

University of Newcastle upon Tyne

COMPUTING
SCIENCE

Understanding programming language concepts via Operational
Semantics

C. B. Jones

TECHNICAL REPORT SERIES

No. CS-TR-1046 August, 2007

NEWCASTLE
UN IVERS ITY OF

TECHNICAL REPORT SERIES

No. CS-TR-1046 August, 2007

Understanding programming language concepts via Operational Semantics

Cliff B. Jones

Abstract

The origins of \formal methods" lie partly in language description (although
applications of methods like VDM, RAISE or B to areas other than programming
languages are probably more widely known). This paper revisits the language
description task but uses operational (rather than denotational) semantics to illustrate
that the crucial idea is thinking about an abstract model of something that one is
trying to understand or design. A \story" is told which links together some of the
more important concepts in programming languages and thus illustrates how formal
semantics deepens our understanding.

© 2007 University of Newcastle upon Tyne.
Printed and published by the University of Newcastle upon Tyne,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

JONES, C. B.

Understanding programming language concepts via Operational Semantics
[By] C. B. Jones.

Newcastle upon Tyne: University of Newcastle upon Tyne: Computing Science, 2007.

(University of Newcastle upon Tyne, Computing Science, Technical Report Series, No. CS-TR-1046)

Added entries

UNIVERSITY OF NEWCASTLE UPON TYNE
Computing Science. Technical Report Series. CS-TR-1046

Abstract

The origins of \formal methods" lie partly in language description (although applications of methods like VDM,
RAISE or B to areas other than programming languages are probably more widely known). This paper revisits the
language description task but uses operational (rather than denotational) semantics to illustrate that the crucial
idea is thinking about an abstract model of something that one is trying to understand or design. A \story" is told
which links together some of the more important concepts in programming languages and thus illustrates how
formal semantics deepens our understanding.

About the author

Cliff Jones is currently Professor of Computing Science at Newcastle. He has spent more of his career in industry
than academia. Fifteen years in IBM saw, among other things, the creation with colleagues of the Vienna
Development Method. He went on to build the Formal Methods Group at Manchester University, which among
other projects created the "mural" theorem proving assistant. A Senior Fellowship focused on formal
(compositional) development methods for concurrent systems. In 1996 he moved to Harlequin directing some 50
developers on Information Management projects and finally became overall Technical Director before leaving to
re-join academia in 1999. Cliff's interests in formal methods have now broadened to reflect wider issues of
dependability. Cliff is a Fellow of the Royal Academy of Engineering, the ACM, BCS and IEE.

Suggested keywords

OPERATIONAL SEMANTICS

Understanding programming language concepts
via operational semantics

Cliff B. Jones

School of Computing Science, Newcastle University, NE1 7RU, UK

Abstract. The origins of “formal methods” lie partly in language de-
scription (although applications of methods like VDM, RAISE or B to ar-
eas other than programming languages are probably more widely known).
This paper revisits the language description task but uses operational
(rather than denotational) semantics to illustrate that the crucial idea
is thinking about an abstract model of something that one is trying to
understand or design. A “story” is told which links together some of the
more important concepts in programming languages and thus illustrates
how formal semantics deepens our understanding.

This report is a preprint of a paper that will appear in an LNCS volume —
please cite that publication [Jon07].

1 Introduction

One objective of this paper is to show how the concept of “abstract modelling”
of any computer system applies to programming languages. The position taken
is that a description of the semantics of such a language can not only aid under-
standing but can also be used to design a language which is likely to satisfy the
needs of both users and compiler writers.

Computers are normally programmed in “high-level” (programming) lan-
guages (HLLs). Two important problems are

1. the correctness of programs (i.e. whether or not a program satisfies its spec-
ification) written in such a language; and

2. the correctness of the compiler that translates “source programs” into “ob-
ject programs” (in “machine code”).

At the root of both of these problems is the far more important issue of the
design of the high-level language itself.

The designer of a programming language faces several engineering challenges
— one balance that must be sought is the “level” of the language: too low a
level of language increases the work of every programmer who writes programs
in that language; too high a level (far from the realities of the machines on which
the object programs will run) and not only is the compiler writer’s task harder
but it is also likely that any compiler will produce less efficient code than a
programmer with closer access to the machine. A badly designed language will
impair the effectiveness of both user and implementer.

The essence of what this paper addresses is the modelling of concepts in
programming languages based on the firm conviction that most language issues
can –and should– be thought out in terms of a semantic model long before the
task of designing a complier is undertaken.

A thread –partly historical– through some of the more important concepts of
programming languages is created. Little time is spent on details of the (concrete)
syntax of how a concept is expressed in one or another programming language.
The interest here is in concepts like “strong typing”, the need for –and support
of– abstract types, ways of composing programs and documenting interfaces to
components, modes of parameter passing, constraining “side-effects”, deciding
where to allow non-determinacy, the need for files/databases, the (lack of) inte-
gration of database access languages into programming languages, and the role
of objects. A particular emphasis is on issues relating to concurrency.

The main focus is not, however, on the specific features selected for study; it
is the modelling concept which is promoted. Modelling tools like “environments”,
choosing a “small state” and (above all) abstraction are taught by application.
The interest here is in modelling — not in theory for its own sake. The meth-
ods can be applied to almost any language. They are not limited to the specific
language features discussed here — but an attempt has been made to provide
a “thread” through those features chosen. Indeed, another objective of the pa-
per is to show relationships between language concepts that are often treated
separately.

This paper uses VDM notation for objects/functions etc. — the choice is
not important and the material could be presented in other notations. The
story of the move from VDL [LW69] to VDM [BBH+74,BJ78,BJ82] is told
in [Jon01b]. This author’s decision to move back to operational semantics is
justified in [Jon03b].

1.1 Natural vs. artificial languages

The distinction between natural and formal languages is important. All humans
use languages when they speak and write “prose” (or poetry). These “natural”
languages have evolved and each generation of humans pushes the evolution
(if not “development”) further. The natural language in which this paper is
written incorporates ideas and words from the languages of the many invaders
of “England”.1

In contrast to the evolving natural languages, humans have designed formal
or artificial languages to communicate with computers. Different though the
history –and objectives– of natural and formal languages are, there are ideas in
common in the way one can study languages in either class.

The languages that are spoken by human beings were not designed by com-
mittee; they just evolved2 — and they continue to change. The evolution process
is all too obvious from the irregularities in natural languages. The task of de-
scribing natural languages is therefore very challenging but, because they have
been around longer, it is precisely with natural languages that one first finds a
systematic study. Charles Sanders Peirce (1839-1914) used the term “Semiotics”.
Crucially, he divided the study the study of languages into:

– syntax: structure
– semantics: meaning
– pragmatics: intention

Heinz Zemanek applied the terminology to programming languages in [Zem66].
It is not difficult to write syntax rules for parts of natural languages but be-

cause of their irregularity, a complete syntax is probably not a sensible objective.
It is far harder to give a semantics to a language (than to write syntactic

rules). If one knows a language, another language might be explained by trans-
lating it into the known language (although nuances and beauty might be lost).

Within one language, a dictionary is used to give the meanings of words. But
there is clearly a danger of an infinite loop here.

1.2 Formal languages

People designed “formal” (or artificial) languages long before computers existed
(a relevant example is Boole’s logic [Boo54]); but the main focus here is on
1 No slight to the rest of the United Kingdom – just to make the link to “English”

which is the name of our common language.
2 Of course, there are a small number of exceptions like Volapük and Esperanto.

languages used to communicate with (mostly – program) computers. These lan-
guages are “formal” because they are designed (often by committees); the term
artificial is used to emphasize the distinction from the evolutionary process that
gives us “natural languages”.

When digital computers were first programmed, it was by writing instructions
in the code of the machine (indeed, in the world’s first “stored program electronic
computer” –the Manchester “Baby”– (1948), the program was inserted in binary
via switches). Assembler programs gave some level of convenience/abstraction
(e.g. offering names for instructions; later, allocating addresses for variables).

FORTRAN (“formula translator”) is generally credited as the first successful
programming language. It was conceived in the early 1950s and offered a number
of conveniences (and some confusions) to people wanting to have a computer
perform numerical computations.

The creation of FORTRAN led to the need for a translator (or compiler).
The first such was built by an IBM team led by John Backus (1924–2007) in
1954–57.

There is an enormous number of high-level programming languages.3 Jean
Sammet wrote a book on “500 Programming Languages” but gave up trying
to update it; a very useful history of the main languages is [Wex81]. I take the
position that existing languages are mostly poor and sometimes disastrous! Just
think for a minute about how many billions of pounds have been wasted by
programs that can index outside the limits of a “stack”. It is clear that these
imperative4 languages are crucial in the effective use of computers.5

– few encourage clear expression of ideas
– almost all offer gratuitous traps for the unwary
– almost none maximize the cases where a static process (compilation) can

detect errors in programs

Apart from programming languages, there are many other classes of artificial
languages associated with computers including those for databases. So one can
see readily that there is an enormous advantage in designing good languages.

1.3 Goals of this paper

Engineers use models to understand things before they build them. The essence
of a model is that it abstracts away from detail that might be irrelevant and
facilitates focus on some specific aspect of the system under discussion.
3 Some interesting points along the history of “imperative” languages are FORTRAN,

COMTRAN, COBOL, ALGOL 60, ALGOL W, PL/I, Pascal, Simula, CPL, Modula
(1, 2 and 3), BCPL, C, C++, Eiffel, Java and Csharp.

4 As the qualification “imperative” suggests, there are other classes of HLLs. This
paper mostly ignores “functional” and “logic” programming languages here.

5 This author was on a panel on the history of languages and semantics in CMU during
2004; Vaughan Pratt asked: “(i) how much money have high-level programming
languages saved the world? (ii) is there a Nobel prize in economics for answering
part (i)?”.

It is possible to design a language by writing a compiler for that language but
it is likely –even for a small language– to be a wasteful exercise because the writer
of a compiler has to work at a level of detail that prevents seeing “the wood for
the trees”. It might be slightly easier to start by writing an interpreter for the
language being designed but this still requires a mass of detail to be addressed
and actually introduces a specific technical danger (lack of static checking) that
is discussed in more detail in Section 2.2.

In fact, many languages have been designed by a mixture of writing down
example programs and sketching how they might be translated (it is made clear
above that language design requires that engineering trade-offs are made between
ease of expression and ease of translation). But in many cases, the first formal
manifestation of a language has been its (first) compiler or interpreter.

The idea of writing a formal (syntax or) semantics is to model the language
without getting involved in the detail of translation to some specific machine
code. With a short document one can experiment with options. If that document
is in some useful sense “formal” one can reason about the consequences of a
language design.

A repeated “leitmotiv” of this paper is the need to abstract. In fact, the sim-
plest semantic descriptions will be just abstract interpreters: the first descriptions
in Section 3 are interpreters that are made easier to write because they abstract
from much irrelevant detail. Even the syntax descriptions chosen in Section 2 are
abstract in the sense that they (constructively) ignore many details of parsing
etc.

1.4 A little history

The history of research on program verification is outlined in [Jon03a] (a slightly
extended TR version is also available [Jon01a]) but that paper barely mentions
the equally interesting story about research on the semantics of programming
languages.6 Some material which relates directly to the current paper can be
found in [Jon01b,Plo04a].

There are different approaches to describing the semantics of programming
languages. It is common practice to list three approaches but there are actually
four and it is, perhaps, useful to split the approaches into two groups:

– model oriented
– implicit

Model-oriented approaches build a more-or-less explicit model of the state of the
program; these approaches can be further divided into

– operational
– denotational

6 There is a wealth of source material all the way from [Ste66] to recent events
organized under the aegis of the (UK) “Computer Conservation Society” — see
http://vmoc.museophile.org/pvs01 and http://vmoc.museophile.org/pvs04

This paper emphasizes the operational semantics approach. Any operational
approach can be compared with the task of interpreting the language in question.
This comparison is very clear in Section 3 below but is also the essence of the
generalization explained in Section 3.1 (and applied to more language features in
Sections 4–4.5). The denotational approach is akin to translating one language
into another and is discussed further in Section 7.

Many authors equate “implicit” language descriptions with “axiomatic se-
mantics” but it is actually worth also dividing this class of descriptions into

– axiomatic
– equivalences

Axiomatic descriptions provide a way of reasoning about programs written in
a language; these approaches –and the link to model-oriented semantics– are
discussed in Section 7. The idea of characterizing a programming language by
equivalence laws goes back to the 1960s but is achieving more notice again in
recent years.

McCarthy’s paper [McC66] at the 1964 Baden-bei-Wien conference was a key
step in the development of ideas on describing a language by way of an “abstract
interpreter”. His paper was one of the major influences on VDL [LW69]. Inter-
estingly, McCarthy also introduced a notion of “abstract syntax” in that same
paper.

There are many useful texts [Gor79,Gor88,Hen90,NN92,Win93]; books which
also look at implementation aspects include [Rey98,Sco00,Wat04].

2 Delimiting the language to be defined

The ultimate interest here is in describing (or designing) the semantics of pro-
gramming languages. Before one can describe a language, one needs to know
what are its valid “texts”. The concern with the content (as opposed to the
meaning) of a language is termed syntax. In general, there will be an infinite
number of possible “utterances” in any interesting language so they cannot be
simply enumerated. Consequently a syntactic description technique must be ca-
pable of showing how any text in the infinite class can be generated.

Section 2.1 discusses how a concrete syntax can be used to define the strings
of symbols which are plausible programs in a language. A concrete syntax can
also tell us something about the structure the strings are trying to represent. A
carefully designed concrete syntax can also be used in parsing.

Most authors define semantics in terms of concrete representations of pro-
grams but experience with defining larger languages (e.g. PL/I or Ada) –or
languages with many ways of expressing same thing (e.g. C or Java)– makes
clear that this becomes messy and brings gratuitous difficulties into the part of
the description (the semantics) where one wants to focus on deeper questions.
Therefore, abstract syntax descriptions are used because these focus on struc-
ture and remove the need to worry about those symbols that are only inserted
in order to make parsing possible.

This is not quite the end of the story since both concrete and abstract syntax
descriptions allow too many possibilities and Section 2.2 explains how to cut
down the set of “valid” programs before attempting to give their semantics.

2.1 Syntax

There are many variants of notation for describing the Concrete Syntax of a
language. It is not difficult to devise ways of specifying valid strings and most of
the techniques are equivalent to Chomsky “context free” syntax notation. Most
publications follow the Algol 60 report [BBG+63] and use the notation which
is known as “Backus Normal Form” (also known as “Backus Naur Form”).7
Such a grammar can be used to generate or recognize sentences in the language.
Parsing also uses the grammar to associate a tree structure with the recognized
sentences.

A concrete syntax gives both a way of producing the texts of programs and of
parsing programs. But even for this rather simple language the concrete syntax
is “fussy” in that it is concerned with those details which make it possible to
parse strings (e.g. the commas, semicolons, keywords and –most notably– those
things that serve to bracket strings that occur in recursive definitions). For a
programming language like C or Java where there are many options, the concrete
syntax becomes tedious to write; the task has to be done but, since the syntactic
variants have nothing to do with semantics, basing the semantics on a concrete
syntax complicates it in an unnecessary way. The first big dose of abstraction is
deployed and all of the subsequent work is based on an “abstract syntax”.

An abstract syntax defines a class of objects. In most cases, such objects are
tree-like in that they are (nested) VDM composite objects. But to achieve the
abstraction objective, sets, sequences and maps are used whenever appropriate.

This section builds up the Abstract Syntax of “Base” (see Appendix A where
the description of the “Base” Language is presented in full).

A simple language (“Base”) can be built where a program is rather like a
single Algol block (with no nested blocks). A Program contains declarations of
Ids as (scalar8) variables and a sequence of Stmts which are to be executed.9
The declarations of the variables (vars) maps the identifiers to their types.

Program :: vars : Id m−→ ScalarType
body : Stmt∗

Notice that has –at a stroke– removed worries about the (irrelevant) order of
declarations; this also ignores the delimiters between identifiers and statements
since they are not an issue in the semantic description. The parsability of a
language has to be sorted out; but it is not a semantic question. Here and
7 In passing, it is hard to believe that so many programming language books today

are published without a full concrete syntax for the language!
8 The adjective “scalar” appears superfluous for now but compound variables like

arrays are discussed below.
9 Section 4 introduces Blocks and a program can then be said to contain a single Block

– but this is not yet needed.

elsewhere it is preferable to deal with issues separately and get things out of
the way rather than complicate the semantic description. The abstraction in an
abstract syntax does precisely this.

According to this abstract syntax, the smallest possible Program declares no
variables and contains no statements, thus

mk -Program({ }, []) ∈ Program

Not much more useful is a program which declares one variable but still has no
statements.

mk -Program({i $→ IntTp}, []) ∈ Program

More interesting programs are given below.
There are exactly two types in this base language:

ScalarType = IntTp | BoolTp

Three forms of statement will serve to introduce most concepts

Stmt = Assign | If | While

Assign :: lhs : Id
rhs : Expr

Thus, if e ∈ Expr ; i ∈ Id

mk -Assign(i , e) ∈ Assign

One of the major advantages of the VDM record notation is that the mk -Record
constructors make the sets disjoint.

Conditional execution can be defined in an If statement.
If :: test : Expr

th : Stmt∗
el : Stmt∗

Thus,

mk -If (e, [], []) ∈ If

A common form of repetitive execution is achieved by a While statement.
While :: test : Expr

body : Stmt∗

Thus,

mk -While(e, []) ∈While

It is possible to illustrate the key semantic points with rather simple expres-
sions.

Expr = ArithExpr | RelExpr | Id | ScalarValue

ArithExpr :: opd1 : Expr
operator : Plus | Minus
opd2 : Expr

RelExpr :: opd1 : Expr
operator : Equals | NotEquals
opd2 : Expr

ScalarValue = Z | B
No definition is provided for Id since one can abstract from such (concrete)
details.

Thus,

1 ∈ ScalarValue
i ∈ Id
mk -ArithExpr(i ,Minus, 1) ∈ Expr
mk -RelExpr(i ,NotEquals, 1) ∈ Expr

And then with

s1 = mk -If (mk -RelExpr(i ,NotEquals, 1),
[mk -Assign(i ,mk -ArithExpr(i ,Minus, 1))],
[mk -Assign(i ,mk -ArithExpr(i ,Plus, 1))])

s1 ∈ Stmt

And, finally

mk -Program({i $→ IntTp}, [s1]) ∈ Program

It it worth noting that the supposed distinction between arithmetic and re-
lational expressions is not policeable at this point; this gets sorted out in the
next section when type information is used.

2.2 Eliminating invalid programs

Before moving to look at semantics, it is worth eliminating as many invalid
programs as possible. For example, it is easy to recognize that

mk -ArithExpr(i ,Minus, true)

contains an error of types. This is easy to check because it requires no “context”
but in a program which (like the final one in the preceding section) declares only
the identifier i , one would say that

mk -Assign(j ,mk -ArithExpr(i ,Minus, 1))

has no meaning because it uses an undeclared variable name. Similarly, uses of
variables should match their declarations and, if i is declared to be an integer,

mk -Assign(i , true)

makes no sense.
A function is required which “sorts the sheep from the goats”: a program

which is type correct is said to be “well formed”. A function which delivers

either true or false is a predicate. It is not difficult to define a predicate which
delivers true if type information is respected and false otherwise.

In order to bring the type information down from the declarations, the sig-
nature of the inner predicates must be

wf -Stmt :Stmt × TypeMap → B
wf -Stmt(s, tpm) ! · · ·

(all of these predicates are given names starting wf - · · · as a reminder that they
are concerned with well-formedness) with the following “auxiliary objects”

TypeMap = Id m−→ ScalarType

The top-level predicate is defined

wf -Program :Program → B
wf -Program(mk -Program(vars, body)) ! wf -StmtList(body , vars)

All that remains to be done is to define the subsidiary predicates. Those for Stmt
(and for Expr) have to be recursive because the objects themselves are recursive.
Thus

wf -StmtList : (Stmt∗)× TypeMap → B
wf -StmtList(sl , tpm) ! ∀i ∈ inds sl · wf -Stmt(sl(i), tpm)

Then:

wf -Stmt :Stmt × TypeMap → B
wf -Stmt(s, tpm) ! · · ·

is most easily given by cases below10

wf -Stmt(mk -Assign(lhs, rhs), tpm) !
lhs ∈ dom tpm ∧
c-tp(rhs, tpm) = tpm(lhs)

wf -Stmt(mk -If (test , th, el), tpm) !
c-tp(test , tpm) = BoolTp ∧
wf -StmtList(th, tpm) ∧ wf -StmtList(el , tpm)

wf -Stmt(mk -While(test , body), tpm) !
c-tp(test , tpm) = BoolTp ∧
wf -StmtList(body , tpm)

10 This is using the VDM pattern matching trick of writing a “constructor” in a pa-
rameter list.

The auxiliary function to compute the type of an expression (c-tp used above)
is defined as follows

c-tp :Expr × TypeMap → (IntTp | BoolTp | Error)

c-tp(e, tpm) ! given by cases below

c-tp(mk -ArithExpr(e1, opt , e2), tpm) !
if c-tp(e1, tpm) = IntTp ∧ c-tp(e2, tpm) = IntTp
then IntTp
else Error

c-tp(mk -RelExpr(e1, opt , e2), tpm) !
if c-tp(e1, tpm) = IntTp ∧ c-tp(e2, tpm) = IntTp
then BoolTp
else Error

For the base cases:

e ∈ Id ⇒ c-tp(e, tpm) = tpm(e)

e ∈ Z ⇒ c-tp(e, tpm) = IntTp

e ∈ B ⇒ c-tp(e, tpm) = BoolTp

Because they are dealing with the type information in the context of single
statements and expressions, such a collection of predicates and functions are
referred to as the “context conditions” of a language. They correspond to the
type checking done in a compiler. Just as there, it is not always so clear how far
to go with static checking (e.g. would one say that a program which included an
infinite loop had no meaning?)

The issue of whether or not a language is “strongly typed” is important and
this issue recurs repeatedly.

3 Semantics and abstract interpreters

This section explains the essential idea of presenting semantics via an abstract
interpreter. This is first done in terms of functions. The need –and notation– for
generalizing this to relations follows.

3.1 Presenting operational semantics by rules

The essence of any imperative language is that it changes some form of “state”:
programs have an effect. For a procedural programming language the state notion
normally contains an association (sometimes indirect) between variable names

and their values (a “store”). In the simple language considered in this section,
the main “semantic object” is

Σ = Id m−→ ScVal

Thus σ ∈ Σ is a single “state”; Σ is the set of all “States”.
The fundamental idea is that executing a statement will transform the state

— this can be most obviously modelled as a function:

exec :Stmt × Σ → Σ

exec(s, σ) ! . . .

Such a function can be presented one case at a time by using the VDM con-
structors as pattern matching parameters.

Expression evaluation has the type

eval :Expr × Σ → ScVal

eval(e, σ) ! . . .

and can again be defined one case at a time.
Remember that only Programs that satisfy the context conditions are to

be given semantics. This restriction implies that types of arguments match the
operators “during execution”; similarly, the type of the expression of the value
evaluated in rhs must match the lhs variable and the type of any value in a
conditional or while statement must be Boolean.

The recursive function style is intuitive but there is a serious limitation: it
does not handle non-determinism! Non-determinism can arise in many ways in
programming languages:

– order of expression evaluation is a nasty example
– specific non-deterministic constructs
– parallelism

It is really the third of these which is most interesting and is the reason for facing
non-determinism from the beginning.

The issues can be illustrated with a tiny example language. Later sections
(notably, Sections 5.4, and 6) make clear that key concepts are establishing
threads (of computation), the atomicity with which threads can merge and ex-
plicit synchronization between threads. In the simple language that follows, a
Program consists of exactly two threads, assignment statements are (unrealisti-
cally) assumed to be atomic and no explicit thread synchronization mechanisms
are offered. This gives rise to the following abstract syntax.

Program :: left : Assign∗

right : Assign∗

In order to give a semantics for any such language, one needs to accept that it
is necessary to think in terms of relations: one starting state can legitimately give
rise to (under the same program) different final states. Moreover, the semantic

relation has to be between “configurations” which record, as well as the store,
the program which remains to be executed. Thus:

p−→:P((Program × Σ)× (Program × Σ))

The two semantic rules which follow show exactly how nondeterminism arises
because a program which has non-empty statement lists in both branches will
match the hypotheses of both rules.

(s, σ) s−→ σ′

mk -Program([s] ! restl , r), σ) p−→ mk -Program(restl , r), σ′)

(s, σ) s−→ σ′

(mk -Program(l , [s] ! restr), σ) p−→ (mk -Program(l , restr), σ′)

Finally, a program is complete when both of its branches have terminated.

mk -Program([], []), σ) −→ σ

The interleaving of the two threads is achieved by the semantics being “small
step”: the whole configuration is subject to matching of the rules after each step.

Alternatively, one might want to add to the language an explicit construct
with which a programmer can determine the level of atomicity:

Program :: left : (Assign | Atomic)∗
right : (Assign | Atomic)∗

Atomic :: Assign∗

The relevant semantic rule becomes:

(sl , σ) sl−→ σ′

(mk -Program([mk -Atomic(sl)] ! restl , r), σ) p−→ (mk -Program(restl , r), σ′)

The semantic transition relation for expressions could be given as:

e−→:P((Expr × Σ)× ScVal)

Strictly, there are no constructs in this language that make expression evaluation
non-deterministic so it would be possible to stick with functions.

It would also be possible to illustrate how it is necessary to extend the idea
of a functional semantics (to one using relations) by looking at a specific non-
deterministic construct such as Dijkstra’s “guarded command” [Dij76]. Just as
with the concurrent assignment threads, an explicit relation ((Stmt × Σ) × Σ)
has to be used.

This way of presenting operational semantics rules follows Plotkin’s [Plo81]11
and is often referred to as “Plotkin rules”. Using this style for an entirely deter-
ministic language gives the first full semantics in this paper: the attentive reader
ought be able to understand the definition in Appendix A.
11 Republished as [Plo04b] — see also [Plo04a,Jon03b].

3.2 Ways of understanding the rules

There are several different views of the operational semantics rules used in the
previous section. For a given starting store and program text, the rules can
be used to construct a diagram whose root is that initial program and store.
Each rule that matches a particular configuration can then be used to define
successor configurations. Because more than one rule might match, the inher-
ent non-determinism is seen where there is more than one outgoing arc from a
particular configuration.

For our purposes, it is more interesting to view the rules as providing an
inductive definition of the s−→ relation. This leads on naturally to the use of
such rules in proofs. At the specific level one might write:

from σ0 = {x "→ 9, y "→ 1}; σ1 = {x "→ 3, y "→ 1}
1 (3, σ0)

e−→ 3
e−→

2 (mk -Assn(x , 3), σ0)
s−→ σ1 1,

s−→
3 (x , σ1)

e−→ 3
e−→

4 (mk -Assn(y , x), σ1)
s−→ {x "→ 3, y "→ 3} 3,

s−→
infer ([mk -Assn(x , 3),mk -Assn(y , x)], σ0)

sl−→ {x "→ 3, y "→ 3} 2, 4,
sl−→

but it is more interesting to produce general proofs of the form:

from pre-prog(σ0); (prog , σ0)
p−→ σf

n
...

infer post-prog(σ0, σf)

where the intermediate steps are justified either by a semantic rule or by rules of
the underlying logic. This is essentially what is done in [CM92,KNvO+02] and
very clearly in [CJ07].

3.3 Developments from this base

There are many ways to extend the language description in Appendix A that
do not require any further modelling concepts — they would just constitute
applications of the ideas above to cover other programming language concepts.
There are a few topics, however, which deserve mention before moving on to
Section 4.

Looking back at the semantic rule for (mk -Program(vars, body)) p−→ Done
in Appendix A it could be observed that there is no point in running a program!
Execution leaves no visible trace in the world outside the program because the
block structure “pops all of the variables off the stack” at the end of execution.
Adding input/output is however a simple exercise. For the abstract syntax:

Stmt = . . . | Write

Write :: value : Expr

The relevant context condition is:

wf -Stmt(mk -Write(value), tps) ! tp(value, tps) = IntTp

The essence of modelling an imperative language is to put in the “state”
those things that can be changed. So for output the state needs to be a composite
object that embeds the “store” in “state” but adds an abstraction of an output
file.

Σ :: vars : Id m−→ ScVal
out : Z∗

The semantic rule for the new statement is:

(value, σ) e−→ v
(mk -Write(value), σ) s−→ mk -Σ(σ.vars, σ.out ! [v])

Unfortunately, some other rules have to be revised because of the change in
Σ — but only a few (routine) changes.

(rhs, σ) e−→ v
(mk -Assign(lhs, rhs), σ) s−→ mk -Σ(σ.vars † {lhs $→ v}, σ.out)

e ∈ Id
(e, σ) e−→ σ.vars(e)

Covering input statements should be obvious and an extension to linking
programs to more complex file stores –or even databases– not difficult. (The
whole question of why programming languages do not directly embed database
concepts is interesting. It is certainly not difficult to view relations as datatypes
and concepts of typing could be clarified thereby. The most interesting aspects
concern the different views of concurrency and locking: this is briefly touched on
in Section 5.4.)

Another topic that offers interesting language design trade-offs is statements
for repetition. Whilst it is true that while statements suffice in that they make a
language “Turing complete”, many other forms of repetitive statement are found
in programming languages.

The intuition here is that programmers want to deal with regular collections
of data in analogous ways. Thus, it would be useful to study for statements in
connection with arrays. (But the more interesting possibilities for the semantics
of arrays come after parameter passing by location (aka by reference) has been
covered in Section 4.) A simple statement might be:

Stmt = · · · | For

For :: control : Id
limit : Expr
body : Stmt∗

(limit , σ) e−→ limitv
((control , limitv , body), σ † {control $→ 1}) i−→ σ′

(mk -For(control , limit , body), σ) s−→ σ′

Where, the auxiliary concept of iteration is defined as follows:

i−→:P(((Id × Z× (Stmt∗))× Σ)× Σ)

σ(control) > limitv
((control , limitv , body), σ) i−→ σ

σ(control) ≤ limitv
(body , σ) sl−→ σ′

((control , limitv , body), σ′ † {control $→ σ′(control) + 1}) i−→ σ′′

((control , limitv , body), σ) s−→ σ′′

Not only are there many alternative forms of for construct to be investigated
but they also point to both questions of scoping (e.g. should the control variable
be considered to be a local declaration) and interesting semantic issues of equiv-
alences a programmer might expect to hold between different forms. It is also
tempting to look at parallel forms because –from their earliest manifestation in
FORTRAN– for statements have frequently over-specified irrelevant sequential
constraints.

4 Scopes and parameter passing

This section considers the problem of variables having scope and some different
ways in which parameters can be passed to functions. The language (“Blocks”)
used is still in the ALGOL/Pascal family because it is here that these problems
were first thought out. A firm understanding of these concepts makes for greater
appreciation of what is going on in an object-oriented language (see Section 6).
A bonus of this study is that one of the key modelling techniques is explained
(in the setting where is first arose).

4.1 Nested blocks

Sections 4.2–4.5 cover the modelling of functions and procedures which facilitate
the use of the same piece of code from different places in a program containing
them. Before addressing this directly, nested blocks can be added to the language
of Section 3. Here the pragmatics of the feature are the ability to use the same
identifier with different meaning within the same program (a nested block might
for example be designed by a different programmer than the one who wrote
the containing text; it would be tedious and error prone to have to change all
identifiers to be unique throughout a program).

In the examples throughout Section 4, a concrete syntax is used that sur-
rounds the declarations and statements with begin · · · end. Consider the ex-
ample (concrete) program in Figure 1. The inner block defines its own scope
and the a declared (to be of type integer) there is distinct from the variable of
the same name (declared to be of type bool) in the outer block. Although the
two assignments to the name a imply that the type is different, both are correct
because two different variables are in play. One could insist that programmers
avoid the reuse of names in this way but this would not be a kind restriction.

program
begin
bool a; int i ; int j ;
if i = j then

begin
int a;
a : = 1
end

fi
a : = false
end

end

Fig. 1. Scope for Block

It is easy to add an option to Stmt that allows such nesting

Stmt = · · · | Block

One might then expect to say that a Program is a Block but allowing it to be
a single Stmt leaves that possibility open and adds a slight generalization. Thus
the abstract syntax might change (from Section 3) in the following ways:

Program = Stmt

Stmt = Assign | If | While | Block

Block :: vars : Id m−→ ScalarType
body : Stmt∗

The context conditions only change as follows:

wf -Program :Program → B
wf -Program(s) ! wf -Stmt(s, { })

wf -Block :Block × TypeMap → B
wf -Block(mk -Block(vars, body), tpm) ! wf -StmtList(body , tpm †vars)

Notice that it is obvious from this that all statements in a list are checked
(for type correctness) against the same TypeMap: even if the ith statement is a
block, the i +1st statement has the same potential set of variables as the i −1st
statement.

The semantics for a Block have to show that local variables are distinct from
those of the surrounding text. On entry to mk -Block(vars, body) this just requires
that each identifier in the domain of vars gets initialized. Leaving the block is
actually more interesting. After the execution of body has transformed σi into
σ′
i , the state after execution of the whole block contains the values of the (not

re-declared) local variables from σ′
i but it is also necessary to recover the values

from σ of variables which were masked by the local names.

{id $→ σ′
i(id) | id ∈ dom σ ∧ id /∈ dom vars} ∪

{id $→ σ(id) | id ∈ dom σ ∧ id ∈ dom vars)}

Thus (using the VDM map restriction operator):

σi = σ † ({id $→ 0 | id ∈ dom vars ∧ vars(id) = IntTp}∪
{id $→ true | id ∈ dom vars ∧ vars(id) = BoolTp})

(body , σi)
sl−→ σ′

i

(mk -Block(vars, body), σ) s−→
((dom σ − dom vars) ! σ′

i) ∪ (dom vars ! σ)

Notice that dom σ is unchanged by any Stmt (even a Block).

4.2 Avoiding non-deterministic side effects

The pragmatics for adding functions (or procedures) to a language are for re-use
of code: one can pull out a piece of algorithm to be used frequently — not so
much for space since a compiler might anyway “in-line” it — but as a way of
making sure that it is modified everywhere at once if it has to be changed.

Functions again bring a form of local naming. Unless a language designer is
careful, they can also bring a very messy side effect problem. If a function can
reference non-local variables, a call to the function can give rise to side effects.
In cases where there is more than one function call in an expression, the order
in which the function calls occur can influence the final result of the program.12

An obvious way to avoid the non-determinism caused by functions referring
to non-local variables is to set up the context conditions to ban global access: the
only identifiers to which a function can refer are either names of the parameters
or those of newly defined local variables.

The form of Function here has an explicit result clause13 at the end of its
text:

12 Pascal’s rule that such a program would be in error is the worst of all worlds for the
language specifier: one has to show the non-determinism in order to ban it!

13 This avoids a goto-like jump out of phrase structure.

function f (int a) int
a : = 1;
result(a + 7)

end

A small program to illustrate scope definition in functions might be as in
Figure 2. As in Figure 1, there are two distinct uses of the name a and the
arguments against asking the programmer to take the strain are stronger since
functions might well be taken from another source.

program
begin
bool a;
function f (int a) int

a : = 1; . . .
result(7)

end
. . .
a : = true
end

end

Fig. 2. Scope for Fun

One might build such a definition around an abstract syntax:
Block :: vars : Id m−→ ScalarType

fns : Id m−→ FnDefn
body : Stmt∗

FnDefn :: type : ScalarType
parml : ParmInfo∗

body : Stmt∗
result : Expr

ParmInfo :: name : Id
type : ScalarType

Expr = · · · | FnCall

FnCall :: fn : Id
argl : Expr∗

There are interesting semantic issues even with such a restrictive form of
function call. First, there is the language decision about how to return a value
from a function: different languages introduce a statement return(e); or assign
to the name of the function as in f ← e; or just allow that an expression is
written in place of a statement. Notice that all of these approaches only support

the return of a single value. One can mitigate the impact of this restriction
with the introduction of “records” (see Section 5.1). Another way around the
restriction is by using an appropriate parameter passing mechanism (e.g. pass
by location) — see Section 4.3.

There is a whole collection of questions around modes of parameter passing,
but these are deferred to Sections 4.3–4.5.

Turning next to the description of such a language, the result of banning side
effects is that the semantic transition relation for expressions remains:

e−→:P((Expr × Σ)× ScVal)

(rather than also having a Σ on the right of the main relation).
When writing a semantics for any feature that can use a named piece of text

from many places, there is the question of how that text is located when it is
“called”. Here, it is stored in some form of environment (Env in Section 4.3);
a slightly different approach is illustrated for the object-oriented language in
Section 6.

It has however been made clear by the title of this section that a major
language design issue around functions is finding ways to avoid unpredictable
side effects. An alternative way of avoiding the non-determinism from side-effects
is to have “procedure calls” (rather than functions which can be referenced in
an expressions).

4.3 Parameter passing

In Section 3.1, variables were declared for the whole Program; Section 4.1 in-
troduced nested blocks and Section 4.2 looked at functions with no external
references. It is now time to move on to begin a look at various forms of param-
eter passing — call-by-location (call by reference) is covered first followed by a
look at other modes in Section 4.5.

There are real engineering trade-offs here. Passing parameters by location
offers a way to change values in the calling environment.14 This is particularly
useful for programs which manipulate and reshape tree structures. But passing
parameters by location introduces aliasing problems which complicate formal
reasoning and debugging alike.

So the Abstract Syntax for Function definitions might be

Fun :: returns : ScalarType
params : Id∗

paramtps : Id m−→ ScalarType
body : Stmt∗
result : Expr

14 In passing, it is worth noting that this facilitates returning more than one value from
a single function call.

and the relevant context condition15

wf -Fun :Fun × Types → B

wf -Fun(mk -Fun(returns, params, paramtps, body , result), tps) !
uniquel(params) ∧
elems params = dom paramtps ∧
tp(result) = returns ∧
wf -StmtList(body , tps † paramtps)

To define the way that a Block builds the extended Types

Types = Id m−→ Type

Type = ScalarType | FunType

one needs

FunType :: returns : ScalarType
paramtpl : ScalarType∗

The Abstract Syntax for Block is

Block :: vars : Id m−→ ScalarType
funs : Id m−→ Fun
body : Stmt∗

and the resulting Context Condition is16

15 The function uniquel can be defined:

uniquel : (X ∗)→ B

uniquel(l) ! ∀i , j ∈ inds l · i '= j ⇒ l(i) '= l(j)

16 The auxiliary function apply is defined:

apply : (X ∗)× (X
m−→ Y)→ (Y ∗)

apply(l ,m) !
if l = []
then []
else [m(hd l)] ! apply(tl l ,m)

wf -Stmt :Block × Types → B
wf -Stmt(mk -Block(vars, funs, body), tps) !

dom vars ∩ dom funs = { } ∧
let var -tps = tps † vars in
let fun-tps =

{f $→ mk -FunType(funs(f).returns,
apply(funs(f).params, funs(f).paramtps)) |

f ∈ dom funs} in
∀f ∈ dom funs · wf -Fun(funs(f), var -tps)
wf -StmtList(body , var -tps † fun-tps)

The next task is to look closely at parameter passing. As indicated at the
beginning of this section, this is done in an ALGOL (or Pascal) framework.

A small program which illustrates the way functions are handled in the
“Blocks” language is given in Figure 3. Functions are declared to have a type;
their definition text contains a body which is a sequence of statements to be
executed; the text ends with an explicit result expression.

Here, the non-determinism discussed in Section 4.2 can be avoided by limiting
functions to be called only in a specific way.

v : = f (i)

So the Abstract Syntax for a Call statement is:
Call :: lhs : Id

fun : Id
args : Id∗

The Context Condition is

wf -Stmt(mk -Call(lhs, fun, args), tps) !
lhs ∈ dom tps ∧
fun ∈ dom tps ∧
tps(fun) ∈ FunType ∧
tps(lhs) = (tps(fun)).returns ∧
len args = len (tps(fun)).paramtpl ∧
∀i ∈ inds args · tp(args(i), tps) = ((tps(fun)).paramtpl)(i)

In Figure 3, within f , both x , i refer to the same “location”. Changing the
call to be as in Figure 4 results in the situation, within f , that all of x , y , i refer
to the same “location”. Notice that j : = f (i + j , 3) cannot be allowed for “by
location”.

The basic modelling idea is to split Σ of Section 3.1 into two mappings: Env
and Σ:

Env = Id m−→ Den

Den = ScalarLoc | FunDen

program
begin
int i , j , k ;
function f (int x , int y) int

i : = i + 1; x : = x + 1; y : = y + 1 /* print(x, y) */
result(7)

end
. . .
i : = 1; j : = 4;
k : = f (i , j) /* print(i, j) */
end

end

Fig. 3. Parameter example (i)

program
begin
int i , j , k ;
function f (int x , int y) int

i : = i + 1; x : = x + 1; y : = y + 1 /* print(x, y) */
result(7)

end
. . .
i : = 1; j : = 4;
k : = f (i , i) /* print(i, j) */
end

end

Fig. 4. Parameter example (ii)

Σ = ScalarLoc m−→ ScalarValue

So now the basic semantic relations become:

s−→:P((Stmt × Env × Σ)× Σ)

e−→:P((Expr × Env × Σ)× ScalarValue)

One can now talk about the left-hand (of an assignment) value of an identifier
and separating this out will pay off in Section 4.4 when dealing with references
to elements of arrays.Left-hand values occur elsewhere so it is worth having a
way of deriving them.

lhv−→:P((VarRef × Env × Σ)× ScalarLoc)

e ∈ Id
(e, env , σ) lhv−→ env(e)

in terms of which, accessing the “right hand value” can be defined:

e ∈ Id
(e, env , σ) lhv−→ l
(e, env , σ) e−→ σ(l)

The left hand value is used to change a value in –for example– assignments:

(lhs, env , σ) lhv−→ l
(rhs, env , σ) e−→ v
(mk -Assign(lhs, rhs), env , σ) s−→ σ † {l $→ v}

Most rules just pass on env :

sl−→:P(((Stmt∗)× Env × Σ)× Σ)

(s, env , σ) s−→ σ′

(rest , env , σ′) sl−→ σ′′

([s] ! rest , env , σ) sl−→ σ′′

Similarly

e−→:P((Expr × Env × Σ)× ScalarValue)

(e1, env , σ) e−→ v1
(e2, env , σ) e−→ v2
(mk -ArithExpr(e1,Plus, e2), env , σ) e−→ v1 + v2

We now look at how to create and modify env . Postponing the question of
functions for a moment, the overall shape of the meaning of a Block is:

(varenv , σ′) = /* find and initialize free locations */
funenv = /* create function denotations */
env ′ = env † varenv † funenv
(body , env ′, σ′) sl−→ σ′′

(mk -Block(vars, funs, body), env , σ) s−→ (dom σ) ! σ′′

The cleaning up of the locations from σ′′ might look “fussy” but it pays off in
compiler proofs where the designer will probably want to re-use locations in a
stack discipline. The first hypothesis of this rule can be completed to

(varenv , σ′) = newlocs(vars, σ)

where the auxiliary function newlocs creates an initial state for the initial values
of a sufficient number of locations for each identifier declared in vars: each is
initialized appropriately (a formal definition is in Appendix B).

Function denotations contain the information about a function which is
needed for its execution. There is one final issue here: consider the program
in Figure 5. The non-local reference to a within the function f must refer to
the lexically embracing variable and not to the one at the point of call. (This is
handled by the FunDen containing the Env from the point of declaration.)

program
begin
int a;
function f () int

a : = 2 result(7) end
. . .
a : = 1

begin
int a;
a : = 5;
a : = f ()
end

/* what is the value of a */
end

end

Fig. 5. Function static scoping

FunDen :: parms : Id∗

body : Stmt∗
result : Expr
context : Env

These are easy to build by selecting some components of the declaration of a
Fun. (The reason for storing the declaring Env is explained below.)

b-Fun-Den :Fun × Env → FunDen

b-Fun-Den(mk -Fun(returns, params, paramtps, body , result), env) !
mk -FunDen(params, body , result , env)

Putting this all together gives:
(varenv , σ′) = newlocs(vars, σ)
funenv =

{f $→ b-FunDen(funs(f), env † varenv) | f ∈ dom funs}
env ′ = env † varenv † funenv
(body , env ′, σ′) sl−→ σ′′

(mk -Block(vars, funs, body), env , σ) s−→ (dom σ) ! σ′′

The key point in the semantic rule for Call statements is the creation of
arglocs which holds the locations of the arguments:

(lhs, env , σ) lhv−→ l
mk -FunDen(parms, body , result , context) = env(f)
len arglocs = len args
∀i ∈ inds arglocs · (args(i), env , σ) lhv−→ arglocs(i)
parm-env = {parms(i) $→ arglocs(i) | i ∈ inds parms}
(body , (context † parm-env), σ) sl−→ σ′

(result , (context † parm-env), σ′) e−→ res
(mk -Call(lhs, f , args), env , σ) s−→ (σ′ † {l $→ res})
At this point a complete definition of the language so far can be presented

— see Appendix B.
If one were to allow side effects in functions, the type of the semantic relation

for Expressions would have to reflect this decision.
Both Env and “surrogates” like ScalarLoc are general modelling tools.

4.4 Modelling arrays

It is interesting to pause for a moment to consider two possible models for adding
arrays to the language in Appendix B. Looking firstly at one dimensional arrays
(vectors), one might be tempted to use:

Env = Id m−→ Loc

Σ = Loc m−→ (ScalarValue | ArrayValue)

ArrayVal = N m−→ ScalarValue

This would make passing of array elements by-location very messy. A far better
model is:

Env = Id m−→ Den

Den = ScalarLoc | ArrayLoc | FunDen

ArrayLoc = N m−→ ScalarLoc

Σ = ScalarLoc m−→ ScalarValue

Thinking about alternatives for multi-dimensional arrays, symmetry points
us at:

ArrayLoc = (N∗) m−→ ScalarLoc

Rather than

ArrayLoc = N m−→ (ScalarLoc | ArrayLoc)

It is possible to add a data type invariant:

ArrayLoc = (N∗) m−→ ScalarLoc
inv (m)!∃ubl ∈ (N∗) · dom m = sscs(ubl)

The semantics of Appendix B requires minimal changes.17 They are sketched
here, starting with the abstract syntax:

Assign :: lhs : VarRef
rhs : Expr

VarRef = ScalarRef | ArrayElRef

ScalarRef :: name : Id

ArrayElRef :: array : Id
sscs : Expr∗

Call :: lhs : VarRef
fun : Id
args : VarRef ∗

Expr = ArithExpr | RelExpr | VarRef | ScalarValue

The semantics requires a revision to the computation of left hand values.18

lhv−→:P((VarRef × Env × Σ)× ScalarLoc)

(mk -ScalarRef (id), env , σ) lhv−→ env(id)

17 In fact, the most extensive change is coding up a way to select distinct ScalarLocs
for each array element.

18 The issue of dynamic errors is here impossible to avoid — see Section 5.5.

len sscvl = len sscs
∀i ∈ sscs · (sscs(i), env , σ) e−→ sscvl(i)
sscvl ∈ dom (env(id))
(mk -ArrayElRef (id , sscs), env , σ) lhv−→ (env(id))(sscvl)

e ∈ VarRef
(e, env , σ) lhv−→ l
(e, env , σ) e−→ σ(l)

One interesting issue that can be considered at this point is array “slicing”
(i.e. the ability to define locations for (arbitrary) sub-parts of arrays).

4.5 Other parameter passing mechanisms

Many other parameter passing mechanisms have been devised. Since what hap-
pens in object-oriented languages is fairly simple, a full account is not presented
here; but a few brief notes might encourage the reader to experiment.

The simplest and most obvious mechanism is probably parameter passing by
value. This is modelled as though one were creating a block with initialization
via the argument of the newly created locations. Here, of course, arguments in
calls can be general expressions.

As pointed out at the beginning of Section 4.3, there are clear dangers in
parameter passing by-location. These are tolerated because the other side of the
engineering balance is that certain programs are significantly more efficient if ad-
dresses are passed without creating new locations and copying values. The other
advantage of being able to affect the values in the calling code can, however, be
achieved without introducing all of the disadvantages of aliasing. The parameter
passing mechanism known as by-value/return copies the values at call time but
also copies the values back at the end of the called code. Not surprisingly, the
formal model is a hybrid of call-by-name and call-by-value.

These three methods by no means exhaust the possibilities: for example,
Algol 60 [BBG+63] offered a general “call-by-name” mechanism which essentially
treated the argument like a function (which therefore required evaluation in an
appropriate environment). It is important to note that this is not the same as
parameter passing “by text” where the raw text is passed and evaluated in the
called context.

It is not difficult to see how functions can be passed as arguments. It should
be noted that returning functions as results is more delicate because the context
in which they were declared might no longer exist after the return. For similar
reasons, this author has never accepted arguments about “making functions first
class objects” (cf. [vWSM+76]) and adding function variables to a language (they
also add confusions in reasoning about programs which are akin to those with
goto statements).

5 Modelling more language features

There are many aspects of programming languages that could be explored at
this point: here, only to those that relate to our objective of understanding
object-oriented languages in Section 6 are considered.

5.1 Records

Algol-W [WH66] provided support for a “record” construct (in other languages
sometimes called “structures”). Records are like arrays in that they collect to-
gether several values but in the case of records the “fields” need not be of the
same type. Reference to individual fields is by name (rather than numerical in-
dex) and it is straightforward to offer a “strong typing” approach so that correct
reference is a compile time question but this does require a notion of declaring
record types if the matching is done by name rather than by shape. (Some lan-
guages –including Pascal– somewhat complicated this issue by offering “variant
records”.)

Having studied arrays in Section 4.4, it is fairly clear how to model structures.
Their type checking is straightforward. The semantic model revolves around

RecordLoc = Id m−→ Loc

Unlike ArrayLoc, there is no virtue in providing the symmetrical access to any
nested field and one has:

Loc = ScalrLoc | RecordLoc

An interesting scoping extension is the Pascal with construct that can be
used to open up the naming of the fields of a record.

Extensions to cope with arrays of structures or record elements which are
arrays are straightforward.

5.2 Heap storage

The block structured languages up to this point can be implemented with a
“stack discipline”: that is, the most recently allocated storage is always the next
to be released. Making this work for languages of the Algol family is non-trivial
but Dijkstra’s “display” idea showed that it was possible and there have been
subsequent developments (e.g. [HJ71]).

Storage which is allocated and freed by the programmer poses many dangers
but heap storage in one form or another is available in all but the most restric-
tive languages. The need is clear: programs such as those for B-Trees need to
allocate and free storage at times that do not match the phrase structure of a
program. In fact, forms of dynamic storage manipulation were simulated in ar-
rays from FORTRAN onwards and, of course, LISP was built around pointers.
The concept of records made it possible for the programmer to describe struc-
tures that contained fields which were pointers (to record types). Pascal offered

a new statement which was implemented by keeping a pool of free storage and
allocating on request.

Once one has a model of records as in the preceding section, it is not difficult
to build a model for heap storage: the set of ScValues has to include Pointers.
In fact, this is an area where the abstract model is perhaps too easy to construct
in the sense that the ease hides considerable implementation detail. One can
however discuss issues like “garbage collection” and “dangling pointers” in terms
of a carefully constructed model.

5.3 Abstract data types

The whole subject of “abstract data types” deserves a history in its own right.
For the key contribution made by the “CLU” language, see [Lis96]. Here, it is
sufficient to observe that it was realized that programmers needed the ability
to change the implementation of a collection of functions and/or procedures by
redefining the underlying data structures without changing their syntactic or
semantic interface. It was thus essential to have language constructs which fixed
interfaces but hid internal details.

5.4 More on concurrency

There are many concurrency extensions which can be made to the language
developed to this point.19 Interesting exercises include the addition of a “parallel
For statement”. As in Section 3.1, one quickly becomes aware of the dangers of
interference between concurrent threads of execution. It is argued in Section 6
that one of the advantages of object-oriented languages is that they offer a way
to marshal concurrency.

For now, the key questions to be noted are:

– How are threads created?
– How does one synchronize activity between threads?
– What is the level of granularity? (or atomicity)

Each of these questions can be studied and described using operational se-
mantics and the question of atomicity in particular is returned to in Section 7.

A study of the different views of locking taken by the programming language
and database communities (cf. [JLRW05]) can also be based on operational se-
mantic descriptions.

5.5 Handling run-time errors

Context conditions are used to rule out programs which can be seen to be in-
correct statically: the classic example of such errors is mismatch between type
declarations of variables and their use. Many errors can, however, only be de-
tected when a program is executed — at least in general. Access to uninitialized
19 In fact, it is instructive to model even primitive concepts like “semaphores”.

variables (especially those declared to contain pointers) is one class of such er-
rors: obvious cases might be spotted statically, but in general one can only know
about control flow issues with the actual values in a state.

A better example –and the one used in this section– might be indexing outside
the bounds of an array. As those who have suffered from “stack overflow” attacks
know to their cost, this can be an effective way to corrupt a program. It is not
difficult to mark the detection of such errors in operational semantic descriptions;
the bigger question is what action should be described when run-time errors are
detected. In Section 4.4, the rule

len sscvl = len sscs
∀i ∈ sscs · (sscs(i), env , σ) e−→ sscvl(i)
sscvl ∈ dom (env(id))
(mk -ArrayElRef (id , sscs), env , σ) lhv−→ (env(id))(sscvl)

clearly shows in its last hypothesis that access is only defined for valid subscript
lists. In effect, there is no rule for invalid subscripts so the computation “stalls”.
For emphasis, one could add a rule that states an error has occurred but there
is a meta-issue about what a language standard has to say about whether such
errors must be detected or whether an implementation is free to deliver any
result from the time of the error onwards. This latter course might appear to be
a denigration of responsibility but one must accept that checking for arbitrary
rune time errors can be expensive. This is one reason for seeking as strong a
type discipline as possible.

More promising are the languages which define what should be done on en-
countering errors. A language might, for example, require that an out-of-bounds
exception be raised. Essentially, the idea is to make semantic functions deliver
either a normal or abnormal result. This idea originated in [HJ70] and was fully
worked out in [ACJ72]; Nipkow [KNvO+02] uses a more economical way of defin-
ing the union of the possibilities.

6 Understanding objects

All of the modelling tools to understand –and record our understanding of–
an interesting language are to hand. Furthermore, it is possible to look at how
object-oriented languages resolve some of the key engineering tensions relating
to the design of programming languages. The strands of our story coalesce here.

The language introduced in this section is referred to as “COOL”. It is not
intended to be a complete OOL (extensions are sketched in Section 6.6). The
reader is referred to [KNvO+02] for a description of Java.

Section 5.2 discusses the need to create storage dynamically (on a heap); the
necessity to dispose of unwanted items; and resulting issues of garbage collection.
Objects collect together data fields for their “instance variables” in a way that
gives the power or records. Objects can be dynamically created (and garbage
collected).

Locality of reference to the fields of an object by the methods of that class
offers a way to resolve the (abstract data type — cf. Section 5.3) issues in a
way which lets the implementation of an object be changed without changing
its interface.

In one sense, the pure object view that everything (even a constant) is an
object sweeps away the distinctions in parameter passing: everything is passed
by location — but some objects are immutable.

Most importantly for our concern about concurrency, object-oriented lan-
guages provide a natural way to marshal threads. The view is taken here that
each object should comprise a thread of control. Because instance variables can
only be referred to by the methods of that class20, there is a natural insulation
against interference. Sharing can be established by the passing of object refer-
ences but this is under clear programmer control. In COOL, the restrictive view
is taken that only one method can be active in an object and this eliminates
local race conditions. This combination of decisions means that the programmer
is also in control of the level of atomicity (of interference).

(Space does not permit a discussion of (the important) issues of why objects
work well in design and point the reader at excellent books such as [DW99] for
such material.)

6.1 Introducing COOL

It is easiest to get into the spirit of COOL by considering a programming exam-
ple. The class Sort in Figure 6 provides a (sequential) facility for maintaining a
sequence of integers in ascending order. (One could add a method that returns
–and deletes– the first item but the insert and test let us show the interesting
features.)

A class is a template for object structure and behaviour: it lists the instance
variables with their corresponding types and defines the parameters for each
method, its result type and its implementation. An instance variable can have one
of three types: integer, Boolean or (typed) reference (or “handle”). A reference
value is the “handle” of another object; the special value nil is used to indicate
when no reference is being held.21

Objects of a class (objects corresponding to the class description) can be
generated by executing a new statement that creates a new object with which a
unique reference is associated, and returns this reference as a result. As implied
above, all objects of a class share the same structure and behaviour, however,
20 Avoiding the use of Java’s public fields.
21 To justify some interesting equivalences (see below) any variable declared to be a

reference is identified as either shared or private (unique). The latter is written as
a keyword (unique); the default is shared. A variable marked as unique can only
be assigned a handle of a newly created object and it is prohibited to duplicate its
contents: unique variables cannot appear on the right hand side of an assignment
statement, be passed as arguments to a method or be returned as a result. These
restrictions ensure that the object reference being held is unknown to any other
object.

Sort class
vars v : N ← 0; l : unique ref(Sort)← nil
insert(x : N) method

begin
if is-nil(l) then (v ← x ; l ← new Sort)
elif v ≤ x then l .insert(x)
else (l .insert(v); v ← x)
fi
;
return

end
test(x : N) method : B

if is-nil(l) ∨ x < v then return false
elif x = v then return true
else return l .test(x)
fi

Fig. 6. Example Program Sort – sequential

each possesses its own copy of the instance variables; it is on these copies that
the methods operate.

An object can attempt to invoke22 a method of any object to which it holds
a handle. The concrete syntax for method invocation is α.m(x̃), where α is the
identity of the object, m is the method name and x̃ is the list of parameters.
When an object accepts a method invocation the client is held in a rendezvous.
The rendezvous is completed when a value is returned; in the simplest case this
is by a return statement.23

In addition to the statements described above, COOL provides a normal
repertoire of simple statements.

It follows from the above that an object can be in one of three states: qui-
escent (idle), waiting (held in rendezvous) or active (executing a method body).
Methods can only be invoked in an object which is in the quiescent state; there-
fore –in COOL– at most one method can be active at any one time in a given
object.

These comments should help to clarify most aspects of the sequential version
of Sort .24

The implementation of both these methods is sequential: at most one object
is active at any one time. Concurrency can be introduced into this example by
22 The terms “method invocation” and “method call” are used interchangeably.
23 The delegate statement allows an object to transfer the responsibility for answering

a method call to another object, without itself waiting for the result – see below.
24 The return statement in Figure 6 has a method call in the place of an expression,

which strictly does not conform to the syntax of COOL. One simple remedy would
be to assign the result of this call to a temporary variable and return the value of
that variable. Since this is straightforward, and adds nothing to the language, it is
preferred here to rely on the reader’s comprehension.

applying two equivalences. The insert method given in Figure 6 is sequential
because its client is held in a rendezvous until the effect of the insert has passed
down the list structure to the appropriate point and the return statements have
been executed in every object on the way back up the list. If the return statement
of insert is commuted to the beginning of the method as in Figure 7, it becomes
a release in which the client is able to continue its computation concurrently with
the activity of the insertion. Furthermore, as the insertion progresses down the
list, objects ‘up stream’ of the operation are free to accept further method calls.
One can thus imagine a whole series of insert operations trickling down the list
structure concurrently.

Sort class
vars v : N ← 0; l : unique ref(Sort)← nil
insert(x : N) method

begin
release;
if is-nil(l) then (v ← x ; l ← new Sort)
elif v ≤ x then l .insert(x)
else (l .insert(v); v ← x)
fi

end
test(x : N) method : B

if is-nil(l) ∨ x < v then return false
elif x = v then return true
else delegate l .test(x)
fi

Fig. 7. The concurrent implementation of Sort

It is not possible to apply the return commutation equivalence to the test
method because the client must be held until a result can be returned. It is,
however, possible to avoid the entire list being ‘locked’ throughout the dura-
tion of a test method. In the sequential implementation, invocations of the test
method in successive instances of Sort run down the list structure until either
the value being sought is found or the end of the list is reached; at this point
the Boolean result is passed back up the list; when the result reaches the object
at the head of the list it is passed to the client. If instead each object has the
option to delegate the responsibility of answering the client, it is possible for the
first object in the list to accept further method calls. Again one can imagine
a sequence of test method calls progressing down the list concurrently.25 The

25 Notice however that although the linear structure of the list prevents overtaking, it
is possible for invocations to be answered in a different order from that in which they
were accepted. For example –in the situation – if two invocations are accepted in the
order test(4) followed by test(1), it is possible for the result of the second call to be

transformed implementation of test is given in Figure 7. A more telling example
with trees is given in [Jon96].

Because release statements do not have to come at the end of methods and
the use of delegate statements, COOL is already an object-based language which
permits concurrency. Other ways in which concurrency can be added are men-
tioned in Section 6.6.

Sections 6.3–6.5 outline the parts of a formal description. Appendix C fills
in the details and collects the description in the same order as Appendix B. But
first the overall modelling strategy is discussed.

6.2 Modelling strategy

At one level, objects are just pieces of storage (not unlike records) that can be
dynamically created by executing a new statement. One can thus anticipate that
there will have to be –in our semantic model– a mapping from some Reference to
the local values. But this does not completely bring out the nature of objects. I
owe to the late Ole-Johan Dahl the observation that objects are best understood
as “blocks” that can be instantiated multiple times (in contrast to the Algol
model where their existence is governed by when control flows through their
text). A class defines instance variables and methods just like the local variables
and functions/procedures of a block. The instance variables are known only to
those methods. One oddity is that the scope of the method names is external to
the class (but this is precisely so that they become the access points to actions
on the instances (objects) of the class). As mentioned already, the real difference
from an Algol block is that instances of classes can be created at will.26

This understanding gives us our basic modelling strategy: the run-time infor-
mation about objects will be stored in a mapping (ObjMap in Section 6.5). The
ObjInfos stored in this mapping have –as might be expected– a field (state) in
which the values of the instance variables for the object in question are stored.
Because the threads are running interleaved, ObjInfo is also keeping track of
what text remains to be executed in each active thread. In essence, ObjInfo
replaces the notion of a “configuration” discussed in Section 3.1. (Section 6.5
discusses the other fields in ObjInfo.) Notice that there is no notion of global
state here although one might need one if input/output to files were considered.

Section 4.2 points out the need to have access to the text of any program
unit which can be used from many places. In COOL, this applies both to the
shape (in terms of its instance variables) of a class and the text of the methods
of a class for when they are invoked. In Section 6.5 the program text is always
available in Classes. This leads us to an overall semantic relation:

s−→:P((Classes ×ObjMap)×ObjMap)

returned before the first has completed. Although this would constitute a modified
behaviour when viewed from an all-seeing spectator, no COOL program can detect
the difference.

26 Postponing a discussion of nesting until Section 6.6.

Returning to the question of relating the parameter passing in COOL to
what has gone before, it is clear that object references are passed by-reference.
This is precisely what lets a programmer set up sharing patterns (which can in
turn introduce race conditions).

6.3 Abstract syntax

The aim here is to build up the definition of “COOL” in Appendix C where the
description is organized by language construct. Here, the whole abstract syntax
is presented at once.

A Program contains a collection of named ClassBlocks; it is assumed that
execution begins with a single (parameterless) method call.

Program :: cm : Classes
start-class : Id
start-meth : Id

Classes = Id m−→ ClassBlock

Notice that there is (unlike in the Block language) no body in a ClassBlock ;
having one would provide another natural concurrency extension – see Sec-
tion 6.6.

ClassBlock :: vars : Id m−→ Type
meths : Id m−→ Meth

Type = Id | ScalarType

ScalarType = IntTp | BoolTp

Methods are very like function definitions.
Meth :: returns : Type

params : Id∗

paramtps : Id m−→ Type
body : Stmt∗

All of the points to be illustrated can be made with the following list of state-
ments.

Stmt = Assign | If | New | MethCall | Return | Release | Delegate

Assign :: lhs : Id
rhs : Expr

If :: test : Expr
th : Stmt∗
el : Stmt∗

New :: targ : Id
class : Id

MethCall :: lhs : Id
obj : Id
meth : Id
args : Id∗

Return :: val : (Expr | self)

Release :: val : (Expr | self)

Delegate :: obj : Id
meth : Id
args : Id∗

The syntax of expression is presented only in the appendix.

6.4 Context conditions

The context conditions are straightforward (and are given in the appendix).
Well-formed COOL programs are statically checked to have only syntactically
correct method calls.

6.5 Semantics

Dynamic information about Objects is stored in:

ObjMap = Reference m−→ ObjInfo

ObjInfo :: class : Id
state : VarState
status : Status
remaining : Stmt∗
client : [Reference]

For any object, the class field is the name of the class to which it belongs. This
can be used on invocation of a method to locate its body .

The state field for an object contains the values of its instance variables.

VarState = Id m−→ Val

Val = Reference | Z | B

There is some redundancy in the way the status of an object is recorded
but it is in all cases essential to be able to distinguish between an object which
presents an active thread from one which is idle (methods can only be invoked
in idle threads). Furthermore, when an object is waiting for a value to returned,
the Wait field records where that value will be stored.

Status = Active | Idle | Wait

Wait :: lhs : Id

For an Active thread (object), the text remaining to be executed in its
method is recorded in the remaining field and the identity of the client who
is awaiting a returned value from any object is recorded in that object’s client
field.

The types of the required relations are
s−→:P((Classes ×ObjMap)×ObjMap)

and
e−→:P((Expr ×VarState)×Val)

Each rule in the semantics for a statement needs to locate an active thread
awaiting execution of a statement of that type: thus the general shape of all of
the s−→ rules is:

O(a) = mk -ObjInfo(c, σ,Active, [mk -Stmt-Type(. . .)] ! rl , co)
...
(C ,O) s−→ O † · · ·
For new, all that is needed is a thread ready to execute mk -New(targ , c′).

The execution of that statement is reflected by its removal and a new object
(with a brand new Reference — and in Idle status) is created with appropriate
initial values for the instance variables:

O(a) = mk -ObjInfo(c, σ,Active, [mk -New(targ , c′)] ! rl , co)
b ∈ (Reference − dom O)
aobj ′ = mk -ObjInfo(c, σ † {targ $→ b},Active, rl , co)
σb = initial values
nobj = mk -ObjInfo(c′, σb , Idle, [],nil)
(C ,O) s−→ O † {a $→ aobj ′, b $→ nobj}
In order for thread a to invoke a method in another thread, the latter must

be quiescent (its status field must be Idle). The statements to be executed for
the called method are found in C and parameters are passed in an obvious way.

O(a) =
mk -ObjInfo(c, σ,Active, [mk -MethCall(lhs, obj ,meth, args)] ! rl , co)

O(σ(obj)) = mk -ObjInfo(c′, σ′, Idle, [],nil)
C (c′) = mk -ClassBlock(vars,meths)
aobj ′ = mk -ObjInfo(c, σ,mk -Wait(lhs), rl , co)
σ′′ = σ′ † {(meths(meth).params)(i) $→ σ(args(i)) | i ∈ inds args}
sobj = mk -ObjInfo(c′, σ′′,Active,meths(meth).body , a)
(C ,O) s−→ O † {a $→ aobj ′, σ(obj) $→ sobj}
When a method finishes (remember the Release can have occured earlier) it

reverts to the quiescent status.
O(a) = mk -ObjInfo(c, σ,Active, [], co)
aobj ′ = mk -ObjInfo(c, σ, Idle, [],nil)
(C ,O) s−→ O † {a $→ aobj ′}

Returning values makes the server object Idle. The thread to which the value
is to be returned is found from the client field of the completing method. The
place to which the returned value should be assigned is found in mk -Wait(lhs)
which was placed there at the time of the method invocation. The server object
a becomes idle.

O(a) = mk -ObjInfo(c, σ,Active, [mk -Return(e)] ! rl , co)
e ∈ Expr
(e, σ) e−→ v
O(co) = mk -ObjInfo(c′, σ′,mk -Wait(lhs), sl , co′)
aobj ′ = mk -ObjInfo(c, σ, Idle, [],nil)
cobj ′ = mk -ObjInfo(c′, σ′ † {lhs $→ v},Active, sl , co′)
(C ,O) s−→ O † {a $→ aobj ′, co $→ cobj ′}

If self is being returned, replace the second line with v = a.
Releasing a rendez vous is similar except that the a thread remains active:
O(a) = mk -ObjInfo(c, σ,Active, [mk -Release(e)] ! rl , co)
(e, σ) e−→ v
O(co) = mk -ObjInfo(c′, σ′,mk -Wait(lhs), sl , co′)
aobj ′ = mk -ObjInfo(c, σ,Active, rl ,nil)
cobj ′ = mk -ObjInfo(c′, σ′ † {lhs $→ v},Active, sl , co′)
(C ,O) s−→ O † {a $→ aobj ′, co $→ cobj ′}

If self is being returned, one again replaces the second line with v = a.
The delegate statement is interesting because it works like a combination of

method invocation and a release statement:
O(a) =

mk -ObjInfo(c, σ,Active, [mk -Delegate(obj ,meth, args)] ! rl , co)
O(σ(obj)) = mk -ObjInfo(c′, σ′, Idle, [],nil)
C (c′) = mk -ClassBlock(vars,meths)
aobj ′ = mk -ObjInfo(c, σ,Active, rl ,nil)
σ′′ = σ′ † {(meths(meth).params)(i) $→ σ(args(i)) | i ∈ inds args}
sobj = mk -ObjInfo(c′, σ′′,Active,meths(meth).body , co)
(C ,O) s−→ O † {a $→ aobj ′, σ(obj) $→ sobj}
Rules For Assign etc. should be obvious (and are in the appendix).

6.6 Developments from here

There are an enormous number of developments that one can make from the
definition in Appendix C. It is straightforward to add new data types (such as
strings) or new statement types. A(n OO) purist would point out that COOL is
not fully OO (in the sense of Smalltalk) since it uses integer and Boolean values.
(There is a subtlety in removing Booleans from the language itself: in order to
give a semantics to any statement requiring a truth-valued result, one ends up
needing some form of “closure”.) Adding arrays is also interesting in as much
as it highlights the lack of a location concept for the instance variables (see also
below).

More subtly, it is not difficult to partially lift the restriction on “one method
active per object” and provide some form of “call back” without introducing
race conditions.

Much more interesting is to add to COOL new ways of creating concurrency.
In Appendix C, concurrency is achieved by use of release (and delegate); as an
alternative (or addition), a parallel For statement could be added and one could,
for example, program a parallel version of the “Sieve of Eratosthenes” [Jon96].

A useful extension would be to add “creation code” to each class by including
code in the body of the class.

ClassBlock :: vars : Id m−→ Type
meths : Id m−→ Meth
constructor : [CMeth]

CMeth :: params : Id∗

paramtps : Id m−→ Type
body : Stmt∗

One could then have the new statement pass arguments to the creation code
New :: targ : Id

class : Id
args : Id∗

Having a creation body in a Class makes it an autonomous locus of control; one
could then fire off many processes at once (cf. [Ame89]). Thus the semantic rule
for the new statement might become:

O(a) = mk -ObjInfo(c, σ,Active, [mk -New(targ , c′, args)] ! rl , co)
b ∈ (Reference − dom O)
aobj ′ = mk -ObjInfo(c, σ † {targ $→ b},Active, rl , co)
mk -ClassBlock(vars,meths, cons) = C (c′)
mk -CMeth(parms, parmts, cbody) = cons
σb = {parms(i) $→ σ(args(i)) | i ∈ inds parms}
nobj = mk -ObjInfo(c′, σb ,Active, cbody ,nil)
(C ,O) s−→ O † {a $→ aobj ′, b $→ nobj}

COOL’s “one method per object” rule means that the constructor will block
other method calls until construction is finished.

Another interesting extension would be to allow some access to the instance
variables of an object (as in Java’s public). It would be safe to do this for Idle
objects; permitting such access within an Active object would introduce the
danger of race conditions.

One could go further and add some form of process algebraic notation for
controlling permissible orders of method activation.27

Object-oriented purists would also object that COOL offers no form of inheri-
tance. This is –at least in part– intentional because of the confusions surrounding
27 One could derive intuition from similar ideas in the meta-language as in [FL98],

[But00] or [WC02]. My own preference would be to use pi-calculus and have the ν
operator create objects (I have given talks on this but not yet written anything).

the idea. One useful handle on the semantics of inheritance is to go back to the
observation that classes are like blocks that can be instantiated at will. A nested
block offers all of the facilities (variables and functions) of its surrounding block
except where overridden. If one thinks of inheritance as creating instances of an
inner block, one begins to see what the semantic implications might be (including
some doubt about “multiple inheritance”).

7 Conclusions

It is hoped that the reader now sees the extent to which semantic models can elu-
cidate and record the understanding of the features of programming languages.
There are descriptions of many real languages (full citations are omitted here
for space reasons)

– (operational and denotational) of ALGOL 60
– (denotational) of Pascal
– SOS for ML
– (denotational) of PL/I ECMA/ANSI standard
– (denotational) of Ada
– Modula-2 standard
– Java description [KNvO+02]

In fact, the obvious duplication involved in writing descriptions where there
is a considerable amount of overlap in the features of the languages has led to
attempts to look for ideas that make it possible to document language concepts
in a way which facilitates their combination. Early steps towards this are visible
in the “combinators” of the Vienna PL/I description [BBH+74]; Mosses’ “ac-
tion semantics” [Mos92] took this much further and he has more recently been
studying “Modular SOS” [Mos06].

There is no doubt that reasoning about language descriptions is extremely
important. This goes beyond using a semantics to establish facts about particular
programs as discussed in Section 3.2. A simple example of a general result is that
a well-formed program cannot give rise to run-time type errors. An important
class of proofs is the consistency of Floyd-Hoare-like proof rules with respect to a
model-oriented semantics. The paper [CJ07] is an example of this (and it contains
references to earlier material in this vein) which establishes the soundness of
rely/guarantee rules.

The potential that originally took this author to the IBM Vienna Labora-
tory in 1968 was the use of formal language descriptions as a base for compiler
design.28 A description from the research at that time is [JL71] (but much of
the material is only available as Technical Reports). An important historical
reference is [MP66].

28 Notice that post-facto proofs were seen even then as pointless: the pay off of formal-
ism is in the design process.

A knowledgeable reader might question why this text has been based on
operational –rather than denotational [Sto77]– semantics. It is claimed in Sec-
tion 1.3 that the message is “abstraction, abstraction, abstraction” and there
is a clear technical sense in which denotational semantics are more abstract
than operational. The reasons are largely pedagogic (cf. [CJJ06]) but it is this
author’s conviction that once concurrency has to be tackled, the cost of extra
mathematical apparatus does not present an adequate return.

The other omitted topic that might give rise to comment is that of process
algebras such as CSP [Hoa78], CCS [Mil89] or the pi-calculus [MPW92,SW01].
The topic of their semantics and proof methods is itself fascinating.

One topic that links closely with the material above is the mapping of object-
oriented languages to process algebras (cf. [Wal91,Jon93]). These semantics have
been used to justify the equivalences used in transforming OO programs in Sec-
tion 6 — see [Wal93,Jon94,San99] and references therein.

Acknowledgments

The author gratefully acknowledges the EPSRC support for his research under
the “Splitting (software) atoms safely” grant.

References

[ACJ72] C. D. Allen, D. N. Chapman, and C. B. Jones. A formal definition of
ALGOL 60. Technical Report 12.105, IBM Laboratory Hursley, August
1972.

[Ame89] Pierre America. Issues in the design of a parallel object-oriented language.
Formal Aspects of Computing, 1(4), 1989.

[BBG+63] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur,
A. J. Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein,
A. van Wijngaarden, and M. Woodger. Revised report on the algorithmic
language Algol 60. Communications of the ACM, 6(1):1–17, 1963.

[BBH+74] H. Bekič, D. Bjørner, W. Henhapl, C. B. Jones, and P. Lucas. A formal
definition of a PL/I subset. Technical Report 25.139, IBM Laboratory
Vienna, December 1974.

[BJ78] D. Bjørner and C. B. Jones, editors. The Vienna Development Method:
The Meta-Language, volume 61 of Lecture Notes in Computer Science.
Springer-Verlag, 1978.

[BJ82] D. Bjørner and C. B. Jones. Formal Specification and Software Develop-
ment. Prentice Hall International, 1982.

[Boo54] George Boole. An Investigation of the Laws of Thought. Macmillan, 1854.
Reprinted by Dover, 1958.

[But00] M. J. Butler. CSP2B: A practical approach to combining CSP and B.
Formal Aspects of Computing, 12(3):182–198, 2000.

[CJ07] J. W. Coleman and C. B. Jones. Guaranteeing the soundness of
rely/guarantee rules (revised). Journal of Logic and Computation, ac-
cepted for publication, 2007.

[CJJ06] Joey W. Coleman, Nigel P. Jefferson, and Cliff B. Jones. Comments on
several years of teaching of modelling programming language concepts.
Technical Report CS-TR-978, Newcastle University, 2006.

[CM92] J. Camilleri and T. Melham. Reasoning with inductively defined relations
in the HOL theorem prover. Technical Report 265, Computer Laboratory,
University of Cambridge, August 1992.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[DW99] Desmond F. D’Souza and Alan Cameron Wills. Objects, components, and

frameworks with UML: the catalysis approach. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[Eng71] E. Engeler. Symposium on Semantics of Algorithmic Languages. Number
188 in Lecture Notes in Mathematics. Springer-Verlag, 1971.

[FL98] John Fitzgerald and Peter Gorm Larsen. Modelling systems: practical
tools and techniques in software development. Cambridge University Press,
1998.

[Gor79] M. J. C. Gordon. The Denotational Description of Programming Lan-
guages: An Introduction. Springer-Verlag, 1979.

[Gor88] M. J. C. Gordon. Programming Language Theory and its Implementation.
Prentice-Hall International, 1988.

[Hen90] Matthew Hennessy. The Semantics of Programming Languages: an ele-
mentary introduction using structural operational semantics. Wiley, 1990.

[HJ70] W. Henhapl and C. B. Jones. On the interpretation of GOTO statements
in the ULD. Technical Report LN 25.3.065, IBM Laboratory, Vienna,
March 1970.

[HJ71] W. Henhapl and C. B. Jones. A run-time mechanism for referencing vari-
ables. Information Processing Letters, 1:14–16, 1971.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Communications
of the ACM, 21:666–677, August 1978.

[JL71] C. B. Jones and P. Lucas. Proving correctness of implementation tech-
niques. In [Eng71], pages 178–211. 1971.

[JLRW05] C. B. Jones, D. Lomet, A. Romanovsky, and G. Weikum. The atomicity
manifesto, 2005.

[Jon93] C. B. Jones. A pi-calculus semantics for an object-based design notation.
In E. Best, editor, CONCUR’93, volume 715 of Lecture Notes in Computer
Science, pages 158–172. Springer-Verlag, 1993.

[Jon94] C. B. Jones. Process algebra arguments about an object-based design
notation. In A Classical Mind: Essays in Honour of C. A. R. Hoare,
chapter 14. Prentice-Hall, 1994.

[Jon96] C. B. Jones. Accommodating interference in the formal design of concur-
rent object-based programs. Formal Methods in System Design, 8(2):105–
122, March 1996.

[Jon01a] C. B. Jones. On the search for tractable ways of reasoning about programs.
Technical Report CS-TR-740, Newcastle University, 2001. Superceded by
[Jon03a].

[Jon01b] C. B. Jones. The transition from VDL to VDM. JUCS, 7(8):631–640,
2001.

[Jon03a] Cliff B. Jones. The early search for tractable ways of reasonning about
programs. IEEE, Annals of the History of Computing, 25(2):26–49, 2003.

[Jon03b] Cliff B. Jones. Operational semantics: concepts and their expression. In-
formation Processing Letters, 88(1-2):27–32, 2003.

[Jon07] Cliff B. Jones. Understanding programming language concepts via op-
erational semantics. In Chris George, Zhiming Liu, and Jim Woodcock,
editors, Lectures on Domain Modelling and the Duration Calculus, number
4710 in LNCS, pages 177–235. Springer, 2007.

[KNvO+02] Gerwin Klein, Tobias Nipkow, David von Oheimb, Leonor Prensa Nieto,
Norbert Schirmer, and Martin Strecker. Java source and bytecode formal-
isations in Isabelle. 2002.

[Lis96] Barbara Liskov. A history of CLU. In History of programming languages—
II, pages 471–510. ACM Press, New York, NY, USA, 1996.

[LW69] P. Lucas and K. Walk. On The Formal Description of PL/I, volume 6 of
Annual Review in Automatic Programming Part 3. Pergamon Press, 1969.

[McC66] J. McCarthy. A formal description of a subset of ALGOL. In [Ste66],
pages 1–12, 1966.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
[Mos92] P. D. Mosses. Action Semantics. Cambridge Tracts in Theoretical Com-

puter Science, 26. Cambridge University Press, 1992.
[Mos06] Peter D. Mosses. Teaching semantics of programming languages with

Modular SOS. In Teaching Formal Methods: Practice and Experience,
Electr. Workshops in Comput. BCS, 2006.

[MP66] J. McCarthy and J. Painter. Correctness of a compiler for arithmetic ex-
pressions. Technical Report CS38, Computer Science Department, Stan-
ford University, April 1966. See also pages 33–41 Proc. Symp. in Applied
Mathematics, Vol.19: Mathematical Aspects of Computer Science, Amer-
ican Mathematical Society, 1967.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes.
Information and Computation, 100:1–77, 1992.

[NN92] H. R. Nielson and F. Nielson. Semantics with Applications: A
Formal Introduction. Wiley, 1992. Available on the WWW as
http://www.daimi.au.dk/bra8130/Wiley book/wiley.html.

[Plo81] G. D. Plotkin. A structural approach to operational semantics. Technical
report, Aarhus University, 1981.

[Plo04a] Gordon D. Plotkin. The origins of structural operational semantics.
Journal of Logic and Algebraic Programming, 60–61:3–15, July–December
2004.

[Plo04b] Gordon D. Plotkin. A structural approach to operational semantics. Jour-
nal of Logic and Algebraic Programming, 60–61:17–139, July–December
2004.

[Rey98] John C. Reynolds. Theories of Programming Languages. Cambridge Uni-
versity Press, 1998. ISBN 0-521-5914-6.

[San99] Davide Sangiorgi. Typed π-calculus at work: a correctness proof of Jones’s
parallelisation transformation on concurrent objects. Theory and Practice
of Object Systems, 5(1):25–34, 1999.

[Sco00] Michael L. Scott. Programming Language Pragmatics. Morgan Kaufmann,
2000. ISBN 1-55860-578-9.

[Ste66] T. B. Steel. Formal Language Description Languages for Computer Pro-
gramming. North-Holland, 1966.

[Sto77] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Pro-
gramming Language Theory. MIT Press, 1977.

[SW01] Davide Sangiorgi and David Walker. The π-calculus: A Theory of Mobile
Processes. Cambridge University Press, 2001.

[vWSM+76] A. van Wijngaarden, M. Sintzoff, B. J. Mailloux, C. H. Lindsey, J. E. L.
Peck, L. G. L. T. Meertens, C. H. A. Koster, and R. G. Fisker. Revised
report on the Algorithmic Language ALGOL 68. Mathematical Centre
Tracts 50. Mathematisch Centrum, Amsterdam, 1976.

[Wal91] D. Walker. π-calculus semantics for object-oriented programming lan-
guages. In T. Ito and A. R. Meyer, editors, TACS’91, volume 526 of
Lecture Notes in Computer Science, pages 532–547. Springer-Verlag, 1991.

[Wal93] D. Walker. Process calculus and parallel object-oriented programming lan-
guages. In In T. Casavant (ed), Parallel Computers: Theory and Practice.
Computer Society Press, 1993.

[Wat04] David A. Watt. Programming Language Design Concepts. John Wiley,
2004.

[WC02] Jim Woodcock and Ana Cavalcanti. The semantics of circus. In ZB ’02:
Proceedings of the 2nd International Conference of B and Z Users on For-
mal Specification and Development in Z and B, pages 184–203. Springer-
Verlag, 2002.

[Wex81] Richard L. Wexelblat, editor. History of Programming Languages. Aca-
demic Press, 1981. ISBN 0-12-745040-8.

[WH66] Niklaus Wirth and C. A. R. Hoare. A contribution to the development of
algol. Commun. ACM, 9(6):413–432, 1966.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages. The
MIT Press, 1993. ISBN 0-262-23169-7.

[Zem66] H. Zemanek. Semiotics and programming languages. Communications of
the ACM, 9:139–143, 1966.

A Base language

Notice that the formulae in this appendix separate abstract syntax, context
conditions and semantics. This is not the order used in other appendices29 but
it serves at this stage to emphasize the distinctions.

A.1 Abstract syntax

Program :: vars : Id m−→ ScalarType
body : Stmt∗

ScalarType = IntTp | BoolTp

Stmt = Assign | If | While

Assign :: lhs : Id
rhs : Expr

29 For reference purposes, this is normally most convenient. There remains the decision
whether to present the parts of a language in a top-down (from Program to Expr)
order or bottom-up: this decision is fairly arbitrary. What is really needed is an
interactive support system!

If :: test : Expr
th : Stmt∗
el : Stmt∗

While :: test : Expr
body : Stmt∗

Expr = ArithExpr | RelExpr | Id | ScalarValue

ArithExpr :: opd1 : Expr
operator : Plus | Minus
opd2 : Expr

RelExpr :: opd1 : Expr
operator : Equals | NotEquals
opd2 : Expr

ScalarValue = Z | B

A.2 Context conditions

In order to define the Context Conditions below, an auxiliary object is required
in which the types of declared identifiers can be stored.

TypeMap = Id m−→ ScalarType

wf -Program :Program → B
wf -Program(mk -Program(vars, body)) ! wf -StmtList(body , vars)

wf -StmtList : (Stmt∗)× TypeMap → B
wf -StmtList(sl , tpm) ! ∀i ∈ inds sl · wf -Stmt(sl(i), tpm)

wf -Stmt :Stmt × TypeMap → B
wf -Stmt(s, tpm) ! given by cases below

wf -Stmt(mk -Assign(lhs, rhs), tpm) !
lhs ∈ dom tpm ∧
c-tp(rhs, tpm) = tpm(lhs)

wf -Stmt(mk -If (test , th, el), tpm) !
c-tp(test , tpm) = BoolTp ∧
wf -StmtList(th, tpm) ∧ wf -StmtList(el , tpm)

wf -Stmt(mk -While(test , body), tpm) !
c-tp(test , tpm) = BoolTp ∧
wf -StmtList(body , tpm)

An auxiliary function c-tp is defined

c-tp :Expr × TypeMap → (IntTp | BoolTp | Error)

c-tp(e, tpm) ! given by cases below

c-tp(mk -ArithExpr(e1, opt , e2), tpm) !
if c-tp(e1, tpm) = IntTp ∧ c-tp(e2, tpm) = IntTp
then IntTp
else Error

c-tp(mk -RelExpr(e1, opt , e2), tpm) !
if c-tp(e1, tpm) = IntTp ∧ c-tp(e2, tpm) = IntTp
then BoolTp
else Error

For the base cases:

e ∈ Id ⇒ c-tp(e, tpm) = tpm(e)

e ∈ Z ⇒ c-tp(e, tpm) = IntTp

e ∈ B ⇒ c-tp(e, tpm) = BoolTp

A.3 Semantics

An auxiliary object is needed to describe the Semantics — this “Semantic Ob-
ject” (Σ) stores the association of identifiers and their values.

Σ = Id m−→ ScalarValue

σ0 = {id $→ 0 | id ∈ dom vars ∧ vars(id) = IntTp}∪
{id $→ true | id ∈ dom vars ∧ vars(id) = BoolTp}

(body , σ0)
sl−→ σ′

(mk -Program(vars, body)) p−→ Done

The semantic transition relation for statement lists is

sl−→:P((Stmt∗ × Σ)× Σ)

([], σ) sl−→ σ

(s, σ) s−→ σ′

(rest , σ′) sl−→ σ′′

([s] ! rest , σ) sl−→ σ′′

The semantic transition relation for single statements is

s−→:P((Stmt × Σ)× Σ)

(rhs, σ) e−→ v
(mk -Assign(lhs, rhs), σ) s−→ σ † {lhs $→ v}

(test , σ) e−→ true
(th, σ) sl−→ σ′

(mk -If (test , th, el), σ) s−→ σ′

(test , σ) e−→ false
(el , σ) sl−→ σ′

(mk -If (test , th, el), σ) s−→ σ′

(test , σ) e−→ true
(body , σ) sl−→ σ′

(mk -While(test , body), σ′) s−→ σ′′

(mk -While(test , body), σ) s−→ σ′′

(test , σ) e−→ false
(mk -While(test , body), σ) s−→ σ

The semantic transition relation for expressions is

e−→:P((Expr × Σ)× ScalarValue)

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -ArithExpr(e1,Plus, e2), σ) e−→ v1 + v2

(e1, σ) e−→ v1
(e2, σ) e−→ v2
(mk -ArithExpr(e1,Minus, e2), σ) e−→ v1− v2

(e1, σ) e−→ v1
(e2, σ) e−→ v2
v1 = v2
(mk -RelExpr(e1,Equals, e2), σ) e−→ true

(e1, σ) e−→ v1
(e2, σ) e−→ v2
v1 = v2
(mk -RelExpr(e1,NotEquals, e2), σ) e−→ false

e ∈ Id
(e, σ) e−→ σ(e)

e ∈ ScalarValue
(e, σ) e−→ e

B The language “Blocks”

This appendix summarizes one of the definitions discussed in Section 4 and
shows a useful way in which a complete definition can be ordered. The “Blocks”
language is described here with parameter passing by-location.

B.1 Auxiliary objects

The context conditions use:

Types = Id m−→ Type

Type = ScalarType | FunType

FunType :: returns : ScalarType
paramtpl : ScalarType∗

The semantic rules use:

Env = Id m−→ Den

Den = ScalarLoc | FunDen

Where ScalarLoc is an infinite set chosen from Token.
The types of the semantic relations are

p−→:P(Program × Σ

sl−→:P(((Stmt∗)× Env × Σ)× Σ)

s−→:P((Stmt × Env × Σ)× Σ)

e−→:P((Expr × Env × Σ)× ScalarValue)

Abbreviations

σ ∈ Σ a single “state”
Σ the set of all “States”
Arith Arithmetic
Def Definition
Den Denotation
env a single “environment”
Env the set of all “Environments”
Expr Expression
Proc Procedure
opd operand
Rel Relational
Sc Scalar
Seq Sequence
Stmt Statement
. . .

B.2 Programs

Abstract syntax

Program :: Block

wf -Program :Program → B

Context conditions wf -Program(mk -Program(b)) !
wf -Block(b, { })

Semantics
(b, { }, { }) s−→ σ′

(mk -Program(b)) p−→ σ′

B.3 Blocks

Block :: vars : Id m−→ ScalarType
funs : Id m−→ Fun
body : Stmt∗

Abstract syntax ScalarType = IntTp | BoolTp

wf -Block :Block × Types → B
Context conditions wf -Block(mk -Block(vars, funs, body), tps) !

dom vars ∩ dom funs = { } ∧
let var -tps = tps † vars in
let fun-tps =

{f $→ mk -FunType(funs(f).returns,
apply(funs(f).params, funs(f).paramtps)) |

f ∈ dom funs} in
∀f ∈ dom funs · wf -Fun(funs(f), var -tps)
wf -StmtList(body , var -tps † fun-tps)

Notice that this rules out recursion.

Semantics

(varenv , σ′) = newlocs(vars, σ)
funenv =

{f $→ b-FunDen(funs(f), env † varenv) | f ∈ dom funs}
env ′ = env † varenv † funenv
(body , env ′, σ′) sl−→ σ′′

(mk -Block(vars, funs, body), env , σ) s−→ (dom σ) ! σ′′

newlocs (vars: (Id m−→ ScalarType), σ: Σ) varenv :Env , σ′: Σ
post dom varenv = dom vars ∧

disj (rng varenv ,dom σ) ∧
one-one(varenv) ∧
σ′ = σ∪{varenv(id) $→ 0 | id ∈ dom vars∧vars(id) = IntTp}∪

{varenv(id) $→ true | id ∈ dom vars∧vars(id) = BoolTp}

30

B.4 Function definitions

Fun :: returns : ScalarType
params : Id∗

paramtps : Id m−→ ScalarType
body : Stmt∗
result : Expr

Abstract syntax
30 The auxiliary function one-one is defined:

one-one : (X
m−→ Y)→ B

one-one(m) ! ∀a, b ∈ dom m · m(a) = m(b) ⇒ a = b

wf -Fun :Fun × Types → B
Context conditions

wf -Fun(mk -Fun(returns, params, paramtps, body , result), tps) !
uniquel(params) ∧
elems params = dom paramtps ∧
tp(result) = returns ∧
wf -StmtList(body , tps † paramtps)

b-Fun-Den :Fun × Env → FunDen

b-Fun-Den(mk -Fun(returns, params, paramtps, body , result), env) !
mk -FunDen(params, body , result , env)

B.5 Statement lists

wf -StmtList :Stmt∗ × Types → B
Context conditions wf -StmtList(sl , tps) !

∀i ∈ inds sl · wf -Stmt(sl(i), tps)

Semantics ([], env , σ) sl−→ σ

(s, env , σ) s−→ σ′

(rest , env , σ′) sl−→ σ′′

([s] ! rest , env , σ) sl−→ σ′′

B.6 Statements

Abstract syntax Stmt = Block | Assign | If | Call

B.7 Assignments

Assign :: lhs : Id
rhs : Expr

Abstract syntax

Context conditions wf -Stmt(mk -Assign(lhs, rhs), tps) !
tp(rhs, tps) = tp(lhs, tps)

Semantics

(lhs, env , σ) lhv−→ l
(rhs, env , σ) e−→ v
(mk -Assign(lhs, rhs), env , σ) s−→ σ † {l $→ v}

B.8 If statements

If :: test : Expr
th : Stmt∗
el : Stmt∗

Abstract syntax

Context conditions wf -Stmt(mk -If (test , th, el), tps) !
tp(test , tps) = BoolTp ∧
wf -StmtList(th, tps) ∧ wf -StmtList(el , tps)

Semantics

(test , env , σ) e−→ true
(th, env , σ) sl−→ σ′

(mk -If (test , th, el), env , σ) s−→ σ′

(test , env , σ) e−→ false
(el , env , σ) sl−→ σ′

(mk -If (test , th, el), env , σ) s−→ σ′

B.9 Call statements

Call :: lhs : VarRef
fun : Id
args : Id∗

Abstract syntax

Context conditions wf -Stmt(mk -Call(lhs, fun, args), tps) !
fun ∈ dom tps ∧
tps(fun) ∈ FunType ∧
tp(lhs, tps) = (tps(fun)).returns ∧
len args = len (tps(fun)).paramtpl ∧
∀i ∈ inds args · tp(args(i), tps) = ((tps(fun)).paramtpl)(i)

Semantics

(lhs, env , σ) lhv−→ l
mk -FunDen(parms, body , result , context) = env(f)
len arglocs = len args
∀i ∈ inds arglocs · (args(i), env , σ) lhv−→ arglocs(i)
parm-env = {parms(i) $→ arglocs(i) | i ∈ inds parms}
(body , (context † parm-env), σ) sl−→ σ′

(result , (context † parm-env), σ′) e−→ res
(mk -Call(lhs, f , args), env , σ) s−→ (σ′ † {l $→ res})

B.10 Expressions

Abstract syntax Expr = ArithExpr | RelExpr | Id | ScalarValue

ArithExpr :: opd1 : Expr
operator : Plus
opd2 : Expr

RelExpr :: opd1 : Expr
operator : Equals
opd2 : Expr

ScalarValue = Z | B

Semantics

(e1, env , σ) e−→ v1
(e2, env , σ) e−→ v2
(mk -ArithExpr(e1,Plus, e2), env , σ) e−→ v1 + v2

(e1, env , σ) e−→ v1
(e2, env , σ) e−→ v2
v1 = v2
(mk -RelExpr(e1,Equals, e2), env , σ) e−→ true

e ∈ Id
(id , env , σ) lhv−→ l
(e, env , σ) e−→ σ(l)

e ∈ ScalarValue
(e, env , σ) e−→ e

C COOL

Reordered definition from Section 6.

C.1 Auxiliary objects

The objects required for both Context Conditions and Semantic Rules are given
first.

Objects needed for context conditions

The following objects are needed in the description of the Context Conditions.

ClassTypes = Id m−→ ClassInfo

ClassInfo = Id m−→ MethInfo

The only information required about methods is about their types (arguments
and results):

MethInfo :: return : Type
parms : Type∗

Type = Id | ScalarType

ScalarType = IntTp | BoolTp

When checking for the well-formedness of the body of a Method , information
about its instance variables is also needed

VarEnv = Id m−→ Type

Semantic objects

In addition to the abstract syntax of Classes (see below), the following objects
are needed in the description of the Semantics.

ObjMap = Reference m−→ ObjInfo

ObjInfo :: class : Id
state : VarState
status : Status
remaining : Stmt∗
client : [Reference]

VarState = Id m−→ Val

Val = [Reference] | Z | B

The set Reference is infinite and nil /∈ Reference.

Status = Active | Idle | Wait

Wait :: lhs : Id

The types of the semantic relations are

p−→:P(Program ×Done)

s−→:P((Classes ×ObjMap)×ObjMap)

e−→:P((Expr ×VarState)×Val)

Abbreviations

Arith Arithmetic
Expr Expression
Obj Object
opd operand
Meth Method
Rel Relational
Stmt Statement
Var Variable

C.2 Programs

Abstract syntax

Program :: cm : Classes
start-class : Id
start-meth : Id

Classes = Id m−→ ClassBlock

Context conditions

wf -Program :Program → B
wf -Program(mk -Program(cm, start-c, start-m)) !

start-c ∈ dom cm ∧
start-m ∈ dom (cm(start-c).meths) ∧
let ctps = {c $→ c-tp(cm(c)) | c ∈ dom cm}
in ∀c ∈ dom cm · wf -ClassBlock(cm(c), ctps)

The following two functions extract ClassInfo and MethInfo respectively.

c-tp :ClassBlock → ClassInfo

c-tp(mk -ClassBlock(tpm,mm)) !
{m $→ c-minfo(mm(m)) | m ∈ dom mm}

c-minfo :Meth → MethInfo

c-minfo(mk -Meth(ret , pnl , ptm, b)) !
mk -MethInfo(ret , apply(pnl , ptm))

Semantics

With no input/output statements, the execution of a Program actually leaves no
trace. One might say that, for mk -Program(cm, init-class, init-meth), the initial
O is such that

a ∈ Reference
mk -ClassBlock(vars0,meths0) = cm(init-class)
σ0 = {v $→ nil | v ∈ dom (vars0) ∧ vars0(v) /∈ ScalarType} ∪

{v $→ false | v ∈ dom (vars0) ∧ vars0(v) = BoolTp} ∪
{v $→ 0 | v ∈ dom (vars0) ∧ vars0(v) = IntTp}

sl0 = meths0(init-meth).body
O = {a $→ mk -ObjInfo(init-class, σ0,Active, sl0,nil)}

and that execution ceases when there are no more “threads” active. It would, of
course, be more useful to look at running a program against an “object store”
from the file system; such an extension is straightforward but somewhat outside
the realm of the language itself.

C.3 Classes

Abstract syntax

ClassBlock :: vars : Id m−→ Type
meths : Id m−→ Meth

Context conditions

wf -ClassBlock :ClassBlock × ClassTypes → B

wf -ClassBlock(mk -ClassBlock(tpm,mm), ctps) !
∀id ∈ dom tpm · (tpm(id) ∈ ScalarType ∨ tpm(id) ∈ dom ctps) ∧
∀m ∈ dom mm · wf -Meth(mm(m), ctps, tpm)

Semantics

There are no semantics for classes as such — see the semantics of New in Sec-
tion C.8.

C.4 Methods

Abstract syntax

Meth :: returns : Type
params : Id∗

paramtps : Id m−→ Type
body : Stmt∗

Context conditions

wf -Meth :Meth × ClassTypes ×VarEnv → B

wf -Meth(mk -Meth(ret , pnl , ptm, b), ctps, v -env) !
(ret ∈ ScalarType ∨ ret ∈ dom ctps)) ∧
∀id ∈ dom ptm · (ptm(id) ∈ ScalarType ∨ ptm(id) ∈ dom ctps) ∧
elems pnl ⊆ dom ptm ∧
∀i ∈ inds b · wf -Stmt(b(i), ctps, v -env † ptm)

Semantics

There are no semantics for methods as such — see the semantics of method
invocation in Section C.9.

C.5 Statements

Stmt = Assign | If | New | MethCall | Return | Release | Delegate

Context conditions

wf -Stmt :Stmt × ClassTypes ×VarEnv → B

wf -Stmt(s, ctps, v -env) ! by cases below

C.6 Assignments

Remember that method calls cannot occur in an Assign – method invocation is
covered in Section C.9.

Abstract syntax

Assign :: lhs : Id
rhs : Expr

Context conditions

wf -Stmt(mk -Assign(lhs, rhs), ctps, v -env) !
lhs ∈ dom v -env ∧
tp(rhs, ctps, v -env) = v -env(lhs)

Semantics

O(a) = mk -ObjInfo(c, σ,Active, [mk -Assign(lhs, rhs)] ! rl , co)
(rhs, σ) e−→ v
aobj ′ = mk -ObjInfo(c, σ † {lhs $→ v},Active, rl , co)
(C ,O) s−→ O † {a $→ aobj ′}

C.7 If statements

Abstract syntax

If :: test : Expr
th : Stmt∗
el : Stmt∗

Context conditions

wf -Stmt(mk -If (test , th, el), ctps, v -env) !
tp(test , ctps, v -env) = BoolTp ∧
∀i ∈ inds th · wf -Stmt(th(i), ctps, v -env) ∧
∀i ∈ inds el · wf -Stmt(el(i), ctps, v -env)

Semantics

O(a) = mk -ObjInfo(c, σ,Active, [mk -If (test , th, el)] ! rl , co)
(test , σ) e−→ true
aobj ′ = mk -ObjInfo(c, σ,Active, [th] ! rl , co)
(C ,O) s−→ O † {a $→ aobj ′}

O(a) = mk -ObjInfo(c, σ,Active, [mk -If (test , th, el)] ! rl , co)
(test , σ) e−→ false
aobj ′ = mk -ObjInfo(c, σ,Active, [el] ! rl , co)
(C ,O) s−→ O † {a $→ aobj ′}

C.8 Creating objects

Abstract syntax

New :: targ : Id
class : Id

Context conditions

wf -Stmt(mk -New(targ , class), ctps, v -env) !
class ∈ dom ctps ∧
class = v -env(targ)

Semantics

O(a) = mk -ObjInfo(c, σ,Active, [mk -New(targ , c′)] ! rl , co)
b ∈ (Reference − dom O)
aobj ′ = mk -ObjInfo(c, σ † {targ $→ b},Active, rl , co)
σb =
{v $→ 0 | v ∈ dom (C (c′).vars) ∧ (C (c′).vars)(v) = IntTp}∪
{v $→ false | v ∈ dom (C (c′).vars) ∧ (C (c′).vars)(v) = BoolTp}∪
{v $→ nil | v ∈ dom (C (c′).vars) ∧ (C (c′).vars)(v) /∈ ScalarType}

nobj = mk -ObjInfo(c′, σb , Idle, [],nil)
(C ,O) s−→ O † {a $→ aobj ′, b $→ nobj}

C.9 Invoking and completing methods

Abstract syntax

MethCall :: lhs : Id
obj : Id
meth : Id
args : Id∗

Context conditions

wf -Stmt(mk -MethCall(lhs, obj ,meth, args), ctps, v -env) !
obj ∈ dom ctps ∧
meth ∈ dom (ctps(obj)) ∧
((ctps(obj))(meth)).return = v -env(lhs) ∧
len args = len ((ctps(obj))(meth)).parms ∧
∀i ∈ inds args ·

tp(args(i), ctps, v -env) = (((ctps(obj))(meth)).parms)(i)

Semantics

O(a) =
mk -ObjInfo(c, σ,Active, [mk -MethCall(lhs, obj ,meth, args)] ! rl , co)

O(σ(obj)) = mk -ObjInfo(c′, σ′, Idle, [],nil)
C (c′) = mk -ClassBlock(vars,meths)
aobj ′ = mk -ObjInfo(c, σ,mk -Wait(lhs), rl , co)
σ′′ = σ′ † {(meths(meth).params)(i) $→ σ(args(i)) | i ∈ inds args}
sobj = mk -ObjInfo(c′, σ′′,Active,meths(meth).body , a)
(C ,O) s−→ O † {a $→ aobj ′, σ(obj) $→ sobj}

When a method has no more statements to execute (remember the Release can
have occured earlier) it returns to the quiescent status.

O(a) = mk -ObjInfo(c, σ,Active, [], co)
aobj ′ = mk -ObjInfo(c, σ, Idle, [],nil)
(C ,O) s−→ O † {a $→ aobj ′}

C.10 Returning values

Abstract syntax

Return :: val : (Expr | Self)
Context conditions

wf -Stmt(mk -Return(val), ctps, v -env) !
incomplete

Semantics

The cases of an Expr and Self separately.
O(a) = mk -ObjInfo(c, σ,Active, [mk -Return(e)] ! rl , co)
e ∈ Expr
(e, σ) e−→ v
O(co) = mk -ObjInfo(c′, σ′,mk -Wait(lhs), sl , co′)
aobj ′ = mk -ObjInfo(c, σ, Idle, [],nil)
cobj ′ = mk -ObjInfo(c′, σ′ † {lhs $→ v},Active, sl , co′)
(C ,O) s−→ O † {a $→ aobj ′, co $→ cobj ′}

O(a) = mk -ObjInfo(c, σ,Active, [mk -Return(e)] ! rl , co)
e = Self
O(co) = mk -ObjInfo(c′, σ′,mk -Wait(lhs), sl , co′)
aobj ′ = mk -ObjInfo(c, σ, Idle, [],nil)
cobj ′ = mk -ObjInfo(c′, σ′ † {lhs $→ a},Active, sl , co′)
(C ,O) s−→ O † {a $→ aobj ′, co $→ cobj ′}
Release is more general than a Return in the sense that the former does not

have to terminate a method.

Abstract syntax

Release :: val : (Expr | Self)

Context conditions

wf -Stmt(mk -Release(val), ctps, v -env) !
incomplete

Semantics

The cases of an Expr and Self are considered separately.

O(a) = mk -ObjInfo(c, σ,Active, [mk -Release(e)] ! rl , co)
e ∈ Expr
(e, σ) e−→ v
O(co) = mk -ObjInfo(c′, σ′,mk -Wait(lhs), sl , co′)
aobj ′ = mk -ObjInfo(c, σ,Active, rl ,nil)
cobj ′ = mk -ObjInfo(c′, σ′ † {lhs $→ v},Active, sl , co′)
(C ,O) s−→ O † {a $→ aobj ′, co $→ cobj ′}

O(a) = mk -ObjInfo(c, σ,Active, [mk -Release(e)] ! rl , co)
e = Self
O(co) = mk -ObjInfo(c′, σ′,mk -Wait(lhs), sl , co′)
aobj ′ = mk -ObjInfo(c, σ,Active, rl ,nil)
cobj ′ = mk -ObjInfo(c′, σ′ † {lhs $→ a},Active, sl , co′)
(C ,O) s−→ O † {a $→ aobj ′, co $→ cobj ′}

C.11 Delegation

Abstract syntax

Delegate :: obj : Id
meth : Id
args : Id∗

Context conditions

wf -Stmt(mk -Delegate(obj ,meth, args), ctps, v -env) !
incomplete

Semantics

O(a) =
mk -ObjInfo(c, σ,Active, [mk -Delegate(obj ,meth, args)] ! rl , co)

O(σ(obj)) = mk -ObjInfo(c′, σ′, Idle, [],nil)
C (c′) = mk -ClassBlock(vars,meths)
aobj ′ = mk -ObjInfo(c, σ,Active, rl ,nil)
σ′′ = σ′ † {(meths(meth).params)(i) $→ σ(args(i)) | i ∈ inds args}
sobj = mk -ObjInfo(c′, σ′′,Active,meths(meth).body , co)
(C ,O) s−→ O † {a $→ aobj ′, σ(obj) $→ sobj}

C.12 Expressions

Abstract syntax

Expr = ArithExpr | RelExpr | TestNil | Id | ScalarValue | nil

ArithExpr :: opd1 : Expr
operator : Plus
opd2 : Expr

RelExpr :: opd1 : Expr
operator : Equals
opd2 : Expr

TestNil :: obj : Id

ScalarValue = Z | B

