

University of Newcastle upon Tyne

COMPUTING
SCIENCE

The Connection between Two Ways of Reasoning about Partial
Functions

J. S. Fitzgerald, C. B. Jones.

TECHNICAL REPORT SERIES

No. CS-TR-1044 August, 2007

NEWCASTLE
UN IVERS ITY OF

TECHNICAL REPORT SERIES

No. CS-TR-1044 August, 2007

The Connection between Two Ways of Reasoning about Partial Functions

John S. Fitzgerald, Cliff B. Jones.

Abstract

This paper addresses the relationship between the theorems derived in two logics that
provide alternative ways of reasoning about partial functions. Theorems in the Logic
of Partial Functions using weak equality can be directly translated into First Order
Predicate Calculus using existential equality. Translation in the other direction is, in
general, more complicated but simplifies pleasingly in many cases. Such results are
important if formal methods tool integration is to proceed safely.

© 2007 University of Newcastle upon Tyne.
Printed and published by the University of Newcastle upon Tyne,
Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, England.

Bibliographical details

FITZGERALD, J. S., JONES, C. B.

The Connection between Two Ways of Reasoning about Partial Functions
[By] J. S. Fitzgerald, C. B. Jones.

Newcastle upon Tyne: University of Newcastle upon Tyne: Computing Science, 2007.

(University of Newcastle upon Tyne, Computing Science, Technical Report Series, No. CS-TR-1044)

Added entries

UNIVERSITY OF NEWCASTLE UPON TYNE
Computing Science. Technical Report Series. CS-TR-1044

Abstract

This paper addresses the relationship between the theorems derived in two logics that provide alternative ways of
reasoning about partial functions. Theorems in the Logic of Partial Functions using weak equality can be directly
translated into First Order Predicate Calculus using existential equality. Translation in the other direction is, in
general, more complicated but simplifies pleasingly in many cases. Such results are important if formal methods
tool integration is to proceed safely.

About the author

John Fitzgerald is Reader in Computing Science at Newcastle University. His research addresses the use of formal
methods in early stages of development for complex systems. He has pioneered the use of tool-supported formal
modelling techniques in industrial practice through close collaborations, especially with the aerospace industry.
He returned to academia following a period developing dynamic binary translation technology with Transitive Ltd
and his work now focuses on user-guided validation of designs and the design of dynamic virtual organisations.
He leads work on resilience-explicit computing in the ReSIST Network on Resilience in IST and, along with Cliff
Jones and Alexander Romanovsky, leads the EPSRC platform project on Trustworthy Ambient Systems. John is
Chairman of Formal Methods Europe.

Cliff Jones is currently Professor of Computing Science at Newcastle. He has spent more of his career in industry
than academia. Fifteen years in IBM saw, among other things, the creation with colleagues of the Vienna
Development Method. He went on to build the Formal Methods Group at Manchester University, which among
other projects created the "mural" theorem proving assistant. A Senior Fellowship focused on formal
(compositional) development methods for concurrent systems. In 1996 he moved to Harlequin directing some 50
developers on Information Management projects and finally became overall Technical Director before leaving to
re-join academia in 1999. Cliff's interests in formal methods have now broadened to reflect wider issues of
dependability. Cliff is a Fellow of the Royal Academy of Engineering, the ACM, BCS and IEE.

Suggested keywords

FORMAL METHODS,
SPECIFICATION LANGUAGES,
LOGIC,
PARTIAL FUNCTIONS,
LPF,
EQUALITY

The Connection between Two Ways of Reasoning

about Partial Functions

John S. Fitzgerald, Cliff B. Jones
School of Computing Science, Newcastle University, UK

Abstract

This paper addresses the relationship between the theorems derived in

two logics that provide alternative ways of reasoning about partial func-

tions. Theorems in the Logic of Partial Functions using weak equality can

be directly translated into First Order Predicate Calculus using existential

equality. Translation in the other direction is, in general, more compli-

cated but simplifies pleasingly in many cases. Such results are important

if formal methods tool integration is to proceed safely.

1 Introduction

1.1 Partial Operators in Formal Specifications

Partial operators and functions are common in specifications and designs in
formal languages such as Z [Hay93], B [Abr96] and VDM [Jon90, FL98]. Their
application gives rise to potentially undefined terms. For example, the hd

operator in VDM extracts the initial element of non-empty sequences, so the
term hd [] is undefined. It is sometimes possible to “protect” applications of
partial operators by guards, as in the following expression in which the non-strict
conditional avoids the evaluation of a potentially non-denoting term:

if s != [] then hd s else nil

However, plausible logical expressions can be written for which classical First-
order Predicate Calculus (FoPC) does not define a value. For example, the
following expression involves a potentially undefined mapping application:

d ∈ dom m ∧ m(d) = 3

FoPC does not define a result for the case where the lookup is undefined (false∧
⊥B is undefined). Instead of using FoPC, VDM uses the Logic of Partial Func-
tions [BCJ84] in which the value of false ∧ ⊥B (and the commuted expression)
is defined to be false.

Recursive functions offer a particular challenge for reasoning because their
domains are not necessarily obvious. The following example from [CJ91] is used
commonly because it is just difficult enough (e.g. no simple set over which to

1

quantify) to illustrate plausible logical assertions whose status requires thought.
The function subp is deliberately partial but returns i − j provided i ≥ j :

subp(i , j) ! if i = j then 0 else subp(i , j + 1) + 1

The following claim (in FoPC) appears plausible and seems to capture knowledge
about subp:

∀i , j ∈ Z · i ≥ j ⇒ subp(i , j) = i − j (1)

However, the quantified expression depends on 0 ≥ 1 ⇒ subp(0, 1) = 0 − j
which, since subp(0, 1) does not –in the least fixed point– denote an integer,
comes down to false ⇒ ⊥Z = −1.

For Claim 1, it is tempting to read the left side as a sort of “guard” but a
standard property of propositional calculus is the equivalence of an implication
to its contrapositive and

∀i , j ∈ Z · subp(i , j) != i − j ⇒ i < j (2)

does not offer a natural guard reading.
An even more problematic claim is that

∀i , j ∈ Z · subp(i , j) = i − j ∨ subp(j , i) = j − i (3)

where there is no guarding clause. Both Claims 1 and 3 are true in LPF and
their proofs are straightforward (see Section 2). LPF is, however, non-classical
in the sense that the “law of the excluded middle” does not hold. Thus:

∀i , j ∈ Z · subp(0, 1) = 42 ∨ ¬ (subp(0, 1) = 42) (4)

is not a theorem in LPF.
There are many approaches other than LPF that attempt to tame undefined

terms. A categorization of approaches is given in [CJ91] by analysing where
undefined values are “caught”; advantages and disadvantages of the approaches
are also listed. In several of these approaches, Claim 1 may only be proved with
side conditions. In even more approaches, Claim 3 would be ruled out. There
is obviously an intellectual interest in understanding the relationships between
approaches. Furthermore, a pressing practical issue arises now that serious
consideration is being given to moving conjectures between theorem proving
tools.

As well as the axiomatisation of the predicate calculus itself, the question
of the form of equality that best fits a particular logic is important: so we first
explore these.

1.2 Notions of Equality

One way of avoiding handling undefinedness in the logic is to provide versions of
relational operators such as equality that absorb undefined terms. For example,
existential equality (=∃) is a non-strict equality that yields false if any operand

2

is undefined. In the subp example, a version of Claim 1 with existential equality
is

∀i , j ∈ Z · i ≥ j ⇒ subp(i , j) =∃ i − j (5)

This poses no problems in FoPC because, if i < j , the antecedent is false, the
subp(i , j) term is undefined and so the consequent is false. Note that, in this
example, the weak relational operator ≥ is retained in the antecedent since it is
always defined over Z and i and j are bound to Z. Similarly, the weak equality
in the if-condition within the definition of subp can be retained.

Another non-strict relation is strong equality (==) which differs from its
existential cousin only in that ⊥Z == ⊥Z is true. The following transliterated
version of Claim 1, with strong equality is therefore also valid.

∀i , j ∈ Z · i ≥ j ⇒ subp(i , j) == i − j (6)

Neither existential nor strong equality are computable because they are non-
strict. The form of equality that arises in computations is “weak” or “strict”,
being undefined where either operand is undefined. (One of the disadvantages of
reasoning with non-strict operators is that one inevitably has to have different
versions of the operators in the same proof because the functions, definitions
etc. must use computable operators.)

1.3 A Challenge

As indicated above, Claim 1 is true in FoPC if the equality operator is changed
to existential equality as in Claim 5; and even the following:

∀i , j ∈ Z · subp(i , j) =∃ i − j ∨ subp(j , i) =∃ j − i (7)

is true in FoPCE
1.

The main outcome of this paper is to establish precise “translations” be-
tween approaches. Our chosen comparison is between LPF with weak equality
(referred to below as LPFw) and FoPC with existential equality (referred to
below as FoPCE). Other choices are possible but these pairings of logics with
equality notions appear to work well together. We also show below that how
theorems are proved also depends on how the definitions of partial functions are
“imported” into proofs.

One might ask why not just use FoPCE . Apart from the danger of confusion
arising from the need to manage two or more notions of equality, there is a
serious problem with needing non-strict versions of all operators that “come
between” undefined terms and the logical operators. We return to this point in
Section 3.

1Following the second author’s talk at AVoCS in Warwick on September 12th 2005 [Jon06],
these examples led Michael Goldsmith of Oxford to ask whether there was an exact match
between theorems of LPF with weak equality and theorems of FoPC with existential equality.
Jones’ first reaction was that there was not a match. However, subsequent efforts found useful
examples that supported ‘Goldsmith’s conjecture’ and –as so often– only the attempt to prove
the connection clarified the exact conditions.

3

2 The Typed Logic of Partial Functions

There is a body of work on the Logic of Partial Functions [Che86] and its
typed form [JM94], its mechanization in a proof support environment [JJLM91]
and its use as a foundation for reasoning about models and refinements in
VDM [BFL+94, Jon06, Fit07]. A complete description is not provided here
(the references provide a fuller history linking LPF into mainstream writings on
logic).

LPF admits undefined logical terms. The key omission from the logic is
the law of the Excluded Middle. Classically, natural deduction provides exactly
one introduction and elimination rule for each connective [Pra65]; in LPF it is
necessary to have, for example, introduction rules for both ∧ and ¬∧. Although
the logic admits undefinedness, Blamey uses the term “gaps” in the logical values
in preference to explicit references to ⊥B [Bla80, Bla86].

LPF offers the strongest monotonic extension of FoPC with respect to the
following ordering on truth values:

{⊥B * true,⊥B * false}

The operators in LPF have the (monotonicity) property that any undefined
values being “completed” to either true or false will not cause any B result to
change between true and false (of course, a ⊥B might itself complete).

An important facet of LPFw proofs is the way that function definitions are
handled by translation to inference rules; for example, the definition of subp
gives rise to the following rules:2

subp-bw subp(i , i) = 0
Ax

subp-iw
i != j ; subp(i , j + 1) = k

subp(i , j) = k + 1
Ax

These rules are used in the proof of Claim 1 in Figure 1.

3 The Relationship between LPFw and FoPCE

This section considers the correspondence the theorems of LPFw with those of
FoPCE ; both directions are discussed.

3.1 Theorems of LPFw hold in FoPCE

There are indications above that the truths of LPFw map to FoPCE : Claims 1
and 3 are examples (cf. Formulae 5 and 7; Claim 2 could also be mapped). The
intuition for the generality of this link is the monotonicity property mentioned in

2Names of rules are given in boxes to the left. An “Ax” to the right indicates an axiom.
Strictly, the subp-bw axiom should have a hypothesis asserting that 0 is defined.

4

Section 2: replacing weak equality by existential equality effectively “completes”
the values of undefined terms and doing so cannot cause the value of a formula
to change from true to false. Thus a proposition which is a theorem of LPFw

will never become untrue if the existential equalities yield false where the weak
equalities they replace gave ⊥B.

The formal justification of the mapping is pleasingly simple (once one has
seen it). Essentially, proofs in LPFw can be replayed as proofs in FoPCE because
the former logic is strictly weaker than the latter.

The simple translation for the statements of the theorems maps each (weak)
Boolean operator to its existential counterpart. (In fact, there are many cases
where it is obvious that the strict, weak, operators yield the same result so
there is no need to translate such operators between defined terms.) Since all
inference rules of LPF are valid in FoPC , the steps of the proofs that rely on
the axiomatisation of the logic do not need to change. The only issue open is the
way that LPFw proofs import the definition of (recursive) functions. Although
the obvious way to use the recursive definition is actually by using the definition
as though the definition symbol is a strong equality, it is true that the following
rules are sound:

subp-bE subp(i , i) =∃ 0
Ax

subp-iE
i != j ; subp(i , j + 1) =∃ k

subp(i , j) =∃ k + 1
Ax

For the subp example, Fig. 1 presents a proof of Claim 1 in LPFw , much as it
was done in [CJ91]. The conjecture obtained by converting Claim 1 to FoPCE

is in Formula 6. The steps of its (translated) proof differ from Fig. 1 only in
that the classical deduction theorem does not need the Step 7 as a hypothesis.

3.2 Translating Results in FoPCE to LPFw

Formula 4 provides a warning example that not all theorems of FoPCE hold in
LPFw but we do not actually need the law of the excluded middle to illustrate
the difficulty. The discussion can be made more compact by considering:

¬ (subp(0, 1) =∃ 42)

Since subp(0, 1) fails to denote, and existential equality gives false with either
operand undefined, this is a truth of FoPCE that clearly cannot be trivially
translated into a weak equality (which itself collapses to ⊥B).3

A correct mapping of FoPCE is to translate

t1 =∃ t2

3This observation led us to consider a mapping that excluded “negative occurrences” of
terms. However, the following approach is more useful.

5

from i , j : Z
1 i − 0 = i h, Z

2 subp(i , i) = 0 h, subp-b
3 subp(i , i − 0) = 0 = -subs(1,2)
4 from n: N; subp(i , i − n) = n
4.1 i − (n + 1) ∈ Z h, h4, Z

4.2 i != i − (n + 1) h, h4, Z

infer subp(i , i − (n + 1)) = n + 1 h, 4.1, 4.2, h4, subp-i
5 ∀n: N · subp(i , i − n) = n ∀-I (N-ind(3, 4))
6 from i ≥ j
6.1 (i − j): N Z, h6

infer subp(i , j) = i − j ∀-E (5, 6.1), Z

7 δ(i ≥ j) h, Z

infer i ≥ j ⇒ subp(i , j) = i − j ⇒ -I (6,7)

Figure 1: Proof of Property 1 in LPFw

into

t1 = t2 ∧ δ(t1 = t2)

In fact, this rather gruesome4 mapping often simplifies out nicely. For exam-
ple our Claims 1 and 3 are both effectively mapped bi-directionally. The first
because the definedness clause is the same as the left of the implication; in the
second, the two definedness criteria reduce to i ≤ j ∨ i > j .

One other observation is worth making. Whenever one encounters a formula
with a negative occurrence of a weak operator (say equality), one should consider
the inverse operator. It is important to remember that ¬ (a =∃ b) is not the
same as a !=∃ b.

4 Conclusions

The simple link between the theorems of LPFw and FoPCE is pleasing; the
fact that the translation in the other direction is often straightforward is also
encouraging. As indicated above, such studies are important if the move to
integration of formal methods tools is to be conducted soundly.

It is tempting to get over enthusiastic about our trick of “replaying proofs”
since other approaches also employ the axioms of FoPC . Unfortunately, the
technique does not appear to generalize because of the restrictions that say
Z-logic has to apply to expressions that contain non-denoting terms.

4The mapping for strong equality is even worse because of the need to recognise the case
where both terms yield ⊥!

6

Acknowledgments

The authors are grateful to Michael Goldsmith for the question that led us to
the conjecture that sparked explorations in this area and to Jim Woodcock for
stimulating discussions on the topic. The work was supported by the EPSRC
Platform project on Trustworthy Ambient Systems and EU FP6 RODIN project
and ReSIST Network of Excellence.

References

[Abr96] J.-R. Abrial. The B-Book: Assigning programs to meanings. Cam-
bridge University Press, 1996.

[BCJ84] H. Barringer, J. H. Cheng, and C. B. Jones. A logic covering unde-
finedness in program proofs. Acta Informatica, 21:251–269, 1984.

[BFL+94] Juan Bicarregui, John Fitzgerald, Peter Lindsay, Richard Moore,
and Brian Ritchie. Proof in VDM: A Practitioner’s Guide. FACIT.
Springer-Verlag, 1994. ISBN 3-540-19813-X.

[Bla80] S.R. Blamey. Partial Valued Logic. PhD thesis, Oxford University,
1980.

[Bla86] S. Blamey. Partial logic. In D. Gabbay and F. Guenthuer, editors,
Handbook of Philosophical Logic, Volume III, chapter 1. Reidel, 1986.

[Che86] J.H. Cheng. A Logic for Partial Functions. PhD thesis, University
of Manchester, 1986.

[CJ91] J. H. Cheng and C. B. Jones. On the usability of logics which handle
partial functions. In C. Morgan and J. C. P. Woodcock, editors, 3rd
Refinement Workshop, pages 51–69. Springer-Verlag, 1991.

[Fit07] J. S. Fitzgerald. The Typed Logic of Partial Functions and the Vi-
enna Development Method. In D. Bjørner and M. C. Henson, editors,
Logics of Specification Languages, EATCS Texts in Theoretical Com-
puter Science, pages 427–461. Springer, 2007. To appear.

[FL98] John Fitzgerald and Peter Gorm Larsen. Modelling systems: practical
tools and techniques in software development. Cambridge University
Press, 1998.

[Hay93] Ian Hayes, editor. Specification Case Studies. Prentice Hall Interna-
tional, second edition, 1993.

[JJLM91] C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural: A
Formal Development Support System. Springer-Verlag, 1991. ISBN
3-540-19651-X.

7

[JM94] C.B. Jones and C.A. Middelburg. A typed logic of partial functions
reconstructed classically. Acta Informatica, 31(5):399–430, 1994.

[Jon90] C. B. Jones. Systematic Software Development using VDM. Prentice
Hall International, second edition, 1990. ISBN 0-13-880733-7.

[Jon06] Cliff B. Jones. Reasoning About Partial Functions in the Formal
Development of Programs. Electronic Notes in Theoretical Computer
Science, 145:3–25, January 2006.

[Pra65] Dag Prawitz. Natural Deduction: a Proof-Theoretical Study. Dover
publications, 1965.

8

