

COMPUTING
SCIENCE

What Can the pi-calculus Tell Us About the Mondex Purse System?

Cliff B. Jones and Ken G. Pierce

TECHNICAL REPORT SERIES

No. CS-TR-1185 January 2010

TECHNICAL REPORT SERIES

No. CS-TR-1185 January, 2010

What Can the pi-calculus Tell Us About the Mondex Purse
System?

C.B Jones, K.G. Pierce

Abstract

This paper looks at the wider system surrounding a "Mondex" electronic purse. It
does this from a process-oriented perspective using the pi-calculus. Our model
includes the issuing of purses by an authorised bank and the decisions of cardholders
to participate in transactions.

© 2010 University of Newcastle upon Tyne.
Printed and published by the University of Newcastle upon Tyne,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

JONES, C.B., PIERCE, K.G.

What Can the pi-calculus Tell Us About the Mondex Purse System?
[By] C.B. Jones, K.G. Pierce

Newcastle upon Tyne: University of Newcastle upon Tyne: Computing Science, 2010.

(University of Newcastle upon Tyne, Computing Science, Technical Report Series, No. CS-TR-1185)

Added entries

UNIVERSITY OF NEWCASTLE UPON TYNE
Computing Science. Technical Report Series. CS-TR-1185

Abstract

This paper looks at the wider system surrounding a "Mondex" electronic purse. It does this from a process-
oriented perspective using the pi-calculus. Our model includes the issuing of purses by an authorised bank and the
decisions of cardholders to participate in transactions.

About the authors

Cliff Jones is a Professor of Computing Science at Newcastle University. He is now applying research on formal
methods to wider issues of dependability. Until 2007 his major research involvement was the five university IRC
on "Dependability of Computer-Based Systems" of which he was overall Project Director - he is now PI of the
follow-on Platform Grant "Trustworthy Ambient Systems" (TrAmS) (also EPSRC). He is also PI on an EPSRC-
funded project "Splitting (Software) Atoms Safely" and coordinates the "Methodology" strand of the EU-funded
RODIN project. As well as his academic career, Cliff has spent over twenty years in industry. His fifteen years in
IBM saw among other things the creation -with colleagues in Vienna- of VDM which is one of the better known
"formal methods". Under Tony Hoare, Cliff wrote his doctoral thesis in two years (and enjoyed the family
atmosphere of Wolfson College). From Oxford, he moved directly to a chair at Manchester University where he
built a world-class Formal Methods group which -among other projects- was the academic lead in the largest
Software Engineering project funded by the Alvey programme (IPSE 2.5 created the "mural"(Formal Method)
Support Systems theorem proving assistant). Cliff is a Fellow of the Royal Academy of Engineering (FREng),
ACM, BCS, and IET. He has been a member of IFIP Working Group 2.3 (Programming Methodology) since
1973 (and was Chair from 1987-96).

Ken received his BSc (Hons) in Computer Science (Software Engineering) from Newcastle University in 2005.
Ken studied for a PhD under the supervision of Prof. Cliff Jones as part of the EPSRC "Splitting (Software)
Atoms Safely" project. His thesis, titled "Enhancing the Usability of Rely-Guarantee Conditions for Atomicity
Refinement", was published in December 2009. Ken is currently working on the DESTECS project (destecs.org).
The project is a consortium of research groups and companies working on the challenge of developing fault-
tolerant embedded systems. Specifically, the aim is to explore collaborative modelling and simulation in the
design of embedded systems. The Newcastle team is principally concerned with methodology and how fault-
tolerance can be incorporated into these collaborative, multi-disciplinary models.

Suggested keywords

MONDEX
PI CALCULUS
PROCESS ORIENTED
FORMAL METHODS

What Can the π-calculus Tell Us About the Mondex Purse System? ∗

Cliff B. Jones

Centre for Software Reliability

Newcastle University, NE1 7RU, UK

cliff.jones@ncl.ac.uk

Ken G. Pierce

K.G.Pierce@ncl.ac.uk

Abstract

This paper looks at the wider system surrounding

a “Mondex” electronic purse. It does this from a process-

oriented perspective using the π-calculus. Our model in-

cludes the issuing of purses by an authorised bank and the

decisions of cardholders to participate in transactions.

1 Introduction

One of UKCRC’s1 “Grand Challenges”2 is that on “De-

pendable Systems Evolution”3 [16]. One objective is to ex-

periment –with formal methods– on an “electronic purse”

system whose details are derived from that which went un-

der the name “Mondex”. The common source document for

the experiments is [14]. In particular that report sets out an

important security property that should hold (i.e. it should

not be possible to “print money”) and there is interest in

how this can be proved in various approaches.

It is our position that no one “formal method” is likely

to be adequate for exploration of all facets of a problem

like electronic purses. Henderson’s thesis [5] is one exam-

ple where a collection of formal approaches are used and

each illustrates different facets of a difficult problem. One

could also point to the work on “Dynamic Coalitions” in [1],

which uses a state based approach to illuminate the space

of options that hide behind the buzz phrase. Other aspects

of elements such as the communication behaviour might

well have been tackled using process algebraic approaches

but the cited reference studies the space of systems using a

model-oriented approach (VDM [8, 7]).

The π-calculus is described in [11, 12]; it is a develop-

ment of CCS [10] that permits the passing of process names

∗This paper appears in ICECCS ’07: Proceedings of the 12th IEEE

Inter- national Conference on Engineering Complex Computer Systems

(ICECCS 2007), pages 300–306, Washington, DC, USA, 2007. IEEE

Computer Society.
1See www.ukcrc.org.uk
2See www.ukcrc.org.uk/grand challenges/index.cfm
3See www.bcs.org/server.php?show=ConWebDoc.4721

as parameters.

Our focus in this paper is on the way in which the ν name

binding can be used to establish private communication be-

tween processes. In fact, one key issue that such a process

algebraic approach clarifies is that it is necessary to be pre-

cise about what is included in or excluded from such a sys-

tem. We are not, of course, suggesting that the ν operator

is a solution to the delicate implementation issue of how to

ensure that only authorised purses can be used in payment.

We are only claiming that this is a useful abstraction whose

properties express one facet of this problem rather naturally.

Section 2 of this paper gives a basic outline of the Mon-

dex system and the π-calculus. Our model is presented in

Section 3 and Section 4 includes an extension that addresses

the physicality of our model. In Section 5 we consider tool

support as a means of verification and we draw conclusions

from our work in Section 6.

2 Background

2.1 Mondex: An Electronic Purse

The Mondex electronic purse system was a real develop-

ment by the NatWest Development Team; the system was

evaluated by the EU under the Information Technology Se-

curity Evaluation Criteria (ITSEC). ITSEC has seven levels

of security certification — E0 through E6 (lowest to high-

est). The Mondex system achieved an E6 level of certifi-

cation; this required both evaluation and proof of the de-

sign, hence a formal specification was undertaken using the

Z method. A version of the Z specification was eventually

published in a monograph from Oxford University [14].

The main component of the Mondex system is the purse.

A purse holds monetary value and allows the holder to

transfer sums of money to other Mondex purses. A purse

is hosted on a smartcard. Transfers require card readers in

order to allow these smartcards to communicate and these

card readers are (confusingly) known as wallets.

Wallets have three modes of operation. With a single-

slot card reader, the two purses are inserted sequentially

and money is transferred first to the wallet and then to the

receiving purse (this is possible because a wallet itself con-

tains an integrated purse). A two-slot card reader allows the

two purses to be inserted simultaneously. The third mode is

a networked mode in which two card readers are connected

via a phone line. This paper focuses on the two-slot mode.

The Mondex system is interesting because the smart-

cards are autonomous: they perform offline transactions

without the aid of a central authority or logging ability. Se-

curity (i.e. cryptography) is performed on-card.

The security requirements of the system were captured

by decribing a number of “security properties”. The main

property required by the bank is no value creation, i.e. the

sum of all purse balances does not increase. The other main

properties are all value accounted, the sum of all purse bal-

ances does not change; authentic purses, only authorised

cards can participate in transactions (cryptography is as-

sumed to work and ‘strength of mechanism arguments’ are

absent from the monograph); and sufficient funds, a purse

can only transfer value up to the amount of its current bal-

ance.

2.2 π-calculus

The π-calculus is a process algebra developed as a con-

tinuation of the work on CCS (Communication Concurrent

Systems); like CCS and other process algebras, it allows us

to model systems in terms of processes communicating with

other process.

The basic units of the π-calculus are names. Names are

channels of communication; the prefix operators input —

x(y).P — and output — x y.P — allow processes to com-

municate synchronously. Two processes willing to synchro-

nise on the same channel name can communicate (and pass

variables as parameters). A key property of the π-calculus is

that names can be passed as variables and used as channels

for further communications.

Terms in the π-calculus can be composed sequentially,

P.Q (‘then’); in parallel, P | Q (in which P and Q are

both able to communicate); or using external choice, + (in

which only P or Q can communicate; in so doing the other

term transitions to 0, the nil process).

The . operator can be used to indicate that a process pro-

ceeds to behave like another named process; this property

permits tail recursion. Replication allows us to say that a

process can always perform a particular communcation; the

! (‘bang’) operator is effectively a shorthand for P | !P .

As discussed previously, the ν operator is key to our

model. It creates a ‘new’, unique channel name and binds

that name in the following process term. This name is pri-

vate; it cannot be known to external processes (and thus

used for communication) until it is explicitly provided to

another process over a known channel.

Our notation also uses
∑

i∈{1,...,n} Pi as a short hand for

multiple choice, P0 + ... + Pn and
∏

i∈{1,...,n} Pi as a

shorthand for multiple parallel composition, P0 | ... | Pn.

3 A π-calculus Model

3.1 Design Choices

Previous treatments of the “Mondex” system have

looked at transactions between purses predominantly from

a state-based perspective (e.g. [13]). They aim to show that

the security properties (e.g. no money creation) hold in the

system.

We felt however that it would also be interesting to

look at the customers’ decisions to exchange money –deal

brokering– and at the way in which the bank issues purses

to customers.

3.1.1 Deal Brokering

Our initial approach was to model deal brokering as a sum-

mation of “deals” between each pair of customers. In this

case, transactions could occur non-deterministically. This

approach led, however, to a possible deadlock (reminis-

cent of the dining philosophers’ problem) where a customer

could attempt more than one simultaneous deal and dead-

lock the process. This is exposed as a problem if timeouts

are introduced during refinement, because the abstract sys-

tem cannot achieve resolution of deadlock whereas the im-

plementation has extra behaviours.

To combat this, we changed our model so that customers

can non-deterministically attempt a transaction with a dis-

tinct purse; a pair of customers must agree (i.e. synchronise)

on the transaction. This synchronisation then prohibits ei-

ther customer from attempting other transactions until the

current transaction has ended — either through success,

failure or one party deciding to abort.

3.1.2 The Bank

The bank has been modelled to accept requests from cus-

tomers for purses. The key question we faced was the role

of the bank in authenticating purses. Since the bank creates

all purses, it is possible to hold a set of ‘authorised purses’

against which the bank could check a given purse before a

transaction. This abstract authorisation would aid in show-

ing that the security properties hold. Unfortunately, in the

real system, purses exist “on their own” and wallets cannot

defer to the bank, hence this authentication would have to

be refined before implementation.

We thus decided to model the system more closely, by

having the bank simply create purses and relinquish them to

customers; it is then up to the wallets –presumably through

a form of secret key authentication– to verify the authentic-

ity of a purse.

3.2 Our Chosen π-calculus Definition

The top-level process in the model is World – the world

contains a bank (which can issue purses); a number of cus-

tomers (who initially do not own purses); and a number of

wallets (required for transactions):

Bank |




∏

i∈{1,...,n}

CustNoPi



 |




∏

x∈{1,...,w}

Walletx





The bank is able to issue purses at the request of a customer.

Bank
def
= ! (νp)

(

reqp(ci).ci p
)

.Pp

As in the physical system, the bank is unable to authenticate

a purse once it has entered ‘the real world’. Each purse is cre-

ated with a new, unique channel — it is the intention that this can

represent the secret of the purse.

A customer without a purse is able to request one; they provide

a private channel to the bank over which they receive their purse’s

identity.

CustNoPi
def
= (νci)reqp ci.ci(p).Custip

Once a customer has received a purse, they are able to partic-

ipate in transactions. The channel p is their unique connection to

the purse.

A customer with a purse is able to participate in transactions.

They may request a transfer of arbitrary value from any other purse

–or– accept an incoming request. Performing either of these ac-

tions causes the customer to enter a state in which they can no

longer perform further transactions until the current one is com-

plete.

Custip
def
=





∑

j∈{1,...,n}

reqj v + reqi(v)



.CustTip

Note that customers are indexed by i and p, where i is effec-

tively a public identity used by other purses to request a transaction

and p is the private identity of the purse that is only used when it

is explicitly shared with a wallet.

Although not considered here, our model could be extended

to allow a customer to have multiple purses (i.e. a set of purse

identities). As long as each purse only participated in a single

transaction at any one time, this would not affect the integrity of

the model.

Once a pair of customers decide to initiate a transfer, they must

find a wallet with which to perform the transfer. This is modelled

as an external choice; although it is possible that the customers

may choose different wallets, deadlock is avoided because they

can always abort the transaction.

A customer participating in a transaction (CustTip) is released

after the transaction has completed successfully (ok), fails (f) or

they decide to abort (ab). Once released, they return to being a

customer able to participate in further transactions (Custip).

CustTip
def
=





∑

x∈{1,...,w}

insertx p



.
(

okp() + fp() + abp
)

.Custip

A wallet is initially defined to be ready to accept one purse.

Walletx
def
= insertx(p).Walletxp

Once the first is purse inserted, it can be removed (and the wal-

let returns to being empty) or a second purse can be inserted — in

which case the transaction continues.

Walletxp
def
= abp().Walletx + insertx(q).

(

· · ·
)

For the transfer to occur, each purse must be authentic — we

know that the wallet must authorise a purse without deferring to

a central authority. If either purse is not considered authentic, the

transfer fails. It should be noted that the wallet only checks the

authenticity of the purses once both have been inserted. It could

be modelled to challenge (and possibly reject) the first purse as

soon as it is inserted, however this does not affect the integrity of

the model. Authentication is defined in Walletxp as...

(

if [[auth(p, q)]] th WalletCxpq el
(

fp |fq).Walletx
)

At this stage, the wallet needs to perform some additional

checking before the transfer can occur. The first part of the defini-

tion for WalletC (below) allows either customer to abort the deal

at any point up to the actual transfer taking place in WalletT . The

ability of either customer to abort the process has been a difficult

issue. In “real life”, a customer could pull their card out at any

stage, but modelling this as a parallel process (as above) during

the transfer is tricky.

WalletCxpq
def
=

(

(

abp().fq + abq().fp
)

.Walletx | · · ·
)

Ideally, we would like an abort to release both purses, the sec-

ond customer and the wallet; more importantly, we need to en-

sure that the value of the transfer has either not left the original

purse (residing in the value or lost component), or has success-

fully been transfered to the requesting purse. We also wish to

model the failure of the transfer for other reasons (modelled as

a non-deterministic choice at this stage), while ensuring the same

properties hold and to introduce timeouts at a later stage.

While it is possible to devise a representation for this, we sus-

pect that it would be messy. In order to avoid the issue at this

stage, we simply do not allow the transfer to be aborted after a

certain point.

The wallet needs to know the value of the transfer and the di-

rection (e.g. p pays q). Also, you may recall that a customer is

able to attempt a transaction of arbitrary value, hence the wallet

must also ensure that there is enough money in the paying purse to

complete the transfer. These issues are represented by the abstract

processes [[KEY]] (input from the keypad that yields a value v for

the transfer and swaps p and q as necessary) and [[BAL]] (balance

check for sending purse).

The rest of the definition for WalletC is:

(

[[KEY]].if [[BAL]]v th WalletTxpqv el
(

fp |fq).Walletx

)

The wallet is now able to perform the transfer. The wallet cre-

ates a new private channel c, which it uses for transfers. It acquires

send and receive channels from each purse, thus allowing it to in-

struct the purses to pass money.

WalletTxpqv
def
= (νc)

(

p c.c(Sp,Rp).q c.c(Sq ,Rq). · · ·

)

.Walletx

From the wallet’s perspective, the actual transfer occurs as be-

low. If successful, it releases the customers indicating this success

(ok), if not, it releases the customers with a fail (f).

(

Sp v.
(

Sp(ACK).Rq v.(okp |okq) + (fp |fq)
)

)

The purse itself consists of a value and a lost component (rep-

resented by abstract processes). The value is the current balance

of the purse; if a transfer didn’t complete, the value of that transfer

is recorded in the lost component (to be restored to the balance at

a later date).

Pp
def
= [[Vp]] | [[Lp]] | ! (νsr)

(

p(c).c sr.
(

· · ·
)

)

A purse performs transfers by synchronising with a wallet and

providing channels for sending and receiving money. When the

purse receives a request to send money, the amount is taken from

the value component — it then non-deterministically succeeds

(and acknowledges this fact to the wallet) or fails (adding the

amout to the lost component). A request to receive money adds

the amount to the value component.

s(v).[[Vp − v]].(sACK + [[Lp + v]]) + r(v).[[Vp + v]]

4 Physicality of the model

One drawback of our model, as it stands, is the distance be-

tween the representation and the reality of the physical system. It

is not exactly clear what p represents: in the present model, p is a

unique, private link to a purse that allows a customer to perform

transactions.

In reality, the original Mondex cards were intended to replace

cash. They could therefore be passed around, become lost or stolen

and used by whoever currently held the card (which might not

necessarily be the original owner of the money). There is no notion

of an authentic user in the system.

It is possible to extend our model to include a notion of loss of

ownership of purses. It is probably unnecessary to include this in

the full model, but is an interesting aside to show how the model

might be brought closer to the physicality of the real system.

World
def
= · · ·Lost{}

LostL
def
= lose(p).LostL∪{p} + find p.LostL\{p}

CustNoPi
def
= · · · + (find(p) + steal(p)).Custip

Custip
def
= (lose p+ steal p).CustNoPi + · · ·

In this extension, a customer with a purse can lose that purse

or have it stolen. In both cases, the customer loses the ability to

interact over p (and thus can no longer use the purse). When a

purse is lost, p enters “lost property”, an abstract place where purse

‘handles’ go when they are lost. When a purse is stolen, control of

p is directly transferred to the unscrupulous customer who stole it.

Customers without purses can still request one from the bank

(whose definition remains unchanged), or they may steal one.

They may also find a purse and gain control of a p from lost prop-

erty (and subsequently p is no longer lost). In all cases, they be-

come customers with purses and they can perform transactions by

means of p.

In all three cases (losing, stealing and finding a purse), this

extension assumes that the physical act occurs simultaneously (e.g.

a customer leaves their purse on a bus, or has their pocket picked).

Our model uses the notion of p as a private channel of commu-

nication to a purse in order to abstract away message authentica-

tion. This extension shows that “ownership” of p by a customer

(Custp) is simply a matter of circumstance that allows that cus-

tomer to use the purse at the current time and is not necessarily a

representation of legal ownership. It could be argued that p is a

property of the purse P and not of the customer using it.

5 Tool Support

The obvious tool to use when working with the π-calculus is

the Mobility Workbench (MWB) [15], a tool for analysing systems

described in the polyadic pi-calculus. The Mobility Workbench

can be used to interactively simulate agents (by allowing the user

to select commitments) and to find and report deadlocks within an

agent. MWB can also perform model checking using modal logic

assertions and decide open bisimulation equivalences (for agents

with finite control).

We have taken a basic version of the model presented in Section

3.2 and run it through the MWB, looking for deadlocks. The ver-

sion used includes the issuing of purses to customers by the bank

and customers brokering deals (in the simple example, synchroni-

sation between customers). Not surprisingly, no deadlocks were

detected up to the maximum number of processes that the tool can

handle. The tool reported that a system with a single customer will

deadlock, which is correct – once the customer has been issued a

purse, it has no one to deal with and the bank has no one to whom

it can issue further purses.

The table below shows the results of the experiments, including

the number of customers in the model, the “size” of the state space

as reported by the tool and the time taken to check for deadlocks.

Customers “Size” Time (s)

1 3 0

2 11 0

3 55 0.031

4 357 1.422

5 n/a n/a

As one must expect, the time taken and/or storage required in-

creases exponentially with the number of processes. When the

system was increased to five customers (and the bank), the tool

crashed through lack of memory before a result was returned.

The ability of the tool to check modal logic assertions about

agents could prove useful in checking other properties of the sys-

tem, although it is currently unclear if this would allow us to say

anything of interest about the protocol.

If our model was extended with the message transfer protocol

of the original monograph –by refining the abstract transfer that

occurs between two purses in a wallet– the equivalence checking

ability of MWB could be used to show the observational equiv-

alence of any refinement that is made, but again this is currently

unclear.

The translation of π-calculus terms into Petri-nets presented

in [3, 4] could allow model checking to be performed in the “as

yet unnamed” tools being developed by that group. The transla-

tion does not currently permit recursion and we have so far not

attempted a petri-net representation of our model.

6 Conclusions

Our model uses a process algebraic notation to represent not

only the transfer of money between purses, but also a way in which

the bank, customers and wallets might interact within the system.

It illustrates how the ν name binding can be used to model pri-

vate communication between these processes and that the ability

to pass these private channel names between processes provides us

with a concise abstraction from the issues of implementation.

In allowing customers to abort transactions, we have included

behaviours in the abstract model that may be required when time-

outs are introduced during refinement; this however causes prob-

lems if a customer aborts at a key stage of the transfer. Solutions

we have considered include some form of exception handling,

such as a catch; or perhaps an asymmetric operator that is sim-

ilar to | , which allows one term to be declared as uninterruptable

after a certain point.

When discussing our model, we realised that introducing a rep-

resentation of customers allows us to consider the authenticity of

users in the system as well as the authenticity of purses: is the

holder of the current purse authorised to use it? Again, the prob-

lem here is the isolation of wallets from a central authority; our

model could be extended to allow reasoning about the authentica-

tion of customers, i.e. using PIN numbers.

As well as customer authentication, we could expand the sys-

tem to include “hostile” processes that attempt to forge communi-

cations within the system – man-in-the-middle attacks, for exam-

ple – and determine their ability to affect the system.

If we wanted to reason about the implementation of our model,

one interesting possibility would be to look at developments of the

techniques proposed in [9] and developed in [2]; Koutny’s notion

of “interface refinement” is presented in a CSP [6] framework so

either new research is required or we would have to consider the

sub-problem that could be handled in CSP.

7 Acknowledgements

This work has been supported by the UK EPSRC under the

“atoms” project. We would like to thank Björn Victor for his help

with the Mobility Workbench and Koutny, Niaouris et al. with

regards to their Petri-net translation of π-calculus terms.

References

[1] J. W. Bryans, J. S. Fitzgerald, C. B. Jones, and I. Mozolevsky.

Dimensions of dynamic coalitions. Technical Report CS-

TR-963, School of Computing Science, University of New-

castle, May 2006.
[2] J. Burton. The Theory and Practice of Refinement-After-

Hiding. PhD thesis, University of Newcastle upon Tyne,

2004.
[3] R. Devillers, H. Klaudel, and M. Koutny. Petri net semantics

of the finite π-calculus terms. Fundam. Inf., 70(3):203–226,

2006.
[4] R. Devillers, H. Klaudel, and M. Koutny. A petri net

translation of π-calculus terms. In 3rd International Col-

loquium on Theoretical Aspects of Computing’2006, volume

4281 of Lecture Notes in Computer Science, pages 138–152.

Springer Verlag, 2006.
[5] N. Henderson. Formal Modelling and Analysis of an Asyn-

chronous Communication Mechanism. PhD thesis, Univer-

sity of Newcastle upon Tyne, 2004.
[6] C. A. R. Hoare. Communicating Sequential Processes.

Prentice-Hall, 1985.

[7] ISO. VDM-SL. Technical Report Draft International Stan-

dard, ISO/IEC JTC1/SC22/WG19 N-20, 1995.
[8] C. B. Jones. Systematic Software Development using VDM.

Prentice Hall International, second edition, 1990. ISBN 0-

13-880733-7.
[9] M. Koutny and G. Pappalardo. A model of bahaviour ab-

straction for communicating processes. In STACS’99, vol-

ume 1563 of Lecture Notes in Computer Science, pages 313–

322. Springer-Verlag, 1999.
[10] R. Milner. Communication and Concurrency. Prentice Hall,

1989.
[11] R. Milner, J. Parrow, and D. Walker. A calculus of mobile

processes. Information and Computation, 100:1–77, 1992.
[12] D. Sangiorgi and D. Walker. The π-calculus: A Theory of

Mobile Processes. Cambrisge University Press, 2001.
[13] G. Schellhorn, H. Grandy, D. Haneberg, and W. Reif. The

mondex challenge: Machine checked proofs for an electronic

purse. In FM, pages 16–31, 2006.
[14] S. Stepney, D. Cooper, and J. Woodcock. An electronic

purse: Specification, refinement, and proof. Technical mono-

graph PRG-126, Oxford University Computing Laboratory,

July 2000.
[15] B. Victor. A Verification Tool for the Polyadic π-Calculus.

Licentiate thesis, Department of Computer Systems, Uppsala

University, Sweden, May 1994. Available as report DoCS

94/50.
[16] J. Woodcock. Verified software grand challenge. In FM,

pages 617–617, 2006.

8 Appendix: Model

World
def
= Bank |





∏

i∈{1,...,n}

CustNoPi



 |




∏

x∈{1,...,w}

Walletx





Bank
def
= ! (νp)

(

reqp(ci).ci p
)

.Pp

CustNoPi
def
= (νci)reqp ci.ci(p).Custip

Custip
def
=





∑

j∈{1,...,n}

reqj v + reqi(v)



.CustTip

CustTip
def
=





∑

x∈{1,...,w}

insertx p



.
(

okp() + fp() + abp
)

.Custip

Walletx
def
= insertx(p).Walletxp

Walletxp
def
= abp().Walletx + insertx(q).

(

if [[auth(p, q)]] th WalletCxpq el
(

fp |fq).Walletx
)

WalletCxpq
def
=

(

(

abp().fq + abq().fp
)

.Walletx |
(

[[KEY]].if [[BAL]]v th WalletTxpqv el
(

fp |fq).Walletx

))

WalletTxpqv
def
= (νc)

(

p c.c(Sp,Rp).q c.c(Sq,Rq).
(

Sp v.
(

Sp(ACK).Rq v.(okp |okq) + (fp |fq)
)

)

)

.Walletx

Pp
def
= [[Vp]] | [[Lp]] | ! (νsr)

(

p(c).c sr.
(

s(v).[[Vp − v]].(sACK + [[Lp + v]]) + r(v).[[Vp + v]]
)

)

