UNIVERSITY OF
NEWCASTLE

University of Newcastle upon Tyne

COMPUTING
SCIENCE

Deriving specifications for systems that are connected to the physical
world

C. B. Jones, 1. J. Hayes, M. A. Jackson.

TECHNICAL REPORT SERIES

No. CS-TR-1045 August, 2007



TECHNICAL REPORT SERIES

No. CS-TR-1045 August, 2007

Deriving specifications for systems that are connected to the physical world

CIliff B. Jones, Ian J. Hayes, Michael A. Jackson.

Abstract

Well understood methods exist for developing programs from formal specifications.
Not only do such methods offer a precise check that certain sorts of deviations from
their specifications are absent from implementations but they can also increase the
productivity of the development process by careful use of layers of abstraction and
refinement in design. These methods, however, presuppose a specification from
which to begin the development. For tasks that are fully described in terms of the
symbolic values within a machine, inventing a specification is not difficult but there
is an increasing demand for systems in which programs interact with an external
physical world. Here, the task of fixing the specification for the “silicon package” can
be more challenging than the development itself. Such applications include control
programs that attempt to bring about changes in the physical world via actuators and
measure things in that external (to the silicon package) world via sensors.
Furthermore, most systems of this class must tolerate failures in the physical
components outside the computer: it then becomes even harder to achieve confidence
that the specification is appropriate. This paper offers a systematic way to derive the
specification of a control program. Furthermore, our approach leads to recording
assumptions about the physical world. We also discuss separating the detection and
management of faults from system operation in the absence of faults. This discussion
is linked to the distinction between “normal” and “radical” design. This report is a
preprint of a paper that will appear in an LNCS volume — please cite that publication
[JHJO7].

© 2007 University of Newcastle upon Tyne.

Printed and published by the University of Newcastle upon Tyne,
Computing Science, Claremont Tower, Claremont Road,
Newecastle upon Tyne, NE1 7RU, England.



Bibliographical details

JONES, C. B., HAYES, L. ., JACKSON, M. A.

Deriving specifications for systems that are connected to the physical world
[By] C. B. Jones, 1. J. Hayes, M. A. Jackson.

Newecastle upon Tyne: University of Newcastle upon Tyne: Computing Science, 2007.

(University of Newcastle upon Tyne, Computing Science, Technical Report Series, No. CS-TR-1045)

Added entries

UNIVERSITY OF NEWCASTLE UPON TYNE
Computing Science. Technical Report Series. CS-TR-1045

Abstract

Well understood methods exist for developing programs from formal specifications. Not only do such methods
offer a precise check that certain sorts of deviations from their specifications are absent from implementations but
they can also increase the productivity of the development process by careful use of layers of abstraction and
refinement in design. These methods, however, presuppose a specification from which to begin the development.
For tasks that are fully described in terms of the symbolic values within a machine, inventing a specification is not
difficult but there is an increasing demand for systems in which programs interact with an external physical world.
Here, the task of fixing the specification for the “silicon package” can be more challenging than the development
itself. Such applications include control programs that attempt to bring about changes in the physical world via
actuators and measure things in that external (to the silicon package) world via sensors. Furthermore, most
systems of this class must tolerate failures in the physical components outside the computer: it then becomes even
harder to achieve confidence that the specification is appropriate. This paper offers a systematic way to derive the
specification of a control program. Furthermore, our approach leads to recording assumptions about the physical
world. We also discuss separating the detection and management of faults from system operation in the absence of
faults. This discussion is linked to the distinction between “normal” and “radical” design. This report is a preprint
of a paper that will appear in an LNCS volume — please cite that publication [JHJO07].

About the author

Cliff Jones is currently Professor of Computing Science at Newcastle. He has spent more of his career in industry
than academia. Fifteen years in IBM saw, among other things, the creation with colleagues of the Vienna
Development Method. He went on to build the Formal Methods Group at Manchester University, which among
other projects created the "mural" theorem proving assistant. A Senior Fellowship focused on formal
(compositional) development methods for concurrent systems. In 1996 he moved to Harlequin directing some 50
developers on Information Management projects and finally became overall Technical Director before leaving to
re-join academia in 1999. Cliff's interests in formal methods have now broadened to reflect wider issues of
dependability. Cliff is a Fellow of the Royal Academy of Engineering, the ACM, BCS and IEE.

Ian Hayes is a Visiting Professor to the School of Computing Science at Newcastle University.

Michael Jackson is a Visiting Professor to the School of Computing Science at Newcastle University.

Suggested keywords

PROBLEM FRAMES,
CONTINUOUS TIME,
RELY/GUARANTEE




Deriving specifications for systems that are
connected to the physical world

Cliff B. Jones!, Ian J. Hayes?, and Michael A. Jackson?3

! School of Computing Science,
Newecastle University, NE1 7RU, England.
cliff. jones@ncl.ac.uk
2 School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, 4072, Australia.
Ian.Hayes@itee.uq.edu.au
3 101 Hamilton Terrace, London NW8 9QY, England.
jacksonma@acm.org

Abstract. Well understood methods exist for developing programs from
formal specifications. Not only do such methods offer a precise check
that certain sorts of deviations from their specifications are absent from
implementations but they can also increase the productivity of the devel-
opment process by careful use of layers of abstraction and refinement in
design. These methods, however, presuppose a specification from which
to begin the development. For tasks that are fully described in terms
of the symbolic values within a machine, inventing a specification is not
difficult but there is an increasing demand for systems in which pro-
grams interact with an external physical world. Here, the task of fixing
the specification for the “silicon package” can be more challenging than
the development itself. Such applications include control programs that
attempt to bring about changes in the physical world via actuators and
measure things in that external (to the silicon package) world via sen-
sors. Furthermore, most systems of this class must tolerate failures in
the physical components outside the computer: it then becomes even
harder to achieve confidence that the specification is appropriate. This
paper offers a systematic way to derive the specification of a control pro-
gram. Furthermore, our approach leads to recording assumptions about
the physical world. We also discuss separating the detection and man-
agement of faults from system operation in the absence of faults. This
discussion is linked to the distinction between “normal” and “radical”
design.

This report is a preprint of a paper that will appear in an LNCS volume —
please cite that publication [JHJO07].



1 Introduction

This paper is intended to contribute to the formal development of computer sys-
tems by showing how one might obtain the starting specification for an important
class of problems. The applications of interest are those whose function is best
understood by describing behaviour in the physical world. Of course, computers
can only receive and transmit signals; they cannot directly affect their external
world. What connects the signals from (what we call) the “silicon package” to
the physical world is a collection of sensors and actuators. We show how it is
possible to derive a specification of the silicon package from a description of the
desired behaviour of the overall system in the physical world. We do this without
building a complete model of the external components; the method does however
leave a clear record of assumptions which are crucial to safe deployment.

As computers become cheaper and smaller, they are increasingly connected
to devices that sense and affect the physical world. Such applications of general
purpose digital computers include “control programs”. We do not restrict what
we have to say to control programs in the narrow sense; but they furnish an im-
portant —and convenient— example of systems connected to the physical world.*
The broad class of “open systems”, which receive input from the physical world
via sensors and influence it via actuators, is both large and important. Such
open systems are often deployed in safety-critical environments.?

It is often difficult to develop the specification of an open system because the
devices to which it is connected are themselves complex. The task of developing
an appropriate specification is further complicated by the fact that the physi-
cal devices are subject to failure. We outline our approach to deriving formal
specification of control systems and argue that it extends to more general open
systems.©

Notice that the observations above affect any specification whether it is for-
mal or informal. It is expected that —as with other formal methods— the ideas
will inspire less formal approaches as well.

This paper develops the ideas presented in our earlier paper [HJJ03]. As
there, our ideas are presented using the example of a controller for an irrigation

4 In fact, we hope to extend (see Section 4.2) our area of application to systems where
humans play a significant part. We have, for example, studied advisory systems,
which are in some respects similar to the control systems we discuss here, but whose
purpose is to provide advice to a human operator who makes final decisions.

The most common argument used for replacing custom designed control hardware
with software running in a general purpose processor is that flexibility for change is
offered; it is not the intention here to argue whether or not the claims justify the
use of software-controlled systems.

There is a considerable literature on the development of control systems in partic-
ular (more generally, “hybrid systems”); representative publications are cited and
compared in Section 4.1. It is important to understand that our interest here is in
obtaining the initial specification of the silicon package. In some senses, the work on
ISAC [Lan73,BB87] is a closer pre-cursor to our work than the research on developing
reactive systems.



sluice gate. Section 2 begins with the overall requirement for an ideally reliable
sluice gate and develops a specification for its controller. In Section 3 we consider
faults in the problem world. This is one area where our thinking has developed
since the earlier paper. Another development is our more explicit recognition
of the influence of the distinction between “normal” and “radical” design (see
Section 3.8).

1.1 Outline of our method

Our method is conceptually simple: we ground our view of a desired computer
system (or “silicon package”) in the external physical world. This is the problem
world whose phenomena are to be measured and influenced by the overall system.
Having agreed with the customer the desired behaviour in the problem world,
we record —and again obtain conformation of acceptability— assumptions about
the physical components outside the computer itself. Only then do we derive the
specification of the software to run in the computer.

To some developers, it may seem surprising to begin by discussing external
physical phenomena most of which the program can influence only indirectly.
Programs can only receive and send signals: they do not directly experience
or control any other phenomena of the problem world. So our message can be
stated negatively: the method discourages designers from jumping too early into
writing a specification of the control software.

To use our method a number of technical issues have had to be settled. How
these are resolved is discussed in Section 1.3.

As indicated, our proposed approach is first to specify the requirements of the
overall system in the physical (problem) world; then to determine —and record
as rely conditions— necessary assumptions about components of that physical
world; and only then to derive a specification of the computational part of the
control system (the symbolic world). See Figure 1.

}

Control
System

Physical
World

Fig. 1. A representation of the overall method



Most open systems must be designed to tolerate failures in the physical com-
ponents — both in the sensors and actuators, and in other components not
directly interfaced to the computer. This requirement for fault-tolerance com-
plicates the problem of deriving a specification by introducing conflicting needs
into the development process. On the one hand, it is necessary to understand
and capture enough of the complexity of the possible problem world behaviours
to accommodate a sufficient class of faults to achieve the desired degree of fault-
tolerance. On the other hand, it is important to maintain clarity in the set of
assumptions that underpins the specification of control program behaviour in
normal fault-free operation. This conflict cannot be conveniently resolved in a
unitary top down development process in which a single specification of problem
properties is elaborated to accommodate both faulty and fault-free operation.
Our approach is to treat faulty and fault-free operation as distinct subproblems,
to be solved separately and subsequently combined. We address a number of
issues relating to the treatment of faults in Section 3 and return to the problem
of relating fault-tolerant behaviour to normal and radical design in Section 3.8.
This is one area where our understanding has progressed substantially beyond
the ideas in [HJJ03] but as we explain in Section 4.3 there is more work required
in this area and we are looking at the connection with the “Time Bands” ideas
in [BHBFO05].

There are two key advantages of starting with a specification that describes
problem world phenomena more generally (rather than restricting it to those
phenomena which cross the interface to the computer as input or output signals):

— the problem world requirements are meaningful to the customer, and so are
likely to be better understood; and

— the process forces the developer to articulate and record clear assumptions
about the problem world properties, which must be checked before any de-
ployment of the control software.

Of course, we make no claim that systems can be made perfectly safe; we aim
only to offer a method that will make it easier to identify the assumptions about
the physical components of the system and to ensure that they are formally
documented.

There is a problem with this wider view: it would be unreasonable to ask
system developers to build models of all of the physical components of a system.
In particular, components which have extremely complex behaviour —for exam-
ple, airflow over an aircraft wing— might defy adequate formal description. Our
approach here is to record only the assumptions (which we record as rely con-
ditions) on which the development is based. These assumptions will often hold
for a range of possible devices, enlarging the range of environments in which the
developed control software can be deployed.

It might be useful to contrast our approach with Dines Bjgrner’s notion of
“domain modelling”. In [Bjp06, Chapter 10], he uses formal specification tech-
niques to describe the physical world in which the silicon package will be embed-
ded. Our purpose is rather to see “how little can one say”; our rely-conditions



provide a “separation of concerns” without modelling the whole of the physical
system. Crucially, our approach does leave a record of assumptions which have
been made. An instructive experiment would be to compare a fully worked out
version of [Bjp06, Example 10.4] (which addresses RADAR inaccuracy) with our
approach. It might well be the case that general properties of the domain are
useful to build an overall picture but that our approach would put clearer bounds
on the concerns relevant to specific systems.

1.2 A micro example

A simple illustration of the envisaged method can be given for a room heating
system [MH91a]. We argue that one should not jump at once into a specification
of the control program — stating what corrective action should follow when the
value read from the temperature sensor indicates that some limit value has been
exceeded. Instead one should first specify the desired relationship between the
actual room temperature and the target temperature set on the control knob:
this is the requirement in the problem world.

A control program cannot detect the actual temperature so a realisable spec-
ification must record, in rely conditions, the properties of those components
which link the control system to the physical world: that is, the assumptions
made about the accuracy of the sensors and about the causal chain connection
between sending signals to the heating equipment and changes in the actual room
temperature. Proceeding in this way is likely to pinpoint assumptions about the
extremes and rate of change of external temperature. Once these assumptions
have been recorded and authorised, it is possible to derive the specification of
the control program.

Perhaps most importantly, the assumptions are recorded for anyone who is
considering deploying the control system.

1.3 Technical tools

In clarifying the understanding of a system, one essential tool is the use of
problem diagrams [Jac00]. A problem diagram shows the customer’s requirement,
the problem world, the computer (which we refer to as the machine), and the
interfaces among them. A problem diagram represents these elements explicitly
and so helps to provide a firm basis both for exploring the problem scope and
for identifying the parts of the problem world that must be specified and the
phenomena that must be related by those specifications. A simple example of a
problem diagram is given in Figure 3.

We are of the firm opinion that handling complex systems requires formal
notation. We do not rehearse the arguments for formal methods here beyond
saying that reasoning requires formal notation.

A number of methods exist for developing sequential programs from formal
specifications; two which embrace the “posit and prove” idea are [Jon90,Abr96].
A posit and prove method identifies proof obligations to be discharged at each
development step: if all such proof obligations are satisfied, one class of error



has been excluded from the final program. Notice that we are not claiming that
the system will perform, in some sense, perfectly. For one thing, any reasoning
about the text of a program is done with respect to assumptions about faithful
implementation of the assumed semantics. There are also the questions of “clean
termination” discussed in [Sit74]. For the current concerns however, the crucial
gap is that the specification (however formal) might not accord with the real
needs of a system — proving that a program satisfies a specification in no way
guarantees that the specification itself is perfect (cf. [Jon90, Postscript]). It is
against this last doubt that the current paper tries to offer some way to gain
reassurance.

Although such formal methods are not universally practised, their existence
shows that a class of errors can be eliminated from program design. Methods
which use a posit and prove approach are particularly useful because they com-
bine the predisposition of an engineer to introduce decisions one at a time with
the possibility to verify one design decision before moving on to base further
work on that decision. Such approaches use the essential ideas of redundancy
and diversity and thus minimise the amount of scrap and rework.

A development method that can scale up to deal with realistic problems
must be compositional in the sense that the specification of a subsystem is a
complete statement of its required properties. For sequential programs, various
forms of precondition and postcondition specifications satisfy this requirement.
For concurrent programs, the task of finding tractable compositional methods
has proved more challenging; but even here, techniques like rely and guarantee
specifications (see [Jon96, further references therein] and [MH92,BS01]) offer
compositional methods.

It is worth emphasising the difference in nature between rely and guarantee
conditions because it clarifies their use in our approach. Guarantee conditions
are obligations on the code that is to be created: the program is obliged to be-
have in a certain way. Rely conditions give permission to the developer to ignore
possible uses: the program is under no obligation if it is used in an environment
in which the rely condition is not true. There is of course an exact correspon-
dence here with preconditions and postconditions: the precondition on a square
root function tells the developer that —since the input can be assumed to be
positive— imaginary number results are outside the scope; but for positive num-
bers, the bounds on the accuracy of the result must be respected by any valid
implementation.

Since, in general, a program cannot directly monitor or control all the phe-
nomena of interest in the problem world, satisfaction of the customer’s require-
ment must be achieved indirectly, relying on causal properties of the problem
world. We therefore use rely and guarantee conditions in the following way. The
machine and the problem world are related by mutual rely and guarantee condi-
tions: each one guarantees to satisfy certain conditions provided that it can rely
on the guarantees of its partner. On this basis we can prove that the parallel
composition of the machine with the problem world satisfies the specification
of the whole system. The rely and guarantee conditions remain explicit in the



specification documents as a reminder and a warning: they must be checked for
safe deployment.

Properties of a control system must, in general, be specified over time inter-
vals: in particular, the time interval, and its subintervals, over which the system
operates. In addition, properties may relate behaviour in one subinterval to be-
haviour in an adjoining interval. We follow the approach of explicitly quantifying
over such intervals [MH91b,MH92] (the notation is similar to the Duration Cal-
culus [CHRI1)).

1.4 Fault tolerance

Armed with the technical ideas of the previous section, it is possible to undertake
the approach of deriving specifications of the silicon package from a description
of the required behaviour of the overall system. This process is illustrated in
Section 2.

The approach to describing fault-tolerant behaviour is less firm but a number
of ideas are explored in Section 3. Our basic hope is to be able to formalise a
notion of layered specifications in which one can for example state the behaviour
desired in the absence of component failures (with one set of rely /guarantee pred-
icates) separately from a description of (presumably) more restricted behaviour
in the presence of faults. (There might of course be several layers of such fault-
tolerance.) The motivation here is very like that for VDM’s “error conditions”
(see [Daw91]) but we discuss in Section 4.3 why the notion of changing from the
well-behaved to the fault-tolerant phase is difficult (and the direction in which
we are seeking a resolution of the difficulty.)

2 The Sluice Gate example

The example considered in detail in this paper concerns a sluice gate (as in-
troduced in [Jac00]) designed to control the flow of water in a farm irrigation
channel. The gate is pictured in Figure 2; it consists of a barrier sliding in ver-
tical guides and positioned across the flow of water in the irrigation channel.
The barrier is raised and lowered by a reversible motor which drives a rack-and-
pinion mechanism engaging with the guide at each side. When the barrier is fully
raised it is open and the flow of water is unimpeded; when the barrier is fully
down it is closed and the flow of water is blocked. The guides are equipped with
stops that prevent the barrier from moving beyond the guide limits. There are
top and bottom sensors which should be set on when the barrier is fully raised
or fully down respectively.

The idea outlined in Section 1.1 is to write an initial specification based on a
wide view of a system, including both the machine and the problem world. The
machine is the computer, executing the control program to be developed. The
problem world is that part of physical reality in which the problem resides and
in which the effects of the system, once installed and set in operation, will be
evaluated.



Moto Gate *

Top &
Bottom
Sensors

Mechanism Water

Fig. 2. A representation of a sluice gate

Drawing the boundaries of the problem world demands a judgment based on
the responsibilities and the scope of authority of the customer for the system
(we return to this topic in Section 2.1).

One view is that it is the customer’s responsibilities that bound the effects
to be evaluated in the problem world, while the customer’s scope of authority
bounds the freedom of the developers in aiming to achieve those effects.

The customer’s requirement is that the gate should be open or closed accord-
ing to a certain regime intended to ensure appropriate irrigation of the fields.
The problem is to develop the controller that will impose this regime. The prob-
lem is depicted in the problem diagram in Figure 3. The two rectangles represent
the two physical domains of this problem. One is the Control Machine, which is
the computer executing the control program that we are to develop. It is marked
with a double stripe; this indicates that it is the machine domain in the problem.
The other is the Sluice Gate with its sensors and drive motor, the plain rectangle
indicating that it is a problem domain, which in the software development we
regard as given.”

_——_——

4 N
Control b Sluice < - i __ _/ Gate
Machine Gate \\ Regime ,l
~ - N -
b: CM! {motor, direction} a: {open,closed}

SG! {top, bottom?}

Fig. 3. The machine, the problem world and the requirement

" It is important that we are concerned with software development, and that we regard
the problem domain as given: that is, we are not free to replace the sluice gate
equipment with different equipment better suited to our needs. We must develop a
control program for the sluice gate with which our customer presents us.



In this diagram there is only one problem domain; it is frequently the case
that there are two or more, interacting with each other and with the machine
domain. We refer to the problem domains collectively as the problem world,
distinguishing them from the machine. The requirement is represented by the
dashed ellipse; the requirement is to impose the desired regime on the gate. The
requirement phenomena —that is the phenomena in terms of which the require-
ment is expressed— are represented by the arrow marked a, and listed in the text
below the diagram. The specification phenomena —that is, the shared phenomena
of the interaction between the machine and the problem world — are represented
by the line marked b, and listed in the text below the diagram. The notations
“CM!” and “SG!” indicate that the Control Machine and Sluice Gate respec-
tively control the annotated phenomena: the machine can switch the motor on
and off and set its direction, while the top and bottom sensors are controlled by
the sluice gate. The requirement phenomenon is expressed in terms of periods
in which the gate is either open or closed.

2.1 The scope of the problem

By drawing the problem diagram as we have done we have identified the scope of
the problem: it is restricted to operation of the sluice gate. We might instead have
broadened the scope to include the irrigation channel. The diagram would then
have shown the Irrigation Channel as an additional domain of the problem world,
interacting with the Sluice Gate; and the requirement would have been expressed
in terms of a required flow of water in the channel. Any broadening or narrowing
of the problem world will, of course, be reflected in a change in the requirement
phenomena, and wvice versa. A further broadening would include the fields and
their crops as a part of the problem world. Each of these expansions would give
rise to new assumptions (expressed as rely-conditions) about those things which
are beyond the control of the silicon package. Drawing the boundaries of the
problem world in this way demands an inescapable judgment: the whole universe
cannot be encompassed in a single problem. This judgment must be based on
an understanding of the responsibilities and scope of authority of the customer
for the system. The customer’s responsibilities place an upper bound on the
requirement, while the scope of authority bounds the freedom of the developers
in aiming to satisfy that requirement. Here we limit our consideration to the
sluice gate and its operation, as shown in the problem diagram.

For the chosen scope, Section 2.5 indicates a set of assumptions which are
made on the environment. For each of the alternative scopes discussed here, one
would end up making different assumptions on the environment (cf. Section 4.2).

2.2 Formalising the problem requirement

The requirement is that —over the whole time of system operation— the time
when the gate is fully closed should be in a certain ratio to the time when it is



fully open.® Specifically, the ratio between the time the gate is in its closed : open
states should approximate 5 : 1 over any substantial period of time. Evidently
we must make this requirement more formal and more precise.

To formalise the requirement we begin by recognising that the gate is not
always open or closed: it can sometimes be in intermediate positions. Let the
variable pos denote the position of the gate. This variable is of type Height:

pos : Height
where Height is defined as®
Height = CLOSED | NEITHER | OPEN.

The position is determined by the Sluice Gate, interacting with the Control
Machine. We initially focus on the trace of pos values over time. Hence, in
predicates, pos will be treated as a function of time: that is, pos(t) gives the
position of the gate at time ¢t. A timed predicate of the form P over I states
that the predicate P holds for every instant of time in the interval I. For example,

(pos = OPEN) over [

is equivalent to (Vt : I e pos(t) = OPEN). The operator over binds more
tightly than binary logical operators. The operator ‘#’ gives the size of an in-
terval. The integral of a predicate over an interval I, such as || ;(pos = OPEN),
treats the predicate, pos = OPEN, as a function of time (because pos is a func-
tion of time); it treats a true value as 1 and a false value as 0 (as in the
Duration Calculus [CHR91]). In short, the two integrals in the formalisation
SluiceGateRequirement below give the total time in the interval I for which the
variable pos is equal to CLOSED and OPEN respectively. The notation Interval(T)
stands for the set of all contiguous finite non-empty intervals that are subsets of
the time interval T. The parameter T should be thought of as the time interval
over which the system is operating.

Informally, it is stated above that the ratio of closed to open times should
be “approximately 5 : 1”. Specifying this precisely requires some care. One must
remember to allow for the time the gate is in movement and thus in neither
stable position. Furthermore there is a risk that the pattern is too rigidly fixed
because all intervals of time are considered. The specification must obviously be
agreed with the customer and it is likely that the most intuitive way to convey
this is to have some reasonable period of several hours and to introduce specific
numbers.'® The notation 2+ e stands for the set of times from z — e to 2+ e. The
range for the error bounds below are given as a fraction, ERROR, of the interval

8 Remember that this initial specification is about an idealised world in which fault-
tolerant issues are postponed.

9 Tt is worth observing here that this definition —with only three distinct positions of
the gate— may prove to be too abstract. We return to this point in Section 2.5, when
we discuss the physical properties of the sluice gate.

10 See Section 4 for an alternative approach using timebands.



size. The constants MAX_OPEN and MAX_CLOSED allow for the end effects of
the interval I only containing part of an open/closed cycle. Suitable values for
MAX_OPEN, MAX_CLOSED and ERROR might be 15 minutes, 75 minutes, and 0.05
(i.e. a 5% cumulative error).

SluiceGateRequirement =
AT : Interval( Time)
VI : Interval(T) e #1 > 6hours =
[;(pos = OPEN) € % * #I & (MAX_OPEN + #1I * ERROR) A
[;(pos = CLOSED) € 2 % #I £ (MAX_CLOSED + #1I * ERROR)

This requirement suffices for the discussion which follows but it is clear that
some issues may arise at this point, demanding early resolution. In particular,
the requirement describes a behaviour over time of the sluice gate, but the sluice
gate may perhaps not be capable of this behaviour. For example, if the sluice
gate position cannot change between OPEN and CLOSED without dwelling for 200
minutes in the NEITHER position, then the requirement will not be satisfiable.
This issue clearly depends on the physical properties of the sluice gate and we
return to this topic in Section 2.5.

2.3 Initial combined system specification

The specification of the whole system, consisting of the Control Machine and the
Sluice Gate connected together and operating in parallel, is that it must satisfy
the requirement above:

CMSGSystem = system
output pos : Height
rely true
guar SluiceGateRequirement

We regard the subject of each specification of this kind as a system. The sys-
tem CMSGSystem specifies the requirement on the combined system. A system
specification explicitly lists its inputs and outputs, any assumptions on which it
relies about its environment and the conditions it guarantees to establish. In this
case there are no assumptions and there are no inputs: the overall specification
is concerned only with the gate position, which is an output.

Evidently, the combined system can satisfy its specification only if the Sluice
Gate and the Control Machine satisfy appropriate conditions. In the case of
the Control Machine, which is the machine in the problem diagram shown in
Figure 3, our assumptions describe the properties with which the machine must
be endowed by virtue of the software it will be executing. In the case of the
Sluice Gate, by contrast, our specification describes the properties with which
the sluice gate is assumed to be endowed by virtue of its physical construction.
The description does not however attempt to describe everything that could be
known about the gate in question; we attempt to determine a minimal set of
assumptions in Section 2.5.



The assumptions on the Sluice Gate specification must be developed first;
the specification of the Control Machine, which is to be built, will be derived
from it. Even here there can be a degree of iteration in the development. The
problem world may offer a rich set of properties from which the developer may
be able to select different subsets as sufficient assumptions for developing the
machine. In making this selection it may be reasonable to pay some attention to
considerations of program specification and design.

2.4 The shape of the specification of the control system

The next objective is to arrive at a specification of the control system. It would
obviously be possible to jump straight to an outline algorithm which indicated,
say, that each hour the control system should open the sluice gate; pause 9 min-
utes; then move the gate down; pause for about 45 minutes; etc. Any temptation
to specify the control system in this way should be resisted. One argument is
that many other patterns (e.g. a 5/23 minute pattern each half hour) would
satisfy the user’s requirements as documented.

The aim here is to derive an implicit specification of the control system from
an understanding of the components. This identifies the assumptions clearly and
ensures that they are recorded. Our approach is to look at the consequences of
putting the onus for meeting the system specification on the control system. We
could specify the Control Machine as a system:

Controller = system
external pos : Height
input top, bot : Boolean
output motor : ON | OFF, dir : UP | DOWN
rely 77
guar SluiceGateRequirement

It is of course clear that the Controller cannot achieve this guarantee condi-
tion unless its developer can make assumptions: to give just one example, the
Controller cannot directly cause pos to change because it is in the physical world.

The next section explores assumptions which need to be made to ensure that
the above outline can be completed to a realisable specification.

2.5 Assumptions about the problem world

The Control Machine’s inputs are the states of the sensors, its outputs are signals
to the motor controls. To achieve the overall specification, the control program
relies on the sensors and the motor working correctly (the question of which sorts
of faults can be tolerated is considered in Section 3). The first set of assumptions
needs to relate pos being CLOSED or OPEN with the inputs to the Controller
(sensor values top and bot).

At the interface b in Figure 3, the Sluice Gate controls the states of the
sensors top and bot, while the Control Machine can set the motor direction



control, dir, to either UP or DOWN and can switch the motor by setting motor
to either ON or OFF. We describe the phenomena of the interface more precisely
as follows:

Control Machine ! {dir : UP | DOWN; motor : ON | OFF}
Sluice Gate! {top, bot : Boolean}

The states of the two sensors, top and bot, can be formalised as Boolean
functions of time. The sensors detect when the gate is OPEN (top) or CLOSED
(bot). We formalise this property in the following definition SensorProp. In the
definition, T is the whole time interval over which the system operates.

SensorProp =
AT : Interval(Time) o
(((pos = OPEN) < top) A ((pos = CLOSED) < bot)) over T

As shown in Figure 2, the sluice gate is driven by a motor that raises or lowers
the gate through a pair of mechanisms. At the interface b, the Control Machine
(see Figure 3) can send signals that are intended to switch the motor on or
off, and can set the dir signal. To achieve our specification we need to make
assumptions about what changes arise in the problem world when these signals
are sent.

To capture these assumptions about the motor’s effect on the gate, we begin
by introducing some derived properties that indicate when the gate is being lifted
or lowered by the motor and when the gate is moved. These derived properties
will form our vocabulary for discussing motor properties. They can be used
throughout the specification to simplify its presentation. The property that the
gate is mowved includes the time MOTOR_DECEL over which it is decelerated when
the motor is turned off.

lifted = Xt : Time ® motor(t) = ON A dir(t) = up
lowered = Xt : Time e motor(t) = ON A dir(t) = DOWN
moved = At : Time o (3J : Interval( Time) o
sup(J) =t A #J < MOTOR_DECEL A (motor = ON) in J)

The supremum, sup(J), of a set of times J is the least upper bound of J, and the
infimum, inf(J), is the greatest lower bound. A predicate, P, holds within a set
of times J, written P in J, if there exists a time within J at which P holds. We
also introduce an ordering, lower, on the gate position and its reflexive transitive
closure, lower*. This allows us to express the property that the gate is either
rising (monotonically upwards) or falling (monotonically downwards).

lower = {CLOSED — NEITHER, NEITHER — OPEN }
monotonic_up = X I : Interval( Time) o

Vig,ta: I ety <ty = lower*(pos(t1), pos(t2))
monotonic_down = X I : Interval( Time) o

Vi, to: I ety <to= lower*(pos(tz), pos(t1))



If the motor has been on in the direction UP for at least some constant UPTIME,
the gate will have reached the open position. A similar condition applies for
downward travel.!' The gate remains stationary after the motor has been turned
off for time MOTOR_DECEL. After the motor has been turned off the gate can
only continue its travel in the direction in which it was going (for at most
MOTOR_DECEL). In the definition, an interval I adjoins an interval J, written
I adjoins J, if the supremum of I is equal to the infimum of J, i.e. sup(I) =
inf(J). Infix relations, such as adjoins, bind more tightly than binary logical
operators.

MotorOperation = A T : Interval( Time) o
VI : Interval(T) e
((lifted A pos # OPEN) over I = #I < UPTIME) A
((lowered A pos # CLOSED) over I = #I < DOWNTIME) A
(((= moved) over I) = (I p : Height e (pos = p) over I))

A
VI,J: Interval(T) e I adjoins J =
(lifted over I A (motor = OFF) over J =
monotonic_up(I U J))
(lowered over I A (motor = OFF) over J =
monotonic_down (I U J))

At this point we can fill in the rely condition in the specification outlined in
Section 2.4.

Controller = system
external pos : Height
input top, bot : Boolean
output motor : ON | OFF, dir : UP | DOWN
rely SensorProp A MotorOperation
guar SluiceGateRequirement

Both SensorProp and MotorOperation are predicates parameterised by the time
interval over which the system operates; in SensorProp A MotorOperation the
operator “A” is a lifted conjunction, that is, it means

AT : Interval( Time) e SensorProp(T) A MotorOperation(T)

However, this specification is still not complete because we need to review a
general concern (that of assumptions on equipment to avoid breakage); we have
used this to illustrate the symmetric way in which assumptions are made.

2.6 Avoiding breakage

The properties that are important in the problem world are not yet complete.
The sluice gate does exhibit the properties we have described here, but only if

1 Because we chose to describe pos as having only three values, rather than giving it
a numeric value, we now naturally describe the gate’s speed of movement only in
terms of the travel time between the extreme positions.



certain restrictions are observed on its operation. In a control problem such as
we are discussing here, it is necessary to ensure that the machine itself does not
cause failure of any part of the problem domain by ignoring known restrictions
on its use. This is the breakage concern of [Jac00]. For example, checking the
motor equipment manual, we might learn that the motor will be damaged if it
is switched between directions without being brought to rest in between: for any
period over which the gate is moved, the direction must be constant. Recall that
the definition of moved above includes periods when the motor is on as well as
periods when it has been on recently (within MOTOR_DECEL).

MotorDirectionStable = A T : Interval( Time) o
VI : Interval(T) e
(moved over I = ((dir = upr) over I V (dir = DOWN) over I))

Note that, because this condition involves only the variables motor and dir, the
controller can satisfy this requirement without relying on any properties of the
sluice gate. Hence the rely condition associated with this condition is just true.
By requiring that the controller always maintain this property, even if the sluice
gate is not working correctly, we ensure the controller won’t break the motor by
switching direction while the motor is turned on or shortly after a period where
it has been on. Of course if the sluice gate is broken in a manner that means the
the motor is actually running even when turned off by the controller, the change
of direction can still damage the motor/gears.

A second restriction applies when the motor has driven the gate to the open
or closed position. It must then be switched off soon enough to avoid straining
the motor and mechanism when the gate reaches the end of its vertical travel
and further movement is impossible; MOTOR_LIMIT is the maximum time the
motor can be on with the direction UP (DOWN) when the gate has reached the
OPEN (CLOSED) position.

MotorOffAtLimit = X T : Interval(Time) o
VI : Interval(T) e
((pos = OPEN) over [ =
J;(motor = ON A dir = UP) < MOTOR_LIMIT) A
((pos = CLOSED) over [ =
J; (motor = ON A dir = DOWN) < MOTOR_LIMIT)

As this condition refers to the gate position (pos), the controller needs to assume
that the sensors are operating correctly in order to satisfy this requirement.
Hence the rely condition associated with this condition is SensorProp.

Only if it respects both MotorDirectionStable and MotorOffAtLimit can the
Control machine rely on the behaviour described in MotorOperation.

2.7 Derived specification of the control machine

As we made clear in Section 2.4, it is the purpose of the Control Machine to
satisfy SluiceGateRequirement; and this is, essentially, its specification. The pre-



vious two sections have recorded enough about the problem world to enable us
to write a realisable specification.
We can specify the Control Machine as a system:

Controllerl = system
external pos : Height
input top, bot : Boolean
output motor : ON | OFF, dir : UP | DOWN
rely SensorProp A MotorOperation
guar SluiceGateRequirement
rely SensorProp
guar MotorOffAtLimit
rely true
guar MotorDirectionStable

An implementation of Controllerl is required to simultaneously satisfy all
three rely/guarantee pairs. If the sluice gate satisfies both SensorProp and
MotorOperation then the controller must ensure SluiceGateRequirement but,
even if the sluice gate does not satisfy these properties, the controller must al-
ways ensure MotorDirectionStable and it must ensure MotorOffAtLimit while
SensorProp holds, even if MotorOperation doesn’t hold.

The use of separate pairs of rely/guarantee conditions is a change from our
earlier paper [HJJ03] in which there was a single rely/guarantee pair with the
rely and guarantee consisting of the conjunction of the above relies and the
conjunction of the above guarantees, respectively. This is a subtle but signifi-
cant difference in approach, especially when specifying safety-critical systems.
Wherever possible, the controller should avoid unsafe modes of operating the
equipment, regardless of whether the equipment is working correctly. In some
cases (e.g. MotorDirectionStable) this is possible irrespective of the behaviour of
the equipment, while in other cases (e.g. MotorOffAtLimit) the rely condition
to ensure safe operation may be weaker than that required for normal opera-
tion. Overall the new approach leads to a stronger and safer specification of the
controller.

2.8 Taking stock

At this stage one could implement the above controller specification, provided
the equipment satisfies the rely conditions. It is important to note that the
specification is still an #mplicit specification: it does not give an explicit algo-
rithm to be executed by the Control Machine but leaves the programmer to
devise an algorithm that will satisfy the specification. We consider this an im-
portant characteristic of the specification, retaining all the well-known advan-
tages of implicit over explicit specification. In MotorOperation, MotorOffAtLimit
and MotorDirectionStable the specification embodies just those problem domain
properties on which we expect the programmer to rely in the further refinement
to a program text of the Control Machine. A control program derived from this



specification could be used with a different sluice gate, provided only that this
different sluice gate offered the same interface to the Control Machine and ex-
hibited the physical properties specified in MotorOperation, MotorOffAtLimit
and MotorDirectionStable.

To make the observation clear, there is nothing above which prevents con-
necting the signals going out from the control program to indicator lights to
which a human operator reacts to achieve the gate adjustments by manually
moving the gate; the operator would finally push the top button when the al-
loted task was complete. Perhaps less fancifully, the control program could be
connected to a simulator which fully exercised its function in a world without
sluice gates (in this case pos has to be reinterpreted as the simulated position).

In developing our specification we have made and exploited more assumptions
than are embodied in its final form Controllerl. We know more, so to speak,
about the problem world than we have chosen to convey to the programmer. One
example is the whole set of assumptions on which we based our original prob-
lem domain specification MotorOperation. In effect, we have assumed that the
sluice gate mechanism is sufficiently reliable (subject to MotorOffAtLimit and
MotorDirectionStable) to satisfy SensorProp and MotorOperation, and hence to
allow SluiceGateRequirement to be satisfied by the Control Machine we have
finally specified. Because the sluice gate is a physical device that may fail, such
an assumption would be unwise.

3 Addressing component failures

In a critical system —or any system in which it is important to limit the possible
damage to the equipment— all assumptions must be systematically questioned.
Potential faults must be identified and the software must deal with them appro-
priately.

It is pointed out in Section 1.4 that it is desirable to layer a specification by
separating the behaviour under different sets of assumptions: the most optimistic
(no faults in external components) through to minimal behaviour which might
involve setting off alarms.

One way to undertake such a division is to treat the separate systems as
different problems and to look at their combination with programming combi-
nators. In the world of “normal design” such decompositions might be standard
and the choice of components be so accepted that one could indeed just use the
techniques presented so far to specify the individual problems.

Computer technology has however developed so fast that many problems
fall into the “radical design” category. We should in any case like to be able to
deduce properties of an overall system. The source of the difficulty with which
we have struggled is the continuous time specifications which our applications
have forced us to employ. It is not difficult to describe normal behaviour as in
Section 2; describing fault-tolerant behaviour uses similar notation plus the ideas
in this section. The key issue is how to describe the handover between the normal



and fault-tolerant phases of operation. Our ideas for this will appear elsewhere
but an indication of the approach is given in Section 4.3.

3.1 Faults in the sluice gate system

In our treatment of the sluice gate example so far, we have focused on the
situation where all of the (physical) components operate faultlessly. We now
consider what sorts of issues arise when trying to cope with component failure.

In the sluice gate problem, components like sensors can fail; for example, they
can become stuck false or they can become stuck true. Moreover, the motor could
burn out and no longer be able to move the gate when power is applied to it.
Such component failures are faults in the larger system and a useful control
program will limit their impact even if it cannot meet the original requirements.

In [Jac00] this obligation is called the reliability concern. If a faulty compo-
nent is detected, the Control Machine should, perhaps, switch off the motor and
turn on an alarm to indicate that the system needs attention from the mainte-
nance engineer and that the irrigation requirement is no longer being satisfied.

It will become clear that it is more difficult to maintain our isolation from
details of the physical world when we examine fault-tolerance but we will examine
ways in which such considerations can be brought in gradually.

It would be possible to follow the method described above with weaker as-
sumptions about the physical components (and additional requirements with
respect to alarms) but the resulting specification might become opaque because
it would lack structure. One would like to achieve a structure which preserved
the distinction between normal and abnormal operation in the specification. Sec-
tions 3.2-3.6 explore various forms of fault-tolerant behaviour and how it might
be specified; we discuss the problems of structuring in Section 3.7 but concede
that further research is required here; the question of implementation is touched
on in Section 4.3.

3.2 Making the system more robust

It is clear that one needs to understand more about the external equipment in
order to discuss fault tolerance than to describe healthy behaviour; but it is also
advantageous to identify any general tactics which come from a formal analysis
rather than specific instances. This section and the next indicate two ideas which
appear to work in general.

It is known from work on the (formal) specification of sequential (closed)
programs that a system can be made more “robust” by widening its precondition;
the same holds, mutatis mutandis, for the weakening of rely conditions. Just as
with widened preconditions, the process of making a program more robust might
result in different obligations.

Returning our attention to the sluice gate example, the case of not getting
an expected signal that a sensor has become true after the expected traversal
time fits the category of something suggested by looking at MotorOperation



(cf. Section 2.5). But there are several physical problems that might give rise to
this rely condition not being satisfied:

— the sensor in question becomes stuck false and fails to signal the arrival of
the gate at its extremity;

— the gate becomes jammed (perhaps —in the downward direction— because a
log has become wedged under it); or

— the motor has burned out and is not driving the gate; or

— a blown fuse is preventing power getting to the motor;

— etc.

Given the paucity of the equipment envisaged in the sluice gate system of Sec-
tion 2, these different physical problems cannot be distinguished. This is precisely
why one might wish to add new equipment.

For brevity we do not present the full formalisation of the conditions under
which the sluice-gate/sensors/motor is faulty. Given suitable declarations of du-
ration constants for the criteria of fault-free operation in the domain we obtain
a definition of the faulty state. Here we consider the situations where the gate
fails to rise (fall) when driven up (down). Recognition of the state is triggered
by an interval J in which a fault condition is detected.

Faulty-GSM = X\ J : Interval( Time) o
31 : Interval(Time) o I adjoins J A
(motor = ON) over I A (dir = UP) over (I U J) A
#I > HEALTHY_RISE_TIME A (- top) over J
(motor = ON) over I A (dir = DOWN) over (I U J) A
#I > HEALTHY_FALL_TIME A (- bot) over J >

V

Here HEALTHY_RISE_TIME (HEALTHY_FALL_TIME) represents the maximum
time that the sluice should take to rise (fall). We require that a healthy sluice
gate should satisfy the condition MotorOperation given in Section 2.5, and
hence, for example, that HEALTHY_RISE_TIME < UPTIME. The choice of the
constant HEALTHY_RISE_TIME may depend on the particular equipment being
used, whereas UPTIME is a requirement on any equipment.

The general point here is that one class of potential enhancements toward
a fault-tolerant system can be motivated by a formal analysis of the idealised
specification. Systematically looking at rely conditions to see what behaviour
might be achieved when clauses fail looks like a useful heuristic for developing
specifications of fault-tolerant systems.

3.3 New equipment/requirements

In many cases, fault spotting and warning will be associated with extra equip-
ment. Such new equipment clearly changes the problem and requires a new
problem diagram and new requirements. In the sluice gate system, one could for
example consider adding a temperature sensor to the motor. This would require



a revision of the problem diagram in Figure 3 and a description of what would
constitute “overheat” and the action required;'? this would probably involve
signalling an alarm.

For the purposes of this paper, we stick to our resolve that no such new
sensors are available and confine the discussion to what can be done with the
existing equipment.

3.4 Looking for “drift”

The idea of finding “patterns” for extensions to the specification for a system by
formal means without having to delve into details of the external equipment is
attractive because it can lead to heuristics which apply to a class of problems.
Another idea which works on the sluice gate example and appears to be general
is to look for “drift” toward unacceptable behaviour.

For the sluice gate, for example, if the time to raise the gate is getting longer
on each use, this might suggest that the moment is approaching (but has not
yet arrived) when the rely condition will not be satisfied. Physically, some mal-
function is getting closer in time and a warning could be issued. Care should
however be exercised in distinguishing cyclic patterns (e.g. the grease getting
more viscous in lower night-time temperatures) from long-term decay. We do
not present the formulae for this example.

3.5 Looking at the external equipment

Just formal analysis of the specification is not sufficient for locating problems
with the equipment. One also needs to analyse the way the equipment operates.
Examples are:

— it is clear from understanding its function that the state of the bottom sensor
should become false after the motor has been set to drive the gate upward
for some (short) period of time;

— again from the physical components, one can see that the state of the target
sensor should not become true too quickly after starting a traversal in the
direction of the target sensor from the opposite extreme.

Such cases are extra requirements and give rise to new specifications. One would
want to ask what reaction is expected (and this would likely involve extra alarms
— see Section 3.3). It would also be necessary to think about how far one would
go and different answers are likely in the sluice gate system and a nuclear reactor
protection system.!® The objective of this section is just to make the point that
some forms of fault tolerance can only be sorted out by looking at the physical
environment.

12 See also the discussion of transience in Section 3.6.
13 Tt was precisely the worry about abstraction levels that discouraged one of the au-
thors from publishing earlier work on rely conditions for ISAT [SW89].



To give one example in formulae, consider raising a warning if the gate is
slow leaving the closed position or the bottom sensor is faulty.

Slow_Leaving_Closed = X1 : Interval(Time) o
(lifted A bot) over I A #I > RISE_DEPART_TIME

3.6 Transient errors

There is another generic question which has come up in our study of fault-
tolerant behaviour and that is transience. Since there is a useful way of specifying
such issues, it is worth describing it here. We take as a representative example,
from the sluice gate system, the issue of checking that “both sensors should not
be on simultaneously”. If this situation occurred for an extremely short period
of time (and then rectified itself), a control program might sense it and be in
a position to set whatever alarm was required to be triggered. Such transient
errors do occur within physical systems and, if the period of time is extremely
short, the execution cycle for checking might well fail to detect the event. There
will, however, be a notion (in any particular case) of a problem becoming a “hard
fault” if it has persisted for at least some stated period of time. In this case, one
would presumably require that the control program detect the situation. Thus
we might say

(Vlong : Interval(T) e
#long > RESPONSE A Faulty_GSM (long) =
(VI : Interval(T) e sup(long) < inf(I) = ErrorIndicated(I)))

but prevent this being met by always turning on the error indication by adding

VI : Interval(T) e
ErrorIndicated(I) =
(3 short : Interval( Time) o sup(short) < inf(I) A
Faulty_GSM (short))

In fact, the question of transience is even more delicate because the same
reasoning that causes us to recognise transience as an issue means that “si-
multaneous” actually means “within a small time interval”. It is issues like
these which have prompted the second author of this paper to consider “time

bands” [BHBF05] — see further discussion in Section 4.3.

3.7 Combining specifications

In [Jac00], the reliability concern is normally handled by introducing new sub-
problems. The way in which such subproblems can be specified is indicated in
Sections 3.3-3.6 and within “normal design” one might use a standard pattern for
combining solutions to the subproblems. Thus the notation described in Section 2
would suffice. But one would also wish to draw conclusions about combinations
of machine descriptions. In the same spirit, there are issues concerning “phases”



of operation (one example of which is the special problems that arise during
system initialisation) which prompt us to want to reason about combinations of
machine descriptions.

Thus the desire to specify a fault-tolerant system in a structured way ne-
cessitates a semantics for combinators over machine specifications. This applies
even if we consider the problem of detecting faults as a separate issue from the
“healthy” behaviour. Consider a single machine description and recall the com-
ment in Section 1.2 about the conceptual distinction between rely and guarantee
conditions (the former are to be viewed as permissions to the designer to ignore
certain potential deployments; the latter are obligations on the code created by
the designer). We should not therefore expect to find code in the program de-
veloped from this specification that will check on the truth of the rely condition.
Instead, the created program must not be deployed in contexts where the rely
condition is not satisfied. We are then obliged either to use Controllerl only in
situations where its inputs satisfy the rely condition or, perhaps, to ignore its
outputs where they do not.

It is however clear that, if we wish to detect faults, there might have to be
code in another subproblem which monitors the rely condition. The argument
in Section 3.2 is that the closer the rely condition of an overall system can be
made to true the more robust a system will be. Furthermore, the extra code
that is required is more complicated than the case with a simple precondition
where one only needs check a parameter: the truth of a rely condition can only
be determined over a period of time. It is the need to combine machines (de-
veloped with simple rely conditions) with machines which monitor for a healthy
environment that points to the need to be able to reason about combinations
of machine descriptions and this introduces some technical issues which require
further research (the authors are working on a further paper on this topic).

3.8 Normal and Radical Design

An aspect of system development that is less often discussed than it should be
is what Vincenti [Vin90] calls normal design. Normal design is what an engineer
does when designing a product for which there are well established standards
and norms, both in the design process and in the product’s structure and im-
plementation. In Vincenti’s words:

... the engineer knows at the outset how the device in question works,
what are its customary features, and that, if properly designed along such
lines, it has a good likelihood of accomplishing the desired task.

Normal design is contrasted with radical design, in which:

... how the device should be arranged or even how it works is largely
unknown. The designer has never seen such a device before and has no
presumption of success. The problem is to design something that will
function well enough to warrant further development.



Normal design is specialised to each class of system, or product, or device, and
evolves over a long period in a community of designers or engineers who specialise
in the class in question. The design of cars, for example, has evolved over 120
years since Karl Benz’s first model of 1886. Many features have now become
standard that were unknown and even unimaginable to Benz: front wheel brakes,
unitary body, and automatic gearbox are just three of a huge number of features
that make modern cars safe, convenient, and reliable. Normal design allows such
inventions to be evaluated by experience, and the results of experience to be
shared and exploited by all members of the particular design community.

Even more important is the effect of a normal design discipline on less obvi-
ous aspects of development. Specification of any system or product is inevitably
partial, even for a product as small as an integer function. Specifying the func-
tion value in terms of its arguments may be straightforward, but this specifies
only the abstraction. In constructing the real program to satisfy the abstraction,
a perverse programmer can easily frustrate the specifier’s intentions: by devising
a novel algorithm that causes arithmetic overflow in an intermediate result; by
using a memo-style design that can demand an impossibly large amount of stor-
age; by starting a new thread; by gratuitously accessing the web; and in many
other ways. Normal design excludes such perverse choices, because it allows the
specification of a normal device or product to imply an additional set of unstated
conditions.

For a software-intensive system, where the computer interacts with the phys-
ical world, the importance of normal design is even greater. The physical world
has an unbounded capacity for unexpected failures, and only experience can
teach which failures are more likely, and therefore more necessary to handle.
For example, Section 3 discussed the treatment of certain equipment faults, and
pointed out that many faults demand not only an analysis of the rely-condition
of fault-free operation, but also a careful examination of the equipment itself
and of the many ways in which it can fail.

The impact of normal design —or, rather, its lack— can be seen also in the
formalisation of the SluiceGateRequirement. The informally stated requirement
was that the gate should be closed for approximately five sixths of the time over
any substantial period. The formalisation makes this precise in a certain sense.
It states a necessary condition for acceptability of the developed system, but
inevitably omits other important conditions that are left implicit. For example,
the gate should be opened and closed often enough to ensure that the humid-
ity gradient in the irrigated soil is reasonably smooth, but seldom enough to
avoid unnecessary wear and tear in the equipment. In the absence of a normal
design discipline it is not easy to make these judgments at the outset of devel-
opment. The “posit and prove” approach, mentioned earlier in connection with
program development to meet formal specifications, applies equally to system
development to meet implicit criteria of acceptability.

The relationship of the non-formal aspects of normal design disciplines to the
formal development of software-intensive systems is a topic that merits further



investigation. The dependability that we seek for critical systems must be a
product of their marriage, not of either one alone, divorced from the other.

4 Conclusions

This section looks at what remains to be done and compares our approach to
related publications.

4.1 Related research

There are many excellent papers on notations for writing specifications of “hy-
brid” or “reactive systems” and a considerable literature on development from
such specifications. Here we list a short but representative sample before con-
trasting with our objectives [LL95,SR96,H0091,CZ97,BS01].

As is mentioned above, what distinguishes our objectives from most of this
line of research is that we are interested in deriving the initial specification of the
“silicon package”. In fact, one of the earliest reactions against just starting with a
specification was when one of the authors heard Anders Ravn present the ProCoS
Boiler example: a treatment more in our style is available as [Col06]. Another
example which has been influential because it has been tackled in many notations
is the “Production Cell” (cf. [LL95]): again, our approach to this problem takes
a wider view; in particular we seek to distinguish more clearly —than in for
example [MCOO0]- the assumptions on the equipment and the requirements on
the control program.

Closer in the spirit of our approach are the papers by Fred Schneider and col-
leagues [MSB91,FS94a,FS94b]; these publications have also considered systems
which are similar to those that we hope to encompass. We find their approach
interesting and somewhat different from ours. One point of difference is that
they place variables corresponding to physical phenomena in the program state
so that they can use a (combined) state invariant where we use rely conditions.
They can then play the real world forward in time by showing the rates of
change. Our task has been to look at ways of “deriving” specifications of con-
trol systems. Their operations need to discuss how “reality” changes; our rely
conditions might provide a more natural description. Similar comments on the
overall direction could be applied to Parnas’s “Four Variable model” [PM95].

4.2 How general is our approach?

One way to look at the generality of the idea of starting with a description of
the required phenomena and then deriving the specification of the inner system
is to reconsider the scope of the sluice gate system.

Sections 2 and 3 above focus on a requirement restricted to the gate position.
This view could be broadened:



— If the requirement were to deliver a certain flow of water, we would have to
make assumptions about the available water flow.'*

— A yet wider system might be concerned with the humidity of the soil in
the fields being irrigated, leading to assumptions about the weather, plant
physiology and the effects of irrigation.

— A requirement to maximise farm profits would lead to assumptions about
a wide range of factors including prices and even (in Europe) the Common
Agricultural Policy.

The responsibilities and authority of the customer were both assumed to be
bounded by the sluice gate itself and its stipulated operation. The effects of the
irrigation schedule on the crops and and the farm profits were firmly outside
our scope.'® But the ability to force attention on the assumptions being made
appears to be a major advantage of our method.

The Sluice Gate problem has proved to be stimulating and we have tried to
expose the issues it has thrown up rather than modify the problem to fit our
evolving method. For example, the third author has on occasions played the
role of our customer and has always refused requests to acquire new sensors to
simplify the task of specifying and implementing the system.

There are, of course, many other dependability issues which could be consid-
ered. Examples include: the power supply to the motor; the maximum load of
the motor; and the running state revolutions per minute. While we believe that
such points do not bring in fundamentally different technical requirements, they
should be categorised as an indication that nothing has been hidden.

Outside the sluice gate system we (and others) have already experimented
with this technique on other examples (e.g. [Col06]). The “Dependability IRC”
project (see www.dirc.org.uk) considers computer-based systems whose depend-
ability relies critically on human (as well as the mechanical) components. A first
indication of extensions in this direction was given by one of the current authors
in an invited talk to the DSVIS-05 event in July 2005.

One of the referees of [HJJ03] raised the interesting point of the “evolvability”
of a system. The authors agree that this is an important issue; evolution is in fact
a major strand of work within the Dependability IRC (see [BGJ06, Chapter 3]).
In the current paper, the reliance on rely conditions about equipment, rather
than a detailed description of the characteristics of particular equipment allows
for the replacement of the equipment, provided the new equipment meets the rely
conditions. On the other hand, monitoring of the healthiness of the equipment
may well (and probably should) be dependent on the detailed characteristics of
the particular equipment. By factoring out this aspect in the specification, the
specification can be more easily revised. A study of the contribution of other
research on “evolvability” to the issues of this paper will be undertaken in the

14 This would, furthermore, force us to record assumptions about the flow of water
while the gate is moving.

15 There is also a technical argument for narrowing, rather than widening, the scope
of the system to be considered: one might question any set of assumptions which
referred to widely disparate phenomena.



future. We wonder if there might be a way of using layers of rely conditions
where one set expresses things whose change would be disastrous while another
level is “anticipated evolutions”.

4.3 Further developments

Our research contributes to the creation of specifications but it is informative to
look at how such specifications might be implemented. We know from sequential
programs that combining clauses of postconditions with and and not logical
operators provides a valuable way of recording “what” is required without saying
“how” it should be done. For example, the postcondition for a Sort routine can
be elegantly expressed as a conjunction of InputPermutation and Ordered. From
the discussion in Section 3.7 above, it looks as though one needs the full power of
a conventional programming language in order to “combine the machines” from
the various subproblems. One wonders whether new programming paradigms
could offer more natural “combinators” for such situations. (Another issue is
whether conventional programming languages like Ada or Java are ideal for
combining the sort of monitoring implied by the discussion in Section 3.6.)

The research on “time bands” in [BB06,BHBF05] is extremely interesting
and we are already looking at ways in which time bands might help to achieve
a better structure for our specifications.

Another major avenue which we hope to pursue with our DIRC collabora-
tors Bloomfield, Littlewood and Strigini is handling stochastic assumptions and
requirements.

Acknowledgements

All three authors received support from the (UK) EPSRC funding of Depend-
ability Interdisciplinary Research Collaboration (DIRC): the first listed author
was directly involved and the last two authors are Senior Visiting Fellows to
DIRC. In addition, the second author’s research has been partially supported by
the Australian Research Council (ARC) Centre for Complex Systems, and the
first author’s research has been partially supported by European IST RODIN
Project (IST 2004-511599). The first author now has funding from EPSRC under
the “TrAmS” Platform Grant and the EU’s RODIN project.

We have derived great benefit from technical discussions with: Alan Burns,
Joey Coleman, Tom Maibaum and Jim Woodcock.

References

[Abr96] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge
University Press, 1996.

[BB87] A. Blokdijk and P. Blokdijk. Planning and Design of Information Systems.
Academic Press, 1987.



[BBO6]

[BGJO6)

Alan Burns and Gordon Baxter. Time bands in systems structure. In
Besnard et al. [BGJ06], pages 74-90.

D. Besnard, C. Gacek, and C. B. Jones, editors. Structure for Dependability:
Computer-Based Systems from an Interdisciplinary Perspective. Springer,
2006.

[BHBFO05] A. Burns, I. J. Hayes, G. Baxter, and C. J. Fidge. Modelling temporal

[Bjo06]
[BS01]
[CHRO1]

[Col06]

[CZ97)

[Daw91]

[FS94a]

[FS94b]

[HJJO3]

[Hoo91]

[Jac00]

[JHJIO7]

[Jon90]

[Jon96]

[LanT73]

behaviour in complex socio-technical systems. Technical Report YCS 390,
Department of Computer Science, University of York, 2005.

D. Bjgrner. Software Engineering 3: Domains, Requirements, and Software
Design. Springer-Verlag, 2006.

Manfred Broy and Ketil Stolen. Specification and Development of Interactive
Systems. Springer-Verlag, 2001.

Zhou Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations.
Information Processing Letters, 40:269-271, December 1991.

Joey W. Coleman. Determining the specification of a control system: an il-
lustrative example. In M. Butler, C. Jones, A. Romanovsky, and E. Troubit-
syna, editors, Proceedings of the Workshop on Rigorous Engineering of Fault-
Tolerant Systems (REFT 2005), volume 4157 of LNCS, pages 114-132.
Springer-Verlag, November 2006.

Antonio Cau and Hussein Zedan. Refining interval temporal logic specifi-
cations. In Transformation-Based Reactive Systems Development: 4th In-
ternational AMAST Workshop on Real-Time Systems and Concurrent and
Distributed Software, volume 1231 of LNCS, pages 79-94. Springer Verlag,
1997.

J. Dawes. The VDM-SL Reference Guide. Pitman, 1991.

L. Fix and F. B. Schneider. Reasoning about programs by exploiting the
environment. In ICALP’94, volume 820 of LNCS, pages 328-339. Springer-
Verlag, 1994.

Limor Fix and F. B. Schneider. Hybrid verification by exploiting the envi-
ronment. In Formal Techniques in Real Time and Fault Tolerant Systems,
volume 863 of LNCS, pages 1-18. Springer-Verlag, 1994.

Tan Hayes, Michael Jackson, and Cliff Jones. Determining the specification
of a control system from that of its environment. In Keijiro Araki, Stefani
Gnesi, and Dino Mandrioli, editors, FMFE 2003: Formal Methods, volume
2805 of LNCS, pages 154—-169. Springer Verlag, 2003.

J. Hooman. Specification and Compositional Verification of Real-Time Sys-
tems. Springer-Verlag New York, Inc., 1991.

Michael Jackson. Problem Frames: Analyzing and structuring software de-
velopment problems. Addison-Wesley, 2000.

CIliff B. Jones, Ian J. Hayes, and Michael A. Jackson. Deriving specifications
for systems that are connected to the physical world. In Jim Woodcock,
editor, Essays in Honour of Dines Bjorner and Zhou Chaochen on the Oc-
cassion of their 70th Birthdays, volume 4700 of Lecture Notes in Computer
Science, pages 364-390. Springer Verlag, 2007.

C. B. Jones. Systematic Software Development using VDM. Prentice Hall
International, second edition, 1990.

C. B. Jones. Accommodating interference in the formal design of concurrent
object-based programs. Formal Methods in System Design, 8(2):105-122,
March 1996.

Boerje Langefors. Theoretical Analysis of Information Systems. Studen-
tentlitteratur, Sweden, 1973.



[LLY5]

[MC00]

[MH91a]

[MHO1b)

[MH92]

[MSB91]

[PMO5]

[Sit74]

[SR96]

[SW89)

[Vin90]

Claus Lewerentz and Thomas Lindner, editors. Formal Development of Re-
active Systems — Case Study Production Cell, volume 891 of LNCS. Springer,
1995.

A. MacDonald and D. Carrington. Some elements of Z specification style:
Structuring techniques. Journal of Universal Computer Science, 6(12):1203—
1225, 2000.

B. P. Mahony and I. J. Hayes. A case study in timed refinement: A central
heater. In Proc. BCS/FACS Fourth Refinement Workshop, Workshops in
Computing, pages 138—149. Springer, January 1991.

B. P. Mahony and I. J. Hayes. Using continuous real functions to model
timed histories. In P. A. Bailes, editor, Proc. 6th Australian Software Engi-
neering Conf. (ASWEC91), pages 257-270. Australian Comp. Soc., 1991.
B. P. Mahony and I. J. Hayes. A case-study in timed refinement: A mine
pump. [EEE Trans. on Software Engineering, 18(9):817-826, 1992.

K. Marzullo, F. B. Schneider, and N. Budhiraja. Derivation of sequen-
tial, real-time process-control programs. In Foundations of Real-Time Com-
puting: Formal Specifications and Methods, pages 39—54. Kluwer Academic
Publishers, 1991.

D. L. Parnas and J. Madey. Functional documentation for computer systems
engineering. Sci. Comput. Program., 25:41-61, 1995.

R.L. Sites. Some thoughts on proving clean termination of programs. Techni-
cal Report STAN-CS-74-417, Computer Science Department, Stanford Uni-
versity, May 1974.

Michael Schenke and A. P. Ravn. Refinement from a control problem to
programs. In Jean-Raymond Abrial, Egon Borger, and Hans Langmaack,
editors, Formal methods for industrial applications: specifying and program-
ming the steam boiler control, volume 1165 of Lecture Notes in Computer
Science, pages 403-427. Springer-Verlag, 1996.

I. C. Smith and D. N. Wall. Programmable electronic systems for reactor
safety. Atom, 395, 1989.

W G Vincenti. What Engineers Know and How They Know It. The John
Hopkins University Press, 1990.



