations, one for each state. For example, if over the expression evaluation time interval u
changes from 0 to 1 and then v changes from 0 to 1, the set of states is

ssuv = {{u 7→ 0, v 7→ 0}, {u 7→ 1, v 7→ 0}, {u 7→ 1, v 7→ 1}} . (1)

For ssuv, the expression u + v has possible values { 0, 1, 2 }, and the predicate u ≤ v has possible values
{false, true}, but u ≥ v and v = v have only a single possible value, true. Because it assumes that a snapshot
of the values of all the variables can be taken instantaneously, this approach does not reflect the imprecision
that can occur in an implementation. Most implementations will only be able to access (or sample) the values
of variables at slightly different times.

Sets of values. The second approach uses the set of all possible values of each variable over the evaluation
interval and all possible evaluations of the expression using those values. For example, the set of states ssuv
above (1) corresponds to possible values for u and v, as follows.

svuv = {u 7→ {0, 1}, v 7→ {0, 1}}. (2)

This corresponds to an implementation that samples the value of a variable for each occurrence of the vari-
able within the expression. An implementation evaluating an expression during the same interval as above
(corresponding to the set of states ssuv above (1)) may sample u before both modifications and get 0 and
then sample v after both variables have changed and get 1, and hence evaluate u ≥ v to false. Note that the
state {u 7→ 0, v 7→ 1} is not one of the actual states in ssuv. In evaluating the expression v = v in the same
context, it may sample the left v first and get 0, and then sample the right v after v has changed from 0 to 1,
and get 1, and thus evaluate v = v to false.

Sets of apparent states. In the third approach each variable is sampled once during the evaluation interval and
this sampled value is used for all occurrences of the variable within the expression. Therefore v = v always
evaluates to true because a single sampled value of v is used for both occurrences of v. The possible values
for v are still all possible values over the interval but all references to v during an evaluation of the expression
use just one of those possible values. The set of apparent states for the example above follows.

apparent(svuv) =
ß
{u 7→ 0, v 7→ 0}, {u 7→ 1, v 7→ 1},
{u 7→ 0, v 7→ 1}, {u 7→ 1, v 7→ 0}

™
= ssuv ∪ {u 7→ 0, v 7→ 1}

(3)

In this approach the possible values of u ≥ v are {false, true}, but the only possible value of v = v is true.

Each of the above forms of expression evaluation is suitable in different contexts. The sets-of-states view
corresponds to the states that actually occur. Hence, for example, if one would like to show that some safety
property holds for all states of a system, one needs to show it holds in this view. Note that this is an ideal view
because in many cases one will not be able to directly observe the actual set of states.

The sets-of-apparent-states view is less deterministic than the sets-of-states view. In it expressions are evalu-
ated in an apparent set of states, where the values of the variables in the sets of apparent states range over their
values in the actual sets of states. It corresponds to sampling the state over a time interval—so that the values
of the variables may be sampled at slightly different times—but each evaluation of an expression is done with
a single sampled value for each variable and hence expressions like v = v always evaluate to true. This view
corresponds to the approach commonly used in real-time control systems. As is shown below in Section 2.6, the
apparent states for a time interval include all the actual states and hence, if a safety property can be shown to
hold for all apparent states, it also holds for the actual states. However, it is often harder to show a property holds
in the sets of apparent states view because there are typically more apparent states than actual states.

The sets-of-values view is the least deterministic view. In it expressions are evaluated with each occurrence
of a variable taken from a set of possible values for that variable. It corresponds to expression evaluation in
which a variable’s value is read/sampled whenever its value is needed and hence different occurrences of a



variable within an expression may have different values. For example, for integer v, v + v may evaluate to an
odd number, whereas 2 ∗ v will always evaluate to an even number. This view corresponds to evaluating an
expression in a context in which a concurrent process may be modifying the values of variables that are shared
between processes and each access to a variable in an expression reads the shared variable. As is shown below,
if a safety property holds for all possible evaluations in a sets-of-values view, then it holds for all corresponding
apparent states and hence for all actual states. Again it is harder to show the property holds because the evaluation
in the sets-of-values view has potentially more possible values for the expression.

Section 2 formalises all three forms of expression evaluation, the relationships between them, and the con-
ditions under which the different forms of evaluation are equivalent. Section 3 extends the approach to consider
modal predicates corresponding to the three evaluation schemes, and Section 4 relates the approach to expression
evaluation over timed traces.

2 Expression evaluation

Section 2.1 introduces the syntax of expressions and Section 2.2 gives their standard (deterministic) evaluation
semantics in a single state. Section 2.3 gives the first of the three nondeterministic semantics, all of which give the
set of possible values of an expression given a set of states. The first evaluates an expression using the standard
semantics for each state in a set of states to give a set of values. A less deterministic evaluation strategy is covered
in Section 2.4 using a sets-of-values view and Section 2.5 extends this to sets-of-values views of sets of states
(the second evaluation strategy). The third approach, that uses evaluation in sets of apparent states, is covered
in Section 2.6; as part of this a Galois connection relating sets of (apparent) states with sets-of-values views is
developed. The three strategies are compared in Section 2.7, which shows that sets-of-values evaluation is less
deterministic than evaluation over a set of states, with evaluation over a set of apparent states falling between
these two.

2.1 Syntax of expressions

For the purposes of this paper a simplified syntax for expressions that highlights the issues involved is used. The
formal parts of our model are presented using the mathematical notation of Z [1, 23, 5]. For the syntax ⊕ is used
to represent a binary operator. As unary operators are treated in the same manner by all evaluation strategies,
they are omitted here to simplify the presentation.

Definition 1 (Syntax of expressions). Expressions consist of constants, variables and binary operators,

E ::= C | Var | E⊕ E ,

where C and Var give the syntax for constants and variables (not given in detail here).

The following notational conventions are used: c and d are constants; u, v, and w are variables; and e and f are
expressions.

Definition 2 (free variables). The set of variables that occur free within e is represented by vars(e).

vars : E→ Var

∀ c : C; v : Var; e, f : E •
vars(c) = {}
vars(v) = {v}

vars(e⊕ f) = vars(e) ∪ vars(f)

Definition 3 (expressions over a set of variables). EV is the set of all expressions over a set of variables V.

EV “= {e : E | vars(e) ⊆ V}

Note that the set of free variables of an expression in EV is not required to be the whole of V.



2.2 Expression evaluation in a single state

The state of a system consists of the values of the system’s variables; for example, for a system with variables
u and v having values taken from the set {0, 1}, a state in which u has the value 0 and v has the value 1 is
represented by the mapping {u 7→ 0, v 7→ 1}.

Definition 4 (State). A state space, ΣV, over a set of variable names, V ⊆ Var, is represented by a mapping
from V to values, represented by the set X.

ΣV “= V→ X

A state, σ ∈ ΣV, maps each variable name in its domain, V, to its value in σ. For simplicity the universal set X is
used for all values, rather than each variable having values of a particular type. It is assumed that X contains the
booleans and integers, as well as any other values required for a particular application.

Definition 5 (Expression evaluation). The following defines the evaluation of an expression, e ∈ EV, in a state,
σ ∈ ΣV , both over the variables, V.

eval : EV → (ΣV → X)

∀σ : ΣV; c : C; v : V; e, f : EV •
eval(c)(σ) = c
eval(v)(σ) = σ(v)

eval(e⊕ f)(σ) = eval(e)(σ)[[⊕]]eval(f)(σ)

Note that the occurrence of ⊕ to the left of the “=” is syntax, but on the right [[⊕]] is the semantic interpretation
of the operator. For non-well-typed expressions it is assumed that there is some undefined value, which is used
as the result; below it is assumed that expressions are well-typed.

The notation, (V C σ), for V ⊆ Var and state σ, stands for the subset of σ with its domain restricted to the
variables in V.

Lemma 1. For an expression e and states σ0 ∈ ΣV0 and σ1 ∈ ΣV1 , where vars(e) ⊆ V0 and vars(e) ⊆ V1, if
(vars(e)C σ0) = (vars(e)C σ1), then

eval(e)(σ0) = eval(e)(σ1) .

2.3 Expression evaluation over a set of states

Over a time interval, the state may evolve and hence during the interval there may be a set of actual states of the
system variables, one state for each time. One may take time to be real numbers in order to handle continuously
evolving environmental variables and hence the set of states for a time interval is potentially uncountably infinite.
If the values of the variables are changing over time then there will be multiple possible evaluations of an expres-
sion involving those variables. This section considers an idealised scheme for handling such nondeterminism, in
which the set of values of an expression is formed by evaluating the expression in each of the states.

Definition 6 (sets of states evaluation). Given an expression, e ∈ EV, and a set of states, ss ∈ PΣV, the
function eval ss returns the set of values of the expression in every state.

eval ss : EV → (PΣV → P X)

eval ss(e)(ss) = {σ : ss • eval(e)(σ)}

The notation {σ : ss • f} stands for the set of all values of f for σ ranging over states in ss.4

4 This is more commonly written {f | σ ∈ ss} but it is preferable not to use this notation because it is unclear whether σ is
bound within the set comprehension or a free variable being tested for membership of ss.



Lemma 2 (eval-ss monotonicity). For an expression, e ∈ EV, and sets of states, ss0 and ss1, both over V, if
ss0 ⊆ ss1,

eval ss(e)(ss0) ⊆ eval ss(e)(ss1) .

For a set of states, ss, the notation, VC ss, stands for {σ : ss • VC σ}.

Lemma 3. For an expression e and sets of states ss0 ∈ ΣV0 and ss1 ∈ ΣV1 , where vars(e) ⊆ V0 and vars(e) ⊆
V1, if vars(e)C ss0 = vars(e)C ss1, then

eval ss(e)(ss0) = eval ss(e)(ss1) .

Evaluating a binary expression over a set of states gives a subset of the results of evaluating each operand
over the same set of states and combining the results according to the binary operator. If “⊕” is a binary operator,
the operator “⊕” is “⊕” lifted to arguments that are sets, so that for sets of values, sx and sy,

sx⊕ sy “= {x : sx; y : sy • x⊕ y} .

Theorem 1 (eval-ss subdistribution). For any expressions e and f over V, and set of states, ss ∈ PΣV,

eval ss(e⊕ f)(ss) ⊆ eval ss(e)(ss) [[⊕]] eval ss(f)(ss) .

Proof.

eval ss(e)(ss) [[⊕]] eval ss(f)(ss)
= {x : eval ss(e)(ss); y : eval ss(f)(ss) • x[[⊕]]y}
= {σ0 : ss; σ1 : ss • eval(e)(σ0)[[⊕]]eval(f)(σ1)}
⊇ constraining so that σ0 = σ1

{σ : ss • eval(e)(σ)[[⊕]]eval(f)(σ)}
= {σ : ss • eval(e⊕ f)(σ)}
= eval ss(e⊕ f)(ss)

2

As an example of why Theorem 1 specifies subset rather than equality, consider a set of states

ssxy = {{x 7→ 0, y 7→ 0}, {x 7→ 1, y 7→ 1}},

then eval ss(x + y)(ssxy) = {0, 2} but eval ss(x)(ssxy) [[+]] eval ss(y)(ssxy) = {0, 1, 2}.

2.4 Expression evaluation over a sets-of-values view

Unfortunately, it is not always possible to observe accurately a set of states, especially when observing multiple
variables all of which are evolving over time, because a snapshot of an entire state typically cannot be taken.
An implementation sampling over an interval in which u changes from 0 to 1 and then v changes from 0 to 1
(corresponding to the set of states ssuv above (1)) may sample u before both modifications and get 0 and then
sample v after both variables have changed and get 1, but the state {u 7→ 0, v 7→ 1} is not one of the actual states
in ssuv. To accommodate this sampling anomaly, an abstraction of the set of states over an interval, which we
call the sets-of-values view, is used. The sets-of-values view, svuv, corresponding to the set of states ssuv in (1)
above only indicates that both u and v take on the values 0 and 1 during the interval:

svuv = {u 7→ {0, 1}, v 7→ {0, 1}}.

The sets-of-values view of a set of states has less information than the set of states, in the sense that a single
sets-of-values view may correspond to multiple sets of states.

Definition 7 (sets-of-values view). A sets-of-values view over a set of variable names, V, is represented by a
mapping from V to sets of values.

VStateV “= V→ P X



Expression evaluation in the sets-of-values view is less deterministic than expression evaluation over a set of
states because a single variable may take on multiple values within a single evaluation. For example, if a variable,
v, has multiple values, an expression like v = v may evaluate to either true or false.

Definition 8 (sets-of-values evaluation). For an expression, e, and a sets-of-values view, sv, both over V, the
function eval sv returns the set of all values of the expression with respect to sv.

eval sv : EV → (VStateV → P X)

∀ sv : VStateV; c : C; v : V; e, f : EV •
eval sv(c)(sv) = {c}
eval sv(v)(sv) = sv(v)

eval sv(e⊕ f)(sv) = eval sv(e)(sv) [[⊕]] eval sv(f)(sv)

Again note that ⊕ to the left of the “=” is just syntax, but on the right [[⊕]] is the lifted version of the semantic
interpretation of the operator. As with eval, for non-well-typed expressions it is assumed that there is some
undefined value, which is used as the result; below its is assumed that expressions are well-typed.

This form of expression evaluation corresponds to that given by Coleman and Jones [4], although they use an
operational semantics to define expression evaluation.

A sets-of-values view, sv0, is subsumed by another, sv1, written sv0 ⊆· sv1, iff for every variable, the set of
possible values in sv0 is contained in that of sv1.

Definition 9 (subsumption). For sv0 and sv1 both in VStateV,

sv0 ⊆· sv1 “= (∀ v : V • sv0(v) ⊆ sv1(v)) .

Lemma 4 (eval-sv monotonicity). For two sets-of-values views, sv0 and sv1, if sv0 ⊆· sv1,

eval sv(e)(sv0) ⊆ eval sv(e)(sv1) .

Lemma 5. For an expression e ∈ EV and sets-of-values views sv0 ∈ VStateV0 and sv1 ∈ VStateV1 , where
V ⊆ V0 and V ∈ V1, if (vars(e)C sv0) = (vars(e)C sv1), then

eval sv(e)(sv0) = eval sv(e)(sv1) .

2.5 Relating a set of states to a sets-of-values view

The set of states ssuv given above in (1) corresponds to the sets-of-values view svuv given in (2). The function
values represents this relationship, so that values(ssuv) = svuv.

Definition 10 (values).

values : PΣV → VStateV

∀ ss : PΣV • values(ss) = (λ v : V • {σ : ss • σ(v)})

Lemma 6 (values monotonic). If ss0 ⊆ ss1, then values(ss0) ⊆· values(ss1).

If a set of states, ss, is nonempty then there is at least one value for each variable. The notation P1 X stands for
the set of all non-empty subsets of X.

Lemma 7. For any nonempty set of states, ss ∈ P1ΣV, then values(ss) ∈ V→ P1 X.

Definition 11 (deterministic). A variable v is deterministic in a sets-of-values view sv iff sv(v) is a singleton
set, and a set of variables W is deterministic in sv iff all variables in W are deterministic in sv.

If a sets-of-values view only has one value for each variable, it corresponds to a single (standard) state. The
function det values extracts a sets-of-values view from a single state. Each variable in the sets-of-values view is
mapped to a singleton set containing the value of the variable in the state.



Definition 12 (deterministic values).

det values : ΣV → VStateV

det values(σ) = values({σ})

Note that det values(σ) = (λ v : V • {σ(v)}).
For a state, σ, evaluating an expression deterministically (using eval) corresponds to using the sets-of-values

evaluation for the corresponding deterministic sets-of-values view.

Theorem 2 (deterministic evaluation). Given a state σ ∈ ΣV,

eval sv(e)(det values(σ)) = {eval(e)(σ)} .

Proof. The proof is via structural induction over expressions. For a constant c, the argument is as follows.

eval sv(c)(det values(σ)) = {c} = {eval(c)(σ)}

The case for variables uses the state.

eval sv(v)(det values(σ))
= by Definition 8 (eval-sv)

det values(σ)(v)
= by Definition 12 (deterministic values) as det values(σ) = (λ v : V • {σ(v)})
{σ(v)}

= by Definition 5 (eval)
{eval(v)(σ)}

The case for a binary expression follows.

eval sv(e⊕ f)(det value(σ))
= eval sv(e)(det values(σ)) [[⊕]] eval sv(f)(det values(σ))
= by the induction hypothesis (twice)
{eval(e)(σ)} [[⊕]] {eval(f)(σ)}

= {eval(e)(σ)[[⊕]]eval(f)(σ)}
= {eval(e⊕ f)(σ)}

2

A sets-of-values view values(ss) can be extracted from a set of states, ss, and hence expression evaluation for
a set of states can be defined in terms of the sets-of-values view of the set of states.

Definition 13 (sets-of-values view evaluation from a set of states). Expression evaluation over the sets-of-
values view of a set of states is defined as follows.

eval vss : EV → (PΣV → P X)

eval vss(e)(ss) = eval sv(e)(values(ss))

Lemma 8 (eval-vss monotonic). If ss0 ⊆ ss1, then eval vss(e)(ss0) ⊆ eval vss(e)(ss1).

Lemma 9. For an expression, e, and sets of states, ss0 ∈ PΣV0 and ss1 ∈ PΣV1 , where vars(e) ⊆ V0 and
vars(e) ⊆ V1, if vars(e)C ss0 = vars(e)C ss1, then

eval vss(e)(ss0) = eval vss(e)(ss1) .

Unlike sets-of-states evaluation, evaluation of a binary expression over a set-of-values view, distributes.

Theorem 3 (eval-vss distribution). For all expressions e and f, and sets of states, ss, all over V,

eval vss(e⊕ f)(ss) = eval vss(e)(ss) [[⊕]] eval vss(f)(ss) .



Proof.
eval vss(e⊕ f)(ss)

= eval sv(e⊕ f)(values(ss))
= eval sv(e)(values(ss)) [[⊕]] eval sv(f)(values(ss))
= eval vss(e)(ss) [[⊕]] eval vss(f)(ss)

2

2.6 Expression evaluation over apparent states

If one considers a mapping in the opposite direction to values, i.e., from a sets-of-values view to a set of states,
the set of states that may be apparent in a sets-of-values view can be extracted by considering all possible states
such that each variable maps to an element of its set of possible values. For the sets of values svuv given in (2),
the corresponding set of apparent states is

apparent(svuv) =
ß
{u 7→ 0, v 7→ 0}, {u 7→ 1, v 7→ 1},
{u 7→ 0, v 7→ 1}, {u 7→ 1, v 7→ 0}

™
.

The function, apparent, determines the set of apparent states for any sets-of-values view.

Definition 14 (apparent).

apparent : VStateV → PΣV

∀ sv : VStateV • apparent(sv) = {σ : ΣV | (∀ v : V • σ(v) ∈ sv(v))}

Lemma 10 (apparent monotonic). If sv0 ⊆· sv1, then apparent(sv0) ⊆ apparent(sv1).

The following examples illustrate the relationship between apparent and values.

ssuv = {{u 7→ 0, v 7→ 0}, {u 7→ 1, v 7→ 0}, {u 7→ 1, v 7→ 1}}
svuv = values(ssuv)

= {u 7→ {0, 1}, v 7→ {0, 1}}

apparent(svuv) =
ß
{u 7→ 0, v 7→ 0}, {u 7→ 1, v 7→ 1},
{u 7→ 0, v 7→ 1}, {u 7→ 1, v 7→ 0}

™
⊃ ssuv

values(apparent(svuv)) = {u 7→ {0, 1}, v 7→ {0, 1}}
= svuv

A set of states has potentially finer information than the corresponding sets-of-values view, i.e., the function
values may map different sets of states, ss0 and ss1, to the same set-of-values view, sv. Hence values does not
have a unique inverse, however, the function apparent is a pseudo-inverse of values in the sense that for all
sets-of-values views, sv,

apparent(values(apparent(sv))) = apparent(sv)

or equivalently using function composition,

apparent ◦ values ◦ apparent = apparent . (4)

Similarly,
values ◦ apparent ◦ values = values . (5)

These properties suggest that the pair of functions (values, apparent) forms a Galois connection.

Theorem 4 (Galois connection). The pair of functions (values, apparent) forms a Galois connection, between
PΣV with subset ordering and the space VStateV with the subsumption ordering. That is, for any set of states
ss ∈ PΣV and set-of-values view sv ∈ VStateV,

values(ss) ⊆· sv ⇔ ss ⊆ apparent(sv) .



Proof.

ss ⊆ apparent(sv)
⇔ ss ⊆ {σ : ΣV | (∀ v : V • σ(v) ∈ sv(v))}
⇔ ∀σ : ΣV • σ ∈ ss⇒ (∀ v : V • σ(v) ∈ sv(v))
⇔ ∀ v : V • ∀σ : ΣV • σ ∈ ss⇒ σ(v) ∈ sv(v)
⇔ ∀ v : V • ∀ x : X • x ∈ {σ : ss • σ(v)} ⇒ x ∈ sv(v)
⇔ ∀ v : V • {σ : ss • σ(v)} ⊆ sv(v)
⇔ ∀ v : V • values(ss)(v) ⊆ sv(v)
⇔ values(ss) ⊆· sv

2

By the theory of Galois connections, both values and apparent are monotonic and that they satisfy properties
(4) and (5). Furthermore, the definition of the function values uniquely determines the function apparent in order
to satisfy the Galois connection property and vice versa. Because values(ss) ⊆· values(ss) and apparent(sv) ⊆
apparent(sv), the following corollary holds.

Corollary 1. For any set of states ss ∈ PΣV and sets-of-values view sv ∈ VStateV,

ss ⊆ apparent(values(ss)) (6)
values(apparent(sv)) ⊆· sv . (7)

Provided every variable in a sets-of-values view has at least one value, the function apparent is one-to-one
(i.e., distinct sv0 and sv1 are mapped to distinct sets of states) and the pair of functions satisfy the property that
values ◦ apparent is the identity function. This property strengthens property (5).

Theorem 5. If every variable in a sets-of-values view, sv, has at least one value, i.e., sv ∈ V→ P1 X,

sv = values(apparent(sv)) .

In the proof the notation {x : T | p • e} stands for the set of all the values of the expression e for x ranging over
the set T such that p holds.

Proof. For all sets-of-values views, sv ∈ V→ P1 X the following holds.

values(apparent(sv))
= values({σ : ΣV | (∀ v : V • σ(v) ∈ sv(v))})
= (λ v : V • {σ : {σ : ΣV | (∀ v : V • σ(v) ∈ sv(v))} • σ(v))})
= (λ v : V • {σ : ΣV | (∀ v : V • σ(v) ∈ sv(v)) • σ(v))})
= as sv(v) is nonempty for all v ∈ V

(λ v : V • {σ : ΣV | σ(v) ∈ sv(v) • σ(v)})
= (λ v : V • sv(v))
= sv

2

Definition 15 (deterministic variable). A variable, v, is deterministic in a set of states, ss ∈ PΣV, where v ∈ V,
iff it has the same value in all those states, i.e.,

∀σ : ss • values(ss)(v) = {σ(v)} .

Theorem 6 (single nondeterministic variable). If in a set of states, ss ∈ PΣV, all variables, with the possible
exception of a single variable, are deterministic,

ss = apparent(values(ss)) .



Proof. Note that for a variable, v, that is deterministic within ss,

∀σ′ : ss • values(ss)(v) = {σ′(v)}. (8)

Assume the single possibly nondeterministic variable is w. For any σ, the following holds.

σ ∈ apparent(values(ss))
⇔ (∀ v : V • σ(v) ∈ values(ss)(v))
⇔ (∀ v : V • v 6= w⇒ σ(v) ∈ values(ss)(v)) ∧ (σ(w) ∈ values(ss)(w))
⇔ (∀ v : V • v 6= w⇒ σ(v) ∈ values(ss)(v)) ∧ (∃σ′ : ss • σ(w) = σ′(w))
⇔ no free occurrences of σ′ in the universally quantified formula
∃σ′ : ss • (∀ v : V • v 6= w⇒ σ(v) ∈ values(ss)(v)) ∧ σ(w) = σ′(w)

⇔ as all v other than w are deterministic in ss, values(ss)(v) is a singleton set
∃σ′ : ss • (∀ v : V • v 6= w⇒ {σ(v)} = values(ss)(v)) ∧ σ(w) = σ′(w)

⇔ as all v other than w are deterministic values(ss)(v) = {σ′(v)} for any σ′ ∈ ss by (8)
∃σ′ : ss • (∀ v : V • v 6= w⇒ {σ(v)} = {σ′(v)}) ∧ σ(w) = σ′(w)

⇔ ∃σ′ : ss • (∀ v : V • σ(v) = σ′(v))
⇔ ∃σ′ : ss • σ = σ′

⇔ σ ∈ ss

2

Note that if there are two nondeterministic variables within a set of states, ss, this theorem does not hold because,
for example, if sswv = {{w 7→ 0, v 7→ 1}, {w 7→ 1, v 7→ 0}}, in which both w and v are nondeterministic,
apparent(values(sswv)) also contains the states {w 7→ 0, v 7→ 0} and {w 7→ 1, v 7→ 1}, as well as those in sswv.

If a state is formed by combining parts of two apparent states, the result is an apparent state, provided any
variables in common are deterministic.

Theorem 7 (partitioned apparent state). For any set-of-values view, sv, over variables V, and sets of variables,
W0 and W1, such that W0 ∪W1 = V, then provided sv is deterministic over W0 ∩W1,

{σ0, σ1 : apparent(sv) • (W0 C σ0) ∪ (W1 C σ1)} = apparent(sv) .

Proof. Because sv is deterministic over W0 ∩W1, for any states σ0, σ1 ∈ apparent(sv), (W0Cσ0)∪ (W1Cσ1)
is also a state over V.

{σ0, σ1 : apparent(sv) • (W0 C σ0) ∪ (W1 C σ1)}
= {σ0, σ1 : ΣV | (∀ v : V • σ0(v) ∈ sv(v)) ∧ (∀ v : V • σ1(v) ∈ sv(v)) • (W0 C σ0) ∪ (W1 C σ1)}
= Note this step is valid even if sv(v) = {}, for some v ∈ V
{σ0 : ΣW0 ; σ1 : ΣW1 | (∀ v : W0 • σ0(v) ∈ sv(v)) ∧ (∀ v : W1 • σ1(v) ∈ sv(v)) • σ0 ∪ σ1}

= as for all v ∈W0 ∩W1, σ0(v) = σ1(v)
{σ : ΣV | (∀ v : V • σ(v) ∈ sv(v))}

= apparent(sv)

2

If one considers a set of states, ss ∈ PΣV, the corresponding sets-of-values view, sv = values(ss), and the set
of apparent states corresponding to that, as = apparent(sv), then (nondeterministic) expression evaluation over
as is less deterministic than over ss, but more deterministic than over sv. The apparent or sampled expression
evaluation function, eval samp, is defined over a set of states, ss, such that it is equivalent to evaluation of the
expression over the apparent states extracted from the sets-of-values view of ss.

Definition 16 (evaluation over sets of apparent states).

eval samp : EV → (PΣV → P X)

eval samp(e)(ss) = eval ss(e)(apparent(values(ss)))

Lemma 11 (eval-samp monotonic). If ss0 ⊆ ss1, then eval samp(e)(ss0) ⊆ eval samp(e)(ss1).



Lemma 12. For an expression, e, and sets of states, ss0 ∈ PΣV0 and ss1 ∈ PΣV1 , where vars(e) ⊆ V0 and
vars(e) ⊆ V1, if vars(e)C ss0 = vars(e)C ss1, then

eval samp(e)(ss0) = eval samp(e)(ss1) .

Theorem 8 (eval-samp subdistribution). For expressions, e and f, and a set of states, ss, all over V,

eval samp(e⊕ f)(ss) ⊆ eval samp(e)(ss) [[⊕]] eval samp(f)(ss) .

Proof.

eval samp(e)(ss) [[⊕]] eval samp(f)(ss)
= eval ss(e)(apparent(values(ss))) [[⊕]] eval ss(f)(apparent(values(ss)))
⊇ by Theorem 1

eval ss(e⊕ f)(apparent(values(ss)))
= eval samp(e⊕ f)(ss)

2

For example, for the set of states, ssv = {{v 7→ 0}, {v 7→ 1}}, eval samp(v 6 v)(ssv) = {true}, whereas
eval samp(v)(ssv) [[6]] eval samp(v)(ssv) = {true, false}.

Theorem 9 (eval-samp partition). Provided each variable in vars(e) ∩ vars(f) is deterministic within a set of
states, ss, over V, where vars(e⊕ f) ⊆ V,

eval samp(e⊕ f)(ss) = eval samp(e)(ss) [[⊕]] eval samp(f)(ss) .

Proof. Let We = vars(e) and Wf = vars(f).

eval samp(e)(ss) [[⊕]] eval samp(f)(ss)
= {x : eval samp(e)(ss); y : eval samp(f)(ss) • x[[⊕]]y}
= {σ0, σ1 : apparent(values(ss)) • eval(e)(σ0)[[⊕]]eval(f)(σ1)}
= letting sv = (We ∪Wf)C values(ss); Lemma 1
{σ0, σ1 : apparent(sv) • eval(e)(σ0)[[⊕]]eval(f)(σ1)}

= by assumption (We ∩Wf)C σ0 = (We ∩Wf)C σ1; Lemma 1
{σ0, σ1 : apparent(sv) • eval(e)((We C σ0) ∪ (Wf C σ1))[[⊕]]eval(f)((We C σ0) ∪ (Wf C σ1))}

= {σ0, σ1 : apparent(sv) • eval(e⊕ f)((We C σ0) ∪ (Wf C σ1))}
= {σ : {σ0, σ1 : apparent(sv) • (We C σ0) ∪ (Wf C σ1)} • eval(e⊕ f)(σ)}
= by Theorem 7 as sv is deterministic over We ∩Wf
{σ : apparent(sv) • eval(e⊕ f)(σ)}

= {σ : apparent(values(ss)) • eval(e⊕ f)(σ)}
= eval samp(e⊕ f)(ss)

2

Corollary 2 (eval-samp disjoint variables). Provided the free variables of expressions e and f are disjoint and
contained in V, then for all sets of states, ss, over V,

eval samp(e⊕ f)(ss) = eval samp(e)(ss) [[⊕]] eval samp(f)(ss) .

Proof. Because vars(e) ∩ vars(f) is empty, the proviso for Theorem 9 is satisfied for any set of states, ss, over
variables including vars(e⊕ f). 2

2.7 Relation between (nondeterministic) expression evaluations

Expression evaluation over a set of states is more deterministic than over the corresponding apparent states.

Theorem 10 (eval-ss in eval-samp). For any expression, e, and set of states, ss, both over V,

eval ss(e)(ss) ⊆ eval samp(e)(ss) .



Proof. From Corollary 1, ss ⊆ apparent(values(ss)), and the result follows using Lemma 2.

eval ss(e)(ss) ⊆ eval ss(e)(apparent(values(ss))) = eval samp(e)(ss)

2

Nondeterministic expression evaluation results in a set of possible values of the expression in all three evalu-
ation schemes considered. As usual, an implementation of the evaluation of an expression may result in a smaller
set of possible values, that is, refinement is the reverse of set inclusion. Theorem 12 (below) tells us that a sets-of-
values evaluation may be implemented by a set-of-apparent-states (single) sampled evaluation, and Theorem 10
tells us that this may in turn be implemented by a set-of-states evaluation, although the latter (ideal) evaluation
may be hard or impossible to implement in practice.

Definition 17 (refinement of evaluation). One expression evaluation scheme, eval0, is refined by another eval1,
written eval0 v eval1, provided

∀V : P Var • ∀e : EV; ss : PΣV •
eval1(e)(ss) ⊆ eval0(e)(ss) .

The following corollary follows directly from Theorem 10.

Corollary 3 (eval-samp is refined by eval-ss). eval samp v eval ss .

Note that in practice one has to make use of a sampling implementation (i.e., eval samp) but would like to prove
properties for all states (i.e., eval ss), and hence the refinement relationship is the opposite of what is needed to
make proofs of properties easy. In the special case where there is a single variable that is nondeterministic, the
relationship becomes an equality and a sampling implementation is valid.

Theorem 11 (single nondeterministic variable eval). If in a set of states, ss ∈ PΣV, all variables, with the
possible exception of a single variable, are deterministic, then for any expression e, over V,

eval ss(e)(ss) = eval samp(e)(ss) .

Proof. The proof follows from Theorem 6 because, under the assumptions, ss = apparent(values(ss)).

eval ss(e)(ss) = eval ss(e)(apparent(values(ss))) = eval samp(e)(ss) .

2

For a set of states, ss, evaluating an expression in its corresponding set of apparent states, apparent(values(ss)),
is more deterministic than evaluating the expression in the corresponding sets-of-values view.

Theorem 12. For any expression, e, and set of states, ss, both over V,

eval samp(e)(ss) ⊆ eval vss(e)(ss) .

Proof. The proof relies on Lemma 4, which states that eval sv is monotonic in sets-of-values views with respect
to the subsumption ordering and Theorem 2.

eval samp(e)(ss)
= eval ss(e)(apparent(values(ss)))
= {σ : apparent(values(ss)) • eval(e)(σ)}
= {σ : ΣV | (∀ v : V • σ(v) ∈ values(ss)(v)) • eval(e)(σ)}
= by Theorem 2⋃
{σ : ΣV | (∀ v : V • σ(v) ∈ values(ss)(v)) • eval sv(e)(det values(σ))}

⊆ as det values(σ) ⊆· values(ss) for any σ such that (∀ v : V • σ(v) ∈ values(ss)(v))⋃
{σ : ΣV | (∀ v : V • σ(v) ∈ values(ss)(v)) • eval sv(e)(values(ss))}

= because eval sv(e)(values(ss)) is independent of σ
eval sv(e)(values(ss))

= eval vss(e)(ss)

2

Evaluation of an expression using a single sampled value for each variable used in the expression is more
deterministic than using a separate sample for each occurrence of a variable.



Corollary 4 (eval-vss is refined by eval-samp). eval vss v eval samp .

Combining Corollary 3 and Corollary 4 gives

eval vss v eval samp v eval ss .

Theorem 13 (single variable reference eval). If an expression, e, over V has only a single reference to each
nondeterministic variable in a set of states, ss, over V, then

eval samp(e)(ss) = eval vss(e)(ss) .

Proof. The proof uses induction over the structure of expressions. For a constant, c, the proof follows.

eval samp(c)(ss) = {σ : ss • eval(c)(σ)} = {c} = eval sv(c)(values(ss)) = eval vss(c)(ss)

For a variable the proof follows.

eval samp(v)(ss)
= {σ : apparent(values(ss)) • σ(v)}
= values(ss)(v)
= eval sv(v)(values(ss))
= eval vss(v)(ss)

For a binary operator, if e⊕ f has only a single reference to each nondeterministic variable, then the same
property holds for both e and f and furthermore the references to nondeterministic variables in e and f are
disjoint.

eval vss(e⊕ f)(ss)
= by Theorem 3

eval vss(e)(ss) [[⊕]] eval vss(f)(ss)
= by induction hypothesis (twice)

eval samp(e)(ss) [[⊕]] eval samp(f)(ss)
= by Corollary 2

eval samp(e⊕ f)(ss)

2

3 Predicates in the different evaluation approaches

The previous section considered three nondeterministic expression evaluation schemes. This section considers
properties of predicates using these different schemes. For each scheme modal predicates are introduced that
correspond to a predicate, p, holding for all possible evaluations in the scheme and for p holding for some
evaluation in the scheme.

Section 3.1 first defines predicates on a single state, then Section 3.2 promotes these to predicates on sets
of states such that the predicate holds for all states (�* p) or for some state (�p). Section 3.3 considers similar
predicates (written ~p and �p) on apparent (sampled) states and Section 3.4 considers similar predicates (writ-
ten �*p and �p) on sets-of-values views.5 Sections 3.5 and 3.6 explore the relationship between the different
predicates. Finally, Section 3.7 offers a link to a notion used in rely/guarantee reasoning.

3.1 Predicates

A predicate over a state space, Σ, is represented as a boolean-valued expression over Σ.

Definition 18 (Predicate). For a state space Σ, a predicate is represented as follows.

Pred[Σ] == Σ → B

The conventional notations, “∧”, “∨”, “¬” and “⇒” are used for conjunction, disjunction, negation and impli-
cation. These operators are lifted point-wise to states, i.e., (p ∧ q)(σ) = p(σ) ∧ q(σ). Universal implication,
denoted pV q, is defined as (∀σ • p(σ)⇒ q(σ)). Universal equivalence is denoted p ≡ q.

5 As a mnemonic, the universal versions of the operators include a “∗”, while the existential versions include a “·”.



3.2 Predicates on sets of states

Given a state predicate, p, there are two obvious ways to promote it to a set of states (as in modal logics [10]): p
holds for all states in the set, written �* p, and p holds for some state in the set, written �p. For example, for the
set of states

{{u 7→ 0, v 7→ 0}, {u 7→ 1, v 7→ 0}}

satisfies the predicates �* (u ≥ v) and �(u = v).
PV stands for the subset of expression syntax EV that are boolean valued.

Definition 19 (All states and some states).

�* : PV → Pred[PΣV]
� : PV → Pred[PΣV]

∀p : PV; ss : PΣV •
(�* p)(ss)⇔ (∀ b : eval ss(p)(ss) • b) ∧
(�p)(ss)⇔ (∃ b : eval ss(p)(ss) • b)

For example, in a real-time system there may be two boolean sensors, t and b. One can state that it is always the
case that one or the other of the sensors is true �* (t ∨ b), which is a weaker requirement than one or the other
of the sensors always being true, (�* t) ∨ (�* b). If one samples the sensors and both are true, one can deduce
(� t) ∧ (� b), which does not allow one to deduce the stronger property that both sensors are on together, i.e.,
�(t ∧ b), because in the first case the state in which t is true may differ from the state in which b is true.

From Lemma 2 one can deduce the following lemma.

Lemma 13. For all predicates, p, and sets of states, ss0 and ss1 such that ss0 ⊆ ss1,

(�* p)(ss1)⇒ (�* p)(ss0) (9)
(�p)(ss0)⇒ (�p)(ss1) (10)

The boolean operators are promoted to predicates on sets of states in the obvious way (because they are defined
as predicates, but over sets of states rather than states). The following properties of “all states” and “some state”
hold when combined with logical operators. Note that (14) and (15) are not equivalences. These properties follow
from Theorem 1.

Theorem 14. For any predicates, p and q,

¬�* p ≡ �(¬p) (11)
�* p ∧ �* q ≡ �* (p ∧ q) (12)
�p ∨ �q ≡ �(p ∨ q) (13)
�* p ∨ �* qV �* (p ∨ q) (14)
�(p ∧ q)V �p ∧ �q (15)

Theorem 15. Given predicates p and q,

(�p⇒ �* q)V �* (p⇒ q) (16)

Proof. By (11) and (14) and the definition of implication. 2

3.3 Predicates on apparent states

We promote a predicate, p, on a single state, to a predicate on sets of apparent states in two ways: if p holds for
all apparent states one says p definitely holds, abbreviated ~p, and if p holds for at least one apparent state, one
says p possibly holds, abbreviated �p.



Definition 20 (Definitely and possibly).

~ : PV → Pred[PΣV]
� : PV → Pred[PΣV]

∀p : PV; ss : PΣV •
(~p)(ss)⇔ (∀ b : eval samp(p)(ss) • b) ∧
(�p)(ss)⇔ (∃ b : eval samp(p)(ss) • b)

From Lemma 11 one can deduce the following lemma.

Lemma 14. For all predicates, p, and sets of states, ss0 and ss1 such that ss0 ⊆ ss1,

(~p)(ss1)⇒ (~p)(ss0) (17)
(�p)(ss0)⇒ (�p)(ss1) (18)

The following properties are directly derivable from the properties of predicates on sets of states (11)–(15).

Theorem 16. For any predicates, p and q,

¬~p ≡ �(¬p) (19)
~p ∧ ~q ≡ ~(p ∧ q) (20)
�p ∨ �q ≡ �(p ∨ q) (21)
~p ∨ ~qV ~(p ∨ q) (22)
�(p ∧ q)V �p ∧ �q (23)

We can represent the fact that a variable is deterministic at the predicate level via a predicate stable(v) that
states that v only takes on a single value.

Definition 21 (stable).

stableV : V→ Pred[PΣV]

∀w : V; ss : PΣV •
stableV(w)(ss)⇔ (∀σ : ss • values(ss)(w) = {σ(w)})

There are two interesting properties of definitely (~) and possibly (�) that do not hold for “all states” (�* )
and “some states” (�).

Theorem 17. For predicates p and q over variables V,

stableV(vars(p) ∩ vars(q))V (�(p ∧ q) = �p ∧ �q) (24)
stableV(vars(p) ∩ vars(q))V (~p ∨ ~q = ~(p ∨ q)) (25)

Proof. We focus on property (24) because (25) can be derived from it because ~p = ¬�¬p.

�(p ∧ q)(ss)
⇔ (∃ b : eval samp(p ∧ q)(ss) • b)
⇔ by Theorem 9 as vars(p) ∩ vars(q) are deterministic in ss

(∃ b : eval samp(p)(ss) ∧ eval samp(q)(ss) • b)
⇔ (∃ x : eval samp(p)(ss); y : eval samp(q)(ss) • x ∧ y)
⇔ (∃ x : eval samp(p)(ss) • x) ∧ (∃ y : eval samp(q)(ss) • y)
⇔ (�p)(ss) ∧ (�q)(ss)
⇔ (�p ∧ �q)(ss)

2

Note that (24) holds for � but not �. For example, if

ssuv = {{u 7→ 0, v 7→ 0}, {u 7→ 1, v 7→ 0}, {u 7→ 1, v 7→ 1}}

then �(u = 0) ∧ �(v = 1) holds in ssuv but not �(u = 0 ∧ v = 1).
For the example of two boolean sensors, t and b, Theorem 17 allows one to deduce that (� t) ∧ (� b) is

equivalent to �(t ∧ b), because t and b are distinct variables, whereas one cannot deduce �(t ∧ b).



Theorem 18. For predicates p and q over V,

stableV(vars(p) ∩ vars(q))V (~(p⇒ q) ≡ (�p⇒ ~q))

Proof. The theorem follows from Theorem 17 and the definition of implication. 2

3.4 Sets-of-values predicates

A predicate, p, on a single state can be promoted to a predicate on a sets-of-values view in two ways: if p holds
for all evaluations in a sets-of-values view one says p positively holds, abbreviated �*p and if p holds for at least
one evaluation in a sets-of-values view, one says p maybe holds, abbreviated �p.

Definition 22 (Positively and maybe).

�* : PV → Pred[PΣV]
� : PV → Pred[PΣV]

∀p : PV; ss : PΣV •
( �*p)(ss)⇔ (∀ b : eval vss(p)(ss) • b) ∧
( �p)(ss)⇔ (∃ b : eval vss(p)(ss) • b)

From Lemma 8 one can deduce the following lemma.

Theorem 19. For all predicates, p, and sets of states, ss0 and ss1 such that ss0 ⊆ ss1,

( �*p)(ss1)⇒ ( �*p)(ss0) (26)
( �p)(ss0)⇒ ( �p)(ss1) (27)

Theorem 20. For all predicates, p and q,

¬ �*p ≡ �(¬p) (28)

�*p ∧ �*q ≡ �*(p ∧ q) (29)

�p ∨ �q ≡ �(p ∨ q) (30)

�*p ∨ �*q ≡ �*(p ∨ q) (31)

�(p ∧ q) ≡ �p ∧ �q (32)

Proof. The properties follow from Theorem 3. The interesting cases are (31) and (32) as in the set-of-values
view they are equivalences. We show just (32) here.

�(p ∧ q)(ss)
⇔ (∃ b : eval vss(p ∧ q)(ss) • b)
⇔ by Theorem 3

(∃ b : eval vss(p)(ss) ∧ eval vss(q)(ss) • b)
⇔ (∃ x : eval vss(p)(ss); y : eval vss(q)(ss) • x ∧ y)
⇔ (∃ x : eval vss(p)(ss) • x) ∧ (∃ y : eval vss(q)(ss) • y)
⇔ ( �p)(ss) ∧ ( �q)(ss)
⇔ ( �p ∧ �q)(ss)

2

3.5 Relating the predicates

The refinement relations between the evaluation approaches induce a relationship between the modal predicates
as captured by the following theorem.

Theorem 21. For any predicate, p,

�*pV ~pV �* p (33)
�pV �pV �p (34)



Proof. We concentrate on (33); the proof of (34) is similar. For all sets of states, ss,

( �*p)(ss)
⇔ by Definition 22 (positively)

(∀ b : eval vss(p)(ss) • b)
⇒ by Theorem 12

(∀ b : eval samp(p)(ss) • b)
⇔ by Definition 20 (definitely)

(~p)(ss)
⇔ by Definition 20 (definitely)

(∀ b : eval samp(p)(ss) • b)
⇒ by Theorem 10

(∀ b : eval ss(p)(ss) • b)
⇔ by Definition 19 (allstates)

(�* p)(ss)

2

A simple case is if there is only one nondeterministic variable, w, i.e., all other variables have only one value
in all states, e.g., the predicate is of the form ~(w ∈ S) or �(w ∈ S), where S is stable over the observation
interval, then ~(w ∈ S) is equivalent to �* (w ∈ S), and �(w ∈ S) is equivalent to �(w ∈ S). Special cases of
these predicates are comparisons of a variable with an expression, e, that is stable over the observation interval,
e.g., w = e and w < e.

Theorem 22 (single non-stable variable). For a predicate p over V,

stableV(vars(p) \ w)V (~p = �* p) (35)
stableV(vars(p) \ w)V (�p = �p) (36)

Proof. We focus on the proof of (35). The proof of (36) is similar.

(~p)(ss)
⇔ (∀ b : eval samp(p)(ss) • b)
⇔ by assumption and Theorem 11

(∀ b : eval ss(p)(ss) • b)
⇔ (�* p)(ss)

2

If one samples a variable, v, in the environment and gets the value c, one can deduce �(v = c) which is
equivalent to�(v = c). Similarly, by sampling w, one may deduce�(w = d), which is equivalent to�(w = d).
Theorem 17 then allows one to deduce �(v = c ∧ w = d) but not the stronger condition �(v = c ∧ w = d).

3.6 On the relationship between sets of apparent states and set-of-values views

Theorem 23 (single variable reference). If a predicate, p, only has a single reference to each variable that is
not stable,

�*p ≡ ~p (37)

�p ≡ �p (38)

Proof. We focus on the proof of (37) — the proof of (38) is similar.

( �*p)(ss)
⇔ (∀ b : eval vss(p)(ss) • b)
⇔ by assumption and Theorem 13

(∀ b : eval samp(p)(ss) • b)
⇔ (~p)(ss)

2



3.7 Possible values

A completely disjoint piece of research has led to the need to reason about what values arise in states when they
are being changed by a process other than the one being specified. This section links the two previously separate
notations.

Standard “Hoare logic” [9] is well known. VDM [13] uses –in so-called “operation decomposition” proofs–
a related set of rules that cope with post-conditions which are relations (of initial and final state). Expressions in
such relations distinguish between the initial values of variables, written ↼−x , and their final values written simply
as x. Thus a post condition for a simple assignment statement, x← y, could be written x = ↼−y .

The basis of rely/guarantee reasoning [11, 12, 14] is to face the fact that interference is the essence of concur-
rency and to use rely conditions to record the interference an operation can tolerate and guarantee conditions to
warn of interference the operation can inflict. In a recent paper [17], a new element of notation was introduced
and its links to the analysis in Section 1 above are intriguing. The notation Ûy is defined as the set of values that
the variable y has over the execution of an operation. In the cited paper, the main payoff of this new concept is in
rely and guarantee conditions but, for the purposes of the current paper, the use can be illustrated with a simple
post condition. If the set of states over the execution interval is ss, then using the concepts developed above Ûy
corresponds to values(ss)(y).

Suppose a specification is implemented by some code which includes the assignment x ← y, and that this is
executed in an environment that can potentially change the value of y. The specification of the statement must
reflect the fact that x could acquire the initial or final values of y (i.e. x = ↼−y ∨ x = y ∨ · · ·). However,
there remains the possibility that the value of y changes multiple times between the start of the operation being
specified and its termination. Written in a post condition, x ∈ Ûy expresses exactly that the final value of x will be
some value that y possessed during execution of the operation being specified. Clearly, this notation will be of
more use in larger applications but hopefully this simple example illustrates the concept without going into the
details of a complex piece of reasoning about concurrency as is contained in [17].

The closest link with the distinctions in Section 1 is with what is called there “sets of apparent states”. Writing
∃ u′ ∈ Ûu, v′ ∈ Ûv • u′ ≥ v′ and ∀ x′ ∈ Ûx • x′ = x′ gives exactly that meaning, i.e., �(u ≥ v) and ~(x = x).
To obtain “sets of values”, it is necessary to recognise that references to variables in expressions imply separate
accesses. Thus the second expression changes to ∀ x′, x′′ ∈ Ûx • x′ = x′′, which corresponds to �*(x = x).

The “sets of states” interpretation is, as commented upon in Section 1, useful for invariants. Referencing
the possible values of a vector of variables, e.g., (̆u, v), allows the values of u and v to be captured together (at
the same time). For a vector, (u, v), its possible values (̆u, v), for a set of states ss, corresponds to {σ : ss •
(σ(u), σ(v))}. For example ∀(u′, v′) ∈ (̆u, v) • u′ ≥ v′ corresponds to �* (u ≥ v). It might not be immediately
obvious why the vector extension of “possible values” would be useful in the presence of interfering concurrency
but it was an extension that had already been considered. It can be realised by some form of locking.

It remains to be seen what this notation adds to the underlying concept of nondeterministic expression eval-
uation but it is always encouraging when separate directions of research come together.

4 Expression evaluation over time intervals

The motivation for considering models of nondeterministic expression evaluation comes from evaluating expres-
sions in contexts in which the values of variables within an expression may be changing while the expression is
being evaluated. We can model such evolving states as a trace over time:

TraceV “= Time→ ΣV

where Time could be real numbers to handle real time or natural numbers representing abstract (progression of)
time. This model is used in the real-time refinement calculus [7, 6] and in specifying systems in the context of
their environment [8, 15]. The time interval over which an expression is evaluated can be represented as a set of
times, T , and then the corresponding set of states can be extracted from a trace, tr, by the following function.

states : P Time→ (TraceV → PΣV)

states(T)(tr) = {t : T • tr(t)}



Although the theory presented in this paper could be presented directly on timed traces and evaluation time
intervals, the essential differences between the evaluation strategies can be handled by considering just the corre-
sponding set of states in the evaluation interval and the theory is more simply elucidated on sets-of-states model
than the model based on timed traces and intervals. In fact, if a special auxiliary variable, called τ , is introduced
to represent time within a state, a set of states has all the expressive power of a trace over a time interval. For a
trace, tr ∈ TraceV, the corresponding set of states is ran(tr), where assuming τ ∈ V,

∀ t : dom(tr) • tr(t)(τ) = t .

The use of states with time encoded as the special variable τ allows properties involving time to be expressed in
the set-of-states model, although perhaps not as succinctly as in the timed-trace model.

5 Conclusions

We have presented three models of nondeterministic evaluation of an expression, e, over a set of states, ss:

– a set-of-states evaluation, in which e is evaluated in each state within ss;
– a set-of-apparent-states (or sampling) evaluation, in which e is evaluated in each state within the apparent

states corresponding to ss;
– a sets-of-values view evaluation, in which the sets-of-values evaluation is applied to the set-of-values view

corresponding to ss.

These evaluation strategies are progressively less deterministic. Sets-of-states evaluation is desirable for express-
ing safety properties of systems but is usually not possible to observe in an implementation. Sets-of-values evalu-
ation corresponds to accessing a variable every time it is needed, even if it occurs multiple times in an expression.
This strategy has been used by Ward [26], Larsen and Hansen [18], and Coleman and Jones [4], and is suitable for
modelling expression evaluation in concurrent processes with shared memory. Set-of-apparent-states evaluation
is an intermediate strategy that only samples each variable occurring in an expression once. This strategy was
introduced by Burns and Hayes [3] and is suitable for modelling expression evaluation in real-time systems.

The pair of functions (values, apparent) forms a Galois connection between the different views of the sets of
states. The function values takes a set of states and gives the corresponding set-of-values view and the function
apparent maps in the reverse direction. The fact that they form a Galois connection encourages us that apparent
is the appropriate reverse map corresponding to values.

We have explored under what conditions the different evaluation strategies coincide. The sets-of-states and
sets-of-apparent-states strategies coincide if there is only a single free variable of the expression that is non-
deterministic within the set of states. The sets-of-apparent-states and sets-of-values strategies coincide if the
expression has only a single reference to each nondeterministic variable.

Our models have assumed that variables can only be accessed and updated atomically. This may not be
the case for variables with multiple-word values, such as arrays or records, being accessed/updated as a whole.
Within the models presented here, such variables can be represented by treating a composite variable, such as
an array, as a set of variables, one for each (atomic) word of the composite, e.g., having one variable for each
element (word) of an array. Alternatively, a composite structure can be represented as a single variable, but
the update operation on the whole must be represented as a sequence of (atomic) partial updates which overall
correspond to the update of the whole, e.g., assigning a new value to the whole of an array is represented by a
sequence of updates to the array in which each update modifies a single element (word) in the array, thus making
the intermediate states of the array visible.

Conditional operators, such as conditional “and”, e.g., (i ∈ dom(A)) cand (A(i) = 0), only evaluate the sec-
ond argument conditionally; in the case of “cand” if the first argument evaluates to true. Such operators are
handled by our theories, for example, the above evaluation will not lead to an index out of range being used in
either the sets-of-states model or the apparent-sets-of-states model, but may in the set-of-values model.6

In some cases it may be known that updates to variables will occur in a particular order, which may reduce
the number of possible values of an expression if it too evaluates subexpressions in a particular, for example, if
it uses the conditional “and” operator described above. Our models do not explicitly take into account ordering

6 Assuming the position and length of the array A do not change dynamically.



of updates, but these could be encoded via (abstract) time using the auxiliary variable, τ , discussed in Section 4.
There is a further complication now being foisted on software developers: in “relaxed memory models” [25], the
order of writes into memory becomes a new topic for nondeterminacy! From the point of view of a concurrent
expression evaluation this increases the possible nondeterminacy.

When reasoning about systems one would like to state that properties hold for all states of the system or for
some state and hence suitable modal predicates have been introduced for each of the models. One can show that
a property holds for all states of the system by showing the (stronger) property that it holds for all apparent states,
or the (even stronger) property that it holds for the sets-of-values view of the states. Conversely, if a property
holds for some actual state, it also holds for some apparent state, and if it holds for an apparent state it holds for
a set-of-values view of the state.
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