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A structural proof of the soundness of rely/guarantee rules (revised)?

Joey W. Coleman
Cliff B. Jones

School of Computing Science
Newcastle University

NE1 7RU, UK
e-mail: {j.w.coleman, cliff.jones}@ncl.ac.uk

Abstract. Various forms of rely/guarantee conditions have been used to record and reason about interference
in ways that provide compositional development methods for concurrent programs. This paper illustrates such
a set of rules and proves their soundness. The underlying concurrent language allows fine-grained interleaving
and nested concurrency; it is defined by an operational semantics; the proof that the rely/guarantee rules are
consistent with that semantics (including termination) is by a structural induction. A key lemma which relates
the states which can arise from the extra interference that results from taking a portion of the program out of
context makes it possible to do the proofs without having to perform induction over the computation history.
This lemma also offers a way to think about expressibility issues around auxiliary variables in rely/guarantee
conditions.

1 Introduction

Floyd/Hoare rules provide a way of reasoning about non-interfering programs: for such sequential programs, infer-
ence rules are now well known; their soundness can be proved and one can even obtain a (relatively) complete “ax-
iomatic semantics” for simple languages [Apt81]. Moreover, because the rules are “compositional” (see [Jon03a]),
they can be used in a design process rather than just in post-facto proofs. Even for sequential programs, the rules
used in the VDM literature differ in two important respects from, say, those used in [Hoa69,Dij76,GS96]: VDM
authors have always insisted on using post conditions which are predicates of two states and on recognising the
problems which result from undefined expressions. Section 3.2 expands on both of these points because they
permeate the subsequent material on concurrency.

Finding compositional proof rules for concurrent programs proved to be challenging precisely because of the
“interference” which is the essence of concurrency. The “Owicki/Gries approach” [Owi75,OG76] is not com-
positional because any –possibly multi-staged– development would have to be repeated where Owicki’s final
Einmischungsfrei proof obligation cannot be discharged.

Rely and guarantee conditions (e.g. [Jon81,Jon83b,Jon83a,Jon96]) offer a way of handling interference during
the development process. Crucially this way of documenting and reasoning about interference does provide a
compositional development method for concurrent programs.1 There are many forms of rely/guarantee conditions
and a lot written has been about various forms under slightly different names such as “assumption/commitment
reasoning”.2

We have recently revisited a number of issues relating to rely/guarantee conditions as part of a project on
“Splitting (software) atoms safely” [Jon07]; one of us was also motivated by our study of new forms of “inter-
ference reasoning” in connection with “deriving specifications” [HJJ03,JHJ07]. Having decided to undertake the
task of providing a reference point on rely/guarantee conditions for fine-grained concurrency, we believe that we
have come up with a novel approach to the soundness proof.

The current paper provides an underlying operational semantics for a fine-grained concurrent language; one
particular set of rely/guarantee rules for that language; and a justification of those inference rules with respect to the
operational semantics. The broad view of an operational semantics providing a collection of rules that enhance an
? This is the technical report version of a paper of the same name which is to appear in the Journal of Logic and Computation;

please cite the published version in preference to this one. Furthermore, this technical report obsoletes CS-TR-987, as that
is simply an early draft of this paper.

1 John Reynolds characterised rely/guarantee conditions as providing a way of reasoning about “racy” programs (whereas
“separation logic” [O’H07] lets one show that race conditions are avoided).

2 A key (encyclopaedic) reference is [dR01]. An annotated list of publications on rely/guarantee concepts can be found at
http://homepages.cs.ncl.ac.uk/cliff.jones/home.formal



underlying logic follows that of Tom Melham [CM92] and Tobias Nipkow [KNvO+02] which were presumably
influenced by [BH88]: the rules of an operational semantics can be taken to provide an inductive definition of
a relation ( s−→) over “configurations” (i.e. pairs of program texts and states). Results about specific programs
could be proved directly in terms of this inference system. We view the “Floyd/Hoare-like” rules for reasoning
directly about rely/guarantee conditions as extra inference rules which have to be shown to be consistent with the
operational semantics (and thus abbreviate longer proofs which might have been written directly in terms of that
semantics).

Thus this paper presents one version of a collection of rely/guarantee rules for reasoning about interference
(they are collected in Appendix B); a semantic model of a small, fine-grained concurrent, shared-variable language
— discussed in Section 2); and shows in Section 4 a novel justification of the formal rules with respect to the
language semantics. To aid the reader’s understanding, Section 3 introduces the rely/guarantee rules by means of
an example of a small concurrent program whose design is justified in terms of the aforementioned rules.

1.1 Introducing rely/guarantee conditions

This section offers a brief introduction to rely/guarantee concepts for the benefit of those unfamiliar with them.
Program development using Floyd/Hoare-like pre and post conditions can be visualised as shown in Figure 1a.
The horizontal line represents the system states over time; P and Q are –respectively– pre and post condition
predicates of a state; they are positioned to show where they are expected to hold and the execution of the program
is indicated by the box along the top of the diagram. This model is adequate for isolated, sequential systems, but
it assumes atomicity with respect to the program’s environment, making it unsuitable for concurrent programs.

Program

P Q P

Program

Environment

Q

G

RRRR

GG

(a) (b)

Fig. 1. (a) Pre/Post conditions and (b) Rely/Guarantee conditions

Rely/guarantee conditions can be visualised as in Figure 1b. Here again, the horizontal line represents the
system state over time and P represents the program’s pre condition. Unlike Figure 1a, however, Q is a relation
— it is required to hold over the initial and final states. The execution of the program is displayed as boxes above
the state line and actions taken by the environment are represented below it. Every change to the state made by the
program must conform to the restrictions given by the guarantee condition, G . The program specification indicates
that all actions taken by the environment can be assumed to conform to the rely condition, R.

It is important to note the asymmetry in the use of R and G : whereas the latter is a restriction on the program
to be created, the former does not constrain anything. In fact, a rely condition is an invitation to the developer to
make assumptions about the environment in which the software that is to be created will be deployed.3 It is the
responsibility of the user of the program to ensure that it is run in an environment that conforms to R. Of course,
one way to do this is to construct a program which can be proven to provide such a context. For the purposes of
reasoning about interference in proofs, both R and G are required in proofs and, when dealing with concurrency,
we find that guarantee of one thread becomes (part of) the rely condition of another thread.

A typical rely condition for a process might record that a flag is only set (say false to true) by its environment or
that a variable is unchanged when a certain flag is set. Another class of rely conditions that are useful in practice is
that the value of a variable changes monotonically. Without locks, this latter class of conditions presents intriguing
implementation problems and the example in Section 3 shows how careful choice of data representations can play
a key part in their solution.

3 Much the same can actually be said about pre conditions: there is a sense in which the original Hoare triple notation
{P}S{Q} rather disguises the distinction between design-time assumptions and obligations on the created code.
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With Figure 1b in mind, then, the thrust of a rely/guarantee development lies in formalising –at different ab-
straction levels– the behaviour of both the program and its intended environment. Once the assumptions about the
environment have been characterised in the rely condition, that condition can be used both in the proofs regarding
the program and also by a potential user of the program to determine its suitability to an actual environment at
hand. The guarantee condition serves not only to indicate the potential behaviour of the program, but it also be-
comes critical when reasoning about different branches of a program or about the behavioural interaction of the
two separately developed parallel programs.

Before discussing the variation in rely/guarantee rules, it is worth noting that there are decisions to be made in
Floyd/Hoare-like rules for sequential programs (e.g. whether to have separate “weakening” rules or to incorporate
the relaxation of pre/post conditions into the other rules); such decisions are more numerous when there are four
clauses to a specification. There are in fact several forms of rely/guarantee conditions even where the idea is
applied to shared-variable concurrency. In the sort of fine-grained concurrent language considered here, there
are further decisions to be made about whether the predicates written in If /While statements are stable under
interference — this point is discussed below. Further discussion of the trade-offs in designing rely/guarantee rules
can be found in [CJ00] which includes the useful idea of a “dynamic invariant” that is not discussed further in the
current paper.

As in all research on “formal methods”, the expectation is that such work will inspire guidelines even for less
formal approaches. This expectation appears to be fulfilled for rely/guarantee conditions which have proved to be
a useful way of thinking about a whole range of issues.

2 The language

In order to keep the proofs to a reasonable length, the language has only five statement constructs and nil (to
represent a completed statement), as well as a subsidiary expression construct. The extension to most other forms
of statement is straightforward. The formal language description follows the “VDM tradition” of basing the se-
mantics on an abstract syntax and restricting the class of programs by using “context conditions”. The abstract
syntax is in Figure 2. (An example program is given in Figure 4 — but this code is actually obtained by a stepwise
design in which the steps employ the rely/guarantee rules.) We omit here the context conditions which are routine
and make the obvious type checks.

Stmt = Par |While | If | Seq | Assign | nil

Par :: sl : Stmt
sr : Stmt

While :: b : Expr
body : Stmt

If :: b : Expr
body : Stmt

Seq :: sl : Stmt
sr : Stmt

Assign :: id : Id
e : Expr

Expr = B | Z | Id | Dyad

Dyad :: op : + | − | < | = | > | ∧ | ∨
a : Expr
b : Expr

Fig. 2. Abstract syntax of the language to be defined

In VDM [Jon90] a record such as While is constructed by a make function

mk -While: Expr × Stmt →While

Elements of While are disjoint from any other record type so that unions like Stmt can be formed safely. (The
use of the constructors in pattern matching positions such as the SOS rules was common in VDM from the 1970’s
but should be familiar from functional languages like ML and Haskell).

In order to show that the inference rules used for (concurrent) program constructs are sound, an independent
semantics is needed. The semantics used here is a structural operational semantics [Plo81] (republished as [Plo04b]
— see also [Plo04a].)4 We view the rules of the semantics as (inductively) defining a relation over configurations
of program texts and states.

4 We do not enter here into a debate about the merits of operational versus denotational semantics (but see [Jon03b]); we do,
of course, avoid the Baroque excesses caused by using what McCarthy called a “Grand State”.
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The language given contains no means to create fresh variables nor to restrict access to any variable. A program
in this language has all of its variables contained within a single global scope: the state object, σ. All of the
variables that the program requires must be present and initialized at the start of execution. The state object in the
language maps all variables to integer values.

Σ = Id m−→ Value

In our SOS below, the main semantic relation of the language is:
s−→:P ((Stmt × Σ)× (Stmt × Σ))

This symmetry between the type of the domain and range of the relation allows us to form transitive closures giving
us a convenient mechanism to talk about two configurations related by multiple steps of the semantic relation (the
transitive closure is

s−→∗).
The raison d’être of the language is its Par construct which interleaves parallel execution of two statements

(the parallel execution of more than two statements can be achieved by nesting Par constructs).

Par-L
(sl , σ)

s−→ (sl ′, σ′)

(mk -Par(sl , sr), σ)
s−→ (mk -Par(sl ′, sr), σ′)

Par-R
(sr , σ)

s−→ (sr ′, σ′)

(mk -Par(sl , sr), σ)
s−→ (mk -Par(sl , sr ′), σ′)

Par-E
(mk -Par(nil, nil), σ)

s−→ (nil, σ)

The SOS rules have no inherent notion of fairness: the choice of which branch to follow is unspecified.
Conditional execution is provided by the If construct and is a pure conditional rather than a choice between

two statements (not required by the example in Section 3) so no “else” branch is shown for the conditional. (The
importance of –and alternatives to– showing the fine-grained interference in this way is discussed in Section 3.4.)

If-Eval
(b, σ)

e−→ b′

(mk -If (b, body), σ)
s−→ (mk -If (b′, body), σ)

If-T-E
(mk -If (true, body), σ)

s−→ (body , σ)

If-F-E
(mk -If (false, body), σ)

s−→ (nil, σ)

Repetition is achieved with the While construct — the description gives the behaviour for this construct
indirectly: the SOS rule for While rewrites the program text in terms of an If that contains a sequence with
the loop body and the original While (this makes the fine-grained interference of the conditional carry over to
repetition).

While
(mk -While(b, body), σ)

s−→ (mk -If (b,mk -Seq(body ,mk -While(b, body))), σ)

The Seq construct provides sequential execution.

Seq-Step
(sl , σ)

s−→ (sl ′, σ′)

(mk -Seq(sl , sr), σ)
s−→ (mk -Seq(sl ′, sr), σ′)

Seq-E
(mk -Seq(nil, sr), σ)

s−→ (sr , σ)

Assignment (to a scalar variable) is represented by the Assign construct and is the only means to alter the
state. The only step of the Assignment which is required to be atomic is the actual mutation of the state object.

Assign-Eval
(e, σ)

e−→ e ′

(mk -Assign(id , e), σ)
s−→ (mk -Assign(id , e ′), σ)

Assign-E
n ∈ Z
(mk -Assign(id ,n), σ)

s−→ (nil, σ † {id 7→ n})

4



Expression evaluation is non-atomic; interference makes it possible that (x + x ) 6= 2x (or indeed x + x can
be an odd number). This decision allows parallel statements to interfere with each other at a very fine level of
granularity. Not surprisingly, such fine grained interference complicates reasoning but it is a realistic decision that
permits efficient implementation: it would be ridiculous to introduce locks which forced statement level atomicity
and extravagant to require a compiler to detect where they were (not) required.

The nil statement acts as a skip or empty statement, indicating that there is no computation to perform. At
first glance it may seem that a simple self-assignment such as x ← x might be equivalent to a statement which
does nothing, but that overlooks the nature of the interference which this language allows. The addition of nil to
the Stmt type has the useful side effect of simplifying the SOS rules for nearly all of the constructs which can
contain a statement: without the nil statement we would be required to distinguish those transitions that terminate
the contained statement. However, it should be noted programs containing many nil statements can be normalised
to a form without most of those nil statements and still have the same behaviour.5 Finally, a completed program is
always a configuration of the form (nil, σ), which contains a valid program in its own right.

It is important to understand how the fine-grained interleaving of steps is achieved in the SOS. Essentially,
the whole of the unexecuted program is available (as an abstract syntax tree). To perform one (small) step of
the s−→ transition can require making non-deterministic choices all the way down to a leaf statement (even to a
leaf operand of an expression). Each step of the transition relation results in a new configuration containing the
remainder of the program to be executed; the next step is then chosen in this new configuration. This permits a
thread to be interrupted by other threads which might be considered to be its uncles or nephews in the program
text. This complicates the proof of soundness of the rules of Appendix B but it is a useful freedom for writing
realistic concurrent programs.

The subsidiary type Expr is used by the rules for the Assign , If and While constructs. It has its own semantic
relation that models the process of expression evaluation.

e−→:P ((Expr × Σ)× Expr)

Id-E
(id , σ)

e−→ σ(id)

Dyad-L
(a, σ)

e−→ a ′

(mk -Dyad(op, a, b), σ)
e−→ mk -Dyad(op, a ′, b)

Dyad-R
(b, σ)

e−→ b′

(mk -Dyad(op, a, b), σ)
e−→ mk -Dyad(op, a, b′)

Dyad-E
a ∈ Z ∧ b ∈ Z
(mk -Dyad(op, a, b), σ)

e−→ [[op]](a, b)

Unlike s−→, this semantic relation is not symmetric, as the type of the range is an Expr , as compared to the
type of the domain which is a pair of an Expr and a state object. Expressions in our language cannot cause side
effects, that is, they are unable to mutate state; this allowed the simplification of the e−→ relation and simplifies
the proofs of the development rules needed. The language has no notion of function or procedure calls and this
lack is part of what keeps expressions side effect free.

3 A set of rely/guarantee rules

As indicated in the introductory section, there is no single set of rely/guarantee rules which fit all situations
(cf. Section 5); a useful set is given in Appendix B. We illustrate these rules with an example.

Predicates like P and Q are written as assertions about states (or pairs thereof); they are obviously pieces of
text and in the proofs that follow we need to apply the corresponding semantic object to states. Thus

[[P ]] 4 λσ.P
[[Q ]] 4 λ↼−σ , σ.Q

5 Because of termination issues, a While with just nil as the body cannot, in general be eliminated.
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3.1 An example development

We use as an example here a problem –FINDP– which originated in [Owi75] and was tackled by rely/guarantee
reasoning in [Jon81]. The FINDP example is presented as it is a minimal example in terms of which we can
demonstrate the ideas needed in this paper.

The task is to find the least index i (to a vector v ) such that for some predicate pred , pred(v(i)) holds. In order
not to have to describe function calls in the semantics in Section 2, we note that the predicate could be as simple
as λx · x > 0. In order to justify parallelism, we wish to view it as expensive to implement. It is straightforward
to add semantics for function calls as we would not allow any side-effects from their evaluation.

A specification is presented in Figure 3 using normal VDM pre/post conditions plus rely/guarantee conditions.
All except the pre-condition are predicates over pairs of states; the distinction between components of the first and
second states is made by “hooking” the former. Thus v = ↼−v in the rely condition indicates that the value of v is
unchanged by interference.

At this level of abstraction, the (design of the) program has access to two variables: v and r . The former will
only be read by FINDP whereas the program can both read and write the latter. The pre condition allows for any
starting state providing that pred(v(i)) is defined for all indices (this includes the requirement that the indices are
within the vector; δ(e) requires that e is defined — see discussion of δ in Section 3.2). The guarantee condition
places no constraint on the internal behaviour of the program.

The rely condition requires that the environment does not change v or r during execution of FINDP (without
this assumption, it would be impossible to devise an implementation). Finally, the post condition asserts that, if
r is a valid index into v , then pred holds on v(i); alternatively, if there are no values in v for which pred holds,
then r will be precisely one greater than the length of v .6 The final conjunct requires that the least such r is
found. Notice the type of r : N1: this is an implied restriction that its minimum value is 1; the step to some form of
dependent type –restricting the highest value (with respect to v )– has not been taken here.

FINDP
rd v : X ∗

wr r : N1

pre ∀i ∈ {1..len v} · δ(pred(v(i)))

rely v = ↼−v ∧ r = ↼−r
guar true
post (r = len v +1 ∨ 1 ≤ r ≤ len v ∧pred(v(r)))∧
∀i ∈ {1..r − 1} · ¬ pred(v(i))

Fig. 3. Specification of FINDP

3.2 Sequential aside

Apart from the rely/guarantee extension, there are aspects of VDM’s design rules –even as applied to sequential
programs– that do not fit with “mainstream” verification work (although in some cases, others have moved toward
the VDM position). Of particular relevance here is that VDM uses post conditions of two states (relations) which
means that standard Floyd/Hoare rules for reasoning about programming constructs are not applicable. This deci-
sion actually goes back to work that predates the christening of VDM (e.g. [Jon72]) and was made widely visible
in [Jon80]. The presentation of the proof rules used here is as in the first (1986) edition of [Jon90]. These are es-
sentially the same as the rules proposed by Peter Aczel in [Acz82] (which contains the generous characterisation
of the first attempt to give rules in [Jon80] as “unmemorable”).

The other unconventional feature of VDM is that it takes seriously the problem of expressions which might be
“undefined”. Both of these points can be illustrated in a short development of a sequential implementation of the
specification in Figure 3. Here, S sim-sat (P ,Q) is written instead of the “Hoare triple” {P}S{Q}.

The rule used for while in VDM ensures termination by requiring that the relation over the body of the loop is
well-founded; this fits with the relational view of post conditions and is in many ways more natural than Dijkstra’s

6 As an alternative one could insert a value at the end of v for which pred is definitely true; the changes to what follows are
inconsequential.
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“variant function” [DS90].7 (We mark the rules for sequential constructs with a prefix sim- — the parallel rules
below have no prefix.) This might suggest a rule like:

S sim-sat (P ∧ b,P ∧W )
mk -While(b,S ) sim-sat (P ,P ∧ ¬ b ∧W ∗)

Where W ∗ is the reflexive closure of W (which is already transitive.)
The issue of undefinedness can be seen if one considers the following putative implementation

r ← 1;
while r ≤ len v ∧ ¬ pred(v(r)) do r ← r + 1 od

Remembering that the pre condition in Figure 3 only guarantees the v(i) (and thus pred(v(i))) is defined for
i ∈ {1..len v}, the definedness of the test in this while turns on how expressions are evaluated. If the evaluation
of the conjunction short circuits the second conjunct when the first is false, all is well; but, if both conjuncts are
evaluated, then the second can be undefined when v = r +1. Proofs in VDM employ a “logic of partial functions”
(LPF) [BCJ84] which ensures that logical expressions are defined whenever possible: the semantics of the logical
operators are the weakest extensions over the ordering ⊥B ≤ true, ⊥B ≤ false compatible with standard first-
order predicate calculus. The “law of the excluded middle” does not in general hold in LPF which means that there
are special natural deduction rules for negated disjunction introduction etc.

The use of LPF in proofs does not presuppose that a programming language will implement such generous
operators. The proof rule for while therefore contains a hypothesis P ⇒ δl(b) which requires that b is defined
in the implementation language.8 We have chosen not to add arrays to the semantics because in this restrictive
case they behave like simple (unchanging) sequences whose semantics is obvious. (The full semantics is given in
Appendix A.)

The rule for sequential while statements is:

sim-While-I

S sim-sat (P ∧ b,P ∧W )
P ⇒ δl(b)
mk -While(b,S ) sim-sat (P ,P ∧ ¬ b ∧W ∗)

Which would lead us to a sequential implementation like:

r ← 1;
while r ≤ len v do

if ¬ pred(v(r)) then r ← r + 1
od

Notice that this design is cautious about undefinedness by nesting the statements in a way that avoids evaluating
pred(v(r)) outside the domain of v .

The justification of this design step would use sim-While-I with W (↼−σ , σ) that shows σ is closer to termination
than ↼−σ :

↼−r < r ≤ len v

and P :

r ∈ {1..len v + 1} ∧ ∀i ∈ {1..r − 1} · ¬ pred(v(i))

Notice the W is well-founded over P because of the upper limit on r .
Further sequential rules are:

sim-If-I

St sim-sat (P ∧ b,Q)
Se sim-sat (P ∧ ¬ b,Q)
P ⇒ δl(b)
mk -If (b,St ,Se) sim-sat (P ,Q)

7 At the Schloß Dagstuhl Seminar in July 2006, Josh Berdine of Microsoft observed that their experience with the “Termi-
nator” tool (which attempts automatic verification of termination) supported the use of well-founded relations rather than
“variant functions”.

8 In the language definition in Section 2, there are no operators (e.g. division) which would result in undefined expressions.
Only the possibility of indexing outside the array exists in this example to illustrate the need for δ.

7



In fact, we use a simple conditional with no else clause throughout this paper; the obvious simplification for the
identity of the false branch is:

sim-If-I

body sim-sat (P ∧ b,Q)
↼−
P ∧↼−¬ b ⇒ Q
P ⇒ δl(b)
mk -If (b, body) sim-sat (P ,Q)

One further piece of notation is needed to define the rule for reasoning about the use of sequential statement
composition: R1 |R2 is the predicate which expresses the composition of the two relations. Thus:

sim-Seq-I

l sim-sat (P ,Ql ∧ Pr )
r sim-sat (Pr ,Qr )
Ql |Qr ⇒ Q
mk -Seq(l , r) sim-sat (P ,Q)

An important advantage of “hooking the pre state” (rather than “priming the post state”) is visible here. Writing
Ql ∧ Pr ) as the post condition of l has exactly the right effect: Pr defines the interface between l and r .

Our interest is development; we have argued in several publications that the steps of design provide the outline
proof of correctness. The formal rules offer the ability to generate verification conditions and to use a theorem
prover if required. Proof rules for assignment statements are therefore of less interest than those for the combi-
nators which let the designer decompose a large task into sub-programs. In fact, in the absence of complicated
concepts like location sharing or interference, assignments are unlikely to be wrong. Be that as it may, a rule can
be given:

sim-Assn-I
true
mk -Assign(v , e) sim-sat (δ(e), v = ↼−e ∧ Icomp(v))

where Icomp(v) indicates the identity relation on all variables except v . In general we denote the identity relation
as I . If there is a subscript, i.e. Ivars , then the subscript indicates the set of variables to which the identity relation
is restricted; so, I{x} is the relation where the variable x does not change. Furthermore, the function comp(v)
gives the complement of variables relative to its given parameter; so Icomp(v) is the relation where all variables
except v do not change.

3.3 Introducing parallelism

Rather than the sequential algorithm of Section 3.2, we actually have in mind a development (from the original
specification in Figure 3) which uses parallel tasks to check subsets of of the indices of v . It would be possible to
have these processes work entirely independently on a partition of the indices; after their completion, they would
choose the lowest index where pred was found to be satisfied by v(i). However, even with separate processors for
each thread, this would actually present the risk of it taking longer than the sequential solution (consider a split
over two processes, if there is only one index where pred(v(i)) holds, no result can be confirmed until at least
half of the indices are examined). So the interest is in having the processes communicate in a way that permits any
process to avoid searching higher indices than one where a value which satisfies pred has already been located.

The particular set of rely/guarantee rules that we use here assumes specific properties about the relations used
in a specification. These assumptions reflect choices that we have made and are not required for all possible
rely/guarantee rule sets. (See the discussion on completeness in Section 1.) A major assumption that we make is
that the rely and guarantee conditions must be both reflexive and transitive. Reflexivity allows for atomic steps that
do not change the state. Transitivity implies that consecutive actions of the same kind must satisfy their condition
when taken as a whole. For example, if a program does several steps that, individually, satisfy that program’s
guarantee condition, and between these steps the environment does nothing that might mutate the state, then that
whole sequence of actions will also satisfy the program’s guarantee condition.

We are also assuming that the components of a rely/guarantee specification satisfy certain constraints with
respect to each other. Although these constraints must be shown to be valid for each specification, they are stated
here as axioms since that is how they are used in the proofs.
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The first constraint regards interaction between the pre condition and interference from the environment

PR-ident ↼−
P ∧ R ⇒ P

This indicates that, if the environment acts on a state that satisfied the pre condition, then the following state still
satisfies the pre condition. It is important to note that this property alone is not sufficient to establish that the test
of a conditional construct such as If or While still holds during the execution of that construct’s body; this point
is dealt with in more detail in Section 3.4.

There is also a pair of constraints that describe how interference influences the states that satisfy the post
condition

RQ-ident ↼−
P ∧ (R |Q) ⇒ Q

QR-ident
Q |R ⇒ Q

Of these, the first essentially allows a post condition to be “stretched” to an earlier state in the program’s execution
history. This is useful when proving that the post condition of the body of an If construct also applies to the whole
construct. The second allows us to assert that interference from the environment does not make a previously true
post condition false.

Returning to the design of FINDP, the overall structure of the program sets a temporary variable t beyond the
top of v ; then executes parallel threads whose overall effect is specified here as SEARCHES ; and finally copies
the value of t into r .9

t ← len v + 1;
SEARCHES ;
r ← t

SEARCHES
rd v : X ∗

wr t : N1

pre ∀i ∈ {1..t − 1} · δ(pred(v(i)))
rely v = ↼−v ∧ t = ↼−t
guar true
post t ≤↼−t ∧ (t = ↼−t ∨ pred(v(t))) ∧

∀i ∈ {1..t − 1} · ¬ pred(v(i))

This can be justified by Assign-I, Seq-I and weaken rules of Appendix B. The introduction of a new variable, t ,
requires some care in this step as we are assuming it to be local even though our target implementation language
only has global variables. However, as t is not already referenced, we are taking it as unused and assuming that
there is an implicit t = ↼−t in the rely condition of FINDP ’s specification.

The statement that a particular implementation –call it searches– satisfies the specification of SEARCHES ,
would be written as

{pre-SEARCHES , rely-SEARCHES} ` searches sat (guar -SEARCHES , post-SEARCHES )

which has the general form {P ,R} ` S sat (G ,Q). This form of writing satisfaction nicely separates the de-
veloper’s assumptions from the constraints on the execution of the program. Furthermore, this statement is a
deduction within the rely/guarantee logic that, given a state which satisfies the pre condition, P , and a run-time
environment in which all changes made by the environment to the state satisfy the rely condition, R, asserts that
execution of the program S will

1. only change the state such that each individual change satisfies the guarantee condition, G ;
2. always terminate; and

9 At this stage of development, we might be tempted to use r directly but t will actually be reified into an expression in
Section 3.4. The authors have no difficulty in “confessing” that this might cause a designer to backtrack one step of design
to arrive at the need for a separate variable t .
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3. when finished, produce a state that, when taken with the initial pre condition-satisfying state, satisfy the post
condition, Q .

This is the semantic notion which has to be proved of the introduction rules in Appendix B.
The most interesting of the rules is the one for showing how rely and guarantee conditions are combined for the

parallel construct. For simplicity, we choose here to use exactly two processes (this is in fact what Owicki did in
her thesis [Owi75]; [Jon81] generalised to an arbitrary partition of the indices over n processes). So SEARCHES
could be implemented by

SEARCH ({i ∈ {1..len v} | is-odd(i)}) ‖ SEARCH ({i ∈ {1..len v} | ¬ is-odd(i)})

where SEARCH can be specified10 as

SEARCH (ms: N-set)
rd v : X ∗

wr t : N1

pre ∀i ∈ ms · δ(pred(v(i)))
rely v = ↼−v ∧ t ≤↼−t
guar t = ↼−t ∨ t < ↼−t ∧ pred(v(t))
post ∀i ∈ ms · i < t ⇒ ¬ pred(v(i))

The intuition so far is that the two concurrent processes search their index range in ascending order in much
the same way as the sequential program in Section 3.2 but that they communicate the fact that they find i such that
pred(v(i)) by setting the shared variable t ; providing they mutually respect the protocol of never increasing the
value of t , a process can quit once it reaches the index where another process has found pred to be satisfied.

We use the key Par-I rule to show that the parallel statement satisfies the specification in SEARCHES .
Notice how the parts of the combination work. Each thread has to tolerate the interference coming either from
rely-SEARCHES or from the other thread; but this disjunction still leaves t ≤↼−t safe. Ensuring guar -SEARCHES
is trivial because it is identically true. The combination of the post conditions of the two threads only achieves
∀i ∈ {1..t − 1} · ¬ pred(v(i)); so we really do need the (transitive closure of) the two guarantee conditions in
order to achieve post-SEARCHES .11 We should echo here the point about mergings including with uncle and
nephew threads: the proof rule specifically copes with interference from such threads.

3.4 Decomposing SEARCH and reifying t

There is however a problem hidden in the preceding section: updating the variable t which is shared between
the two instances of SEARCH could lead to a race condition. An assignment such as 〈t ← min(t , · · ·)〉 would
need to be made “atomic” since the language of Section 2 permits interference during expression evaluation.12

One would, in general, wish to avoid such locking. A key idea in [Jon07] is that a useful strategy to avoid such
problems is by the choice of suitable reifications of abstract variables. We choose to implement t as min(ot , et)
and appropriate allocation of read/write access avoids the need for any locking other than that which could be
expected to come from the memory properties of the machine. The specification of the process responsible for the
odd indices becomes:

SEARCH -Odd
rd v : X ∗

rd et : N1

wr ot , oc: N1

pre ∀i ∈ odds(len v) · δ(pred(v(i)))
rely v = ↼−v ∧ et ≤↼−et ∧ ot ≤↼−ot
guar ot = ↼−ot ∨ ot < ↼−ot ∧ pred(v(ot))
post ∀i ∈ odds(len v) · i < ot ⇒ ¬ pred(v(i))

10 Strictly, each SEARCH process need only rely on v being unchanged over its ms but stating this formally requires yet one
more VDM operator (�) and adds nothing to the understanding of the rules.

11 This can be compared with the rule in [Pre03] which needs a stronger (and less isolating) rely condition.
12 The (obvious) functions min and odds are used in the explanation but not the final code: they are not part of the language

defined in Section 2; the use of the if construct avoids the need for min .
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This leaves the problem of how to reason about constructs that allow interference during expression evaluation.
The current authors are strongly committed to providing sets of rules that match different programming contexts
and take the opportunity here to illustrate different choices of ways of coping with interference in the if/while rules.
The observant reader might observe that the issue of interference could be localized by rewriting a program so
that there is never more than one shared variable per expression.13 In fact, the rewriting is rather delicate (e.g. the
assignments to locals must be in parallel; there must be one local per occurrence (not just per variable)) and we
totally reject the idea that a program designer would choose to reason about such an expanded program.

Given the level of interference allowed in the language defined in Section 2, we can either add a proof require-
ment that evaluation of the b test is stable under R or we have to prove facts about the body of the while statement
(respectively, the embedded statement of the if statement) without being able to take the b as an extra pre condition
(cf. sim-If-I, sim-While-I in Section 3.2).

To illustrate these two possibilities, we chose the latter course for the while rule (i.e. While-I in Appendix B
only has P as a pre condition for proofs about body) whereas If-I has the requirement that b indep R so that b
can be used as a pre condition for reasoning about its body . The b indep R requirement in If-I is actually stronger
than we require since it means that the test expression b is completely unaffected by interference bounded by R.
This is much stronger than the PR-ident assumption on the overall rule set that we make earlier: that only requires
that any evaluation in a single state is stable. However, PR-ident does not require any stability when an expression
is evaluated across a series of interfered-with states; we therefore need a stronger condition for expressions in
general.

The strength of the requirements on the rules is a choice that is partly motivated by the development of the
FINDP example: the implementation in Figure 4 is written to take advantage of the rules as they are presented. We
can develop sound rules for both of the constructs, taking either or both courses; the applicability of a particular
form of the rules to the development is what motivates the decision.

ot ← len v + 1; et ← len v + 1;
par
‖ (oc ← 1;

while (oc < ot ∧ oc < et) do
if oc < ot ∧ pred(v(oc)) then ot ← oc fi;
oc ← oc + 2

od)
‖ (ec ← 2;

while (ec < et ∧ ec < ot) do
if ec < et ∧ pred(v(ec)) then et ← ec fi;
ec ← ec + 2

od)
rap;
if ot < et then r ← ot fi; if et < ot then r ← et fi

Fig. 4. An implementation of FINDP

There are several interesting observations about the implementation of FINDP in Figure 4. The tests in both
while statements (e.g. (oc < ot ∧ oc < et)) suffer interference from the other parallel thread; so one cannot take
the (whole of) the test as an assumption for reasoning about the body. Rather than have a rule that makes such a
fine distinction, we have chosen to repeat one conjunct in each thread (e.g. oc < ot) in the test of the if statement
where (because they use variables that are “written to” only in the current thread) it is possible to carry the test
into the pre condition of the body. The assignments (e.g. oc ← oc + 2) do not satisfy “Reynold’s rule” (i.e. only
one shared variable per assignment) but are safe because, like r ← r + 1 earlier, there is no interference.

To see that this code satisfies the specifications of SEARCH in Section 3.3, note that there is still a reference
to a shared (changing) value in the test expression of the while but that the choice of the representation of t ensures
the first conjunct of the guarantee condition; the argument for the second conjunct is similar. The post condition
of SEARCH follows by While-I.

13 This is a version of what is sometimes known as “Reynold’s rule”. The attribution of this rule is denied by J. Reynolds, but
see (9.32) and page 327 of [Sch97] for a more accurate history.
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Although the specification does not forbid us from checking every element of v even after we have found the
minimum index that satisfies pred , we are trying to avoid doing so if possible. Given that the evaluation of pred
is expensive, one of the considerations in this design is how often we end up evaluating it — that is, how often
we have to execute the loop body of either instance of SEARCH . Because of the representation chosen for t ,
the worst case only ends up with one extra evaluation of pred for each SEARCH block that does not find the
minimum index. In most cases, this will not happen, but it can if the ot and et variables in the min expression are
read just before being updated by the opposite parallel branch.

4 Soundness

For a sequential (non-concurrent) language, it is straightforward to establish that Floyd/Hoare-like rules are con-
sistent with an operational (or denotational) semantics: early citations are [Lau71,Don76], and [Jon87] provides a
soundness proof of the sequential rules of VDM based on a denotational description of the underlying language.
There are even papers such as [Bro05] which undertake this with a denotational semantics (but without “power
domains”) for concurrency.

We need here to cope with concurrency –and its inherent non-determinacy– in the language description. The
basic approach (like that in [KNvO+02]) is to view the SOS rules as inference rules which make it possible to
prove results about the s−→ relation.

The general approach to –and challenges of– what needs to be proved can be explained without the complica-
tions of concurrency so a proof for the sequential subset of our language is sketched first for ease of understanding
(the main steps of proof for the concurrent language are outlined in Sections 4.3–4.5; the detailed proofs are
relegated to the appendices of this paper).

4.1 The sequential case

The overall soundness result for a sequential language (assume that Par /∈ Stmt in Figure 2) would be that, under
the assumption that we have a proof using inference rules in Appendix B (i.e. S sim-sat (P ,Q)), if S is executed
in a state for which [[P ]](σ), then (a) the program cannot fail to terminate (i.e. the

s−→∗ relation must lead to
(nil, σ′) in a finite number of transitions); and (b) any state σ′ for which (S , σ)

s−→∗ (nil, σ′) will be such that
[[Q ]](σ, σ′).

The proofs for (a) and (b) above can be done by structural induction over the abstract syntax for Stmt :

Stmt-Indn

H (nil)
S ∈ Assign ` H (S )
H (sl) ∧H (sr) ⇒ H (mk -Seq(sl , sr))
H (S ) ⇒ H (mk -If (b,S ))
H (S ) ⇒ H (mk -While(b,S ))
H (sl) ∧H (sr) ⇒ H (mk -Par(sl , sr))
∀S ∈ Stmt ·H (S )

The assumption is made that all of the assignments have already been proven directly.14 These proofs are laid out
in a natural deduction format similar to that used in [Jon90,JJLM91,FL98].15

For the proofs in hand, the termination argument needs the correctness result to establish that the pre-condition
of the second (sr ) part of a Seq is satisfied. It is sound to prove correctness first since we only need to consider
those final states that the model can reach; for a divergent computation there is no final state to consider.

In the sequential case, it is easy to see that structural induction suffices for most of the argument. The only
exception to this is the lemma for While: this is, in a technical sense, the most interesting proof since it requires the

14 Soundness for assignment statements must be argued directly in terms of the underlying SOS rules for each assignment
individually.

15 We follow the ideas in [Gen35] in reasoning about propositional operators and quantifiers with the aid of introduction and
elimination rules. Our layout resembles that of Jáskowski in [Pra65]. These older references influenced [Gri81, Chapter 3]
which in turn stimulated the use of natural deduction in [Jon90] and subsequent VDM publications.
It is perhaps surprising that [Gri81] confined the use of natural deduction to one chapter; having made progress on the
presentation of bound variables, VDM has used the style extensively.
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use of complete induction16 over well-founded relation from sim-While-I in Section 3.2 (in addition to structural
induction on the body of the While). We identify this transitive well-founded relation as W ∈ P (Σ× Σ).The sim-
While-I rule is also written such that all states that satisfy the pre condition of the rule, P , must be contained within
either the domain or range of W (i.e. P ⊆ Σ). Finally, the equivalent of a “base case” for this inductive rule are
those states which are not contained in the domain of W .

W -Indn
(
∀a ′ ·W (a, a ′) ⇒ H (a ′)

)
⇒ H (a)

H (a)

It is a consequence of the compositionality of the proof rules used in Section 3.2 that structural induction gets
us so far in the sequential case; retaining this property in the concurrent language was one of our goals for the
following proofs.

4.2 The concurrent case

Even in the case of concurrency, we assume that whole programs are run without external interference (cf. Sec-
tion 4.6), so the final result (Corollary 26) we need is that, when a program S has been shown to satisfy a pre/post
condition (P , Q respectively) specification — that is

{P , I } ` S sat (true,Q)

has been proved from the rules in Appendix B, it should hold that, for states σ where [[P ]](σ) is true (a) the program
cannot fail to terminate (i.e. the

s−→∗ relation leads to (nil, σf ) in a finite number of transitions); and (b) any state
σ′ for which (S , σ)

s−→∗ (nil, σ′) will be such that [[Q ]](σ, σ′).
In order to state the more general property which admits interference, we need to show what it means to run

a program with its interference being constrained by a relation. This is defined (with Rely being relations over
(Σ× Σ)) as the transition relation

r−→
—

:P ((Stmt × Σ)× Rely × (Stmt × Σ))

This new relation essentially introduces zero or more steps of interference between “ordinary” steps of the s−→
transition.

A-R-Step
[[R]](σ, σ′)
(S , σ) r−→

R
(S , σ′)

A-S-Step
(S , σ) s−→ (S ′, σ′)
(S , σ) r−→

R
(S ′, σ′)

Corollary 26 is an immediate consequence of Theorem 25 which reflects the possibility of interference. Where

{P ,R} ` S sat (G ,Q)

has been proved, it should hold that, for states σ where [[P ]](σ) is true (a) (S , σ) must terminate under
r−→∗
R

; (b)

for any state σf reached [[Q ]](σ, σf ); and (c) steps in the execution of S must not violate the guarantee condition
G .

The first part of the proof concerns satisfaction of the post condition Q . As in the sequential case, this has to
precede the argument about termination because we need to be able to conclude that the pre condition of the right
part of a sequence is satisfied.

16 As a reminder, complete induction over the integers is:

N-Indn
(∀i < n ·H (i)) ⇒ H (n)

H (n)
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4.3 Respecting guarantee conditions

Unlike with the sequential language, here we also need to show that atomic state changes made by portions of
programs are within the bounds given by the specified guarantee conditions which arise in the justification of a
program. Strictly, the post condition and guarantee condition lemmas are mutually dependant but we present them
as though they are independent because there is no technical difficulty in their combination and they are harder to
read in the combined form. The dependencies show themselves in the proof that the sequence construct satisfies
its guarantee condition, and in the proof that the parallel construct satisfies its post condition. The former proof
requires that the post condition of the first part of the sequence is established before it can continue with the second
part of the sequence. The latter proof is explained in the next section.

Were we to do the proofs in tandem, we could get away with talking about S satisfying (under appropriate
assumptions) G and Q ; because we separate the proofs, we need a way of writing claims about interference and
choose:

{P ,R} |= S within G

which is the first point in the definition of {P ,R} ` S sat (G ,Q) given in Section 3.3. This is actually a model-
theoretic notion, and as such is independent of the definition given for sat; it is defined to be the equivalent of

∀· σ0, σi , σj ∈ Σ ·
(
[[P ]](σ0) ∧ (S , σ0)

r−→∗
R

(Si , σi)
s−→ (Sj , σj )

)
⇒ [[G ]](σi , σj )

Informally, this is amounts to the claim that the guarantee condition forms a bound within which all possible
actions of the program must fit. We will frequently write S within G where P and R can be easily inferred from
the context.

In the simplest case, we know that a completed program does nothing, and can therefore satisfy any guarantee,
giving us:

nil-within {P ,R} |= nil within I

This lemma can be derived directly from the semantics of our language and the definition of within above; intu-
itively, the simple fact that the statement nil cannot modify the state means that it satisfies the identity relation.
Though obvious, this lemma is required to show the soundness of the parallel rule.

The only state changes caused by a program S come from the final step of executing assignments (see Assign-

E in Section 2). It is relatively clear what S within G means for S ∈ Assign (the qualification here is that,
for example, mk -Assign(x , x + 1) within ↼−x < x only holds under some rely conditions R because of the fine
grained semantics in Section 2). For composite statements S , S within G requires that G holds for every contained
assignment.

The onus is on the user of the proof rules of Appendix B to show (using the SOS) that any assignments satisfy
their associated Assign-I. Lemmas 1–4 are the separate cases (by the other types of Stmt) which justify Theorem 5
which follows by structural induction. Each of the proofs of the lemmas are straightforward precisely because the
only way to change the values in the state is by assignment.

Having understood the notion of a piece of program respecting an interference constraint, we need to know
that, under increased interference, there can never be fewer possible results. This is a monotonicity result on
interference but the case we need in the subsequent proofs relates specifically to the observation that executing
sl and sr in parallel will yield fewer possible resulting states than executing sl with the interference by which sr
has been shown to be bounded (i.e. Gr ). This is captured in Lemma 6 (and a symmetrical version for the right,
Lemma 7). At first encounter, it might be easier to understand this result expressed using set comprehension. If,
under the assumption of {P ,R} |= S within G , then{

σ′ ∈ Σ
∣∣∣ (mk -Par(sl , sr), σ)

r−→∗
R

(mk -Par(sl ′, sr ′), σ′)
}
⊆
{
σ′ ∈ Σ

∣∣∣∣ (sl , σ)
r−→∗

R∨Gr

(sl ′, σ′)
}

This lemma is crucial to our ability to undertake the proofs in a compositional way using structural induction. The
point has been made above that (some form of) rely/guarantee reasoning is key to the compositional development
of concurrent programs; what these lemmas achieve is to bring the compositionality into the soundness proofs. (A
comparison with other proofs is given in Section 5.1.)

Further properties required in later lemmas are given in Lemmas 11 and 12.
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4.4 Correctness

The key correctness proofs (Lemmas 13–16 and Theorem 17) show that, under appropriate assumptions, the final
states will satisfy Q . The statements of all lemmas and theorems are given in Appendix C along with their proofs.
Thanks to Lemmas 6 and 7, most of the proofs are only slightly more complex than in the sequential case.

It is important to realise the role of rely/guarantee conditions in the argument. To achieve separation of argu-
ments about different “threads” in a program, there has to be a way of reasoning about a thread in isolation even
though its execution can be interrupted (at a very fine grain) by other threads. Rely/guarantee conditions provide
exactly this separation but introduce the need to show that the execution of a branch of a Par respects its guarantee
condition.

The While statement is one place where interference has a significant impact on the form of the rule in
Appendix B: at first sight, it may come as a shock to some17 that one can no longer assume (in general) that b is
true for the body proof but this is a direct consequence of (fine-grained) interference and it should be noted that
the development in Section 3.4 uses a statement where such interference occurs. It is of course possible to justify
alternative rules which cover the situation where b is stable under R (alternately, b is independent of R).

The proof of Lemma 15 uses complete induction over the W relation.
Also of interest is the proof for Par (see Lemma 16). It is precisely here that the fact that the developer

of a program using the rely/guarantee rules in Appendix B has to prove their program correct under a wider
assumption of interference than –in general– will arise from the actual concurrently executing program. This is
where Lemmas 6 and 7 are key.

It is enlightening to compare where the proof challenge comes from for Seq and Par : in the former case,
one needs to know that executing the first sl component establishes the pre condition of the second (sr ); for
concurrency, the proof effort is expended on establishing mutual respect of each component’s rely condition.

4.5 Termination

The rules in Appendix B are intended to prove what is often called “total correctness”: a correct program must
always terminate if it is used as intended.18 Unlike with sequential programs, the termination argument here
cannot be by straight structural induction because of the interleaving of threads. Consider first how one might
argue that programs terminate if there were no While construct in the language. It is straightforward to define
a lexicographic ordering over Stmt such that all of the SOS rules in Section 2 reduce the program part of a
configuration. Actually, most of the rules in our language genuinely reduce the depth of a Stmt syntax; the only
special case is in expressions where identifiers can be replaced by their values. Such a lexicographic reduction is
clearly finite.

The presence of a While construct potentially complicates the argument in two ways: textual expansion and
the potential for blocking. First, it is obvious that a program might contain a non-terminating loop: the SOS
rules would continually replace the offending instance of the non-terminating While with a longer text (cf. While).
Given that any program S for which {P ,R} ` P sat (G ,Q) has a well-ordering (W ) for each loop, such non-
termination is ruled out.

The issue of blocking appears to be more subtle but is in fact an aspect of the same point. Within the language
of Appendix B, one could write a program with a While construct which “waited” on a flag to be set in a parallel
thread but it would not be possible to prove that such a program satisfied a specification because there would be no
well-founded W for such a blocking While . So although such a program conforms to the language description,
it is not of concern to our soundness proof for the rules of Appendix B. Thus, it is the lemma about the While
construct which is most interesting (in exactly the same way as with the sequential language): Lemma 23 needs to
use complete induction over the termination relations used in the proof of the their respective While statements.

This last observation is interesting because of its connection with “fairness”. A program which waited for
another thread to unblock its “flag” would rely on fairness of the execution order of the SOS rules. We finesse this
issue because of the need for the programmer to prove termination.

There are of course subtleties in formalising the argument above: one must remember that the need is to show
divergence is impossible on any non-deterministic evaluation (not just that the evaluation can terminate). The
final theorem on termination (Theorem 24) just appeals to the lexicographic ordering of program texts for the
statements other than While and appeals to Lemma 15 for While .
17 Those who have actually done concurrent programming will be least surprised.
18 The termination proofs are thus important but are omitted in [Pre03] which only tackles “partial correctness” — see Sec-

tion 5.1.
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4.6 Final theorem

Theorem 25 When

{P ,R} ` S sat (G ,Q)

has been proved from the rules in Appendix B it should hold that, when [[P ]](σ) is true (S , σ) must terminate
under r−→

R
; and for any state σf reached [[Q ]](σ, σf ).

Proof Follows immediately from Theorems 17 and 24.

Corollary 26 If

{P , IΣ} ` S sat (true,Q)

has been proved from the rules in Appendix B it should hold that, when [[P ]](σ) is true (S , σ) must terminate
under s−→; and for any state σf reached [[Q ]](σ, σf )

Proof This is an immediate corollary of Theorem 25.

5 Conclusions

5.1 Related work

We review here a representative sample of proofs of soundness of rely/guarantee rules. The most relevant piece of
related research is certainly [Pre01] (see [Pre03] for an overview) which provides an Isabelle/HOL proof of two
related results. The differences are interesting and we hope in the future to explore to what extent they come about
because of the constraints of a complete machine-checked proof.

Jones’ own [Jon81] presents an argument that the form of rely/guarantee rules contained there are sound with
respect to an operational semantics. This proof is far from formal and is made opaque by being based on a VDL-
style [LW69] operational semantics (it is worth remembering –as an extenuating circumstance– that Plotkin’s
Århus notes on SOS [Plo81] were not written until 1981). The proof in [Jon81] is based on an argument over all
computations even though the state of a computation is viewed in VDL as a (rather Baroque) tree.

Another obvious comparison of our work is with Ketil Stølen’s PhD: in[Stø90, §4.2.2] he makes clear that,
like Prensa Nieto, he also assumes that expression evaluation –including that in tests– is atomic (whereas we
avoid this assumption). The attentive reader might observe that Stølen’s induction over “proof depth” is not far
removed from our structural induction over the proof rules themselves. The semantic model in [Stø90] is based on
a transition relation between configurations and he bases arguments on computation sequences (in fact, “potential
computations”). Of course, Stølen is facing the additional challenge of reasoning about rules which have a wait
condition to facilitate proofs about progress; he also tackles completeness for his rules — this interacts with the
thorny issue of of “auxiliary variables” which is a topic discussed in Section 5.2 below. Similar comments apply
to Stirling’s proofs in [Sti86] which is made more difficult to compare (particularly with respect to usability of
the given rules) by his use of sets of predicates to overcome the denial of relations. The same issues are inherited
in [Din00].

Of course the core reference for compositional methods is De Roever [dR01]: it is clear that he uses Aczel
traces to justify Theorem 8.28 in his soundness proof. In none of the above references have we located anything
like Lemma 6 and its role of reasoning about a computation out of the actual context — with the rely condition
defining a more general (but tolerable) interference.

Finally, we move back to Leonor Prensa Nieto’s recent proofs (she discusses [Xu92,XdH97] which she points
out follow a similar proof approach to that in [Pre01] although Xu Qiwen’s “is presented in a conventional pencil
and paper style”). Some of the differences between [Pre01] and the current paper derive from the choices of
language semantics.

– Here we allow a much finer level of interference (indeed, the embedding of whole statements as functions
in the program and the way predicates are tested in [Pre01,Pre03] might seem natural to a HOL user but is
surprising to anyone familiar with semantics based on a more conventional (abstract) syntax). Ours was not
an arbitrary decision — we have argued elsewhere [Jon07] that assuming large atomic steps would make
languages very expensive to implement.
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– Whereas we allow nested parallel statements, Prensa Nieto does not: she observes that her decision to define
a “parallel program” as a list of (un-nested) “component programs” which do not allow any concurrency is to
simplify her proofs. Our Lemma 6 shows that coping with more global thread switching is possible.

– [Pre03] does allow “await” statements in the same way that Owicki did in [Owi75]. They would present no
fundamental problems for us but would introduce a termination problem whose finessing we comment on in
Section 4.5.

The language decisions obviously affect the proof rules used. One surprise in [Pre03] is the decision to use
post conditions which are predicates of the final state only (rather than relations between initial and final states).19

Another major difference with what is presented here is the fact that the soundness proof in [Pre01] does not tackle
termination (it only addresses so-called “partial correctness”).

The proof of soundness for her chosen rules in [Pre03, see §4.2.3] is based on “computations”. That having
been said, we believe that both approaches could benefit from the other and we are in the process of following up
on this. We hope to investigate whether our Lemma 6 can be used to simplify a machine checked proof of rules
which cope with fine-grained interference and nested parallel constructs.

The view that rules like those in [Jon96] are proved as needed contrasts starkly with that of providing a
(complete) axiomatic semantics for a language. The current authors note that the only non-trivial language for
which this has been done is “Turing” [H+88]. Our view absolves us from concerns about completeness because
one can prove more rules as required. This is fortunate because rely/guarantee rules have to fit many different styles
of concurrent programming (depending on the intimacy of interference employed) and it is difficult to envisage a
single canonical set.

5.2 Further work

There is as always much more to be done. We have, of course, used the rely/guarantee rules on other examples. It
is worth noting that the only interesting interference in FINDP is on setting the one shared variable (originally t ;
then reified). This means that FINDP is actually a little too simple to show the advantage (over Owicki/Gries) of
compositional reasoning –the “prime sieve” of [Jon96] is a more convincing example– but FINDP is shorter and
illustrates most aspects of rely/guarantee rules.

It would be useful to compile collections of rules (like those in Appendix B) which are tuned to different “pat-
terns” of concurrent programming. In particular, it would be interesting to look at rules for assignment statements
that embody different interference assumptions.

We are also interested in considering the requirements of machine checked proofs (our proofs are presented in
a rather formal “natural deduction” style but have not been machine generated). In doing this, it would be worth
examining again the soundness proofs in [Jon87] (or in detail with the Technical Report version thereof [Jon86])
where we gave a (relational) denotational semantics (the basic proof tool there was fixed point induction). Al-
though that work was based on a sequential (non-concurrent) language and is in a denotational setting, it is clear
that reasoning explicitly about relations avoids having to pull out explicitly (name) many individual states.

It was in fact difficulties with the heaviness of proofs using rely/guarantee conditions which led Jones to
embark on constraining interference by using concurrent object based languages; this development is summarised
in [Jon96]. The fact remains that if one wishes to use “racy” interference, something like rely/guarantee proofs
appear to be required.

We feel that constructing the proofs has sharpened our understanding of the expressiveness of rely and guar-
antee conditions. It was clear from the beginning that expressing interference via a relation was weak in the sense
that there are things one would want to say that cannot be expressed. The standard way of achieving the sort of
completeness result in [Stø90]20 is to employ “auxiliary” (or “ghost”) variables. They essentially make it possible
to encode in variables information about the flow of control. The insight which comes from the proofs here is
derived from Lemmas 6 and 7 which make precise the limited expressiveness of the relation intended to capture
a rely condition. We would like to take this idea forward to look at controlled extensions to the language used for
recording and reasoning about interference.
19 The source of the idea to use post conditions of single states would appear to be [Sti86] (which even uses predicates

of single states for rely and guarantee conditions). This idea is not in the spirit of [Jon81,Jon83a] which views all such
assertions as relations over pairs of states. Stirling was attempting completeness proofs and the simplification there is
understandable but the counter-intuitive coding of, for example, variables retaining their values reduces the usability of
the excellent combination of approaches in [Din00].

20 Such a result was first sketched by Ruurd Kuiper in [Kui83].
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A The Base Language

A.1 Abstract Syntax

Stmt = Par |While | If | Seq | Assign | nil

Par :: sl : Stmt
sr : Stmt

While :: b : Expr
body : Stmt

If :: b : Expr
body : Stmt

Seq :: sl : Stmt
sr : Stmt

Assign :: id : Id
e : Expr

Expr = B | Z | Id | Dyad

Dyad :: op : + | − | < | = | > | ∧ | ∨
a : Expr
b : Expr
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A.2 Context Conditions

Auxiliary functions
typeof : (Expr × Id-set)→ {INT,BOOL}
typeof (e, ids)4

cases e of
e ∈ B→ BOOL

e ∈ Z→ INT

e ∈ ids→ INT

others cases e.op of
+→ INT

−→ INT

others BOOL

end
end

Expressions
wf -Expr : (Expr × Id-set)→ B
wf -Expr(e, ids)4 e ∈ (ids ∪ B ∪ Z)

wf -Expr(mk -Dyad(op, a, b), ids)4
wf -Expr(a, ids) ∧ wf -Expr(b, ids) ∧
typeof (a, ids) = typeof (b, ids) ∧
op ∈ {+,−, <,>} ⇒ typeof (a, ids) = INT ∧
op ∈ {∧,∨} ⇒ typeof (a, ids) = BOOL

Statements
wf -Stmt : (Stmt × Id-set)→ B
wf -Stmt(nil, ids)4 true
wf -Stmt(mk -Assign(id , e), ids)4 id ∈ ids ∧ typeof (e, ids) = INT ∧ wf -Expr(e, ids)

wf -Stmt(mk -Seq(sl , sr), ids)4 wf -Stmt(sl , ids) ∧ wf -Stmt(sr , ids)

wf -Stmt(mk -If (b, s), ids)4
typeof (b, ids) = BOOL ∧ wf -Expr(b, ids) ∧ wf -Stmt(s, ids)

wf -Stmt(mk -While(b, s), ids)4
typeof (b, ids) = BOOL ∧ wf -Expr(b, ids) ∧ wf -Stmt(s, ids)

wf -Stmt(mk -Par(sl , sr), ids)4 wf -Stmt(sl , ids) ∧ wf -Stmt(sr , ids)

A.3 Semantic Objects

Σ = Id m−→ Value

A.4 Semantic Rules

Expressions
e−→:P ((Expr × Σ)× Expr)

Identifiers

Id-E
(id , σ)

e−→ σ(id)

Dyads

Dyad-L
(a, σ)

e−→ a ′

(mk -Dyad(op, a, b), σ)
e−→ mk -Dyad(op, a ′, b)

Dyad-R
(b, σ)

e−→ b′

(mk -Dyad(op, a, b), σ)
e−→ mk -Dyad(op, a, b′)

Dyad-E
a ∈ Z ∧ b ∈ Z
(mk -Dyad(op, a, b), σ)

e−→ [[op]](a, b)
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Statements
s−→:P ((Stmt × Σ)× (Stmt × Σ))

Assign

Assign-Eval
(e, σ)

e−→ e ′

(mk -Assign(id , e), σ)
s−→ (mk -Assign(id , e ′), σ)

Assign-E
n ∈ Z
(mk -Assign(id ,n), σ)

s−→ (nil, σ † {id 7→ n})

Sequence

Seq-Step
(sl , σ)

s−→ (sl ′, σ′)

(mk -Seq(sl , sr), σ)
s−→ (mk -Seq(sl ′, sr), σ′)

Seq-E
(mk -Seq(nil, sr), σ)

s−→ (sr , σ)

If

If-Eval
(b, σ)

e−→ b′

(mk -If (b, body), σ)
s−→ (mk -If (b′, body), σ)

If-T-E
(mk -If (true, body), σ)

s−→ (body , σ)

If-F-E
(mk -If (false, body), σ)

s−→ (nil, σ)

While

While
(mk -While(b, body), σ)

s−→ (mk -If (b,mk -Seq(body ,mk -While(b, body))), σ)

Parallel

Par-L
(sl , σ)

s−→ (sl ′, σ′)

(mk -Par(sl , sr), σ)
s−→ (mk -Par(sl ′, sr), σ′)

Par-R
(sr , σ)

s−→ (sr ′, σ′)

(mk -Par(sl , sr), σ)
s−→ (mk -Par(sl , sr ′), σ′)

Par-E
(mk -Par(nil, nil), σ)

s−→ (nil, σ)

A.5 Augmented Semantics

Rely = P (Σ× Σ)
r−→
—

:P ((Stmt × Σ)× Rely × (Stmt × Σ))

A-R-Step
[[R]](σ, σ′)
(S , σ) r−→

R
(S , σ′)

A-S-Step
(S , σ) s−→ (S ′, σ′)
(S , σ) r−→

R
(S ′, σ′)
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B Inference Rules

weaken

{P ,R} ` S sat (G ,Q)
P ′ ⇒ P
R′ ⇒ R
G ⇒ G ′

Q ⇒ Q ′

{P ′,R′} ` S sat (G ′,Q ′)

Par-I

{P ,R ∨ Gr} ` sl sat (Gl ,Ql)
{P ,R ∨ Gl} ` sr sat (Gr ,Qr )
Gl ∨ Gr ⇒ G
↼−
P ∧Ql ∧Qr ∧ (R ∨ Gl ∨ Gr )∗ ⇒ Q
{P ,R} ` mk -Par(sl , sr) sat (G ,Q)

While-I

bottoms(W ,¬ b)
twf (W )
{P ,R} ` body sat (G ,W ∧ P)
↼−¬ b ∧ R ⇒ ¬ b
R ⇒ W ∗

{P ,R} ` mk -While(b, body) sat (G ,W ∗ ∧ P ∧ ¬ b)

Note that W in the While-I rule is both transitive and well-founded (twf ) over states and stable under R, but
W should not be reflexive. The latter property is a side effect of/enforced by W being part of the post condition.
The use of the transitive closure of W to imply the post condition is needed to add reflexivity in the case where
the overall While does nothing and the initial and final states are identical.

In general, a hypothesis of the form bottoms(W ,P), where W is a transitive, well-founded relation and P is
a predicate, indicates that the predicate is true for all elements that are not in the domain of W . Thus the inference
rule

bottoms

bottoms(W ,P)
σ /∈ dom W
[[P ]](σ)

gives the form of the property of bottoms that we use in the proofs. The hypothesis bottoms(W ,¬ b), then, is
used to help ensure that once the While loop has reached a state that is not in the domain of the relation W , the
While loop will consequently have its test expression evaluate to false, and terminate the loop.

If-I

b indep R
{P ∧ b,R} ` body sat (G ,Q)
↼−
P ∧↼−¬ b ⇒ Q
{P ,R} ` mk -If (b, body) sat (G ,Q)

The hypothesis b indep R is taken to mean that the evaluation of the expression b is unaffected by interference
constrained by R.

Seq-I

{P ,R} ` sl sat (G ,Qsl ∧ Psr )
{Psr ,R} ` sr sat (G ,Qsr )
Qsl |Qsr ⇒ Q
{P ,R} ` mk -Seq(sl , sr) sat (G ,Q)

Assign-I
true
{δ(e), IFV (e)} ` mk -Assign(v , e) sat (Icomp(v), v = ↼−e )

Note that FV (e) denotes the set of free variables in the expression e . Thus, IFV (e) denotes the relation that
acts as an identity on the variables free in the expression e . The guarantee condition in the above rule, Icomp(v),
denotes the relation that acts as an identity on all variables except v .
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C Formal statements of all lemmas

C.1 Respecting Guarantee Conditions

Lemma 1

Seq-B

{P ,R} ` sl sat (G ,Qsl ∧ Psr )
{Psr ,R} |= sr within G
{P ,R} |= mk -Seq(sl , sr) within G

Proof
from {P ,R} ` mk -Seq(sl , sr) sat (G,Q); [[P ]](σ0); (mk -Seq(sl , sr), σ0)

r−→∗
R

(nil, σf ); IH -S(sl); IH -S(sr)

1 {P ,R} ` sl sat (G,Qsl ∧ Psr ) h, Seq-I
2 {Psr ,R} ` sr sat (G,Qsr ) h, Seq-I
3 from {Pl ,Rl} ` sl sat (Gl ,Ql); [[Pl ]](σl); (sl , σl)

r−→∗
Rl

(nil, σ′l )

infer {Pl ,Rl} |= sl within Gl IH-S(sl)
4 from {Pr ,Rr} ` sr sat (Gr ,Qr ); [[Pr ]](σr ); (sr , σr )

r−→∗
Rr

(nil, σ′r )

infer {Pr ,Rr} |= sr within Gr IH-S(sr)
5 ∃σi ∈ Σ · (mk -Seq(sl , sr), σ0)

r−→∗
R

(mk -Seq(nil, sr), σi)
r−→∗
R

(nil, σf ) h, r−→
R

(Seq-Step,Seq-E)

6 from σi ∈ Σ st (mk -Seq(sl , sr), σ0)
r−→∗
R

(mk -Seq(nil, sr), σi)
r−→∗
R

(nil, σf )

6.1 (sl , σ0)
r−→∗
R

(nil, σi) h6, Lemma 8

6.2 {P ,R} |= sl within G h, 1, 3, 6.1
6.3 [[Psr ]](σi) 1, 6.1, Theorem 17
6.4 (sr , σi)

r−→∗
R

(nil, σf ) h6, Lemma 9

6.5 {Psr ,R} |= sr within G 2, 4, 6.3, 6.4
infer {P ,R} |= mk -Seq(sl , sr) within G h6, 6.2, 6.5

infer {P ,R} |= mk -Seq(sl , sr) within G ∃-E (5, 6)

Lemma 2

If-B
{P ∧ b,R} |= body within G
{P ,R} |= mk -If (b, body) within G

Proof
from {P ,R} ` mk -If (b, body) sat (G,Q); [[P ]](σ0); (mk -If (b, body), σ0)

r−→∗
R

(nil, σf ); IH -S(body)

1 {P ∧ b,R} ` body sat (G,Q) h, If-I
2 from {Pb ,Rb} ` body sat (Gb ,Qb); [[Pb ]](σb); (body , σb)

r−→∗
Rb

(nil, σ′b)

infer {Pb ,Rb} |= body within Gb IH-S(body)
3 ∃v ∈ B, σi ∈ Σ · (mk -If (b, body), σ0)

r−→∗
R

(mk -If (v , body), σi)
r−→∗
R

(nil, σf ) h, r−→
R

(If-Eval,If-T-E/If-F-E)

4 from v ∈ B, σi ∈ Σ st (mk -If (b, body), σ0)
r−→∗
R

(mk -If (v , body), σi)
r−→∗
R

(nil, σf )

4.1 from ¬ v

4.1.1 [[R]](σ0, σf ) h4, h4.1, r−→
R

(If-Eval,If-F-E)

infer {P ,R} |= mk -If (b, body) within G h, 4.1.1
4.2 from v

4.2.1 [[R]](σ0, σi) h4, h4.1, r−→
R

(If-Eval)

4.2.2 (body , σi)
r−→∗
R

(nil, σf ) h4, h4.2, Lemma 10

4.2.3 [[P ]](σi) h, 4.2.1, PR-ident
4.2.4 {P ∧ b,R} |= body within G 1, 2, 4.2.2, 4.2.3

infer {P ,R} |= mk -If (b, body) within G h4, 4.2.1, 4.2.4
infer {P ,R} |= mk -If (b, body) within G ∨-E (h4, 4.1, 4.2)

infer {P ,R} |= mk -If (b, body) within G ∃-E (3, 4)
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Lemma 3

While-B
{P ,R} |= body within G
{P ,R} |= mk -While(b, body) within G

Proof
from {P ,R} ` mk -While(b, body) sat (G,Q); [[P ]](σ0); (mk -While(b, body), σ0)

r−→∗
R

(nil, σf ); IH -S(body)

1 {P ,R} ` body sat (G,Q) h, While-I
2 from {Pb ,Rb} ` body sat (Gb ,Qb); [[Pb ]](σb); (body , σb)

r−→∗
Rb

(nil, σ′b)

infer {Pb ,Rb} |= body within Gb IH-S(body)

3 ∃v ∈ B, σi ∈ Σ ·

0@ (mk -While(b, body), σ0)
r−→∗
R

(mk -If (v ,mk -Seq(body ,mk -While(b, body))), σi)
r−→∗
R

(nil, σf )

1A h, r−→
R

(While,If-Eval)

4 from v ∈ B, σi ∈ Σ st [[3]]
4.1 from ¬ v

4.1.1 [[R]](σ0, σf ) h4, h4.1, r−→
R

(If-F-E)

infer {P ,R} |= mk -While(b, body) within G h, 4.1.1
4.2 from v

4.2.1 [[R]](σ0, σi) h4, h4.1, r−→
R

(While,If-Eval)

4.2.2 (body , σi)
r−→∗
R

(nil, σf ) h4, h4.2, Lemma 10, 8

4.2.3 [[P ]](σi) h, 4.2.1, PR-ident
4.2.4 {P ,R} |= body within G 1, 2, 4.2.2, 4.2.3

infer {P ,R} |= mk -While(b, body) within G h4, 4.2.1, 4.2.4
infer {P ,R} |= mk -While(b, body) within G ∨-E (h4, 4.1, 4.2)

infer R |= mk -While(b, body) within G 2, While-B

Lemma 4

Par-B

{P ,R ∨ Gsr} |= sl within Gsl

{P ,R ∨ Gsl} |= sr within Gsr

Gsl ∨ Gsr ⇒ G
{P ,R} |= mk -Par(sl , sr) within G

Proof
from {P ,R} ` mk -Par(sl , sr) sat (G,Q); [[P ]](σ0); (mk -Par(sl , sr), σ0)

r−→∗
R

(nil, σf ); IH -S(sl); IH -S(sr)

1 {P ,R ∨ Gsr} ` sl sat (Gsl ,Qsl) h, Par-I
2 {P ,R ∨ Gsl} ` sr sat (Gsr ,Qsr ) h, Par-I
3 Gsl ∨ Gsr ⇒ G h, Par-I
4 from {Pl ,Rl} ` sl sat (Gl ,Ql); [[Pl ]](σl); (sl , σl)

r−→∗
Rl

(nil, σ′l )

infer {Pl ,Rl} |= sl within Gl IH-S(sl)
5 from {Pr ,Rr} ` sr sat (Gr ,Qr ); [[Pr ]](σr ); (sr , σr )

r−→∗
Rr

(nil, σ′r )

infer {Pr ,Rr} |= sr within Gr IH-S(sr)
6 ∃σi ∈ Σ · (mk -Par(sl , sr), σ0)

r−→∗
R

(mk -Par(nil, nil), σi)
r−→∗
R

(nil, σf ) h, r−→
R

(Par-L,Par-R,Par-E)

7 from σi ∈ Σ st (mk -Par(sl , sr), σ0)
r−→∗
R

(mk -Par(nil, nil), σi)
r−→∗
R

(nil, σf )

7.1 (sl , σ0)
r−→∗

R∨Gsr

(nil, σi) h6, Lemma 6

7.2 {P ,R ∨ Gsr} |= sl within Gsl h, 1, 4, 7.1
7.3 (sr , σ0)

r−→∗
R∨Gsl

(nil, σi) h6, Lemma 7

7.4 {P ,R ∨ Gsl} |= sr within Gsr h, 2, 5, 7.1
7.5 [[R]](σi , σf ) h7, r−→

R
(Par-E)

infer {P ,R} |= mk -Par(sl , sr) within G 3, h7, 7.2, 7.4, 7.5
infer {P ,R} |= mk -Par(sl , sr) within G ∃-E (5, 6)
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Theorem 5 For any S ∈ Stmt for which {P ,R} ` S sat (G ,Q), for any σ ∈ Σ such that [[P ]](σ) for any
transition (S ′, σ′) s−→ (S ′′, σ′′) which is reachable from (S , σ), it follows that [[G ]](σ′, σ′′). Thus

Theorem resp
{P ,R} ` S sat (G ,Q)
{P ,R} |= S within G

Proof is immediate from Lemmas 1–4

C.2 Monotonicity under interference

Lemma 6

MonoIntf-r

sr within Gr

(mk -Par(sl , sr), σ)
r−→∗
R

(mk -Par(sl ′, sr ′), σ′)

(sl , σ)
r−→∗

R∨Gr

(sl ′, σ′)

Lemma 7

MonoIntf-l

sl within Gl

(mk -Par(sl , sr), σ)
r−→∗
R

(mk -Par(sl ′, sr ′), σ′)

(sr , σ)
r−→∗

R∨Gl

(sr ′, σ′)

Lemma 8

Isolation-r
(mk -Seq(sl , sr), σ)

r−→∗
R

(mk -Seq(sl ′, sr), σ′)

(sl , σ)
r−→∗
R

(sl ′, σ′)

Lemma 9

Isolation-l
(mk -Seq(nil, sr), σ)

r−→∗
R

(sr ′, σ′)

(sr , σ)
r−→∗
R

(sr ′, σ′)

Lemma 10

Isolation-If
(mk -If (true, body), σ)

r−→∗
R

(body ′, σ′)

(body , σ)
r−→∗
R

(body ′, σ′)

C.3 Further lemmas on within

Lemma 11

RG-Holds

{P ,R} |= S within G
(S , σ)

r−→∗
R

(S ′, σ′)

[[(R ∨ G)∗]](σ, σ′)

Lemma 12

Lemma Par-wrap
{P ,R} |= sr within G
{P ,R} |= mk -Par(nil, sr) within G
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C.4 Correctness proofs

Lemma 13 Given {P ,R} ` mk -Seq(sl , sr) sat (G ,Q) and providing sl and sr behave according to their
specifications, for all σ0, σf ∈ Σ such that [[P ]](σ0), (mk -Seq(sl , sr), σ0)

r−→∗
R

(nil, σf ) it must follow that

[[Q ]](σ0, σf )

Proof
from {P ,R} ` mk -Seq(sl , sr) sat (G,Q); [[P ]](σ0); (mk -Seq(sl , sr), σ0)

r−→∗
R

(nil, σf ); IH -S(sl); IH -S(sr)

1 {P ,R} ` sl sat (G,Qsl ∧ Psr ) h, Seq-I
2 {Psr ,R} ` sr sat (G,Qsr ) h, Seq-I
3 Qsl |Qsr ⇒ Q h, Seq-I
4 from {Pl ,Rl} ` sl sat (Gl ,Ql); [[Pl ]](σl); (sl , σl)

r−→∗
R

(nil, σ′l )
infer [[Ql ]](σl , σ

′
l ) IH-S(sl)

5 from {Pr ,Rr} ` sr sat (Gr ,Qr ); [[Pr ]](σr ); (sr , σr )
r−→∗
R

(nil, σ′r )

infer [[Qr ]](σr , σ
′
r ) IH-S(sr)

6 ∃σi ∈ Σ · (mk -Seq(sl , sr), σ0)
r−→∗
R

(mk -Seq(nil, sr), σi)
r−→∗
R

(nil, σf ) h, r−→
R

(Seq-Step,Seq-E)

7 from σi st (mk -Seq(sl , sr), σ0)
r−→∗
R

(mk -Seq(nil, sr), σi)
r−→∗
R

(nil, σf )

7.1 (sl , σ0)
r−→∗
R

(nil, σi) h7, Lemma 8

7.2 [[Qsl ∧ Psr ]](σ0, σi) h, 1, 4, 7.1
7.3 [[Psr ]](σi) 7.2
7.4 (sr , σi)

r−→∗
R

(nil, σf ) h7, Lemma 9

7.5 [[Qsr ]](σi , σf ) 2, 5, 7.3, 7.4
7.6 [[Qsl |Qsr ]](σ0, σf ) 7.2, 7.5

infer [[Q ]](σ0, σf ) 3, 7.6
infer [[Q ]](σ0, σf ) ∃-E (7, 8)
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Lemma 14 Given {P ,R} ` mk -If (b, body) sat (G ,Q) and providing body behaves according to its specifica-
tion, for all σ0, σf ∈ Σ such that [[P ]](σ0), (mk -If (b, body), σ0)

r−→∗
R

(nil, σf ) it must follow that [[Q ]](σ0, σf )

Proof
from {P ,R} ` mk -If (b, body) sat (G,Q); [[P ]](σ0); (mk -If (b, body), σ0)

r−→∗
R

(nil, σf ); IH -S(body)

1 b indep R h, If-I
2 {P ∧ b,R} ` body sat (G,Q) h, If-I

3
↼−
P ∧↼−¬ b ⇒ Q h, If-I

4 from {Pb ,Rb} ` body sat (Gb ,Qb); [[Pb ]](σb); (body , σb)
r−→∗
R

(nil, σ′b)

infer [[Qb ]](σb , σ
′
b) IH-S(body)

5 ∃v ∈ B, σi ∈ Σ · (mk -If (b, body), σ0)
r−→∗
R

(mk -If (v , body), σi)
r−→∗
R

(nil, σf ) h, r−→
R

(If-Eval,If-T-E/If-F-E)

6 from v ∈ B, σi ∈ Σ st (mk -If (b, body), σ0)
r−→∗
R

(mk -If (v , body), σi)
r−→∗
R

(nil, σf )

6.1 from ¬ v

6.1.1 [[R]](σ0, σi) h6, h6.1, r−→
R

(If-Eval)

6.1.2 [[R]](σi , σf ) h6, h6.1, r−→
R

(If-F-E)

6.1.3 [[R]](σ0, σf ) 6.1.1, 6.1.2
6.1.4 [[¬ b]](σ0) 1, h6, h6.1, 6.1.3

6.1.5 [[
↼−¬ b]](σ0, σf ) 6.1.4

6.1.6 [[
↼−
P ∧↼−¬ b]](σ0, σf ) h, 6.1.5

infer [[Q ]](σ0, σf ) 3, 6.1.6
6.2 from v

6.2.1 [[R]](σ0, σi) h6, r−→
R

(If-Eval)

6.2.2 [[P ]](σi) h, 6.2.1, PR-ident
6.2.3 (body , σi)

r−→∗
R

(nil, σf ) 2, h6, h6.2, Lemma 10

6.2.4 [[Q ]](σi , σf ) 2, 4, 6.2.2, 6.2.3
infer [[Q ]](σ0, σf ) h, 6.2.4, RQ-ident

infer [[Q ]](σ0, σf ) ∨-E (h6, 6.1, 6.2)
infer [[Q ]](σ0, σf ) ∃-E (5,6)

Lemma 15 Given {P ,R} ` mk -While(b, body) sat (G ,Q) and providing body behaves according to its spec-
ification, for all σ0, σf ∈ Σ such that [[P ]](σ0), (mk -While(b, body), σ0)

r−→∗
R

(nil, σf ) it must follow that

[[Q ]](σ0, σf ).

Please note that in the following proof line 8.2.3.2.5 is the assumption of the complete induction step. As such, it
should be written:

{P ,R} ` mk -While(b, body) sat (G ,W ∗ ∧ P ∧ ¬ b);
[[P ]](σ2);
(mk -While(b, body), σ2)

r−→∗
R

(nil, σf );

IH -S (body)

 gives [[W ∗ ∧ P ∧ ¬ b]](σ2, σf )

but space constraints have forced us to use the shorthand that is present instead. Nonetheless, this forms the H
predicate in the W-Indn rule, and expands to a from/infer box as is done on line 8.2.3.2.5.1.
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Proof

from

 
{P ,R} ` mk -While(b, body) sat (G,W ∗ ∧ P ∧ ¬ b); [[P ]](σ0);

(mk -While(b, body), σ0)
r−→∗
R

(nil, σf ); IH -S(body)

!
1 bottoms(W ,¬ b) h, While-I
2 twf (W ) h, While-I
3 {P ,R} ` body sat (G,W ∧ P) h, While-I

4
↼−¬ b ∧ R ⇒ ¬ b h, While-I

5 R ⇒ W ∗ h, While-I
6 from {Pb ,Rb} ` body sat (Gb ,Qb); [[Pb ]](σb); (body , σb)

r−→∗
Rb

(nil, σ′b)

infer [[Qb ]](σb , σ
′
b) IH-S(body)

7 from σ0 /∈ dom W
7.1 [[¬ b]](σ0) 1, h7, bottoms
7.2 [[R]](σ0, σf ) 7.1, r−→

R
(While,If-Eval,If-F-E)

7.3 [[¬ b]](σ0, σf ) 4, 7.1, 7.2
7.4 [[W ∗]](σ0, σf ) 5, 7.2
7.5 [[P ]](σ0, σf ) h, 7.2, PR-ident

infer [[W ∗ ∧ P ∧ ¬ b]](σ0, σf ) 7.3, 7.4, 7.5
8 from σ0 ∈ dom W

8.1 ∃v ∈ B, σ1 ∈ Σ ·

0BBBB@
(mk -While(b, body), σ0)

r−→
R

(mk -If (b,mk -Seq(body ,mk -While(b, body))), σ0)
r−→∗
R

(mk -If (v ,mk -Seq(body ,mk -While(b, body))), σ1)
r−→∗
R

(nil, σf )

1CCCCA h, r−→
R

(While,If-Eval,

If-T-E/If-F-E)

8.2 from v ∈ B, σ1 ∈ Σ st [[8.1]]

8.2.1 [[R]](σ0, σ1) h8.2, r−→
R

(If-Eval)

8.2.2 from ¬ v

8.2.2.1 [[R]](σ1, σf ) 4, h8.2.2, r−→
R

(If-F-E)

8.2.2.2 [[R]](σ0, σf ) 8.2.1, 8.2.2.1
8.2.2.3 [[W ∗]](σ0, σf ) 5, 8.2.2.2
8.2.2.4 [[P ]](σ0, σf ) h, 8.2.2.2, PR-ident
8.2.2.5 [[¬ b]](σf ) 4, 8.2.2.1

infer [[W ∗ ∧ P ∧ ¬ b]](σ0, σf ) 8.2.2.3, 8.2.2.4, 8.2.2.5
8.2.3 from v

8.2.3.1 ∃σ2 ∈ Σ ·

 
(mk -If (v ,mk -Seq(body ,mk -While(b, body))), σ1)

r−→∗
R

(mk -While(b, body), σ2)
r−→∗
R

(nil, σf )

!
h8.2, h8.2.3,

r−→
R

(If-Eval,If-T-E)

8.2.3.2 from σ2 ∈ Σ st [[8.2.3.1]]

8.2.3.2.1 (body , σ1)
r−→∗
R

(nil, σ2) h8.2.3, h8.2.3.2, Lemmas 10, 8, 9

8.2.3.2.2 [[P ]](σ1) h, 8.2.1, PR-ident
8.2.3.2.3 [[W ∧ P ]](σ1, σ2) 3, 6, 8.2.3.2.1, 8.2.3.2.2
8.2.3.2.4 [[W ∧ P ]](σ0, σ2) h, 8.2.1, 8.2.3.2.3, RQ-ident

8.2.3.2.5 from [[W ]](σ0, σ2) ⇒
„

h[σ2/σ0] gives [[W ∗ ∧ P ∧ ¬ b]](σ2, σf )

«
8.2.3.2.5.1 from {P ,R} ` mk -While(b, body) sat (G,W ∗ ∧ P ∧ ¬ b); [[P ]](σ2);

(mk -While(b, body), σ2)
r−→∗
R

(nil, σf ); IH -S(body)

infer [[W ∗ ∧ P ∧ ¬ b]](σ2, σf ) 8.2.3.2.4, h8.2.3.2.5
8.2.3.2.5.2 [[W ∗ ∧ P ∧ ¬ b]](σ2, σf ) h, 8.2.3.2.4, h8.2.3.2, 8.2.3.2.5.1

infer [[W ∗ ∧ P ∧ ¬ b]](σ0, σf ) 8.2.3.2.4, 8.2.3.2.5.2
infer [[W ∗ ∧ P ∧ ¬ b]](σ0, σf ) W-Indn(8.2.3.2.5)

infer [[W ∗ ∧ P ∧ ¬ b]](σ0, σf ) ∃-E (8.2.3.1, 8.2.3.2)
infer [[W ∗ ∧ P ∧ ¬ b]](σ0, σf ) ∨-E (h8.2, 8.2.2, 8.2.3)

infer [[W ∗ ∧ P ∧ ¬ b]](σ0, σf ) ∃-E (8.1, 8.2)
infer [[W ∗ ∧ P ∧ ¬ b]](σ0, σf ) ∨-E (7, 8)
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Lemma 16 Given {P ,R} ` mk -Par(sl , sr) sat (G ,Q) and providing sl , sr behave according to their specifica-
tions, for any σ0, σf ∈ Σ such that [[P ]](σ0), (mk -Par(sl , sr), σ0)

r−→∗
R

(nil, σf ) it must follow that [[Q ]](σ0, σf )

Proof:
from {P ,R} ` mk -Par(sl , sr) sat (G,Q); [[P ]](σ0); (mk -Par(sl , sr), σ0)

r−→∗
R

(nil, σf ) IH -S(sl); IH -S(sr)

1 [[
↼−
P ]](σ0, σf ) h, definition of hook

2 {P ,R ∨ Gsr} ` sl sat (Gsl ,Qsl) h, Par-I
3 {P ,R ∨ Gsl} ` sr sat (Gsr ,Qsr ) h, Par-I
4

↼−
P ∧Qsl ∧Qsr ∧ (R ∨ Gsl ∨ Gsr )∗ ⇒ Q h, Par-I

5 {P ,R ∨ Gsr} |= sl within Gsl 2, Theorem 5
6 {P ,R ∨ Gsl} |= sr within Gsr 3, Theorem 5

7 ∃sr ′ ∈ Stmt , σi ∈ Σ · (mk -Par(sl , sr), σ0)
r−→∗
R

(mk -Par(nil, sr ′), σi)
r−→∗
R

(nil, σf )
h, r−→

R
(Par-L,Par-R,

Par-E)
8 from sr ′ ∈ Stmt , σi ∈ Σ st (mk -Par(sl , sr), σ0)

r−→∗
R

(mk -Par(nil, sr ′), σi)
r−→∗
R

(nil, σf )

8.1 (sl , σ0)
r−→∗

R∨Gsr

(nil, σi) 6, h8, Lemma 6

8.2 from {Pl ,Rl} ` sl sat (Gl ,Ql); [[Pl ]](σl); (sl , σl)
r−→∗
Rl

(nil, σ′l )

infer [[Ql ]](σl , σ
′
l ) IH-S(sl)

8.3 [[Qsl ]](σ0, σi) h, 2, 8.1, 8.2
8.4 (nil, σi)

r−→∗
R∨Gsr

(nil, σf ) 6, h8, Lemma 6

8.5 [[(R ∨ Gsr )∗]](σi , σf ) 8.4, nil-within, r−→
R∨Gsr

(Par-R)

infer [[Qsl ]](σ0, σf ) 2, 8.3, 8.5, QR-ident
9 [[Qsl ]](σ0, σf ) ∃-E (7, 8)
10 [[Qsr ]](σ0, σf ) an argument about sr symmetrical to 7–9
11 ∃σi ∈ Σ · (mk -Par(sl , sr), σ0)

r−→∗
R

(mk -Par(nil, nil), σi)
r−→∗
R

(nil, σf ) h, r−→
R

(Par-L,Par-R,Par-E)

12 from σi ∈ Σ st (mk -Par(sl , sr), σ0)
r−→∗
R

(mk -Par(nil, nil), σi)
r−→∗
R

(nil, σf )

12.1 (sl , σ0)
r−→∗

R∨Gsr

(nil, σi) 6, h8, Lemma 6

12.2 [[(R ∨ Gsl ∨ Gsr )∗]](σ0, σi) h, 2, 12.1, Lemma 11
12.3 [[R]](σi , σf ) h12, r−→

R
(Par-E)

infer [[(R ∨ Gsl ∨ Gsr )∗]](σ0, σf ) 12.2, 12.3
13 [[(R ∨ Gsl ∨ Gsr )∗]](σ0, σf ) 5 or 6, Lemma 11

infer [[Q ]](σ0, σf ) 1, 4, 9, 10, 13

Theorem 17 For any st ∈ Stmt for which {P ,R} ` st sat (G ,Q), for any σ ∈ Σ such that [[P ]](σ) if
(st , σ) s−→ (nil, σ′) then [[Q ]](σ, σ′).
Proof Straightforward structural induction using Lemmas 13–16.

C.5 Termination proofs

The definition of the lexicographical ordering, <, given S ,S ′ ∈ (Stmt −While):

1. (expression types)

∀v ∈ (B | Z | Z+), c ∈ (Id | Dyad) · v < c

2. (internal expressions)

∀E ,E ′ ∈ Dyad · E .op = E ′.op ∧ E .b = E ′.b ∧ E ′.a < E .a ⇒ E ′ < E
∀E ,E ′ ∈ Dyad · E .op = E ′.op ∧ E .a = E ′.a ∧ E ′.b < E .b ⇒ E ′ < E

3. (nil at bottom)

S ∈ Stmt ∧ S 6= nil ⇒ nil < S

4. (expression evaluation)

∀e, e ′ ∈ Expr , s ∈ Stmt ·
(

(S = mk -Assign(id , e) ∧ S ′ = mk -Assign(id , e ′)) ∨
(S = mk -If (e, s) ∧ S ′ = mk -If (e ′, s))

)
∧ e ′ < e ⇒ S ′ < S
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5. (internal statements)

∀s, s ′, sl , sr ∈ Stmt ·

 (S = mk -Seq(s, sr) ∧ S ′ = mk -Seq(s ′, sr)) ∨
(S = mk -Par(s, sr) ∧ S ′ = mk -Par(s ′, sr)) ∨
(S = mk -Par(sl , s) ∧ S ′ = mk -Par(sl , s ′))

 ∧ s ′ < s ⇒ S ′ < S

6. (containment)

∀b ∈ Expr , sl ∈ Stmt · S < mk -Seq(sl ,S ) ∧ S < mk -If (b,S )

7. (transitivity)

∃S ′′ ∈ Stmt · S ′ < S ′′ ∧ S ′′ < S ⇒ S ′ < S

Lemma 18 The evaluation of an expression always reduces –over repeated steps– to a value.
Proof Done in cases by the SOS rules:
1. Id-E reduces an identifier in Id to a value in Z or Z+.
2. Dyad-L reduces the left parameter of the Dyad , induction brings us to a value.
3. Dyad-R is symmetrical to Dyad-L.
4. Dyad-E reduces a Dyad containing only values to a value.

Lemma 19 The execution of any s ∈ Assign always reduces –over repeated steps– to the statement nil.
Proof Done in cases by the SOS rules:
1. Assign-Eval reduces the expression in s , induction brings it to a value.
2. Assign-E reduces s to nil when the contained expression is a value.

Lemma 20 The execution of any s ∈ Seq always reduces –over repeated steps– to the statement nil.
Proof Done in cases by the SOS rules:
1. Seq-Step reduces the left-hand statement in s , induction brings it to nil.
2. Seq-E reduces s to the right-hand statment in s , and induction reduces that to nil.

Lemma 21 The execution of any s ∈ If always reduces –over repeated steps– to the statement nil.
Proof Done in cases by the SOS rules:
1. If-Eval reduces the expression in s , induction brings it to a boolean value.
2. If-T-E reduces s when the expression is the value true to the body statement, and induction reduces that to nil.
3. If-F-E reduces s when the expression is the value false directly to nil.

Lemma 22 The execution of any s ∈ Par always reduces –over repeated steps– to the statement nil.
Proof Done in cases by the SOS rules:
1. Par-L reduces the left-hand statement in s , induction brings it to nil.
2. Par-R is symmetrical to Par-L.
3. Par-E reduces s directly to nil when both component statements are nil.

Lemma 23 Given S ∈While such that S = mk -While(b, body), {P ,R} ` S sat (R,W ∗ ∧ P ∧ ¬ b), and suit-
able σ ∈ Σ, providing body reduces to nil and W is a well-founded order over Σ, then S reduces to nil.

NilP 4 λc: Config · c(1) = nil

reaches : Config × CPred × SemRel → B

reaches(c,CP , T ) 4 ∀cs ∈ inf -seqs(c, T ) · ∃i ∈ N1 · CP(cs(i))

inf -seqs : Config × SemRel → Config∞

inf -seqs(c, T ) 4 {cs | cs ∈ Config∞ ∧ hd cs = c ∧ ∀i ∈ N1 · T (cs(i), cs(i + 1))}

CPred : Config → B
SemRel :P (Config × Config)
Config : Stmt × Σ
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Proof:
from {P ,R} ` mk -While(b, body) sat (G,W ∗ ∧ P ∧ ¬ b); [[P ]](σ0); IH -T (body)

1 bottoms(W ,¬ b) h, While-I
2 twf (W ) h, While-I
3 {P ,R} ` body sat (G,W ∧ P) h, While-I

4
↼−¬ b ∧ R ⇒ ¬ b h, While-I

5 R ⇒ W ∗ h, While-I
6 from {Pb ,Rb} ` body sat (Gb ,Qb); [[Pb ]](σb)

infer reaches((body , σb),NilP ,
r−→
R

) IH-T(body)

7 ∃σ1 ∈ Σ ·

0@ (mk -While(b, body), σ0)
r−→∗
R

(mk -While(b, body), σ1)
r−→
R

(mk -If (b,mk -Seq(body ,mk -While(b, body))), σ1)

1A h, While, r−→
R

(While)

8 from σ1 ∈ Σ st [[7]]
8.1 seq = mk -Seq(body ,mk -While(b, body)) definition
8.2 ∃v ∈ B · (mk -If (b, seq), σ1)

r−→∗
R

(mk -If (v , seq), σ2) h8, 8.1, r−→
R

(If-Eval), Lemma 21.1

8.3 from v ∈ B st [[8.2]]
8.3.1 from ¬ v

8.3.1.1 reaches((mk -If (v , seq), σ2),NilP ,
r−→
R

) h8.3, h8.3.1, Lemma 21.3

infer reaches((mk -While(b, body), σ0),NilP ,
r−→
R

) h8, h8.3, 8.3.1.1, r−→
R

(While,If-Eval,If-F-E)

8.3.2 from v

8.3.2.1 ∃σ3 ∈ Σ · (mk -If (v , seq), σ2)
r−→∗
R

(mk -While(b, body), σ3)
h8.3, h8.3.2, r−→

R
(If-T-E),

IH-T(body)
8.3.2.2 from σ3 ∈ Σ st [[8.3.2.1]]

8.3.2.2.1 [[W ∧ P ]](σ0, σ3) h, 3, 6, h8, h8.3, h8.3.2, h8.3.2.2, PR-ident, r−→
R

, Thm 17

8.3.2.2.2 from [[W ]](σ0, σ3) ⇒
„

h[σ3/σ0] gives reaches((mk -While(b, body), σ3),NilP ,
r−→
R

)

«
8.3.2.2.2.1 from {P ,R} ` mk -While(b, body) sat (G,W ∗ ∧ P ∧ ¬ b); [[P ]](σ3); IH -T (body)

infer reaches((mk -While(b, body), σ3),NilP ,
r−→
R

) 8.3.2.2.1, h8.3.2.2.2

8.3.2.2.2.2 reaches((mk -While(b, body), σ3),NilP ,
r−→
R

) h, 8.3.2.2.1, 8.3.2.2.2.1

infer reaches((mk -While(b, body), σ0),NilP ,
r−→
R

) 8.3.2.2.1, 8.3.2.2.2.2

infer reaches((mk -While(b, body), σ0),NilP ,
r−→
R

) W-Indn(8.3.2.2.2)

infer reaches((mk -While(b, body), σ0),NilP ,
r−→
R

) ∃-E (8.3.2.1, 8.3.2.2)

infer reaches((mk -While(b, body), σ0),NilP ,
r−→
R

) ∨-E (h8.3, 8.3.1, 8.3.2)

infer reaches((mk -While(b, body), σ0),NilP ,
r−→
R

) ∃-E (8.2, 8.3)

infer reaches((mk -While(b, body), σ0),NilP ,
r−→
R

) ∃-E (7, 8)

Theorem 24 For any S ∈ Stmt such that {P ,R} ` S sat (G ,Q) and suitable σ ∈ Σ, then the termination
predicate reaches((S , σ),Stmt-Term,

r−→
R

) holds.

Proof Observe that every rule of the SOS except While always transitions in such a way that the <-ordering is
maintained; with suitable conditions, the While construct’s body conforms to a transitive, well-founded ordering
over states that eventually eliminates the While .
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