Newcastle
University

COMPUTING
SCIENCE

Proceedings of the 11th International Workshop on Automated
Verification of Critical Systems

Jens Bendisposto, Cliff Jones, Michael Leuschel and Alexander
Romanovsky (Eds.)

TECHNICAL REPORT SERIES

No. CS-TR-1272 September 2011

TECHNICAL REPORT SERIES

No. CS-TR-1272 September, 2011

Proceedings of the 11th International Workshop on
Automated Verification of Critical Systems

J. Bendisposto, C. Jones, M. Leuschel, A. Romanovsky (Eds.)
Abstract

AVOCS, the workshop on Automated Verification of Critical Systems, is an annual
meeting that brings together researchers and practitioners to exchange new results on
tools and techniques relating to the verification of critical systems. Topics of interest
include all aspects of automated verification, including model checking, theorem
proving, abstract interpretation and re refinement; application areas include various
types of critical systems (safety-critical, security-critical, business-critical,
performance-critical, etc.). Contributions that describe different techniques or
industrial case studies are encouraged. The workshop is supported by the ICT
DEPLOQY project.

© 2011 Newcastle University.

Printed and published by Newcastle University,
Computing Science, Claremont Tower, Claremont Road,
Newecastle upon Tyne, NE1 7RU, England.

Bibliographical details

BENDISPOSTO, J., JONES, C., LEUSCHEL, M., ROMANOVSKY, A. (EDS.)

Every Vote Counts: Ensuring Integrity in Large-Scale DRE-based Electronic Voting
[By] J. Bendisposto, C. Jones, M.l Leuschel, A. Romanovsky (Eds.)
Newcastle upon Tyne: Newcastle University: Computing Science, 2011.

(Newcastle University, Computing Science, Technical Report Series, No. CS-TR-1272)

Added entries

NEWCASTLE UNIVERSITY
Computing Science. Technical Report Series. CS-TR-1272

Abstract

AVOCS, the workshop on Automated Verification of Critical Systems, is an annual meeting that brings together
researchers and practitioners to exchange new results on tools and techniques relating to the verification of critical
systems. Topics of interest include all aspects of automated verification, including model checking, theorem
proving, abstract interpretation and re refinement; application areas include various types of critical systems
(safety-critical, security-critical, business-critical, performance-critical, etc.). Contributions that describe different
techniques or industrial case studies are encouraged. The workshop is supported by the ICT DEPLOY project.

About the editors
Jens Bendisposto is now finishing his PhD at Institut fiir Informatik, Heinrich-Heine-Universitat Dusseldorf.

Cliff Jones is a Professor of Computing Science at Newcastle University. He is now applying research on formal
methods to wider issues of dependability. Until 2007 his major research involvement was the five university IRC
on "Dependability of Computer-Based Systems" of which he was overall Project Director - he is now Pl of the
follow-on Platform Grant "Trustworthy Ambient Systems" (TrAmS) (also EPSRC). He is also Pl on an EPSRC-
funded project "Splitting (Software) Atoms Safely" and coordinates the "Methodology" strand of the EU-funded
RODIN project. As well as his academic career, Cliff has spent over twenty years in industry. His fifteen years in
IBM saw among other things the creation -with colleagues in Vienna- of VDM which is one of the better known
"formal methods". Under Tony Hoare, Cliff wrote his doctoral thesis in two years (and enjoyed the family
atmosphere of Wolfson College). From Oxford, he moved directly to a chair at Manchester University where he
built a world-class Formal Methods group which -among other projects- was the academic lead in the largest
Software Engineering project funded by the Alvey programme (IPSE 2.5 created the "mural”(Formal Method)
Support Systems theorem proving assistant). Cliff is a Fellow of the Royal Academy of Engineering (FRENg),
ACM, BCS, and IET. He has been a member of IFIP Working Group 2.3 (Programming Methodology) since
1973 (and was Chair from 1987-96).

Professor Michael Leuschel is head of the STUPS group. He has developed the ProB toolset for the validation of
B specifications. Outside of formal methods, his main research areas are automatic program analysis and
optimization (notably partial evaluation and abstract interpretation). He was awarded the IBM International Chair
1999 on Modeling and Optimization. He was the program chair of LOPSTR’02, PEPM’03 and iFM’09, the
symposium chair of PPDP’07, and is a member of the PEPM and LOPSTR steering committees and of the
editorial board of the Journal of Theory and Practice of Logic Programming. He has published over 120 papers
and developed several tools, such as the ECCE and LOGEN partial evaluation systems. He has been involved in
several EU projects (Deploy, ASAP, PyPy, RODIN, POST) and the Eureka Eurostars project PyJIT.

Alexander (Sascha) Romanovsky is a Professor in the Centre for Software and Reliability, Newcastle University.
His main research interests are system dependability, fault tolerance, software architectures, exception handling,
error recovery, system structuring and verification of fault tolerance. He received a M.Sc. degree in Applied
Mathematics from Moscow State University and a PhD degree in Computer Science from St. Petersburg State
Technical University. He was with this University from 1984 until 1996, doing research and teaching. In 1991 he
worked as a visiting researcher at ABB Ltd Computer Architecture Lab Research Center, Switzerland. In 1993 he
was a visiting fellow at Istituto di Elaborazione della Informazione, CNR, Pisa, Italy. In 1993-94 he was a post-
doctoral fellow with the Department of Computing Science, the University of Newcastle upon Tyne. In 1992-1998
he was involved in the Predictably Dependable Computing Systems (PDCS) ESPRIT Basic Research Action and
the Design for Validation (DeVa) ESPRIT Basic Project. In 1998-2000 he worked on the Diversity in Safety
Critical Software (DISCS) EPSRC/UK Project. Prof Romanovsky was a co-author of the Diversity with Off-The-
Shelf Components (DOTS) EPSRC/UK Project and was involved in this project in 2001-2004. In 2000-2003 he
was in the executive board of Dependable Systems of Systems (DSoS) IST Project. He has been the Coordinator
of the Rigorous Open Development Environment for Complex Systems (RODIN) IST Project (2004-2007). He is
now the Coordinator of the major FP7 DEPLOY Integrated Project (2008-2012) on Industrial Deployment of
System Engineering Methods Providing High Dependability and Productivity.

Suggested keywor ds

VERIFICATION
MODELLING
PROOFS

http://www.dirc.org.uk/�
http://www.dirc.org.uk/�
http://www.cs.ncl.ac.uk/research/projects/detail.php?id=223�
http://rodin.cs.ncl.ac.uk/�
http://homepages.cs.ncl.ac.uk/cliff.jones/VDM.html�
http://www.wolfson.ox.ac.uk/�
http://homepages.cs.ncl.ac.uk/cliff.jones/research-mural.html�
http://research.microsoft.com/~leino/IFIP-WG2.3/�

AVECS'11

Proceedings of the

11th International Workshop
on Automated Verification
of Critical Systems

Newcastle
September 12 - 14, 2011

PREFACE

AVOCS, the workshop on Automated Verification of Critical Systems, is an annual
meeting that brings together researchers and practitioners to exchange new results on
tools and techniques relating to the verification of critical systems. Topics of interest
include all aspects of automated verification, including model checking, theorem prov-
ing, abstract interpretation and refinement; application areas include various types of
critical systems (safety-critical, security-critical, business-critical, performance-critical,
etc.). Contributions that describe different techniques or industrial case studies are
encouraged.

This volume contains the pre-proceedings of the 11th workshop on Automated Ver-
ification of Critical Systems that was hosted by Newcastle University and took place
during September 1214, 2011 in Newcastle upon Tyne, UK.

Previous AVOCS workshops were held at the University of Oxford (2001 and 2007),
the University of Birmingham (2002), the University of Southampton (2003), The Royal
Society in London (2004), the University of Warwick (2005), LORIA, Nancy (2006),
the University of Glasgow (2008), Gregynog (organized by Swansea University) and
Heinrich-Heine-Universitat Diisseldorf (2010). AVOCS 2012 will take place in Bamberg,
Germany.

AVOCS 2011 received 18 submissions (with authors from 13 countries) for Full Papers,
out of which 12 papers were selected for presentation at the workshop. Furthermore,
AVOCS received 11 submissions for Short Contributions out of which 8 were accepted
for presentation. The selection process was carried out by the Program Committee,
taking into account the originality, quality, and relevance of the material presented in
each submission. The selected preliminary Papers are included in this volume, together
with the contributions from the invited speakers Janet Barnes and Tom Maibaum. All
full papers will subsequently appear in an Electronic Communications of EASST.

We wish to thank all authors who submitted their papers to AVOCS 2011, Jodi
Hossbach for help with workshop organization, the Program Committee for its excellent
work and the reviewers who supported the Program Committee in the evaluation and
selection process.

We are grateful to the School of Computing Science at Newcastle University for hosting
the event and thank CSR, Formal Methods Europe and Microsoft for sponsoring AVOCS
2011. We also gratefully acknowledge the use of EasyChair, the conference management
system developed by Andrei Voronkov.

Jens Bendisposto

Cliff Jones

Michael Leuschel
Alexander Romanovsky

AVOCS 2011 Program Committee:

Jens Bendisposto (co-chair)
Antonio Casimiro

Michael Goldsmith

Tan Hayes

Cliff Jones (co-chair)
Michael Leuschel (co-chair)
Felix Loesch

Gerald Luettgen

Ursula Martin

Stefan Merz

Alice Miller

Markus Roggenbach
Alexander Romanovsky (co-chair)
Thomas Santen

Sebastian Wieczorek

Jim Woodcock

AVOCS 2011 Referees:

Names will be published in the final EASST Proceedings

Content

Janet Barnes
Experiences in the Industrial use of Formal Methods

Franz Weitl, Shin Nakajima
Integrated Model Checking of Static Structure and Dynamic Behavior using Temporal
Description Logics

Marco Bozzano, Alessandro Cimatti, Oleg Lisagor, Cristian Mattarei, Sergio Mover,
Marco Roveri, Stefano Tonetta
Symbolic Model Checking and Safety Assessment of Altarica models

Michael Jastram, Stefan Hallerstede, Lukas Ladenberger
Mixing Formal and Informal Model Elements for Tracing Requirements

Mohammad Reza Sarshogh, Michael Butler
Specification and refinement of discrete timing properties in Event-B

Nicolas Chausse, Helen Xu, Juergen Dingel, Karen Rudie
Combining Model Checking and Discrete-Event Supervisor Synthesis

Pieter Philippaerts, Frederic Vogels, Jan Smans, Bart Jacobs, Frank Piessens
The Belgian Electronic Identity Card: a Verification Case Study

Qiuzi Lu, Tianhua Xu, Tao Tang, Haifeng Wang, Yan Cao, Gengqin Chen
A Visualization Framework for the Modeling and Formal Analysis of a Computer Based
Interlocking System

Thai Son Hoang, Alexei Iliasov, Renato A Silva, Wei Wei
A Survey on Event-B Decomposition

Sabina Akhtar, Stephan Merz
Partial-Order Reduction for Verifying PLUSCAL-2 Algorithms

Sanaz Yeganefard, Michael Butler
Structuring Functional Requirements of Control Systems to Facilitate Refinement-based
Formalisation

Xiang Gan, Jori Dubrovin, Keijo Heljanko
A Symbolic Model Checking Approach to Verifying Satellite Onboard Software

Michael Fisher
Verifying Autonomous Systems

Lukas Ladenberger, Aryldo G Russo Jr.
Towards an automatic formal model generation and verification derived from a graphical
model

Yassin Chkouri, Jose Esteves, Elie Soubiran
Designing synchronous to asynchronous model translations for interlocking systems ver-
ification

Brijesh Dongol, Ian J. Hayes
Approximating idealised real-time specifications using time bands

Christophe Ponsard, Jean-Christophe Deprez, Renaud De Landtsheer
Is my Formal Method Tool Ready for the Industry?

Jan Tobias Miihlberg and Leo Freitas
Verifying FreeRTOS: from requirements to binary code

Marc Dragon, Andy Gimblett, Markus Roggenbach
A Simulator for Timed CSP

James Sharp, Helen Treharne and Steve Schneider
Assessing the Applicability of SVA in Analysing VHDL Models

Alexei Iliasov
Generation of certifiably correct programs from formal models

Eﬁ ECEASST

Experiences in the Industrial use of Formal Methods

Janet Barnes

janet.barnes @altran-praxis.com, http://www.altran-praxis.com/
Altran Praxis Ltd, 20 Manvers Street, Bath, UK.

Abstract: Altran Praxis has used formal methods within its high integrity develop-
ment approach, Correctness by Construction (CbyC), for a number of years. The
Tokeneer ID Station (TIS) developed for the US National Security Agency (NSA)
is one example of a development using formal methods and the CbyC approach.
This project used a number of rigorous techniques including formalisation of the
specification using the Z Notation, refinement of the specification to a formal de-
sign, software development in SPARK with proof of absence of run-time errors of
the software and proof of system properties. The project has stood up well to the
intense scrutiny it has been subject to since it became available to the wider commu-
nity in 2008, with only five errors being found. Despite the general success of the
approach there are challenges to using formal methods in an industrial context. By
looking at a number of key properties that affect the success of deployment of tools
and techniques in industry we attempt to put the challenges of industrial deployment
of formal methods into perspective.

Keywords: Correctness by Construction, Formal Methods, SPARK, Tokeneer, Z

1 Introduction

The application of formal methods to the development of software has long been considered by
industry as niche; only applicable to the development of core functions in particularly critical
domains, where safety or security is paramount. Industry in general perceives the application of
formal methods to be prohibitive for a number of reasons: cost, familiarity and maturity often
being cited [Hal90].

Altran Praxis has applied formal methods in a number of its development projects [Hal96,
HCO02, KHCPOO, TIS]. This paper looks at the way that Altran Praxis approaches software
development via its Correctness by Construction approach [Ame06], considering how formal
methods support the fundamental goals of the approach. It then explores the Tokeneer project as
an example of a CbyC implementation where formal methods were adopted at every point in the
lifecycle. Taking the view of an experienced industrial user of formal methods this paper takes a
critical look at some of the criteria that impact the actual and perceived success of the adoption
of formal methods. In conclusion, this paper questions whether industry is in a position to drop
long held prejudices that Formal Methods are too challenging to use in practice and considers
what changes are needed to fully overcome such prejudices.

1/15 Volume X (2011)

Experiences in the Industrial use of Formal Methods Eﬁ

2 Correctness by Construction

Over 20 years Altran Praxis has distilled the essence of best practice, captured from observation
and experiences, into a principle of software development referred to as Correctness by Construc-
tion (CbyC). The key philosophy of CbyC is to avoid the introduction of errors; but where errors
are injected, to find and remove them as early as possible; and to gather certification evidence
efficiently as a natural by-product of the process.

2.1

Applying Correctness by Construction

Correctness by Construction does not prescribe particular tools or techniques in order to achieve
its aims. However, it does propose a number of characteristics to be applied across the develop-
ment lifecycle.

Use unambiguous notations. Ambiguity makes it difficult to determine whether or not
errors exist and misinterpretation is a source of error introduction. Using a notation that
has a well defined and well understood semantics removes ambiguity. Such notations often
benefit from tool support, which can assist in verification.

Take small steps. By taking small semantic steps between stages of the lifecycle it is easy
to demonstrate that one development stage has been correctly refined from its predecessor.

Use appropriate notations. Accept that a given notation may be powerful at expressing
certain system properties but clumsy for expressing others. The aim is to use notations
that allow the system properties or behaviour to be expressed simply. Don’t attempt to use
a single notation if this results in key system properties being difficult to express. Awk-
ward expressions can be difficult to interpret or verify. Similarly, use the most appropriate
verification techniques at each stage. Expect the outputs at each stage in the lifecycle to
be clear and simple to understand.

Don’t repeat information. Each stage of the lifecycle should have a well defined purpose
and focus on the new detail being introduced rather than repeat information. It is then clear
what information has been introduced and what needs to be verified — rather than wasting
energy verifying that information has been correctly copied from one source to another.
Duplication can also be expensive during maintenance as it may become inconsistent and
thus a source of error and confusion.

Check each stage before progressing. Each design step should be verified as soon as
possible to eliminate errors introduced in that stage. Effective reviews are crucial; reviews
should clearly identify what an artefact is being reviewed against and the purpose of the
review. Where review checks can be automated — such as coding style checks — then
tool support should be used early.

Justify decisions. Document the justifications for why design decisions were made, why
they are appropriate, and any arguments demonstrating correctness of the decision. Such
justifications support future analysis — especially in the event of implementing changes to

Proc.

AVoCS 2011 2/15

Eﬁ ECEASST

a system, but more importantly the process of documenting what you do is highly effective
at driving out errors during development.

e Solve difficult problems first. Manage development risks by solving difficult problems
early. This also drives down the level of internal change that might otherwise be introduced
if risks mature later.

Many of the approaches advocated here also contribute to the provision of strong verification
evidence that, if collected appropriately, can contribute positively to the construction of a cer-
tification argument, demonstrating that the system has been built respecting safety or security
needs. None of the concepts are new or radical; if anything it is the careful application of sound
engineering practices using understood tools and techniques that has made this approach suc-
cessful.

2.2 Using formal methods within the CbyC framework

The CbyC approach is particularly powerful when instantiated with formal methods and ap-
proaches. Formal methods have precise semantics and often have an associated language of
reasoning that enables the user to unequivocally demonstrate the truth or otherwise of a property.
Specification languages such as the Z Notation [Spi85] benefit from a richness of notation that
allow the application to be described in terms of real world entities and relationships; Z supports
both the concepts of refinement and encapsulation. In Z, data and operation refinement allow an
abstract specification to be refined toward a concrete, executable realisation. Z’s schema notation
allows detail to be hidden except at the point of introduction and makes complex specifications
manageable, giving focus to the aspects of interest at a given point in a specification and al-
lowing the problem to be decomposed into small, manageable fragments. Notations such as CSP
[Hoa85] are powerful for modelling and reasoning about concurrency problems, especially when
used in conjunction with model checkers such as FDR [FDR]. SPARK is a subset of the Ada
programming language enhanced with contracts that has a formal semantics and is supported by
a suite of tools: the Examiner, Simplifier and Proof Checker, that allow conformance to language
and program properties to be proven. All these notations (Z, CSP and SPARK) provide points in
the development lifecycle prior to the production of object code, when there are artefacts with a
clear semantics. This enables these artefacts, specification and design documents, or source code,
to be formally verified, either as a refinement of a previous lifecycle phase, or more commonly,
as possessing key properties.

Interestingly, many of the benefits of formal notations do not come from the application of
verification techniques, tool supported or otherwise, but from the additional attention to detail
imposed on the author when applying the techniques. Although tools can help to demonstrate
(partial) completeness or correctness it is often before the point of application of such tools that
benefits are first realised as the very act of expression within a formal notation causes the author
to explore the problem domain with a logical mindset — thereby detecting and investigating
incompleteness in the requirements early in the lifecycle.

Having said that, the ability to use tool support to automatically check properties of the system
and even simulate aspects of the system under development is extremely powerful at detecting

3/15 Volume X (2011)

Experiences in the Industrial use of Formal Methods Eﬁ

early lifecycle errors and demonstrating properties of the final system to the customer or key
stakeholders.

3 The Tokeneer ID Station Experiment

The aim of the Tokeneer ID Station (TIS) Experiment [TIS], commissioned by the US National
Security Agency (NSA), was to determine whether it was possible to write software to the stan-
dards imposed by EALS of the Common Ceriteria [[SO99] in a cost effective manner.

The method by which the experiment was undertaken was for Altran Praxis to redevelop a
well defined component of the existing Tokeneer System [RL98] using the CbyC approach ap-
plied using formal notations at every stage of the development lifecycle. Tokeneer was a system
previously developed by the NSA as an unclassified demonstration of the use of smart cards and
biometrics. CbyC was applied in the redevelopment of the core functions of one component of
the Tokeneer system. The development was assessed against EALS5 of the Common Ceriteria to
determine whether the approach achieved the necessary assurance evidence to certify a security
system to EALS. By monitoring the skills needed to perform each stage of the development
approach and the effort involved it was also possible to establish whether the approach was cost
effective.

The experiment was time boxed and some activities were not completed but an estimate of the
cost to complete the activity was provided in all cases to allow the true cost of the approach to
be determined.

3.1 The Tokeneer system

Tokeneer provides protection to secure information held on a network of workstations situated in
a physically secure enclave. The Enrolment Station issues tokens to users. To do this it relies on
a Certificate Authority (CA) to generate user ID Certificates and an Attribute Authority (AA) to
generate attribute certificates containing clearance and privilege information and biometric infor-
mation. The TIS provides protection to the enclave by checking whether the user is authorized
to enter the enclave and adding a certificate to the user token that authorizes the user to operate
on the workstations within the enclave. The workstations check the certificate added by the TIS
station to determine whether the user is authorized to use the facilities it provides.

Once initialised, the TIS holds public keys for the CA and AA. The primary function of the
TIS is controlling user entry. The entry process being as follows: the user presents a token
to the TIS containing three certificates, the user ID certificate, a biometric certificate containing
fingerprint data, and a privilege certificate containing the role and privileges held by the owner of
the token; the TIS checks the validity of these certificates and ensures they are signed by known
authorities. The user then presents their finger to a fingerprint reader and the TIS authenticates
the user by comparing the biometric data on the token with a scan of the user’s finger. If this data
matches and the user privileges allow them access to the enclave then a further authentication
certificate is added to the token, (this is a certificate of relatively short duration) and then unlocks
the enclave door, permitting access. If at any point the TIS deems there to be a breach of security
an alarm is raised. There are also a number of administrator functions that TIS offers to users

Proc. AVoCS 2011 4/15

Eﬁ ECEASST

Protected

Enclave
Crypto

TIS
Portal

Library
Latch
Enrolment
Station

Alarm
simulator

Guard/
Administrator
interaction

Alarm
Interface

Certificate
Library

Admin
Interface

Token
Reader
simulator

Attribute
Authority

Certificate
Authority
Display Fingerprint Token

K
simulator Reader Reader

EY:
simulator simulator
System Simulated Software
component Device subsystem
User interaction

Figure 1: Overall Tokeneer System

Interface

Token
Reader
Interface

Display
Interface

Biometric
Subsystem

Portal
simulator

v

with the appropriate roles. These are archiving log data of all transactions, overriding the door
lock, and updating the configuration data which controls properties of the particular installation
such as operating hours and security classification of the enclave.

Only the core functions of the TIS were developed using the full high integrity Correctness
by Construction approach. Biometric and cryptographic components were simulated as were all
external devices. The interfaces to external devices were developed using industry good practice
but without the application of formal methods.

The customer introduced a change to the requirements part way through the design as a test
of the robustness of the process. They added a requirement for the system to permit entry to
the enclave to a user who had a valid authentication certificate on their token without needing to
repeat the biometric checks.

3.2 The lifecycle

The TIS development lifecycle is depicted in Figure 2, it comprised six distinct phases: require-
ments analysis, security analysis, specification, design, implementation, and test.
Requirements analysis followed Altran Praxis’ requirements engineering approach REVEAL
[HRHO1]. Key to this process was clear identification of the system boundary — important in
this experiment was a clear understanding of boundaries between core functionality, to be de-
veloped to EALS criteria, supporting software, and functionality out of scope of the experiment

5/15 Volume X (2011)

Experiences in the Industrial use of Formal Methods Eﬁ

Protection Profile Prior System
. Documentation .
H A
h . (1)
N s Requirements
: ,' Analysis
2) .' Security Target System ’c‘
Security ! Requirements
Analysis ¢ Specification S
.' ‘|
' + ¢)
S ificati
I“ security Formal : pecitcation
[} Properties Specification :'
[}
’ e
[
14
: v
" Formal Design System Test
Key ' P Specification
4)
Design '. - -
Development i * Stccaae=’
Product [} (6)
S INFORMED System Test
. Design N
External Input u‘
v ' ®
.l Implementation
SPARK K]
Implementation

Figure 2: The development process

— for instance the original Tokeneer system additionally used a password in the authentication
sequence. The context in which the TIS operated was also analysed giving a clear understanding
of the TIS environment, such as the certificates generated externally and the way in which the
door and its locking mechanism operated. Scenarios representing successful and erroneous inter-
actions with TIS were developed with the customer to gain a clear understanding of the required
behaviour of the system.

Security Analysis was performed orthogonally to the remainder of the development process,
it responded to the supplied Protection Profile with a security target and development of the
security properties required of the TIS. These activities focussed on the security needs of the
system without consideration of the required user functionality. A key output of this activity was
a Formal specification of the security properties developed using the Z notation.

Specification of the TIS took the form of a formal behavioural specification developed using
the Z notation. The specification provides an abstract model of the system, focusing on inter-
actions of the system with its real world interfaces, ignoring internal details. By developing a
behavioural model of the system it was possible for the details of the proposed behaviour of the
system to be presented early — before code production. With the help of customer review we
were confident that we were planning to build the right system.

Design was divided into two components. The Formal design, again developed in Z, is a
refinement of the specification introducing the internal details of how the system works — in

Proc. AVoCS 2011 6/15

E

ECEASST
Proof of Formal : Key
Security Formal /—'z: Specification
"\ ex PO Rt . 2) Input to
Properties \ / Specification - eessessensseessnsel activity
presteeeeeencloenr \:wwnnnnoonooooooooev: © Assurance
. Proof of Security : - Refinement Proof ¢ * Activity ¢
Properties Formal Design /’; of Formal Design : *eeemonenogenet
(2) < i 2) :
.. Y
Object being
e : \\> """""" Brosiaf | assured
* Proof of Security : : I;uncti;)tpal
t Properties : : roperties :
© (SPARK Proof) :;LZ?;MED :, (SRARK Prooh. .}
System Test
Specification
SPARK < o .
\': System Test Implementation /_\ Static Analysis
: — \ :

Figure 3: Assurance Activities

the case of TIS the design resolved some priority issues which led to the specification being
potentially non-deterministic in its behaviour, additionally the details of logging and the structure
of certificates as raw data streams were introduced.

The INFORMED design [Ame01] focused on developing a software architecture, it identifies
implementation modules and the information flow between them, it apportions each component
of the formal design to the program module that implements that component, it also covers file
structures and constraints not covered formally.

Implementation of the core TIS is written in SPARK [Bar03] using both flow and proof
contracts. Data and information flow analysis and proof of absence of run-time errors were
done before code review and compilation. Implementation from the formal design was relatively
straightforward — with simple mappings between predicates and code fragments.

Testing was limited to system testing, which was based on achieving a basic level of coverage
of all the schemas in the Formal Design. Ordinarily this would have been undertaken with code
coverage metrics being collected to ensure an adequate coverage of the source code had been
achieved. The Formal Design provided a very clear definition of the required behaviour of the
system on which to base tests.

The aspects of the implementation process that were more radical were the verification activi-
ties. These focused on verifying the correctness of each lifecycle phase early. Further, by using
consistent Formal notations for the Security Properties, the Formal Specification and the Formal
Design, it was possible to prove that the Formal Specification adhered to the Security Properties
and that the Formal Design was a refinement of the Specification. The other area where proof
was applied was in the code, in addition to proving the absence of run-time errors, some of the
security properties were expressed as SPARK proof contracts, the code was then proven to con-

7/15 Volume X (2011)

Experiences in the Industrial use of Formal Methods Eﬁ

form to these properties. Figure 3 demonstrates the assurance activities undertaken, excluding
review which occurs as each component is complete. Each assurance activity was undertaken
as soon as all the inputs to the activity were complete and before proceeding to the next lifecy-
cle activity allowing errors introduced at each phase to be driven out by more than just review
scrutiny.

3.3 Results and subsequent scrutiny

The key outputs of the project were a 100 page behavioural Z specification; the core software
comprised 9,939 lines of code with 6,036 lines of flow contracts and 1999 lines of proof con-
tracts. The supporting software, written in Ada95, comprised 3,697 lines of code. The entire
development required 260-man days, provided by three people working part time over 9 months.
The productivity over the project as a whole was 38 lines of code per day, with the coding rate of
the core software working out at 208 lines of code per day against a rate of 182 for the support
software. Analysis [BC03] showed that the process had been developed to EAL5 and in some
areas had exceeded the requirements of EALS particularly in the levels of formalism applied.

The whole project archive was donated to the Verified Software Repository in 2008 [TIS] and
has subsequently been subjected to wide ranging scrutiny. To date, five defects have been found
in the core software. These defects are fully documented in [WAC10] and were found through
a combination of application of improved tools and critical review. Two of these are completely
benign in the code as it stands, the other three represent potential insecurities in the software.
Of these three, one would have been detected by the latest variants of the toolsets used on the
project — assuming the most demanding levels of checks were selected, a further would have
been detected by undertaking program proof of the remaining security properties and the last
could have been detected following scrutiny of code coverage results.

These results are encouraging and suggest that, with the latest tools, the application of formal
methods supports the development of high quality software suitable for critical domains. Of
course, we can never be certain that every fault has been found but the level and variety of
external scrutiny to date gives considerable confidence in the state of the Tokeneer core software.

Further, the results presented in [MW10] show that following extensive review of the whole
code base and the use of CodePeer the most significant errors were found in the support software.
This was written by the same engineers as the core software, but without the application of
formal techniques such as SPARK and development from a formally specified design, giving a
fair indication that the development process used on the core software did indeed produce higher
quality software.

4 Challenges using formal methods in industry

It is clear from the results of Tokeneer that the application of formal methods can result in the
efficient delivery of high quality software. However, the uptake of many of the approaches on
an industrial scale has been limited. From a technical and commercial viewpoint this seems
like a missed opportunity on the part of industry in general. To try and understand the reasons
behind the apparent lack of industrial enthusiasm, the remainder of the paper seeks to establish

Proc. AVoCS 2011 8/15

Eﬁ ECEASST

more abstract qualities of development and verification approaches which impact their successful
adoption, taking as read that any formal approach will offer unambiguous notations and the
opportunity for analysis of the system.

We propose that the following list is a representative, but not necessarily exhaustive, character-
isation of desirable properties of any development notation, regardless of whether it constitutes
a formal notation:

e scalable,
e notation approachable to all stakeholders,
e expressive (ease of capturing the problem),

tool supported.

It is often the ability to satisfy these demands that influences the adoption of an approach,
rather than the more obvious technical questions of whether the method or tools fulfil the goals of
expressing the desired functionality and contributing towards a correct software implementation.
In the following sections we consider these attributes in more detail and measure the success of
the notations used in the development of Tokeneer against these criteria.

4.1 Scalable

This is a property that is well understood as being key to industrial applicability. There are two
aspects to scalability, first whether the notation allows large problems to be expressed in a way
that is still manageable to the authors and consumers of the artefact; secondly whether tooling
associated with the notation is able to perform efficiently when processing representations of
large problems. We look in more detail at the former problem. The problem of scalability is
constant across the development lifecycle — a system that is complex is likely to have many re-
quirements, a large design and a considerable code base. Effective notations offer encapsulation
and modularisation which aid the presentation of information in manageable portions.

Tokeneer is small as industrial applications go. It has Altran Praxis’ smallest Z specification
covering full functional behaviour. Altran Praxis’ most recent Z specification contains over 3000
schemas, the final developed system being of the order of 150KLOC of SPARK Ada demon-
strating that the Z notation and SPARK are scalable. Larger SPARK developments have been
undertaken outside of Altran Praxis.

In Z we can decompose the system state into logically cohesive components, developing struc-
ture within the system data model and allowing system behaviour to be decomposed into opera-
tions acting on a particular partition of the state. Overall system behaviour is achieved through
composition of partial behaviours. This allows the participants of the specification to be able to
contemplate the system using a divide and conquer approach, only ever needing to consider a
small fragment in detail at any one time.

SPARK similarly allows the system to be analysed in fragments — making use of a rich
package specification to allow components to be analyzed in isolation. Data abstraction also
allows detail to be hidden from public contracts of a package and prevents contract proliferation.

9/15 Volume X (2011)

Experiences in the Industrial use of Formal Methods Eﬁ

Key

~N
~
~N
~N
~
~N
~

Specification ——-- ———— Source Code Development
Artefact

Reader

Figure 4: Artefacts and stakeholders

4.2 Approachable notation

A notation is considered approachable if it is usable by all those stakeholders who need to interact
with it. The usability of a notation will depend on the familiarity of the notation — this familiarity
can be acquired through use, although the ability to make such a transition to a notation will often
be influenced by the underlying skills of the individual who needs to acquire the notation. To
this end there are two things that influence the success of the notation to be approachable: the
diversity of stakeholders who need to be involved with the notation and the difference between
the notation and the languages already familiar to the stakeholders.

A system specification is likely to have a large number of stakeholders with diverse expertise,
from end-users and customers to coders. The end-user and the customer are unlikely to be experts
in the specification notation, although for the specification to be truly effective both the customer
and the end-user will need to understand the system that is being specified — by doing so they
will gain confidence that the system that is about to be built will offer the desired functionality.
In the case of Tokeneer we were privileged to have a Z expert as our customer. However, where
the customer and end-users are not experts in the notation we introduce a potential language
barrier at a crucial early stage in the development lifecycle. It is at the point of developing
the specification that we are first likely to uncover omissions from the requirements, details of
corner case behaviours that the requirements don’t define. Finding and resolving these at the
point of specifying the system is highly efficient and reduces surprises in the system behaviour
and increases the likelihood that we construct the desired product.

There are that can be employed to reduce the language barrier — Altran Praxis has a policy
of supplying a high level of English language description alongside the formal notation although
reading just the (imprecise) English text will loose the value of the precise formal notation. Pro-
vision of training can be effective where there is not too great a disparity between customer,
end-user skills and the selected notation, However, training requires a high level of customer
commitment and can be problematic where the customer or end-user representation is large.
Animation and scenario modelling are powerful as they allow demonstration of features of the
system based on the specification, however a large specification can result in state space explo-
sions and exploring all cases exhibited by the animation could be prohibitive in terms of time.

Proc. AVoCS 2011 10/15

Eﬁ ECEASST

Even relatively simple aspects such as the documentation environment can prove significant
hurdles in terms of familiarity of notation. For example the predominant text preparation method
for Z is via the use of I&IgXwhile the industrial norm for document production is Microsoft
Word or the like. In recent years tools have been developed to support the direct incorporation
of Z paragraphs into Word documents [HalO8] thereby simplifying the process of generating
documentation which incorporates textual descriptions, diagrams and formal paragraphs.

It is attractive from a commercial supplier perspective to obtain agreement to the specification
and deliver to the specification; however this is only a practical proposition where the customer
is truly engaged in the notation. A more realistic goal is for the specification to be viewed
as an artefact internal to the development which allows pertinent questions to be asked of the
customer or end-user; the questions being asked in a language familiar to the customer. Taking
this approach we need to accept that it is highly possible that when producing a specification
there will be differences of interpretation and that these differences may not be realised until the
system is validated — this feels like a lost opportunity although it is no less powerful than using
informal or semi-structured notations to deliver the system specification — where the notation
would be insufficiently precise to detect many of the points of clarification that are uncovered
when writing a formal specification.

Altran Praxis’ experience with the use of Z as a specification language is that Z reading skills
are easily acquired by coders and verifiers alike, suggesting that software engineers typically
possess the necessary logical deductive skills appropriate to interpreting the Z notation.

By contrast the number of stakeholders involved with the source code, who might be required
to understand notations associated with formal code analysis or proof are fewer. Furthermore, it
is often possible to express the proof language in a semantics which represents a modest exten-
sion from the code semantics. There is a small semantic gap between the SPARK language and
Ada making it a relatively painless transition for an Ada programmer to be able to correctly ex-
press and interpret SPARK contracts and the verification conditions generated by the associated
tools.

4.3 Expressiveness

One of the fundamental characteristics of the CbyC approach to software development is to take
small steps between lifecycle stages so that at no point is there a large semantic gap during the
refinement from specification to code. Taking this idea back a stage further it is important to
be able to describe the system in its real-world context as easily as possible in the specification.
Often to achieve this we need to express complex properties of the system’s interaction with the
environment. To this end a highly expressive notation can be extremely effective, allowing a wide
range of concepts to be captured without significant overhead of constructing building blocks
that take the specifier’s attention away form the problem domain and the task of expressing the
behaviour of the system within that domain. Formal refinement techniques can then be used
to transition from an abstract representation toward a design that can be simply implemented.
However, the richer the language the harder it is to become an expert in the full language — this
seems to be a true dilemma, not only to humans as users of the notation but to the provision of
tool support to provide automatic verification.

Our experience in the development of industrial scale specifications is that the use of Z as a

11/15 Volume X (2011)

Experiences in the Industrial use of Formal Methods Eﬁ

highly expressive notation is extremely powerful in allowing the engineer to focus on capturing
the correct description of the system’s behaviour, without excessive distractions from having to
find a way of encoding the relationships with a restrictive language.

Expressiveness becomes less of a critical characteristic of the notation as we move through
the lifecycle toward code. Industrially used programming languages such as Ada and C and their
language subsets such as SPARK Ada and MISRA C are sufficiently expressive to implement
the system.

4.4 Tool support

One of the benefits of using formal notations is that they have sound semantics which make them
amenable to tool supported verification, from the most basic syntax checking to automated or
semi-automated proof. Without the underlying semantic definition it is difficult to make anything
but basic checks on an artefact.

Automated verification is a highly powerful way of finding errors and inconsistencies in the
outputs of the development lifecycle. Furthermore it is typically repeatable and should not be
subject to human error. However, for automated verification to be cost effective, that is detect
a sufficiently high density of faults in a sufficiently short period of time, there are a number of
characteristics that need to be exhibited by the automated verification technique. The tools that
support the technique need to be

o fast,
e trustworthy and supported,
e casily interpretable.

4.4.1 Speed

An effective verification tool must be sufficiently fast that the checks to be run repeatedly in
a cycle of develop — check — correct — check. The speed of a tool is highly dependant on the
modularity of the notation; the class of checks being undertaken and the amount of the system
that the tool needs to interpret to enable it to perform its analysis. The speed of the Examiner is
achieved by the analysis of one package body only being reliant on the enriched specifications
of the other packages that are used by the package under analysis. The fuzz type checker [Spi] is
fast due to the limited scope of its analysis. Both are sufficiently fast that they can be repeatedly
run during development to ensure that the development output is being constructed correctly.
Any checks that need to be run overnight cannot easily be used effectively as development is
undertaken — although they can be used in the performance of final verification activities.

4.4.2 Correctness and Support

It is important to discuss correctness and support together as it is unlikely that any software
product is completely fault free, but if support is readily available to handle faults found then
the product can be considered fit for purpose. When a method and associated tools are selected
for use on a project in industry the answers to the following questions will be fundamental to
whether the tools are selected for use:

Proc. AVoCS 2011 12/15

Eﬁ ECEASST

Can I get help in using the product?
Will the product be fixed promptly if I find a fault with it?
Will the product still be supported in 10 or 20 years time?

Will the product be considered appropriate by any certifying body?
If a development programme has chosen to include a tool in its development or verification
strategy then training of personnel in the use of the tool and technology will be paramount, not
knowing how to use a product to its best effect is expensive in time and a waste of the investment
in the technology.

If a tool is found to be faulty in some respect then it is crucial for the development programme
to either upgrade to a corrected version of the tool or fully understand the limitations otherwise
there can be profound cost implications on the programme as a revised development or verifica-
tion technique would need to be introduced. There is a widely held view that a product being
open source means that it can be corrected, but this assumes that the source can be understood
by the user. Even where the source for a tool is supplied there are significant costs and risks
involved to anyone proposing modification to the tool.

Life expectancy of the tool suite is often of key concern to industrial developers. Many con-
tracts include ongoing maintenance requirements and if the system is to be maintained then its
development environment needs to be maintained and supported for the in service life of the
software product. Although this is a risk with any tool, the risk is perceived to be greater where
the tool is not itself available with a support contract.

Where the software under development is of a safety or security critical nature it is likely that
a regulatory body will assess the processes, methods and tools used during development. Any
tool where the output is used to gain verification credit will be expected to have an appropriate
pedigree — either gained through a good history of use in the field, or by demonstration that the
tool itself has been developed to a high standard.

4.4.3 Interpretation of output

Quality of the output of a verification tool dramatically impacts the time consumed analysing
output and correcting inputs. Developments in tools to include hyperlinked renditions of the
material analysed to aid navigation to the source of errors have been powerful at reducing anal-
ysis time. The Z Word tools [HalO8] do this to great effect allowing the user to run fuzz on the
Word document and then jump from each error message to the source of the error in the Word
document.

The level of false alerting of a tool can be crucial to its effectiveness, a tool that identifies a
large number of potential problematic outcomes in the output will absorb a considerable amount
of manpower in checking and justifying those cases that the tool could not provide a negative or
affirmative outcome. One of the significant successes of the Examiner and Simplifier is the high
percentage of verification conditions (VCs) generated through checking for absence of run-time
errors that are automatically discharged. This makes the activity of checking the outstanding
VCs manageable and has made the proof of absence of run-time errors in SPARK programs an
option that is widely used.

183/15 Volume X (2011)

Experiences in the Industrial use of Formal Methods Eﬁ

5 Conclusion

Formal methods have a huge amount to offer industry in terms of providing unambiguous no-
tations that are suited to formal verification that can in turn be automated. Many industrial
standards for development of software at the highest integrity levels encourage the use of formal
methods [[SO99, DEF97, EN 01] — to the point that it can be cheaper to conform to the standard
by using a development approach that makes use of formal methods than relying on a test driven
argument for certification. The results of the Tokeneer project are a clear demonstration that
the application of formal methods is a cost effective route to the development of high integrity
software. Despite this, the adoption of formal methods by industry is perceived as difficult. This
paper has looked at some of the less technical aspects that influence decisions about the process
by which software is developed and has considered why these aspects rather than the technical
merits of the approach are likely to be significant barriers to acceptance of formal methods.

Of the four key industrial indicators for the acceptability of a general development notation
considered in this paper, scalability and expressiveness are being addressed by formal methods.
The approachability of the notation is more challenging where the notation becomes exposed to
a wide range of stakeholders, so this indicator is most applicable to early lifecycle activities such
as systems specification, where interaction with the customer or end user becomes necessary
to establish the desired behaviour. A number of tactics have been explored that suggest that
approachability of the notation can be addressed by careful choice of the manner of presentation.

This suggests that the most significant barrier to industrial acceptance is the availability of
supported tools — there is a relative plethora of tools available open source that provide the
desired levels of automation, however, this is insufficient. In an industrial context, the need for
tool qualification, fitness for purpose arguments, training and ongoing support make the adoption
of open source tools without support contracts too high a risk on exactly the classes of project
that would most benefit from automated verification. To overcome this hurdle, formal methods
tools need committed maintenance — this requires collaboration between industry and academia
to place supported products in the marketplace at a price that allows adoption on both modest
and large scale applications.

Acknowledgements: My gratitude goes to John Barnes, Rod Chapman and Neil White for
their comments on the draft of this paper.

Bibliography

[Ame01] P. Amey. The INFORMED Design Method for SPARK. 2001. Available on request
from Altran Praxis. http://www.altran-praxis.com/

[Ame06] P. Amey. Correctness by Construction. S.P8001.11.1. 2006. Available on request
from Altran Praxis. http://www.altran-praxis.com/

[Bar03] J. G. P. Barnes. High Integrity Software: The SPARK Approach to Safety and Secu-
rity. Addison-Wesley, 2003.

Proc. AVoCS 2011 14 /15

E

ECEASST

[BCO3]

[DEF97]

[EN 01]

[FDR]
[Hal90]
[Hal96]

[HalO08]

[HCO2]

[Hoa85]

[HRHO1]

[ISO99]

[KHCPOO]

[MW10]

[RLI98]

[Spi]

[Spi85]
[TIS]

[WAC10]

J. E. Barnes, D. Cooper. EALS Demonstrator: Summary Report. S.P1229.81.1. Dec.
2003. in [TIS].

DEFSTAN 00-55 (Part 1). Requirements For Safety Related Software in Defence
Equipment. Aug. 1997.

CENELEC BS EN 50128. Railway applications — Communications, signalling and
processing systems — Software for railway control and protection systems. 2001.

FDR?2 refinement checker. Formal Systems (Europe) Ltd. http://www.fsel.com/
A. Hall. Seven Myths of Formal Methods. IEEE Software 7(5), 1990.

A. Hall. Using Formal Methods to Develop an ATC Information System. /IEEE Soft-
ware 13(2), 1996.

A. Hall. Integrating Z Into Large Projects: Tools and Techniques. In Borger et al.
(eds.), Short Papers of the ABZ 2008 Conference. 2008.

A. Hall, R. Chapman. Correctness by Construction: Developing a Commercial Se-
cure System. IEEE Software 19(1), Jan. 2002.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

J. Hammond, R. Rawlings, A. Hall. Will it Work? In RE’01, 5th IEEE International
Symposium on Requirements Engineering. 2001.

ISO 15408. Common Criteria for Information Technology Security Evaluation.
1999. Version 2.1.

S. King, J. Hammond, R. Chapman, A. Pryor. Is Proof More Cost Effective than
Testing? IEEE Transactions on Software Engineering 26(8), 2000.

Y. Moy, A. Wallenburg. Tokeneer: Beyond Formal Program Verification. 2010.
http://www.open-do.org/wp-content/uploads/2010/04/ERTS2010_final.pdf

L. Reinert, S. Luther. TOKENEER User Authentication Techniques Using Public
Key Certificates, Part 3: An Example Implementation. Technical report, NSA Cen-
tral Security Service INFOSEC Engineering, 1998.

J. M. Spivey. The fuzz type-checker for Z. http://Spivey.oriel.ox.ac.uk/mike/fuzz
J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition, 1985.

Tokeneer ID Station EALS5 Demonstrator Project.
http://www.altran-praxis.com/security.aspx

J. Woodcock, E. G. Aydal, R. Chapman. The Tokeneer Experiments. In Jones et al.
(eds.), Reflections on the work of C.A.R. Hoare. Springer-Verlag, 2010.

15/15

Volume X (2011)

Eﬁ ECEASST

Integrated Model Checking of Static Structure and Dynamic
Behavior using Temporal Description Logics

Franz Weitl and Shin Nakajima

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430 Japan

Abstract: This paper presents a new notation for the formal representation of the
static structure and dynamic behavior of software, based on description logics and
temporal logics. The static structure as described by UML class diagrams is rep-
resented formally by description logics while the dynamic behavior is represented
by linear temporal logic and state transition systems. We integrate these descrip-
tions of static and dynamic aspects into a single formalism called LTLp;. LTLpz
enables a concise and natural yet precise definition of the behavior of software w.r.t.
UML class diagrams and state transition diagrams. We demonstrate our approach
on the sake warehouse problem. Further, we describe how properties of finite LTLpy,
models can be analyzed based on bounded model checking and SMT (satisfiability
modulo theory) solving. We implemented a restricted SMT solver for finite sets and
relations. This SMT solver helped to reduce the model checking runtime signifi-
cantly as compared to bounded model checking with SAL.

Keywords: Bounded Model Checking, Temporal Description Logics, SMT

1 Introduction

UML class diagrams and state transition diagrams are widely adopted for modeling software. It is
desirable to detect flaws in these models as early as possible prior to implementation. We propose
a new integrated approach on representing and checking consistency criteria for system models
consisting of class diagrams and state transition diagrams. We base our approach on description
logic, temporal logic, bounded model checking, and satisfiability modulo theory (SMT) solving.

Description logics are expressive for representing the static structure of some application do-
main. Their expressiveness is closely related to UML class diagrams [BCGOS5]. Temporal logics
are well-suited to describe the behavior of processes in a formal yet abstract way. We propose
to combine these formalisms in a family of temporal description logics called LTLp;, to be able
to address both the static and dynamic aspects of modeled systems. This goes beyond existing
approaches such as Alloy [Jac02] or Spin [Hol97] which focus either on the static structure or
on the dynamic behavior of the modeled system.

For the formal verification of LTLp; properties, we propose a new approach based on bounded
model checking and SMT solving. In a first step, LTLp; models and formulae are transformed
for a certain bound k into a non-temporal SMT(DL) formula which is a Boolean formula over a
restricted theory of finite sets and relations. We implemented a solver for this theory based on
OpenSMT [Bru09]. Experimental results show a higher performance as compared to Boolean
encodings of relational models and SAT solving.

1/17 Volume ?7? (2011)

Integrated Model Checking using TDL Eﬁ

The contributions of the paper are:

1. Definition of the family of temporal description logics LTLp; as a generalization of
ALC—LTL proposed in [BGLOS].

2. Demonstration of the usefulness of LTLp;, for representing static and dynamic properties
of software models w.r.t. UML class and state transition diagrams.

3. Approach on model checking LTLp;, based on bounded model checking and SMT solving.

The rest of the paper is organized as follows: first, we introduce the sake warehouse problem
as a demonstration case, and model its static structure and dynamic behavior. Next, we define
LTLp, and discuss its application to the sake warehouse scenario. In the sequel, we present
our approach on bounded model checking LTLp; using SMT solving. Finally, we compare our
approach with existing work and conclude the paper.

2 Sake Warehouse Scenario

We demonstrate our approach using the sake (Japanese liquor) warehouse scenario which has
been published in 1984 [Yam84] as a shared scenario for comparing different modeling and
programming methods. In Japan, it has been used extensively to evaluate modeling and analysis
methods [NF97]. We summarize the scenario as follows: A sake shop has a warehouse in which
containers are stored. A container contains bottles of one or more brands of sake. Customers
place orders to the shop. Each order may include one or more brands of sake. If all ordered
brands are on stock, the order is delivered immediately to the customer. Otherwise, the customer
is notified and the order is put on a list of pending orders. Whenever new containers enter the
warehouse, pending orders are checked and delivered in case of sufficient stock.
We use this scenario to illustrate the following steps of our approach:

1. Modeling the static structure in terms of a UML class diagram.
2. Modeling the dynamic behavior in terms of a state transition diagram.
3. Representing target properties w.r.t. the models of step 1) and 2).

4. Checking target properties, using SMT-based bounded model checking.

2.1 Sake Warehouse — Static Structure

Figure 1 depicts a UML model of the static structure of the sake shop scenario.

A sake shop keeps a stock and maintains a list of pending orders (Figure 1 top). The stock
consists of a number of containers each of which may contain bottles of several sake brands
(Figure 1 lhs). The sake shop receives new containers at regular intervals (Figure 1 lhs top).

The sake shop handles orders which are placed by customers (Figure 1 center). Each order
contains one or more requested sake brands (Figure 1 lhs). During the order handling process,
an order may become delivered, or pending if it cannot be delivered immediately because of
insufficient stock (Figure 1 bottom). Pending orders are put on the pending list (i.e., list of

Proc. AVoCS 2011 2/17

ECEASST

1 1 I
Stock | g SakeShop w%nding List
-capacity keeps -name 1 1
1 * ;
has +entries()
1 1|28 1<>
* S § * % *
[0}
. * < * 1
Container o Order Customer
-id -id places [name
-capacity -recvDate -address i
w
*
. /N
* c 8
1Y *
Sake Brand 3 | Delivered Pending
-name 1..% -delivDate -pendingDate
-nbOfBottles
Notified
-notificationDate

Figure 1: class diagram modeling the static structure of the sake shop.

pending orders) (Figure 1 rhs) and become notified (Figure 1 bottom) as soon as the shop keeper
issues a notification about the delayed order to the customer.

2.2 Sake Warehouse — Behavior
Figure 2 models the basic behavior of the sake shopkeeper.

Stock Sufficient
for any Pending

Order?
(_ yes no
Pending Order Removed < y }F >(Waiting for Order or New Stock)<
Gending Order Delivered)%(smck UpdatedHontainer Received) (Customer Notiﬁe(D (Order Received) (Order Deliveredj
Stock Updated

Figure 2: state transition diagram modeling the behavior of the sake shopkeeper.

Pending Order Added

Ordered Brands
on Stock?

3/17 Volume ?7? (2011)

Integrated Model Checking using TDL Eﬁ

Initially, the shopkeeper waits for an order or new incoming stock (Figure 2 rhs top). When an
order is received, it is checked, whether all ordered brands are on stock (Figure 2 rhs bottom).
If this is the case, the stock is updated and the order is delivered (Figure 2 rhs). Otherwise, the
order is added to the list of pending orders and the customer is notified (Figure 2 center).

If the sake shop receives a container, it is put on the stock and the stock is updated (Figure
2 lhs center). Next, it is checked, if there are any pending orders and if the updated stock is
sufficient for delivering any of them (Figure 2 lhs top). If this is the case, an appropriate order
will be picked, removed from the list of pending orders and delivered (Figure 2 lhs). Further
pending orders may be delivered as long as there is sufficient stock (Figure 2 lhs).

3 Sake Warehouse — Representation of Target Properties

We aim at representing properties w.r.t. both the static model and the behavior model of some ap-
plication domain. In the case of our sample scenario, the following properties may be important
to meet:

P1 Whenever a customer places an order, the customer will receive some response which may
either be the delivery of the order or a notification that the order is pending because of
insufficient stock (cf. [NakO8]).

P2 Orders may not be pending forever, i.e., orders delayed due to insufficient stock will be
delivered eventually.

P3 If orders are pending then repeatedly incoming stock will eventually cause an order to be
delivered.

P4 Pending orders will be handled with higher priority, i.e., a pending order of some brand X
will be delivered before new orders of brand X (cf. [Nak08]).

We propose LTLpy for the formal representation of such criteria. LTLp; is a modular compo-
sition of linear temporal logic and description logic (DL). This allows for the representation
of properties that address both the static structure and dynamic behavior since the semantics of
UML class diagrams can be represented well by DL, and properties of state transition diagrams
can be expressed by LTL. Before we define syntax and semantics of LTLp;, we briefly review
LTL and description logics.

3.1 Preliminaries - LTL

LTL (linear temporal logics) [Eme90] is supported by many model checking tools for the speci-
fication of requirements that should be met by automata-based models of the system’s behavior.

Definition 1 (LTL syntax)
Let P be a set of symbols representing atomic propositions and a € P an atomic proposition.
Then LTL formulae p,q are built according to the following rules:
p,q — a (atomic proposition) | =p (not) | pAg (and) | pV g (or) | p — g (implies) |
Xp (next) | Fp (future/eventually) | Gp (globally/always) | p U ¢ (until) O

Proc. AVoCS 2011 4 /17

Eﬁ ECEASST

LTL formulae are interpreted w.r.t. state transition systems M = (S,R,L) where S is a non-
empty, finite set of states, R C § x § is a left-total transition relation and L : § — Z(P) is a
labeling of states s € S with sets of atomic propositions L(s) C P that hold at s.

Definition 2 (LTL semantics)

Let M = (S,R,L) be a finite state transition system and x = (so,s1,...) an infinite path in M,
i.e.,s; € Sand (s;,s+1) € R foreach i € N. Let x; = (s;,,+1, ...) denote the tail of x starting from
state s;. Let @ be an atomic proposition and p,q LTL formulae. Then

xEa iff a € L(so)

xE-p iff x}£p

xEp AV =] q iff x| p[and or implies] x |= ¢

xE=Xp iff x; =p

xE=Fp iff thereisi e N:x; |=p

xE=Gp iff forallieN:x;=p

xEpUg iff thereisie€ N:x;[=qgandforall j€{0,....i—1}:xj=p

x |= p expresses that path x satisfies p (or p holds on path x, respectively). An LTL formula p is
considered to hold at a state s € S, denoted as s |= p, iff for all paths x = (s,s1,52,...) in (S,R)
starting at s, it holds: x |= p. O

3.2 Preliminaries — Description Logics

Description logics is a family of fragments of first order predicate logics that are well-suited for
formalizing the meaning of UML class diagrams (cf. [BCGO05]).

As for this paper, we choose the description logic ALC for further illustration. However, the
modularity of our approach allows for adopting any other decidable description logics depending
on expressiveness and performance requirements. We briefly review the syntax and semantics of
ALC as defined, for instance, in [BNO3].

Definition 3 (ALC syntax)

Let € be a set of symbols called atomic concepts representing sets, and & be a set of symbols
disjoint from % called atomic roles representing binary relations.

Let A € € be an atomic concept and R € & an atomic role. Then ALC concepts C,D and ALC
formulae f, respectively, are built according to the following rules:

C,D — A (atomic concept) | =C (complement) | C 1D (intersection) | C U D (union) |
3R.C (existential quantification) | VR.C (universal quantification)
f — CLC D (subsumption) | C = D (equality)

T (universal concept) abbreviates A Ll A and L (empty concept) abbreviates A1 —A. O

Example 1 (ALC syntax)
Consider the atomic concepts Order, Delivered, Pending, Notified, SakeBrand, Container,
PendingList representing classes, and the atomic roles contains, lists, in representing binary

5/17 Volume ?7? (2011)

Integrated Model Checking using TDL Eﬁ

relations according to Figure 1. Then the following are ALC formulae:

ay : Delivered U Pending T Order Every delivered or pending thing is an order.

ay : Order = dcontains.SakeBrand Orders contain at least one sake brand.

as : PendingList C Vlists.Pending Each pending list contains pending orders, only.
ays : Order M —Delivered C Notified Every order that is not delivered is notified.

as : Order MY contains.3in.Container Orders, which contain sake brands, only, that are...

C Delivered ...available in some container, are delivered.

ag : Order M —Vcontains.3in. The set of orders, the sake brands of which are...
(Container M Jon.Stock)) ...not all available in some container on stock, are...
= Pending) ... equal to the set of pending orders. O

Formulae a; through a3 represent some but not all properties expressed by the class diagram
in Figure 1. Formulae a4 through ag, in turn, specify complex properties that are not represented
in the class diagram of Figure 1. For a general discussion of the relationship between description
logics and UML class diagrams, we refer to reader to [BCGO5].

Note that, in our application scenario, the truth of formulae a; through a¢ may or may not
depend on time. Since aj,a,, and az formalize static properties expressed in the class diagram of
Figure 1, they are expected to hold regardless of time. In contrast, the truth of a4,as and ag may
vary throughout the order handling process. For instance, a4 may be false at the time a new order
is received. However, a4 should become true shortly after an order becomes pending because of
insufficient stock. In the case of as, orders of brands, which are on stock, may not be delivered
immediately but at some later time. As for ag, an order of some brand that is not on stock may
become pending not immediately but eventually. ALC and any other standard description logic
cannot capture such time dependencies. To solve this problem we will combine ALC with LTL
in section 3.3.

ALC formulae are interpreted w.r.t. an interpretation domain A and an interpretation function
1" of atomic concepts and roles such that A’ C A and R’ C A x A for each atomic concept A € ¢
and atomic role R € Z.

Definition 4 (ALC semantics)

Let I = (A,-1) be an interpretation of atomic concepts and roles, C,D ALC concepts and R an
atomic role. Let R!(a) = {b € A | (a,b) € R'} denote the image of relation R’ for some a € A.
Then

(=C) = A\C
(cup) = c'up!
(cnp) = c'nD!
(3R.C) = {acA|FecR (a):becC}

(VR.C)! = {acA|VbeR (a):bcC}
I=CcCD iff c'cDf
I=C=D iff C'=D'

Proc. AVoCS 2011 6/17

Eﬁ ECEASST

33 LTLpy

We propose the family of temporal logics LTLp; for the representation of properties w.r.t. mod-
els of both the static structure and the dynamic behavior. LTLpy is similiar to ALC—LTL as
introduced in [BGLO08]. Section 5 contains a detailed comparison of LTLp; with ALC—LTL and
other temporal description logics.

Definition 5 (LTLp syntax)

Let P be a set of symbols representing atomic propositions and DL be the set of formulae of
some decidable description logic DL. Let a € AUDL be an atomic proposition or DL formula.
Then LTLpy, formulae p,q are built according to the following rules:

p,q — a (atomic prop. or DL formula) | —p (not) | pAg (and) | pV g (or) | p — g (implies) |
Xp (next) | Fp (future/eventually) | Gp (globally/always) | p U ¢ (until) O

Remark 1 (LTLpy syntax)

LTLp extends LTL by allowing DL formulae in addition to atomic propositions at locations
where only atomic propositions are allowed in LTL. Hence both LTL and DL are contained in
LTLp.. O

Example 2 (LTLpy syntax)

Consider the logic LTL4zc, i.e., let DL in Definition 5 refer to ALC. Since LTL4z¢ subsumes
ALC, the formulae of Examples 1 are also LTL4z¢ formulae. However, the following LTLaz¢
formulae are neither in LTL nor in ALC.

lag : F(PendingList C —3lists.Pending) The list of pending orders will eventually be empty.

la) : G(—(3places.Order C 1) — Always if somebody places an order then...
F(Order C Delivered U Notified)) ...eventually any order will be delivered or notified.
lay : GF(Pending T Delivered) Always, eventually pending orders are delivered.
las : G(—(Pending C 1) — (GF Always, if there is some pending order then...
(SakeShop T Freceives.Container) ...if the sake shop receives some container infinitely
— F—(Delivered C 1))) ...often then eventually there will be a delivered order.
lay : G((Order M 3contains.BrandX Always, non-pending orders of brand X...
M—Pending C —Delivered) ...will not be delivered...
U(Pending MYcontains.BrandX ...until all pending orders, which contain nothing...
C Delivered)) ...but BrandX, are delivered.

la, through la, are formal representations of properties P1 through P4 listed in the introduction
of section 3. O

LTLp, formulae are interpreted w.r.t. finite relational state transition systems M = (S,R,L,A,I)
where S is a non-empty, finite set of states, R C § x S is a left-total transition relation, L : § —
Z(A) is a labeling of states s € S with sets of atomic propositions L(s) C A that hold at s, Ais a
finite set representing some domain of objects, and I : § — {- (S)} is a state-dependent interpre-
tation function such that AZ(%) CAand R! (s) C A x A for each state s € S, atomic concept A € E,
and atomic role R € %, respectively.

7/17 Volume ?7? (2011)

Integrated Model Checking using TDL Eﬁ

Definition 6 (LTLp; semantics)
Let M = (S,R,L,A,I) be a finite relational state transition system and x = (s, sy, ...) an infinite
path in M. Let d be a DL formula. Then

xEdiff I(so) =d

The semantics of all other cases (atomic proposition a, Boolean connectives =, A,V,—, and
temporal connectives X, F, G, U is identical to the semantics of LTL (Definition 2). O

Example 3 (LTLpz semantics)
Consider the formula GF(Order C Delivered), i.e., “always it holds eventually that any order is
delivered”. Consider the path x = (so,s1,52,50,51,52,50, ...) Where

Order'®) = {01} Delivered'®) = ¢
Order'™) = {01,02} Delivered'™") = {01}
Order'™® = {01,02} Delivered'"? = {01,02}

1.e., there are two orders o1 and 02 which appear in state sg and 51, respectively, and which will be
delivered in state s and s,, respectively. Then x = G(Order C Delivered) because, for instance,
Order'®0) ¢ Delivered'*0). However, x = GF(Order C Delivered) because in each state s; of x
eventually s, will be reached and Order’"?) C Delivered'*?.

O

4 Model Checking LTLp;

Definition 7 (LTLp; model checking)

Let M = (S,R,L,A,I) be a finite relational state transition system, s € S a state, and f a LTLp,
formula. Then the LTLp, model checking problem for M, s, and f is to decide if x = f for all
infinite paths (s,s1,52,...) in (S, R) starting from s. O

Theorem 1 (LTL reduction)

Let M = (S,R,L,A,I) be a finite relational state transition system and f be a LTLp, formula.
Let D = {di,....,d,}, n € N, be the set of DL formulae in f. Let A = {aj,...,a,} be a set of
atomic propositions not appearing in f such that there is a bijection d : A <> D : d(a;) = d,.
Let /' = f[di/a1][d2/a3)]...|d,/ay) be the formula derived from f by substituting all description
logics formula in f with atomic propositions.

Let M’ = (S,R,L’) be such a transition system that L' (s) = L(s) U{a € A | I(s) = d(a)}.

Then f” is a LTL formula and M’ a LTL transition system and it holds for each s € S: M, x = f
for all paths x in M’ starting from state s iff M, x = f’ for all paths x in M starting from s.

Proof. This is a direct consequence of the syntax and semantics definition of LTL and LTLpy.
O]

Remark 2 (LTL reduction)
By theorem 1, a model checking algorithm for LTLp; can be constructed by composing a
LTL model checker and DL model checker as follows: First, using the DL model checker to

Proc. AVoCS 2011 8/17

Eﬁ ECEASST

calculate the labeling function L’ in Theorem 1, and then check for M’,x = f’ using the LTL
model checker. This straight forward approach, however, is not efficient in the case of systems
with many states. Hence, we strive for a more tight interaction between the LTL and DL model
checker, using SMT-based bounded model checking. 0

4.1 Bounded LTLp; Model Checking

In bounded model checking [BCC 03], a transition system M, an initial state s and a LTL formula
f is transformed for a given bound k € N into such a non-temporal formula of the form Tj ; x A
—(fk) that the following holds: if Ty s x A —(fk) is satisfiable then there is a counterexample for
M,s |= f the length of which is less or equal to k and hence M, s = f. We illustrate the approach
of bounded model checking and its application to LTLp; in the following example.

Example 4 (bounded LTLp; model checking)

Consider the following scenario in an order handling process. Initially, there is no order.
Next, a new order ol is received and the reception of the order is notified to the customer. Next,
another order 02 is received and the previously received order o1 is delivered. The following state
transition system M models this scenario, adopting set type variables order, notified, delivered for
representing the set of orders, notified, and delivered orders, respectively:

state so order = notified = delivered = (; no orders, no deliveries, no notifications.

state s; order < order U{ol}; new order ol,

notified < notified U{ol}; reception of ol is notified to the customer.
state s, order < order U{02}; new order 02,

delivered < delivered U{ol}; ol is delivered.
state s3 = sp return to state so.

Let the DL concepts Order, Delivered, Notified represent the set of orders, deliveries, and notifi-
cations as used above. Consider the property “At any time, any order, which is not delivered, is
notified””:

f = G(Order —Delivered C Notified)

We attempt to find a counterexample for f of a certain maximum length & in the state transition
system M starting at so. As for the given scenario, a sensible bound is k = 2. First, we represent
paths in M with maximum length k by a formula 7j, ,, x in which all variables are indexed by
state (static single assignment form). For k = 2 we get:

Trvs,2 = (orderg=0) A (notifiedyg = 0) A (deliveredy = 0) N
(order; = ordergU{ol}) A (notified; = notifiedy U{ol}) A (delivered; = deliveredy) N
(order; = order; U{02}) A (notified, = notified;) A (delivered; = delivered; U{ol})

Next, f is transformed into a non-temporal formula f; equivalent to f in the scope k. In the given
scenario, if f holds in M then Order 1 —Delivered C Notified holds in each state s, s1, and s».

9/17 Volume ?7? (2011)

Integrated Model Checking using TDL Eﬁ

Adopting the semantics definition of the ALC connectives I, -, and C we get:

f» = (orderg\deliveredy C notifiedy) N
(order;\delivered; C notified;) \
(order;\delivered, C notified;)

Finally, we check if Ty 5,2 A = f> is satisfiable. From Ty 5, 2, we get:

order; = order; U{02} = ordergU{ol}U{02} ={ol,02}
delivered, = delivered; U{ol} = deliveredyU{ol} = {ol}
notified, = notified; = notifiedyg\U{ol} ={ol}
order;\delivered, = {02,01}\{ol} = {02}

and thus order;\delivered, Z notified; which violates f,. Hence Ty 502 N\ f2 1s satisfied and we
conclude M, sy I~ f. O

4.2 SMT(DL)

As illustrated by Example 4, we transform LTLp; models and formulae into formulae that con-
tain set-type variables and operations corresponding to the semantics of DL connectives. These
formulae can be interpreted as SMT formulae with sets and relations as background theory. We
define the language SMT(DL) for the representation for such formulae. The concrete (i.e., ma-
chine processible) syntax of SMT(DL) is defined by the following rules:

formula — NOT formula | formula AND formula | formula OR formula | term
term — TRUE | FALSE | boolvar | set = set | rel = rel | subset(set,set)
set — EMPTYSET | setvar | insert(set,int) | remove(set,int) |
union(set,set) | intersect(set,set) | minus(set,set) | some(rel,set) | all(rel,set)
rel — EMPTYREL | relvar | insertrel(rel,int,int) | removerel(rel,int, int)

Table 1: SMT(DL) syntax definition

The basic symbols are composed by the disjoint sets of Boolean variables boolvar, set vari-
ables setvar, variables for binary relations relvar, and integer numbers int serving as elements of
sets and relations. Formulae are built using Boolean connectives NOT, AND, OR. Basic formu-
lae are terms, which may be either Boolean atoms or set expressions corresponding to the DL
connectives = and C. Besides the constant “EMPTYSET”, set variables setvar may be used to
represent sets. Further, “insert(set,inf)” represents a function inserting a single integer value into
a set and “remove(set,inf)” removes an element from a set. Line 4 of Table 1 defines set operators
corresponding to the syntax of the DL expressions CUD, CrD, ~C, 3R.C, VR.C. Finally, binary
relations may be manipulated by “insertrel”, which inserts a pair of integer values into a relation,
and “removerel”, which removes a pair of integer values from a relation.

Example 5 (SMT(DL) concrete syntax)
Formula Ty 4, » of Example 4 reads in SMT(DL) syntax as follows:

Proc. AVoCS 2011 10/17

Eﬁ ECEASST

(order0 = EMPTYSET) AND (notified0 = EMPTYSET) AND (delivered0 = EMPTYSET) AND
(orderl = insert(order0Q, 1)) AND (notified1 = insert(notified0, 1)) AND (delivered1 = delivered0) AND

(order2 = insert(order1, 2)) AND (notified2 = notified1) AND (delivered?2 = insert(deliveredl,1))

Note that orders ol and 02 in formula Ty, s, » are represented by integer values 1 and 2, respec-
tively. This is valid in general because we assume a finite interpretation domain (cf. Definition
6) which can be mapped onto integer numbers without loss of information.

Formula f, of Example 4 reads in SMT(DL) syntax as follows:

subset(minus(order0,delivered0),notified0) AND
subset(minus(order1,deliveredl),notified1) AND

subset(minus(order2,delivered2),notified2)

4.3 Prototypical Implementation and Experimental Results

We implemented a partial solver for SMT(DL) based on OpenSMT [Bru09] which is an open
source SMT solver implemented in C++. For the representation of SMT(DL) formulae, we use
the standard format SMT-LIB 1.2. The current implementation is limited to SMT(DL) formulae,
the set and relation expressions of which are bound to finite domains and do not contain cyclic
definitions such as “s = insert(s,1)”. The latter is not a restriction in our application because, in
bounded model checking, LTLp; models are transformed into static single assignment form (cf.
Example 4) which do not contain any cyclic definitions by construction.

The aim of the subsequent experiment is to determine the runtime of model checking LTLpy,
as compared to existing bounded model checkers. The runtime of bounded model checking is
dominated by checking the satisfiability of the generated formula Ty s A —fi (cf. Example 4).
To determine the scaling of runtime w.r.t. the input size, we use a parameterized scenario similar
to that in Example 4, as follows:

state s order = notified = delivered = 0,

state s order < order U{o;}; notified < notified U {o;};

state s, order < order U{o,}; delivered + delivered U{o;,02};
state 53 order < order U{o03}; notified < notified U{03};

state sy order < order U{o4}; delivered < delivered U{03,04};

state sp,—1 order < order U{oz,—;}; notified < notified U{oz,—1};
state §o, order < order U {0z, }; delivered < delivered U{02,—1,02,};
state so,41 order < order U{ozn41};

As a property, we check, if each undelivered order is notified at any time (cf. Example 4):
f = G(Order —Delivered C Notified)

The only state violating f is s2,+1. To detect the error by bounded model checking, the bound
k must be chosen greater or equal to 27+ 1, making the case increasingly challenging for larger
n. Moreover, the maximum sizes of the sets for representing received, notified, and delivered
orders grow linearly in n.

11/17 Volume ?7? (2011)

Integrated Model Checking using TDL Ea

To compare the performance of our approach with existing ones, we chose the SAL tool
[MOR™04] since it integrates a variety of state-of-the-art model checking algorithms, including
SAT and SMT-based bounded model checking. SAL uses the SMT solver Yices 1.03 [DMO06]
as a backend engine for bounded model checking. The scenario above can be described com-
pactly in terms of the SAL input language by representing the characteristic function 15: S5 —
{false,true} : {x € S | 15(x) = true} = S of each set S as a Boolean array (cf. [KRW09]). The
bounded model checker of SAL translates an input file for a given bound k into a SAT or SMT
formula which is then solved by Yices. For our experiment, we chose the transformation into
SAT because this yielded higher performance.

An alternative SMT(DL)-based representation (cf. Example 5) for different problem sizes n
and bounds k has been generated. Generally, we distinguish two cases. 1) k =2nrn+ 1: in this
case, the generated SAT and SMT(DL) formulae are satisfiable, i.e., the property violation is
detected; 2) k = 2n: the generated SAT and SMT(DL) formulae are not satisfiable.

s —m-SMT(DL) k=2n+1 s
N 2 g | OESMIDLk=2n g X)

/ / Yices k=2n+1 /
10 / ,/‘ ——Yices k=2n 10 /t
5 5

O-Mn 0 n

S RO ’1900 & Yoo R
Experiment 1 Experiment 2

O O OO
BRI QSR RN
& & S

Figure 3: execution time of SMT(DL) solving as compared to SAT solving with Yices for differ-
ent input sizes n in Experiment 1 and 2.

Figure 3 (lhs: Experiment 1) shows the runtime of Yices and our SMT(DL) solver for the two
cases k =2n-+ 1 and k = 2n and increasing input sizes n, obtained on a desktop computer with
and 6 GB RAM and Intel Core i7 processor at 3.8 GHz. While the runtime of Yices for k = 2n
is slightly lower than in the case of n = 2n + 1, the runtime of SMT(DL) is identical for both
cases. In the case of n = 100, Yices takes 17.5 seconds for k = 201 and 16.2 seconds for k = 200.
In about the same time, the SMT(DL) solver processes a formula 80 times as large (n = 8000,
k =16000/16001).

Figure 3 (rhs: Experiment 2) shows the runtime of Yices and our SMT(DL) solver for check-
ing the formula

f' = G(=(3places.Order C 1) — XX(Order—Delivered C Notified))

in a LTLp, model corresponding to the state transition diagram of Figure 2. f’ reads: “Always
(G), if someone places an order (—(3places.Order C 1)) then two states later (XX) each order
that has not been delivered is notified (Order 1 —Delivered = Notified)”.

In this scenario, Yices takes 17.6 seconds for n = 20 if a counterexample is found, and 16.2
seconds if no counterexample is found. We suppose that the Boolean encoding of the binary rela-
tion places in formula f” is the major source of additional complexity. In contrast, the runtime of

Proc. AVoCS 2011 12/17

Eﬁ ECEASST

the SMT(DL) solver is hardly affected by the presence of a binary relation in Experiment 2. This
indicates that supporting sets and relations in SMT solving can significantly speed up bounded
model checking of relational models as compared to SAT-based bounded model checking.

5 Related Work

Description logics are well-known to be appropriate for the formal representation of conceptual
data models such ER diagrams and UML class diagrams. For instance, [CLN98] proposes a
unifying description logics for the logical representation of class-based data models such as ER
and object-oriented data models. [BCGOS5] presents an encoding of UML class diagrams in the
description logic ALCQI to discover inconsistencies in models by means of description logic
reasoning. We extend these approaches by combining a description logic with a temporal logic
to support the representation of properties related to both state transition diagrams and class
diagrams.

In the past, several combinations of description logics and temporal logic have been sug-
gested [AFO1, LWZ08]. A first temporal extension of the description logic ALC called ALCT
was suggested by Schild [Sch93]. In ALCT, the temporal connectives G, F, and U can be ap-
plied to concepts but not to axioms. A similar combination of LTL and ALC is called LTLaz¢
in [LWZ08]. In contrast, ALC—LTL, as introduced in [BGLO08], supports the application of
temporal connectives to ALC axioms but not to ALC concepts.

LTLpz, as proposed in this paper, follows the latter approach because, this way, a higher
degree of modularity between the temporal and non-temporal part of the logic is achieved. This
simplifies the formalization of properties in close correspondence with UML class diagrams (DL
component) and state transition diagrams (LTL component), as well as the implementation of a
model checker. However, LTLp; is different from ALC—LTL in the following aspects:

e LTLpy is a family of logics, obtained by a modular combination of some DL with LTL,
rather than a single logic.

e While in ALC—LTL, atomic propositions are replaced by ALC axioms, LTLp;, supports DL
formulae in addition to atomic propositions. This ensures compatibility with propositional
LTL widely adopted in model checking.

e In contrast to ALC—LTL, we do not consider ABox assertions in LTLp;, since they seem
to be dispensable for formalizing general domain models represented by UML class dia-
grams.

e As opposed to ALC—LTL, we do not consider rigid symbols, i.e., concepts and roles the
interpretations of which do not depend on states. Incorporating rigid symbols to LTLp,
may be an interesting topic of future research.

[BGLO8] focusses on the satisfiability problem of ALC—LTL and the impact of rigid symbols
on the complexity of solving the satisfiability problem. In this paper, we do not consider the
satisfiability problem but the model checking problem of LTLp;. A thorough investigation of
complexity properties will be an issue of future work.

18/17 Volume ?7? (2011)

Integrated Model Checking using TDL Eﬁ

[BBL09] proposes runtime verification based on ALC—LTL. In runtime verification, a mon-
itor constantly observes the behavior of a system in execution and determines if the observed
prefix of an execution trace conforms to a temporal formula. Each state of the execution trace
is represented in a potentially incomplete way by a set of ALC ABox assertions (open world
assumption). In our work, we adopt a model checking approach, i.e., all possible behaviors of
a system described by a state transition system are considered. However, the information about
each single state is assumed to be complete (closed world assumption).

An algorithm for model checking the temporal description logics ALCCTL has been proposed
in [Wei08]. In this paper, we consider the bounded model checking problem of LTLp;, and reduce
it to SMT solving which we believe is a new approach that simplifies the integration of LTLp,
model checking into an existing model checking environment such as SAL and helps to increase
the performance of model checking for bounded sets and relations.

State-of-the-art model checkers supporting linear temporal logic are Spin [Hol97], SAL
[MOR"04], and NuSMV [CCG"02]. However, the input languages of these model checkers
do not support set and relation data types and hence are inefficient for representing properties
w.r.t. relational models.

Alloy is a declarative object-oriented modeling notation, the semantics of which is based on
sets and relations [Jac02]. The notation supports the formulation of assertions. Dynamic aspects
may be addressed in terms of pre- and post-conditions or by explicitly representing time as a
linearly ordered set of states. However, temporal logic for the representation of behavioral prop-
erties is not supported. A tool based on SAT solving automatically analyzes whether assertions
hold in models where the sizes of all sets and relations are bounded by some user chosen con-
stants [JSSO0]. In [GT11], an alternative approach is presented which is not limited to bounded
sets: Alloy relational specifications are translated into first order quantified SMT formulae which
are passed on to the SMT solver Z3 [MBO08]. However, since the Alloy specification language is
undecidable, the SMT solver may fail to prove assertions.

Event B [Abr10] is a formal specification language for the required behavior of a system,
based on set theory and logic. A central concept is the refinement-based modeling for system
requirements. Consistency and refinement checking of specifications, based on theorem proving,
is supported by the Rodin tool [ABH " 10] which generates and manages the necessary proofs.
However, user interaction may be required for certain types of proofs. ProB [LB08], an anima-
tion and model checking tool for (Event) B specifications, supports model checking of properties
expressed in LTL. Similar to Alloy, data types such as sets and relations must be restricted to
small sizes for exhaustive analysis. LTLpy is less expressive than the temporal logic supported
by ProB but the supported constructs are closely related to UML class and state transition dia-
grams. We believe that this simplifies the identification and formalization of relevant consistency
properties which is usually considered as a rather difficult task.

The syntax definition for SMT(DL) (Table 1) is inspired by [KRW09] which suggests a format
for representing finite lists, sets, and maps as part of the SMT-Lib 2.0 format. As for solving
formulae over finite sets, a mapping onto Boolean arrays is suggested. We have adopted this
approach in our experiments with SAL and Yices (see section 4.3). To the best of our knowledge,
none of the currently available SMT solvers implements dedicated decision procedures for sets
and relations.

Proc. AVoCS 2011 14 /17

Eﬁ ECEASST

6 Conclusion

We have presented a new integrated approach on representing both static and dynamic aspects of
software models. We defined LTLp;, as a modular composition of linear temporal logic LTL and
a description logic DL. LTLp supports representing properties w.r.t. both UML class diagrams
and state transition diagrams. We believe that the close correspondence of LTLp; formulae to
these commonly used diagram notations facilitates the identification and formalization of impor-
tant consistency requirements at an early development stage. Further, we have demonstrated how
LTLp, formulae can be checked by SMT-based bounded model checking. We have implemented
a prototypical SMT solver for formulae containing set-type expressions corresponding to the se-
mantics of LTLp; connectives. As compared to reducing set-type expressions to Boolean arrays,
about two orders of magnitude as large problems could be solved in the same execution time.

In this paper, we discussed LTLp; from an application-oriented perspective and demonstrated
its usefulness and performance by a case study. Fundamental properties of LTLp; such as ex-
pressiveness and runtime complexity of model checking and deciding satisfiability are left to be
studied in future work.

In our current experiments, we use the input language of SAL for representing LTLp; models,
adopting a Boolean encoding for sets and relations. A more adequate representation language
for LTLpz models offering explicit support for sets and relations is a major issue of ongoing
work. Ongoing is also the improvement of the implemented SMT solver in terms of supported
types of formulae and performance. Issues are, for instance, the support of cyclic expressions
and negation in unbounded domains (cf. section 4.3). To this end, a mapping of SMT(DL)
formulae onto either first order quantified SMT formulae or description logic knowledge bases
seems to be promising and calls for further examination. Finally, further case studies to compare
our approach with existing approaches such as Event-B and Alloy are necessary. In addition,
the comparison with existing state-of-the-art model checkers such as CBMC [CKL04] and SMT
solvers, which support quantified formulae such as Z3 [MBO08], is an important issue of future
work.

Acknowledgements: This work is funded by the program “Research at International Science
and Technology Centers” of the German Academic Exchange Service (DAAD). We thank the
reviewers for their detailed comments which helped to improve the paper significantly and gave
directions for future work.

Bibliography

[ABH"10] J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, L. Voisin. Rodin: an
open toolset for modelling and reasoning in Event-B. STTT 12(6):447-466, 2010.

[Abr10] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

[AFO1] A. Artale, E. Franconi. A Survey of Temporal Extensions of Description Logics.
Annals of Mathematics and Artificial Intelligence (AMAI) 30(1-4):171-210, 2001.

15/17 Volume ?7? (2011)

Integrated Model Checking using TDL Eﬁ

[BBLO9]

[BCC103]

[BCGOS5]

[BCM*03]

[BGLOS]

[BNO3]

[Bru09]

[CCGT02]

[CKLO04]

[CLNOg]

[DMO6]

[Eme90]

F. Baader, A. Bauer, M. Lippmann. Runtime Verification Using a Temporal De-
scription Logic. In Ghilardi and Sebastiani (eds.), Frontiers of Combining Systems.
LNCS 5749, pp. 149-164. Springer-Verlag, 2009.

A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu. Bounded Model Check-
ing. In Zelkowitz (ed.), Highly Dependable Software. Advances in Computers 58,
pp. 118-149. Academic Press, 2003.

D. Berardi, D. Calvanese, G. D. Giacomo. Reasoning on UML Class Diagrams.
Artificial Intelligence 168(1-2):70-118, 2005.

F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider (eds.). The
Description Logic Handbook - Theory, Implementation and Applications. Cam-
bridge University Press, 2003.

F. Baader, S. Ghilardi, C. Lutz. LTL over description logic axioms. In Proceedings
of the 11th Inernational Conference on Principles of Knowledge Representation and
Reasoning (KR 2008). Pp. 684—694. Morgan Kaufmann, Sydney, Australia, 2008.

F. Baader, W. Nutt. Basic description logics. In [BCM " 03]. Chapter 2, pp. 47 — 100.
2003.

R. Bruttomesso. An Extension of the Davis-Putnam Procedure and its Application
to Preprocessing in SMT. In Proceedings of the 7th International Workshop on Sat-
isfiability Modulo Theories (SMT2009). Montreal, Canada, 2009.

A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, A. Tacchella. NuSMYV 2: An opensource tool for symbolic model checking.
In Proceedings of Computer Aided Verification (CAV 02). LNCS 2404. Springer,
2002.

E. Clarke, D. Kroening, F. Lerda. A Tool for Checking ANSI-C Programs. In Jensen
and Podelski (eds.), Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS 2004). LNCS 2988, pp. 168—176. Springer-Verlag, 2004.

D. Calvanese, M. Lenzerini, D. Nardi. Logics for databases and information sys-
tems. In Chomicki and Saake (eds.). Chapter 8 Description logics for conceptual
data modeling, pp. 229-263. Kluwer Academic Publishers, Norwell, MA, USA,
1998.

B. Dutertre, L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T).
In Proceedings of the 18th Computer-Aided Verification Conference (CAV’06).
LNCS 4144, pp. 81-94. Springer-Verlag, 2006.

E. Emerson. Temporal and Modal Logic. In Leeuwen (ed.), Handbook of Theo-
retical Computer Science: Formal Models and Semantics. Pp. 996-1072. Elsevier,
1990.

Proc. AVoCS 2011 16/17

E

ECEASST

[GT11]

[Hol97]

[Jac02]

[JSS00]

[KRWO09]

[LBOS]

[LWZ08]

[MBO8]

[MOR™"04]

[NakO8]

[NF97]

[Sch93]

[Wei08]

[Yam84]

A. A. E. Ghazi, M. Taghdiri. Relational Reasoning via SMT Solving. In /7th Inter-
national Symposium on Formal Methods (FM). Limerick, Ireland, 2011.

G. J. Holzmann. The Model Checker Spin. IEEE Transactions on Software Engi-
neering 23(5):279-295, 1997.

D. Jackson. Alloy: A Lightweight Object Modelling Notation. ACM Transactions
on Software Engineering and Methodology (TOSEM’02) 11(2):256-290, 2002.

D. Jackson, I. Schechter, I. Shlyakhter. Alcoa: the alloy constraint analyzer. In
Proceedings of the 22nd International Conference on Software Engineering (ICSE
2000). Pp. 730-733. ACM Press, 2000.

D. Kroning, P. Riimmer, G. Weissenbacher. A Proposal for a Theory of
Finite Sets, Lists, and Maps for the SMT-Lib Standard. Published on
http://www.cprover.org/SMT-LIB-LSM/, 2009. Visited 9 Jan 2010.

M. Leuschel, M. Butler. ProB: An Automated Analysis Toolset for the B Method.
Journal Software Tools for Technology Transfer 10(2):185-203, 2008.

C. Lutz, F. Wolter, M. Zakharyaschev. Temporal Description Logics: A Survey. In
Proceedings of the 15th International Symposium on Temporal Representation and
Reasoning (TIME ’08). Pp. 3—14. IEEE Computer Society, Washington, DC, USA,
2008.

L. de Moura, N. Bjorner. Z3: An Efficient SMT Solver. In Proceedings of the Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’08). LNCS 4963, pp. 337-340. Springer-Verlag, 2008.

L. de Moura, S. Owre, H. RueB, J. Rushby, N. Shankar, M. Sorea, A. Tiwari. SAL
2. Tool description presented at CAV 2004. LNCS 3114, pp. 496-500. Springer-
Verlag, 2004.

S. Nakajima. Model Checking with SPIN. Chapter 9: Case Study(4). Kindaika-
gakusha, Tokyo, Japan, 2008.

S. Nakajima, K. Futatsugi. An object-oriented modeling method for algebraic spec-
ifications in CafeOBJ. In Proceedings of the 19th international conference on Soft-
ware engineering (ICSE ’97). Pp. 34-44. Boston, Massachusetts, United States,
1997.

K. Schild. Combining terminological logics with tense logic. In Proceedings of the
6th Portuguese Conference on Artificial Intelligence. Pp. 105-120. Porto, 1993.

F. Weitl. Document Verification with Temporal Description Logics. PhD thesis, Uni-
versity of Passau, 2008.

T. Yamasaki. Surveys of Program Design Methods Using a Common Example Prob-
lem. Journal of IPS Japan 25(9):934, 1984. In Japanese.

17/17

Volume ?? (2011)

Eﬁ ECEASST

Symbolic Model Checking and Safety Assessment of Altarica models

Marco Bozzano ', Alessandro Cimatti |, Oleg Lisagor 2,
Cristian Mattarei !, Sergio Mover !, Marco Roveri ! and Stefano Tonetta !

'Fondazione Bruno Kessler, Trento, Italy
2The University of York, York, United Kingdom
{bozzano, cimatti,mattarei, mover, roveri, tonettas}@ fbk.eu
oleg.lisagor@cs.york.ac.uk

Abstract: Altarica is a language used to describe critical systems. In this paper we
present a novel approach to the analysis of Altarica models, based on a translation
into an extended version of NuSMV. This approach opens up the possibility to carry
out functional verification and safety assessment with symbolic techniques. An ex-
perimental evaluation on a set of industrial case studies demonstrates the advantages
of the approach over currently available tools.

Keywords: Model Checking, Safety Assessment, Fault Tree Analysis, Altarica

1 Introduction

The dramatic increase in complexity of safety-critical systems in recent years has motivated
a growing interest in model-based techniques for system verification. Such techniques must be
able to verify functional correctness, but also to carry out safety assessment, that is, assess system
behavior in the presence of faults [Ba03, ABB06, BV 10]. In particular, there has been a growing
interest in formal verification tools that can automate the generation of artefacts such as Fault
Trees and Failure Mode and Effects Analysis (FMEA) tables [FSA, BV07, BCK'10].

One of such tools is Cecilia OCAS [BBC04] — a model-based safety assessment platform
developed by Dassault Aviation, based on the Altarica [Alt, AGPR0OO] language. Altarica has
been used in the past for safety assessment of industrial systems, see, e.g., [BCS02, BBCT04].
Moreover, OCAS is being used at an industrial level for architectural safety assessment of avion-
ics systems. For example, the Flight Control System of Falcon 7x aircraft has been certified on
the basis of the OCAS analysis. OCAS is equipped with different model analysis tools, the main
ones are a trace simulator, and a sequence generator to generate minimal cut sets. However,
these tools are neither able to perform an exhaustive space examination, nor they are able to
model check temporal properties; even reachability analysis is bounded in depth. Furthermore,
developed as an in-house tool, the OCAS sequence generator does not correctly implement lan-
guage features that are not used within Dassault Aviation. In particular it is unable to adequately
explore non-deterministic instantaneous transitions, potentially leading to incomplete analysis
results (although the tool can be configured to provide a warning). Finally, the OCAS sequence
generator is based on explicit state techniques, hence it suffers from the state-explosion problem.

In this paper we propose a fully symbolic approach that overcomes these limitations, and
allows for the industrial usage of advanced symbolic verification and safety assessment tech-
niques. Our approach is based on the translation to an extended version of NuSMV [NuS], and

1/15 Volume X (2011)

Symbolic Model Checking and Safety Assessment of Altarica models Eﬁ

is tightly integrated with the OCAS environment. NuSMYV is a state-of-the art symbolic model
checker providing cutting-edge model checking technologies such as BDD-based [Bry92] and
SAT-based Bounded Model Checking (BMC) [BCCZ99] techniques. It supports both temporal
model checking (CTL and LTL temporal logics) and safety assessment, e.g., Fault Tree Analysis
(FTA) and FMEA, through its add-on NuSMV-SA. NuSMYV has been used in several industrial
contexts, for instance for verification and validation of aerospace systems [BCK ' 10].

More specifically, our contribution is as follows. First, we have isolated a fragment of Altar-
ica in the Dataflow formulation. This choice has been dictated by what is being made available
through the OCAS interface. As the semantics for this fragment is not fully documented, an addi-
tional effort has been required to provide a formal definition for its semantics, by adaptation from
the general definition of [AGPROO], and to validate its correctness with respect to the behavior
shown by OCAS and user expectations. In the course of our work, we have identified model fea-
tures that are not correctly managed in OCAS, clarified their intended semantics, and reflected
it in our tool. Based on the semantics, we have implemented a translator to convert Altarica
models into NuSMV. The translation uses HyDI [CMT11] as an intermediate language. The use
of HyDI proved to be convenient as it provides primitives to deal with networks of automata, and
different mechanisms for synchronizing them. The translator has been incorporated as a plugin,
named the NuSMV/OCAS plugin, into the OCAS environment, and it provides the following
functionalities: invariant checking, temporal model checking, and fault tree generation.

The NuSMV/OCAS plugin has been developed within the MISSA project [MIS] (More Inte-
grated Systems Safety Assessment), an EC-sponsored project involving various research centers
and industries from the avionics sector. We evaluated the plugin on a set of industrial-size case
studies developed in MISSA, and compared it with existing tools available in OCAS. The results
of the evaluation clearly show a significant advantage of symbolic techniques over explicit-state
techniques currently provided by OCAS, in terms of performance.

The paper is organized as follows. In Section 2 we give a short overview of the Altarica syntax
and semantics. In Section 3 we present the design of the translation. In Section 4 we describe the
integration into OCAS. In Section 5 we discuss the experimental evaluation. Finally, in Section
6 we present some related work, and in Section 7 we conclude and discuss future work.

2 Overview of Altarica

In this section we briefly describe the syntax of the Altarica language (Dataflow dialect imple-
mented in Cecilia OCAS) and its semantics - we refer the reader to [Alt, AGPROO] for additional
details. A simple example of Altarica model is presented in Figure 1. It consists of two counters
modulo 4 and an adder. The base component of an Altarica model is called node. Its structure
may comprise the following sections:

e sub: used to describe the hierarchy of the Altarica nodes; in this section, it is possible to
instantiate the subnodes which are the children of the current node;

e state: this section is used to declare the state variables of the (basic) node; the value of these
variables may change only upon firing of an event; this implies that their value does not
change in between two consecutive event firings (while other components are executing);

Proc. AVoCS 2011 2/15

ECEASST

1 node adder

2 flow

3 input1 :[0,3]:in;
4 input2:[0,3]:in;
5 value_out:[0,7]:out;
6 state

7 value :[0,7];

8 event

9 add,

10 fault.add;

11 trans

12 value < 7 |- add —> value := inputl + input2;

13 true |- fault.add —> value := 7
init
value := 0;
assert
value.out = value;
extern
law <event fault.add> = Exponential (0.1);
edon

-
IS

node observer

flow
out-ok :bool:out;
input1 :[0,3]:in;
input2:[0,3]:in;
inputS:[—1,6]:in;

assert
out.ok = (inputS = (inputil + input2));

I I N I N N Y e e
WOTAUBEWN OV -JaU

w
o
@
o
)
3

31 no
32

ed

47 no

de counter
flow
value.out:[0,3]:out;
state
value :[0,3];
event
inc, reset;
trans

value < 3 |- inc —> value := value + 1;
value = 3 |- reset = value := 0;

init
value := 0;

assert
value.out = value;
on

de main
event
total-reset;
sub
cl: counter;
c2: counter;
add: adder;
obs: observer;
sync
<total.reset, cl.reset, c2.reset>;
assert
cl.value_out = add.inputt,
c2.value-out = add.input2,
cl.value_out = obs.inputt,
c2.value-out = obs.input2,
add.value.out = obs.inputS;

Figure 1: An example Altarica model

init: this section is used to specify the initial value of state variables;
event: used for defining the events that can be fired and, thus, trigger a state transition;

flow: this section declares flow variables, used to describe the connections with the other

components; flow variables are linked to state variables by means of assertions; there are
two types of flow variables, namely input and output flow variables;

trans: this section is used to describe the transitions of the system; each transition consists

of a guard, the firing event, and a list of assignments; the assignments specify how the
system state changes when the corresponding event is fired; the guard is a precondition
that has to be satisfied for the transition to be taken;

assert: used to establish links from a flow variable to a state variable or another flow

variable; more specifically, it declares a set of equalities either between an output flow
variable and an expression over input flow and state variables (internal assert), or between
an input flow of a subnode and the output flow of another subnode (in-out assert), or
between an input flow of the node and an input flow of a subnode (in-in assert), or between
an output flow of the node and an output flow of a subnode (out-out assert);

e sync: used to define the synchronizations; a synchronization associates an event of the
node to the events of the subnodes; there are three types of synchronizations, namely
strong sync, weak sync, and Common Cause Failure (CCF) (cf. end of this section);

e extern: used to associate events with priorities and optional laws; priorities and some of
the laws constrain permissible order of event firing.

An Altarica model is a hierarchical graph composed of nodes. At the same level of the hi-
erarchy, nodes communicate through flows and synchronizations. The hierarchy yields a tree

structure, where two types of nodes are possible:

3/15

Volume X (2011)

Symbolic Model Checking and Safety Assessment of Altarica models Eﬁ

Figure 2: Altarica hierarchy

e component. a component represents a single process of the system, it cannot contain defi-
nition of subnodes or synchronizations;

e equipment: an equipment node represents a container for nodes; it may contain declara-
tions of subnodes and synchronizations, but it cannot have state variables.

As shown in Figure 2, this structure imposes that the component nodes represent the leafs,
whereas the equipment nodes are containers for the components. Moreover, there is a special
equipment node called main, which represents the root of the full Altarica model.

The semantics of the Altarica model is defined in terms of Interfaced Transition Systems
(ITSs) (cf. [AGPROO, Mat11]). Intuitively, the ITS associated with a component is given straight-
forwardly by the state variables (that define the states), the initial condition, the transitions, the
events and flow variables (which define the observations) of the node. The ITS associated to an
equipment node is given by the composition of the ITSs associated with the subnodes taking into
account synchronizations. The mechanisms for the different synchronizations are illustrated in
Figs. 3a, 3b and 3c, and explained in more detail in the following:

e strong sync (see example in Figure 3a): if we have a strong sync between the events e
and ey, the corresponding processes (components) p; and p, must move synchronously on
such events. This means that the transitions of p; fired by e; and the transitions of p, fired
by the event e, happens at the same time, and that e; is fired if and only if e; is fired; as
an example, the system in Figure 1 declares a strong synchronization, called total_reset,
synchronizing the reset on the two counters;

e weak sync (see Figure 3b): this type of synchronization represents a broadcast; partici-
pating events happen synchronously as in the strong sync, but only if the corresponding
transitions are enabled; this means that if the event e| of p; is fired and there exists a tran-
sition 1, of p, on the event e, whose guard is true, then e; is fired at the same time as e;;
otherwise (if the guard is false) e; is fired and p, does not change state; similarly, if e; is
fired and the guard on e, is false, p; does not change state;

o CCF sync (see Figure 3c): short for Common Cause Failure, this kind of synchronization
is similar to a weak synchronization, with the difference that individual processes are also

Proc. AVoCS 2011 4/15

E} ECEASST

&2 sync
(a) Strong synchronization (b) Weak synchronization (c) CCF synchronization

Figure 3: Synchronization examples

allowed to move on the events independently; this means that either we have a CCF sync
involving e; and e, (with the same rules of the weak sync) or e; is fired or e, is fired.

The evolution of an Altarica system can be further constrained by associating events with spe-
cial laws and priorities. By default, events are considered stochastic. These events are typically
used to model component failures and can be optionally associated with a probability distribu-
tion law (e.g., Exponential(A) law). These laws are used to establish interoperability with com-
mercial RAMS (Reliability, Availability, Maintainability and Safety) analysis tools and do not
affect qualitative behaviour of the system. However, a special law — Dirac(x) — is used to mark
instantaneous and temporal events (with x = 0 and x > 0 respectively). These events fire deter-
ministically x time steps after the guard of the corresponding transition becomes true. Whenever
more than one transition is possible at the same time, instantaneous events take precedence. The
precedence of transitions can be further constrained by event priorities (events with higher prior-
ity are fired first). For the sake of brevity, we do not describe the semantics of priorities in detail
— we refer to Section 3 for their encoding.

3 Translation

In this section we describe the encoding of the Altarica language into NuSMV. The formal trans-
lation [Matl1] has been designed using HyDI [CMT11] as an intermediate language. In the
following, we first introduce the HyDI language and then we focus on the translation of the main
characteristics of Altarica into HyDI- we refer to [CMT11] for a discussion of the translation
from HyDI to NuSMV. In particular, we discuss the management of:

e hierarchy: unlike Altarica, HyDI does not support hierarchical process definitions;
e flow variables and assertions: these definitions cannot be directly mapped into HyDI;
e event priorities: HyDI does not support the definition of event priorities;

e synchronizations: Altarica supports three kinds of synchronizations: strong, weak and
CCF, whereas HyDI supports only the first two.

Finally, we briefly discuss how to model the leaf nodes.

5/15 Volume X (2011)

Symbolic Model Checking and Safety Assessment of Altarica models Eﬁ

(a) Altarica structure (b) HyDI structure

Figure 4: Hierarchy translation

3.1 The HyDI language

HyDI is an extension of SMV [McM93] that supports the definition of networks of hybrid au-
tomata with different kinds of synchronizations. We restrict our presentation to the finite state
case, thus ignoring continuous variables and their evolution — see [CMT11] for a complete de-
scription. A HyDI program is given by a set of modules, a set of processes and a set of synchro-
nization constraints. A HyDI module extends SMV modules allowing one to specify synchro-
nization constraints. A module contains a set of declarations which define: a set of variables
(VAR); a set of input variables (IVAR); a set of initial constraints (INIT) defining the initial states;
a set of invariant conditions (/INVAR) which restricts the valid assignments to the variables; a set
of transition constraints (TRANS), defining the state transitions. A module can be instantiated in
the VAR section of another module. The main module is the top-level module of a program and
cannot be instantiated. The HyDI language allows one to define a network of processes which
run asynchronously on private events while they synchronize on shared events. The processes
are instantiated in the main module. The network is not hierarchical, since the synchronizations
are declared between processes. However, the definition of a single process may be hierarchical,
since it can contain the instantiation of sub-modules. The module used to instantiate a process
contains the definition of the set of discrete events (EVENT section) used to define its synchro-
nization with other processes. In the HyDI language a synchronization declares that two events
of two processes must be fired at the same time. A variant of this type of synchronization, called
“weak” synchronization, allows one to specify a guard which forces the synchronization only if
the guard evaluates to true. Finally, the order of occurrence of events can be further constrained
with a scheduler, modeled in HyDI by variables and constraints in the main module.

3.2 Hierarchy translation

The network of processes defined by Altarica is hierarchical in that the synchronizations may
be specified at the different levels of the Altarica tree structure. Thus, in order to encode the
Altarica specification into HyDI we perform a flattening of the Altarica hierarchy as depicted in
Figure 4b. Each Altarica equipment node is split into several new instances in order to create a

Proc. AVoCS 2011 6/15

Eﬁ ECEASST

hierarchy corresponding to the paths from the root to each leaf. This flattening is possible since
the instances of the equipment nodes cannot have definition of state variables.

For the flattening it is necessary to perform some additional transformations on the resulting
structure because of the constraints imposed by the HyDI language. In Altarica synchronization
definitions can be specified at all levels of the hierarchy (i.e., in the equipment nodes). In HyDI
they must be in the main module. Thus, we need to move all the synchronization definitions in
the top level HyDI main module. Another difference between HyDI and Altarica concerns the
definition of discrete events used in the synchronizations. In HyDI the declaration of discrete
events is done in the module definition of each instance and, thus, new events cannot be declared
in a submodule. Altarica, on the other hand, requires them to be specified within the leafs (i.e.,
in the component nodes). Our solution restructures the Altarica hierarchy in such a way all the
events present in the original Altarica structure are declared in the definition of an instance in
HyDI, and passed as parameters to the submodules. The drawback of this encoding consists in
the possible growth in terms of resulting model size. However, this solution does not increase
the complexity and also it permits to greatly simplify the translation from Altarica to HyDI.

3.3 Variables and assertions translation

Altarica allows one to define two types of variables: state variables (which represent the internal
state of the system) and flow variables (used to expose the internal state and to link the different
components). The translation of the state variables is straightforward, as they also become state
variables in HyDI. The translation of the flow variables is carried out as follows:

o [nternal assert: the link between output flow and state variables is expressed by an asser-
tion. In this case the flow variable is represented as a NuSMYV define on the state variable;

e In-Out (Figure 5a): in this case we have a link connecting an input flow of one component
with an output flow of another component. In this case the direction is explicitly expressed
by the flow labels. This is translated by passing the state variable referred to by the output
flow as a parameter to the module translating the component with the input flow;

e In-In (Figure 5b): this situation is represented by the direct forwarding of an input flow
to a subcomponent. In this case the solution is analogous to the previous case, with the
difference that the external component plays the writer role;

e Out-Out (Figure 5b): this case is similar to the previous one with the difference that the
subcomponent plays the role of writer.

3.4 Priority, synchronization and leaf node translation

Event priorities and Dirac(x) laws in Altarica impose a partial order on the firing of the events.
We distinguish between events with Dirac(0) law (which have higher priority) and events with
Dirac(x) with x > 0'. Within each of these two classes, events are ordered by the explicit defini-

! Temporal events, i.e. those with Dirac(x) law for x > 0, in OCAS are given an operational semantics based on
event queues and recursive evaluation; in this work, we have used a simplified semantics, that was sufficient for our
purposes, and reduces to the original semantics under suitable hypotheses.

7/15 Volume X (2011)

Symbolic Model Checking and Safety Assessment of Altarica models Eﬁ

Fi2 F; Fi2
ni n2
n2 n1 Fo2| Fot
(a) Case In-Out (b) Case In-In and Out-Out

Figure 5: Flow translation cases

Altarica
Property OCAS Tools E——
OCAS Sequence
generator
- Traces

n
|:| _‘ I
@

Property Altarica2Hydi [—=| Hydi iy - Hydi2Altarica
[nusuvea |

NuSMV/OCAS Plugin

Figure 6: The NuSMV/OCAS plugin and its integration into OCAS

tion of the priority (an integer number). The induced partial order among the events is encoded
as a scheduler in the main module of the HyDI translation.

The Altarica language permits the definition of three possible kinds of synchronizations be-
tween events: strong, weak, and CCF (see Figure 3 and Section 2). HyDI has native support for
the weak and strong synchronizations, while there is no support for the CCF synchronization.
We encode the CCF synchronization taking into account its semantics: a CCF involving two
events e; and e, is either a weak synchronization among e; and e;, or simply event e; or event
ey in isolation. Thus, we duplicate events e; and e; in ¢} and ¢}, respectively, to enable for the
two events to occur in isolation, and we add a new weak synchronization between e; and e;.

The translation of the leaf nodes is straightforward. Each leaf node maps to an SMV module.
Each state variable is encoded into an SMV state variable of the same type. The Altarica init and
trans sections directly translate into SMV INIT and TRANS formulas, respectively.

4 Tool Integration and Functionalities

In the following we describe the architecture of the NuSMV/OCAS plugin and its functionalities.

Proc. AVoCS 2011 8/15

Eﬁ ECEASST

4.1 The NuSMV/OCAS plugin

The NuSMV/OCAS plugin has been developed in Python. It is composed of four main compo-
nents, as illustrated in Figure 6:

e Property: this block provides a GUI to specify the (temporal) properties to be verified
and the analysis parameters, and to invoke the verification and safety assessment routines;
it extends the ‘Altarica property’ block, which allows only to compare a variable with a
value. In the example of Altarica model presented in Figure 1 OCAS needs an observer
that internally evaluates if the output of the adder is the sum of the two counters (see
out_ok). With our plugin this check is possible directly from the GUI;

o Altarica2HyDI: this module is responsible for the translation of the Altarica model into
the equivalent HyDI specification to be given as input to the extended version of NuSMV
(the NuSMV model checker extended with the NuSMV-SA and HyDI plugins);

e HyDI/ NuSMYV : the verification engine;

e HyDI2Altarica: this module is responsible for the back conversion of the results generated
by NuSMV to a format that can be visualized or executed within OCAS. In particular, it
is responsible for the conversion of the traces generated by NuSMV (corresponding to a
simulation or to a counterexample to a property) into the XML format accepted by OCAS.

The translation from Altarica to HyDI, provided by the Altarica2HyDI component, is per-
formed in three main steps (see Figure 7):

1. Parsing: this module generates an abstract syntax tree (AST) of the Altarica design. This
module relies on the ANTLR? parser generator;

2. Preprocessing: this module analyzes the AST generated at parsing time to build a new AST
corresponding to the flattened Altarica model. Moreover, it collects common information
about the structure of the design, that is re-used in the following steps of the translation;

3. Translation: this module, based on the new AST and on the structural information pre-
viously gathered, generates an in-memory Python structure corresponding to the HyDI
model. This structure is then dumped into a textual file to be given as input to NuSMV.

The plugin calls NuSMYV, waits for the results, and then converts them back into a format that can
be imported into OCAS (e.g., simulation traces to be given as input to the sequence generator).

4.2 Functionalities

The NuSMV/OCAS plugin relies on NuSMYV, that provides standard BDD-based (CTL and LTL)
model checking techniques [McM93], and SAT-based LTL Bounded Model Checking (BMC)
techniques [BCCZ99]. It allows one to perform guided and random simulation, and to re-execute
partial traces. Moreover, it provides optimized model checking algorithms, developed in the

2 ANother Tool for Language Recognition (ANTLR), http://www.antlr.org.

9/15 Volume X (2011)

Symbolic Model Checking and Safety Assessment of Altarica models Eﬁ

Altarica Walker -
ANTLR Preprocessor “
0 - pydi azh
Common
Information

Figure 7: The Altarica2HyDI component

MISSA project, which aim at reducing the state explosion problem with techniques that combine
BDD and SAT for the verification of invariants. For formal safety assessment the NuSMV/O-
CAS plugin relies on an extended version of the NuSMV model checker, comprising NuSMV-
SA [BVO7]. NuSMV-SA allows one to investigate the behavior of a system in degraded condi-
tions (that is, when some parts of the system are not working properly, due to malfunctioning).
Key techniques in this area are (dynamic) FTA (Fault Tree Analysis), (dynamic) FMEA (Failure
Modes and Effects Analysis), fault tolerance evaluation, and criticality analysis. NuSMV-SA
provides advanced and very optimized techniques for the generation of (dynamic) FT and of
(dynamic) FMEA tables. NuSMV-SA provides three main engines for safety assessment. The
first two are based on classical BDD-based or on SAT-based techniques. The BDD-based engine
is complete, but if the model is huge may not scale well. The SAT-based approach is incomplete
but allows one to handle very large domains. These two basic approaches are complemented
with a third complete approach, developed in the MISSA project, that combines BDD and SAT.
It first uses BMC techniques, up to a given depth, to prune the search space, and then it performs
an exhaustive analysis on the reduced model using BDD-based model checking algorithms.

5 Experimental Evaluation

5.1 Validation of the translation

As the formal semantics of the Altarica dialect used in OCAS is not fully documented, before
starting an experimental evaluation on realistic case studies, we were confronted with the issue
of validating the semantics we implemented with respect to the one implemented in OCAS. For
the validation we focused on trace simulation generation and trace execution functionalities that
are common to both tools. We used several small handcrafted models developed for checking
some specific conditions. Then, we used some realistic case studies developed within MISSA.

The validation of the tool was done using the possibility offered by OCAS to re-execute a sim-
ulation trace on the Altarica model, using the internal trace simulator. We generated a simulation
trace with the NuSMV/OCAS plugin, and then we re-executed it in the OCAS environment. The
validation flow we used can be summarized as follows (compare Figure 8):

1. we translate the Altarica model provided by OCAS into HyDI, and then into SMV;

2. we either verify properties known to be not satisfied, or we generate random simulation
traces in order to obtain an execution trace, that we save in the NuSMV XML format;

3. we translate the trace provided by NuSMYV into the OCAS XML format;

Proc. AVoCS 2011 10/15

E} ECEASST

Altarica @
Property OCAS Tools Results

OCAS Sequence
generator @
—
Plugin Manager :I FTs |
@ o~ |1

@

: . " NuSMV " .
Property Altarica2Hydi —>| Hydi v B Hydi2Altarica

NuSMV/OCAS Plugin

!

Figure 8: Trace-based validation
4. we load the trace generated in the previous step into the trace simulator of OCAS;

5. we verify that the state reached at the end of the trace execution is compatible with the
property, and with the state reported as final in the simulation trace.

Whenever a discrepancy was detected, a thorough analysis of the simulation execution in OCAS
was carried out to identify the cause of the discrepancy and - if needed - come up with a fix in
the translation to capture OCAS semantics. In a few cases, the behavior shown by OCAS was
found to be incorrect by the users, hence not reflected in the translator (cf. Section 1).

5.2 Verification and safety assessment on industrial case studies

In this section we discuss the comparison between the common functionalities provided by the
OCAS sequence generator and the NuSMV/OCAS plugin. The sequence generator of OCAS is
able to perform Fault Tree Analysis (generation of minimal sequences) up to a bounded depth.
For a fair comparison, we then compared this feature with the Fault Tree Analysis provided by
NuSMV-SA that relies on the SAT and the mixed BDD+SAT approaches?.

For the experimental evaluation we used four industrial models developed in MISSA. The
ELEC_1, ELEC_2, and ELEC_3 models describe a simplified electrical power distribution system
(that resembles that of the A320 aircraft), at different levels of detail. The BRSYS model is a
realistic model of the braking system of an aircraft. The properties to be analyzed formalize
different failure conditions (e.g., “Loss of deceleration capability during landing” for the BRSYS
model). The characteristics of the models are reported in Table 1. This table also shows the time
and memory requirements needed to translate the model into an equivalent HyDI specification.
Note that time and memory increase with the model complexity (however, the translation is
performed only once for each given model, whenever several properties have to be verified).

The experimental results are presented in Figure 9. We executed the tests on a laptop equipped
with an Intel 3GHz CPU, and with 4GB of RAM running Windows 7. We used a memory limit
of 1GB and a timeout of 1000 seconds. The plots report the time needed by OCAS and by the

3 We also used the NuSMV/OCAS plugin to verify temporal properties of the Altarica design; as this functionality is
not available in OCAS, we do not report the results here.

11/15 Volume X (2011)

Symbolic Model Checking and Safety Assessment of Altarica models Eﬁ

Model # States | # Nodes | Translation time | Translation memory
ELEC_I | 1.49x10° 41 1.127s 27MB
ELEC22 | 2.64x10° 44 2.782s 38MB
ELEC_3 | 2.0x10’ 51 2.811s 37MB
BRSYS | 3.8x10% 135 9.820s 69MB

Table 1: Characteristics of the industrial case studies and translation requirements

SAT (BMC) and BDD+SAT algorithms provided by the extended version of NuSMV to perform
an exhaustive search at increasing depths.

The results on the smallest model (ELEC_1) are reported in Figure 9a. The plots clearly
show that the sequence generator is not able to perform the verification with a bound greater
than 9, while NuSMV has a behavior nearly independent of the bound. When the complexity
grows (models ELEC_2 and ELEC_3, Figures 9b and 9c) OCAS shows a very fast degradation
— the sequence generator timeouts with bounds bigger than 7 and 6, respectively — whereas the
performance of NuSMV degrades only marginally. The sequence generator performs better than
NuSMV for sufficiently low depths — this is due to some internal overhead NuSMYV incurs while
reading and converting the HyDI model, and encoding the verification problem. The results on
the BRSYS model (Figure 9d) show a similar trend — OCAS timeouts at depth 3. Notice that the
‘step’ behavior which is visible in some BDD+SAT plots is due to the fact that for higher depths,
SAT may be able to find additional results, that are used to prune the search space before BDD is
run. Concerning memory, NuSMYV uses up to 36 MB (with bound 30), whereas OCAS allocates
up to 100MB (with bound at most 9) on these models. A detailed comparison is difficult, as it is
not possible to trace precisely how OCAS uses the allocated memory.

We remark that, in all the examples, the SAT BMC approach outperforms the OCAS explicit
state approach by orders of magnitude. This enables analyses that were out of the scope of the
previous version of OCAS without the NuSMV/OCAS plugin. Moreover, in all the examples,
we were able to run NuSMYV to convergence, using the complete BDD+SAT approach, with
a running time which is only slightly worse than the SAT BMC approach. Being complete,
BDD+SAT is guaranteed not to miss cut sets, as a difference with OCAS sequence generator. We
also remark that, although not shown in the experimental evaluation, the BDD+SAT approach
performed consistently better than the pure BDD approach on these case studies.

6 Related Work

The original language of Altarica, developed by LaBRI, is based on the notion of interfaced con-
straint automata. A restricted dialect - Altarica Dataflow - was later developed to restrict the com-
plexity of the models and, under certain constraints, permit synthesis of the fault trees [BDRS06,
Rau(2]. Dialects of Altarica are supported by a number of tools ranging from the academic
toolset developed and maintained at the University of Bordeaux [Alt] to SIMFIA [SIM], a mod-
elling, simulation and RAMS analysis environment developed by EADS APSYS - that supports
a Dataflow dialect similar to that implemented by OCAS. Another workbench, COMBAVA,
has been previously developed by ARBoost Technologies but is now obsolete. To our knowl-

Proc. AVoCS 2011 12/15

Eﬁ ECEASST

ELEC 1 ELEC_2
1000 1000
100 100
10 —TIMEOUT 10 —TIMEOUT
b SAT s SAT
2 +BDD+SAT 2 +BDD+SAT
g ol | *0CAS g *0CAS
a 1 @ 1
o 1/ 01
001 001,
3456 78 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Depth Search Depth Search
(a) ELEC_1 (b) ELEC2
ELEC_3 BRSYS
1000 1000
100 N
100
—TIMEOUT —TIMEOUT
2 SAT ° SAT
S 10 +BDD+SAT |5 +BDD+SAT
S *OCAS 8 *OCAS
n (2] v
10
1
1
345678 9101112131415161718192021 2223242526 27282930 345678 91011121314151617 181920 2122 23 24 2526 27 2829 30
Depth Search Depth Search
(c) ELEC.3 (d) BRSYS

Figure 9: Performance comparison NuSMV vs OCAS

edge, OCAS is the most industrially mature of existing toolsets. OCAS is tightly integrated
with Cecilia ARBOR - a Fault Tree Analysis software. Quantitative and Qualitative analysis of
fault trees performed in both Cecilia ARBOR and SIMFIA Safety modules are based on Aralia
[Rau01]. Whilst there also exists a plugin for synthesis of fault trees (implementing the algorithm
of [Rau02]), such functionality is only available for a very restricted subset of Altarica Dataflow.

There are other model checkers that support altarica, in particular MEC 5 [MEC] and Arc
[Arc]. MEC 5 is a somewhat outdated model checker that is now superseded by Arc. Arc is a
more recent, BDD-based model checker based on the Altarica language, which supports CTL*
temporal logics and p-calculus. Arc is not currently linked to OCAS and the interoperability
with a MEC 5 plugin has not been supported in newer versions of OCAS. Moreover, neither Arc
nor its predecessor MEC support safety assessment functionalities. Altarica studio [GPV11]is a
prototypical toolset, based on Arc, for model-based formal analyses. To our knowledge, safety
assessment functionalities are not available in Altarica studio, yet. A thorough comparison of the
model checking engines is hard because of differences in the dialects (and flavours thereof) of
Altarica supported by the different tools. This work has been focused on (a variant of) Altarica
Dataflow - a more extended comparison will be targeted for future work.

183/15 Volume X (2011)

Symbolic Model Checking and Safety Assessment of Altarica models Eﬁ

7 Conclusions and Future Work

In this work we have presented a novel encoding of Altarica models into NuSMYV, which enables
verification and safety assessment of Altarica models using state-of-art symbolic model checking
and formal safety assessment techniques. We have integrated the encoder as a plugin into the
OCAS environment, and we have experimentally demonstrated the feasibility of the approach
by evaluating the plugin on a set of industrial case studies. As part of our future work, we
plan to address the semantics of Altarica temporal events, which was simplified in the current
implementation. Finally, we plan to investigate a timed extension of Altarica, along the lines
of [CPRO4]. This extension fits very naturally in our framework, given that the HyDI language
provides a native support for encoding networks of timed (more in general, hybrid) systems.

Acknowledgements: This work has been supported by the E.C. project MISSA, contract
no. ACP7-GA-2008-212088. We would like to thank Chris Papadopoulos (Airbus UK), Pierre
Bieber and Christel Seguin (Onera), Xavier Leduc and Valerie Sartor (Dassault Aviation), Lau-
rent Sagaspe (EADS APSYS) and Antonella Cavallo (Alenia Aeronautica) for their precious
support and advice for the development, integration and evaluation of the plugin. The ELEC
models used for evaluation have been originally developed by ONERA and, in some cases, ex-
panded by Alenia Aeronautica. The BRSYS model has been developed by EADS APSYS.

Bibliography

[ABB06] O. Akerlund, P. Bieber, E. Boede et al. ISAAC, a framework for integrated safety
analysis of functional, geometrical and human aspects. In Proc. ERTS. 2006.

[AGPROO] A. Arnold, A. Griffault, G. Point, A. Rauzy. The AltaRica formalism for describing
concurrent systems. Fundamenta Informaticae 40:109-124, 2000.

[Alt] The Altarica language. http://altarica.labri.fr/forge.

[Arc] The Arc model checker. http://altarica.labri.fr/forge/projects/arc/wiki.

[Ba03] M. Bozzano, et al. ESACS: An Integrated Methodology for Design and Safety Anal-
ysis of Complex Systems. In Proc. ESREL. Pp. 237-245. Balkema Publisher, 2003.

[BBCT04] P. Bieber, C. Bougnol, C. Castel, J.-P. Christophe Kehren, S. Metge, C. Seguin.
Safety Assessment with Altarica. In Building the Information Society. IFIP Interna-
tional Federation for Information Processing 156, pp. 505-510. 2004.

[BCCZ99] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu. Symbolic Model Checking without
BDDs. In Proc. TACAS. LNCS 1579, pp. 193-207. Springer, 1999.

[BCK™10] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, M. Roveri. Safety,
Dependability, and Performance Analysis of Extended AADL Models. The Computer
Journal doi: 10.1093/com, March 2010.

Proc. AVoCS 2011 14 /15

E} ECEASST

[BCS02] P. Bieber, C. Castel, C. Seguin. Combination of Fault Tree Analysis and Model
Checking for Safety Assessment of Complex System. In Proc. EDCC-4. LNCS 2485,
pp. 19-31. Springer, 2002.

[BDRS06] M. Boiteau, Y. Dutuit, A. Rauzy, J.-P. Signoret. The AltaRica Data-Flow Language
in Use: Modelling of Production Availability of a Multi-State System. Reliability En-
gineering and System Safety 91(7):747-755, 2006.

[Bry92] R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision Dia-
grams. ACM Computing Surveys 24(3):293-318, 1992.

[BVO7] M. Bozzano, A. Villafiorita. The FSAP/NuSMV-SA Safety Analysis Platform. Soft-
ware Tools for Technology Transfer 9(1):5-24, 2007.

[BV10] M. Bozzano, A. Villafiorita. Design and Safety Assessment of Critical Systems. CRC
Press (Taylor and Francis), an Auerbach Book, 2010.

[CMT11] A.Cimatti, S. Mover, S. Tonetta. HYDI: a language for symbolic hybrid systems with
discrete interaction. Technical report, Fondazione Bruno Kessler, 2011.
https://es.fbk.eu/people/mover/hydi

[CPRO4] F. Cassez, C. Pagetti, O. Roux. A timed extension for AltaRica. Fundamenta Infor-
matice 62(3-4):291-332, 2004.

[FSA] The FSAP/NuSMV-SA platform. http://es.fbk.eu/tools/FSAP.

[GPV11] A. Griffault, G. Point, A. Vincent. Altarica-studio : the easier way to do model check-
ing. In Proc. MBSAW 2011. 2011.

[Matl1l] C. Mattarei. Definizione e sviluppo di una traduzione formale da Altarica ad Hydi per
la verifica di sistemi avionici. Master’s thesis, Universita degli studi di Trento, 2011.

[McM93] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[MEC] The MEC model checker. http://altarica.labri.fr/forge/projects/mec/wiki.
[MIS] The MISSA Project. http://www.missa-fp7.eu.

[NuS] The NuSMV model checker. http://nusmv. fbk.eu.

[Rau01] A. Rauzy. Mathematical Foundations of Minimal Cutsets. I[EEE Transactions on Re-
liability 50(4):389-396, 2001.

[Rau02] A. Rauzy. Mode Automata and Their Compilation into Fault Trees. Reliability Engi-
neering and System Safety 78(1):1-12, 2002.

[SIM] SIMFIA. http://www.apsys.eads.net/en/17/Software.

15/15 Volume X (2011)

Eﬁ ECEASST

Mixing Formal and Informal Model Elements for Tracing
Requirements

Michael Jastram', Stefan Hallerstede”, Lukas Ladenberger’

! michael @jastram.de
2 stefan.hallerstede @ wanadoo.fr
3 lukas.ladenberger @ gmx.de

Institut fiir Softwaretechnik und Programmiersprachen
Heinrich-Heine Universitit Diisseldorf, Germany

Abstract: Tracing between informal requirements and formal models is challenging.
A method for such tracing should permit to deal efficiently with changes to both
the requirements and the model. A particular challenge is posed by the persisting
interplay of formal and informal elements.

In this paper, we describe an incremental approach to requirements validation and sys-
tems modelling. Formal modelling facilitates a high degree of automation: it serves
for validation and traceability. The foundation for our approach are requirements that
are structured according to the WRSPM reference model. We provide a system for
traceability with a state-based formal method that supports refinement. We do not
require all specification elements to be modelled formally and support incremental
incorporation of new specification elements into the formal model. Refinement is
used to deal with larger amounts of requirements in a structured way.

We provide a small example using Problem Frames and Event-B to demonstrate our
approach.

Keywords: Requirements, WRSPM, Event-B, Rodin, ProR

1 Introduction

We describe an approach for incrementally building a formal model from structured informal spec-
ifications providing a means of requirements validation. Our approach does not require all specifi-
cation elements to be modelled formally, and the resulting system description provides traceability
to both formal and informal model elements. The traceability allows us to detect which require-
ments are affected if the system implementation changes, and vice versa. Most elements of the
structured specification are still stated in natural language. Our aim is to increase the confidence
that the formal model represents what has been specified, and to ensure that specification elements
that do not have a formal representation are validated at a different stage of the development by
informal reasoning and tracing.

We identified the WRSPM reference model [GJGZ00] as the foundation for the informal struc-
tured specification. Many concrete approaches are consistent with this reference model, e.g.,
[JacO1, PM95]. A specification following the WRSPM approach can still be understood by stake-
holders, while providing a good foundation for formalisation. These approaches define phenomena
which describe the state space of the system and its environment, as well as artefacts that repre-
sent constraints on the state space and the state transitions. This structure makes a traceability to a
state-based formalism doable.

A distinguishing feature of our approach is the incremental modelling of the specification us-
ing refinement, which the chosen formalism must support. Once modelled formally, the potential
for automated verification is high. This is particularly useful for change management and re-
quirements evolution, which are both important aspects for real-world systems. Also, we allow
specification elements without formal representation. Those elements must be justified informally
using techniques suggested in [JacO1], for instance.

1/15 Volume 35 (2010)

ST

e

Mixing Formal and Informal Model Elements for Tracing Requirements

1.1 Structure of this Paper

In the remainder of this section, we will provide a brief foundation of requirements and specifica-
tions, as well as state-based modelling. In Section 2 we present our main thesis, the traceability
between formal and informal specification and model. We deepen the aspect of formal refinement
in Section 3.

In Section 4, we provide a small example to demonstrate various aspects of our approach. The
example uses the Problem Frames approach and the Event-B formal method.

We are actively working on tool support and present our progress in Section 5.

After describing some of the related work in Section 6, we conclude in Section 7, which also
contains an outlook on future work.

1.2 Requirements and Specification

Our approach is based on WRSPM by Gunter et. al. [GJGZ00]. WRSPM is a reference model
for applying formal methods to the development of user requirements and their reduction to a
behavioural system specification.

WRSPM distinguishes between artefacts and phenomena. Phenomena describe the state space
(and state transitions) of the domain and system, while artefacts represent constraints on the state
space and the state transitions. The artefacts are broadly classified into groups that pertain mostly
to the system versus those that pertain mostly to the environment. These are:

Domain Knowledge (W) describes how the world is expected to behave.
Requirements (R) describe how we would like the world to behave.
Specifications (S) bridge the world and the system.

Program (P) provides an implementation of S.

Programming Platform (M) provides an execution environment for P.

We distinguish phenomena by whether they are controlled by the system (belonging to set s)
or the environment (belonging to set ¢). They are disjoint (sNe = &), while taken together, they
represent all phenomena in the system (sUe = “all phenomena”). Furthermore, we distinguish
them by visibility. Environmental phenomena may be visible to the system (belonging to e,) or
hidden from it (belonging to ej). Correspondingly, system phenomena belonging to s, are visible
to the environment, while those belonging to s;, are hidden from it. These classes of phenomena
are mutually disjoint.

The distinction between environment and system is an important one; omitting it can lead to
misunderstandings during the development. It is sometimes regarded as a matter of taste or conve-
nience where the boundary between environment and system lies, but it has a profound effect on
the problem analysis. It clarifies responsibilities and interfaces between the system and the world
and between subsystems. If we require ourselves to explicitly make that distinction, we can avoid
many problems at an early stage.

W and R may only be expressed using phenomena that are visible in the environment, which is
eUs,. Likewise, P and M may only be expressed using phenomena that are visible to the system,
which is sUe,. S has to be expressed using phenomena that are visible to both the system and the
environment, which is e, Us,,.

Once a system is modelled following WRSPM, a number of properties can be verified with
regard to the model, one being adequacy with respect to S:

FOR ALL e s, W AND S IMPLY R (Adequacy)

This simply says that the specification constrains the world such that the requirements are real-
ized. Obviously we are not interested in the trivial solution to (Adequacy), meaning that no e and
s exist to satisfy (Adequacy).

Proc. AVoCS 2010 2/15

Eﬁ ECEASST

We demonstrate our ideas using Problem Frames [JacO1], which is a concrete approach to soft-
ware requirements analysis that is a manifestation of the WRSPM reference model. The central
element in problem frames is the problem diagram that consists of exactly one machine domain,
designed domains and given domains.

1.3 State-Based Modelling and Refinement

Our approach could be used with a wide range of formal methods for state-based modelling
that have an associated notion of refinement. We find state-based formalisms such as ASM
[BS03], VDM [Jon90], TLA+ [Lam02] or Event-B [Abr10] particularly suited because they permit
straightforward specification of state, state invariants and state transitions for modelling dynamic
behaviour. In this paper, we focus on state-based modelling and provide an example using Event-
B, which we introduce in Section 3.1. Event-B is suitable for discussing the example that we
introduce in Section 4. Using Event-B we can also discuss limitations of requirements tracing:
not all requirements can be formalised within the core Event-B formalism. Formal and informal
reasoning need to be combined in a sensible way. The boundary of formalisation in the example
is given by temporal and real time properties. We have intentionally chosen a boundary that could
be moved by using another formal method or extending Event-B because we think it is not fixed
and may change depending on project characteristics. It also serves to illustrate that the boundary
may be moved as a development progresses. We think of modelling and requirements validation
as an incremental process: we permit the boundary to be moved as need arises.

We take advantage of the concept of refinement which is supported by Event-B. Other notions
of refinement could be used without changing the approach fundamentally. Our approach allows
us to account for additional requirements at later refinement stages, thereby providing a structuring
mechanism for the introduction of requirements into the formal model.

2 From Formal to Informal and Back

The requirements engineering process can be broken down into requirements specification, system
modelling, requirements validation and requirements management [WieO3].

We will briefly describe these process steps (shown in Figure 1) and how they relate to the work
in this paper.

System Modeling

—r s >
Requirementsi : De‘velopme-m Requirements
Specification ' 3 Process : ' Management

i -:.....:. ". u: -:..J:.}

Time

' Requirements Validation '

Figure 1: The Incremental Development Process

Requirements Specification — The requirements are structured according to the approach of
choice, resulting in a specification that follows the WRSPM reference model. In the ex-
ample that we introduce in Section 4, we use the Problem Frames approach.

System Modelling — The objective of this phase is the formal modelling of elements. Not all
elements need to be modelled formally, which is one distinguishing feature of our approach.
Also, this step can and should be performed incrementally. In general, any formalism can
be used. The nature of the problem to be solved may suggest one formalism over another.
In particular, it may be useful to select a formalism that makes it easy to model the safety
critical aspects of the specification. It is also possible to user more than one formalism. In
the example in Section 4, we use Event-B.

3/15 Volume 35 (2010)

| J
E:iST
*

Mixing Formal and Informal Model Elements for Tracing Requirements

Requirements Validation — The validation of the requirements is a central aspect of this paper
and is described in detail in Section 2.1.

Requirements Management — In practice, a specification is never “done”. The ongoing work
includes change management and requirement evolution. These tasks are supported by our
approach. The amount of formality determines how effective this is. At one end of the
spectrum, all elements are modelled formally, allowing us to prove (Adequacy). On the
other end of the spectrum is an informal description.

These tasks, including elicitation, analysis and negotiation, are performed in parallel. We do
not want to create the impression that this is a sequential process.

2.1 Requirements Validation

System modelling provides us with partly formalised elements as described by the requirements.
We think of system modelling as an incremental process where more and more is formalised.
However, we do not assume that necessarily everything is formalised. The methodology we pro-
pose allows for a mixture of formal and informal proof as a means of validation. As a consequence
of frequent incremental changes we need effective support for tracing requirements: formal mod-
els change as they incorporate increasing detail, requirements change as a consequence of the
validation itself. The transition to requirements management is considered fluent and the same
techniques of traceability are applied.

Demonstrating (Adequacy) now involves dealing with formal and informal elements. In the
following, we designate by Rf the formal requirements, by Wf the formal domain properties and
by Sf the formal specification elements. The difference R\ Rf of all requirements and formal
requirements gives the informal requirements Ri, similarly for informal domain properties Wi and
informal specification elements Si.

For the formal elements we can formally verify that

Ves-WFASf = Rf, (D

assuming that sufficient of W and S have been formalised to cover Rf. For informal elements we
allow informal arguments, for instance, of the kind used in the problem frames approach [Jac01]
or not formalised mathematical proofs. Doing this, we show:

FOR ALL e s, W AND S IMPLY Ri . (2)

We permit also using formal elements in the antecedent of (2) but only formal elements in the
antecedent of (1). As many critical requirements as possible should be validated formally, giving
high assurance of their satisfaction. Relying on formally verified facts in informal justification
will also improve their quality.

2.1.1 Formal Tracing

To formalise artefacts A they need to be of a form that can be “translated” into a formula F' so that
we can state

A EQUIVALES F . 3

This makes tracing from F to A and vice versa trivial. Formal proofs of (1) can provide information
about which formal artefacts are used in order to validate specific requirements. Among others,
this has been implemented in the proof support of the Rodin tool [ABH " 10]. If formal artefacts
Fi, ..., F; have been used to prove formal requirement Rf, from Wf A Sf, then we know that a
change of the informal requirement R, that equivales Rf, affects the informal artefacts Ay, ...,
Ay. The formal model provides a way to validate requirements rigorously and an efficient way to
trace dependencies between informal artefacts. The latter is crucial for the maintenance of large
numbers of requirements occurring in industrial practice. Support by proof tools means that this
tracing can be automated to a large degree.

Proc. AVoCS 2010 4/15

Eﬁ ECEASST

2.1.2 Informal Tracing

Artefacts that are not formalised can still be traced but the dependencies can only be checked
manually by inspecting informal arguments. Changes of involved artefacts require corresponding
human intervention. A known technique to limit the impact of changes is the identification of a
satisfaction base [KJ10] for each informal artefact of Ri. A satisfaction base for a requirement
R, consist of those artefacts from S and W that are sufficient to justify it. Using the concept of a
satisfaction base, (2) can be rephrased as

FOR ALL e s, SB(R,) IMPLY R,, . 4)

where SB(R,,) is a subset of W and S, representing a satisfaction base for the given requirement.
The satisfaction base is used in the informal justification and for tracing dependencies, similarly
to formal tracing. However, possibilities for automation are very limited. Also note that there may
be multiple satisfaction bases.

3 Formal Refinement

Formula (1) can grow very large for a complex model. This can make it very difficult to verify any
interesting property but also to compute a sufficiently small set of formal artefacts that are used to
verify specific formal requirements Rf,,. Formal refinement alleviates this problem by introducing
parts of the overall model in small increments. The original WRSPM approach sketch a notion of
implementation based on the program P and the programming platform M:

FOR ALL es, W AND P AND M IMPLY R . 5)

This can be achieved by relying on implication for implementation (see, e.g., [HJ98, Heh93,
GJIGZ00])),

FOR ALL e, s, P AND M IMPLY S (6)

providing a simple notion of refinement in a predicative specification style. Instead of formalis-
ing the refinement notion (6) we prefer a notion based on discrete transition systems that permits
more direct specification of dynamic aspects of a model. For the purposes of this article we do not
consider details of M such as the targeted programming language. We consider S as a collection
of invariants and transitions of a discrete transition system which we specify by means of Event-B
[Abr10]. The choice of Event-B over similar methods [BS03, Jon90] is mostly motivated by the
built-in formal refinement support and the availability of a tool [ABH " 10] for experimentation
with our approach.

3.1 Event-B Machines

Event-B is a state-based modelling method whose models are characterised by proof obligations.
Proof obligations serve to verify properties of the models. To a large degree, such properties orig-
inate in requirements that the model is intended to realise. Eventually, we expect that by verifying
the formal model we have also established that the corresponding requirements are satisfied.

We only provide a brief summary of simplified Event-B in terms of proof obligations. A com-
plete description can be found in [Abr10]. Variables v define the state of a machine. They are
constrained by invariants /(v). Possible state changes are described by means of events. Each
event

any t when G(t,v) then x := E(¢,v) end

is composed of parameters t, a guard G(t,v) and an action x := E(t,v), where x are variables of
the machine. The guard states the necessary condition under which an event may occur, and the
action describes how the state variables evolve when the event occurs. Actions x := E(t,v) are

5/15 Volume 35 (2010)

| J
E:iST
*

Mixing Formal and Informal Model Elements for Tracing Requirements

characterised by before-after predicates X' = E(v) Ay’ =y, where y are the remaining variables
of the machine. In the presentation of the proof obligations we assume actions are of the form
v:=E(t,v). The before-after predicate of an event is the formula G(7,v) AV = E(t,v). A dedicated
event v := Ej,;; without parameters or guards is used for initialisation. (The expression Ej,j; also
does not refer to any variables.)

3.2 Event-B Proof Obligations

In Event-B two main properties are proved about formal models: consistency and refinement.

Consistency. Consistency means that the invariant /(v) is established by the initialisation
1(Einit)

and maintained
I(v)ANG(t,v) = I(E(t,v))

by all other events of the machine. Usually, invariants are conjunctions, e.g., I(v) =L (v) A... A
I,(v). Hence, it suffices to prove I(v) AG(t,v) = I;(E(t,v)) forall j € 1..n. The smaller predicates
are easier to relate to informal artefacts and easier to trace in case artefacts correspond to theorems
derived from the invariants.

Refinement. Refinement links abstract events to concrete events aiming at the preservation of
properties of the abstract event when it is replaced by the concrete event. A concrete event with
guard H(u,w) and action w := F(u,w) refines an abstract event with guard G(z,v) and action
v:= E(t,v) if, whenever the gluing invariant J(v,w) is true:
i. the guard of of the concrete event is at least as strong as the guard of the abstract event, and
ii. for every possible execution of the concrete event there is a corresponding execution of an
abstract event which simulates the concrete event such that the gluing invariant remains true
after execution of both events.
Formally,

IV)ANI(v,w) NH(u,w) = 3t -G(t,v) NJ(E(t,v),F(u,w)) .

For initialisation we have to prove: J(Eipt, Finit). To match the refinement notion of WRSPM
described in Section 3 we have to void data-refinement where a variable is replaced by another. We
think data-refinement could eventually serve to deal with abstractions of phenomena where in more
abstract problem frame descriptions phenomena are bundled. The Event-B method derives proof
obligations from these two properties that are easier to handle and can be efficiently generated
by a tool [Abr06]. In particular, the conclusion is decomposed into small parts. To achieve this
witnesses t = T (u,w) for ¢ are introduced for instantiating the existentially bound identifiers:

IV)ANI(v,w) NH (u,w) = G(T (u,w),v) NJ(E(T (u,w),v),F(u,w)) .

Usually, guards and (gluing) invariants are conjunctions and the proof obligation can be decom-
posed similarly to the consistency proof obligation above.

3.3 Tracing of Requirements with Event-B

The Event-B model contains formal artefacts as indicated by (3). The domain properties Wf and
specification elements Sf can be represented by means of events and invariants. By consistency
and refinement we get a collection of invariants /A that are preserved by all events EA. We can
now partition events and invariants according to the artefacts they represent: IA = IW U IS and
EA = EW UES. Making this distinction is standard in the Event-B method.! To fit into the shape

1" Using model decomposition we could now decompose the two parts and focus on the refinement of the sub-model
consisting of 1S and ES. The interface to the other sub-model would act as a contract guaranteeing overall consistency.

Proc. AVoCS 2010 6/15

Eﬁ ECEASST

of WRSPM adequacy we consider the before-after predicates of all events and identify Wf =
IW NBA(EW) and Sf = IS A BA(ES), where BA(EE) yields the disjunction of the before-after
predicates of the events EE. In formal refinement Pf the formal program is usually considered a
subset of Sf that is being gradually constructed during refinement. After some refinement steps we
have Pf = ISA\IP A BA(EP) where the events EP are refinements of the events ES. Hence, Pf = Sf
by choosing suitable witnesses, obtaining the formal counterpart of (6). We have identified the
formal domain properties Wf, specification element Sf and program Pf.

We can now turn to the formal requirements Rf, formal adequacy (1) and the formalised (5) not
taking account of the programming platform M:

Ves-WfAPf=Rf. @)

Assuming we already have verified (1), adequacy of the implementation (7) follows by the discus-
sion of the preceding paragraph, using

Vs-Pf = Sf . (®)

Refinement allows this to be applied incrementally to deal with small more manageable sets of
artefacts at each refinement step. Gradually, the set of satisfied refinements is extended until all
requirements are covered,

o=Rf°CRf' CRFFC...CRf"=Rf, ©)

where the Rf’ correspond to the refinement steps of the model. Most of these refinement steps will
involve the domain properties and specification elements:

Ve s- WL ASFHT = Wfi A ST (10)

Refinement steps for implementing the program will usually be less related to requirements.
The refinement method, however, does not make a particular distinction between the two uses of
refinement. Each refinement step can be used to verify adequacy of the specification gradually:

WFASF = RFF\RF!. (11)

Refinement theory guarantees that adequacy validated in earlier refinement steps is preserved.
After n refinement steps (1) is verified.

Formula (11) suggests a method of stepwise tracing of requirements following the refinements.
Often requirements can be identified with invariants, event guards or actions. In this case (11)
holds trivially. Sometimes theorems can be stated [HL.O9] that are implied by the invariants. In this
article we limit tracing to this level. However, this is not a fundamental limitation of the approach.
For instance, one could also permit temporal formulas derived from Wf A Sf as supported by
TLA+. Some of TLA+ is also implemented in the ProB tool [LBOS] that has been integrated with
the Rodin tool that we use. But for this article we contend ourselves with a less expressive notation
relying only on invariants and possible transitions.

Problem frame diagrams do not use refinement, but techniques of decomposition like projection.
They serve for structuring large sets of requirements. They correspond to the last refined model
just before turning to implementation (by means of P). The problem frame diagram will always
contain the entire set of formal and informal requirements R. We do not intend to extend the idea
of refinement from Event-B to problem frames in this paper.

4 Example: A Traffic Light Controller

We are going to demonstrate the approach presented here by creating the model of a traffic light
system that allows pedestrians to cross a street. We already introduced this example in [JHLJ10].
The system consists of two traffic lights for pedestrians (one on each side of the street), two

7/15 Volume 35 (2010)

Mixing Formal and Informal Model Elements for Tracing Requirements -

corresponding traffic lights for the cars, and push buttons for the pedestrians to request a green
light for crossing the street.

We consider this example useful, because it is simple enough to understand, but complex enough
to be interesting. Further, the example concerns state (which we model formally) as well as real-
time (which we specify informally), allowing us to demonstrate the mixing of formal and informal
modelling elements. In the following, we only present the interesting aspects of the example.

4.1 Requirements Specification

Following our approach, we would apply a specification approach of choice, in this case Problem
Frames. This may lead to a the problem diagram shown in Figure 2. The Problem Frames diagram
is incomplete. For instance, information regarding the temporal properties of the system are miss-
ing. This is by design, as the problem diagram only depicts the contextual aspects of the model
and their relationships in the form of shared phenomena. The textual representation is still the
central repository for all information regarding the system. This leads to a new natural language
specification, shown in Table 1. In the table, the phenomena are highlighted. The vocabulary is
managed in a separate glossary (Table 2).

/" Pedestrianscan
]

Pedestrians observe ' fel
fraffic lights . cross sately
* %tasnnsnnnannnnnns “.
: / A Stenannnmsnnnnsnnnnn FEEETT TR .
JULTUTTUTTCTETPETTELEN . : — moving. :
: S : control & Trafficlight |red, green, Pedestrians sToppin%,
. y (Pedestrians) | vellow waiting
Trafficlight : . Street

Conftroller \\
: confrol ™ Trafficlight |red, green, moving,

E . signals = Cars stopping,
K 3 (COI’S) yelow waiting

Cars observe
traffic lights

Figure 2: A simplified Problem Frames diagram for the traffic light problem

Note that it can be useful to introduce an informal notion of refinement already in the textual
description of the system to structure it. We see that in the description of the traffic light states,
that are sometimes referred to abstract as the abstract stop and go, and sometimes as the concrete
colours red, yellow and green. We can take advantage of this in the modelling phase by establish-
ing abstract properties that are simple and easy to trace. The refinement concept of Event-B allows
us to introduce the concrete colours later on, while preserving the original properties (assuming
correct data refinement), as demonstrated in Section 4.3.

The specification in Table 1 is already more precise than the original requirements, while still
comprehensible by the stakeholders. We already identified items as R, W and S. This makes it
easier to reason about the model. It also allows us to identify the proper role for validating or
justifying each artefact: Stakeholders are concerned with R, domain experts with W and designers
with S.

R-2.1 Pedestrians can cross safely. They are crossing when they are not waiting.

W-2.1 Pedestrians observe the traffic lights (¢/,.45). This means that they may move (mov-
ing) when the traffic lights allows them to go. Upon indicating stop, they finish
moving (stopping) and then wait (waiting).

Proc. AVoCS 2010 8/15

Eﬁ ECEASST

W-2.2 Cars observe the traffic lights (¢l.,.s). This means that they may move (moving)
when the traffic lights allows them to go. Upon indicating stop, they finish moving
(stopping) and then wait (waiting).

W-2.3 stopping of Pedestrians takes time.

W-2.4 stopping of Cars takes time.

S-2.1 The traffic lights for pedestrians (¢/,.4s) and cars (¢l.4,5) never indicate go at the same
time.

S-2.2 tleqrs must wait for a certain time (delay.q,s) before switching to go after t/),4, turned
to stop.

S-2.3 delayp,qs is 3 seconds (£ 100ms).

S-2.4 tlpeqs must wait for a certain time (delay ,eq5) before switching to go after #1.,,, turned
to stop.

S-2.5 delay qs is 3 seconds (£ 100ms).

Table 1: Requirement, Domain Assumptions and Specification of a Traffic Light System (partial)

Pedestrians (ep,) are modelled as moving, stopping or waiting.

Cars (ep) are modelled as moving, stopping or waiting.

tpeds (Sv) Traffic lights for pedestrians, modelled as go and stop.

Hears (5) Traffic lights for cars, modelled as go and stop.

delaypeqs (ey) is modelled as an event that delays for 3 seconds after 7/).4s turns
from go to stop.

delaycqrs (ey) is modelled as an event that delays for 3 seconds after t/.4. turns
from go to stop.

go (sy) is the state of a traffic light where only the green lamp is on.

stop (sy) are all states of a traffic light that are not go.

Table 2: The Glossary (partial)

4.2 System Modelling

We decided to use the Event-B formalism (Section 3.1), making it easier to model some aspects
of the model and more tricky to model others. In particular, it is easy to express safety properties
like R-2.1, more difficult to express state transition properties like S-2.2, and almost impossible to
express real-time properties like S-2.3.

Following the incremental approach described in Section 2, we start with the safety requirement
R-2.1, for which a state-based formalism like Event-B is well-suited.

Pedestrians # waiting = Cars = waiting (12)

Not all properties can be modelled as easily as R-2.1. For instance, the behaviour of pedestrians
(W-2.1) cannot be represented by an invariant. Instead, we can model it according to the approach
described in Section 3.3 by representing it as a before-after predicate of an event. The property W-
2.1 doesn’t have the proper granularity for this approach, so we rewrite it to specify each transition
separately. This rewrite is part of the incremental specification process, and the result must be
validated with the domain experts.

W-2.1 (a) Pedestrians that are moving can only change their state to stopping.
W-2.1 (b) Pedestrians that are stopping can only change their state to waiting.
W-2.1 (¢) Pedestrians that are waiting can only change their state to moving.

W-2.1 (d) Pedestrians may only change to moving if tl,.4, indicates go.

9/15 Volume 35 (2010)

Mixing Formal and Informal Model Elements for Tracing Requirements -

W-2.1 (e) Iftl,.4, indicates stop, then Pedestrians must change to stopping if they are moving and
change to waiting if they are stopping.

Rewritten like this, it can be modelled in Event-B as follows:

Event peds_moving _to_stopping =

when

W—2.1a: Pedestrians = moving
then

W—2.1a: Pedestrians := stopping

Event peds_stopping_to_waiting =

when

W—2.1b : Pedestrians = stopping
then

W—2.1b: Pedestrians := waiting

Event peds_waiting_to_moving =

when
W—2.1c: Pedestrians = waiting
W—2.1d: tl_peds = go

then
W—2.1c: Pedestrians := moving

Note how we could establish a clear traceability according to (3). The exception is W-2.1e,
which is difficult to model in Event-B. Event-B allows us to enforce that something does not
happen (via a guard), but difficult to guarantee that something does happen (implying that all
events except one are disabled). The missing traceability to W-2.1e reminds us that this property
must be justified outside this formal model. This could be done by reasoning, testing, or with a
different formalism like temporal logic.

This justification may be invalidated if the source or target of the traceability relationship
changes. Thus, it has to be verified after each such change. A tool may support this by invali-
dating that relationship if either of the elements involved changes.

The reader may have noticed that the above represents a state machine. It could be useful to
develop an approach specific to state machines.

4.3 Data Refinement

In Section 3.2, we described how consistency is maintained across refinement levels. We will
demonstrate this concept by showing how the traffic light states stop and go are transformed via
data refinement into red, yellow and green.

Abstract
Events [Stop J E

Concrete
Events

Figure 3: Data Refinement of the Traffic Light States

Proc. AVoCS 2010 10/15

Eﬁ ECEASST

Data refinement allows us to state abstract properties in a concise way, while the implementation
details are addressed later. This allows us to reason about some fundamental properties. Consider
S-2.1 as an example of such a property. By arguing simply about stop and go, the safety property
can be stated in a very concise way. The detail on how stop and go are realised (through colours),
can be provided later. Carrying the notion of refinement to the requirements allows us to write
more concise requirements: In this case, we can separate the safety requirement from the actual
representation of traffic light states, which is also a requirement, but a different one.

There are other situations where this approach can be exploited: For product lines, some abstract
properties could be realised in different concrete implementations. In this example, sfop and go
could be signalled with a barrier, as found in railroad crossings. A carefully crafted abstraction
would therefore support the automated verification of different concrete implementations.

We can model S-2.1 formally as follows:

_‘(tlpeds:gO/\tlcars:go) (13)

The definition of stop and go in terms of colours was already given in Table 2, leading to the
following gluing invariant that can be introduced in a new refinement:

tpeds = §0 < colors pegs = {green} (14)

Introducing (14) into the model results in non-discharged proof obligations, as the newly intro-
duced gluing invariant will be violated without any further modifications. The abstract events that
control the traffic light’s sfop and go states must also be refined into concrete events that cycle
through the corresponding colour states, as shown in Figure 3.

The refinement will take on a similar form as the Event-B shown in Section 4.2, where each state
transition corresponds to one event. The proof obligations will ensure that the safety requirement
(13) is not violated once they are all discharged, assuming that the gluing invariant (14) is modelled
correctly. Discharging all proof obligations will require additional guards.

4.4 Adding Requirements with Refinement

Another application of refinement is the gradual inclusion of formal requirements into subsequent
refinements, as hinted at in (9). In the traffic light example, this can be demonstrated by adding a
push button for the pedestrians, allowing them to request crossing the street.

Table 3 shows the structured requirements and their formal representations:

R-2.2 Pedestrians can request to cross any time.

S-2.6 Upon switching of ¢/_peds from go to stop, the request is reset.

S-2.7 Pedestrians must not wait longer than 60 seconds for permission to cross after issuing
the request.

Table 3: Requirement and Specification for allowing Pedestrians to Request Crossing the Street

These two properties can be incorporated into the model in a separate refinement with a new
event and the extension of an existing event with a straightforward traceability, as shown in the
following:

Event request_crossing =

when
R—2.2: request := TRUE
end

Event set_tl_peds_go =
extends ser_tl_peds_go

when
S—2.6: request .= FALSE

11/15 Volume 35 (2010)

Mixing Formal and Informal Model Elements for Tracing Requirements -

The requirement S-2.7 cannot be modelled formally as stated. This informal artefact simply has
to be verified outside the formal model. We could break down S-2.7 further to model some aspects
formally (e.g. by introducing a “tick” interval). Our approach could handle this, but we omitted
this for brevity.

, but there are techniques that In this case we decided to not model S-2.7 formally, something
that our approach can handle without difficulty.

5 Tool Support

A tool supporting this approach would have to provide a mechanism to mark informal artefacts to
be marked as “justified”, and a place to write this justification down. Further, all Ri would have to
be marked for re-justification, as soon as any W or S changes.

We developed a platform for requirements engineering called ProR” [JG11]. While the tool
can be used stand-alone, we designed it with the goal to ease the integration of natural language
requirements and formal models.

@ maco “Trafficlight.rif-xmi | [Rl *Specification Document &3 =0
[R| Specification Document
J D] Description [WRSPN] Link
1 |e Artefacts
1.1 @ R-1 [Pedestians] can cross [not [waiting]) safely. R{1) 0F@Cr]

W-1 [Pedestrians] observe the trafficlights [H_peds]. This means that
12 o they may move [moving] when the fraffic lights allows them fo @2
‘ [go]. Upon indicating [stop]. they finish to move [stopping] and Q
then wait [waiting]. R (1)
W-2 [Cars] observe the trafficlights [fl_cars]. This means that they may | 5 (2]
move [moving] when the fraffic lights allows them to [go]. Upon | p 3)

13| @ idicating [stop], they finish to move [halting] and then wait OPeP2
[waiting].
{2l Rodin Problems |2 Problems | 2 Properties 32 . & Tasks =7 & ¥ 70
Property | Value |

Misc
Identifier '= G6FwAH-eEeCS) _gcEiifWA
Long Name =
Type 9 Antefact Type
Artefact Type

[Pedestrians] observe the trafficlights [H_peds]. This means that they may
Description move [moving] when the traffic lights allows them to [go]. Upecn

indicating [stop]. they finish to move [stopping] and then wait [waiting].
WRSPM W (0)

Figure 4: Integration of WRSPM-structured artefacts and formal Event-B elements.

ProR is based on the Requirements Interchange Format RIF/ReqIF [OMG11]. RIF was created
in 2004 by the “Herstellerinitiative Software”, a body of the German automotive industry that
oversees vendor-independent collaboration. In 2010, the Object Management Group (OMG) took
over the standardisation process and released a new version of the standard under the name ReqIF.
Our tool environment is currently based on RIF 1.2, support for ReqlF 1.0 is planned.

ProR is part of the Requirements Modeling Framework, which is an official Eclipse Project.

ProR can be installed directly into Rodin. A tight integration can be achieved with plugins that
access both the Rodin and ProR data structures.

We created a plugin that allows us to manage the vocabulary of the natural language require-
ments as Event-B models. Via this plugin, ProR supports highlighting of formal model elements
directly in the requirements text. Annotated traces can be used to record information regarding re-
lationships. For instance, this mechanism can be used to record the justification argument between
a textual requirement and a formal model element.

Formal Event-B elements have a corresponding proxy object in the RIF model that is automati-
cally synchronised with the Event-B model. The integration is currently manual via drag and drop.
The proxy object can be extended with additional attributes to store arbitrary information.

2 http://www.pror.org

Proc. AVoCS 2010 12/15

Eﬁ ECEASST

The plugin is built using the Eclipse EMF technology °. This allows us to “hook” code into the
models to perform various tasks. Depending on the specification approach used, we could provide
validators to ensure consistency according to the approach taken.

The application of the tool is shown in Figure 4, where the elements from the formal model are
highlighted in the requirement text. We also see how a classification of elements can be performed,
in this example following WRSPM. The desired artefact type is selected from a drop-down directly
in the editor.

The Properties View in the lower pane shows additional information regarding the selected
element.

The right column shows the number of incoming and outgoing links, providing a quick summary
of each element’s traceability. These links can be unveiled, as shown in Figure 5. Rows with a
triangle represent an annotated trace. In this example, an informal justification has been provided.

For links, the rightmost column contains the link target. Selecting it shows the target’s properties
in the Property View. In the screenshot we see that the link target is the event stopping_peds. As it
is selected, the Property View shows its attributes, including the event itself. This is a reference to
the model, not a copy of the event.

The tool is currently in a prototypical state and is actively developed. Specifically, it currently
support the manual creation of links and colour highlighting. We envision a tool that identifies
unaccounted requirements and model elements, and that invalidates traces when related model
elements change, as well as change impact analysis.

@ maco Trafficlight.rf-xmi [r *Specification Document 2 =8

[l Specification Document
J D] Description [WRSPN] Link \
W-1 [Pedestians] observe the trafficlights [H_peds]. This means that

they may move [moving] when the fraffic lights allows them to

1z ° [go]. Upon indicating [stop]. they finish to move [sfopping] and Wi orer-2
then wait [waiting].
. Al\owg all legal .stcnfe transitions via the guard, except from set Pedestrians
stopping to waiting.
Handles the fransition from stopping to waiting. We have a i .
& dedicated event o account for the delay. S TELEEEE
W-2 [Cars] observe the frafficlights [fl_cars]. This means that they may
13 | @ Mmove Imovingl when fhe fraffic lights allows them [0 1901 JPN w o) orer-2

{2l Rodin Problems | [2: Problems | 2 Properties 5 . ¥ Tasks e R =
Property | Value |
Type Event-B Type
event stopping_peds
where
@W1_a Pedestrians = stopping
Description then

@W1_b Pedestrians = waiting
@W3 delay_peds == FALSE
end

Figure 5: The unveiled traces of an element. As the link target is selected, the link target’s proper-
ties are shown in the Property View (the lower pane)

6 Related Work

The issue of traceability has been analysed in depth by Gotel et. al. [GF94]. Our research falls
into the area of post-requirements specification traceability.

Abrial [AbrO6] recognises the problem of the transition from informal user requirements to
a formal specification. He suggests to construct a formal model for the user requirements, but
acknowledges that such a model would still require informal requirements to get started. He
covers this approach in [Abr10].

The WRSPM reference model [GJGZ00] was attractive because it allowed us to discuss the
specification in general terms, while still being meaningful in the context of a specific approach

3 Eclipse Modelling Framework, http://www.eclipse.org/emf/

13/15 Volume 35 (2010)

| J
E:iST
*

Mixing Formal and Informal Model Elements for Tracing Requirements

like Problem Frames [JacO1] or the functional-documentation model [PM95].

There have been successful attempts in applying Problem Frames and Event-B together. In
[LGG™10], the authors show how these are being applied to an industrial case study. In contrast
to our approach, only requirements that were actually modelled formally were included in the
specification in the first place.

There are approaches spanning from requirements to formal model, a well-known one being
KAOS [DDML97]. But rather than allowing informal elements that are omitted from the formal
model, it provides so-called “soft-goals” that are broken down into requirements that can still be
modelled formally.

Reveal [Pra03] is an engineering method based on Michael Jackson’s “World and the Machine”
model. There are a lot of similarities to our approach, including the acknowledgement of require-
ments that are not part of the formal model. However, Reveal is more of a process description of
the overall requirements engineering process. Therefore it could be quite attractive to apply the
Reveal process with the approach described here.

Last, [WAC10] describes a much more comprehensive case study where a number of the con-
cepts described in this paper can be found.

7 Conclusion

In this paper, we presented an approach for incrementally building a formal model from structured
informal requirements. Our approach supports partial formal modelling and provides traceability
for both formal and informal specification elements. This approach allows us to take advantage of
the formal model regarding automated verification, while providing a systematic (albeit manual)
approach to validation of the remaining specification elements.

We demonstrate our ideas on a specification and model of a traffic light system. While this is
arguably a teaching example, it contains examples of specification elements that are challenging
in formal modelling and demonstrates how these can be addressed.

We believe that tool support is a crucial element for such an approach to work and presented an
integration of the ProR platform for requirements engineering and the Rodin platform for Event-B
modelling to support our approach.

Future Work. We will continue investigating different specification methods. While we find
WRSPM useful, it is a reference framework that is not intended to be applied as is. We have
experimented with Problem Frames, which are useful but does not match well with our approach
to refinement (based on Event-B).

We will explore the suitability of Event-B for modelling bigger specifications with our approach,
if possible real-world examples.

Last, we will continue our work on tool support.

Acknowledgements. The work in this paper is partly funded by Deploy”. Deploy is a European
Commission Information and Communication Technologies FP7 project.

Bibliography

[ABH"10] J.-R. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, L. Voisin. Rodin: An
Open Toolset for Modelling and Reasoning in Event-B. STTT 12(6):447-466, 2010.

[AbrO6] J. Abrial. Formal methods in industry: achievements, problems, future. In Proceedings
of the 28th international conference on Software engineering. Pp. 761-768. 2006.

[Abr10] J. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge Univer-
sity Press, June 2010.

4 http://www.deploy-project.eu

Proc. AVoCS 2010 14 /15

Eal

ECEASST

[BSO03]

E. Borger, R. Stérk. Abstract State Machines: A Method for High-Level System Design
and Analysis. Springer-Verlag, 2003.

[DDML97] R. Darimont, E. Delor, P. Massonet, A. van Lamsweerde. GRAIL/KAOS: An Envi-

[GF94]

[GIGZ00]

[Heh93]

[HJ98]
[HLO9]

[JacO1]

[JG11]

[JHLJ10]

[Jon90]
[KJ10]

[LamO02]

[LBOS]

ronment for Goal-driven Requirements Engineering. In Proc. of the 19th int. conf. on
Software engineering. Pp. 612-613. ACM, 1997.

O. Gotel, A. Finkelstein. An Analysis of the Requirements Traceability Problem. In
Proc. of the First Int. Conf. on Requirements Engineering. Pp. 94—101. 1994.

C. A. Gunter, M. Jackson, E. L. Gunter, P. Zave. A Reference Model for Requirements
and Specifications. IEEE Software 17:37-43, 2000.

E. C. R. Hehner. A Practical Theory of Programming. Texts and Monographs in Com-
puter Science. Springer-Verlag, 1993.

C. A. R. Hoare, H. Jifeng. Unifying Theories of Programming. Prentice Hall, 1998.

S. Hallerstede, M. Leuschel. How to Explain Mistakes. In Gibbons and Oliveira (eds.),
TFM. Lecture Notes in Computer Science 5846, pp. 105-124. Springer, 2009.

M. Jackson. Problem frames: analysing and structuring software development prob-
lems. Addison-Wesley/ACM Press, 2001.

M. Jastram, A. Graf. Requirements, Traceability and DSLs in Eclipse with the Re-
quirements Interchange Format (RIF/ReqlF). In Tagungsband des Dagstuhl-Workshop
MBEES. fortiss GmbH, Miinchen, 2011.

M. Jastram, S. Hallerstede, M. Leuschel, A. G. R. Jr. An Approach of Requirements
Tracing in Formal Refinement. In VSTTE. Springer, 2010.

C. B. Jones. Systematic Software Development Using VDM. Prentice Hall, 1990.

E. Kang, D. Jackson. Dependability arguments with trusted bases. In Requirements
Engineering Conference (RE), 2010 18th IEEE International. P. 262-271. 2010.

L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley, 2002.

M. Leuschel, M. Butler. ProB : an automated analysis toolset for the B method. Inter-
national Journal on Software Tools for Technology Transfer 10(2):185-203, 2008.

[LGG*10] F. Loesch, R. Gmehlich, K. Grau, C. Jones, M. Mazzara. Report on Pilot Deployment

[OMG11]

[PMO5]

[Pra03]

[WAC10]

[Wie03]

in Automotive Sector. Technical report D7, DEPLOY Project, 2010.

OMG. Requirements Interchange Format (ReqlF) 1.0.1. 2011.
http://www.omg.org/spec/ReqlF/

D. L. Parnas, J. Madey. Functional documents for computer systems. Science of Com-
puter programming 25(1):41-61, 1995.

Praxis. Reveal — A Keystone of Modern Systems Engineering. Technical report, 2003.

J. Woodcock, E. G. Aydal, R. Chapman. The Tokeneer Experiments. Reflections on the
Work of CAR Hoare, p. 405-430, 2010.

K. Wiegers. Software Requirements: Practical Techniques for Gathering and Manag-
ing Requirements throughout the Product Development Cycle. Microsoft Press, Red-
mond Wash., 2nd ed. edition, 2003.

15/15

Volume 35 (2010)

Eﬁ ECEASST

Specification and refinement of discrete timing properties in Event-B

Mohammad Reza Sarshogh', Michael Butler?

' mrs2g09 @ecs.soton.ac.uk, http://www.ecs.soton.ac.uk/people/mrs2g09
University of Southampton, Southampton, UK

2 mjb@ecs.soton.ac.uk, http://users.ecs.soton.ac.uk/mjb/
University of Southampton, Southampton, UK

Abstract: Event-B is a formal language for systems modeling, based on set theory
and predicate logic. It has the advantage of mechanized proof, and it is possible to
model a system in several levels of abstraction by using refinement. Discrete tim-
ing properties are important in many critical systems. However, modeling of timing
properties is not directly supported in Event-B. In this paper we identify three main
categories of discrete timing properties for trigger-response pattern, deadline, delay
and expiry. We introduce language constructs for each of these timing properties that
augment the Event-B language. We describe how these constructs can be mapped
to standard Event-B constructs. To ease the process of using the timing constructs
in a refinement-based development, we introduce patterns for refining the timing
constructs that allow timing properties on abstract models to be replaced by tim-
ing properties on refined models. The language constructs and refinement patterns
are illustrated through some generic examples. Event-B refinement allows atomic
events at the abstract level to be broken down into sub-steps at the refined level.
The goal of our refinement patterns is to provide an easy way to represent and cor-
rectly refine timing constraints on abstract atomic events with more elaborate timing
constraints on the refined events. This paper presents an initial set of patterns.

Keywords: Real-time System, Event-B, Event, Deadline, Delay, Expiry, Refine-
ment Patterns

1 Introduction

In Event-B [Abr10], systems are modeled formally by a collection of events (i.e. guarded actions)
that act on abstract variables. The aim in this work is to introduce an approach to formally model
the timing properties for the trigger-response pattern in control systems. This pattern is common
and useful in specification of control systems. It is natural to talk about these kinds of systems
in term of possible events of the system. For example in the trigger-response pattern, trigger and
response are both events of the control system.

One of the main advantages of Event-B method is its support for stepwise modeling by re-
finement. The other strength of this method is the mechanized proof obligation generator and
the prover which make the verification process, efficient and productive. These advantages of
Event-B, make it a suitable approach for formal modeling of critical systems.

An Event-B model has two main parts, context and machine. The context specifies the static

1/15 Volume 36 (2011)

B

part of the system and the machine models the dynamic part. In the machine, system behavior
and its properties can be modeled by using states variables, invariants and events. Variables
represent the current state of the system. Invariants specify the global specifications of the state
variables and system behaviors. Finally, events represent the transition of the system from a state
to another. Events are guarded atomic actions where guards specify the state of the machine
where the event can occur in, and actions indicate how the that event modifies the state variables.
By refining a machine it is possible to introduce new state variables and events, strengthen the
guards of the abstract events or introduce new actions on new state variables. Standard refinement
techniques are used to verify the refinement between models at different abstraction levels.

Event-B lacks explicit support for expressing and verifying timing properties. Modeling time-
critical systems, using Event-B has been investigated in several studies. What distinguish our
work, is categorizing timing constraints in three groups, introducing a systematic way of en-
coding each of them in an Event-B model, introducing patterns for refining timing constraints
and proving satisfaction of abstract timing constraint by their concrete ones. In this way, the
consistency of the system timing properties in the system specification can be proved by using
refinement feature of the language.

2 Timing Properties Categories

In order to formalize the process of adding time properties to an Event-B model, it has been
decided to categorize the mostly used time related specifications in time-critical system descrip-
tions. Hence, several time-critical system specifications like a car gear-controlling system, a
message passing algorithm in a network, a water tank level controller, etc., had been studied to
extract their timing properties. The next step was to categorize them in several groups according
to the nature of their restriction. The result was three groups of timing properties; Deadline,
Delay and Expiry. These three will be explained in more details in the following. As mentioned
before, these timing properties are essentially trigger-response patterns, and trigger and response
are naturally modeled as events. As a result, all the definitions in this work are event based,
where A is the trigger event and B is the response event.

A B Deadline A Delay B
‘ ‘ Time ‘

‘ Time

A B ExPiry
‘ | @ Time

Figure 1: Time Boundary Diagrams

Imagine a system with two events, A and B where first event A has to happen to make event B
possible to occur. The three types of timing boundaries which may be declared between event A
and event B are as follow:

* Deadline: Event B must occur within time D of event A occurring,

Proc. AVoCS 2011 2/15

Eﬁ ECEASST

* Delay: Event B cannot occur within time W of event A occurring,

» Expiry: Event B cannot occur after time E of event A occurring.

Based on the definition of these three restrictions, the deadline forces an event to happen before a
specific time, delay prevents an event from happening before a specific time and expiry prevents
an event from happening after a specific time. Accordingly, by having a deadline between two
events, it is guaranteed that by the deadline the deadline event has already occurred, by having
delay it is guaranteed that there will be a minimum gap between occurrence of two events, and
by having expiry it is guaranteed that if the restricted event has happened it was before a specific
time. In order to have a better understanding of these constraints, Figure 1 illustrates how these
boundaries restrict events.

In this section delay, deadline and expiry have been introduced informally. In the following
we explain how they are formalized.

3 Modeling Timing Properties In Event-B

In order to explicitly represent timing properties we extend the Event-B syntax with constructs
for deadlines, delays and expiries. These timing properties place a discrete timing constraint
between trigger events and response events. A typical pattern is a trigger followed by one of a
choice of responses thus our timing constructs specify a constraint between a trigger event A and
a set of response events Bx. The syntax for each of these constructs is as follows:

* Deadline(A, {BI,..,.Bn}, t),
* Delay(A, {B1,...Bn}, t),
* Expiry(A, {Bl,..,.Bn}, t).

The property Deadline(A, {B1,...Bn}, t) means that one of the response events Bx must occur
within the time ¢ of trigger event A occurring. In the case of delay, if any of the events in the
response set happens it has to happen after its declared delay. Finally in the case of expiry, if any
of the events in the expiry set happens it has to happen before the specified expiry time.

Now a specification consists of an Event-B machine consisting of variables, invariants and
events, together with a list of timing properties using the above syntax. Having the annotations
standardizes the process of specifying discrete timing properties in Event-B models and allows
us to define patterns for refining timing properties as we show in Section 4.

We give a semantic to our timing constructs by translating them into Event-B variables, invari-
ants, guards and actions that are added to the machine to which the timing properties belong. The
effect of additions to the Event-B machine will be to add clock increment event and constrain
further the order between events. In particular they constrain the order between trigger, response
and clock increment events. For example, the additional Event-B elements that a deadline prop-
erty give rise to will prevent more than ¢ clock increments occurring in between a trigger event
and a corresponding response event.

We define rules for encoding each of the three timing constructs in Event-B in turn. In each
case we assume there is already a partial order between the trigger event and the corresponding

3/15 Volume 36 (2011)

B

response events, that is, we assume that the response events are only enabled after the corre-
sponding trigger event has occurred. This ordering assumption is encoded using boolean flags
as shown in Figure 2(a). As shown in Figure 2(a), event A sets the boolean variable A as one of
its actions, so when variable A has the value of TRUE, it shows event A has happened. Also, in
event Bx the flag of event A will be checked to see if event A has already happened. Other than
checking the flag and setting the flag, in their guard, X grds represents the other possible guards
of the event and in the action section Xacts represent the other possible actions of the event.

Note we do not assume that the trigger and response events will occur only once. Typically the
trigger and response events will be part of an iterative loop and the ordering flags will be reset at
the end of each iteration of the loop by an appropriate event.

3.1 Modeling Delay

In this section we explain how delay is encoded in an Event-B model. As mentioned before,
in order to have discrete time in Event-B a natural number variable is declared to represent the
current time in the machine and an event is added to model the progress of time.

In order to explain how delay is encoded in Event-B, we will go through the process, for a
generic trigger event A and some generic alternative response events B1...Bn.

EVENT A =
WHI::AR—E FALSE EVENT Bx =
Agrds WHERE
THEN EVENT A = /; =_T1§4UL 1; .
A:=TRUE WHERE =
Aacts A = FALSE time > tA +t
END Agrds THEixgrds
EVENT Bx = THEN N RUE
WHERE A:=TRUE F
A=TRUE tA :=time END
i —— EVENT Tick_Tock =
THEngr ’ THEN
time := time + 1
Bx:=TRUE
Bxacts END
END (b) Event A and Bx with delay

(a) Event A and Bx without delay

Figure 2: Events A and Bx in 2(a) along with the Delay property will implicitly define the model
in 2(b)

There are two steps in order to add a delay constraint which is defined as follow to an Event-B
model:

Delay(A,{Bl,..,Bn},1). (1)

First the occurrence time of the trigger event is recorded in a variable (fA). Then in the event
which should be delayed (event A), a guard is needed which forces the event to be eligible to
occur after the stated delay period has been passed from the occurrence of the trigger event. In
Figure 2 a general pattern of delayed trigger-response and the event which progress the time

Proc. AVoCS 2011 4/15

E} ECEASST

(Tick_Tock), in an Event-B model, has been shown. As explained in this section, it is possible to
add a delay to a standard Event-B model.

3.2 Modeling Expiry

Modeling expiry is similar to the delay. Again the first step is to record the occurrence time of the
trigger event and the next step is to guard the restricted event according to the recorded time and
the specified expiry period. Suppose, we want to force timing property 2 to the trigger-response
pattern which is shown in Figure 3(a), how the model should be changed to contain the timing
property is shown in Figure 3(a).

Expiry(A,{B1,..,Bn},t) 2)
EVENT A =
WHﬁR:E FALSE EVENT Bx =
Ag: s WHERE
THEN EVENT A = g :fgﬁ -
A:=TRUE WHERE I,i_<IA+I
Aacts A =FALSE lew@
END Agrds THEN 8
EVENT Bx = THEN B TRUE
WHERE A:=TRUE Bxé;v
A=TRUE 1A = time END vact:
Bx=FALSE Aacts EVENT Tick_Tock =
Bxgrds END THEN
THEN time := time + 1
Bx:=TRUE END
Bxacts B E Aand B h .
END (b) Event A and Bx with expiry
(a) Event A and Bx without ex-
piry

Figure 3: Events A and Bx in 3(a) along with the expiry property will implicitly define the model
in 3(b)

As shown in Figure 3, in order to have expiry for an event, an action is needed to record the
occurrence time in the trigger event (event A), and a guard in the restricted event to prevent it
from happening if the expiry period has been passed.

3.3 Modeling Deadline

In order to encode expiry and delay, just the trigger and the response events are involved. But,
this is not the case for modeling deadline. In order to model a deadline the Tick_Tock event is
involved as well, because if the trigger event has happened, we want to force the response event to
occur, before passing the deadline. Guardin the Tick_Tock event is a possible way to enforce one
of the events B1 to Bn to occur before the deadline passes. As it will be explained in Section 6
guarding the clock in order to model deadline has been used in several timed specifications
theories and tools.

5/15 Volume 36 (2011)

B

Suppose, a deadline has been declared by our timing annotation as follow:
Deadline(A,{B1,..,Bn},t). 3)

In order to model this restriction in an Event-B model, first the occurrence time of event A should
be recorded by adding a new action. Then a guard on the Tick_Tock event is needed, to enforce
the deadline. In Figure 4 how deadline 3 can be added to a standard Event-B model is shown in

detail.

EVENT A =
EVENT A = WHERE

WHERE A = FALSE
A = FALSE Agrds
Agrds THEN

THEN A:=TRUE EVENT Tick_Tock =
A:=TRUE tA :=time WHERE
Aacts Aacts A=TRUEN

END END (Bl = FALSE A\ ..\

EVENT Bx = EVENT Bx = Bn = FALSE)=

WHERE WHERE time+1 <tA-+t
A=TRUE A=TRUE THEN
Bx = FALSE Bx = FALSE time := time + 1
Bxgrds Bxgrds END

THEN THEN
Bx:=TRUE Bx:=TRUE
Bxacts Bxacts

END END

(a) Event A and Bx without
deadline (b) Event A and Bx with deadline

Figure 4: Events A and Bx in 4(a) along with the deadline property will implicitly define the
model in 4(b)

Multiple deadline constraints may be added to a model. In this case, a deadline guard similar
to what has been shown in Figure 4(b) should be added to the Tick_Tock event for each deadline
constraint.

It is possible to cause a deadlock by declaring a longer delay between two events than an
existing deadline between them. There are two approaches to detect this kind of deadlock, either
by running a model checker (e.g. ProB) and then check the uncovered events or by declaring an
invariant which implies if a deadline guard is not true (current time is equal to the deadline and
none of the restricted event has yet occurred) then one of the restricted events should be eligible
to occur. As a result, if there is a deadlock, the invariant will not be proved for the Tick_Tock
event.

4 Some Patterns to Refine Deadline, Delay and Expiry and Their
Uses

In this section, some patterns of refining the introduced types of timing boundaries will be ex-
plained and their uses in order to synchronize different events will be shown by explaining some

Proc. AVoCS 2011 6/15

Eﬁ ECEASST

general examples. In this section Event Refinement Diagrams [But09] are used to present the
order between events of a refinement and also their relations with their abstract events. As a
result the Event Refinement Diagram notation will be explained briefly in the next section.

4.1 Refinement and Event Refinement Diagram

Usually, a real world system has a complex specification with a lot of details. If we want to
model all the details of a system specification in a single stage, the complexity and the size of
the model can cause a lot of difficulties. One solution is to model systems, step by step by using
refinement. The system specification should be broken to different levels of abstraction. Then,
the first step will be the modeling of the most abstract specification of the system. Then by each
refinement more details of the system specification will be added to the model. By this approach,
the model will be a more explicit representation of the target system by each refinement.

In Event-B refinement process, it is possible to introduce new events which do not exist in the
abstract machine. Other events extend abstract events or refine them. Those events which do
not exist in the abstraction, refine skip. They model the pre-steps or post-steps of abstract events
which are not visible in the abstraction in order to reduce the complexity. Although they do not
refine any abstract event, they are related to abstract events.

In order to simplify tracking the relations between abstract and concrete events, refinement
diagrams have been introduced by Butler in [But09]. In a refinement diagram there is a tree
structure in which the abstract event is positioned as the root of the tree, and its concrete events or
events which are new but model the pre/post-steps of the abstract events are represented as leaves.
The other characteristic of this notation is that the concrete events which exist in the abstract
machine and refine abstract events, are connected to their corresponding abstract event by solid
lines and the new events which model the pre/post-steps of abstract events are connected by to
their related abstract events by dash lines. Figure 5 is an event refinement diagram, illustrating

Abstract
Level

!

FE— e i RO e e e e s

P 4] Concrete
= . Level

A B

Figure 5: Refinement Diagram Example

that abstract event P is refined by a combination of concrete event A followed by concrete event B.
Event A is a pre-step of event B that refines skip, while event B refines event P.

By this introduction to the Refinement Diagram, how the elicited timing properties can be
refined, will be explained in the following.

4.2 Refining a Deadline to Sequential Sub-Deadlines

Consider an abstract model of a system where there is a deadline between event A and event B.
As shown in Figure 7, event B can only occur if event A has already happened. The deadline

7/15 Volume 36 (2011)

B

properties for this level of abstraction, is shown in Figure 7(a). In the next refinement event B
will be broken to two steps, as shown in Figure 6. By breaking event B to Bl followed by B2, its
related deadline needs to be broken too. Also the other important issue is that, the abstract event
has been refined by the second step, because the accomplishment of the second step is equivalent
to accomplishment of abstract event(B). So the first step should refine skip.

n
(=}

v

I I
| |
A |
il |
[& !
[T l
| |
3 I

‘ Bl ‘ ‘ B2 ‘ H—tl—b?:(l—tzibl
| |

v

Figure 6: Refining an abstract deadline to two sub-deadlines

Deadline(A,{B1},t1)
Deadline(B1,{B2},12)
Deadline(A,{B},1). EVENT B 2 Where EVENT B2 refines B =
R WHERE t1+12<t WHERE
EVENT A = A= TRUE Bl =TRUE
WHERE B — FALSE EVENT Bl = B2 = FALSE
A = FALSE Bards WHERE B2grds
Agrds THEN A=TRUE THEN
THEN B:— TRUE Bl = FALSE B2:=TRUE
A:=TRUE Ba'cts Blgrds Bacts
Aacts END THEN END
END Bl :=TRUE
(a) Event A and B Blacts
END

(b) Event BI and B2

Figure 7: Events A and B in abstract Machine in 7(a) and events B/ and B2 in the concrete
machine in 7(b)

Now, in order to respond to the trigger, two steps have to be accomplished where each of them
has its own deadline. In the concrete level, the trigger event of deadline constraint for event Bl
is event A and the trigger event for the deadline of event B2 is event Bl. Hence, the abstract
deadline should be broken as shown in Figure 7(b) where the sum of new deadlines does not
violate the abstract deadline.

The relation between the concrete states and the abstract ones is expressed by a gluing invari-
ant [ABH" 10] in Event-B, in order to verify the refinement. Two kinds of gluing invariants are
needed in order to prove that the concrete deadlines satisfy their abstraction. The first type is
required to clarify the relation between the order of the abstract and concrete events which are
involved in the deadline. The other type is needed to specify the relation between the new dead-
lines in the concrete machine and the abstract deadline. In the explained pattern these invariants
should be as follow:

* The relation between abstract events and its refining events (B2 and B are the boolean

Proc. AVoCS 2011 8/15

Eﬁ ECEASST

variables which act as the occurrence flag of events B2 and B):

B2 =B, “)

¢ The order between concrete events:

Bl =TRUE =A=TRUE, 5)

* The relation between the abstract deadline trigger time and its concrete one (¢A is an integer
variable which records the occurrence time of event A and ¢B1 does the same thing for
event Bl):

Bl = TRUE =1tB1 < tA+1l, (6)
A =TRUE Atime >tA+11=>Bl = TRUE. (7)

Invariant (4) specifies that the occurrence of event B2 is equivalent to the occurrence of event
B. Invariant (5) specifies that event B1 must occur after event A. Invariant (6) shows the relation
between occurrence time of even B1 and the trigger time of abstract deadline and Invariant (7)
specifies the deadline for occurrence of event B1 which is the trigger for occurrence of event B2.
Invariant (7) is required in order to prove Invariant (6) for event B1, because it specifies that B1
must occur before A +1¢1.

It should be mentioned that the abstract deadline can be broken into more than two sub-
deadlines either by successive refinement steps or by refining the abstract event with more than
two sub sequential events in one refinement step.

4.3 Refining An Abstract Deadline to Alternative Sub-deadlines

Often, when a process has to finish by a specific time there is a recovery scenario which will
guarantee that by the deadline either the desired response or some recovery response will be
achieved. So by the deadline either the normal or the recovery scenario has been accomplished.
For example, consider, instead of refining event B in the example of Section 4.2, by two sequen-
tial sub steps, it has been refined by breaking it into two alternative events, B1 and B2. So, after
occurrence of event A either event B1 or event B2 should happen. How event B and the abstract
timing property are refined is shown Figure 8.

e
(oR)
\ J

SN
Figure 8: Refining an event to two possible events
As shown in Figure 9, in the refinement event B has been broken to event B1 (normal response)

and event B2 (recovery response) and both of them refine the abstract event. As a result the
deadline will be refined as shown in Figure 9(b). As explained in Section 3.3 by declaring a

9/15 Volume 36 (2011)

B

deadline which has more than one member in its deadline set, we specify the behavior where,
after occurrence of event A, before passing the deadline time, either process will be accomplished

by occurrence of event B1 or event B2.

Deadline(A,{B1,B2},t)
Deadline(A,{B},r) ~ EVENT B2 refines B =
R EVE‘I:IVTHIEEE EVENTA = ... R WHERE
EVENT A = A—TRUE EVENT Bl refines B = A=TRUE
WHERE B — FALSE WHERE B2 = FALSE
A =FALSE Berds A=TRUE B2grds
Agrds THEN B1 = FALSE THEN
THEN B:— TRUE Blgrds B2 :=TRUE
A:=TRUE B‘;c” THEN Bacts
Aacts END ' Bl :=TRUE END
END Blacts
(a) Event A and B END

(b) Event BI and B2

Figure 9: Events A and B in abstract Machine in 9(a) and events B/ and B2 in the concrete
machine in 9(b)

In this case the only kind of invariant which is required is the one which connected the concrete
events occurrences to their abstract one. In the above example the required invariants will be as
follow:

B2=TRUEVBl =TRUE < B=TRUE. ®)

Based on invariant 8 occurrence of event B is equivalet to the occurrence of event B1 or event B2.

4.4 Refining Alternative Sub-Deadlines by Sequential Sub-Deadlines and Expiries

We now present a pattern for refining an abstract deadline by some alternative deadlines and then
refine these by sequential deadlines.

In order to explain this pattern, the example of Section 4.3 will be continued. So, in the current
state, we have a trigger event A and two alternative responses, event B1 and B2. The deadlines
of each level of abstraction, are shown in Figure 9.

In the next refinement, each of the events Bl and B2 will be refined to two sequential steps
and their deadline will be refined to two sequential deadlines, same as the pattern shown in
Section 4.2 (event B1 will be broken to events B1_1 and B1_2 and event B2 will be broken to
events B2_1 and B2_2). In this system, the first response case is desirable (modeled by event
B1), but if its first step (modeled by event B1_1) has not been accomplished by 74, the second
response case (modeled by event B2) will be activated and its first step (modeled by event B2_1)
has to happen before the specified deadline (¢1). As a result by the first deadline in the concrete
machine, either the first response case has been activated or the second one (by occurrence of
their first steps). For the next step, event B1_1 triggers event B1_2, and event B2_1 triggers event
B2 2 as shown in Figures 10 and 11. The other specification of this system is that the deadline
between the first (B1_1) and the second (B1_2) steps of the first response case (B1) is greater than

Proc. AVoCS 2011 10/15

Eﬁ ECEASST

[———
(=)

(or
- - 3 : % OR
Bl B2 A B2 >
_.\ = e " .
: ; \I\ : 3 \I‘ == _IL ####### r #####
BL1]B1_2|[B2_1|[B2 2| M—t4—re—t2— t+t2>t
! | td+t2<=t
—4—H2 1 B2, tl#t3<=t
le—t]l—>—t3—>

Figure 10: Refining each of the possible scenarios to two steps

EVENT B2_1 =
Deadline(A,{B1_1,B2_1},11), WHERE
Expiry(A,B1_1,14) A=TRUE
Deadline(B1-1,{B12},12), B2_1 = FALSE
Deadline(B2_1,{B22},13) EVENT B1.2 refines Bl B2_1grds
where = THEN
t14+2>t Ntd+12 <t WHERE B2_1:=TRUE
t1+13<t¢t A=TRUE B2_lacts
Bl1_.1=TRUE END
EVENT Bl1_1 = B1.2 = FALSE EVENT B2_2 refines B2 =
WHERE Bl 2grds WHERE
A=TRUE THEN A=TRUE
Bl1_.1 = FALSE B12:=TRUE B2_1=TRUE
Bl_lgrds B1 2acts B2 2 = FALSE
THEN END B2 2grds
Bl1_.1:=TRUE THEN
Bl_lacts B22:=TRUE
END B2 2acts
(a) Events BI_I and BI_2 END

(b) Events B2_I and B2_2

Figure 11: Events B/ _I and B/ 2 in 11(a) and events B2_/ and B2_2 in 11(b)

the equivalent deadline for the second alternative response case (B2). So according to the system
specification the concrete deadlines should be as shown in Figure 11.

By the concrete deadlines, the abstract deadline will not be satisfied for the first response case
(#1412 > t). This problem is caused by the nature of deadline constraint. In the deadline we
just guarantee that by passing the deadline time, at least one of the events of the deadline set has
already happened.

As mentioned above, event B1_1 has an expiry constraint too. So after a specific time, it can-
not happen anymore and the only possible response will be the second response case. According
to the system specification, event B1_1 can just happen before ¢4 time units since event A occur-
rence. Hence, by enforcing this constraint by declaring an expiry as shown in Figure 11(a), the
concrete timing properties will satisfy their abstract ones. It has been guaranteed in the model
that if event B1_1 happens, at most 4 time units have been passed from event A occurrence.
From that time, event B1_2 has 2 time units to happen. As a result, the abstract deadline is

11/15 Volume 36 (2011)

B

satisfied. This pattern shows how combination of deadline and expiry can be useful in modeling
and refining the timing properties of a time-critical system.

One question that can be raised here is why we do not use two disjunctive deadlines instead
of a deadline and an expiry for this case. To explain it, we will apply this approach on a similar
pattern. Suppose we want to encode these timing properties by two disjunctive deadlines, and
we were to allow those to be declared as follow:

Deadline(A,{B1},t1)V Deadline(A,{B2},t2) Where 12 >1l. 9
To encode this in an Event-B model, the guard on Tick_Tock event could be as follow:

A=TRUE ABl = FALSE = time+1 <tA+tl V (10)
A =TRUE AB2 = FALSE = time + 1 < tA +12,

Since t2 > t1 is easy to show that Guard (11) is equivalent to the guard we would use for the
following deadline specification:

Deadline(A, { B1, B2 }, t2).

Intuitively, this is because guard (11) can be satisfied if the B1 event occurs after ¢1 time unit
since occurrence of event A. As a result by having two disjunctive deadlines, the expiry constraint
on event B1 will not be enforced.

In this section some approaches have been introduced in order to refine our three groups of
timing properties. These patterns do not contain all the possible cases of refining timing proper-
ties and we are still working on other possible refinement patterns. In the following section how
this research can be improved will be discussed briefly.

5 Future Work

We would like to develop a Plug-in for the Rodin tool-set in order to add time to a standard
Event-B model automatically, based on the timing constraints declared in the form of deadline,
delay and expiry which are expressed by the introduced annotations.

One of the features which has been added to Rodin [SPHB10], is decomposition. By using
this feature, it is possible to break a machine in an Event-B model, to several independent ma-
chines where each machine represents one of the sub-components of the system. In this way
it is possible to refine each sub-component independently. As a result, the complexity of the
model will be decreased. Based on that, the other possible area to improve our pattern to add
timing properties to an Event-B model, is to investigate the effect of decomposition on timing
specification. It will strengthen the approach by eliciting the possible issues and challenges in
decomposing a timed Event-B machine. What can be studied more about the decomposition
are how the universal clock should be handled after the decomposition, how the time passing
event should be decomposed, or how time related guards and actions will be separated between
different machines in a decomposition.

Also, we would like to investigate the possibility of generalizing the introduced timing con-
straints in order to decrease the redundancy during the timing properties specification process in
future.

Proc. AVoCS 2011 12/15

Eﬁ ECEASST

6 Related Work

Many studies have been dedicated to formalizing and verifying timing properties of real-time
systems. Delay, deadline and expiry can be seen in many of those works, sometimes with dif-
ferent names. In real-time calculus TCCS of Wang [Yi90] there is a delay construct £(d) - P,
which enforce the model to wait for d time units and then behave as process P and time cannot
proceed if d time-units passed and process P has not started yet. Same mechanism has been used
in Timed Modal Specification of Cerans et al [CGL97] to model maximal progress assumption
where there is a must modality which enforces the maximum delay to the model. Delay in TCCS
and maximal progress in Timed Modal Specification present the same constraint as deadline in
our work. Also, what is called a loose delay in Timed Modal Specification forces the same be-
havior as a delay does in our work. Besides, Urgent Event in Evans and Schneider work [ES00]
has been encoded by preventing the time proceeding, if an urgent event is eligible to occur. This
behavior of urgent event is the same as deadline events when current time is equal to the deadline
and none of the deadline events have occurred yet. In Timed CSP [Sch99] time-out presents the
same constraint as expiry does in our work and a delay in Timed CSP causes a similar behavior
to what can be enforced by combining introduced delay and deadline in our work.

Modeling time-critical systems by using Event-B has been investigated in several studies.
Butler et al. in [BF02] explained how it is possible to model discrete time in B (which is the
root of Event-B), by having a natural number variable which represents the current time and
an operation which increases it. In that study a deadline has been modeled by preventing the
progress of time if the current time is equal to the deadline. This work does not investigate
different kinds of timing constraint and timing constraint refinement have not been investigated.
Cansell and Rehm in [CMRO07] have modeled a message passing algorithm in Event-B by using
similar principle, having a natural number variable, represents the current time, and an event
which forwards the time, guarded by a set of activation times. Again in here, other kinds of
timing constraints have not been mentioned, but more importantly, it is not possible to refine a
timing constraint to several sub-timing constraints by this approach. Because, in order to do that,
some new values should be added to the activation set in the refinement which is not possible
without declaring a new activation set. The problem will be specifying the relation between the
new activation set and its abstract one. Bryans et al. in [BFRR10] has introduced an approach
to keep track of timing boundaries between different events in a model by adding them to a
set and guarding events by them. In their study, deadline cannot be modeled. Similar to the
previous approach, refining the timing constraint will be an issue because of tracking the timing
constraints by a set for this approach too.

7 Conclusion

According to the gear controller case study[LPYO1] which has been done in Even-B, and some
other experiences, it seems that these three kinds of timing constraints can be used to model
most of the timing properties of a time-critical system. In our case study we managed to first
model the system without time, then declare the required timing constraints by using introduced
annotations. In the end, according to the declared timing constraints, we added time to the

183/15 Volume 36 (2011)

B

model. All the refinements’ proof obligations which have been generated for relation between
the concrete timing constraints and their abstractions have been discharged. If we manage to
develop a plug-in which can add the required guards, actions, invariants and Tick_Tock event
in order to add time to an Event-B model, based on declared timing properties, the process of
modeling time-critical systems will be the same as modeling a non-time-critical system by using
Event-B.

There are some similarities between our approach and the existing approaches to model time-
critical systems. How we encoded deadline, delay and expiry is similar to the approach that
timed automata [Alu99] verifiers use, like guarding state transitions (system events) or forcing
timing properties to the global clock of the model. In timed automata, it is possible to check
the temporal properties [Eme95] of a system. In this approach, the temporal properties can be
checked by using refinements where a temporal property is modeled by an abstract invariant and
by refinement how it will be gained by detailed behavior of the system will be modeled and
verified. For example, in the abstraction we say, a gear-change request should be responded by
an error message or a successful change, then by several refinements how system will manage to
satisfy it will be modeled and verified.

Our approach is based on modeling discrete timing properties of reactive systems according
to their events and through several levels of refinement. But it was not an isolated work, and
we tried to develop an approach to add time to an Event-B model by learning from the existing
works.

Acknowledgements: This work is partly supported by the EU research project ICT 214158
DEPLOY (Industrial deployment of system engineering methods providing high dependability
and productivity) www.deploy-project.eu.

Bibliography

[ABH"10] J.-R. Abrial, M. J. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, L. Voisin. Rodin:
an open toolset for modelling and reasoning in Event-B. STTT 12(6):447-466, 2010.

[ABHVO06] J.-R. Abrial, M. J. Butler, S. Hallerstede, L. Voisin. An Open Extensible Tool Envi-
ronment for Event-B. In ICFEM. Pp. 588-605. 2006.

[Abr10] J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edition, 2010.

[Alu99] R. Alur. Timed Automata. Theoretical Computer Science 126:183-235, 1999.

[BFO2] M. Butler, J. Falampin. An Approach to Modelling and Refining Timing Properties in
B. In Refinement of Critical Systems (RCS). January 2002.

[BFRR10] J. W. Bryans, J. S. Fitzgerald, A. Romanovsky, A. Roth. Patterns for Modelling Time
and Consistency in Business Information Systems. In Calinescu et al. (eds.), /5th
IEEE International inproceedings on Engineering of Complex Computer Systems,

Proc. AVoCS 2011 14 /15

E

ECEASST

[But09]

[CGLI7]

[CMRO7]

ICECCS 2010, Oxford, United Kingdom, 22-26 March 2010. Pp. 105-114. IEEE
Computer Society, 2010.

M. Butler. Decomposition Structures for Event-B. In Integrated Formal Methods
IFM2009, Springer, LNCS 5423. Volume LNCS(5423). Springer, February 2009.

K. Cerans, J. C. Godskesen, K. G. Larsen. Timed Modal Specification — Theory and
Tools. In IN PROC. OF THE 5TH INT. CONF. ON COMPUTER AIDED VERIFI-
CATION, VOLUME 697 OF LECTURE NOTES IN COMPUTER SCIENCE (LNCS.
Pp. 253-267. Springer—Verlag, 1997.

D. Cansell, D. Méry, J. Rehm. Time Constraint Patterns for Event B Development.
In Julliand (ed.), B 2007: Formal Specification and Development in B 7th Interna-
tional Conference of B Users, January 17-19, 2007. Lecture Notes in Computer Sci-
ence 4355, pp. 140-154. Springer-Verlag, Besancon France, 2007. ISSN : 0302-9743
(Print) ; 1611-3349 (Online) ; ISBN : 978-3-540-68760-3.

[DHQ'08] J. S. Dong, P. Hao, S. Qin, J. Sun, W. Yi. Timed Automata Patterns. I[EEE Trans.

[Eme95]

[ESO0]

Softw. Eng. 34(6):844-859, 2008.

E. A. Emerson. Temporal and modal logic. In HANDBOOK OF THEORETICAL
COMPUTER SCIENCE. Pp. 995-1072. Elsevier, 1995.

N. Evans, S. Schneider. Analysing Time Dependent Security Properties in CSP Using
PVS. In ESORICS. Pp. 222-237. 2000.

[HLM™08] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, A. Skou. Testing

[Jac83]

[Kop97]

[LPYO1]

[Sch99]

Real-Time Systems Using UPPAAL. 2008.

M. Jackson. Michael Jackson System Development. Englewood Cliffs, N.J. : Pren-
tice/Hall., New York, NY, USA, 1983.

H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

M. Lindahl, P. Pettersson, W. Yi. Formal design and analysis of a gear controller.
STTT 3(3):353-368, 2001.

S. Schneider. Concurrent and Real Time Systems: The CSP Approach. John Wiley
Sons, Inc., New York, NY, USA, 1999.

[SPHB10] R. Silva, C. Pascal, T. S. Hoang, M. Butler. Decomposition Tool for Event-B. In

[Yi90]

Workshop on Tool Building in Formal Methods - ABZ Conference. January 2010.

W. Yi. Real-Time Behaviour of Asynchronous Agents. In CONCUR. Pp. 502-520.
1990.

15/15

Volume 36 (2011)

Eﬁ ECEASST

Combining Model Checking and
Discrete-Event Supervisor Synthesis

Nicolas Chausse', Helen Xu', Juergen Dingel' and Karen Rudie’
! chausse, helen, dingel @cs.queensu.ca, School of Computing, Queen’s University, Canada

2 karen.rudie @queensu.ca, Dept. of Elec. and Comp. Eng., Queen’s University, Canada

Abstract:

We present an approach to facilitate the design of provably correct concurrent sys-
tems by recasting recent work that uses discrete-event supervisor synthesis to auto-
matically generate concurrency control code in Promela and combine it with model
checking in Spin. This approach consists of the possibly repeated execution of three
steps: manual preparation, automatic synthesis, and semi-automatic analysis. Given
a concurrent Promela program C devoid of any concurrency control and an infor-
mal specification E;,, the preparation step is assumed to yield a formal specifica-
tion E of the allowed system behaviours and two versions of C: C, to identify the
specification-relevant events in C and enable supervisor synthesis, and C, , to intro-
duce “checkable redundancy” and used during the analysis step to locate bugs in:
the specification formalization E, the event markup in C,, or the implementation of
the synthesis. The result is supervised Promela code Cy,, that is more likely to be
correct with respect to E and E;,. The approach is illustrated with an example. A
prototype tool implementing the approach is described.

Keywords: Concurrency control, formal verification, control theory, discrete-event
systems, controller and supervisor synthesis.

1 Introduction

The poor integration between computer science and electrical engineering in academia has been
observed before. In [HSO7], Henzinger and Sifakis blame the “wall” between these two disci-
plines for keeping the “potential of embedded systems” at bay. Indeed, the potential for fruitful
interaction between them seems large. Consider, for instance, Discrete-Event Systems (DES)
control theory, a branch of control theory which is concerned with the Supervisory Control Prob-
lem (SCP), i.e., the automatic synthesis of a supervisor (controller) S that restricts the execution
of an unrestricted discrete-event system G (called “plant”) to enforce some specification E. DES
theory originated in the 1980s [RW87, RW89] and offers a large body of research on the SCP
which, for instance, considers different formalisms to represent S, G and E including finite state
automata (FSA), Petri nets, and the mu-calculus [CL08, ZS05]. Recent work has shown how
results and tools from DES theory can be used to alleviate the challenges of concurrent pro-
gramming. In [WLK 09, WCL™10], automatically generated supervisors are used to guarantee
deadlock-free execution of multi-threaded code, based on a structural analysis of a Petri-net rep-
resentation of the plant. In [DDROS], standard DES based on FSAs is employed to generate

1/15 Volume 46 (2011)

Combining Model Checking and
Discrete-Event Supervisor Synthesis E}

supervisors that enforce deadlock-freedom and safety properties (also expressed as FSAs) on
Java programs with static concurrency. In [ADRO09], this work is extended to dynamic concur-
rency which then requires the use of Petri nets.

We extend this line of work and suggest the integration of DES theory with model checking by
combining the constructive and generative aspects of DES theory with the analysis and bug de-
tection capabilities of Spin. We aim to facilitate the development of provably correct concurrent
systems by increasing the degree of automation. This paper makes the following contributions:
(1) The work in [DDROS] is recast in Promela. Given an unrestricted system C expressed in
Promela and a specification E expressed as a FSA, a supervised system Cy,, is automatically
generated and is guaranteed to satisfy £ and deadlock-freedom. Moreover, the supervisor com-
ponent in Cg,, is provably minimally restrictive (maximally permissive), i.e., any behaviour in C
but not in Cy,,, will violate E or deadlock-freedom. (2) Despite the theoretical guarantees, bugs
can still creep in not only in the various synthesis steps’ implementation, but also in the inputs
to the synthesis steps, all of which are, at least partially, manually created. We show how model
checking can be used to debug them. (3) We describe a prototype tool using Spin and show
how Spin’s support for shared-memory and message-passing concurrency can be leveraged to
generate supervisors supporting the two concurrency paradigms and to optimize the analysis of
the combined system. A detailed example illustrates the approach and the tool’s utilization.

This paper is structured as follows: Related work is reviewed in Section 2 and relevant back-
ground on DES theory is given in Section 3. Section 4 describes our approach and Section 5
illustrates it with an example. Section 6 describes our prototype tools and Section 7 concludes.

2 Related Work

Automatically generating parts of concurrent systems from specifications has been an active re-
search topic. We focus here on approaches that combine synthesis and formal analysis via model
checking. While the use of DES in software development and execution has been suggested be-
fore [RW90, RW92a, Laf88, TMH97, WKLO07], generating control code for concurrent software
has received particular interest recently. The work of two authors of this paper on using DES
for generating concurrency control code has already been mentioned [DDRO8] where the JPF
model checker was used to validate the generated supervisor code, but not the manually created
inputs. Moreover, despite recent advances in software model checking, model-level analyses
are still more likely to be tractable rather than at code-level. Independently, Wang et al. have
used DES to obtain supervisors that guarantee deadlock-freedom [WLK"09, WCL*10] where
concurrent programs are represented as Petri nets and deadlock freedom is characterized by the
absence of reachable empty siphons. Our work in this paper (and [DDRO08]) is based on FSAs
and supports general safety properties rather than just deadlock-freedom. Also, no support for
analysis of the generated artifacts is mentioned in [WLK ™09, WCL " 10]. Timed DES is based on
timed automata; recently, UPPAAL-TIGA has been used for an industrial case study involving
climate control systems [BCD"07] where the synthesis and analysis capabilities of UPPAAL-
TIGA have been combined with Simulink and Real-TimeWorkshop to provide a complete tool
chain for synthesis, simulation, analysis and automatic generation of production code. The work
in [GPTO06] uses symbolic model checking for supervisor synthesis from specifications given

Proc. AVoCS 2011 2/15

Eﬁ ECEASST

in CTL specifications and a plant description given in NuSMV. The work in [ZS05] introduces
DES theory based on the mu-calculus and thus generalizes Ramadge and Wonham’s standard
DES theory. However, no tool supporting the generalization appears to be available.

There exists additional work that does not make explicit use of DES theory. For instance,
some work is aimed at facilitating software architecture component composition (e.g., [TI08,
BBCO05]). In [TIO8], Tivoli and Inverardi generate coordinators which enforce a given global
coordination policy [TIO8] where components are assumed to adhere to a coordinator-based ar-
chitectural style and message sequence charts are used for behavioural interface specification.
Correctness and maximal permissiveness (called completeness) are proved and the work has
been integrated with CHARMY, a tool for architectural analysis. Despite many differences in
technical details and terminology, the approach is similar to supervisor synthesis'. In the context
of concurrent programming, the approach presented by Deng ef al. explicitly shares our interest
in supporting the combined use of synthesis and verification [DDHMO02]. It generates synchro-
nization statements for concurrent Java code from invariant specifications and the new code can
be fed into the Bandera model checker for analysis. Some related work appears in the literature
as environment (assumption) generation. For instance, in [GPBO05], the LTSA tool is used to
determine the weakest assumptions that the concurrent environment £ of a component C has to
satisfy such that the composition of C and E satisfies some specification B where E, C, and B are
given as FSAs. LSTA also supports model checking. Synthesis has also been used to achieve
fault-tolerance. In [AAE(04], a method is presented for the synthesis of fault-tolerant concurrent
programs from specifications expressed in the temporal logic CTL. However, no implementa-
tion allowing the integration with CTL model checkers such as nuSMV is mentioned. Finally,
in [ISTO7] and [1S08], CSP||B is used to control machines or processes via control “annotations”
which may represent states, next operations or control flow. A synthesis process is used to: verify
the annotations against the machine, manually produce a “Controller” and verify it against the
annotations, and finally refine if needed.

We conclude that while the integrated use of synthesis and formal verification has been sug-
gested before, our work differs from each of the existing approaches in at least one of the follow-
ing two aspects: it uses Spin, one of the most popular and powerful model checkers available;
it explicitly uses DES theory and thus allows the large body of existing results and tools to be
leveraged. Interestingly, the recent interest in autonomic and adaptive software has produced
proposals to design software directly informed by control theory [MPS08, Dah10]. However, so
far, controller synthesis does not appear to be part of this research agenda. In [Dah10], valida-
tion and verification of autonomic and adaptive systems are singled out as particularly important
research topics.

! In [TIO08, p. 206], it is claimed that supervisor synthesis based on DES requires explicit specification of the dead-
locking behaviours; this, however, is not the case.

3/15 Volume 46 (2011)

Combining Model Checking and
Discrete-Event Supervisor Synthesis E}

3 Background

3.1 DES Theory

In DES theory, systems are modelled by FSAs called plants. Transitions represent events that are
either controllable (can be enabled or disabled at will) or uncontrollable (may happen arbitrar-
ily). In a non-blocking model, all states are reachable (from the initial state) and co-reachable
(lead to a final state) which implies the absence of deadlocks and livelocks. A specification de-
scribing a plant’s desired behaviour can be modelled using specification FSAs and is called the
specification, or legal language. A specification E is controllable with respect to plant G if for
any series s of events in G and legal in E (s is in E’s prefix closure), there is no uncontrollable
event ¢ that can then happen in G and that is illegal in E (so is not in E’s prefix closure).

Given a specification E and plant G, where E is not necessarily controllable with respect to
G, we want to get the least restrictive sub-specification (or largest sub-language) K C E such
that K is controllable with respect to G. If there is no such nonempty subset of E then K = 0.
If E is controllable with respect to G, then K = E. We call a recognizer S for K the supervisor
or the supremal controllable sub-language of E with respect to G, denoted supC(G,E) [CLO8].
The supervisor is also modelled with an FSA and will control G by enabling and disabling G’s
controllable events. When a plant G is controlled by a supervisor S, the resulting behaviour is
given by the intersection of the language accepted by G and the language accepted by S and is
captured by a FSA denoted as S/G.

Composing Specifications and Processes: The plant G and the specification £ may consist of
several parallel processes G; and sub-specifications E;, respectively. We assume that the sub-
specifications share all events (i.e., use the same set of events), which means that each node
in a sub-specification has a self-loop labelled with all the events that do not directly belong to
any sub-specification but belong to the processes. Processes, however, may not share all events.
We will combine processes and sub-specifications using an operation that forces the FSAs to
synchronize on shared (common) events, while allowing independent interleavings of the non-
shared events. We will call this operation synchronous product’.

Complexity and Tool Support: The supervisor supC(G, E) can be computed in time O(n’m?e)
where n and m are, respectively, the number of states in G and E and e is the total number of
events in G and E (Section 3.5.3 of [CL08]). The time complexity of the synchronous product
operation is O(mn) where n is the number of sub-FSAs provided and m the maximum number
of states in all these sub-FSAs. Several DES tools supporting supervisor synthesis are available
including IDES [IDE], TCT [TCT], and DESUMA [DES].

3.2 DES Theory for Generation of Concurrency Control Code

As described in Section 2, previous work has already observed that DES theory can be used
directly to control the execution of software with respect to certain specifications [DDROS,
WLK™09]. The area of application here has been concurrent programming where the supervisor
manages concurrent processes such that deadlock-freedom and the safety properties expressed
as FSAs are enforced — the generated supervisor inheriting the strong theoretical guarantees

2 Note that if two FSAs share all events, the synchronous product reduces to language intersection.

Proc. AVoCS 2011 4/15

Eﬁ ECEASST

offered by DES theory. The key idea is to view the concurrent system as the plant G and to
interpret concurrency- or specification-relevant operations in the code as controllable events. To
obtain the closed loop system S/G, the event markup in G is replaced by an interaction with
the supervisor in which a request by a process in G to execute an operation is only granted by
the supervisor if its execution cannot possibly lead to a deadlock or specification violation. The
approach requires the (manual or automated) identification of relevant events in the code and
then the transformation of the code and the specification into a format supported by current DES
tools. For instance, in [WCL " 10] concurrent C code is automatically converted into a Petri net
by extracting and combining the control flow graph of each of the threads and modelling execu-
tion via token flow. In [DDROS], a similar technique is used to convert Java threads into FSAs
which are then combined using the synchronous product operation.

4 Combining Supervisor Synthesis and Spin Analysis

A graphical overview of our approach to integrate supervisor synthesis and analysis is given
in Figure 1, which shows the flow of artifacts (solid arrows) between possibly nested activities
(boxes). Stick figures indicate activities requiring user interaction and the dashed arrow shows
control flow.

fix bugs in E, C,, and/or C, , and redo synthesis & analysis

ey 1
1) Prepy, 2) Synthesis 3) Analysis !
. | Formal 1
orma Trans-|spec E _ . !
Informéll specs {E} 4> fc:f‘gz (FsA) | supc [fail] (“fail” Inspection | Jokl_ N
spec E; i i = '
p in (FSA) tion T, Ce’E) i [=oK] :
% [success]l/ \ or 1
Trans-| Plant Model oy
Ce forma- > G Supervisor or checkl_ng — redo
(Promela) | |tonT,| Fsa) s W Spin o
Unsuper- (F\fA) Super- /F""] g "
vised C vised Simulation
- ea —> ; - . C
code C (Promela) Transformation T, code Csup w/ Spin % §CaSL[JJp})
(Promela) A (Promela) '

I

“shm”
or “msg”

Figure 1: Overview of Approach to Integrate Synthesis and Spin Analysis

This approach recasts the preparation and synthesis steps for concurrency control code gen-
eration proposed in [DDRO8] using Promela (instead of Java) as the implementation language.
Moreover, an additional artifact (C, ,) is introduced and the synthesis is followed by an analysis
step in which manual inspection, user-guided simulation, and model checking are used to iden-
tify bugs in any of the artifacts created during the manual preparation step. If bugs are found, the
preparation and the synthesis are redone. We describe each step in more detail.

1) Preparation: The informal specification Ej, is assumed to express a safety property identify-

5/15 Volume 46 (2011)

Combining Model Checking and

Discrete-Event Supervisor Synthesis Ea

ing permissible sequences of events such as precedence constraints, mutual exclusion constraints
or capacity constraints. The unsupervised code C is a concurrent Promela program devoid of any
concurrency control. The user then (1) translates Ej, into a collection {E;} of FSAs, (2) marks
up specification-relevant events in C to create C,, and (3) adds assertions and possibly auxiliary
variables to C, to obtain C, ,. The transitions in £ should distinguish between controllable and
uncontrollable events. The assertions in C,, capture (aspects of) the informal specification Ej,
and offer “checkable redundancy”, which will be used in the analysis step to validate E against
E;,. For instance, a capacity constraint in Ej, may be checked by an assertion containing a
counter variable.

2) Synthesis: Consists of the supC operation, sandwiched between three transformations: 77 and
T; to prepare the inputs and 73 to process the output:

a) The formal specifications E; are combined into a single one by computing their syn-
chronous product E (transformation 77 in Figure 1).

b) The unsupervised code with event markup C, is translated into plant FSA G (transfor-
mation 73). Similar to [DDR08, WCL"10], G is obtained using compiler technology to
extract the control-flow graph of every process in C, and to build FSA-representations.
These FSAs are combined by computing their synchronous product.

¢) An off-the-shelf DES tool is used to perform the supC-operation on E and G.

d) If supC(G,E) = 0, the operation fails. Otherwise, the generated supervisor S is automat-
ically implemented in Promela and integrated in C,, to obtain the supervised code Cyy)
(transformation 73). Transformation 73 allows the generation of code that implements the
supervision using shared-memory (input “shm” in Figure 1) or message-passing (“msg”).

3) Analysis: The analysis process is described in Figure 2. If the supC-operation fails (line 3),

input: (‘fail’,E,C.) or Cy,p

1

2 output: ‘fail’, ‘redo’, or Cyp

3 if input==‘fail ° then % SupCon operation failed
4 check that C, and E are correct wrt C and Ej; 9% Manual inspection
5 if bug found then % E and/or event markup in C, wrong
6 output ‘redo’ and stop; 9 Fix bug and redo synthesis
7 else output ‘fail’ and stop % Eiy, may be unenforceable on C;done
8 else

9 simulate Cyp in Spin; % Does Cy,p behave as expected? (semi-automatic step)
10 if Cyp has unexpected behaviour then

11 output ‘redo’ and stop; % Fix bug and redo synthesis
12 else

13 modelcheck Cyp in Spin; 9% Do assertions hold?
14 if violation found then %E or assertions in C, 4, must be wrong wrt Ej,
15 output ‘redo’ and stop; 9 Fix bug and redo synthesis
16 else

17 use Spin to determine minimal channel capacities {cap;};

18 output (Cyp,{cap;}) and stop. % Done

Figure 2: Pseudocode for Analysis Step in Figure 1 (indentation indicates nesting)

it may be because C, or E are incorrect. For instance, event markup in C, may be misplaced
or missing; £ may have incorrect transitions or may erroneously mark a controllable event as
uncontrollable. If manual inspection uncovers such an issue (line 4), the preparation and the

Proc. AVoCS 2011 6/15

Eﬁ ECEASST

synthesis are redone. Otherwise, C, and E are assumed to be correct (w.r.t. E;; and C) and
the process ends in a fail (because E is unenforceable on C) (line 7). If the supC-operation is
successful (i.e., supC(G,E) # 0), the supervised code Cyup 1s simulated by the user (line 9); if
unexpected behaviour is encountered, the preparation and the synthesis are redone; otherwise,
Cyup 1s model checked (line 13). Assertion violations indicate that either E or the assertions
are incorrect and a new iteration is initiated (line 15). If no violations are found, Spin is used to
determine the smallest channel capacities {cap;} necessary to implement Cy,, and the supervised
code Cyy,, is output with {cap;}.

4.1 Theoretical Guarantees

Strong guarantees can be given for the result of the supC operation at the heart of our approach.
The combination of G and § satisfies £ and is deadlock-free. Moreover, S is guaranteed to be
maximally permissive. Unfortunately, these strong guarantees do not carry over to the artifacts
produced from supC(G,E) using our approach. For instance, if our approach stops with output
“fail”, it is possible that a supervisor for C and Ej, exists, because the manual inspection over-
looked that, e.g., E does not correctly capture E;,. In addition, if the approach stops with output
Cyup, it is still possible that Cy,, violates E;,, because, e.g., the added assertions are not suitable
to detect that E actually does not capture E;, correctly. The manual steps involved make this
situation unavoidable. Moreover, since E;, is given only informally, it is difficult to establish the-
oretical guarantees with respect to Ej,,. Nonetheless, our experience suggests that the approach
is still useful. During our case studies it repeatedly helped us identify inputs with unexpected,
non-seeded bugs to the synthesis step. A few of these cases will be illustrated in the next section.

Also, in our experiments, we routinely found that the shared-variable implementation of the
supervised code had substantially fewer states than the message-passing implementation. This
suggested that the generation of the message-passing version, if necessary at all, be postponed
until the very end of the prepare-synthesize-analyse cycle.

5 Working Example: Transfer-Line

We have applied our approach on several examples and used the IDES DES tool [IDE] to com-
pute the synchronous product and supC operations. Our working example was taken from [Won11].
A widget processing transfer-line (shown in Figure 3) consists of two production machines M1
and M2 and one test unit 7U. The three machines form a production line and are connected
via two widget buffers B1 and B2. M1 may be requested to start production of one widget at a
time and deliver it to B1 in an unpreventable way after a arbitrary time. Similarly, M2 may be
requested to pick-up one widget from B1 and then deliver it to B2. Finally, TU can pick up one
widget from B2, test it and then either uncontrollably return it to B1 on failure or deliver it away.
Figure 4 lists the corresponding unsupervised Promela code. Code doing actual work is ab-
stracted out with comments and the widget test in TU is replaced by a non-deterministic choice.

7/15 Volume 46 (2011)

Combining Model Checking and

Discrete-Event Supervisor Synthesis Ea

capacity capacity
0-3 0-1 test

passed
Bl B2

1

test failed

Figure 3: Transfer-Line Example

active proctype MI() {

do :: true —>
/] Idle active proctype TU() {
// Create new widget do :: true —>
// Deliver widget to Bl /] Idle

od; } /" Pick up widget from B2

active proctype M2() { /]l Test widget

do :: true —> if
/1 Idle :: true —> // Passed: deliver away
// Pick up widget from Bl :: true —> // Failed: return to Bl
/]l Process widget fi;
// Deliver widget to B2 od; }

od; }

Figure 4: Unsupervised Promela Code C

5.1 Step 1: Preparation

Addition of Event Markup and Assertions: Since the event names chosen for the event markup
in C, will also be used for the construction of {E;}, we start by identifying the relevant events in C
and assertions suitable for checking aspects of Ej,. The resulting code C, , is shown in Figure 5.
C. is like C, , except that the assertions are removed. Three controllable events (M1 MakeWidget,
M2PickUpWidget, and TUPickUpWidget) and six uncontrollable events (M1WidgetDelivered,
M?2WidgetPickedUp, M2WidgetDelivered, TUWidgetPickedUp, TUWidgetPassed, and TUWid-
getFailed) have been identified. Event M1 MakeWidget indicates that M1 is ready to produce a
new widget, similarly for M2PickUpWidget with M2 from B1 as well as for TUPickUpWidget
with TU from B2. Completed widget deliveries are signalled using M1WidgetDelivered and
M2WidgetDelivered and TU signals a failed widget returned to B1 with TUWidgetFailed.

Assertions warrant the capacity constraints via auxiliary variables (B1 and B2) that store the
number of widgets in each buffer and model widget deliveries and pick-ups. Although not essen-
tial, the action of picking up widgets was made non-instantaneous to admit more concurrency.
Formal Specifications Ep; and Ep,: Two specifications are produced capturing how the number
of elements in each of the buffer changes in response to certain events (Figure 6). Plain arrows
represent uncontrollable events.

5.2 Step 2: Synthesis

Build £ (Transformation 77): The synchronous product of Ep; and Ep, was generated and
contains 8 states and 58 transitions. It is not shown here due to space limitations.

Generate Plant G (Transformation 7,): Plant FSAs (Figure 7) were automatically generated
from the control flow graphs of the processes in C, , using standard parsing technology. Dashed

Proc. AVoCS 2011 8/15

ECEASST

short Bl = 0, B2 = 0;
active proctype MI() {
do :: true —>
/1 1dle
/! relevant controllable event: MIMakeWidget
/1 Create new widget

atomic{assert(Bl < 3); Bl++;} // Deliver widget to Bl
/1 relevant uncontrollable event: MIWidgetDelivered

od; }

active proctype M2() {

do :: true —>
/1 ldle
/! relevant controllable event: M2PickUpWidget
atomic{assert (Bl > 0); Bl——; /1 Pick up widget from Bl

// relevant uncontrollable event: M2WidgetPickedUp
// Process widget

atomic{assert(B2 < 1); B2++;} // Deliver widget to B2
// relevant uncontrollable event: M2WidgetDelivered
od; }
active proctype TU() {
do :: true —>
/1 Idle

/l relevant controllable event: TUPickUpWidget
atomic{assert(B2 > 0); B2——;} // Pick up widget from B2
/! relevant uncontrollable event: TUWidgetPickedUp
/1l Test widget
if :: true —> // Passed: deliver away
// relevant uncontrollable event: TUWidgetPassed
: true —> // Failed: return widget to BI
atomic{assert (Bl < 3); Bl++;}
// relevant uncontrollable event: TUWidgetFailed

fi; od; }
Figure 5: Unsupervised Code C, , with Event Markup and Assertions
mM2WidgetPickedUp Ml WidgetDelivered, TUWidgetFailed
(1)
M2WidgetFickedUp Ml WidgetDelivered, TUWidgetFailed
(2)
M2WidgetPickedUp Ml WidgetDelivered, TUWidgetrFailed TUWidgetPickedUp M2WidgetDeliverad
())
(@) Epi (b) Epp

Figure 6: Formal Specifications Ep; and Ep, (self-loops with events M1MakeWidget,
M?2PickU pWidget, TU PickU pWidget and TUWidget Passed at each node omitted)

arrows represent controllable events. The synchronous product of M1, M2 and TU was then
generated and contains 18 states and 60 transitions. It is not shown here due to space limitations.
Generate Supervisor S: The supervisor for plant G and specification £ was generated with
supC. It contains 41 states and 94 transitions. Due to space limitations it is not shown here.

Generate Supervised Code C;,, (Transformation 73): We created a conversion script that im-
plements FSAs generated by the DES tool used, and inserts concurrency control code in the
original Promela code for each relevant event markup. Our script generates two distinct solu-

9/15 Volume 46 (2011)

Combining Model Checking and

Discrete-Event Supervisor Synthesis Ea

. dgetPickedUp
afetPickedUp

TUPIckUg
M1MakeWidget

M1WidgetDelivered

TUWidgetPassed

M2WidgetDelivered

TuWidgetFailed
(a) FSA for M1 (b) FSA for M2 (¢) FSA for TU

Figure 7: FSAs for M1, M2 and TU

tions: one that implements the communication between the processes and the supervisor using
shared variables and another one that uses message passing.

Shared Variable Solution: For each controllable event e, a global boolean variable _e indicates
whether e is currently enabled. Communicating the occurrence of an event to the supervisor is
achieved using global variable _Event. When _Event = -1, all the events currently enabled are
allowed to occur. One such event ¢, (with n € N) is selected non-deterministically (in Spin) and
its corresponding process signals its triggering by setting _Event to n. The supervisor indicates
that it has noted and processed the occurrence of event e, by resetting _Event back to -1.

During transformation 73, for both controllable and uncontrollable events, every occurrence
in the Promela source code of

/! relevant (un)controllable event: Eventn

is replaced by

// relevant (un)controllable event: Eventn
atomic {((_.Event < 0) &k _Eventn) —> _Event = n;}

Figure 8 shows the abridged generated supervisor. The first 1 f statement enables and disables
all events according to the current state of the supervisor FSA. Once an event is triggered by
one of the processes via global variable _Event, the second if statement realizes the corre-
sponding transition. Note that processes can possibly block at uncontrollable events. This may
be counter-intuitive, but it is required to ensure that the supervisor can process all event occur-
rences. However, the process will never block for long as DES guarantees that the supervisor will
enable all uncontrollable events that can possibly occur after a controllable one, and therefore
that it will (eventually) process any uncontrollable event to occur after a controllable one.

Message Passing Solution: Two channels are used to connect the processes with the supervisor.

Channel _EventReady is used by processes to signal the readiness of controllable events and to

indicate the occurrence of uncontrollable events. Channel EventGo is used by the supervisor

to trigger a controllable event (selected non-deterministically in Spin if more than one is ready).
During transformation 73, every occurrence in the Promela source code of

// relevant (un)controllable event: Eventn

Proc. AVoCS 2011 10/15

E} ECEASST

short _Event = 0; // Global mutexes
bool _Eventl = false, _Event2 = false, _Event3 = false, ...;
active proctype _Supervisor() { /! Supervisor process
atomic { short state = 0; // Current (and firstly initial) state
do // Main loop
oo if // Enable and disable all events
0 (0 == state) —> _Eventl = true; _Event2 = false; ...;
(1 == state) —> _Eventl = false; _Event2 = true; ...;
(2 == state) —> _Eventl = true; _Event2 = true; ...;
// More cases here
fi;
—> _Event = —1; _Event > —1; // Wait for an event from one of the processes
if // Transition to next state
((0 == state) && (1 == _Event)) —> state = 1;
((0 == state) && (2 == _Event)) —> state = 2;
((1 == state) && (1 == _Event)) —> state = 3;
// More cases here
fi; od; } }

Figure 8: Generated Supervisor Using Shared Variables

is replaced for controllable events by

// relevant controllable event: Eventn
atomic{assert(nfull (_EventReady)); _EventReady ! n; _EventGo ?? n;}

and for uncontrollable events by
// relevant uncontrollable event: Eventn
atomic{assert(nfull (_EventReady)); _EventReady ! n;}

Figure 9 shows the abridged generated supervisor. Both channels are initially set to maximum
capacity as deadlock-freedom may be lost if either channel overflows. To detect this, every
send to either channel is prefixed with an “assert (nfull ())”. Both minimal capacities
are determined through repeated analyses with decreasing capacities. Each event e received on
_EventReady causes array position eventReady [e] to be incremented so to in effect wait
on all events concurrently for a relevant event r. If event r is controllable, then r is sent back
on _EventGo to allow the corresponding process blocked on “_EventGo ?7? r” to proceed.
The second 1if statement realizes the FSA transitions. Contrary to the shared variable solution,
no process ever blocks on any uncontrollable event.

5.3 Step 3: Analysis

The analysis is used to find bugs in the formal specifications ({E;}), the event markup (C,), or
the implementation of the transformations 75 or T33. Simulation allowed us to locate a bug in the
creation of the FSAs for the Promela processes in transformation 7;. The FSAs for M2 and TU
did not have M2WidgetPickedUp and TUWidgetPickedUp transitions, respectively. This omis-
sion allowed M1 to put a fourth widget into B1 causing it to overflow. Verification allowed us to
locate an event markup that was incorrectly placed. More precisely, event M1 WidgetDelivered
was accidentally put before B1++ which allowed M2 to attempt to pick up a widget from an
empty B1 causing the assertion B1 > 0 in M2 to be violated.

3 Since transformation 7j just takes the synchronous product of the specifications and is assumed to be implemented
using a DES tool, it is substantially simpler and is unlikely to contain bugs.

11/15 Volume 46 (2011)

Combining Model Checking and

Discrete-Event Supervisor Synthesis

chan _EventReady = [255] of { byte };

chan _EventGo = [255] of { byte };
active proctype _Supervisor() {

atomic { byte eventReady[10], event;

do

if // Find an event relevant to current

// Global channels

// Supervisor process

// Event buffer and variable

// Main loop

state else buffer next event

(0 == state) —> do
:: (eventReady[1] > 0) —> assert(nfull (_EventGo)); _EventGo ! 1;
event = 1; break; // Controllable
(eventReady[2] > 0) —> event = 2; break; // Uncontrollable
:: else —> _EventReady ? event; eventReady[event]++; od;
(1 == state) —> do
it (eventReady[3] > 0) — event = 3; break; // Uncontrollable
else — _EventReady ? event; eventReady[event]++; od;
// More cases here
fi;
—> eventReady[event]——;
if // Transition to next state
((0 == state) && (1 == event)) —> state = 1;
((0 == state) && (2 == event)) —> state = 2;
// More cases here
fi; od; } }

Figure 9: Supervisor Using Message Passing

5.4 Performance Results

We also applied our method to the Dining Philosophers problem and the Cigarette Smokers Prob-
lem [Pat71]. We obtained the verification results listed in Table 1, with ispin.tcl and Spin
Version 6.0.1%. We verified our three examples both with shared variables and message passing.
In all cases, the following options were selected: invalid endstates and assertion violations safety
checks, depth-first search, exhaustive storage mode, no compression or reduction. We also de-
termined the minimum channel capacities. Note that for our examples, message passing requires
at least 12 times more states and transitions than shared variables.

Minimum Time to
Channel Number | Compute
Depth Stored | Trans- Atomic Capacity of supC
Program Reached | States itions Steps Ready, Go | Processes | in IDES
Transfer-line 4 sec.
Shared Variables 718 1240 3207 2552 N/A 4
Message Passing 3887 18868 47209 327715 7,2 4
Philosophers 1 sec.
Shared Variables 6022 10464 | 46033 21632 N/A 6
Message Passing 9999 157827 | 580416 | 1326625 7,2 6
Smokers 1 sec.
Shared Variables 194 608 1849 904 N/A 5
Message Passing 1996 10461 27543 82703 5,1 5

Table 1: Verification Results for the Three Examples

4 A 64 bit AMD Dual Core 2.4GHz CPU with 1.5GB of DDR2 RAM was used.

Proc. AVoCS 2011

12/15

Eﬁ ECEASST

6 Implementation

All our FSAs were drawn and created using a DES tool called IDES [IDE] developed by the
Discrete-Event Control Systems Lab at Queen’s University. Synchronous products and supC
were computed with IDES which saves its FSA files in a text XML format. Our prototype script
for implementing transformation 7, was written in Ruby and can parse most of Promela except
for the goto statement and the newly introduced for statement. It takes as input a Promela
text source file (C,) and generates plant FSAs readable by IDES. Our script for doing transfor-
mation 73 was also written in Ruby and uses the REXML XML processor. It takes as input a
Promela source file (containing C,,), an FSA XML text file generated by IDES (containing E)
and generates the supervised code (Cg,p).

7 Conclusion

We have presented an approach which integrates DES supervisor synthesis and model checking
to help facilitate the development of provably correct concurrent code. The approach recasts the
process described in [DDRO08] using Promela and it uses Spin for validation of the synthesis itself
and the inputs to this process. We have described a prototype implementing the approach which
supports shared memory and message passing concurrency and have shown how this choice
can be used to optimize the verification of the generated Promela code. We have illustrated the
approach with an example and provided some performance results.

Future work: There are many interesting avenues for future research. An immediate one is
investigating the use of modular [WR88] and decentralized DES theory [RW92b]. Modular
DES theory leverages the structure of the system and the specification to combat the explosion
of the state space during the synthesis, while decentralized DES allows decentralized control by
synthesizing a collection of supervisors. Ultimately, DES theory is concerned with the prevention
of undesirable sequences of events. As such, it should also be applicable to other problems in
software engineering. Adaptor synthesis (as in, e.g., [BBCO05]) and protocol synthesis for web
services (as in, e.g., [BIPT09]) are just two examples.

Finally, the development of a tool that seamlessly integrates DES theory as described here and
model checking would be interesting not only for research but also for educational purposes and
it would, in our opinion, represent a useful first step towards combining concepts from computer
science and electrical engineering curricula as advocated in [HSO7].

Bibliography

[AAE04] P.C. Attie, A. Arora, E. Emerson. Synthesis of fault-tolerant concurrent programs.
ACM Trans. Program. Lang. Syst., 26(1):125-185 26(1):125-185, 2004.

[ADRO9] A. Auer, J. Dingel, K. Rudie. Concurrency Control Generation for Dynamic
Threads. In 47th Annual Allerton Conf. on Communication, Control, and Comput-
ing. 2009.

183/15 Volume 46 (2011)

Combining Model Checking and

Discrete-Event Supervisor Synthesis Ea

[BBCO5]

[BCD"07]

[BIPTO9]

[CLO8]

[Dah10]

[DDHMO02]

[DDRO8]

[DES]

[GPBO3]

[GPTO6]

[HSO07]

[IDE]

[ISO8]

[ISTO7]

[Laf88]

[MPSO08]

A. Bracciali, A. Brogi, C. Canal. A formal approach to component adaptation. Jour-
nal of Systems and Software T4(1):45-54, 2005.

G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, D. Lime. UPPAAL-
TIGA: Time for Playing Games! (Tool Paper). In CAV07. 2007.

A. Bertolino, P. Inverardi, P. Pelliccione, M. Tivoli. Automatic synthesis of behavior
protocols for composable web-services. In ESEC/SIGSOFT FSE’09. 2009.

C. Cassandras, S. Lafortune. Introduction to Discrete Event Systems. Springer, 2
edition, 2008.

W. Dahm. US Air Force Chief Scientist Report on Technology Horizons: A Vision
for Air Force Science & Technology During 2010-2030. Technical report, US Air
Force, AF/ST-TR-10-01, 2010.

X. Deng, M. B. Dwyer, J. Hatcliff, M. Mizuno. Invariant-based specification, syn-
thesis, and verification of synchronization in concurrent programs. In ICSE 02.
2002.

C. Dragert, J. Dingel, K. Rudie. Generation of Concurrency Control Code using
Discrete-Event Systems Theory. In FSE 16. 2008.

DESUMA Software. Univ. Michigan and Mount Allison Univ. Avail. at www.eecs.
umich.edu/umdes/toolboxes.html, last accessed March 2011.

D. Giannakopoulou, C. S. Pasareanu, H. Barringer. Component verification with
automatically generated assumptions. Automated Software Engin. 12(3):297-320,
2005.

A. Gromyko, M. Pistore, P. Traverso. A tool for controller synthesis via symbolic
model checking. In WODES’06. IEEE, 2006.

T. Henzinger, J. Sifakis. The Discipline of Embedded Systems Design. I[EEE Com-
puter, Oct. 2007.

IDES: The integrated discrete-event systems tool. Queens Univ. Avail. at www.ece.
queensu.ca’hpages/labs/discrete/software.html, last accessed March 2011.

W. Ifill, S. S. A step towards refining and translating B control annotations to
Handel-C. In Concurrency and Computation: Practice and Experience. 2008.

W. Ifill, S. Schneider, H. Treharne. Augmenting B with Control Annotations. In
LNCS. 2007.

S. Lafortune. Modeling and analysis of transaction execution in database systems.
IEEE Transactions on Automatic Control 33:439-447, 1988.

H. Mueller, M. Pezze, M. Shaw. Visibility of Control in Adaptive Systems. In
SEAMS 2008. 2008.

Proc. AVoCS 2011 14 /15

E

ECEASST

[Pat71]

[RW87]

[RW89]

[RW90]

[RW92a]

[RW92b]

[TCT]

[TIOS]

[TMH97]

[WCL*10]

[WKLO07]

[WLK'09]

[Wonl1]

[WR8S]

[ZS05]

S. Patil. Limitations and capabilities of Dijkstra’s semaphore primitives for coordi-
nation among processes. Technical report, MIT, 1971.

P. J. Ramadge, W. M. Wonham. Supervisory control of a class of discrete-event
processes. SIAM Journal of Control and Optimization 25(1):206-230, 1987.

P. J. Ramadge, W. M. Wonham. The control of discrete event systems. Proceedings
of the IEEE 77(1):206-230, 1989.

K. Rudie, W. M. Wonham. Supervisory Control of Communicating Processes. In
Protocol Specification, Testing, and Verification. Elsevier, 1990.

K. Rudie, W. M. Wonham. Protocol verification using discrete-event systems. In
31st IEEE Conference on Decision and Control. 1992.

K. Rudie, W. M. Wonham. Think globally, act locally: Decentralized supervisory
control. IEEE Transactions on Automatic Control 37(11):1692-1708, 1992.

TCT tool. Univ. of Toronto. Avail. at www.control.toronto.edu/DES, last accessed
March 2011.

M. Tivoli, P. Inverardi. Failure-free coordinators synthesis for component-based ar-
chitectures. Science of Computer Programming 71(3):181-212, 2008.

J. Thistle, R. P. Malhamé, H. Hoang. Feature interaction modelling, detection and
resolution: A supervisory control approach. In Feature Interactions in Telecommu-
nications and Distributed Systems IV. 1997.

Y. Wang, H. Cho, H. Liao, A. Nazeem, T. Kelly, S. Lafortune, S. Mahlke, S. Reveli-
otis. Supervisory Control of Software Execution for Failure Avoidance: Experience
from the Gadara Project. In WODES’10. 2010.

Y. Wang, T. Kelly, S. Lafortune. Discrete control for for safe execution of it automa-
tion workflows. In EuroSys’07. 2007.

Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, S. Mahlke. The theory of deadlock
avoidance via discrete control. In POPL’09. 2009.

W. M. Wonham. Supervisory Control of Discrete-Event Systems. 2011. Avail. at
www.control.utoronto.ca/~wonham, v. 2010.07.01, last accessed April 4, 2011.

W. M. Wonham, P. J. Ramadge. Modular supervisory control of discrete-event sys-
tems. Mathematics of Control, Signals, and Systems 1:13-30, 1988.

R. Ziller, K. Schneider. Combining supervisor synthesis and model checking. ACM
Transactions on Embedded Computing Systems 4(2):221-362, 2005.

15/15

Volume 46 (2011)

Eﬁ ECEASST

The Belgian Electronic Identity Card: a Verification Case Study

Pieter Philippaerts, Frédéric Vogels, Jan Smans’, Bart Jacobs, Frank Piessens

IBBT-DistriNet, Dept. of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200a, B3001 Leuven, Belgium

Abstract: In the field of annotation-based source code level program verification
for Java-like languages, separation-logic based verifiers offer a promising alterna-
tive to classic JML based verifiers such as ESC/Java2, the Mobius tool or Spec#.
Researchers have demonstrated the advantages of separation logic based verifica-
tion by showing that it is feasible to verify very challenging (though very small)
sample code, such as design patterns, or highly concurrent code. However, there
is little experience in using this new breed of verifiers on real code. In this paper
we report on our experience of verifying several thousands of lines of Java Card
code using VeriFast, one of the state-of-the-art separation logic based verifiers. We
quantify annotation overhead, verification performance, and impact on code quality
(number of bugs found). Finally, our experiments suggest a number of potential
improvements to the VeriFast tool.

Keywords: verification, VeriFast, separation logic, Java Card

1 Introduction

Software verification is finally reaching a point where it is possible to verify relatively complex
applications written in popular programming languages. Even though it is still often a signifi-
cant effort to annotate applications in order to help them get verified automatically, the benefits
outweigh the cost for a number of software markets. In particular, software with a very high cost
of failure (for example, airplane controllers) or software for systems that are difficult to update
after deployment (for example, smart cards) are perfect candidates for software verification.

VeriFast [JSP10] is a verifier for single-threaded and multithreaded C and Java programs an-
notated with separation logic specifications. The approach enables programmers to ascertain the
absence of invalid memory accesses, including null pointer dereferences and out-of-bounds array
accesses, as well as compliance with programmer-specified method preconditions and postcon-
ditions.

This pap