

COMPUTING
SCIENCE

The role of auxiliary variables in the formal development of concurrent
programs

Cliff B. Jones

TECHNICAL REPORT SERIES

No. CS-TR-1179 November 2009

TECHNICAL REPORT SERIES

No. CS-TR-1179 November, 2009

The role of auxiliary variables in the formal development of
concurrent programs

C.B. Jones

Abstract

So called “auxiliary variables”' are often used in reasoning about concurrent
programs. They can be useful - but they can also be undesirable in that they can
undermine the hard won property of “compositionality”. This paper explores the
issue of auxiliary variables and tries to set concerns about overuse in a wider context;
it concludes with an attempt to recommend constraints on their use.

© 2009 University of Newcastle upon Tyne.
Printed and published by the University of Newcastle upon Tyne,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

JONES, C.B.

The role of auxiliary variables in the formal development of concurrent programs
[By] C.B. Jones

Newcastle upon Tyne: University of Newcastle upon Tyne: Computing Science, 2009.

(University of Newcastle upon Tyne, Computing Science, Technical Report Series, No. CS-TR-1179)

Added entries

UNIVERSITY OF NEWCASTLE UPON TYNE
Computing Science. Technical Report Series. CS-TR-1179

Abstract

So called "auxiliary variables'' are often used in reasoning about concurrent programs.
They can be useful --- but they can also be undesirable in that they can undermine the hard won property of
“compositionality”. This paper explores the issue of auxiliary variables and tries to set concerns about overuse in
a wider context; it concludes with an attempt to recommend constraints on their use.

About the author

Cliff Jones is a Professor of Computing Science at Newcastle University. He is now applying research on formal
methods to wider issues of dependability. Until 2007 his major research involvement was the five university IRC
on "Dependability of Computer-Based Systems" of which he was overall Project Director - he is now PI of the
follow-on Platform Grant "Trustworthy Ambient Systems" (TrAmS) (also EPSRC). He is also PI on an EPSRC-
funded project "Splitting (Software) Atoms Safely" and coordinates the "Methodology" strand of the EU-funded
RODIN project. As well as his academic career, Cliff has spent over twenty years in industry. His fifteen years in
IBM saw among other things the creation -with colleagues in Vienna- of VDM which is one of the better known
"formal methods". Under Tony Hoare, Cliff wrote his doctoral thesis in two years (and enjoyed the family
atmosphere of Wolfson College). From Oxford, he moved directly to a chair at Manchester University where he
built a world-class Formal Methods group which -among other projects - was the academic lead in the largest
Software Engineering project funded by the Alvey programme (IPSE 2.5 created the "mural"(Formal Method)
Support Systems theorem proving assistant). During his time at Manchester, Cliff had a 5-year Senior Fellowship
from the research council and later spent a sabbatical at Cambridge for the whole of the Newton Institute event on
"Semantics" (and appreciated the hospitality of a Visiting Fellowship at Gonville & Caius College. Much of his
research at this time focused on formal (compositional) development methods for concurrent systems. In 1996 he
moved to Harlequin, directing some fifty developers on Information Management projects and finally became
overall Technical Director before leaving to re-join academia in 1999. Cliff is a Fellow of the Royal Academy of
Engineering (FREng), ACM, BCS, and IET. He has been a member of IFIP Working Group 2.3 (Programming
Methodology) since 1973 (and was Chair from 1987-96).

Suggested keywords

CONCURRENCY, RELY/GUARANTEE, FORMAL METHODS

The role of auxiliary variables in the formal development of

concurrent programs

Cliff B. Jones

School of Computing Science, Newcastle University, UK

cliff.jones@ncl.ac.uk

November 22, 2009

Abstract

So called “auxiliary variables” are often used in reasoning about concurrent programs. They can
be useful — but they can also be undesirable in that they can undermine the hard won property of
“compositionality”. This paper explores the issue of auxiliary variables and tries to set concerns about
overuse in a wider context; it concludes with an attempt to recommend constraints on their use.

This is the Technical Report version of a paper which will be printed in a Festschrift for Tony Hoare.

1

November 22, 2009. Version Technical Report 2

1 Introduction

There have been a number of “X considered harmful” papers, the most famous being [Dij68]. The position
taken here is that the use –or rather overuse– of “auxiliary variables” (sometimes referred to as “ghost
variables”) can be harmful in the development of concurrent programs.

The reason that concurrent programs are difficult to think about is the interference that comes from
their environment. Interference is the reason that it is difficult to find compositional ways of formally
developing concurrent programs; rely/guarantee ideas offer a way to achieve a notion of “compositionality”
that enables separate development of programs that run in parallel. In most cases, rely conditions express
assumptions about how variables written in another process (or “thread”) change. Auxiliary variables are
often used in reasoning about concurrent programs; typically each such variable is changed in exactly one
process and only used in assertions of other processes. The alternative phrase “ghost variables” emphasises
the fact that they can subsequently be erased without affecting the behaviour of a program.

There is, however, a danger inherent in the use of ghost or auxiliary variables in reasoning about
concurrency. In the extreme, they can be used to record the entire history of execution of a process; if the
rely conditions of other processes use this history, there is no abstraction of the interference. One could
not, for example, reuse the proof with a slightly different split. More importantly, there is no sense in which
a design decision to split a system into two or more parallel threads would facilitate separate development.

The next two sections include a review of known material. At first sight, this might appear to be a
digression but, on the one hand, it builds up to some key issues about concurrency and, on the other hand,
identifies via a rather different route a basis for believing that abstraction is best served by minimising
auxiliary variables. The discussion of rely/guarantee thinking in Section 2 also serves to make the paper
relatively self-contained. Section 4 discusses the search for a general approach to “atomicity refinement”
and, finally, Section 5.2 sets out my current views on using auxiliary variables.

2 Rely/guarantee “thinking”

2.1 For comparison: the sequential case

Today, it is second nature to talk about specifications in the form of pre and post conditions but this was
not always the case. Tony Hoare’s “axiomatic basis” paper led to what might reasonably be classed a
“paradigm shift” in the way computer scientists think about programs.1 The move from the flowcharts of
Floyd [Flo67] or King [Kin69] to thinking about programs in non-operational terms is clear in [Hoa69] and
crucial for the intellectual shift that has followed.

In fact, the most important point about pre/post conditions was not really explicitly recognised in
Tony’s papers until he presented a development of FIND in [Hoa71] in which he shows how the axiomatic
approach offers a useful notion of separating development choices. Items that are specified (and are to be
implemented by a program) are referred to as “operations” as in VDM (the B method uses the same term,
Event-B uses “events”). Assuming that one has some specified operation S and makes a design decision to
split it into a sequential composition of operations S1 and S2 (thus S = S1;S2) — of course specifying S1
and S2 with pre and post conditions, the key property is that the development of S1 can be independent
of S and S2. Once the proof rule for “semicolon” is discharged, that step of the argument does not need
to be revisited (unless there is some broader change to be made). This property of a development method
is often referred to as “compositionality” and this term is used below. To find compositional development
rules for sequential programs is reasonably straightforward. A top-down documentation of design can
introduce design decisions in many layers but the proofs at each layer are independent of each other and
the development of sibling operations.

Before the discussion moves to concurrent programming, there are several points to be made about the
above approach to sequential programs — the message is that, although facing concurrency magnifies some
problems, their seeds are present even with sequential reasoning.

First, there is the issue of whether one should strive for one, definitive, set of rules. Even within Hoare’s
framework, there are choices about how to present the rules for programming constructs. For example, one
version might include a specific rule to weaken pre and post conditions — alternatively, such weakening
can be built into the rules for each construct by adding implications.

Another issue is that misnamed “partial correctness” (vs. “total correctness”): termination was not
handled in [Hoa69]. Ignoring termination was lampooned by McCarthy’s “millionaire’s algorithm” (to
become a millionaire, walk along the street – pick up every piece of paper on the sidewalk – if it’s a check
–made out to you– for a million dollars then cash it; otherwise, discard the piece of paper and continue).

1My view of the importance of Hoare’s paper led me to take [Hoa69] as the “fulcrum” for [Jon03]; that discussion links the
prior work of Floyd, Naur and van Wijngaarden (and remarks on the lack of what could have been an interesting link back to
Turing’s work).

November 22, 2009. Version Technical Report 3

VDM [Jon90] rules are about “total correctness” — that is, they require termination. They also differ
from some other approaches such as “weakest pre conditions” [Dij76, DS90] in that VDM’s post conditions
are relational (they are predicates of two states: initial and final).2 Relevant to the issue of auxiliary
variables is that relational post conditions have the advantage that they obviate the need to use free
(logical) variables in weakest pre conditions approaches to define constraints on the final state that are
relative to values in the initial state.

The proof rules in [Jon80] were –in Peter Aczel’s polite phrase– “unmemorable”; his unpublished
note [Acz82] gave a presentation of the VDM rules that is close to Hoare’s original rules but deals with
relational post-conditions and termination (these rules are used in [Jon90]):3

while-I
{P ∧ b} S {P ∧W }
{P} while b do S od {P ∧ ¬ b ∧W ∗}

The use of post-conditions (especially when presented as relations) yields a natural way of writing speci-
fications that do not determine a unique outcome, somewhat loosely, these are often referred to as “non-
deterministic specifications”. It has become clear with usage that such specifications are a very good way
of structuring the introduction of decisions during the design process. For example, the properties of a free
storage manager are easily documented before a specific algorithm is designed.

One last, but important, point (that is magnified considerably by concurrency) is “expressive weakness”.
In common with some other approaches, it is a requirement in VDM that the set of states defined by the
pre condition of any operation should be a subset of the domain of the relation characterised by the post
condition of the operation. One might say that if an operation is required to terminate on some state, the
post-condition should constrain the result state. This prompts a satisfaction relation that a valid step of
development can widen the pre condition or restrict the non-determinacy in the post condition (subject
to the aforementioned “satisfiability” condition). In most situations, these guidelines fit and are not even
noticed but there are applications like security where non-determinacy has to play a different role and in
“action systems” semantics are not preserved by widening “guards” — some of the alternatives are explored
in [Bic95].

2.2 Onwards to the concurrent case

It is worth taking a careful look at why it is much harder to achieve compositionality for concurrent, than
sequential, program development. Post conditions are enough to characterise sequential operations because
the latter can be considered to execute atomically. In contrast, if two parallel processes share variables,
each process can have an effect on the other. Such effects (viewed from the recipient) are “interference”.
Once this point is recognised, it becomes obvious that a development method for concurrent programs must
support documentation of –and reasoning about– interference. As with other formalisations of development,
the quest is then for tractability: we know that we need to record more than the input/output relation
for an operation but recording the full history of execution is clearly not going to yield a compositional
development method.

Rely/guarantee “thinking” is about finding this sweet point. A possible way to record a specification
of a shared variable program is to add to:

pre-OPi : Σ → B

post-OPi : Σ× Σ → B

a predicate that records what can happen to the shared state when the environment interferes:

rely-OPi : Σ× Σ → B

and one that records the interference that OPi will inflict on the environment:

guar -OPi : Σ× Σ → B

An execution, in which the environment makes the state transition from σi to σi+1 and the component
makes the transition from σj to σj+1, is pictured in Figure 1.

It was perhaps not fully appreciated at the time of [Hoa69] that the roles of pre and post conditions
differ in that a pre condition gives permission to a developer to ignore certain possibilities; the onus is on
a user to prove that a component will not be initiated in a state that does not satisfy its pre condition. In
contrast a post condition is an obligation on the code that is created according to the specification. This

2Both points were true not only in the early book on program development in VDM [Jon80] but also the earlier IBM re-
ports [Jon72b, Jon72a].

3In the rule, P is a predicate of one state; W a predicate of two that is well founded (thus establishing termination without
the need for a “variant function”); W ∗ is the reflexive and transitive closure of W . See [Jon90] for the honest form of this rule
which has an additional hypothesis on definedness — but this paper is not about partial functions.

November 22, 2009. Version Technical Report 4

pre
︷︸︸︷
σ0 · · ·

rely
︷ ︸︸ ︷
σi σi+1 · · · σj σj+1

︸ ︷︷ ︸

guar

· · · σf

︸ ︷︷ ︸

post

Figure 1: Illustrative execution under interference

Deontic view carries over: just as pre conditions should be viewed as assumptions that the developer can
make about where the finished code will be deployed, rely conditions are assumptions that the developer
can make on the limit of interference that the code will have to endure (i.e. permission to ignore the
possibility of arbitrary interference). Similarly, a guarantee condition is like a post condition in that it is a
commitment on the code finally created from the development process; in the case of a guarantee condition,
the finished code must not generate interference that does not satisfy the specified relation.

Typical clauses that occur in rely and guarantee conditions are:

• some variable x is unchanged4

• a variable changes in some monotonic way — notice that the ordering need not be over numbers, the
example in Section 3.3 uses s ⊆ s ′

• the truth/falsity of some flag implies some condition similar to one of the above

• and, of course, ensuring that such a flag behaves as expected is an example of monotonic change

It is interesting that, even in fairly complicated concurrent programs, most variables are changed in
only one thread even though many processes might access their values. The most common exception to
this observation is in fact flag-like variables.

In [Jon81] and several subsequent papers, rely and guarantee conditions are constrained to be both
transitive and reflexive: this corresponds to the observation that there can be zero or multiple steps of
interference. This is only one of the points on which there is flexibility in choosing specific rules for
reasoning about interference. This flexibility prompts the use of the term “rely/guarantee thinking” to
make clear that we are not limiting the discussion to one specific set of rules.

It is worth looking at a representative rule. If one wishes to decompose the operation S into the parallel
composition of Sl and Sr , it is clear that the interference generated by Sl can affect the outcome of Sr . In
the spirit of presenting Hoare-like rules as {P} S {Q} one can write: {P ,R} S {G,Q}; a sound rule is:

Par -I

{P ,R ∨ Gr} Sl {Gl ,Ql}
{P ,R ∨ Gl} Sr {Gr ,Qr}
Gl ∨ Gr ⇒ G
↼−
P ∧Ql ∧Qr ∧ (R ∨ Gl ∨ Gr)

∗ ⇒ Q

{P ,R} Sl || Sr {G,Q}

There are a number of issues that could be addressed at this point but, for the immediate purpose of
cuing discussion of auxiliary variables, the most pressing of these issues is the “expressive weakness” of
rely/guarantee conditions. Basically, the decision to record potential interference in a single relation makes
it difficult or impossible to state certain behaviours. For example, consider a sequence of instructions that
can be viewed as progressing through two phases: in the first phase, some variable x is monotonically
increased; whereas in the second phase, x is monotonically decreased. The union of the two behaviours
↼−x ≤ x and ↼−x ≥ x tells us nothing other than that x might change! Unfortunately, there are contexts
that require something more useful than this nugatory information. Section 5.2 indicates that this specific
example can often be finessed. Be that as it may, expressive weakness is one of the issues that the
rely/guarantee rules for concurrency magnify (over the sequential case) and the question must be faced
as to whether this forces the use of auxiliary variables. The answer is, however, deferred to Section 5.2
pending explanation of the distaste of such variables.

2.3 Conclusions so far

It is, perhaps, worth first repeating the point that the attempt here is to learn from “rely/guarantee
thinking”: the point has been made that there is considerable freedom in the presentation of such rules — far
more than there is with Hoare logic of sequential programs (but, freedom –Section 2.2 points out– is already
there). There is a significant literature on extensions and variants of rely/guarantee rules (see [Jon09]).

4Rely/guarantee conditions are quite capable of recording “no change” but Section 2.3 discusses how the read/write frames of
VDM simplify such descriptions.

November 22, 2009. Version Technical Report 5

One interesting extension is the use of “dynamic invariants” in [CJ00]. There are also some odd variants
including those that try to get by with predicates of single states for rely and guarantee conditions; [Sti86]5

even restricts post-conditions to being predicates of a single state. In each case, for practical application,
the move away from relations creates the need for extra auxiliary or logical variables.

Turning now to the lessons themselves, they fall under the headings of abstraction, compositionality
and granularity. The abstraction with pre/post might be described as “what – not how” (e.g. it is not only
easier to write and/or read a specification of SORT than an implementation but the latter is also much
harder to use for subsequent reasoning because algorithm equivalence is more difficult than showing an
algorithm satisfies some property). Rely/guarantee thinking retains this viewpoint in as far as it can but
needs to face the extra abstraction of “interference” which it is argued is the essence of concurrency. The
question which has to be addressed below (cf. Section 5) is whether the abstraction using relations is well
chosen.6

The main motivation behind the inception [Jon81] of rely/guarantee conditions was the lack of com-
positionality in [Owi75]. Both multi-level decomposition and even changes of data representation work
compositionally with rely/guarantee conditions. Thus, we have a design method that allows the designer
to make and record design decisions in a stepwise form. As with introducing loops and sequential composi-
tion in sequential program design, definite design decisions to use parallel composition are difficult to undo
in the sense that designers should avoid putting themselves back into the problems of equivalence proofs.

In concurrent program design, the issue of granularity is closely linked to compositionality: a guarantee
condition must be respected at the level of granularity at which the final code executes. This, in fact, works
well but it must be tackled with awareness. Making rash granularity decisions can necessitate locking of
variables and this can destroy the performance advantages of parallel execution. In general, it is far better
to avoid locking. Section 3.2 and the example in Section 3.3 offer interesting insight on the topic of
granularity; further discussion can be found in [CJ07, Col08].

3 Abstract objects

Although this section covers what might be classed as well-known territory, there is in the first sub-section
a useful warning about “clutter” in specifications and an indication of how abstraction can be used to
avoid it. Perhaps most importantly for the analysis of auxiliary variables, a precise test is given for where
complexity is actually “clutter”. Section 3.2 moves on to an important link between data reification and
rely/guarantee thinking.

3.1 Why use a relation if a retrieve function will do?

The story of using abstract data objects to obtain short and perspicuous specifications is traced in [Jon89].
In passing, I might comment that I am proud of having included data abstraction in the early book on
VDM [Jon80] and of promoting it to its rightful place ahead of operation decomposition in the 1986 first
edition of [Jon90]. The essence of the abstraction is to use, in a specification, data types that match the
problem rather than the implementation. Typically, these are finite mathematical objects with pleasing al-
gebras. It is revealing that quite diverse specification languages such as Z [Hay93], VDM and SETL [Ano09]
all build on some form of sets, sequences, maps and records.

The use of the abstraction leaves the two questions of how good it is (as an abstraction) and how to
get from the abstraction to the implementation. It is useful to tackle the second of these issues first for
reasons that become clear below.

Given two descriptions of a collection of operations, one needs to be able to determine if they exhibit
the same “behaviour”. Peter Lucas faced this problem in looking at two operational models of the PL/I
programming language: did they give the same semantics? In [Luc68], he used a “twin machine” proof. In
essence, he defined a large machine with state elements from both descriptions and linked them by what
we might call today a “gluing invariant”; he then proved that the combined machine preserved this data
type invariant. The argument was then that either set of variables could be regarded as “ghost variables”
and be erased without changing the behaviour. It is possible to argue that this was the mother and father
of all auxiliary variable ideas! The contribution of [Jon70]7 was to capitalise on the fact that –in most
cases– one model is more abstract than the other in that it “has less information”. Where this is the case,

5Colin Stirling was interested in meta results more than usability in applications.
6There are those who argue that the root of the problem is, in fact, shared variable concurrency. Another of Tony Hoare’s

major contributions is, of course, the development of CSP [Hoa78, Hoa85]. Although the concept of communicating processes has
yielded considerable insight into the nature of concurrency, it is by no means immune from interference. The interference just
comes from communication. This is manifest in any process algebra in which shared variables can be simulated by a process that
holds their current value.

7Far too much of the Vienna Lab’s work was only published as technical reports.

November 22, 2009. Version Technical Report 6

it is reasonable to take the model with less information as the specification and simplify the reification
proof by recording a function from the (more populous) implementation type back to the abstraction. In
VDM, these were called “retrieve” functions because they extracted the abstraction from the details of
the representation. This homomorphic idea is, of course, the same as in [Mil71]8 and [Hoa72]. The VDM
rules for data reification include an “adequacy” proof obligation that determines whether there is at least
one representation for each abstract state. Failures of adequacy frequently indicate missed invariants. We
have not laboured data type invariants here — although extremely important, they have little to add to
the discussion of “auxiliary variables”. Suffice it to say that an additional heuristic is to prefer –of two
isomorphic models– the one with simpler invariants. Heinrich Hertz wrote:

“Various models of the same objects are possible, and these may differ in various respects.
We should at once denote as inadmissible all models which contradict our laws of thought.
We shall denote as incorrect any permissible models, if their essential relations contradict the
relations of the external things. But two permissible and correct models of the same external
objects may yet differ in respect of appropriateness. Of two models of the same object . . . the
more appropriate is the one which contains the smaller number of superfluous or empty relations;
the simpler of the two.”

The question of how good an abstraction is can now be addressed. It is easy to see that the retrieve
function idea offers a partial ordering on models: model S is at least as abstract as I if there is a retrieve
function from I → S . There are, however, “equivalently abstract” models where there are retrieve functions
in both directions. The question of how to know if one has found one of the “sufficiently abstract” models
is settled in [Jon77] by saying that a specification is “biased” if the equality on the underlying states cannot
be computed in terms of the operations of the type. (Worked examples are provided in [Jon80, Chapter 15]
and [Jon90, Section 9.3]).

One could, in fact, get by with a biased specification by adding “ghost variables” to the implementation
and later erasing them as in Lucas’ twin machine proofs but there is a real sense in which abstraction can
be listed as a virtue — a virtue for which there is a precise test. This situation led to a certain smugness
in the model-oriented camp. One should never be smug! The claim that any biased specification could,
and should, be replaced by one that is appropriately abstract was challenged by Lyn Marshall who was
writing a large VDM specification (of the then standard of the “Graphics Kernel System”). Lyn claimed
that bias was required in her specification. After much discussion, she was proved right. The problem
boils down to there being non-determinacy in the specification that, once a designer makes design choices,
obviates the need for some state values. Together with Tobias Nipkow we boiled this down to a tiny
example that illustrated the point beautifully. In parallel (and partially in cooperation) with researchers
from Oxford, Tobias came up with a data refinement rule that he proved to be complete in a useful sense
(see [Nip86, Nip87, HHH+87]). This rule uses a relation and thus evokes shades of the twin machine idea.
More details of this story are given in [Jon89] (and both rules are described in (even the first edition
of) [Jon90]); what matters for the discussion of auxiliary variables in concurrency are the points:

• the essence of design is that it introduces “bias” (cf. decisions made in decomposition of operations)

• but for specifications, prefer the simpler model

• abstraction should be used to avoid bias because equivalence is harder than reification

• there is a test for “goodness”

• where there is a specific technical problem, it might be possible to devise a new proof method

3.2 Linking rely/guarantee with reification

There is a very interesting connection between rely/guarantee development and data reification. Surpris-
ingly, this was not made explicit in any of the early rely/guarantee proofs. In fact, as far as I’m aware, the
first written reference is in [Jon07]. The observation is that often obligations from guarantee conditions
can only be realised without excessive locking by choosing a clever data representation. So, just like the
comment on non-determinacy being a good abstraction of design choices, guarantee conditions are a way
of postponing a design decision. Of course, postponement can be perilous if the designer has no idea how
to solve the problem.

A very simple example can be made of the FINDP problem for Sue Owicki’s thesis [Owi75]. The
top level specification states that the task is to find the minimum value of an array index such that the
indexed element satisfies some predicate.9 A sequential algorithm simply searches the array indices from

8The community was denied a journal version of this paper because it was rejected by JACM.
9In the case that there is no such value, the program can either return an indicator or add a sentinel that does have the

property.

November 22, 2009. Version Technical Report 7

the minimum index upwards. The interest is how to use concurrency — an “n-fold” split of the indices is no
more technically difficult, but the description is shorter if two processes are considered. Suppose one process
searches the odd –and the other the even– indices. If these two processes do not communicate, it is easy
to see that there is a trap where the parallel algorithm could be slower than the sequential alternative. To
avoid this, either process should terminate if its sibling process has detected an array element with a lower
index that has the required condition. An obvious abstraction is to have the two processes share a variable,
say t , in which they record any index for which it is detected that the array element at that index satisfies
the given predicate. At this level of abstraction, both processes need a sub-operation whose specification
involves setting t to the minimum of the current value of t and some variable local to that process. Mental
warning lights (should) flash when writing down a rely condition that specifies that neither process can
live with the other lying (in the sense that they temporarily reduce t then increase it again): the process
on which this dishonesty is inflicted might have terminated prematurely. At this level of abstraction, it is
not difficult to describe the honesty requirement in a rely condition.

One possible implementation strategy is for both processes to lock t when they need to access it but
this could also make a concurrent implementation slower than the simpler sequential approach. In this
example, it is not difficult to spot that equipping each process with a local variable means that t can be
reified to the minimum of these values. The troublesome guarantee condition of monotonic reduction is
now trivial because each local variable is read but not written by the partner process.

The same story of the interplay of reification with satisfying guarantee conditions can be seen with the
SIEVE example of Section 3.3 — but here it is more interesting:

• each of n processes removes elements from a set s

• assuming the designer does not want to lock s (it’s big!)

• the designer must find a representation that helps realise rely/guarantee conditions s ⊆ ↼−s
• the (less obvious) representation of s as a bit vector meets the need.

This example is spelled out in the next section.
Yet more interesting is the example discussed below in Section 5.1. Simpson’s so-called “four-slot”

implementation of Asynchronous Communication Methods (ACMs) is an intriguing and very clever piece of
programming whose correctness is far from easy to prove. Even more challenging is the task of presenting
the development and its formalisation in a way that conveys Simpson’s contribution. The claim made
in [JP08] is that this is achieved by the use of data reification combined with rely and guarantee conditions.
Before more detail is given, Section 4 adds one more idea to our armoury.

The above three examples are identified in [Jon07] and are expanded on in [Pie09].

3.3 An example

The example in this section is a parallel version of the “Sieve of Eratosthenes” which finds all prime
numbers –up to some required n– by removing composite numbers. The first reference that I am aware of
to a concurrent version is [Hoa75].

We can use an abstract object containing a set of numbers to make the overall problem clear:10

post-PRIMES(↼−s , s) △ s = {1 ≤ i ≤ n | is-prime(i)}
It is equally straightforward to make (and record) the decision to split SIEVE into two sequentially de-
composed sub-operations: one for initialisation of s to contain all natural numbers up to the required
limit(n); the other operation removes all composites from s. One might think that the specification of the
sub operations INIT and SIEVE is best written as follows:

(INIT ;SIEVE) satisfies PRIMES

post-INIT (↼−s , s) △ s = {1, . . . , n}

pre-SIEVE(s) △ s = {1, . . . , n}
post-SIEVE(↼−s , s) △ post-Primes(↼−s , s)

But this would be a mistake — in two ways SIEVE is being too tightly specified to fit its context. A better
split is to recognise that sieving can be performed on any set and that the removal need not necessarily
end up with all primes (consider the case where the starting state for SIEVE is the empty set) — so:

pre-SIEVE △ true

post-SIEVE(↼−s , s) △ s = ↼−s −
⋃
{mults(i) | 2 ≤ i ≤ ⌊√n⌋}

10VDM notation [Jon90] is used; the only item that might be unfamiliar is the use of ↼−s for the initial (and undecorated s

for the final) state in relational post conditions. Furthermore, the predicate is-prime should be obvious and the function mults

delivers the set of multiples (by 2 and above) of its argument.

November 22, 2009. Version Technical Report 8

creates a much cleaner separation of SIEVE from its context. Here, in the sequential case, the earlier
definition might not be disastrous but in more complex cases it could be; moreover, the issue of separation
is certainly one that is magnified by the move to concurrency.

As pointed out in Section 2, the step of introducing sequential constructs as in PRIMES = (INIT ;SIEVE)
marks a clear design decision. If a sequential implementation is sought, it is now straightforward to make
–and justify– further design decisions for SIEVE to use nested loops as in:

for i ← · · ·
post-BODY : s = ↼−s −mults(i)
for j ← · · ·

s ← s −mults(i ∗ j)

The fact that repeated execution of the removal of composites (i ∗ j) eventually ensures the post condition

s = ↼−s − mults(i) relies on there being no interference and this is a reasonable assumption in sequential
programs.

The real interest here is to use the design of a concurrent SIEVE to illustrate points about the trade-off
between the various predicates in a rely/guarantee specification. So, implementing SIEVE as:

||
i
REM (i)

One might first try copying the idea from post-BODY above and write:

post-REM (↼−s , s) △ s = ↼−s −mults(i)

but this exact definition of the elements to be removed cannot be achieved in the situation where it is the
intention that sibling processes are removing elements of s. This points to the idea of specifying in the
post condition only that certain elements must be absent after REM (i) has executed:

post-REM (↼−s , s) △ s ∩mults(i) = { }
A moment’s thought however indicates that even the lower bound on removal of elements can be achieved
in the presence of arbitrary interference — the reliance on the fact that no sibling will re-insert deleted
elements can be easily recorded in

rely-REM (↼−s , s) △ s ⊆ ↼−s
An attempt to use (an n-ary form of) the Par -I proof rule of Section 2.2 shows that too much was given
away in the above relaxation to the post condition of REM : this lower bound on removal could in fact
be achieved by setting s to the empty set which will clearly not lead to satisfying the specification of the
overall SIEVE process. So the guarantee condition can be used to outlaw such over zealousness

guar -REM (↼−s , s) △ (↼−s − s) ⊆ mults(i) ∧ · · ·
This pattern of shifting conditions that might fit the post condition of a sequential process back into

the guarantee conditions of concurrent specifications is both common and useful.
Finally, since the sibling processes of REM (i) are actually twins, the guarantee condition is completed

by conjoining a copy of the rely condition (cf. Par -I) giving the overall specification of each REM (i) to be

REM (i)
pre true

rely s ⊆ ↼−s
guar (↼−s − s) ⊆ mults(i) ∧ s ⊆ ↼−s
post s ∩mults(i) = { }

Thus far, the example has been used to illustrate both the fact that –even in sequential programs– care
in divorcing a sub-operation from its context produces a more useful specification; and furthermore the
sometimes delicate trade-off between the predicates used in the description of a concurrent program (not
surprisingly, this balance is more interesting in complex examples — see [CJ00]).

The largest lesson from this example is however to illustrate the point made in Section 3.2. To set the
scene, Hoare writes in his discussion of the problem in [Hoa75]:

Of course, when a variable is a large data structure, as in the example given above, the apparently
atomic operations upon it may in practice require many actual atomic machine operations. In
this case an implementation must ensure that these operations are not interleaved with some
other operation on that same variable”

As Hoare goes on to mention, placing all updates to s in critical regions is certainly one way of ensuring
that the guarantee condition is met but it is an implementation that is unlikely to give high performance.

An alternative is to choose a data representation in which such updates can be made safely without
locking. As hinted in Section 3.2, this can be achieved by representing the set as a vector of n bits.

November 22, 2009. Version Technical Report 9

To emphasise how subtle the issue of granularity can be, it is worth mentioning that there could still be
a dependency on the machine architecture if the implementer packs bits in such a way that it is impossible
to set one bit atomically.

4 Abstraction using a “fiction of atomicity”

Just as post conditions abstract from “how” to achieve an objective, and abstract data objects offer a way
to abstract from details of machine representations honed for efficiency, a “fiction of atomicity” can be a
powerful abstraction that achieves far more perspicuous descriptions than is possible when considering the
actual interleaving of steps in an algorithm. Far from being a completely new idea, this very convenient
fiction is well known in computing. In particular, it is key to the whole idea of database transactions: a
user of a DBMS can picture transactions as “atomic” and it is the responsibility of the system both to
overlap transactions and to disguise that fact that it has done so. (Furthermore, it has to do so in the
presence of failures in hardware.)

Although by no means the first attempt, what is perhaps unusual is the extent to which [Jon07] attempts
to elevate the atomicity abstraction –and approaches around splitting– to tools to be used alongside,
and in concert with, the other development approaches of Sections 2 and 3. It is indicated below that
compositionality can be achieved by deploying rely/guarantee conditions.

Some of the ideas here were enhanced by two Schloß Dagstuhl workshops11 on the topic of atomicity. The
objective was to bring together researchers from different fields that use atomicity in one form or another.
In particular [JLRW05] draws up a “manifesto” that compares and contrasts views and approaches from
database, hardware, fault-tolerance and formalism research.

The genesis of my own research on splitting atoms was an acceptance that rely/guarantee reasoning was
bound to be heavier than proofs in terms of pre and post conditions. More generally, it is inevitable that
development of algorithms that interfere will be more difficult than those that (appear to) run in isolation.
The higher level advice must be to use concurrency only where it is really required either by the problem
itself or to make really telling performance gains.

The acceptance that one needed to be able to limit the areas of reasoning using rely/guarantee conditions
came when trying to write a joint paper with Ketil Stølen after he submitted his PhD thesis [Stø90]. Our
paper was never completed — but we learned a lot. In fact, it was the start of my search for ways of
limiting interference.12 In particular, the power of object oriented (OO) programming languages to control
interference appeared promising: Pierre America’s POOL language [Ame89] proved to be a good basis for
further investigation.

The avenue I followed in the πoβλ research was to offer “equivalence rules” that facilitated trans-
forming OO programs with large (atomic) steps into equivalent programs where many objects were active
concurrently. The argument was that, if there were many processors to run threads for different objects,
performance would improve. The notion of “equivalence” was, of course, crucial: the πoβλ language was
designed to be expressively weak so that its observations were a sensible approximation to what a user
might want. The work on proving these equivalences correct showed that being precise about acceptable
observations was crucial. This research (and pointers to more detailed papers — especially on the semantics
to justify the equivalences) is summarised in [Jon96].

The general proposal in [Jon07] is to use the “fiction of atomicity” as an abstraction with the corre-
sponding development method called “splitting (software) atoms safely” (or “atomicity refinement”). In
the πoβλ proposal, the fission was supported by equivalence rules. More generally, if one starts with an
abstraction of atomicity, it is essential to have a notion of observation power to determine whether decom-
posed (and overlapping) sub-operations offer the expected behaviour to an observer. After all, to an all
powerful observer, the behaviour is manifestly different.

Recall also the emphasis in earlier sections on compositionality: there will be cases where splitting can
occur at more than one stage of design. If we look for cases where separation is not the answer, it will
clearly be necessary to have a handle on any potential interference that can occur with the decomposed
sub-operations.

The foregoing observations all point to reasons to investigate how useful rely and/or guarantee conditions
can be in atomicity refinement. The general argument looks quite strong: guarantee conditions state what
the outside world can rely on — any decomposition must preserve this but is at liberty to decompose
operations on any variables not so constrained. To give a trivial example, an operation whose post condition
requires the value of a variable x to be increased by, say, 10 can be decomposed into any number of
assignments whose accumulated effect is that increment if there are no guarantee conditions on x ; if there

11Some papers from the 2004 workshop appear in Journal of Universal Computing Science, Vol. 11, No.5; similarly (and in the
same journal), Vol. 13, No. 8 for the 2006 workshop.

12My valued friends working on Separation Logic [Rey00, IO01] for concurrency [Rey02, O’H07, Bro07, OYR09, PB05] should
remember that this was back in the early 1990s.

November 22, 2009. Version Technical Report 10

is a guarantee condition that x increases monotonically some decompositions such as x ← x −2; x ← x +12
are ruled out.

The far more complex example in Section 5.1 offers more evidence for the usefulness of rely and guarantee
conditions in atomicity refinement. It is perhaps worth contrasting this approach to the interesting “event
refinement” in [Abr10]. The need to introduce the concept of some events “refining skip” is a consequence
of not having rely conditions.

5 Limiting the use of auxiliary variables

The essence of the argument here is that abstraction is a better tool than auxiliary variables. The example
in Section 5.1 not only illustrates the techniques outlined above; the frank account of two attempts to
present an informative development underlies the conclusions in Section 5.2.

5.1 Development of ACMs

This section indicates how the ideas in Sections 2–4 are used in concert to provide a rational reconstruction
of a very intricate algorithm. A development of Simpson’s “four-slot” implementation of “Asynchronous
Communication Mechanisms” (ACMs) is given in [JP08]; the fact that the authors discovered flaws in the
original development and the investigation of whether auxiliary variables are needed to complete the proof
is of relevance to the key message of the current paper.

The objective in writing yet another paper on Simpson’s algorithm was precisely to provide insight
as to what is going on in its design. The extremely tight code is difficult to prove correct, but somehow
treatments like [Sim97, Hen04] (and even the more recent [AC08, BA08]) fail to utilise fully abstraction in
their proofs.

ACMs are used to communicate values between two processes which are asynchronous in the sense that
it is not allowed for either to hold up the other. Thus, in the ACM world, locking a shared variable is
certainly not an option. A little thought shows that it is possible for the Read process to see the same
value more than once and for the reader to miss values that are written. There is a requirement that the
reader gets the freshest reasonable value and most importantly that the reader never sees a value older
than one already read.

The first challenge is to provide a specification to act as a reference point that is clear enough that
a user can have confidence that he/she understands the properties. We based the specification in [JP08]
around an abstraction (Σa) of a sequence of all Values written. This is clearly redundant but precisely in
the way discussed in Section 3.1: the redundancy admits non-determinacy and the state can be specialised
once the choices are narrowed.

More controversially, the specifications of Read and Write in [JP08] are each split into two phases. In the
terms of the current paper, this is a design commitment: it would be messy to justify further development
that was not a specialisation of these phases. In fact, the split start-Write, commit-Write, start-Read and
end-Read not only holds good for the development, it also makes the behaviour of reader/writer values
easy to comprehend. Furthermore, this “phasing” makes it possible to record simpler rely and guarantee
conditions than would work with the unsplit operations. Another key aid to clear rely and guarantee
conditions is the use of VDM’s read/write frames.

The first step of development in [JP08] shows that it is not necessary for the state to hold the whole
history of values input. This is a classic example of using Nipkow’s rule [Nip87] to show that an otherwise
“inadequate” representation gives acceptable behaviour. The states Σi are mappings from some arbitrary
index set X to the Values to be transmitted. In fact, if X is the natural numbers, this model could be
identical to Σa but the intermediate step establishes properties required of the set X . It is clear from the
formal descriptions that the cardinality of X must be at least three. The key to Simpson’s choice of four
slots is actually about communication between the Read and Write threads: the only atomicity assumption
is on the setting and reading of single control bits.

At the Σi stage of development, there are still unacceptable atomicity assumptions on updates to the
state. The step to Simpson’s actual design (Σr) uses the fact that four variables (with clever control
flags) suffice. The final essence of Simpson’s inspiration is presented (cf. Section 3.2 above) as choosing
a representation that makes the guarantee conditions realisable. The residual atomicity assumptions are
limited to the ability to update single bit flags without corruption.

Unfortunately, when filling in more detailed proofs to write a journal version of [JP08], we detected flaws
in two of the proofs. Initially, I could only see how to fix these by adding deprecated auxiliary variables
and this led me on this odyssey to understand how to constrain their use. The revised development has
been submitted to a journal and a version (pre refereeing) is available at [JP09].

One flaw in the development in [JP08] was a post condition which stated that a local variable could
acquire either the initial or final value of a variable changed by the other thread. In fact, because the

November 22, 2009. Version Technical Report 11

relative progress of the threads is not synchronised, the other thread could potentially change this value
many times. A short term fix is to use an auxiliary variable to record all possible values. This is the
resolution presented in [Pie09]. The solution in [JP09] is more radical: a new specification concept of the
set of possible values of a variable is introduced. Thus, in a post condition, v̂ar is a set of all values that
this variable has during the execution of the specified operation. This concept not only avoids the need to
introduce an auxiliary variable in this case, it also provides a specification concept that is of use in other
circumstances.

The other place where [Pie09] and [JP09] differ is the way they handle the crucial avoidance of a clash
of the Read and Write processes on a single position in the four slots. This also points to a surprising
conclusion about the respective strengths of the rely/guarantee approach and separation logic.

The classical idea of mutual exclusion is one of the core concepts in concurrency. Interestingly, Simpson’s
algorithm does not fit the classic pattern. One reason for this is that mutual exclusion leads to blocking
which is inimical with the requirements of ACMs. There is however an issue that might be called “mutual
data exclusion”: the Read and Write processes must not interfere on the same cell. In [Pie09], this is proved
by adding auxiliary variables at the Σr level; the approach in [JP09] establishes the relevant conditions at
the more abstract level (Σi). This is a useful illustration of the proposal to use abstraction in preference
to auxiliary variables.

The deeper aspects of this are even more interesting. John Reynolds pointed out verbally at MFPS in
2005: “separation logic lets one reason about avoiding races; rely/guarantee conditions support reasoning
about racy programs”. Like so much that Reynolds says, this shows great insight but the example in
hand points to a further observation. Simpson’s final code does not “race”; in fact, the whole point is
to avoid conflicting reads/writes. The use of rely/guarantee conditions makes it possible to present a key
abstraction in which there appear to be races.

5.2 Auxiliary variables: a position

The expressive weakness of rely/guarantee conditions is conceded in Section 2 but it is also made clear in
discussing pre/post condition specifications that there is always a trade-off between being able to express
everything and having a tractable method that makes good engineering sense: abstraction must have a
part. In particular, compositionality dictates that detail must be postponed by abstraction.

Coming back to auxiliary variables, it is worth looking in more detail at what we have learnt. It should
be clear from Sections 2 and 3 that it is easier to show that a reification step fills in detail than to prove
that two detailed algorithms are equivalent. Specifically, with respect to abstract data types, one feels on
solid ground if there is a precise test for unnecessary detail.

Before going further, it is worth pinning down the origin of the expressive weakness: is it a facet of
rely/guarantee conditions? I concede that I assumed this to be the case for some time. In fact, this is
incorrect! If one considers Owicki’s “Einmischungsfrei” proof obligation [Owi75], it requires that no step
of sr can interfere with the proof of a step between any two statements of sl . In fact, the issue is already
there in the earlier approach proposed in [AM71]. Even though neither of these methods is compositional
in the sense set out in Section 2, they have no way of describing different behaviour during the progress of
a sibling process.13

So, given the widespread expressive weakness, is it acceptable to plug it with auxiliary variables and
can we put precise limits on their use? Two further data points are given before I, tentatively, give positive
answers to both questions.

The apparent weakness of rely conditions has an interesting role in the soundness proof for rely/guarantee
rules given in [CJ07]. Essentially, the fact that a rely condition must be broad enough to capture any inter-
ference means that it can be used in the induction proof of a parallel construct even though interference can
come either from a sibling process or from any contextual process. (The language in [CJ07], unlike that in
the Isabelle-checked proofs of [Pre01], permits nested parallelism; our paper and [Col08] also accommodate
fine grained interleaving of expression evaluation.)

What is the evidence that one can not avoid auxiliary variables? It is plausible that a process will go
through phases in which different conditions are guaranteed. For example, one process might, under the
control of a flag p, guarantee

p ⇒ ↼−x ≤ x

¬ p ⇒ ↼−x ≥ x

Although this might be viewed as internal information of the process, if the joint behaviour depends on
it, the rely condition must record it. Actually, so far, there is no problem in its recordability. In fact, it is

13This is the source of the difficulty in [Owi75] in proving that two parallel instances of < x ← x + 1 > achieve the obvious
result.

November 22, 2009. Version Technical Report 12

reasonable to see it as an extension of the “phasing” idea of Section 5.1. The problem comes where there
is no convenient variable p to demarcate the phases.

The position taken here is that, in such circumstances, it is reasonable to add an auxiliary variable
in place of the missing p. This introduces no more dependence on the other process, no more loss of
compositionality, than if the variable were actually present in the first place. Clearly, parallelism that
does not depend on distinct phasing in its sibling processes is more robust but, in examples like that in
Section 5.1, the mutual dependencies are very intimate.

In spite of conceding this use of auxiliary variables, in all cases, I would prefer a better abstraction to the
use of such coding tricks. The key reason for this preference is that it is difficult to retain compositionality
without severe constraints on the use of ghost variables.

There is one remaining question –prompted by the history above of reification of data types– and that
is whether the whole issue of auxiliary variables points to new proof rules and/or languages. I venture to
suggest that process algebras will not resolve the issue. Nor do I expect anything like our current temporal
logics to be the source of a solution; but Amir Pnueli14 who heard the talk from which this paper is derived
did make the point that past-time temporal logic could cover some cases.

Acknowledgements

I have had the pleasure of knowing Tony Hoare since the 1960s and my DPhil research was done under
his supervision in 1979–81. The process of editing “Essays” [HJ89] enhanced our collaboration after I left
Oxford. As was said (repeatedly) at the Cambridge meeting in April, 2009 Tony has inspired and supported
many of us over decades.

This paper was not actually presented at the Cambridge meeting to mark Tony’s birthday because Bill
Roscoe and I had held ours as “makeweights” in case any speakers could not get there. The material was
actually presented at the PSY workshop at CAV Grenoble (June 2009).

I am grateful for comments on drafts of this paper from Joey Coleman, Linas Laibinis, Thai Son Hoang
and Bill Roscoe; and to my ever-patient proof reader Ms. Allison. This is also a nice opportunity to give
belated thanks to Schloß Dagstuhl for (among other pleasurable visits) the two on “Atomicty”. The staff
in Dagstuhl, the environment and the stimulating participants always make trips there rewarding and
refreshing.

My research is currently funded by the EU “Deploy” project, the (UK) EPSRC “TrAmS” platform
grant and the ARC project (that brings together Ian Hayes, Keith Clark, Alan Burns and myself) “Time
Bands for Teleo-Reactive Programs”.

14Amir was of course co-author of the first paper to apply rely/guarantee thinking to temporal logic [BKP84].

November 22, 2009. Version Technical Report 13

References

[Abr10] J.-R. Abrial. The Event-B Book. Cambridge University Press, 2010.

[AC08] Jean-Raymond Abrial and Dominique Cansell. Development of a concurrent program, 2008.
private communication.

[Acz82] P. Aczel. A note on program verification. (private communication) Manuscript, Manchester,
January 1982.

[AM71] E. A. Ashcroft and Z. Manna. Formalization of properties of parallel programs. In B. Meltzer
and D. Michie, editors, Machine Intelligence, 6, pages 17–41. Edinburgh University Press, 1971.

[Ame89] Pierre America. Issues in the design of a parallel object-oriented language. Formal Aspects of
Computing, 1(4), 1989.

[Ano09] Anon. SETL: main page, Oct 2009. www.setl-lang.org.

[BA08] Richard Bornat and Hasan Amjad. Inter-process buffers in separation logic with rely-guarantee,
2008. (private communication) Submitted to Formal Aspects of Computing.

[Bic95] Juan Bicarregui. Intra-Modular Structuring in Model-Oriented Specification: Expressing Non-
Interference with Read/Write Frames. PhD thesis, Manchester University, 1995.

[BKP84] H. Barringer, R. Kuiper, and A. Pnueli. Now you can compose temporal logic specification. In
Proceedings of 16th ACM STOC, Washington, May 1984.

[Bro07] S. D. Brookes. A semantics of concurrent separation logic. Theoretical Computer Science
(Reynolds Festschrift), 375(1-3):227–270, 2007. (Preliminary version appeared in CONCUR’04,
LNCS 3170, pp16-34).

[CJ00] Pierre Collette and Cliff B. Jones. Enhancing the tractability of rely/guarantee specifications in
the development of interfering operations. In Gordon Plotkin, Colin Stirling, and Mads Tofte,
editors, Proof, Language and Interaction, chapter 10, pages 277–307. MIT Press, 2000.

[CJ07] J. W. Coleman and C. B. Jones. A structural proof of the soundness of rely/guarantee rules.
Journal of Logic and Computation, 17(4):807–841, 2007.

[Col08] Joseph William Coleman. Constructing a Tractable Reasoning Framework upon a Fine-Grained
Structural Operational Semantics. PhD thesis, Newcastle University, January 2008.

[Dij68] E. W. Dijkstra. Go to statement considered harmful. Communications of the ACM, 11(3):147–
148, 1968.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[DS90] Edsger W Dijkstra and Carel S Scholten. Predicate Calculus and Program Semantics. Springer-
Verlag, 1990. ISBN 0-387-96957-8, 3-540-96957-8.

[Flo67] R. W. Floyd. Assigning meanings to programs. In Proc. Symp. in Applied Mathematics, Vol.19:
Mathematical Aspects of Computer Science, pages 19–32. American Mathematical Society, 1967.

[Hay93] Ian Hayes, editor. Specification Case Studies. Prentice Hall International, second edition, 1993.

[Hen04] Neil Henderson. Formal Modelling and Analysis of an Asynchronous Communication Mecha-
nism. PhD thesis, University of Newcastle upon Tyne, 2004.

[HHH+87] C. A. R. Hoare, I. J. Hayes, J. He, C. Morgan, A. W. Roscoe, J. W. Sanders, I. H. Sørensen,
J. M. Spivey, and B. A. Sufrin. The laws of programming. Communications of the ACM,
30:672–687, 1987. see Corrigenda in ibid 30:770.

[HJ89] C. A. R. Hoare and C. B. Jones. Essays in Computing Science. Prentice Hall International,
1989.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–580, 583, October 1969.

[Hoa71] C. A. R. Hoare. Proof of a program: FIND. Communications of the ACM, 14:39–45, January
1971.

[Hoa72] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271–281,
1972.

[Hoa75] C.A.R. Hoare. Parallel programming: An axiomatic approach. Computer Languages, 1(2):151–
160, June 1975.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21:666–677,
August 1978.

November 22, 2009. Version Technical Report 14

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[IO01] S. Isthiaq and P. W. O’Hearn. BI as an assertion language for mutable data structures. In 28th
POPL, pages 36–49, 2001.

[JLRW05] C. B. Jones, D. Lomet, A. Romanovsky, and G. Weikum. The atomic manifesto. Journal of
Universal Computer Science, 11(5):636–650, 2005.

[Jon70] C. B. Jones. A technique for showing that two functions preserve a relation between their
domains. Technical Report LR 25.3.067, IBM Laboratory, Vienna, April 1970.

[Jon72a] C. B. Jones. Formal development of correct algorithms: an example based on Earley’s recogniser.
In SIGPLAN Notices, Volume 7 Number 1, pages 150–169. ACM, January 1972.

[Jon72b] C. B. Jones. Operations and formal development. Technical Report TN 9004, IBM Laboratory,
Hursley, September 1972.

[Jon77] C. B. Jones. Implementation bias in constructive specification of abstract objects. typescript,
September 1977.

[Jon80] C. B. Jones. Software Development: A Rigorous Approach. Prentice Hall International, 1980.

[Jon81] C. B. Jones. Development Methods for Computer Programs including a Notion of Interference.
PhD thesis, Oxford University, June 1981. Printed as: Programming Research Group, Technical
Monograph 25.

[Jon89] C. B. Jones. Computer-aided formal reasoning for software design, March 1989. talk at: TAP-
SOFT’89, Barcelona.

[Jon90] C. B. Jones. Systematic Software Development using VDM. Prentice Hall International, second
edition, 1990.

[Jon96] C. B. Jones. Accommodating interference in the formal design of concurrent object-based
programs. Formal Methods in System Design, 8(2):105–122, March 1996.

[Jon03] Cliff B. Jones. The early search for tractable ways of reasonning about programs. IEEE, Annals
of the History of Computing, 25(2):26–49, 2003.

[Jon07] C. B. Jones. Splitting atoms safely. Theoretical Computer Science, 357:109–119, 2007.

[Jon09] Cliff B. Jones. Annotated bibliography on rely/guarantee conditions, Oct 2009.
http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/rg-hist.pdf.

[JP08] Cliff B. Jones and Ken G. Pierce. Splitting atoms with rely/guarantee conditions coupled with
data reification. In ABZ2008, volume LNCS 5238, pages 360–377, 2008.

[JP09] Cliff B. Jones and Ken G. Pierce. Elucidating concurrent algorithms via layers of abstraction and
reification. Technical Report CS-TR-1166, School of Computing Science, Newcastle University,
2009.

[Kin69] J. C. King. A Program Verifier. PhD thesis, Department of Computer Science, Carnegie-Mellon
University, 1969.

[Luc68] P. Lucas. Two constructive realizations of the block concept and their equivalence. Technical
Report TR 25.085, IBM Laboratory Vienna, June 1968.

[Mil71] R. Milner. An algebraic definition of simulation between programs. Technical Report CS-205,
Computer Science Dept, Stanford University, February 1971.

[Nip86] T. Nipkow. Non-deterministic data types: Models and implementations. Acta Informatica,
22:629–661, 1986.

[Nip87] T. Nipkow. Behavioural Implementation Concepts for Nondeterministic Data Types. PhD thesis,
University of Manchester, May 1987.

[O’H07] P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer Science
(Reynolds Festschrift), 375(1-3):271–307, May 2007. Preliminary version appeared in CON-
CUR’04, LNCS 3170, 49–67.

[Owi75] S. Owicki. Axiomatic Proof Techniques for Parallel Programs. PhD thesis, Department of
Computer Science, Cornell University, 1975.

[OYR09] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. ACM
TOPLAS, 31(3), April 2009. Preliminary version appeared in 31st POPL, pp268-280, 2004.

[PB05] Matthew Parkinson and Gavin Bierman. Separation logic and abstraction. In POPL ’05:
Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 247–258, New York, NY, USA, 2005. ACM.

November 22, 2009. Version Technical Report 15

[Pie09] Ken Pierce. Enhancing the Useability of Rely-Guaranteee Conditions for Atomicity Refinement.
PhD thesis, University of Newcastle upon Tyne, submitted 2009.

[Pre01] Leonor Prensa Nieto. Verification of Parallel Programs with the Owicki-Gries and Rely-
Guarantee Methods in Isabelle/HOL. PhD thesis, Institut für Informatic der Technischen Uni-
versitaet München, 2001.

[Rey00] J. C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In Jim Davies,
Bill Roscoe, and Jim Woodcock, editors, Millennial Perspectives in Computer Science, pages
303–321, Houndsmill, Hampshire, 2000. Palgrave.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings
of 17th LICS, pages 55–74. IEEE, 2002.

[Sim97] H. R. Simpson. New algorithms for asynchronous communication. IEE, Proceedings of Computer
Digital Technology, 144(4):227–231, 1997.

[Sti86] C. Stirling. A compositional reformulation of Owicki-Gries’ partial correctness logic for a con-
current while language. In ICALP’86. Springer-Verlag, 1986. LNCS 226.

[Stø90] K. Stølen. Development of Parallel Programs on Shared Data-Structures. PhD thesis, Manch-
ester University, 1990. Available as UMCS-91-1-1.

