

COMPUTING
SCIENCE

AI4FM: A new project seeking challenges!

Gudmund Grov and Cliff B. Jones

TECHNICAL REPORT SERIES

No. CS-TR-1216 August 2010

TECHNICAL REPORT SERIES

No. CS-TR-1216 August, 2010

AI4FM: A new project seeking challenges!

G. Grov, C.B. Jones

Abstract

The proof obligations generated from many formal methods tend to be simple and can
often be discharged by modern automatic theorem provers or SMT systems. However,
those proof tasks that need hand -or interactive- intervention present a barrier to the
use of formal methods. Theorem proving was one of the earliest challenges addressed
by researchers in the area of Artificial Intelligence and enormous progress has been
made in the provision of general purpose heuristics. The approach in the recently
started AI4FM project is different: we hope to devise a system that will learn from an
expert user how they tackle one interactive proof and then apply the discovered high-
level strategy to other related proof tasks. We are fortunate in having access to many
such problems through the DEPLOY project but are aware of the dangers of devising
an overly specific approach. This short paper appeals for challenge problems from
other sources.

© 2010 University of Newcastle upon Tyne.
Printed and published by the University of Newcastle upon Tyne,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

GROV, G., JONES, C.B.

AI4FM: A new project seeking challenges!
[By] G. Grov, C.B. Jones
Newcastle upon Tyne: University of Newcastle upon Tyne: Computing Science, 2010.

(University of Newcastle upon Tyne, Computing Science, Technical Report Series, No. CS-TR-1216)

Added entries

UNIVERSITY OF NEWCASTLE UPON TYNE
Computing Science. Technical Report Series. CS-TR-1216

Abstract

The proof obligations generated from many formal methods tend to be simple and can often be discharged by
modern automatic theorem provers or SMT systems. However, those proof tasks that need hand -or interactive-
intervention present a barrier to the use of formal methods. Theorem proving was one of the earliest challenges
addressed by researchers in the area of Artificial Intelligence and enormous progress has been made in the
provision of general purpose heuristics. The approach in the recently started AI4FM project is different: we hope
to devise a system that will learn from an expert user how they tackle one interactive proof and then apply the
discovered high-level strategy to other related proof tasks. We are fortunate in having access to many such
problems through the DEPLOY project but are aware of the dangers of devising an overly specific approach. This
short paper appeals for challenge problems from other sources.

About the author

Gudmund Grov received his PhD from Heriot-Wat Univesity, and is currently a research associate within the
AI4FM project at Edinburgh University. His main research interest is within automated reasoning and formal
methods both at the design and source-code level, as well as the interplay between reasoning & specification
within formal methods.

Cliff Jones is a Professor of Computing Science at Newcastle University. He is now applying research on formal
methods to wider issues of dependability. Until 2007 his major research involvement was the five university IRC
on "Dependability of Computer-Based Systems" of which he was overall Project Director - he is now PI of the
follow-on Platform Grant "Trustworthy Ambient Systems" (TrAmS) (also EPSRC). He is also PI on an EPSRC-
funded project "Splitting (Software) Atoms Safely" and coordinates the "Methodology" strand of the EU-funded
RODIN project. As well as his academic career, Cliff has spent over twenty years in industry. His fifteen years in
IBM saw among other things the creation -with colleagues in Vienna- of VDM which is one of the better known
"formal methods". Under Tony Hoare, Cliff wrote his doctoral thesis in two years (and enjoyed the family
atmosphere of Wolfson College). From Oxford, he moved directly to a chair at Manchester University where he
built a world-class Formal Methods group which -among other projects- was the academic lead in the largest
Software Engineering project funded by the Alvey programme (IPSE 2.5 created the "mural"(Formal Method)
Support Systems theorem proving assistant). Cliff is a Fellow of the Royal Academy of Engineering (FREng),
ACM, BCS, and IET. He has been a member of IFIP Working Group 2.3 (Programming Methodology) since
1973 (and was Chair from 1987-96).

Suggested keywords

AI
FORMAL METHODS
THEOREM PROVING

AI4FM

A new project seeking challenges!

Gudmund Grov1 and Cliff B Jones2

1 School of Informatics, University of Edinburgh, UK,
ggrov@inf.ed.ac.uk

2 School of Computing Science, Newcastle University, UK,
cliff.jones@ncl.ac.uk

Abstract. The “proof obligations” generated from many formal meth-
ods tend to be simple and can often be discharged by modern automatic
theorem provers or SMT systems. However, those proof tasks that need
hand –or interactive– intervention present a barrier to the use of formal
methods. Theorem proving was one of the earliest challenges addressed
by researchers in the area of Artificial Intelligence and enormous progress
has been made in the provision of general purpose heuristics. The ap-
proach in the recently started AI4FM project is different: we hope to
devise a system that will learn from an expert user how they tackle one
interactive proof and then apply the discovered high-level strategy to
other related proof tasks. We are fortunate in having access to many
such problems through the DEPLOY project but are aware of the dan-
gers of devising an overly specific approach. This short paper appeals for
challenge problems from other sources.

1 Introduction

We have just embarked on a four-year research project (AI4FM) that will use
Artificial Intelligence (AI) to tackle a core issue for “Formal Methods”3 and we
are keen to receive challenge problems.

Achieving verified software has been a dream since the birth of computer
science [Jon03] and the importance of this objective has become ever greater
with the increasing size and complexity of software.4

The use of formal methods has been successful in safety-critical domains,
such as railway and aviation; gradually they are becoming increasingly popular
in other sectors (e.g. Microsoft use formal methods to verify device drivers). A
recent paper by Woodcock et al. [WLBF09] provides an up-to-date analysis of
a significant number of industrial applications of formal methods. As the use
of formal methods has spread beyond small groups of experts out to far larger

3 ‘Formal methods’ use mathematics to specify, develop and reason about software
and systems.

4 We use the term software although the discussion here is valid for any application
of formal methods, i.e. to generic system modelling as well as both hardware and
software.

groups of industrial engineers, the importance of the availability of various sorts
of “support tools” has been recognised. Such support tools include parsers/type
checkers, full-blown theorem provers and decision procedures.

Formal methods are applied both post facto and in VxC verified by construc-
tion. As a shorthand, the former are often referred to as “bottom up” and the
latter as “top down”. Both approaches have their place and our decision to focus
our current efforts on VxC has more to do with the applications that interest us
than in any value judgement.

Top-down methods such as VDM [Jon90], B[Abr96] or Event-B[Abr10] tend
to subscribe to a “posit and prove” pattern in which a designer posits a step of
development and then seeks to justify it. By focusing on a particular style of de-
velopment, a support tool can be built that generates “proof obligations” (POs)
whose discharge justifies the correctness of a development step. For Event-B,
one such support system is known as the “Rodin Tools”5— the generated POs
are putative lemmas that need proof. In a carefully structured Event-B develop-
ment, the theorem provers in the Rodin Tools will discharge the majority of the
POs automatically; with skill and experience, users can get the percentage dis-
charged automatically into the nineties. These results are typical of other choices
of methods/tools. The remaining POs need to be discharged by interactive proof
and this can be both time-consuming and challenging for industrial users; this
in turn leads to proof being a bottleneck in industrial deployment.

There are, in fact, two approaches to dealing with the POs that require user
interaction:

1. Follow a modelling strategy : change the model/abstraction in order to sim-
plify the proofs, thus increasing the proportion of POs that are discharged
automatically. For example, in [BY08], extra refinement steps are introduced
due to known limitations of the automatic theorem provers.

2. Follow a proof strategy : accept the challenging POs and define a strategy for
discharging them.

Both approaches are valid and useful and they can be seen as complementary.
For example, the numbers quoted below most likely apply after several iterations
of massaging the original model. A proof strategy could still be applied after the
modelling strategy has reduced the numbers of undischarged POs.

It is the proof approach that we will take first in our AI4FM project. Our
principal aim is to increase the repertoire of techniques for the proof-strategy
approach by learning from proof attempts made by humans. We should make it
clear that we are thinking of higher-level strategies than those normally coded in
say HOL or Isabelle. In fact our model of the proof process is more like the sort
of interactive proofs created in [JJLM91]; we are also aware that the progress
in SMT research will have an influence on our approach. For example, we may
incorporate SMT solvers as new tactics.

It should be remembered that the POs arising from formal methods tend to
have different properties from “pure” mathematics.

5 See www.event-b.org

1. There are often large numbers of detailed POs. To illustrate, the Paris Metro
Line 14 and the Roissy Airport shuttle system were both developed using
B [Abr07]; the former generated 27, 800 POs (around 2, 250 interactive) while
the latter generated 43, 610 POs (around 1, 150 interactive).

2. POs tend to be less deep.
3. They often exhibit a “similarity”, in the sense that they can be grouped

into “families” and the same (high-level) proof approach can be successfully
applied to all members of the family.

2 The AI4FM approach

There are two reasons of why a PO might not be discharged automatically: the
putative lemma could be wrong (thus pinpointing a mistaken design decision6)
or a true lemma has not been proved by the theorem prover because it is “not
smart enough”.

We have some data from industrial use that suggests failing POs fall into a
relatively small number of distinct classes in the sense that one new idea will be
key to discharging many POs. It is tempting to search for ever better heuristics
but we plan to follow a different path in AI4FM. In many cases where a (correct)
PO is not discharged automatically, an expert can easily see how to complete a
proof. By exploring the nature of the POs within formal methods we believe that
a higher degree of automation can be achieved by relying on expert intervention
to do one proof, with the expectation that this would enable the system to
discharge other POs in the same family.

Specifically, we hope to build a tool that will learn enough from one proof
attempt to improve the chances of proving “similar” results automatically. By
“proof attempt” we include things like the steps explored by the user (not just
the chain of steps in the final proof). Thus it is central to our goal that we find
high-level strategies capable of cutting down the search space in proofs.

Our hypothesis is:

we believe that it is possible (to devise a high-level strategy language for
proofs and) to extract strategies from successful hand proofs that will
facilitate automatic proofs of related POs.

To achieve our goal we plan to analyse exemplar proofs (including their start-
ing PO) using many dimensions. For example, we might separate information
about data structures and approaches to different patterns arising from POs.
Thus one proof (attempt) might be seen to use “generalise induction hypoth-
esis” (e.g. adding an argument to accumulate values) about, say, sequences; a
future use might involve a more complicated tree data structure — but if it has
an induction rule, the same strategy might work. We hope to pick out other
dimensions, such as the domain of the application that gave rise to the PO
(e.g. does it relate to trains or to railway tracks?).

6 An AI approach to help with these circumstances is discussed in [IGB10]

Designing a strategy language capable of capturing such properties (in an ab-
stract form) is crucial to the success of AI4FM — one indication of the feasibility
of such an approach is the earlier work on “proof critics” and “rippling” [BBHI05]
— some early thoughts on a strategy language are presented in [JGB10] — and
some simple examples in [BGJ09].

A key question for the design of the strategy language is the level of abstrac-
tion that will be used. We see two extreme points:

– a rather concrete description of a proof strategy (close to the tactic level),
would not require much proof search when re-applying the strategy on POs
in the same family – however, the size of the family would be rather small;

– much more abstract descriptions of proof strategies would capture far broader
families of POs – however, they would require more proof search.

Thus, to reduce proof search, whilst keeping the families large, a language en-
abling proof strategy descriptions at different levels of abstractions seems desir-
able. HiProofs [DPT06] is an example to describe tactic proof using many levels,
and we plan to build on this idea.

We would also need to provide tool support to both extract strategies from an
exemplar interactive proof – and to interpret a strategy to discharge POs in the
same family as the exemplar proof. We plan to build, at least the interpreter, on
top of the Isabelle proof assistant. The advantage of Isabelle, is that it contains
a meta-logic where we can, to some degree, develop our system – independent
of the underlying method and logic.

Our solutions will rely heavily on heuristics — we do not believe that there
are algorithmic solutions to most of our problems. Thus, as the project name
suggests, our techniques will be heavily influenced by artificial intelligence. Par-
ticular areas of artificial intelligence we hope can help are

– planning and proof planning to find proofs from strategies – e.g. as in rippling
discussed above;

– machine learning in order to
• extract strategies from exemplar proofs. For example, Explanation Based

Generalisation/Learning has previously been used to generalise sub-
proofs for reuse [MS98]. However, something more general is probably
required for our purposes;

• discovering related POs, or finding a particular strategy for a sub-proof
of a PO. We will need to use a form of pattern recognition in order to
achieve this – which explores the various dimensions as discussed above.

– from the exemplar proof we may find “dead ends” in the search space, and
use search techniques to rule them out from the target search space – i.e.
strategies at the level of the search space.

3 We need more challenge portfolios

We are fortunate that our access through the DEPLOY project7 to industrial
users of the Rodin support tools will facilitate the capture of many difficult POs.

7 See www.deploy-project.eu

We have already begun to find out how easy it is to analyse them into families
that succumb to similar ideas to get their proofs to go through. But we are aware
that it is always dangerous to base research on too narrow a base. We should
therefore like to elicit challenge problems from other projects.

We can see three levels of useful access.

– Simple: we would be interested to receive POs generated from formal models
of non-trivial computer systems — if these are beyond the power of the
automatic theorem provers and/or SMT systems at hand, they might be
interesting challenges for us — we are aware that even transferring a single
model is not a simple file because we will need any base (data type) theories
and, potentially, information about the logic used

– Valuable: it would be even more useful if we could get access to families of
related proofs — we would be quite happy to get part of set (from which
we try to learn strategy) — and then subject to independent scrutiny the
question of whether the strategies that we devise would help with the unseen
proof tasks

– Optimal: if we could, in addition to the above, receive a proof history in-
cluding “this is where our TP got stuck” we would gain more insight into
what is needed

We would appreciate it if anyone considering sending us material contacted
Gudmund Grov8 since dialogue is more likely to make the process work. We fully
understand that industrial users might wish to disguise details of their models
by changing the names of functions and/or state components.

Acknowledgements We would like to thank all members of the AI4FM project, in
particular Alan Bundy. This work is supported by EPSRC grant (EP/H024204/1 and
EP/H024050/1): ‘AI4FM: the use of AI to automate proof search in Formal Methods’.

References

[Abr96] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge
University Press, 1996.

[Abr07] J.-R. Abrial. Formal methods: Theory becoming practice. Journal of Uni-
versal Computer Science, 13(5):619–628, 2007.

[Abr10] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engi-
neering. Cambridge University Press, 2010.

[BBHI05] A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-level Guid-
ance for Mathematical Reasoning, volume 56 of Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 2005.

[BGJ09] Alan Bundy, Gudmund Grov, and Cliff B. Jones. An outline of a proposed
system that learns from experts how to discharge proof obligations auto-
matically. In Proceedings of Dagstuhl Seminar 09381: Refinement Based
Methods for the Construction of Dependable Systems, 2009.

8 See the AI4FM web page www.ai4fm.org or email ggrov@inf.ed.ac.uk

[BY08] Michael Butler and Divakar Yadav. An Incremental Development of the
Mondex System in Event-B. Formal Aspect of Computing, 20(1):61–77,
2008.

[DPT06] Ewen Denney, John Power, and Konstantinos Tourlas. Hiproofs: A hier-
archical notion of proof tree. Electronic Notes in Theoretical Computer
Science (ENTCS), 155:341–359, 2006.

[IGB10] Andrew Ireland, Gudmund Grov, and Michael Butler. Reasoned Modelling
Critics: Turning Failed Proofs into Modelling Guidance. In Proceedings of
ABZ’10, number 5977 in LNCS, pages 189–202. Springer-Verlag, 2010.

[JGB10] Cliff B. Jones, Gudmund Grov, and Alan Bundy. Some facets of a strategy
language for proofs. In 5th Automated Formal Methods workshop (AFM’10),
July 2010. Also available as Edinburgh University, School of Informatics
technical report EDI-INF-RR-1377.

[JJLM91] C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural: A Formal
Development Support System. Springer-Verlag, 1991.

[Jon90] C. B. Jones. Systematic Software Development using VDM. Prentice Hall
International, second edition, 1990.

[Jon03] Cliff B. Jones. The early search for tractable ways of reasonning about
programs. IEEE, Annals of the History of Computing, 25(2):26–49, 2003.

[MS98] Erica Melis and Axel Schairer. Similarities and Reuse of Proofs in Formal
Software Verification. In Barry Smyth and Pádraig Cunningham, editors,
Proceedings of the 4th European Workshop on Advances in Case-Based Rea-
soning (EWCBR-98), volume 1488 of LNAI, pages 76–87, Berlin, Septem-
ber 23–25 1998. Springer.

[WLBF09] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald. Formal Meth-
ods: Practice and Experience. ACM Computing Surveys, 41(4), Oct 2009.

