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Splitting Atoms with Rely/Guarantee
Conditions Coupled with Data Reification*

CIliff B. Jones and Ken G. Pierce
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Abstract. This paper presents a novel formal development of a non-
trivial parallel program: Simpson’s implementation of asynchronous com-
munication mechanisms (ACMs). Although the correctness of the “4-slot
algorithm” has been shown elsewhere, earlier developments are by no
means intuitive. The aims of this paper include both the presentation of
an understandable (yet formal) design history and the establishment of
another way of “splitting (software) atoms”. Using the “fiction of atom-
icity” as an aid to understanding the initial steps of development, the
top-level specification is developed to code. The rely-guarantee approach
is, here, combined with notions of read /write frames and “phased” spec-
ifications; the atomicity assumptions implied by rely/guarantee condi-
tions are realised by clever choice of data representation. The develop-
ment method herein is compared with other approaches —in a spirit of
cooperation— as the authors believe that constructive comparison eluci-
dates many of the finer points in the “4-slot” specification/development
and of parallel programs in general.

1 Introduction

This paper is intended to contribute to methods of developing parallel programs;
in particular it extends the repertoire of ways of “splitting (software) atoms
safely”. To do this, it addresses an intricate parallel program to illustrate the
novel aspects of an approach to the development of parallel programs.

The general case for developing programs from abstractions is taken as read
(cf. [Jon90,Abr96]). The VDM literature uses the terms “operation decomposi-
tion” and “data reification” for design steps of sequential programs and provides
detailed proof obligations to justify such steps. Even if —as here— what is be-
ing created is a rational reconstruction of a design, the resulting documentation
offers clarity and captures a design history to inform subsequent modification.
Research on rely/guarantee conditions (see Section 2.2 below) extends the for-
mal tools to cover classes of shared-variable concurrent programs. As has been
repeatedly made clear in the literature, “compositionality” is essential to derive
real pay off from a “posit and prove” approach.

* This paper appears in ABZ ’08: Proceedings of the 1st international conference on
Abstract State Machines, B and Z, pages 360-377, Berlin, Heidelberg, 2008. Springer-
Verlag. Please cite the published version in preference to this one.
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More recently, research has looked at using a “fiction of atomicity” as an
additional abstraction [Jon03] in the specification of parallel programs; the cor-
responding development notion is sometimes referred to as “splitting (software)
atoms safely”; one example of this approach is Jones’ transformation rules for
“pobl” as in [Jon96].

This paper uses rely and guarantee conditions in reasoning about “splitting
atoms”. In particular, the example illustrates the combination of rely /guarantee
reasoning with data reification outlined in [Jon07].

Although this paper offers comparisons (see Section 6), it is quite specifically
not competitive. In fact, the intention is to write a longer joint journal paper with
Abrial and Cansell whose rather different approach [AC05] fits into the evolving
research on “Event-B” which is being pursued in the EU “Deploy” project in
which the first author is also a player. Moreover, the first author co-supervised
Neil Henderson’s PhD and encouraged the view that each of the approaches
used in [Hen04] threw different light on the intricate algorithm that has also
been chosen for the current paper.

The application chosen concerns “Asynchronous Communication Methods”
— specifically, the four-slot implementation of ACMs devised by Hugo Simp-
son [Sim97] — see Section 3. The algorithm is ingenious and its correctness by
no means obvious.

The real message of the current paper is however the (generic) approach out-
lined; a key test is whether the reader gains insight by reading the development
below. In each major section, there is a sub-section that restates the methods
used so that it is clear what the reader can take from the specific example to
other specification and design challenges.

2 Background material

This section briefly sets out state-of-the-art methods; any reader who is unfa-
miliar with these areas should consult the cited publications.

2.1 Data reification

For many systems, data abstraction is key to achieving a concise and perspicu-
ous specification. An algorithm might be easy to specify or describe in terms of
tractable mathematical objects; its implementation might have to represent the
abstraction in a complex way (possibly to achieve performance). Separation of
these issues results in clearer documentation of design histories. The preferred
development rule in VDM [Jon90] works where the chosen reification (represen-
tation of the abstraction) can be described using a “retrieve function” that is a
many-to-one mapping from the representation back to the abstraction. This is
possible where the abstraction is free from “implementation bias”.

The simple VDM reification rule basically checks that (starting with a rep-
resentation state) composing the retrieve function with the post condition of an
abstract operation gives the same result as composing the post condition of the
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operation on the representation with the retrieve function. (There are restric-
tions to pre conditions —but here they are minimal— and an obligation to prove
“adequacy” of a representation. All of this is explained in [Jon90, Chapter 8].)

There are however situations where the abstraction retains information to
express potential non-determinacy and this information is superfluous in a step of
development where the non-determinacy is reduced. In a sense this is “intentional
bias”. In such situations it is necessary to use the development rule introduced
by Tobias Nipkow in [Nip86,Nip87] that expresses a general relation between the
abstraction and its reification.

For an exhaustive discussion of “data refinement” see [dRE99]; for a historical
account of the development of the VDM rules see [Jon89).

2.2 Rely/guarantee thinking

Just as pre conditions simplify a designer’s task by limiting the starting states
in which the specified object is to be deployed, rely conditions indicate assump-
tions that the developer is allowed to make about the expected interference to
a (shared-variable) concurrent program. Similarly, guarantee conditions can be
compared to post conditions in that both are constraints on the behaviour of
the created program.

VDM’s operation decomposition rules for sequential programs have always
used post conditions that relate the final state to the initial state (this is in
contrast to many approaches that try to get by with predicates of the final
state). Both rely and guarantee conditions are also relations between two states.

The general idea of documenting and reasoning about interference has many
embodiments; some of the references include [Jon81,Jon83a,Jon83b,Jon96] but
a number of other theses extend the basic idea.! A notable extension to cover
progress arguments is [Stg90]. As the title of this section suggests, the approach
is seen as a general way of thinking and reasoning about the design of concurrent
systems rather than a specific set of rules. In fact, the general approach can also
be applied to communication-based concurrency.

Once again, de Roever provides an encyclopaedic treatment in [dRO1]; a
particularly valuable contribution is the clear identification of the fact that
rely/guarantee thinking achieves “compositionality”.

A more recent development is the link made in [Jon07], between the achieve-
ment of a rely/guarantee specification and the designer’s ability to find an ap-
propriate data representation. This observation throws light on several older
developments and is crucial to the design step in Section 5 below. Essentially,
an abstraction is used that could be said to be using the “fiction of atomicity”.
The splitting of operations that have to be atomic on the abstraction is made
possible by judicious choice of representation. So, for example, a variable whose
monotonic reduction would imply locking can be represented by an expression
involving the minimum of two values each of which can only be updated by one
of two parallel processes.

1 See an on-line attempt to keep track of the literature at:
http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff /rg-hist.pdf



4 Cliff B. Jones and Ken G. Pierce

2.3 Event decomposition

Jean-Raymond Abrial’s extension of his “B” approach [Abr96] to “event-B” is
described in [ACO05]. Guarded events are assumed to be executed atomically; se-
lection as to which event can be executed is non-deterministic if multiple guards
evaluate to true. As such, this approach is completely different from that of
rely/guarantee thinking (although Section 2.4 notes a common concern). The
approach in [AC05] to increasing concurrency (or “splitting atoms”) is to de-
compose events. When one “splits” an event into sub-events it has to be shown
that all but one “refine skip”.

There are a number of elegant examples of the use of this approach: Abrial
and Cansell have also tackled the “4-slot” implementation of ACMs and have
been kind enough to let us see their development as supported by the RODIN
tools [Rod08]. Some further comments relating [ACO08] to the material in this
paper are made in Section 6.3.

2.4 Tracking execution with variables

There are two roles that variables can play that are close to “pseudo instruction
counters”. The shorthand term “phasing” is used in this paper to refer to either
role.

In the (rely/guarantee) approach it is sometimes necessary to delineate differ-
ent interference in different phases of a program. One way of handling this is by
using pseudo-instruction counters and implications whose left-hand side makes
appropriate case distinctions. One objective below is to show that using con-
trol constructs like “semicolon” provides another way of representing changing
assumptions.

The other use of pseudo instruction counters is vividly illustrated in Abrial’s
event refinement approach. The order of execution of the events with true guards
in a given set is non-deterministic. In situations where the correctness depends
on a constrained order, pseudo instruction counters are tested in guards and
set in the corresponding events.? The Abrial/Cansell approach is discussed in
Section 6.3.

2.5 Status of the proofs

The authors have checked all of the proof obligations required in the develop-
ment below. A technical report version of this paper will add appendices that
make outline proofs available for scrutiny. The second author’s thesis will present
proofs at the level of formality used in [Jon90]. Plans to attempt machine checked
proofs are currently being considered.

2 This is reminiscent of the proof of the Boehm/Jacopini theorem that “goto” state-
ments can be avoided.
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3 ACMs and their specification

“Asynchronous Communication Methods” (ACMs) address an extremely inter-
esting application scenario. First, imagine two process that are independently
timed in the sense that they are not synchronised in any way (thus “asyn-
chronous”); furthermore, suppose that one process produces values that are to be
“communicated” to the other (one writes and the other reads); the key require-
ment is that communication must be achieved with no delay to either process.
So it is not, for example, possible to use a conventional shared variable —access to
which is controlled by some device such as semaphores— since one process could
be delayed waiting for a lock to be released. To sharpen the issues, it might be
useful to think of Value below as being large — something that certainly can’t be
changed in one machine cycle (“atomically”). ACMs are used in important high
speed communication situations such as passing values from sensors to flight
control software.

A number of non-obvious consequences follow from the asynchronous essence
of ACMs. The simplest is that it is certainly valid for the reader to see the same
value multiple times if it cycles faster than the writer. The more complicated
consequences are shown once a formal specification has been given.

3.1 A specification

The issue of a formal statement of what behaviour a valid ACM is allowed to
exhibit is itself non-trivial and different approaches are already distinguished
at this starting point. (Alternatives are discussed in Section 3.3.) Sections 4
and 5 present a formal development of a well-known —and extremely ingenious—
implementation of ACMs but it is clearly necessary to offer a formal starting
point for such a development. The aim here is to provide a way of specifying
ACM behaviour with which a user can feel comfortable.

It would fit the “splitting atoms” programme nicely if it were possible to
present a specification using of a simple (atomic) variable. Unfortunately, this
is not an appropriate abstraction because it does not show the full potential
behaviour of an ACM. In particular, a read operation could start and —before
it delivers a value— several write operations could start and complete. Alterna-
tively, a write operation could start and —before it completes— several different
read operations could start and complete. It is necessary to show which values
can be delivered to the receiving process. A straightforward way to do this is
to distinguish between start-Read/end-Read and start- Write/end- Write.® An
underlying state to characterise these operations (in VDM notation?) could be:

3 For those who feel queasy about this in a specification, Section 3.3 discusses alter-
natives. Furthermore, the approach of the current section can be proved to fit with
such specifications.

4 Remember that types in VDM are restricted by invariants; so, for example, quanti-
fying over X* only includes records that satisfy its invariant.
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Y% o data-w : Value™*
fresh-w : N
hold-r : N

inv (mk-X°(data-w, fresh-w, hold-r)) 2 hold-r < fresh-w

The idea here is that data-w retains all values written; start- Write first
stores a new value but only end- Write releases it for access by updating fresh-w.
Conversely, start- Read notes the index of values that must be regarded as “fresh”
and end-Read makes a non-deterministic choice of an index between the hold-r
and the value of fresh-w at the time of completion of the read. (The suffixes of
the variable names indicate whether the reader or writer can change their values;
this shows straight away that there are no variables written to by both “sides”.)

It is obviously necessary to initialise the state. Most authors who give formal
presentations do this by assuming that a value x has been written then read
once. This can be shown as:

of = mk-%((x], 1,1)
with the following pseudo-code:

while true do
start- Write(v: Value): data-w < data-w
end- Write(): fresh-w < len data-w
od
while true do
start-Read(): hold-r < fresh-w;
end-Read()r: Value: r < data-w(i) for some i € {hold-r..fresh-w}
od

™ [l;

The code ensures that old values cannot be read. Although end-Read might not
select the newest item in the sequence, a value only becomes old when a newer
item is returned. Since start-Read sets hold-r to the value of fresh-r before the
choice is made and hold-r is never greater than fresh-r, the read process cannot
return an old value (though the same value may be returned more than once).

Figures 1, 2 and 3 give possible executions of the code (giving the operation
name and corresponding final sate). Figure 1 is a simple sequential write and
read: y is added to data-w, marked as fresh and subsequently read. In Figure 2,
the read begins before the write ends and the read yields x.

The more complex case in Figure 3 shows the non-determinism of the read
operation. By the time end-Read is ready to return a result, three possible values
are available and one will be selected non-deterministically. Note however that
a subsequent read can return neither x nor y because hold-r is updated to the
value of fresh-w at the start of the read.
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start- Write(y) .. mk-%([x,y],1,1) start-Read () mk-%([x],1,1)

end-Write() .. mk-3X%([x,y],2,1) start- Write(y) .. mk-$([x,y],1,1)

start-Read() .. mk-X%([x,y],2,2) end- Write() mk-2°([x,v],2,1)

end-Read() ..1r=y start- Write(z) .. mk-%%([x,y,2],2,1)
end- Write() mk-X%([x,y,2],3,1)

Fig. 1. Sequential case end-Read) re{x,y,z}

start-Read() .. mk-X%([x,y,2],3,3)

start- Write(y) .. mk-X%([x,y],1,1) end-Read|) r=z

start-Read() .. mk-X%([x,y],1,1)

end-Read() LTr=X Fig. 3. Non-deterministic case
end-Write() .. mk-3X%([x,y],2,1)

Fig. 2. Interleaved case

The pseudo-code above is brief and offers the intuition of what can happen
but for the development that follows, this needs to be presented as formal (VDM)
specifications of the four operations. These are straightforward (see Figure 4)°.

Write(v: Value)
start- Write(v: Value)
wr data-w
post data-w = data-w " [v]
end- Write(v: Value)
rd data-w
wr fresh-w
pre data-w(len data-w) = v
post fresh-w = len data-w

Read()r: Value

local hold-r:N

start-Read ()
wr hold-r
rd fresh-w
post hold-r = fresh-w

end-Read()r: Value
rd data-w, fresh-w
post 3i € {hold-r..fresh-w} - r = data-w(1)

Fig. 4. Specification in terms of four sub-operations

5 As an aside: It would be reasonable to assume that a Read operation will run in
less time than a Write — in this case it would be impossible for multiple Writes
to complete within the time of a Read — such an assumption can slightly simplify
solutions. This assumption is not made here (nor in most other papers).
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In these operation specifications, the standard VDM style of marking the
read/write access is used. This proves particularly valuable below when inter-
ference is considered. One non-standard extension is also used and that is the
declaring hold-r as local to the two Read operations. This is essentially marking
it as invisible to the two Write operations. (The efficacy of these markings is
addressed in the (draft) thesis of the second author.)

Notice that rely/guarantee conditions are not yet necessary because the four
operations are assumed to be atomic. The fiction of atomicity is used to achieve
a simple specification. At this point, the specifications imply big assumptions
about atomic update of data-w; this is addressed in the following sections. Per-
haps of more interest is the decision to use semicolon as a tool in specifications
— again, this is addressed below.

Note that pre-end- Write is required to pass information between the two
write processes. The proof showing that this is implied by post-start- Write is
immediate.

3.2 Splitting atoms in 3¢

As observed, the operations in the preceding section are assumed to execute
atomically. The process of “splitting atoms” can begin by considering the over-
lap of Read and Write sub-operations. This could be very difficult to describe.
Indeed, the cleverness of the final code is all about finding a way to do this safely
whilst achieving “asynchroneity”. Here, we postpone the key property that there
is no delay to either process since it can be achieved by further splitting of atoms.

For now, Figure 5 contains exactly the post conditions of the preceding sec-
tion and adds rely and guarantee conditions that represent the possible interfer-
ence. Notice first that the state 3% is unchanged. Rely/guarantee assertions are
easy to add because all that is necessary is to make sure that results required in
the post conditions cannot be subverted by interference.

It is a simple task to check that the rely and guarantee conditions in the
two threads are consistent. The work involved is almost syntactic because of the
limitations on read and write access marked in the VDM operation specifications.
For example, both rely-start- Write and rely-end- Write follow immediately from
the fact that neither Read component has write access to the relevant variables.

An astute reader might be very worried that massive assumptions are being
made here about what can be changed atomically. Such assumptions have to be
eliminated in subsequent development. What is achieved here is to show that
the splitting atoms development idea can provide an intuitive understanding of
extremely delicate code.

The details of the rely and guarantee operations are, here, made much simpler
to write because of the way that the sub operations are ordered (by semicolon).
Were one to try to record a specification of an entire Read and Write opera-
tions, they would be festooned with implications. The structure of the program
(e.g. that Write cannot interfere with Write) simplifies the specifications of the
sub-operations.
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Write(v: Value)

start- Write(v: Value)
rd fresh-w
wr data-w
rely fresh-w = fresh-w A data-w = data-w
guar {1..fresh-w} < data-w = {1..fresh-w} < data-w
post data-w = data-w " [v]

end- Write(v: Value)
rd data-w
wr fresh-w
pre data-w(len data-w) = v
rely fresh-w = fresh-w A data-w = data-w
post fresh-w = len data-w

Read()r: Value

start-Read()
rd fresh-w
wr hold-r
rely hold-r = hold-r
post hold-r € {fresh-w, fresh-w}

end-Read()r: Value
rd data-w, fresh-w, hold-r
rely hold-r = hold-r A Vi € {hold-r..fresh-w} - data-w(i) = data-w(7)
post 3i € {hold-r..fresh-w} - r = data-w(i)

Fig. 5. Specification of sub-operations on X with rely/guarantee

3.3 Alternative specifications

The most surprising decision in the specification used here is the retention of
values (in data-w of o®) that can no longer be accessed. Henderson goes to pains
to delete “old” values after they have been overtaken by subsequent reads. The
cost in [Hen04] is that both Read and Write need to have a record of where the
other process is in its execution. True, this record keeping is eliminated in the
subsequent development; but so are our superfluous values. In both cases, the
same technical rule comes to the rescue. Our current view is that leaving the
extra values results in a clearer specification.

Abrial and Cansell [ACO08] start from a specification in terms of the traces of
reading and writing. It is inherent in the ACM problem —rather than a criticism of
their specification— that pinning down the exact behaviour is somewhat messy: in
essence, they have to reflect the points at which operations start and end. In the
journal version of this paper a proof will be added that the initial “specification”
in Section 3.1 satisfies their specification. This then leaves the user to decide
which is the most intuitive way of understanding ACM behaviour.
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3.4 Summary of specification methods used

The ideal of the “fiction of atomicity” would be to abstract from all of the details
of ACMs by using a single atomically accessed variable as an abstraction. Since
this does not describe all of the possible behaviours, one has to think harder to
obtain a starting specification. The choice here is to make a minimal split of the
two parallel processes each into two sub-operations whose behaviour is composed
sequentially (“by semicolon”). This “phasing” is of course algorithmic detail in
a specification but is claimed to offer a reasonably intuitive description of the
permissable behaviours of an ACM. The same phasing idea pays off handsomely
when the move is made to specifications with rely and guarantee conditions: if
the same essential properties were to be presented for the whole of say Write,
there would have to be ghost variables to track the phase and implications to
present the information about the separate phases as a single predicate. The
current authors recognise the arguments for a specification in terms of traces
but believe phasing is sometimes easier to understand.

The rely and guarantee conditions themselves are fairly standard. Checking
that they are consistent between the two parallel threads is made almost trivial
by judicious choice of frame markings.

4 Retaining less history

The first real reification is to an intermediate representation in which it is pos-
sible to retain fewer Values than in X%, Not only can X* get away with fewer
values, it is also clear that it might be possible to lock only parts of its data-w
component and thus increase concurrency. Thus this step moves towards the
idea of multiple slots without being specific as to how many there must be to
make the algorithm work. Essentially, a careful data reification step is bringing
in some of the design decisions without going all the way to Simpson’s code.
Rely/guarantee conditions are again used to investigate the requirements.

4.1 The data representation

The state representation for this reification is:
Y data-w 2 X 5 Value

fresh-w @ X
hold-r : X
hold-w : X

inv (mk-'(data, fresh, hold-r, hold-w)) &
{fresh, hold-r, hold-w} C dom data

At this step of development, the (indexing) set X is arbitrary. In order to
show the initial state assume that X € {a,,...}. Then:

ob = mk-X' ({a — x}, a, o, )
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4.2 Relating X to X°

The fact that the chosen state in the specification (X%) cannot be “retrieved”
from the representation as in the simple VDM reification rule means that the
connection between elements of ¥¢/%% has to be given by a relation:

r:Ytx Y 5B

r(mk-X°(data-w®, fresh-w®, hold-r®),
mk-Y (data-w?, fresh-w®, hold-r?, hold-w®)) 2
rng data-w' C elems data-w® A
data-w®(fresh-w®) = data-w*(fresh-w®) A
data-w®(hold-r®) = data-w*(hold-r*)

Because the representation here has (potentially) less information than the
abstraction, it is necessary to use the refinement rule given in [Nip86,Nip87]. For
the current case it is necessary to show for each operation that:

r(of,ot) A posti(ol,0l) = 0§ € - post®(al,08) Ar(cg,ol)

Generalisations of this rule to add inputs or outputs are obvious.

4.3 Specifications of the sub-operations

The specifications of the four sub-operations over the X! states are shown in
Figure 6. There is masses of non-determinism here — in fact, one valid imple-
mentation is to have X = N and retain the whole sequence as in Section 3.

The post condition of start- Write clearly shows that we need at least three
slots in order to avoid “race conditions” on individual Values.b

4.4 Justifying this step

The technical report version of this paper contains proofs of the (initialisation,
and) four sub-operations in an appendix. These proofs will be presented formally
in the second author’s forthcoming PhD thesis.

Checking the coherence of the rely and guarantee conditions between the two
sub-operations of Read and of Write is somewhat more work than in Section 3
but the effort required is still drastically reduced by the read and write frames
(coupled with the local in Write).

4.5 Summary of development methods used in this stage

The justification of the data reification from ¢ to ©* cannot be done using the
simpler of the two rules in the VDM literature but the rule from Nipkow’s thesis
covers the (possible) reduction in the size of the state space and this rule has
been included in VDM since [Jon90, §9.3]. The use here is technically interesting;

5 The argument why that is not enough is set out in [Hen04] and is not repeated here.
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Write(v: Value)
local hold-w: X
start- Write(v: Value)
rd hold-r, fresh-w

wr data-w
e A

rely fresh-w = fresh-w A data-w = data-w

guar {hold-r, hold-r} < data-w = {hold-r, hold-r} < data-w

post hold-w € (X — {fresh-w, hold-r, hold-r}) A

data-w = data-w T {hold-w — v}

end-Write(v: Value)

rd data-w

wr fresh-w

pre data-w(hold-w) = v

rely fresh-w = fresh-w A data-w = data-w

post fresh-w = hold-w

Read()r: Value

start-Read ()
rd fresh-w
wr hold-r
rely hold-r = hold-r
post hold-r € {fresh-w, fresh-w}

end-Read()r: Value
rd hold-r, data-w
rely hold-r = hold-r A data-w(hold-r) = data-w(hold-r)
post r = data-w(hold-r)

Fig. 6. Rely/guarantee specifications on !

in fact, its availability makes possible the choice of development from X% to X"
via X*. Such careful choice of design strategy is essential but is perhaps the
hardest part of the method to reduce to general rules.

Another key point only sees its completion in Section 5 and that is the use
even at this step of rather bold atomicity assumptions. Without Simpson’s clever
data representation it might be impossible to achieve atomic update (on a rea-
sonable machine architecture) without locking and it is made clear in Section 3
that this is not allowed in ACMs. Such roadblocks (leading to backtracking)
cannot be ruled out by any method whether formal or informal.

There are key links from this section to the second author’s upcoming PhD
thesis. In particular, one sees even more clearly in this section than the last how
rely and guarantee conditions are simpler to express because of the read and
write frames. Furthermore, without “phasing”, there would be much more to
write with implications all over the place.
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5 The four-slot representation

In purely formal terms, the task remaining after Figure 6 (which uses ¥?) is
to find a representation that admits atomic changes in a sensible machine. The
crucial contribution of Simpson’s “4-slot” algorithm is to achieve control over
where the reader and writer find or change values with only two single bit con-
trol variables. This is where the link between “splitting atoms” and reification
(cf. [Jon07, §3]) comes into play. These control variables keep the reader and
writer from “colliding” while never delaying each other. This is the ingenuity
in Hugo Simpson’s contribution and there is absolutely no claim here that the
formalism is a substitute for such design inspiration. Used by a designer (which
it wasn’t), formalism can establish that proceeding to the next design step leaves
no hostage to fortune on correctness; used as here, the formalism can provide a
clear understanding, documentation (and appreciation) of an intricate piece of
code.

5.1 The data representation

The size of the domain of the data-w field of ¥ is not constrained. Simpson’s
“4-slot” approach shows that the domain need only have cardinality four. Fur-
thermore, he shows that treating the data map as two pairs (P below) of two
slots (indexed by S below) makes their bookkeeping atomic.

So the essential difference between X¢ of Section 4 and X" here is that the
general index set X of the former is represented here as a pair (P, .5). The other
changes are to control variables whose role becomes clear in Section 5.2.

Y7 o data-w ;P x S 5 Value

pair-w : P
pair-r . P
slot-w : P25 S
wp-w P
ws-w S
rS-r . S

where:
P, S = token-set

These two sets can be identical and each has two elements: P = S, card P = 2,
with an inverter function, p (for “reverse”)”, such that p(i) # i.

5.2 Justifying the step from X" to X?

Figure 7 reflects the differences between the two state spaces. The justification of
this step of development requires showing that the combination of index values
in X" can be used to justify the properties of X etc. in X*. (This is the process

7 Many authors use B for P and then employ negation — to us, this is a coding trick!
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Write(v: Value)
local wp-w: P
local ws-w: S
start- Write(v: Value)
rd pair-r, slot-w
wr data-w
rely slot-w = slot-w A data-w = data-w
guar {(pair-r, slot-w(pair-r), (pair-r, slot-w(pair-r)} < data-w =
{(pair-r, slot-w(pair-r), (pair-r, slot-w(pair-r)} < data-w
post wp-w = p(pair-r) A ws-w = p(slot-w(wp-w)) A
data-w(wp-w, ws-w) = v
end- Write()
wr pair-w, slot-w
rely pair-w = pair-w A slot-w = slot-w
guar slot-w(pair-r) = slot-w(pair-r)
post slot-w(wp-w) = ws-w A pair-w = wp-w

Read()r: Value

local rs-r: S

start-Read()
rd pair-w, slot-w

Wr pair-r

rely slot-w(pair-r) = slot-w(pair-r) A pair-r = pair-r
post pair-r = pair-w A rs-r = slot-w(pair-r)
end-Read()r: Value
rd pair-r, data-w
rely pair-r = pair-r A data-w(pair-r, rs-r) = data-w(pair-r, rs-r)
post r = data-w(pair-r, rs-r)

Fig. 7. Final (X") rely/guarantee specification of code

described in [Jon07, §3].) Thus one shows that each of the conditions of Figure 7
corresponds to those of Figure 6. This follows from:

¥ represented in X7 by
data-w"|data-w"

fresh® | (pair-w"”, slot-w" (pair” (pair-w")))
hold-r* |(pair-r™, slot-w™ (pair” (pair-r")))
hold-w" |(wp-w™, wp-s")

The proofs will be given in an appendix to the technical report version of
this paper.
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5.3 The code

It is straightforward to show that the code in Figure 8 satisfies the specifications
of the sub-operations in Section 5.2.

Write(v: Value)

local wp-w: P

local ws-w: S
wp-w  p(pair-r);
ws-w < p(slot-w(wp-w));
data-w(wp-w, ws-w)  v;
slot-w(wp-w) <+ ws-w;
PaIr-w — wp-w

Read()r: Value
local rs-r: S
Pair-r <— pair-w;
rs-r < slot-w(pair-r);
r < data-w(pair-r, rs-r)

Fig. 8. Code for Simpson’s algorithm

5.4 Summary of development methods used in this stage

Finally, the usefulness of the intermediate data abstraction becomes clear in this
step: it is relatively easy to see the pair/slot mapping as a way of simplifying
a mapping from the arbitrary set X. Moreover, the whole thrust of “splitting
atoms safely” is clear in this step.

6 Conclusions

This section both summarises the general methodological messages of the pa-
per and offers brief descriptions of some other recent justifications of Simpson’s
algorithm. In making such comparisons, the authors are not trying to be com-
petitive but to use this intricate algorithm to indicate what insight can be given
by various approaches.

6.1 Summary

As made clear at the outset, ACMs are complex; Simpson’s algorithm is inge-
nious; and its correctness requires delicate reasoning. The material in Figures 5-7
is key to providing an intuitive grasp of the correctness. The authors hope that
the reader finds this a clear design rationale. (The material pre Figure 5 is really
there to provide an intuition of the behaviour.)
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However, the intention was not to add yet another correctness argument of
one specific algorithm but instead to use this development to illustrate how a
number of ideas can be used in concert to move from a “fiction of atomicity”
using a development approach that can be called “splitting (software) atoms
safely”. The notes in Sections 3.4, 4.5 and 5.4 can be summarised as:

— The authors present an understandable and tractable reworking of the “4-
slot” algorithm, with a clear design history.

— The “fiction of atomicity” is a good place to begin.

— While rely/guarantee conditions allow us to reason about the interference,
a clever data reification is required (which Simpson gives us).

— Rely/guarantee reasoning is greatly simplified by the use of frames and phas-
ing arguments.

6.2 Brief comments on Henderson’s development

Henderson’s research (in particular, his thesis [Hen04]) has been a key informa-
tion source. Interestingly, he uses broadly the same set of technical tools as in
the current paper. In spite of this, the presentation here looks very different.

First, Henderson’s specification attempts to retain a minimal list of Values
that could potentially be returned by a Read. As mentioned in Section 3.3, a
cost for this is a pair of “ghost variables” that inform the Read operation in
which phase the Write operation is executing (and vice versa). These variables
can be eliminated in reification because Henderson also uses “Nipkow’s rule”.
The current authors hold the (biased) view that the specification here is clearer
but there would be little difficulty in proving they describe the same behaviour
and the choice can be left to the “customer”.

A more pervasive difference results in part from the recent development
(cf. [Jon07]) of the link between atomicity refinement and data reification. In Sec-
tion 5 of the current paper, the preceding interference specifications are achieved
by capitalising on Simpson’s four-slot representation.

The reader is also referred to [HP02] and [PHAO04]; the second of these ad-
dresses the delicate issue of “meta-stability” of the control bits.

6.3 Comparison with event decomposition

The “event decomposition” method described in, for example, [AC05] is ex-
tremely interesting because it is general. Attention has already been drawn above
to its use of a “pseudo instruction counter” which is related to the “phasing” idea
used here. They avoid any need for rely and guarantee conditions by preserving
the atomicity of events at any level of development. This achieves a considerable
economy of rules.

The current authors do wonder whether the interesting development of Simp-
son’s algorithm in [ACO08] indicates that the atomicity constraint might require
a series of difficult-to-invent steps. But their forthcoming publication will admit
wider comparison (and by people unbiased by being authors of either approach).
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As indicated, it is the hope of the current authors that a comparison paper might
be written together with Jean-Raymond Abrial and Dominique Cansell.

6.4 Comparison with “Separation Logic”

Another exciting development in research on concurrent code has been the recent
developments around “concurrent separation logic”. At this time, researchers in
Newcastle, London and Cambridge are discussing ways of combining the best
features of both separation logic and rely/guarantee reasoning. For example, the
second author’s thesis builds the bridge with the read/write frames here. There
is not space here to do this research full justice; but an excellent recent reference
(from which other citations can be found) is [Vaf07].

During the writing of this paper, Richard Bornat sent us current work on
Simpson’s algorithm. The title of [BA0§] alone should indicate why this is excit-
ing. Again, the availability of this in published form will admit proper unbiased
comparison.
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