

COMPUTING
SCIENCE

A Dynamic Coalitions Workbench: Final Report

J. W. Bryans, J. S. Fitzgerald, D. Greathead, C. B. Jones, R. J. Payne.

TECHNICAL REPORT SERIES

No. CS-TR-1091 April, 2008

TECHNICAL REPORT SERIES

No. CS-TR-1091 April, 2008

A Dynamic Coalitions Workbench: Final Report

Jeremy W. Bryans, John S. Fitzgerald, David Greathead, Cliff B. Jones, Richard J.
Payne

Abstract

This report describes a proof-of-concept study demonstrating the analysis of dynamic
coalition policies and structures by means of a tool based on a formal abstract model.
The study suggests that such models may be valuable tools in designing for dynamic,
adaptive behaviour in coalitions.

Previous research has used formal modelling as a way of gaining insight into the
range of types or patterns of dynamic coalition that may arise. Experience also
suggests that human and organizational aspects are at least as important as technical
approaches to the dependable operation of coalitions. The goal for this project was to
investigate the application of formal modelling techniques, with tool support, to help
explore the consequences of alternative designs for coalition structures and policies.
The exploration was centered on the role of the human in a coalition, in terms of their
understanding of information flows.

A ``Dynamic Coalitions Workbench'' has been developed to allow the animation of a
specific coalition model. Users, who may be domain experts, interact with the model
by invoking membership and information exchange functions in response to prompts
driven by a scenario. Interaction is via a simple graphical interface so that users
require no familiarity with the technicalities of the underlying formal modelling
language.

A specific scenario, based on crisis management in a military context, has been
developed in collaboration with Dstl to exercise the workbench. A variety of users,
including one designated expert with relevant experience, were observed using the
workbench and debriefed following each execution of the scenario. The users'
observed behaviours and their comments have been recorded.

The project outcomes suggest that formal models have potential as tools in
developing our knowledge of the behaviours of dynamic coalitions, and in designing

policies for specific coalition contexts. Next generation analysis tools, including
proof and model checking, have the potential to provide higher assurance that key
system-level properties are preserved in models during coalition evolution. The
exploration of models by animation provides a basis for studying the behaviour and
role of the individual in managing information in a complex dynamic environment.

© 2008 University of Newcastle upon Tyne.
Printed and published by the University of Newcastle upon Tyne,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

BRYANS, J. W., FITZGERALD, J. S., GREATHEAD, D., JONES, C. B., PAYNE, R. J.

A Dynamic Coalitions Workbench: Final Report
[By] J. W. Bryans, J. S. Fitzgerald, D. Greathead, C. B. Jones, R. J. Payne.

Newcastle upon Tyne: University of Newcastle upon Tyne: Computing Science, 2008.

(University of Newcastle upon Tyne, Computing Science, Technical Report Series, No. CS-TR-1091)

Added entries

UNIVERSITY OF NEWCASTLE UPON TYNE
Computing Science. Technical Report Series. CS-TR-1091

Abstract

This report describes a proof-of-concept study demonstrating the analysis of dynamic coalition policies and
structures by means of a tool based on a formal abstract model. The study suggests that such models may be
valuable tools in designing for dynamic, adaptive behaviour in coalitions.

Previous research has used formal modelling as a way of gaining insight into the range of types or patterns of
dynamic coalition that may arise. Experience also suggests that human and organisational aspects are at least as
important as technical approaches to the dependable operation of coalitions. The goal for this project was to
investigate the application of formal modelling techniques, with tool support, to help explore the consequences of
alternative designs for coalition structures and policies. The exploration was centered on the role of the human in
a coalition, in terms of their understanding of information flows.

A ``Dynamic Coalitions Workbench'' has been developed to allow the animation of a specific coalition model.
Users, who may be domain experts, interact with the model by invoking membership and information exchange
functions in response to prompts driven by a scenario. Interaction is via a simple graphical interface so that users
require no familiarity with the technicalities of the underlying formal modelling language.

A specific scenario, based on crisis management in a military context, has been developed in collaboration with
Dstl to exercise the workbench. A variety of users, including one designated expert with relevant experience, were
observed using the workbench and debriefed following each execution of the scenario. The users' observed
behaviours and their comments have been recorded.

The project outcomes suggest that formal models have potential as tools in developing our knowledge of the
behaviours of dynamic coalitions, and in designing policies for specific coalition contexts. Next generation
analysis tools, including proof and model checking, have the potential to provide higher assurance that key
system-level properties are preserved in models during coalition evolution. The exploration of models by
animation provides a basis for studying the behaviour and role of the individual in managing information in a
complex dynamic environment.

About the author

Jeremy received his BSc in Mathematics and Computer Science from Reading University in 1993, and his PhD in
1997, also from Reading University. He has worked in a number of university departments, including Royal
Holloway, Kent and Stirling, and has been at Newcastle since December 2002. His research is in the security of
information within large computer-based systems. A particular area of current interest is access control the
development and maintenance of access control policies within dynamic coalitions. In the past at Newcastle he
has worked on including DIRC (the Interdisciplinary Research Collaboration on Dependability) and GOLD (Grid
Oriented Lifecycle Development) He is currently employed on the User Friendly Grid Security project and
TrAmS (Trustworthy Ambient Systems). He is part of the RESIST network, and a member of RESIST's working
group on Verification.

John Fitzgerald is Reader in Computing Science at Newcastle University. His research addresses the use of formal
methods in early stages of development for complex systems, particularly systems that may reconfigure in
response to threats. He leads work on resilience-explicit computing in the ReSIST Network on Resilience in IST.
He is Chairman of Formal Methods Europe.

David obtained his BSc in psychology at Glasgow Caledonian University in 1997. After that he spent a number of
years at Caledonian working on various research projects, teaching, and working towards an MPhil. His general
area of research is social psychology with a specific interest in mood, personality and communication. He has
worked on discovering links between personality and code-review ability and is currently working towards a PhD
concerned with personality and code comprehension ability.

Cliff Jones is currently Professor of Computing Science and Project of the IRC on “Dependability of Computer-
Based Systems”. He has spent more of his career in industry than academia. Fifteen years in IBM saw among
other things the creation with colleagues in Vienna of VDM. Cliff is a fellow of the BCS, IEE and ACM. He
Received a (late) Doctorate under Tony Hoare in Oxford in 1981 and immediately moved to a chair at Manchester
University where he built a strong Formal Methods group which among other projects was the academic partner in
the largest Alvey Software Engineering project (IPSE 2.5 created the "mural" theorem proving assistant). During
his time at Manchester, Cliff had an SRC 5-year Senior Fellowship and spent a sabbatical at Cambridge with the
Newton Institute event on "Semantics". Much of his research at this time focused on formal (compositional)
development methods for concurrent systems. In 1996 he moved to Harlequin directing some 50 developers on
Information Management projects and finally became overall Technical Director before leaving to re-join
academia in 1999. Cliff's interests in formal methods have now broadened to reflect wider issues of
dependability.

Richard Payne received his BSc (Hons) in Computing Science from Newcastle University in 2005. He has
returned to Newcastle University to undertake a PhD under the supervision of John Fitzgerald in the realm of
Predictable Dynamic Resilience. Richard is currently researching policy languages for the application in a
resilience policy language and its semantics. The resilience policy language will be used in systems where
components may enter and leave a system and its environment, all with changing levels of reliability. If the
components in use degrade, then a policy (written at design time) will be utilised to reconfigure the system to a
reliable state, with predictable results. The policy language will aim to integrate the concepts of component
metadata and dynamic resilience mechanisms. Richard is a member of the DIRC project at Newcastle.

Suggested keywords

DYNAMIC COALITIONS,
VIRTUAL ORGANISATIONS,
ANIMATION,
MULTI-DISCIPLINARY

A Dynamic Coalitions Workbench:

Final Report

J. W. Bryans, J. S. Fitzgerald, D. Greathead,
C. B. Jones, R. J. Payne

School of Computing Science
Newcastle University

April, 2008

Contents

1 Introduction 6

2 Workbench 9

2.1 Introduction . 9
2.2 Architecture . 9
2.3 Model . 10
2.4 User Interface . 14
2.5 Controller . 16
2.6 Extensions . 17

3 Case Study 19

3.1 Scenario . 20
3.2 Method and Results of Case Study 22
3.3 Further Avenues of Study . 27

4 Analytic Tools 30

4.1 Role of Models and Analysis in the Life of a DC 31
4.2 The Purpose of Analysis . 31
4.3 The Range of Analytic Techniques 32
4.4 Summary and Recommendations 34

5 Further Work 36

6 Conclusions 39

A User Guide for DCWorkbench 45

A.1 Introduction . 45
A.2 Setup . 45
A.3 Policy Selection . 46

1

A.4 Workbench Start Up . 46
A.5 Workbench Overview . 46
A.6 Information View . 48
A.7 Agent View . 48
A.8 Event History . 50
A.9 Active Queries . 50

B The Formal Model 51

B.1 The model with PartialDisclosure policy 51
B.2 The Join operation from the FullDisclosure policy 64

C Scenarios 67

C.1 Scenario diagrams . 67
C.2 Full text of main scenario . 70

2

Foreword

MOD has an increasing need to work in complex, dynamic national and
multinational coalitions which may include OGDs and NGOs. These coali-
tions have high levels of heterogeneity and are required to be agile so they
may be formed and dispersed in an ad hoc fashion in order to fulfil specific
operational needs.

The formal model developed by Newcastle University provides a basis
upon which we can reason about the nature of such coalitions. It allows
us to explore a range of issues including admission and rejection from the
coalition, derogation of access rights, structure and storage of information
and the effects of distributed decision making.

This workbench is a proof of concept developed by Newcastle University
which will permit MOD to gain an understanding of the basic principles and
which will be used to further refine and direct the research. In this way we
will ensure the MOD relevance of the workbench and any follow on research.

This work is separate from but complementary to research carried out in a
number of programmes and consortia including the Network and Information
Sciences International Technology Alliance.

Helen Phillips and Olwen Worthington, Dstl

3

Summary

This report describes a proof-of-concept study demonstrating the analysis
of dynamic coalition policies and structures by means of a tool based on a
formal abstract model. The study suggests that such models may be valuable
tools in designing for dynamic, adaptive behaviour in coalitions.

Dynamic coalitions are network-enabled groupings of autonomous agents
that share resources and information in the pursuit of a common goal. Some
elements of coalitions can be engineered prior to deployment, notably poli-
cies governing admission to membership and information sharing. However,
significant elements of coalitions are less predictable, such as changes in
membership and information security requirements. It is a major challenge
to design the engineered elements so that coalitions remain functional and
trustworthy while adapting in response to events.

Previous research has used formal modelling as a way of gaining insight
into the range of types or patterns of dynamic coalition that may arise. Ex-
perience also suggests that human and organisational aspects are at least
as important as technical approaches to the dependable operation of coali-
tions. The goal for this project was to investigate the application of formal
modelling techniques, with tool support, to help explore the consequences
of alternative designs for coalition structures and policies. The exploration
was centered on the role of the human in a coalition, in terms of their un-
derstanding of information flows.

A “Dynamic Coalitions Workbench” has been developed to allow the
animation of a specific coalition model. Users, who may be domain experts,
interact with the model by invoking membership and information exchange
functions in response to prompts driven by a scenario. Interaction is via
a simple graphical interface so that users require no familiarity with the
technicalities of the underlying formal modelling language.

A specific scenario, based on crisis management in a military context,

4

has been developed in collaboration with Dstl to exercise the workbench. A
variety of users, including one designated expert with relevant experience,
were observed using the workbench and debriefed following each execution
of the scenario. The users’ observed behaviours and their comments have
been recorded.

The project outcomes suggest that formal models have potential as tools
in developing our knowledge of the behaviours of dynamic coalitions, and
in designing policies for specific coalition contexts. Next generation analysis
tools, including proof and model checking, have the potential to provide
higher assurance that key system-level properties are preserved in models
during coalition evolution. The exploration of models by animation provides
a basis for studying the behaviour and role of the individual in managing
information in a complex dynamic environment.

5

Chapter 1

Introduction

This report describes work undertaken during a six month project carried out
by Newcastle University on behalf of Dstl. The goal was to develop and eval-
uate a first prototype Dynamic Coalitions Workbench (DCWorkbench) for
assessing the consequences of design decisions relating to dynamic coalitions,
including human aspects.

Dynamic coalitions (DCs) are network-enabled groupings of autonomous
agents that share resources and information in the pursuit of a common goal.
Although each coalition is unique, they share some common features such as
dynamically changing membership, mechanisms for information transfer and
authorisation structures. In many applications, the ability to analyse end-to-
end properties such as information flow, security and privacy is particularly
significant. However, the architects of such coalitions currently lack a basis
on which to evaluate at design-time the consequences of the decisions that
they make regarding coalition architecture and policies.

Formal methods offer one technology for analysing system properties.
Within DIRC1, at the suggestion of Dstl, we investigated the application of
formal modelling [FL98] to the analysis of dynamic coalitions (DCs). This al-
lowed us to map out a space of DC architectures on the basis of “dimensions”
including membership, information, information transfer, provenance, time
and trust [BFJM06a]. Each dimension represents a range of design alter-
natives, for example alternative policies governing membership, information
storage and tansfer, provenance, trust and the modelling of information value
over time. Formal models representing specific DC architectures embodying

1The Interdisciplinary Collaboration on Dependability; http://www.dirc.org.uk

6

particular decisions in each dimension were developed and the approach was
validated by showing how it could characterise a real DC architecture devel-
oped for the chemical engineering industry [BFJM06b], leading to improve-
ments to that architecture, notably in handling DC initiation and dissolution.
The study raised three important questions which we aim to address in the
research described here:

• Can we provide models and tools that help in architecting DCs and their
related policies?

Our previous work suggested that an executable model could be con-
figured with particular decisions relating to the dimensions of interest.
Scenarios could be played out in this instantiated model in order to
analyse the consequences of combinations of policy decisions. We will
call such a tool a “DCWorkbench”.

• Are human users’ perceptions of information flow in DCs consistent
with such a model?

The relationship between the technical system and human decision-
makers is vitally important. Ultimately, we would wish to ensure that
human decision makers in DCs have an accurate picture of the state
of the real DC (not just a computational model of it) and hence the
consequences of their decisions. Our experience with socio-technical
systems also leads us to believe that users must be considered a part of
any system and that user errors are one of the most common reasons
for (socio-technical) system failure. This is recognised in the context
of military information systems in [Nas07] where it is argued “The re-
wards achieved through good training are best achieved at the Human-
Machine Interface level”. Furthermore, the advent of the UK Network
Enabled Capability (NEC) has raised a number of issues with regard
to information management (see [Hou04] for a summary). It seems
prudent therefore to examine the way in which individuals take on and
manage information in high tempo and dynamic situations.

• What forms of analysis can be done on DC models to assist in analysing
information flow?

The use of formal modelling raises the possibility of employing power-
ful analytic tools such as static analysis, model checking and proof in

7

addition to scenario execution (which is only as good as the range of
scenarios explored).

The project therefore comprised three closely interleaved strands. First, we
developed a formal model of information flow within dynamic coalitions, and
a workbench to interpret the model state to the user and allow the user
to interact with the model. Second, during development we carried out a
number of small case studies, and the results of these were fed back into the
formal model and the code development. Third, we also carried out a more
controlled final case study with a domain expert from Dstl.

In Chapter 2 we introduce the DCWorkbench architecture, the formal
model that drives the workbench, and the user interface. Some possible
extensions are suggested. Chapter 3 describes the scenario and the case study
method and results, finally suggesting a number of possible improvements.
In Chapter 4 we discuss the range of analysis techniques available to apply
to the formal model. Chapter 5 seeks to point out some of the avenues for
further study which we feel would be particularly valuable. Chapter 6 draws
some conclusions.

8

Chapter 2

Workbench

2.1 Introduction

The purpose of the workbench is to allow a domain expert to interact with
a formally specified model. This interaction is through an interface, so the
domain expert need not be familiar with the formal model. The model
contains state and operations to alter the state. The behaviour of the model
is governed by a script which calls the operations provided by the model
through a controller. The script also presents constrained choices to the
user, allowing him or her a limited amount of influence over the behaviour
of the model. In the rest of this section we present the architecture and
components of the tool, as well as some possible extensions.

2.2 Architecture

Given the importance of model validation by domain experts, it was decided
that a graphical interface would be required to allow the user to interact with
the underlying model. The presentation should be relevant to the domain,
uncluttered by details of the formal model and detailed understanding of the
model should not be required. The common Model-View-Controller design
pattern [Bur78] was used. In this paradigm, the model manages the internal
state data of the application, the view provides a graphical representation of
this data and the controller drives the application and interprets commands
from the user altering the view and model as necessary.

Figure 2.1 shows how the design pattern was used for the workbench.

9

V D M + +T o o l b o xr u n n i n g D CM o d e l Interp reter
S c r i p tV D M + +C o n t r o l l e r

G U I C O N T R O L L E RV I E WM O D E L
Figure 2.1: DCWorkbench architecture

The model portion of the MVC pattern is represented by the VDM++ model
described in more detail in Section 2.3. This model contains information re-
garding agents, the coalition structures and the information in the scenario.
The model also plays part of the controller role by providing executable oper-
ations on the model. By implementing the operations at the model level, we
are able to utilise the rigorous and verifiable nature of the VDM++ language.
The view is provided by a Java graphical user interface (GUI) which allows
the user to view the data in the model. We discuss the interface in Section
2.4. Finally, we present the scenario script and various Java controller classes
as the controller of the workbench, which prompts interaction from the user
via the view, and passes any changes of state data to the model. This is
discussed further in Section 2.5.

2.3 Model

The Language

The dynamic coalition models used in the case study were developed in
VDM++ [FLM+05], an object-oriented extension of the Vienna Develop-
ment Method (VDM) Specification Language [And96]. The same formalism
was used in our previous work on dynamic coalitions [BFJM06a, BFJM06b].
VDM has been used extensively to model computer-based systems, and has

10

a history of successful use as a basis for communication with domain experts
not familiar with formal design notations, e.g.[FJ98, MF98] and benefits from
strong tool support in the form of the VDMTools toolkit [FLS08]1.

A VDM++ model is composed of class definitions, each of which may
contain local state specified by typed instance variables. This state may be
restricted by an invariant, which must remain true in all executions of the
model. A number of basic types are available, and more complex types may
be constructed out of these. Functionality in a class is given by operations
which may alter the value of the instance variables and auxiliary functions
which do not affect the local state. Operations may be expressed explicitly,
in terms of their effect on instance variables, or implicitly, by way of pre- and
post-conditions. Making definitions explicit, as we do here, ensures that the
model is executable, and allows us to analyse it using VDMTools.

The Model

The model is comprised of agents, which may join and leave collections of
agents known as coalitions. Agents and coalitions may possess and commu-
nicate information. Agents are identified by agent identifiers (denoted by the
type Aid), and coalitions by coalition identifiers (Cid). With each item of
information that an agent knows it records both the source (agents or coali-
tions from which it learned the information) and any agents or coalitions to
which it has passed the information. These are the told and told me fields
below. Facts discovered by an agent are recorded as being learned from the
agent itself. An agent is modelled as a composite record with two fields
(told and told me) each of which are maps from Information tokens to a
sets comprised of both agent and coalition identifiers.

Agent :: told : map Information to set of (Aid|Cid)

told_me : map Information to set of (Aid|Cid)

A coalition contains a set of agents as well as the told and told me fields.

CInf :: agents : set of Aid

told : map Information to set of (Aid|Cid)

told_me : map Information to set of (Aid|Cid)

1See also www.vdmportal.org

11

Coalitions may have their own information, independent of the information
possessed by their members. This means, for example, that if all the members
of a coalition leave, it still has some form of existence in the model as this
set of information.

The model state is represented by the instance variables. It is a set of
agents and coalitions, restricted by an invariant which states some straight-
forward consistency conditions on the variables. When it is initialised, an
instance of the model has no coalitions and no agents.

Notice that information must be known by at least one of the agents or
coalitions in the model in order for it to exist within the model. In this
model, information does not have an independent existence.

instance variables

coals : map Cid to CInf := {|->};
agents: map Aid to Agent := {|->};

inv forall c in set dom coals &

((coals(c).agents subset dom agents)

and

(dunion rng coals(c).told subset

(dom agents union dom coals))

and

(dunion rng coals(c).told_me subset

(dom agents union dom coals)))

and

forall a in set dom agents &

((dunion rng agents(a).told subset

(dom agents union dom coals))

and

(dunion rng agents(a).told_me subset

(dom agents union dom coals)))

The first clause of the invariant states that only genuine agents may be in
coalitions. The remainder of the clauses state that only genuine agents and
coalitions may be recorded in the told and told me fields.

Operations are included for creating new coalitions and agents and for
joining and removing agents from coalitions. An agent may also discover
information and tell it to other agents or coalitions. Coalitions may also

12

tell information to agents. The particular scenario developed did not call
operations for coalitions to discover information, and for coalition-coalition
communication, so these have not been included in the model. However
adding these operations is straightforward.

Two alternative disclosure policies

The two policies we give (FullDisclosure and PartialDisclosure) differ
only on the behaviour associated with the Join operation. The purpose of
the operation is to join an agent to a coalition. In FullDisclosure an agent
that joins a coalition learns all the information in the coalition store, as well
as all subsequent information learnt by the coalition. In PartialDisclosure,
however, the joining agent does not learn the information present when join-
ing, but does learn all subsequent information. The definition of Join in
PartialDisclosure is

Join : Aid * Cid ==> ()

Join(a,c) ==

(

coals := coals ++ c |-> mu(coals(c),

agents |-> coals(c).agents union a)

)

pre a in set dom agents and c in set dom coals and

a not in set coals(c).agents

post coals = coals~ ++

c |-> mu(coals~(c),

agents |-> coals~(c).agents union a)

The definition of Join in the FullDisclosure model includes all the transfers
of information necessary. The body of the operation is given below. The full
version, including the pre- and post-condition, can be found in Appendix B.2.

Join : Aid * Cid ==> ()

Join(a,c) ==

(

coals := coals ++ c |-> mu(coals(c),

agents |-> coals(c).agents union a);

update_source_coalition(

c,a,dom coals(c).told union dom coals(c).told_me);

13

update_destination_agent(

c,a,dom coals(c).told union dom coals(c).told_me);

for all ag in set coals(c).agents do

(update_source_agent(

ag,a,dom coals(c).told union dom coals(c).told_me);

for all ag in set coals(c).agents a do

update_destination_agent(ag,a,dom coals(c).told

union

dom coals(c).told_me))

)

Interrogating the model

Operations are also given within the class definition to interrogate the state
of the model. The interface is also updated with information from these
operations. These include operations for retrieving the set of agents and
coalitions which know a certain fact, and the set of facts known by an agent
or coalition.

Both these operations also have “point-of-view” variants. These give,
from the point of view of a particular agent, all the agents or coalitions that
know a fact, and all the facts that another agent knows. Thus we can retrieve,
for example, all the information that agent A knows agent B knows. The use
of the “point-of-view” variants is demonstrated in Section 2.4.

2.4 User Interface

The graphical interface provides the view component of the MVC design
pattern. It obtains state data from the model, relaying it in a meaningful
way for the user of the tool. The data gathered from the model is displayed
to the user as a view. Four different views are available in the workbench,
presenting state data from the point of view of the user or from an omniscient
perspective. The interface was developed using the Java Swing and AWT
libraries; giving a platform independent interface while retaining the native
look and feel of the underlying operating system (images in this report are
based on Mac OS X). The workbench is based around a single window,
consisting of a tabbed pane containing the views on the model and also a

14

pane containing queries the user has deferred to answer at a later point.
Figure 2.2 shows the interface, with a populated information view.

Figure 2.2: DCWorkbench interface

Initially, the user has access to the information view and the agent view.
The information view displays the items of information currently present in
the model, and shows which agents currently know that information. Con-
versely, the agent view shows each agent, and the information items they
know.

Coalition membership is represented using colour coding; in this proto-
type, the interface restricts the coalition representation to a single coalition
– an agent is either in or out. One key feature of these two views is that
they only show these details from the perspective of a single agent. They use
the “point-of-view” operation variants to interrogate the model, see Section
2.3. When the scenario has been played through, two additional views are
presented – omniscient information and agent views – showing all the items
of information in the scenario and what each agent knows, irrespective of the
user’s point of view.

Within the information and agent views, internal windows are shown
with the details mentioned above. These windows may be moved, resized,

15

minimised and maximised at will by the user. This allows the user to order
and display the information as they see fit. The arrangement is preserved
when switching between views.

Having views for both the information and agent data allows the user
to explore how well they understood the information flow in the scenario.
This may help them to discover communications which may not be explicitly
stated, for instance, if two agents communicate without the user knowing, the
user will not have a complete knowledge of which agents know the different
items of information.

The interface is driven by the controller script. This prompts the interface
to display new items of information and questions for the user. New items
of information are displayed in simple dialog boxes, with some text and a
button to dismiss them. These items of information also create a new entry
in the information view (and if a new agent is introduced, a new agent in
the agent view). Queries are typically of the Yes/Defer variety, the result is
passed to the script portion of the controller and is dealt with appropriately.
If the user selects the ‘defer’ option, the interface displays a button for that
query in the ‘Active Queries’ section of the main window, see Figure 2.2.
When pressed, the button is removed and the controller notified.

Each piece of information, and all decisions made by the user, are recorded
by the interface and displayed in the event history section of the interface as
a log. The log also records the scenario time these events occurred. At the
end of the scenario, this log, along with the random numbers generated for
probabilistic calculations, are saved for later reference.

2.5 Controller

The controller portion of the MVC paradigm consists of two main parts:
the script and the Java classes to control access to the VDMTools. The
controlling script drives the model and the view, consisting of events which
display information to the user, require choices to be made by the user, or
change the state data in the model. The VDMTools controller uses a CORBA
link to the running VDMTools interpreter executing the models, allowing the
script to take control of the VDMTools toolbox.

The controller enables the workbench to act as a client to the VDMTools
server, instantiates an interpreter console in the VDMTools and adds the
relevant dynamic coalition model to the VDMTools. The controller handles

16

communications from the script and views, mirrors some of the key opera-
tions provided in the model, and performs operations to convert VDM++
datatypes to appropriate Java datatypes.

As the scenario divides into three parallel paths, the script is required to
deal with them independently. The script is therefore divided into multiple
threads allowing for concurrent paths of execution. The script implements
the scenario presented in Section 3.1, and stores an internal model in the
form of variables detailing scenario-specific properties such as base damage
and casualties. The script controller will run through the scenario, and at
timed intervals, prompt the interface to display new items of information, add
this information to the model, and carry out any model operations such as
telling agents the information. When the controller requires some response
from the user, the view displays the options available, and the controller
receives the user’s response, with the subsequent actions determined by the
controller.

2.6 Extensions

Formal Model

It is possible to extend the model in many ways. We could explicitly record
the passing of time, and record the time at which agents learn information,
as well as the time at which events occur. We could allow information to
be categorised, and develop models of information release policies based on
these categorisations.

More substantially, it would be good to make the policy more explicit.
Currently, the PartialDisclosure and FullDisclosure policies are embed-
ded within two variants of the model, meaning that we only offer the user
a choice of policy at the start of the run-through. Developing a separate
language for policies would allow the user more control over configuring as-
pects of the policy. It would also allow the user to alter the policy during the
run-through, and to define dynamic policies as (event,action) pairs, which
would describe the response of the policy to run-time events.

Interface and Controller

There is the potential to make some improvements to the interface and con-
troller of the architecture to obtain a better user experience. Firstly, the

17

responsiveness of the GUI can fluctuate, particularly when resuming deferred
queries. Next, the timing of the scenario is achieved by pausing the relevant
thread after each event; the use of a delta queue may prove to be a more
efficient method. The controller section of the workbench uses a CORBA
link from the Java controller classes to the VDMTools, further investigation
into other methods such as using system commands may be beneficial for
efficiency. The benefit of using the chosen architectural pattern is that it
allows efficient implementation of such changes without affecting other parts
of the pattern. For example, if the script were to be changed, the model and
GUI could remain unchanged.

The model provides some functions not fully supported by the interface
and script, which will allow the workbench to take advantage of the potential
of the architecture.

• Support for multiple coalitions. The model allows the scenario to
have multiple coalitions. The script and interface, however, only rep-
resent the membership of a single coalition. Having multiple coalitions
will allow for a more realistic representation of a more complicated
information flow.

• Removing agents from coalitions. The model contains operations
for the user to remove agents from a coalition as well as adding them.
The script and interface, do not currently support this. This would
give the user the ability to alter coalition membership as they see fit.

• Viewing scenario from any agent “point-of-view”. The opera-
tions of the model allow the user to view the state data from the point
of view of any agent, however this is not yet implemented in the inter-
face. A multiple agent view, whereby the user could ‘play’ through the
scenario with different roles, could be a useful feature.

18

Chapter 3

Case Study

The workbench was developed in order to investigate the feasibility of us-
ing an executable formal model as a basis for evaluating alternative policies
relating to information flow in dynamic coalitions. In order to evaluate the
suitability of the workbench for this purpose, a case study was carried out in
which several individual participants interacted with the workbench, playing
through a specific scenario script. The final participant was a highly trained
domain expert.

In psychology and the social sciences, a case study [Rob02] uses an indi-
vidual or a small number of participants who are closely observed. It tends
to be exploratory in nature, rather than focussing on the verification or refu-
tation of an experimental hypothesis. In the workbench study, exploratory
interviews were also used to gain information from participants in a non-
directive way, allowing the participant to give their own thoughts rather
then being led to answer specific questions. The main purpose of this study
was to assess the workbench, observe and record user behaviour, and seek to
identify aspects worthy of further study.

Given that the human aspects of dynamic coalitions are at least as impor-
tant as the technical details of formal models, it was important this should
be a study with human subjects and not merely a paper exercise. Particular
factors in the assessment were:

• The ease with which the domain expert interacted with the workbench
during the execution of the scenario.

• The ability of the domain expert to suggest the outcomes of particu-
lar policy and operational decisions taken during the execution of the

19

scenario.

• The ability of the domain expert to achieve specified outcomes at the
end of scenario execution through the judicious choice of alternatives
at decision points in the scenario.

We describe the scenario used in the case study in Section 3.1. Note that
it is designed just to exercise the model and workbench, and is not as detailed
as one might develop. Section 3.2 describes the method and results of the
case study, and Section 3.3 identifies further avenues of study.

3.1 Scenario

The scenario presents the user with information about certain events and
asks them to make decisions based on this information. After discussion with
Dstl personnel, it was agreed that the scenario would describe an emergency
situation on a military base in a fictional overseas country.

A very small scale preliminary scenario (shown in Appendix C) was de-
veloped in order to test the approach. A larger, more complex scenario was
developed for the final study. In the final scenario, the user played the role of
a base commander in an outpost in a Middle East country considered friendly
to the UK, but close to the border with a hostile country. Initially, the user
was presented with a piece of text setting the background for the scenario by
saying what their role was, and describing the base and its location. The sce-
nario begins when the base commander, i.e. the user, is informed that there
had been an explosion somewhere on the base, and that a fire has taken hold.

A flow chart detailing the order of events and the decision points of the
scenario can be found in Appendix C. An extract showing the beginning
of the scenario is shown here as Figure 3.1. Note that the information in
the flow diagram is abridged. The user was presented with fuller text de-
scriptions of the events within the scenario as they unfolded (reproduced in
Appendix C.2.)

Certain decisions taken by the user while running the scenario would
result in a probability of a particular subsequent event taking place or state
being reached. For example, if the user initially called the local civilian fire
service (d5 on the full scenario), this would result in an 80% chance that the
fire would be contained quickly. The intended effect of these percentages was

20

Figure 3.1: Initial steps of main scenario

that the outcome may not always be the same, even if identical decisions are
made1.

In order to increase the user’s willingness to run through the scenario
multiple times, it was designed in such a way to have some game-like ele-
ments. As such, at the end of the scenario, the user was presented with some
feedback on a number of variables to indicate the outcome of the scenario.
These included such elements as the number of soldiers injured or killed, the
amount of damage done to the base, the amount of press coverage, and so
on. At the start of each run the user could select the speed at which they
wanted to play the scenario. They were limited by the experimenters to the
slowest speed for the initial runs, until the experimenter believed they were
able to cope with the higher speed. This had the effect of reducing boredom
caused by long periods of inactivity while waiting for events to happen after
the participant had already run through the scenario a number of times.

The development of the scenario was an iterative process. The scenario
was first developed, then tested with a number of people, each of whom
ran through it a number of times. Feedback was gained from each person,
which was then integrated before being tested on the next person. This
had the result of making the scenario and the interface more polished. The
scenario was also passed to Dstl who provided helpful feedback to make the
scenario more believable by obtaining comments from experts with experience
in similar situations.

1No attempt has been made here to be realistic. We rather seek to illustrate that
probability meta-data can be associated with scenario events.

21

3.2 Method and Results of Case Study

Approach

As well as testing out the scenario and the interface, the iterative process
was also used to assess the evaluation approach itself. Part of this process
was the video recording of the sessions. A video camcorder was used in order
to record the information presented to the user on the computer screen as
well as the audio in the room throughout the session. This in itself served
as a log of events during the sessions, but could also be played back to
the participants after a run-through in order to act as a memory aid when
questioning them about their thoughts during the exercise. The feedback
from these portions of the interview was recorded either with note-taking or
as audio (the camcorder was in use for playback.)

The Final Participant

The final participant was an expert with experience of command situations
and was the main source of data for the study. He ran through the scenario
several times and his behaviour was observed throughout. He also took
part in informal exploratory interviews after each run. His behaviour was
interesting in that he was observed examining each window in the information
view and then minimising it. Mousing over these minimised panes would pop
up a summary of the information the window contained. When questioned
about this behaviour later using the video reminder, he commented that he
was treating this as a kind of log book. In essence, he was internalising
each piece of information as it arrived, and once it was in the appropriate
place in his mental model, he minimised it, using the minimised version as a
reminder. This is similar to the log created by the event history view, with
the exception that clicking on a minimised pane would maximise it again,
revealing a longer summary of the information.

The Map View

One comment which the final participant kept returning to, was how much
more useful a map or plan view would have been in the simulation. As it
was, the information was presented in a purely textual fashion, with some of
the details of the locations of events being absent. For example, the exact

22

location of the explosion and the fire on the base is not known in relation to
other parts of the base. So, if the user, as the base commander, had a plan of
the base then he or she would be able to consult that plan in order to find out
where the fire was, and the location and purpose of neighbouring structures.
In the simulation as it was, the user had no way of knowing whether the fire
was near the base entrance, or a critical building, unless that information
was presented to them explicitly in the text.

Coalition Constraints

Another option the final participant desired was the ability to remove peo-
ple from the base, and also from the coalition. For example in his first
run through, a mis-click with the mouse (caused by a slight delay in the
workbench responding to the previous click) meant that he inadvertently
summoned the local civilian police force to the base, and was unable to re-
move them. This constraint was due to the necessarily limited functioning
of the simulation given the time constraints under which the simulation was
created. In future, it would be possible to have the workbench exclude people
from the coalition as well as include them.

Another issue which was mentioned by the final participant was that of
the personnel on the base. In the scenario as it was presented, information
was given to the base commander who then could not communicate with
the person who provided the information (this was a necessary limitation of
the workbench, given the scale of the project as a whole). The participant
highlighted the fact that a duty sentry or patrolman would report informa-
tion to the base commander, who would then know the provenance of the
information as well as when it arrived, and would be able to develop a richer
picture of the events. Also, in the workbench as it was presented, informa-
tion was shared between coalition members automatically due to the policy
hard coded in at the beginning. The participant pointed out that not all
information would be passed along. For example, not all members of the
coalition (such as the base medical staff) would need to know that the local
press had arrived at the front of the base.

The Feedback Variables

In order to comprehend each user’s understanding of the models underly-
ing the scenario, they were asked to describe their performance against the

23

feedback variables at the end of each run before they were presented with
them. For example, before being shown the summary information at the end
of the run, they would be asked how many civilian casualties had occurred
and whether there was more or less damage to the base than on the previous
run. Users seemed to get better at this prediction each time as they gained a
better understanding of the ‘big picture’ with their increased familiarity with
the scenario. After a number of run-throughs participants were sometimes
requested to run through again but with a specific goal in mind, for example
to minimise the press coverage at the expense of everything else.

Omniscient Views

At the end of each run-through, the participants were given access to the two
omniscient views, in which they could see all of the information in the model,
rather than only the information presented to the base commander. This was
one of the additional places where it was possible to gain a further insight
into the similarity between the participant’s mental model of the information
in the scenario and the actual information in the underlying formal model. If
participants chose to summon the local civilian police force, this agent would
then discover that the explosion on the base was the result of a deliberate
attack. Driven by the underlying script, the police would then leak that
information to the local press, but this would not become visible to the
user until the end of the scenario in the omniscient view. When users were
asked to examine the omniscient view, they seemed to have a clear enough
mental model of the scenario to realise that the local press should not have
learned that information (unless they were explicitly given the information
as part of a press release during the scenario). This was encouraging in that
it illustrated that the simulation was accurately conveying the information
to the user in a way which was easily digestible to them. Some of the users
quickly deduced at this point that it must have been the local police who
leaked the information. For those who did not, they were asked to try and
discover this leak by running through the scenario again and deducing its
source. The final participant was also surprised to note that the press knew
that the fire on the base was deliberate, but initially assumed he must have
just missed that piece of information before going back to check, at which
point he realised the discrepancy. This was a good learning experience for
both experimenter and user, as it was a clear point at which the user increased
his understanding of the scenario.

24

Decision Making

While the final participant (the one with a military command background)
was using the workbench for the first time, it was observed that his approach
appeared to be more decisive than that of some of the previous participants.
This user took relatively little time to make decisions. When questioned
about this later, he said that he had a specific agenda in mind (in this
case to keep the base operational) and this, combined with the information
presented to him by the tool make his decisions easy to make. This contrasted
to some other individuals who were indecisive, especially when they were
attempting to achieve the “best” all-round outcome. It should be noted
that it is impossible to achieve the best outcome in every variable of the
scenario as some goals are mutually exclusive. For example, there is a trade
off between having low press coverage and having a high chance of discovering
the attacker. By deliberately using press coverage, the user can increase their
chances of catching the suspect by releasing a description of him to the public.

Interface Issues

The final participant commented that the system was intuitive to use for
anyone who had a familiarity with operating computers on a regular basis.
This is encouraging as it implies little training would be needed for the tool
to be useful for others to use.

He mentioned that the ability to swap between the information view,
the agent view and the event history view useful, but commented that there
were some interface issues, for instance mouse clicks not seeming to register,
or there being a pause before the clicks were registered. The experimenter
noticed that this became more of a problem when the participant ran through
the scenario at high speed and a quick response became more important to
dealing with the situation.

Time Pressure

A common observation with several preliminary participants, as well as the
final participant, was the way they used their time in the scenario. Often,
participants would perform ‘housekeeping’ in periods of inactivity. That is,
when there was a lull in information being presented to them, they would
tidy up the windows in the various views available to them, making it so that

25

the windows were the correct size for the text they contained, as well as not
overlapping. This behaviour generally broke down as the scenario was run
at a higher speed and multiple events happened simultaneously whilst the
user was utilising the information view. The result of this would be the early
information neatly laid out on the screen, with the new information win-
dows simply stacked where they appeared on top of the previous information
(Figure 3.2).

Figure 3.2: Screenshot of case study showing stacking of information windows

Summary

Much can be learned from this study. A number of observations were made
which revealed some interesting results, for example that the user’s behaviour
changed at critical points, as seen in Figure 3.2. However, the results must be

26

treated with caution given that they were obtained in a purely observational
way and from a very small number of people. Carrying out a larger scale
study in this area would allow a wider range of behaviour to be observed. At
the very least results could be generalised more widely.

3.3 Further Avenues of Study

Several improvements and extensions have been suggested to the scenario
and to the case study approach as a whole. In addition, the study itself has
highlighted several avenues of further study.

Scenario Improvements

As mentioned previously, a much greater emphasis needs to be placed on the
geographical locations of events. This could be done, at the very minimum,
textually. A more effective measure would be to combine textual descriptions
with a map of the base so that a mental picture of events could be gener-
ated more easily. This simple extension would be easily developed. A more
challenging, but more useful development would be to have the information
presented in a graphical way at the workbench interface, for example by dis-
playing a map of the base on the screen and showing the events which happen
in relation to their locales. This approach could have significant advantages
for the user, for example enabling them to overlay pieces of information or
tokens representing that information over a relevant location. So, for exam-
ple, it would make sense to have an icon (or minimised window) representing
the fire on the base where the fire is located, while having the disturbance
at the front of the base represented in a different location. Other items of
information, such as the fact that the fire was started deliberately, could
either be left in a neutral location off the map or otherwise associated in
some way with the agent who delivered that information to remind the user
where the information came from. This ability to move information around
could enable the user to better develop a mental model, and useful for the
experimenter to see how the user employs this flexibility. Behaviour along
these lines was observed with the existing tool in that some participants were
seen to group the agents in the coalition together on one part of the display,
and those outside of the coalition on another part. It is likely that this kind
of grouping would be more widespread and more meaningful if the interface

27

were more configurable.
In general, more background information would need to be presented to

the participant as this would influence their agenda when dealing with events.
If further work is to be carried out, it would be interesting to observe how
small changes in the background information presented to the user would
influence their decision making. For example, if the scenario was presented
identically with the exception of the opening descriptive text, varied results
could be obtained. If the scenario was set on an airfield, the priority would
be to keep the airstrip open, and the decisions made might be different.
Likewise, if the base contained an ammunition store then stopping the fire
from spreading to the ammunition might assume the highest priority. If the
base contained some sensitive information then fighting the fire would be less
of a concern than protecting or destroying the information to stop it falling
into enemy hands.

Interface Improvements

Another recommendation was that the criticality of information should be
given a visual flag. It is plausible that the level of criticality could be set by
the scenario or the user, but the ability to categorise information in this way,
or place it on some scale would no doubt be a useful improvement.

As mentioned previously, the final participant tended to minimise items
in the information view and use these minimised windows as a kind of log of
the events. It would be useful to have the ability to keep the event history
view visible at the same time as the other views. The two most obvious
ways would be to have an event history panel present at the side of both the
information and agent views. Another alternative would be to have the three
distinct views available as three windows rather than three tabs. If this were
the case, the user could simply resize the event history window to make a
strip and place it to the side of the other window(s). This would be the most
configurable alternative and again would present interesting opportunities to
examine how users employ the tool to build up a mental model of the events
as they happen. This kind of approach would most likely benefit from a
large, high resolution screen, or even multiple screens, although the impact
of this would also need to be assessed.

28

Participants

If the study were to be expanded to a larger scale, it would be possible to
carry out an experiment with larger numbers of participants. In this way,
firmer conclusions could be drawn, following the type of statistical analysis
impossible with small participant numbers. The nature of the study would
need to be fairly tightly defined, but could be focussed on any particular
area of interest. For example, if it was hypothesised that having a more
configurable view would lead to developing a greater mental model, then a
large number of participants could be split into several groups. One of these
groups could have a view similar to the one used in this study, another with
the view split into three windows, or even groups with fixed views (such as
agent view only). Then a metric could be developed to assess the user’s
understanding of the situation to see which method leads to the best mental
model development. Another area of study would be to compare the different
approaches to presenting the information, as indicated above, with one group
having a digital map with information overlaid, a second group having text
information and a paper map, and a third group with text-only information.
By using a large number of participants and having more time to develop
the tools, much more empirical data could be gathered. Obviously, a study
of this type would require greater resources than the case study approach
employed in the current study.

If a further study were to be carried out, participants should be given
an opportunity to familiarise themselves with the workbench system with a
unrelated to the experimental one. That being the case, the scenario used in
the current study would, with some modifications, make a valuable training
scenario for a larger, and more complex scenario in a future study.

29

Chapter 4

Analytic Tools

The DCWorkbench supports the exploration of any specific dynamic coalition
model (the details are conveyed using a formal modelling language). In
addition to the insight that can be obtained with single models, even more
long-term value will come from analysing whole classes or types of coalition
models that share particular characteristics or patterns. This section reports
on the potential for machine-assisted analysis of such classes of models using
next generation techniques based on static analysis and proof.

In the workbench, a model can be explored with tests in the form of sce-
narios; these can be made relatively complex and can facilitate discovery and
validation of system-level properties of particular coalition models. These in-
clude safety (undesirable states can not be reached and invariant properties
are preserved) and liveness (states change and the model progresses) prop-
erties. The level of confidence obtained depends on the quality and range of
scenarios tested.

Scenario-based testing is only one of a wide range of analytic techniques
applicable to formal models. Approaches such proof and model-checking
take advantage of the formal semantics of the modelling language. In par-
ticular, one can explore properties of whole classes of models at once. While
such techniques have been regarded as costly in the past, advances in both
algorithms and the speed of machines mean that the resources required to
prove useful properties of formal models –and even program code– have de-
clined markedly in recent years. Crucially, this includes a reduction in the
human effort required to achieve general results. Proof and model checking
are now being used in commercial practice outside the traditional areas of
safety-critical systems. It is therefore worth considering whether any of these
techniques might be applied to the DC models that underpin the workbench.

30

4.1 Role of Models and Analysis in the Life

of a DC

Dynamic coalitions contain elements that are explicitly designed, such as the
access control policies of the members, communications infrastructure and
protocols. They also have significant elements that evolve autonomously and
often unpredictably, such as the membership itself, the coalition goals and
the resources available to achieve them.

In previous work [BFJM06a, BFJM06b] we have shown how formal mod-
els can be used to describe specific coalition patterns in a space of possibilities.
Each real-world coalition has several characteristics (“dimensions”), such as
membership joining/leaving criteria, patterns of delegation etc. In each di-
mension, the coalition designer is able to choose from several alternatives.
He or she will wish to verify that the chosen model has a specific behaviour,
preserves a certain property etc. These forms of analysis are likely to be done
on rather abstract models.

In the face of an evolutionary change, each coalition participant must
decide how to adapt its designed elements [BFP07]. For example, changes
in coalition membership will lead to a reappraisal of access control policies.
Each participant will need to consider new access rights and ask “Will these
new privileges violate my own information security policy?” Models serve to
provide a basis for rapid appraisal of the consequences of alternative responses
to run-time events and can contribute to the process of negotiation between
coalition partners.

Coalition dissolution is a significant (though often neglected) evolutionary
change, and here again the analysis of a model can help to select from a range
of methods for ending the membership, archiving information etc.

4.2 The Purpose of Analysis

The term validation refers to the process whereby a user can gain confidence
that the model respects a defined property. We distinguish two aspects of
validation: consistency checking and exploration of system-level properties.

Consistency checking is a form of static analysis on the model itself, for
example to confirm that invariants are respected by state-changing functions
and operations. For formal models such as those underpinning the DC-
Workbench, the conditions to be checked can be derived automatically. In

31

VDM++, the conditions are known as proof obligations; VDMTools contains
a component that automatically generates all of the proof obligations implied
by a VDM++ model and can present them to a user for manual checking.
The majority of proof obligations are low-level and detailed (e.g., that ex-
pressions denoting collections of values denote finite sets) and automating
the checking of these proof obligations is a priority for tools research. Some
obligations, particularly invariant preservation checks, are of greater value in
identifying defects or oversights in a model.

Once the internal consistency of a model has been established, it is possi-
ble to explore system-level properties. These refer to the emergent behaviour
that follows when operations are combined. An example of a validation con-
jecture on a DC model might be (informally) “after two coalitions merge,
the authorisation structures are consistent”. Validation conjectures are not
generated automatically, but require considerable thought. The checking of
simple validation conjecture can in principle be done automatically, although
in practice much insight into a model is gained by having human planning
and guidance in the validation process.

4.3 The Range of Analytic Techniques

How are proof obligations discharged and validation conjectures checked?
Much depends on the characteristics of the model itself and the level of
insight to be gained from the checking process (is a “yes/no” answer enough
or is a justification required?)

Testing of Executable Models

Executable models can be subjected to testing via an interpreter. Already
with the existing DCWorkbench, we have shown how such an executable
model can be exercised by means of interactive scenarios.

For such executable models, the tools include test coverage analysis and
research into automatic generation of tests is ongoing. In certain applications,
especially where an implementation is to be constructed from the model,
high test volumes are required. Indeed the VDMTools interpreter has been
improved and extended to accommodate such intensive testing for operating
systems design [FL07].

For models constructed purely for exploratory purposes, smaller test sets

32

may suffice and the provision of useful interfaces for domain experts is key. In
the DCWorkbench project, our interface has been simple and basic, merely
serving as a proof of concept. For more extensive use of test-based validation,
such models could be coupled to more sophisticated simulation environments.

Model-checking

Model-checking is the highly automated exhaustive exploration of a space of
possible states in the effort to find a state that serves as a counter-example to
a given conjecture. The technique is classically applied in concurrent systems
research [CES86]. The strengths of model-checking are the coverage of the
state space that it affords, and the ability to generate a counter-example
when a conjecture is refuted. The weaknesses mostly relate to the cost of
the work that must be done to control the size of the state space so that the
checking process is tractable. This may involve performing abstractions over
the model (replacing values by symbols, selecting regions of states that share
common characteristics etc.) and confidence must be maintained that these
abstractions do not lose key properties. This process can itself require proof
support.

It is possible to envisage the DC models as moving variously classified
information tokens among agents and thereby changing the state. At this
level of abstraction, a state transition model derived from the VDM++ model
could be susceptible to exhaustive checking. Properties (e.g., “No agent
with characteristic X gets to find out a fact of classification Y”) could be
formulated and checked over such a model. For relatively small numbers
of information tokens, and small numbers of agents, environments such as
Alloy [Jac06] can provide efficient state space exploration. As soon as the
value of data comes into play, the management and abstraction of the state
space becomes more problematic.

Analysis by Proof

The great majority of proof obligations derived from models in VDM++
can be checked automatically by proof tools such as HOL [Ver07]. When an
automated check fails, the current generation of tools provide only limited
insight (understandable to a specialist) on why a proof becomes bogged down.
Current research into automated (push-button) proof is increasing the power

33

of automated analysis (Spass1, E2, Vampire [RV01]). By contrast little work
is being done on supporting human guidance of the proof process.

A significant limitation of most forms of automated analysis is that they
rarely generate as much insight as manual processes. For discharging the
lower-level proof obligations related to the internal consistency of a model,
this may be a price worth paying. However, in trying to analyse system-
level properties, the production of a human-readable argument may be more
significant. Past experience [FJ98] has also demonstrated the value of proof
as an exploratory activity: the structure of a proof provides a basis for the
systematic exploration of the model that can identify “deep” properties.

4.4 Summary and Recommendations

We have concentrated on VDM-based technologies because this is the formal-
ism that has been used in the DCWorkbench. Other formalisms appropriate
to the DC problem are similar. The B technology, including the ProB ani-
mation and model checking environment3 shares similar characteristics, with
slightly different emphases on parts of the test-proof spectrum.

Much of the long-term value of formal modelling of dynamic coalitions
will come from the analysis of whole classes or types of model rather than
from the analysis of specific coalition structures for particular applications.
Future work should explore the analysis of patterns of coalition based on
abstract models.

A prerequisite for successful analysis of coalition models is the identi-
fication of significant validation conjectures and their precise formulation.
More experience with a variety of coalition structures and application areas
is necessary to make progress towards this goal.

For test-based validation using scenarios, the ability to couple the exe-
cutable model to a more sophisticated interface, for example to simulation
environments, will assist validation by domain experts unfamiliar with the
modelling formalism.

In practice, a combined approach to validation is likely to be the most
cost-effective, with a range of user-guided proof, model-checking and test
options capable of being deployed. Research is needed to determine which

1http://spass.mpi-sb.mpg.de/
2http://www.eprover.org [Sch04]
3http://www.stups.uni-duesseldorf.de/ProB/overview.php [LB03]

34

classes of DC model are susceptible to model-checking and which can benefit
from particular proof tactics. In particular, we recommend the development
of a series of progressively more demanding example DCs and validation
conjectures as a basis for experimentation and comparison.

35

Chapter 5

Further Work

The DCWorkbench project has been focussed on a proof-of-concept study.
Each strand of work has identified areas in which further research should be
conducted in order to take advantage of the modelling approach both as a
means of supporting decision-making in design and as a basis for studying the
role and behaviour of participants in dynamic coalitions. Below, we identify
further work in the project’s three main areas.

Models of Dynamic Coalitions

It would be valuable (though challenging) to allow the user to describe dy-
namic policies that describe mode changes that are to occur in response to
specified events (e.g., in the scenario in Section 3.1, locking down all infor-
mation release once it has been discovered that the fire was malicious). Such
dynamic policies are likely to be application-specific but languages and tools
for designing them are likely to be more generic. There are some impor-
tant and interesting parallels with policy languages for describing run-time
reconfigurations in computer architectures, an active area of current research.

Deeper-level policy changes relate to modifications in fundamental coali-
tion structure and policies (governing membership and authorisation, for
example). Such changes are likely to be an order of magnitude less frequent.
The ability to change these involves giving the user access to the underlying
model and hence requires the user to have a stronger appreciation of the
underlying model structure. It is an open question how these fundamental
aspects of the model can be made accessible to the user.

Dynamic policies for coalitions are likely to be context-sensitive. Recon-

36

figurations will be triggered by events detected as changes in external meta-
data. Such metadata may be something as simple as a clock or a moding
flag indicating a level of alert, for example. The extension of the coalitions
model to introduce context sensitivity is feasible within the current frame-
work. We have given formal models of context-sensitive access control poli-
cies [BF07] and linked these to off-line reconfiguration in dynamic coalition
structures [BFP07].

The models used for the case study were relatively simple. However our
earlier work on the range of possible dimensions of coalitions [BFJM06a]
identified many other aspects that can be modelled but which have not yet
been exercised in the workbench. Examples include the explicit modelling of
authorisation structures and information provenance.

Dynamic Coalition Simulation Environments

During the case study, users have pointed out the need for a richer infor-
mation environment in which to embed the coalition model. For example,
geographical information on the layout of the base could have an effect on the
user’s response to particular situations in the scenario. This suggests that it
is worth exploring the linkage of the DC model to sophisticated simulation
and training environments.

Enhancements to the interface would be valuable, and some possibilities
are discussed in Section 3.3. For example, a “drag-and-drop” style would
allow the user more flexibility in including or removing agents from coalitions,
and in passing specific information to specific agents.

Although the scenario was vital for the work discussed here the fact that
the model is driven by a specific, pre-determined scenario is, to some extent,
a limitation of this approach. Allowing the model to be driven by external
events would extend its capability and value. This would require a much
more flexible interface, and in this context it may also be worth exploring
a link with simulation environments. It would also be possible to have the
different agents being played by different users. Each user would have a
different instance of the workbench, all of which could be linked to the same
model.

37

Understanding Participant Behaviour in Dynamic Coali-

tions

Much could be learned about the behaviour of coalition participants. One
of the most interesting aspects concerns the development of users’ internal
mental models. By closely examining the relationship between the user and
operator of this kind of system, a better understanding of the way they
develop their mental models of the situation could be developed. By experi-
menting with different interfaces and approaches a system could be developed
which allowed more rapid and accurate mental model development in high
tempo situations. If one were to consider the kind of mistakes which could
be made by users in these situations the benefits are clear. For example,
the initial reaction of the final case study participant when confronted with
some unexpected information was that he assumed he had misremembered
the original information, rather than that there was a genuine contradiction
(where there actually was a contradiction). It would be possible to examine,
among other things, the impact of the assumption that the electronically pre-
sented information is correct, and how to counter this assumption in these
circumstances, or at least mitigate their effects through changes in training
or changes in the information system and the way in which it presents the
information.

38

Chapter 6

Conclusions

The main contributions of the project have been: (i) the development of
a workbench environment capable of animating a formal model of dynamic
coalitions on the basis of a scenario; (ii) the construction of an interface
allowing domain expert users unfamiliar with the modelling language to in-
teract with the model via the scenario; and (iii) an evaluation of the model
and workbench by means of a recorded case study. The project has pointed
the way to possible future work, with substantive next steps identified for
Workbench development, development and analysis of the formal models and
experimental analysis of users’ perceptions and behaviour.

The original project proposal raised three questions, which we now revisit.

• Can we provide models and tools that help in architecting dynamic coali-
tions and their related policies?

The target here should be to provide a framework for constructing
models that reflect different architectural or policy choices. Building
on the space of potential dynamic coalition models outlined in our
previous work [BFJM06a], we constructed models incorporating two
policies differing slightly in the information transfer at the point where
an agent joins a coalition (Section 2.3). Running the same scenarios
on both models allows the developer to explore the consequences of the
alternative policies.

A priority for further work here is to extend the range of models to
incorporate other dimensions such as context-sensitivity, authorisation
structures and information provenance. The modelling framework de-

39

veloped in the project and prior work is able to accommodate such
extensions.

The current workbench allows a user to select the policy before exe-
cuting the scenario, but we have identified the need to extend this to
allow configuration of other elements of the model, and to allow a wide
range of configuration choices to be made prior to executing the sce-
nario. The current modelling technology can encompass this readily.
We have identified a need for research into the description of policies
permitting reconfiguration of the coalition model during execution of
the scenario.

The interface features in the current workbench proved adequate for the
study undertaken within the limitations of the project. We have identi-
fied several areas of improvement but have also observed the potential
for combining coalition models with other simulation environments.

• Are human users’ perceptions of information flow in dynamic coalitions
consistent with such a model?

The workbench provided a suitable basis for an exploratory case study
which identified several aspects of information management that are
relevant to a user’s perception of information flows in coalitions. We
believe that there is a rich area of research in identifying the issues that
should be borne in mind when developing protocols, policies and user
interfaces for use in a dynamic coalition context.

The study has established that it would be possible to conduct a larger-
scale trial in which proper account could be taken of users’ backgrounds
and metrics might be developed to evaluate the accuracy of user per-
ception.

• What forms of analysis can be done on dynamic coalition models to
assist in analysing information flow?

The case study is based on the exploration of a model through scenario-
based testing. The confidence that can be placed in the outcome of
analysis based on such testing is of course limited. We have identified
the need for automated and user-guided proof, and potentially model
checking technology, in validating the emergent properties of dynamic
coalition models to the high confidence levels that would be required
during coalition design setting (Section 4). The fact that the models

40

developed in the project have a formal semantic basis means that ad-
vanced analysis tools can be applied in principle. In practice, further
research is required to help identify the conjectures that should be ver-
ified and to build tools and proof tactics that support these forms of
advanced analysis.

41

Bibliography

[And96] D.J. Andrews, editor. Information technology – Programming
languages, their environments and system software interfaces –
Vienna Development Method – Specification Language – Part 1:
Base language. International Organization for Standardization,
December 1996. International Standard ISO/IEC 13817-1.

[BF07] J. W. Bryans and J. S. Fitzgerald. Formal Engineering of
XACML Access Control Policies in VDM++. In M. Butler,
M. G. Hinchey, and M. M. Larrondo-Petrie, editors, Formal
Methods and Software Engineering: Proc. 9th Intl. Conf. on For-
mal Engineering Methods, ICFEM 2007, Boca Raton, Florida,
USA, November 14-15, 2007, volume 4789 of LNCS, pages 37–
56. Springer, 2007.

[BFJM06a] J. W. Bryans, J. S. Fitzgerald, C. B. Jones, and I. Mozolevsky.
Dimensions of Dynamic Coalitions. Technical Report CS-TR-
963, Newcastle University, School of Computing Science, May
2006.

[BFJM06b] J. W. Bryans, J. S. Fitzgerald, C. B. Jones, and I. Mozolevsky.
Formal Modelling of Dynamic Coalitions, with an Application
in Chemical Engineering. In T. Margaria, A. Philippou, and
B. Steffen, editors, IEEE-ISoLA 2006: Second International
Symposium on Leveraging Applications of Formal Methods, Ver-
ification and Validation, November 2006. To appear.

[BFP07] J. W. Bryans, J. S. Fitzgerald, and P. Periorellis. A Formal
Approach to Dependable Evolution of Access Control Policies
in Dynamic Collaborations. In Proc. 37th Annual IEEE/IFIP

42

Intl. Conf. on Dependable Systems and Networks, pages 352–
353, June 2007. Also Technical Report CS-TR-1027, School of
Computing Science, Newcastle University, UK.

[Bur78] Steve Burbeck. Applications Programming in Smalltalk-
80(TM): How to use Model-View-Controller (MVC). http://st-
www.cs.uiuc.edu/users/smarch/st-docs/mvc.html, 1978.

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic ver-
ification of finite-state concurrent systems using temporal logic
specifications. ACM Transactions on Programming Languages
and Systems, 8(2):244–263, 1986.

[FJ98] J.S. Fitzgerald and C.B. Jones. Proof in the Analysis of a Model
of a Tracking System. In J.C. Bicarregui, editor, Proof in VDM:
Case Studies, Formal Approaches to Computing and Information
Technology, pages 1–29. Springer-Verlag, 1998.

[FL98] John Fitzgerald and Peter Gorm Larsen. Modelling Systems –
Practical Tools and Techniques in Software Development. Cam-
bridge University Press, The Edinburgh Building, Cambridge
CB2 2RU, UK, 1998. ISBN 0-521-62348-0.

[FL07] J. S. Fitzgerald and P. G. Larsen. Triumphs and Challenges
for the Industrial Application of Model-Oriented Formal Meth-
ods. In T. Margaria, A. Philippou, and B. Steffen, editors, Proc.
2nd Intl. Symp. on Leveraging Applications of Formal Methods,
Verification and Validation. IEEE, 2007. Also Technical Report
CS-TR-999, School of Computing Science, Newcastle University.

[FLM+05] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat,
and Marcel Verhoef. Validated Designs for Object-oriented Sys-
tems. Springer Verlag, London, 2005. ISBN 1-85233-881-4.

[FLS08] John Fitzgerald, Peter Gorm Larsen, and Shin Sahara. VDM-
Tools: advances in support for formal modeling in VDM. vol-
ume 43, pages 3–11, February 2008.

[Hou04] Peter Houghton. Potential System Vunerabilities of a Network
Enabled Force. In Proceedings of Coalition Command and Con-
trol in The Networked Era, 2004.

43

[Jac06] Daniel Jackson. Software Abstractions: Logic, Language and
Analysis. The MIT Press, 2006.

[LB03] Michael Leuschel and Michael Butler. ProB: A Model Checker
for B. In FME 2003: Formal Methods, volume 2805 of LNCS,
pages 855–874. Springer, 2003.

[MF98] P. Mukherjee and J. S. Fitzgerald. The Ammunition Control
System. In J.C. Bicarregui, editor, Proof in VDM: Case Studies,
Formal Approaches to Computing and Information Technology,
pages 31–64. Springer-Verlag, 1998.

[Nas07] Trevor Nash. A Time to Refocus C4ISTAR Training. RUSI
Defence Systems, 10(1):114–115, June 2007.

[Rob02] Colin Robson. Real world research : a resource for social scien-
tists and practitioner-researchers. Blackwell Publishers, Oxford,
UK ; Madden, Mass., 2nd edition, 2002.

[RV01] Alexandre Riazanov and Andrei Voronkov. Vampire 1.1 (System
Description). In Automated Reasoning: Proc. of the 1st Intl.
Joint Conference, IJCAR 2001, Siena, Italy, volume 2083 of
LNCS, pages 376–380. Springer, 2001.

[Sch04] S. Schulz. System Description: E 0.81. In D. Basin and M. Rusi-
nowitch, editors, Proc. of the 2nd IJCAR, Cork, Ireland, volume
3097 of LNAI, pages 223–228. Springer, 2004.

[Ver07] S. D. Vermolen. Automatically Discharging VDM Proof Obli-
gations using HOL. Master’s thesis, Radboud University, Ni-
jmegen, 2007.

44

Appendix A

User Guide for DCWorkbench

A.1 Introduction

This guide concerns the version developed for the DCWorkbench project and
instantiated for this project scenario. The interface is configurable and ex-
tensible for more complex scenarios as discussed in Section 2.5 The Dynamic
Coalitions Workbench (DCWorkbench) is a tool which assists the user in
determining information flow and knowledge within coalitions. This version
of the workbench runs over a scripted scenario which allows the user to un-
dertake the role of a base commander in a small-sized outpost in foreign
territory. The scenario contains a number of agents, and a single coalition.
Information is presented to the user, and the user makes decisions which
affect the information flow and also the route through the scenario.

A.2 Setup

The workbench is delivered in two main parts: the VDM++ model of dy-
namic coalitions and the Java controller and graphical interface. The DCW
folder containing the models must be placed in the root directory. In order
to use the workbench, VDMTools ([FLM+05], see also www.vdmportal.org)
must be installed and running (it is recommended that the command line ver-
sion be used for optimum performance). The workbench utilises the VDM++
Java API to connect to VDMTools, and thus the Java classes composing the
VDM++/Java API provided with VDMTools must be placed in the system’s
classpath. Once this is completed, using the command line, navigate to the
directory that holds the workbench and simply execute the supplied jar file

45

by using the command: java -jar dcw.jar.
The workbench is platform independent, and thus can be used on any

operating system for which VDMTools and Java is available. All screenshots
in this manual originate from Mac OSX; the look and feel of the interface
is determined by the native windowing system of the operating system, and
thus may appear different to that shown in this manual.

A.3 Policy Selection

The workbench executes a VDM++ model of agents, coalitions and infor-
mation flow currently in the scenario. The choice of policy being used is
presented to the user when starting the workbench. The workbench contains
a model with two possible policy decisions for joining a coalition: one with
full disclosure (whereby new coalition members learn all previous common
knowledge) and partial disclosure (where new members only learn subsequent
coalition information), see Section 2.3. Figure A.1 shows the dialog the user
is presented with.

Figure A.1: Policy selection dialog

A.4 Workbench Start Up

When the workbench is loaded, a dialog box appears prompting for script
speed, as seen in Figure A.2. It is recommended that new users choose the
speed option ‘1’, and increase speed with increased experience.

A.5 Workbench Overview

When the workbench has been loaded and the running speed selected, the
user is presented with a scenario outline – this text gives some background
information to the scenario. The scenario does not start until this box is
dismissed by clicking the OK button.

46

Figure A.2: Speed selection dialog

Once clicked, the user may interact with the workbench. The main section
of the workbench window has a tabbed panel, containing the initial two views
and an event history. At the bottom of the window is the active query panel,
where deferred options are displayed. This is labelled in Figure A.3.

Figure A.3: The workbench interface

As the scenario progresses, dialog boxes will appear. Boxes conveying
information only have an ‘OK’ option, whereas boxes prompting for a decision
offer a choice.

47

A.6 Information View

When an information dialog box is displayed to the user, a brief version of
this information is displayed in an Information Window (IW), in the infor-
mation view of the workbench. Figure A.4 shows the information view with
a single IW. The contents of an IW contain the agents that the user (base
commander) knows knows that information. The agent list in each IW is
updated as new agents learn this information. The user can move, resize,
maximise and minimise IWs(Figure A.5).

Figure A.4: Information view

A.7 Agent View

In the agent view, each agent currently in the scenario is represented by
an Agent Window (AW), and contains the information the base commander
knows they know. There is a colour coded guide to the current coalition
membership. Members of the coalition are represented by a light green bor-
der; agents who are not in the coalition have a dark green border. Figure
A.6 shows three agents that are in the coalition, and one that is not.

As with the information view, each AW may be moved, resized, max-
imised and minimised.

48

Figure A.5: Manipulated information windows

Figure A.6: Agent view

49

A.8 Event History

The event history tab allows the user to refer to a log of the events that
have occured during the scenario. The log contains the time of the event (in
the simulated scenario-time) and a brief overview of the event. When the
event requires some user response, the response is also recorded. This view
is shown in Figure A.7. When the scenario is complete, the event history
(along with some internal probabilities) are saved to a time-stamped log file,
located in the Log History folder in the DCW directory.

Figure A.7: Event history view

A.9 Active Queries

When the user is required to made a decision, they may be given two op-
tions: ‘Yes’ and ‘Defer’. The yes option is straightforward, whereas the defer
option allows the user to ignore the query, and change their mind at a later
time (essentially a ‘not at the moment’ option). If the query is deferred, a
button appears in the active query panel of the workbench, and when clicked
disappears – though for some queries, the query may time out and disappear.
Figure A.5 shows an active query panel with one deferred option.

50

Appendix B

The Formal Model

B.1 The model with PartialDisclosure pol-

icy

-- DC model: designed to allow the USER to view progress from the

-- point of view of any of the roles.

-- POLICY: Partial Disclosure wrt coalitions

-- A joining member does not learn the current body of coalition

-- knowledge

-- Author: Jeremy Bryans

class DC

types

public Cid = token;

public Aid = token;

public Agent :: told : map Information to set of (Aid|Cid)

told_me : map Information to set of (Aid|Cid);

public CInf :: agents : set of Aid

told : map Information to set of (Aid|Cid)

told_me : map Information to set of (Aid|Cid);

public Information :: item : token;

51

instance variables

coals : map Cid to CInf := {|->};

agents: map Aid to Agent := {|->};

inv forall c in set dom coals &

((coals(c).agents subset dom agents)

and

(dunion rng coals(c).told subset (dom agents union dom coals))

and

(dunion rng coals(c).told_me subset (dom agents union dom coals)))

and

forall a in set dom agents &

((dunion rng agents(a).told subset (dom agents union dom coals))

and

(dunion rng agents(a).told_me subset (dom agents union dom coals)))

operations

-- constructor

public DC : map Cid to CInf * map Aid to Agent ==> DC

DC(coalitions, ags) ==

(coals := coalitions;

agents := ags;

);

-- accessor methods

-- These methods are used by the interface to access the state of the model.

public GetCoals : () ==> map Cid to CInf

GetCoals() ==

return coals;

public GetCoalition : Cid ==> CInf

GetCoalition(c) ==

return coals(c);

public GetAgents : () ==> map Aid to Agent

GetAgents() ==

return agents;

public GetAgent : Aid ==> Agent

GetAgent(a) ==

52

return agents(a);

public GetAgentIdsInCoalition : Cid ==> set of Aid

GetAgentIdsInCoalition(c) ==

return coals(c).agents;

-- GetToldAgent takes an Information i and an Agent a, and returns all

-- the entities that a has told i to.

public GetToldAgent : Information * Aid ==> set of Aid|Cid

GetToldAgent(i,a) == if (i in set dom agents(a).told) then

return agents(a).told(i)

else return {};

-- GetToldCoal takes an Information i and a Coalition c, and returns all

-- the entities that c has told i to.

public GetToldCoal : Information * Cid ==> set of Aid|Cid

GetToldCoal(i,c) == if (i in set dom coals(c).told) then

return coals(c).told(i)

else return {};

-- GetTold takes an Information i and an entity (Agent or

-- Coalition) e, and returns all the entities that e has told i to.

public GetTold : Information * (Aid|Cid) ==> set of Aid|Cid

GetTold(i,e) == if e in set dom agents then

GetToldAgent(i,e)

elseif e in set dom coals then

GetToldCoal(i,e)

else return {};

-- GetToldMeAgent takes an Information i and an Agent a, and returns

-- all the entities that have told a the Information i.

public GetToldMeAgent : Information * Aid ==> set of Aid|Cid

GetToldMeAgent(i,a) == if (i in set dom agents(a).told_me) then

return agents(a).told_me(i)

else return {};

-- GetToldMeCoal takes an Information i and a Coalition c, and returns

-- all the entities that have told c the Information i.

public GetToldMeCoal : Information * Cid ==> set of Aid|Cid

53

GetToldMeCoal(i,c) == if (i in set dom coals(c).told_me) then

return coals(c).told_me(i)

else return {};

-- GetToldMe takes an Information i and an Entity e, and returns all

-- the entities that have told e the Information i.

public GetToldMe : Information * (Aid|Cid) ==> set of Aid|Cid

GetToldMe(i,e) == if e in set dom agents then

GetToldMeAgent(i,e)

elseif e in set dom coals then

GetToldMeCoal(i,e)

else return {};

-- the GetAgentsWhoKnow operation returns agents who are aware of a

-- Information inf.

public GetAgentsWhoKnow : Information ==> set of Aid

GetAgentsWhoKnow(inf) ==

return { a | a in set dom agents &

inf in set (dom agents(a).told union dom agents(a).told_me) };

-- the GetEntitiesWhoKnow operation returns entities who are aware of a

-- Information inf.

public GetEntitiesWhoKnow : Information ==> set of Aid|Cid

GetEntitiesWhoKnow(inf) ==

return { a | a in set dom agents &

inf in set (dom agents(a).told union dom agents(a).told_me)}

union

{ c | c in set dom coals &

inf in set (dom coals(c).told union dom coals(c).told_me)}

;

-- GetAgentsWhoKnowPOV returns all agents that the given agent (a_pov)

-- knows know something. The results from GetToldAgent and

-- GetToldMeAgent are restricted to only agents.

public GetAgentsWhoKnowPOV : Information * Aid ==> set of Aid

GetAgentsWhoKnowPOV(inf, a_pov) ==

return (GetToldAgent(inf,a_pov) union GetToldMe(inf,a_pov))

\

{a | a in set dom agents};

54

-- GetEntitiesWhoKnowPOV returns all agents that the given agent (a_pov)

-- knows know something.

public GetEntitiesWhoKnowPOV : Information * Aid ==> set of Aid|Cid

GetEntitiesWhoKnowPOV(inf, a_pov) ==

return GetToldAgent(inf,a_pov) union GetToldMe(inf,a_pov);

-- GetEverythingKnownBy returns the set of Information that agent a knows.

public GetEverythingKnownBy : Aid ==> set of Information

GetEverythingKnownBy(a) ==

return { inf | inf in set (dom agents(a).told union dom agents(a).told_me)};

-- GetEverythingKnownByPOV returns the set of items that agent a knows,

-- as far as a_pov is aware.

public GetEverythingKnownByPOV : Aid * Aid ==> set of Information

GetEverythingKnownByPOV(a,a_pov) ==

if (a = a_pov) then

GetEverythingKnownBy(a)

else

return {inf | inf in set (dom agents(a_pov).told) &

a in set agents(a_pov).told(inf)}

union

{inf | inf in set (dom agents(a_pov).told_me) &

a in set agents(a_pov).told_me(inf)};

----- auxillary operations ---------

-- These are used by the model methods. They are not called directly.

-- auxillary operation to update an agent dst when

-- it learns a set of Information info from Agent/Coalition src.

public update_destination_agent : (Aid|Cid) * Aid * set of Information ==> ()

update_destination_agent(src,dst,info) ==

(

agents := agents ++

{dst |-> mu(agents(dst),told_me |-> agents(dst).told_me ++

{i|-> agents(dst).told_me(i) union {src} |

i in set dom agents(dst).told_me inter info}

munion

55

{i|-> {src} | i in set info \ dom agents(dst).told_me})}

)

pre (src in set dom agents union dom coals) and dst in set dom agents

post agents = agents~ ++

{dst |-> mu(agents~(dst),told_me |-> agents~(dst).told_me ++

{i |-> agents~(dst).told_me(i) union {src} |

i in set dom agents~(dst).told_me inter info}

munion

{i |-> {src} | i in set info \ dom agents~(dst).told_me})}

;

-- update_source_agent

-- updates agent src when src tells a set of Information info to an

-- Agent/Coalition dst. agent a now knows that Agent/Coalition dst

-- also knows info.

public update_source_agent : Aid * (Aid|Cid) * set of Information ==> ()

update_source_agent(src,dst,info) ==

(

agents := agents ++

{src |-> mu(agents(src),told |-> agents(src).told ++

{i|-> agents(src).told(i) union {dst} |

i in set dom agents(src).told inter info}

munion

{i|-> {dst} | i in set info \ dom agents(src).told})}

)

pre src in set dom agents and (dst in set dom coals union dom agents)

post agents = agents~ ++

{src |-> mu(agents~(src),told |-> agents~(src).told ++

{i |-> agents~(src).told(i) union {dst} |

i in set dom agents~(src).told inter info}

munion

{i |-> {dst} | i in set info \ dom agents~(src).told})}

;

-- update_destination_coalition

-- auxillary operation to update an coalition dst when

-- it learns a set of Information info from Agent/Coalition src.

public update_destination_coalition : (Aid|Cid) *

Cid *

set of Information ==> ()

56

update_destination_coalition(src,dst,info) ==

(

coals := coals ++

{dst |-> mu(coals(dst),told_me |-> coals(dst).told_me ++

{i|-> coals(dst).told_me(i) union {src} |

i in set dom coals(dst).told_me inter info}

munion

{i|-> {src} | i in set info \ dom coals(dst).told_me})}

)

pre (src in set dom agents union dom coals) and dst in set dom coals

post coals = coals~ ++

{dst |-> mu(coals~(dst),told_me |-> coals~(dst).told_me ++

{i |-> coals~(dst).told_me(i) union {src} |

i in set dom coals~(dst).told_me inter info}

munion

{i |-> {src} | i in set info \ dom coals~(dst).told_me})}

;

-- update_source_coalition

-- auxillary operation to update an coalition src when

-- it tells a set of Information info to Agent/Coalition src.

public update_source_coalition : Cid * (Aid|Cid) * set of Information ==> ()

update_source_coalition(src,dst,info) ==

(

coals := coals ++

{src |-> mu(coals(src),told |-> coals(src).told ++

{i|-> coals(src).told(i) union {dst} |

i in set dom coals(src).told inter info}

munion

{i|-> {dst} | i in set info \ dom coals(src).told})}

)

pre src in set dom coals and (dst in set dom agents union dom coals)

post coals = coals~ ++

{src |-> mu(coals~(src),told |-> coals~(src).told ++

{i |-> coals~(src).told(i) union {dst} |

i in set dom coals~(src).told inter info}

munion

{i |-> {dst} | i in set info \ dom coals~(src).told})}

;

------- model methods --------------

57

-- These methods are used by the scenario to manipulate the model

-- create an empty coalition that knows nothing

public CreateEmptyCoalition : Cid ==> ()

CreateEmptyCoalition(c) ==

(

coals := coals ++ {c |-> mk_CInf({},{|->},{|->})}

)

pre c not in set dom coals

post c in set dom coals and

coals = coals~ ++ {c |-> mk_CInf({},{|->},{|->})}

;

-- create a new agent

public CreateNewAgent : Aid *

map Information to set of (Aid|Cid) *

map Information to set of (Aid|Cid) ==> ()

CreateNewAgent(a,t,tm) ==

(

agents := agents ++ {a |-> mk_Agent(t,tm)}

)

pre a not in set dom agents

post a in set dom agents and

agents = agents~ ++ {a |-> mk_Agent(t,tm)}

;

-- The Joining operation.

-- The joining member does not learn the current body of coalition

-- knowledge

public Join : Aid * Cid ==> ()

Join(a,c) ==

(

coals := coals ++ {c |-> mu(coals(c), agents |-> coals(c).agents union {a})};

)

pre a in set dom agents and c in set dom coals and

a not in set coals(c).agents

post coals = coals~ ++

{c |-> mu(coals~(c),

agents |-> coals~(c).agents union {a})}

58

;

-- The Leaving operation

-- This involves no change to the agent. In particular, the agent

-- does not forget coalition-specific knowledge. The precondition

-- requires that the agent be in the coalition. The postcondition

-- removes the agent from the coalition.

public Leave : Aid * Cid ==> ()

Leave(a,c) ==

(

coals := coals ++ {c |-> mu(coals(c), agents |-> coals(c).agents \ {a})}

)

pre a in set dom agents and c in set dom coals and a in set coals(c).agents

post coals = coals~ ++

{c |-> mu(coals~(c), agents |-> coals~(c).agents \ {a})}

;

-- An agent discovers a piece of information. This is stored as

-- agents(a).told_me(i) |-> {a}.

-- discovered information is not recorded in the told field.

public Discover : Aid * Information ==> ()

Discover(a,i) ==

(

update_destination_agent(a,a,{i})

)

pre a in set dom agents

post agents = agents~ ++

{a |-> mu(agents~(a),told_me |-> agents~(a).told_me ++

{i |-> agents~(a).told_me(i) union {a} |

i in set dom agents~(a).told_me inter {i}}

munion

{i |-> {a} | i in set {i} \ dom agents~(a).told_me})}

;

-- The TellAgent operation is outside of any coalition

-- src tells dst the information i_set

-- src must know i_set beforehand.

public TellAgent : Aid * Aid * set of Information ==> ()

TellAgent(src,dst,i_set) ==

(

update_source_agent(src,dst,i_set);

59

update_destination_agent(src,dst,i_set);

update_destination_agent(dst,dst,i_set)

)

pre {src,dst} subset dom agents and

i_set subset dom agents(src).told union dom agents(src).told_me

post agents = agents~ ++

{src |-> mu(agents~(src),told |-> agents~(src).told ++

{i |-> agents~(src).told(i) union {dst} |

i in set dom agents~(src).told inter i_set}

munion

{i |-> {dst} | i in set i_set \ dom agents~(src).told})}

++

{dst |-> mu(agents~(dst),told_me |-> agents~(dst).told_me ++

{i |-> agents~(dst).told_me(i) union {src,dst} |

i in set dom agents~(dst).told_me inter i_set}

munion

{i |-> {src,dst} | i in set i_set \ dom agents~(dst).told_me})}

;

-- The TellAgentFromCoalition operation

-- A Coalition tells an Agent the Information set i_set

-- Coalition must know i_set beforehand

-- The coalition members learn that they have told agent a the info i_set

public TellAgentFromCoalition : Cid * Aid * set of Information ==> ()

TellAgentFromCoalition(c,a,i_set) ==

(

update_source_coalition(c,a,i_set);

update_destination_agent(c,a,i_set);

for all ag1 in set coals(c).agents do

update_source_agent(ag1,a,i_set);

)

pre c in set dom coals and a in set dom agents and

i_set subset dom coals(c).told union dom coals(c).told_me

post coals = coals~ ++

{c |-> mu(coals~(c),told |-> coals~(c).told ++

{i |-> coals~(c).told(i) union {a} |

i in set dom coals~(c).told inter i_set}

munion

{i |-> {a} | i in set i_set \ dom coals~(c).told})}

and

agents = agents~ ++

{a |-> mu(agents~(a),told_me |-> agents~(a).told_me ++

{i |-> agents~(a).told_me(i) union {c} |

60

i in set dom agents~(a).told_me inter i_set}

munion

{i |-> {c} | i in set i_set \ dom agents~(a).told_me})}

++

{ag1 |-> mu(agents~(ag1),

told |-> agents~(ag1).told ++

{i |-> agents~(ag1).told(i) union {a} |

i in set dom agents~(ag1).told inter i_set}

munion

{i |-> {a} |

i in set i_set \ dom agents~(ag1).told}) |

ag1 in set coals(c).agents}

;

-- TellCoalition

-- An agent a tells a coalition c a set of information i_set.

-- The telling agent does not have to be a member of the

-- coalition. The telling agent must know i_set beforehand.

--

-- Because of the full disclosure policy:

-- (i) a knows it told c

-- (update_source_agent(a,c,i_set);)

--

-- (ii) the coalition itself knows the source of the information

-- (update_destination_coalition(a,c,i_set)

--

-- (iii) every member of the coalition knows the source of the information

-- source of the information is in the "told_me" field for each member

-- of the coalition.

-- (for all ag1 in coalition

-- update_destination_agent(a,ag1,i_set);

--

-- (iv) every agent ag1 in coalition knows that c knows i_set

-- and the coalition knows it told its members

-- for each member, infomration i, {i |-> c} is added told_me

-- for the coalition, {i |-> m} is added to told for all members m in c

-- (for all ag1 in coalition

-- update_source_coalition(c,ag1,i_set);

-- update_destination_agent(c,ag1,i_set);

-- which updates c and ag1 as source and destination of i_set.)

--

-- (v) every agent in coalition knows that every other agent in

-- coalition knows i_set

61

-- (for all ag1,ag2 in coalition

-- update_source_agent(ag1,ag2,i_set);

-- update_destination_agent(ag1,ag2,i_set);)

--

-- (vi) the source of the information does not know which agents are in

-- the coalition. (unless the source is from within the coalition)

public TellCoalition : Aid * Cid * set of Information ==> ()

TellCoalition(a,c,i_set) ==

(

update_source_agent(a,c,i_set);

update_destination_coalition(a,c,i_set);

for all ag1 in set coals(c).agents do

(update_destination_agent(a,ag1,i_set);

update_source_coalition(c,ag1,i_set);

update_destination_agent(c,ag1,i_set);

for all ag2 in set coals(c).agents do

(update_source_agent(ag1,ag2,i_set);

update_destination_agent(ag1,ag2,i_set)))

)

pre a in set dom agents and c in set dom coals and

i_set subset dom agents(a).told union dom agents(a).told_me

post coals(c).agents = coals~(c).agents and

if a not in set coals(c).agents then

agents = agents~ ++

{a |-> mu(agents~(a),

told |-> agents~(a).told ++

{i |-> agents~(a).told(i) union {c} |

i in set dom agents~(a).told inter i_set}

munion

{i |-> {c} | i in set i_set \ dom agents~(a).told})}

++

{ag1 |-> mu(agents~(ag1),

told |-> agents~(ag1).told ++

{i |-> agents~(ag1).told(i) union coals~(c).agents |

i in set dom agents~(ag1).told inter i_set}

munion

{i |-> coals~(c).agents |

i in set i_set \ dom agents~(ag1).told},

told_me |-> agents~(ag1).told_me ++

{i |-> agents~(ag1).told_me(i) union {a}

union {c} union coals~(c).agents |

i in set dom agents~(ag1).told_me inter i_set}

munion

62

{i |-> {a} union {c} union coals~(c).agents |

i in set i_set \ dom agents~(ag1).told_me}) |

ag1 in set coals~(c).agents}

and

coals = coals~ ++

{c |-> mu(coals~(c),

told |-> coals~(c).told ++

{i |-> coals~(c).told(i) union coals(c).agents |

i in set dom coals~(c).told inter i_set}

munion

{i |-> coals(c).agents | i in set i_set \ dom coals~(c).told},

told_me |-> coals~(c).told_me ++

{i |-> coals~(c).told_me(i) union {a} |

i in set dom coals~(c).told_me inter i_set}

munion

{i |-> {a} | i in set i_set \ dom coals~(c).told_me})}

else -- if a in set coals~(c).agents

agents = agents~ ++

{a |-> mu(agents~(a),

told |-> agents~(a).told ++

{i |-> dunion {agents~(a).told(i),{c},coals~(c).agents} |

i in set dom agents~(a).told inter i_set}

munion

{i |-> {c} union coals~(c).agents |

i in set i_set \ dom agents~(a).told},

told_me |-> agents~(a).told_me ++

{i |-> dunion {agents~(a).told_me(i),{c}, coals~(c).agents} |

i in set dom agents~(a).told_me inter i_set}

munion

{i |-> {c} union coals~(c).agents |

i in set i_set \ dom agents~(a).told_me})}

++

{ag1 |-> mu(agents~(ag1),

told |-> agents~(ag1).told ++

{i |-> agents~(ag1).told(i) union coals~(c).agents |

i in set dom agents~(ag1).told inter i_set}

munion

{i |-> coals~(c).agents |

i in set i_set \ dom agents~(ag1).told},

told_me |-> agents~(ag1).told_me ++

{i |-> dunion {agents~(ag1).told_me(i),{c},coals~(c).agents} |

i in set dom agents~(ag1).told_me inter i_set}

munion

{i |-> {c} union coals~(c).agents |

63

i in set i_set \ dom agents~(ag1).told_me}) |

ag1 in set coals~(c).agents \ {a}}

and

coals = coals~ ++

{c |-> mu(coals~(c),

told |-> coals~(c).told ++

{i |-> coals~(c).told(i) union coals~(c).agents |

i in set dom coals~(c).told inter i_set}

munion

{i |-> coals(c).agents | i in set i_set \ dom coals~(c).told},

told_me |-> coals~(c).told_me ++

{i |-> coals~(c).told_me(i) union {a} |

i in set dom coals~(c).told_me inter i_set}

munion

{i |-> {a} | i in set i_set \ dom coals~(c).told_me})}

;

end DC

B.2 The Join operation from the FullDisclosure

policy

The VDM++ description of the FullDisclosure policy is identical to the
description in Appendix B.1 except that the Join operation is replaced with
the VDM++ below.

-- The Joining operation. All membership of coalitions is explicit

-- and all members (including the joining member) know the full

-- membership list. All agents in the coalition (including the new

-- agent) are aware that the joining member has learnt the current

-- body of coalition knowledge and are updated accordingly.

public Join : Aid * Cid ==> ()

Join(a,c) ==

(

coals := coals ++ {c |-> mu(coals(c), agents |-> coals(c).agents union {a})};

update_source_coalition(c,a,dom coals(c).told union dom coals(c).told_me);

update_destination_agent(c,a,dom coals(c).told union dom coals(c).told_me);

for all ag in set coals(c).agents do

(update_source_agent(ag,a,dom coals(c).told union dom coals(c).told_me);

for all ag in set coals(c).agents \ {a} do

update_destination_agent(ag,a,dom coals(c).told

64

union

dom coals(c).told_me))

)

pre a in set dom agents and c in set dom coals and

a not in set coals(c).agents

post coals = coals~ ++

{c |-> mu(coals~(c),

agents |-> coals~(c).agents union {a},

told |-> coals~(c).told ++

{i |-> coals~(c).told(i) union {a} |

i in set dom coals~(c).told union dom coals~(c).told_me})}

and

agents = agents~ ++

{a |-> mu(agents~(a),

told |-> agents~(a).told ++

{i |-> agents~(a).told(i) union {a} |

i in set dom agents~(a).told

inter

(dom coals~(c).told union dom coals~(c).told_me)}

munion

{i |-> {a} |

i in set (dom coals~(c).told union dom coals~(c).told_me)

\

dom agents~(a).told},

told_me |-> agents~(a).told_me ++

{i |-> agents~(a).told_me(i)

union coals~(c).agents union {c} |

i in set dom agents~(a).told_me

inter

(dom coals~(c).told union dom coals~(c).told_me)}

munion

{i |-> coals~(c).agents union {c} |

i in set (dom coals~(c).told union dom coals~(c).told_me)

\

dom agents~(a).told_me})}

++

{ag1 |-> mu(agents~(ag1),

told |-> agents~(ag1).told ++

{i |-> agents~(ag1).told(i) union {a} |

i in set dom agents~(ag1).told

inter

(dom coals~(c).told union dom coals~(c).told_me)}

munion

{i |-> {a} |

65

i in set (dom coals~(c).told union dom coals~(c).told_me)

\

dom agents~(ag1).told}) |

ag1 in set coals~(c).agents \ {a} } ;

66

Appendix C

Scenarios

C.1 Scenario diagrams

This section contains the diagrams of the initial and the final scenarios.
Section C.2 contains the full text for the final scenario.

New information:

Info leak from soldier’s

relative at hospital to press –

implies chemical injury

Time

Explosion and fire in

ammo dump

Call civilian

fire service?

Fire service may gain info

about restricted area

(higher chance of info leak)

N

More danger to sensitive

equipment/information and

personnel

Call civilian

forensics?

New information:

Fire started deliberately

Y N

Forensics may gain info

about restricted area

(higher chance of info leak)

Higher chance of suspect

escape

Give press

briefing?

Y N

Higher chance of info leak.

Public panic?

Higher chance of suspect

escape

Y

Update

press?

Y N

Higher chance of public

mistrust and/or panic

End simulation:

Present user with likely

outcomes of scenario

Higher chance of info leak

68

i 1 E x p l o s i o n a n d fi r e o n b a s ei 2 S o l d i e r s i n j u r e d d 1 M o d i f ya c c e s sp o l i c y ? d 2 a L e ti n : 1 . N o b o d y2 . A u t h o r i s e d3 . E s s e n t i a l O n l yd 2 b L e to u t : 1 . N o b o d y2 . A u t h o r i s e d3 . E s s e n t i a l O n l y n 1 I f p o l i c y i sc h a n g e d , s u s p e c ta p p r e h e n s i o n w i l lb e a l t e r e di 5 I n t e r n a l m e d i c sr e p o r t a b l e t o c o p ey e sn od 3 A l l o wc a s u l t i e s t o b et a k e n o f f s i t e ?1 . Y e s2 . D e f e ri 3 S o l d i e r st a k e n t oh o s p i t a li 4 I n f o r m a t i o nl e a k f r o mh o s p i t a li 6 I n t e r n a l fi r e s e r v i c e r e p o r t s fi r et o o l a r g e t o c o n t r o l d 6 C a l l e x t e r n a la m b u l a n c e ? 1 . Y e s2 . D e f e rd 5 C a l l e x t e r n a lfi r e s e r v i c e ? 1 . Y e s2 . D e f e rd 4 C a l l e x t e r n a lp o l i c e ? 1 . Y e s2 . D e f e r
i 7 F i r eC o n t a i n e di 8 F i r e s p r e a d s t on e a r b y b u i l d i n g 8 0 %2 0 %

i 9 F i r e s t a r t e dd e l i b e r a t e l y d 7 S e t u p r o a db l o c k s 1 . Y e s2 . D e f e ri 1 0 D e s c r i p t i o n o fs u s p e c t o b t a i n e d n 7 M o r e c h a n c e o fc a t c h i n g s u s p e c t ,e s p . i f p o l i c e a r ec a l l e dn 5 I n c r e a s e d s m o k eq u i c k e n s p r e s s a n dp u b l i c a r r i v a l
n 2 m o r e c h a n c e o fc a t c h i n g s u s p e c t

i 1 1 S o l d i e r s i n j u r e dw h i l s t fi g h t i n g fi r ei 1 7 I n t e r n a l m e d i c sr e p o r t u n a b l e t o c o p ew i t h c a s u a l t y n u m b e r si 1 9 S o l d i e r sd i e i 2 8 S o l d i e r s t a k e n t oc i v i l i a n h o s p i t a l b ya m b u l a n c eo r
i 2 0 F i r e s p r e a d st o d i e s e l d u m pd 1 2 P u l l b a c ka n d a l l o w d i e s e lt o b u r n ? 1 . Y e s2 . D e f e ri 2 5 R e p o r t s o f m a j o rb a s e c a s u l t i e s

i 1 2 I f n o t a l r e a d y p r e s e n t , l o c a l fi r es e r v i c e a r r i v e d e m a n d i n g a c c e s s t os a f e g u a r d t h e i r n e i g h b o u r h o o d i 1 3 L o c a l c i v i l i a n s g a t h e ro u t s i d e t o w a t c h t h es p e c t a c l e d 8 D i v e r t f o r c e st o c o n t r o l l o c a l s ? 1 . Y e s2 . D e f e ri 1 6 P u b l i c d i s o r d e r o v e rc o n c e r n s a b o u t d a m a g e t ol o c a l p r o p e r t y a n d p e r s o n a li n j u r y
n 8 S u s p e c t m o r el i k e l y t o e s c a p ei 1 5 P u b l i c c r u s h i n gi n j u r i e s a s t e n s i o nm o u n t s a t f r o n t g a t ei 1 4 L o c a l p r e s sa r r i v e s d 9 M a k e p r e s ss t a t e m e n t ? 1 . Y e s2 . D e f e r i 2 1 P u b l i c d i s o r d e ri n c r e a s e sd 1 0 w h a tt y p e ? 1 . A m i n o r i n c i d e n t o n t h eb a s e3 . T h e b a s e w a s b o m b e d2 . A fi r e h a s b r o k e n o u t i 2 2 I n t e r n a t i o n a l n e w sc o r r e s p o n d e n t a r r i v e sn 8 S u s p e c t m o r el i k e l y t o b ea p p r e h e n d e di 2 3 F i r e i n d i e s e l d u m pt a k e s h o l d i 2 4 R e p o r t s o f s e r i o u so n s i t e a n d o f f s i t ed a m a g e a n d c a s u a l t i e s

i 1 8 A s q u a d l e a d e r r e p o r t sh e m a y b e a b l e t o d e s t r o yw a t e r t a n k s u p p o r t l e g ,s p i l l i n g w a t e r o n f i r ed 1 1 A t t e m p t t od e s t r o y w a t e rt o w e r s u p p o r t ? 1 . Y e s2 . D e f e ri 2 6 fi r e c o n t a i n e d i 2 7 fi r e u n c o n t r o l l a b l e2 5 % 5 0 % o r 3 0 % i f c i v fi r e5 0 % o r 7 0 % i f c i v fi r e 7 5 %

i f e x t e r n a lp o l i c e , l e a k i 9 t op r e s s

i n f o r m a t i o nq u e r yi n t e r n a l

69

C.2 Full text of main scenario

Introductory text. You are the base commander on a base in a friendly
country in the middle-east. Locals are, on the whole, regarded as friendly,
however it is believed that some foreign insurgent forces are operating over
the nearby border in hostile territory. The base is a small sized outpost
placed near to the border as an observation post. It contains barracks, a
number of patrol vehicles, modest fire-fighting facilities, an armoury, a diesel
store and medical facilities capable of dealing with 10 injured personnel. The
base is utilising an old school complex, spread over a number of buildings
in a medium to large sized town. The base does not contain any critical
information beyond the norm. Civilian contractors are often on site carrying
out maintenance.

During the course of the morning, an explosion of some kind is heard and
Initial reports begin to come in of some unknown event on the base.

i1– Explosion and fire on base A report from the fire officer comes in
that there has been some kind of explosion and a resulting fire in one of the
buildings on the base. The cause of the explosion and the location of the fire
are as yet unconfirmed.
i2 – Some soldiers have been injured A number of soldiers were appar-
ently injured in the explosion. The exact number and nature of injuries is as
yet unknown.
i3 – Injured soldiers are taken to hospital The injured soldiers are taken
by armoured Land-Rover to the nearby local hospital.
i4 – Information has leaked via the relative of a hospitalised solider

Reports from the local press indicate that one of the injured soldiers in hos-
pital contacted his girlfriend using the hospital telephone. There has been
an announcement in the local press regarding an explosion and fire at the
base.
i5 – Internal medics report able to cope The internal medical staff
report that there are 8 injuries as a result of the explosion. They report that
they are able to cope with the number of casualties at this time, although
suggest that the local hospital would provide better care for the injured.
The reports are primarily broken limbs, cuts and bruises although there are
a number of severe injuries from shrapnel.
i6 – Internal fire service reports fire is too large to control The base
fire-fighters report that they are unlikely to be able to control the fire on
their own.
i7 – Fire is contained The combined efforts of the on-site fire-fighters and
the civilian fire service have contained the fire and are currently damping
down and investigating.

70

i8 –Fire spreads to nearby building The fire has spread to a nearby
building. If the fire continues to spread, nearby diesel stores will be in danger
of igniting.
i9 – The fire was started deliberately, inform coalition? Reports
indicate that the fire was started as a result of a deliberate act. There is
evidence that an improvised explosive device may have been used. This
information is deemed as sensitive, share with rest of coalition?
i10 – Description of suspect obtained A description of the suspect has
been obtained. It would seem that the suspect was either a civilian contractor
or in the guise of one.
i11 – Soldiers have been injured while fighting the fire Reports indi-
cate that an additional 4 injuries have occurred whilst fighting the fire. These
are primarily burn and smoke related injuries and are serious in nature.
i12 – Local fire service arrive outside demanding access to safeguard

their neighbourhood The local civilian fire service have arrived outside
the base. Having apparently seen the smoke and heard the explosions they
are concerned about potential damage to their local neighbourhood.To allow
entry, press the Call Local Fire Service button
i13 – Local civilians gather outside to watch the spectacle The guards
at the front gate report that local civilians have started gathering out side.
They appear to have been attracted by the noise of the explosion and the
large plume of black smoke rising from the base.
i14 – Local press arrives The guards at the front gate report that what
appears to be the local press has arrived outside and are filming the current
events as they unfold.
i15 – Public crushing injuries as tension mounts at front gate Gate
guards report that as the tension mounts outside people are being knocked
to the ground and injured by the surging of the growing crowd.
i16 – Public disorder over concerns about damage to local property

and personal injury Gate guards report that the crowd outside is growing.
It appears there is mounting concern over possible damage to the surrounding
houses and injuries to the civilians. They are demanding that steps be taken
to control the fire.
i17 – Internal medics report unable to cope with casualty numbers

The base medics report that they are no longer able to cope with the number
of injured and the severity of the injuries.
i18 – A squad leader reports he may be able to destroy water tank

support leg, spilling water on fire A squad leader present at the base
reports that he may be able to destroy the support leg of a water tower near
the fire using explosives. He believes this will have a chance of spilling a large
amount of water in the direction of the fire, putting the fire out.

71

i19 – Soldiers die unless external ambulance is already present Base
medics report that unfortunately 5 soldiers have died as a result of the injuries
sustained during the explosion and subsequent fire.
i20 – Fire spreads to diesel dump Fire-fighters report that the fire has
spread to the diesel dump, and barrels of diesel are slowly being engulfed by
flames. Small explosions can be heard as barrels of diesel take hold.
i21 – Public disorder increases Gate guards report that the public outside
is growing increasingly restless.
i22 – International news correspondent arrives Gate guards report
that what appears to be an international press team have arrived outside
and set up for live broadcast.
i23 – Fire in the diesel dump takes hold A series of explosions is heard
through the base as the fire takes hold in the diesel dump and numerous
barrels of diesel explode.
i24 – Reports of serious onsite and offsite damage and casualties

Reports come in of serious damage and casualties both on and off the base
as a result of the large explosions. This is mainly caused by shrapnel from
the explosions and falling debris, some of which is on fire.
i25 – Reports of major base casualties The base medics report that
there have been a number of deaths and serious injuries primarily as a result
of fire-fighting in the diesel store.
i26 – Fire is Contained Fire-fighters report that the blaze has been con-
tained. They continue to damp down the area to ensure the fire is out and
stays out.
i27 – Fire is uncontrollable Fire-fighters report that the fire is now burn-
ing out of control and they can no longer get close enough to the blaze to be
of any fire-fighting use.
i28 – Soldiers taken to civilian hospital by ambulance Soldiers taken
to civilian hospital by ambulance.
d1 Do you wish to modify the current access policy for the base? The current
policy is that authorized people can enter and exit the base at the front
gate. At present, the list of authorized people includes civilian contractors
working onsite. Essential personnel are classed as your military staff with
proper clearance who are directly involved with the current crisis.
d2a Changing access policy for entry into base. At present, the list of autho-
rized people includes civilian contractors working onsite. Essential personnel
are classed as your military staff with proper clearance who are directly in-
volved with the current crisis.
d2a Changing access policy for exit from base. At present, the list of autho-
rized people includes civilian contractors working onsite. Essential personnel
are classed as your military staff with proper clearance who are directly in-

72

volved with the current crisis.
d3 Do you wish to allow your injured personnel to be taken to the local
hospital? It is possible that they can be driven there in armoured Land-
Rovers which are present on the base.
d4 You have the option of calling the external police service, will you call
the external police?
d5 You have the option of calling the external fire service, will you call the
local fire service?
d6 You have the option of calling the external ambulance service, will you
call local ambulance?
d7 Do you wish to set up road blocks in the surrounding area in order to
attempt to apprehend the suspect? You have a limited number of infantry
onsite and the setting up of effective roadblocks would take a substantial
percentage of your personnel.
d8 Do you wish to use some of your personnel to control the crowd outside
the front gate? They would set up a perimeter around the base to ensure
the safety of the local civilians present.
d9 The unit press officer asks if you wish to make any kind of statement to
the local press outside of the base. He will prepare and present the statement
for you if you wish to make one.
d10 What would the nature of this statement be? The unit press officer has
given you three alternatives depending on your objective and will run which
you choose. These are:

1. There has been a minor incident on the base. This is still under
investigation and the public will be informed of any further information as
and when it becomes available.

2. A fire has broken out on the base which is currently being fought.
While we believe there is no immediate danger to the surrounding area the
public should maintain a safe distance.

3. A fire has broken out on the base which is currently being fought.
We believe that this may have been as a result of a deliberate act. At this
time, we would like to speak to a man matching the following description in
connection with this. [Give description of suspect to press].
d11 Do you wish for the attempt to be made to destroy the supporting leg
of the water tower in order to try and contain the fire?
d12 Do you wish to pull your personnel back from the fire and allow the fire
to burn its course?

73

