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Abstract

Formal methods employ mathematical notation in writing specifications and use math-
ernatical reasoning in justifying designs with respect to such specifications. One avenue of
formal methods research is known as the Vienna Development Method. VDM has been
used on programming language and non-language applications. In this paper, programming
languages and their compilers are ignored; the focus is on the specification and verification
of programs,

VDM emphasizes the model-oriented approach to the specification of data. The reifi-
eation of abstract objects to representations gives rise to proof obligations; one such set
which has wide applicability assumes an increase in implementation bias during the design
process, The incompleteness of this approach and an alternative set of rules are discussed.

The decision to show the input/output relation by post-conditions of two states is alse
a feature of VOM. In early publications, the proof obligations which support decomposi-
tion were poorly worked out; those presented below are as convenient to use as the original

“Hoare-logic”. Recent work on a logic (which is tailored to partial functions) is also de-
seribed.

1 Introduction

The term “Forinal Methods™ applies to the use of mathematical notation in the specification,
and the use of such specifications as a basis for the verified design, of computer systems. There
are several more-or-less distinct approaches in use. The approach which matches normal soft-
ware development practice most closely is to specify a task in a specification language; to record
design decisions in languages which are close to the final implementation language; and to then
generate and discharge consequent proof obligations.

A second approach (see, for example, [12]) is to make the starting point of the development
a very clear description which can-—possibly with very poor performance—be executed, Design
steps then consist of transforming such a description into a “program” of acceptable efficiency.

The third general approach (see [15]) also begins with a specification but then provides a
constrictive proof of the existence of a result; from this proof a program can be extracted.

The so-called Vienna Development Method (VDM) subscribes to the first of these ap-
proaches. In {32] specifications are written using pre-/post-conditions which are truth-valued
functions over state-like objects. Such states are models defined in terms of basic objects like
sets. Design proceeds by data reification and operation decomposition.

Steps of data reification make the transition from abstract objects to objects which are
representable in the chosen implementation langnage. Operation decomposition is the process
of realizing implicit specifications by statements written in the programming language. For
significant systems, several steps of both sorts of design step might be required.

*This is an expanded version of the paper which will eppear in the proceedings of the 1986 Markioberdorf
Suinmer School: “Logic of Programming and Caleuli of Discrete Design™, (ed.) M. Broy, Springer-Verlag, The
main change is the insertion of the proofs in Appendix A.




Either sort of design step gives rise to proof obligations. These are sequents which must be
true for the design step to satisfy its specification. The required proofs can be conducted at an
appropriate level of formality.

In the extreme, these proof obligations could be compared to the output of verification
condition generators (VCG) (cf. [9]). The VCG approach has received considerable criticism
because of the difficulty of relating the created logical expressions to the original programming
task. This author’s own experience both with hand proofs and with Jim King’s EFFIGY
system (cf. [18]) has confirmed the validity of this criticism. The attempt to prove a complete
program correct using VCG's is like trying to solve equations in large numbers of variables—
unfortunately, failure to find a proof corresponds to the lack of a solution and the ensuing hunt
for alternative assertions is very tedious. How does VDM avoid this problem? The approach is
to use the steps of development themselves as a way of decomposing the correctness argument..
Well-chosen steps provide an informal proof outline of the type used by mathematicians. This
reduces the need for formal proof. If it is decided to comstruct a formal proof, such a proof
is likely to be relatively simple. Perhaps most importantly, any errors are relatively easy to
locate. An essential property is “compositionality” in a development method. It has been argued
elsewhere (e.g. [31]) that this approach can increase the productivity of the development process
by locating—soon after insertion—any errors which are made in the early stages of design.

This paper reviews some recent and on-going research relevant to formal methods like VDM,
Sections 2 and 3 review, respectively, work on data reification and operation decomposition.
The need to establish a logic which recognises the role of partial functions is reviewed in Section
4. A separate paper ([35]) discusses the form of support system which might help in the use of
formal methods. The general direction of this work can be seen in [13]. (The VDM approach
to language specification is not discussed in this paper. Interested readers are referred to [6].)

2 Data Reification

In order to achieve full advantage from the application of formal methods, it is necessary to
apply them to the early stages of development. Clearly, this implies the construction of for-
mal specifications. After that, one must ask: what activities are most common in the early
(high-level) design stages? Typically the choice of data representations is made before detailed
algorithm design. Thus VDM tends to put more emphasis on proof of data reification than on
operation decomposition!. This section reviews the most straightforward rules for the justifi-
cation of design steps of data reification, the shortcomings of these rules, and a new set of rules
which are—in some sense—complete.

A specification in VDM normally consists of a set of states and a set of operations which
rely on, and transform, these states. Operation specifications are discussed below; initially,
attention is focussed on the objects which comprise the states.

Many computing applications need some form of access to data via a Key. A convenient
map object is used in VDM which makes it possible to define:

Keyed = map Key to Data

with an initial object corresponding to the empty map®:

me = {}

P14 is an accident of history—reiterated, as Kulin predicts, in many text books—that operation decomposition
proofs were studied first: see, for example, [42].
27The identification of a set of initial states in [32] differs from [30] where initialising operations were used.




Such an abstraction is very convenient in the specification precisely because it hides all of the

implementation problem. Clearly, the design process must choose—and justify—a representa-
tion.

One possible way of storing large volumes of keyed data is in 2 binary tree. Such a set of
trees can be described by?:

Dintree = [Binnode)]

Dinnode 11 It : Dintree
k : Key
d : Data
rt : Dintres

where
inv-Dinnode(mk-Dinnode(lt, k, d,rt)) 4
(Vi € collkeys(lt) - tk < k) A (Vrk € collkeys(rt) - k < rk)

collkeys : Bintree ~+ set of Key

collkeys(t}) & casest of

nll -
mk-Binnode(lt, k,d, rt) — collkeys(It) U {k} U collkeys(rt)
end

The set of objects is considered to be restricted by the invariantd —thus:

Binnode =
{mk-Binnode(lt, k, d, rt) |
lt,rt € Bintree Ak € Key Ad € Data A iny-Dinnode(mk-Binnode(lt, k, d, 1t))}
The initial object corresponds to the empty tree:

fp == nit

The representation, Bintree, must be related to the abstraction Keyed. In early work in
Vienna this was normally done by a relation or (cf. [38]) by building up a combined state with an
invariant to control the relationship to the ghost variables. During the late 60’s, it was realized
that a special case arose very often in design. It was noticed (cf. {34]) that a one-to-many relation
often existed between elements of the abstraction and those of the representation. This was no
accident. It is desirable to make states of specifications as abstract as possible; the structure
of the implementation language (or machine) forces the introduction of extra information and
redundancy; it is, therefore, very common that a one-to-many relationship arises®. Precisely
this situation holds here. There are many possible tree representations of any (non-trivial) map

9The optionsl brackets define:
Biniree = Binnode U {nil}
The “:" notation defines Jinnade in terms of a constructor or projection function:

mk-Binnede: Bintrez x Key x Data x Bintree — Binnode

4This, more central, role for invariants is also a change from [30].

%1n fact, this discussion gives rise to the notion of bias discussed in [29] where the avoidance of redundancy is
taken as a test for the acceplability of a set of slates to be used as the basis of & specification.




object. Both [24] and {34] relate the set of abstractions to their representations by a function
from the latter to the former. Here they are called (following [27]) retrieve functions because
they get back the abstract values from the representation details, For the example in hand:

reirm ; Diniree — Keyed
retrm(t) &
cases { of
nil - {}
mk-Dinnode(lt, k,d,rt) — retrm(it) U {k — d} U retrm(rt)
end

In the set of rules used most commonly in VDM, such retrieve functions must be total. That
this property is satisfied by retrm follows from the invariant which ensures that the domains of
the maps to be united are disjoint. Another property required of the representation (strictly—
with respect to the retrieve function) is adequacy: there must be at least one representation for
each abstract element. For the case in hand:

Vm € Keyed - 3t € Bintree - retrm(t) = m

It is straightforward to prove this by induction on the domain of m. It is, in fact, worth
providing a function which inserts Key/Data pairs into a tree (cf. insb below) and use this.

In practice, it would be worth defining a number of functions and developing the theory of the
data type. For example:

Yt € Bintree - dom retrm(t) = collkeys(t)

can be proved by structural induction on Bintree. One of the advantages of this set of proof
rules is that they do isolate useful proof obligations about the state alone and, in practice, these
proofs are a very useful check on a representation before proceeding to look at the individual

operations. It is, however, also necessary to consider the operations. The initial states are
trivially related:

retrm(tg) = My
On Keyed, the insert operation is specified trivially:

INSERT (k: Key,d: Data)
ext wr m : Keyed
pre k & domm

postm&‘ﬁl—U{kH d}

Such a specification® defines a partial and possibly non-deterministic state transformation. The
pre-condition defines the set of states over which the implementor must make the operation
terminate and yield a result whicl, together with the input state (variables decorated with
backwards pointing hooks) must satisfy the post-condition”.

The role of the side effect on the external variables is empliasized in VDM by the presentation of operation
specifications. The meaning is:
INSERT: Key x Data x Keyed -+ Keyed
Yk € Key,d € Dala, T € Keyed - k ¢ dom W A INSERT{(k, d, i) =m = m="T U {k+ d}

"During the Summer School, Bernard von Stengel pointed out that more expressive power could be achieved
by adding the requirement that, if termination did occur even for siates nol satlislying the pre-condition, the
results should still be constrained by the pest-condition.



Such a specification should satisfy the implementability proof obligation, in this case:

Vi € Keyed,k € Key,d € Data -
pre-INSERT(k,d, ™) = 3m € Keyed - post-INSERT(k,d, 7, m}
The corresponding operation on Bintree is defined:

INSERTy (k:Key,d: Data)
ext wr L 1 Dintree
pre k ¢ collkeys(t)

post ¢ = insb(k, d, T )

The auxiliary function is defined:
insb (k: Key,d: Data, t: Biniree) r: Dintree
pre k ¢ collkeys(t)

insh(k, d,t) &

=

cases b of
nit — mk-Binnode{nit, k, d,nit}
mk-Binnode(lt, mk, md, rt) —

itk < mk

then mk-Binnode(insb(k, d, it), mk,md,rt)
else mk-Binnode(lt, mk, md, insb(k, d, rt))

end

The relevant proof obligations for this operation are:

Vi € Dintree - pre-INSERT(k, d, retrm(t)) = pre-INSERTg(k,d,t)

V't',t € Bintree - pre-INSERT(k, d, retrm( T )) A post-INSERTg (k,d, T 1) =
post-INSERT(k, d, retrm( T ), retrm(2))
The first of these requires that the domain of the operation on the representation is large enough;
the second requires that the transition on the representation—when viewed under the retrieve
function—nowhere contradicts the specification on the abstract states, Proofs of these results
are straightforward-—the first appeals to the lemma mentioned above.

These proof rules are more general than required for this situation but it should be remem-
bered that the post-condition of INSERTs could have been:

retrm(t) = retrm( £ YU {k ~ d}

which is non-deterministic’. Furthermore, at the next stage of development, the operations
on Bintree would play the part of the specification so the rules need to cater with partial,
non-deterministic operations in both the specification and the representation?.

The interest here, however, focuses on the incomnpleteness of the above rules. It was known
at the time the rules were published in [30] that there were valid steps of development which

8This is illustrative of the way in which non-determinacy is most useful in the design process: with a de-
terministic specification, and the intenlion to designh a deterministic program, non-determinism can be used to
structure the design decisions (e.g. the more general post-INSERTgy could be used to reffect the fact that the
precise tree balancing algorithm has not Leen chosen at this design step).

9 A second step of development of the abstract Bintree objects onto Pascal records and pointers is given in
{32},



they would not support. In particular, it was obvious that any step of development which
reversed the normal one-to-many relationship between abstraction and representation (e.g. to
have Bintree in the specification and Keyed in the design) could not be justified since a retrieve
function could not be found. This restriction was viewed as a virtue in so far as it tended to
minimize the danger of biased specifications. Lockwood Morris also pointed out a technical
problem in the need to tighten invariants so as to fulfil the requirements on retrieve functions.

What has become apparent more recently is that there are perfectly good specifications for
which valid implementations cannot be justified by the above set of rules, The essence of the
problem is explained below--an example is presented first,

In her work (cf. [40]) on the specification of GKS, Lynn Marshall uncovered a situation where
more information was needed in the specification state than in that of valid implementations:
there is a need to place, in the state, information required only to express non-determinacy; an
implementation which is constrained to a deterministic answer needs less information, A simple
example (due to Ib Sorensen) of this situation results from the specification:

s0={}

ARB ()r:N
extwr & ! set of N

i
pre true

postr € G As="§ U{r}
This requires that each invocation of the cperation ARD returns a result which it has never
returned before. The state is initialized to the empty set and ARD adds each element which
it returns. This specification is (unboundedly!) non-deterministic. Aun implementation which

simply returns the “next” natural number on each invocation violates none of the specified
requirements—thus:

ng = 4

ARB, ()N

extwrn ;N

pre true !

postr=T An="T +1

Intuitively ARB, is correct with respect to the specification ARB: it has the same domain
and yields answers which do not contradict the specification. This notion of satisfaction can be
formalised. An operation is defined by a pair:

(S, R)

where S is the set of states over which termination is guaranteed and R is the relation expressing
the input/output relation!?, There is a requirement that:

SCdomit

For a specification, the corresponding semantic object is!!:
({o | pre-OP(0)},{('c,0) | post-OP('F ,0}})

'0There in not & requiremest for bounded non-determinncy.
1The requirement corresponding to § € dom A is the implementability prool obligation.



The formal notion of satisfaction is defined/®:
(SI,RI) sat (Sg,Rz)é_Sg CS ASs<QR; CRy

That is (S, Rs) satisfies (Sy, Ry ) iff the termination domain S, is at least as large as Sy and
the meaning relation R -—restricted to the required termination set——nowhere contradicts Ry.
Notice that sat is a partial order. Thus, with appropriate use of the retrieve function, it can
be seen that ARD, satisfies ARP but it cannot be proved by the rules used above for the
development of Bintree. Were this the only sort of counter-example, it would be possible to
introduce special steps of development for the situation where a reduction in non-determinacy
reduces the complexity of atates, There is, unfortunately, another class of counter-examples,
The root of the further weakness discovered in the proof obligations used above for Bintree is
that they were formulated around the aim of showing that each individual operation on the
representation satisfied the corresponding abstract operation, This property is not necessary
since it is the external behaviour of the collection of operations which needs to be preserved.
Once this point is recognised it is a simple matter to generate further counter-examples. (It is,
of course, the case that these rules can be—straightforwardly-—proved consistent with sat )

The problems discussed above have been overcome by a rule which is based on a relation
between the abstract and representation state spaces:

-C tlltep X Abs — B

There are no proof obligations such as adequacy on C; those for the operations are:
Va € Abs,r € Rep-r C a A preg(a) = prep(r)
V'@ € Abs, 7,7 € Rep- T C G A postp('F,r) = Ja € Abs- posta('T,a)ArC a

It is possible to avoid the need for special rules on the initial states if an initialization operation
is included which behaves like a (possibly non-deterministic) constant. The other omission from
these rules is an assumption in the result rule of pre,('@) . To see that this is not required, it
is necessary to realize that the simulation relation () need only involve those elements of Abs
which are reachable by the operations??.

Basically similar forms of this rule were found independently by Tobias Nipkow and re-
searchers at the Programming Research Group in Oxford. This work led to joint discussions
and is reported in [44], [43], (20] and [21].

The rule given here is certainly more powerful than that used above on the Bintree example.
It is natural to question whether it is complete, Loosely what this amounts to is the question
whether any correct data reification can be verified by the rule. But what is the independent
notion of “correct”? If the behaviour of sequences of the operations is to be used in defining
this notion, one approach is to define a language for combining operations. Issues such as the
presence or absence of (angelic or otherwise) non-deterministic statements must be resolved.
This linguistic approach is taken in [43] and the rule proven to be complete under suitable
assumptions.

This then leaves the pedagogic question of which rule to teach (first). It is argued in [1] that
their version of the above rule is easier to use; [32] takes a different view. It can be claimed
that the avoidance of bias (cf. Section 9.1 of [32]) is an important objective in specifications
and that this, combined with the use of proof obligations which avoid the need for existential

28qRA{(z,2")e Rz € §)
13The insertion of prey (@) does however make the link Lo the sat relation above more obvious. This link

can be seen simply by substituling the identity relalion for T; in the form present here, the identity must be
auitably restricted.




quantifiers, justifies the use of the older ({30]) rule whenever it is applicable. Even the need
to tighten invariants can be seen as an advantage in that it makes both the task of changing
a specification safer and the range of potential representations clearer. A final argument in
favour of the more restrictive rule is that the isolation of the adequacy proof obligation makes
it possible to conduct a significant part of the verification work once (on the state) rather
than delaying it to the (many) operation proofs. Thus [32] postpones the more general rule to
Chapter 9.

3 Decomposition Rules with Input/Output Relations

The need to have post-conditions which relate final to initial states’4 is illustrated above by the
choice of examples. It is such a natural way of thinking about the specification of a system that
it comes as a surprise to notice that much of the work on program proofs uses post-conditions
of the final state alone (cf. {23], [14], [17], [4) but not [25]}. Since most computer programs are
clearly written to transforin a state, some way of describing the input/output relation must be
found. One way of achieving this (cf. {17]) is to store the initial values of variables in the state.
This would not always be acceptable in the final program but such variables can be marked
as “ghost variables” and dropped once they have played their part in the proof. Strictly, this
approach still needs a way of expressing the fact that these special variables cannot be changed
during execution (cf. glocon, glovar, etc. in [14]). A second approach to the gap left by
post-conditions having no direct way of referring to the initial state is to use free variables!®,
Unfortunately, the fact that such variables span more than one formula makes their treatment
difficult.

A third approach to the gap is to govern the relationship by a free predicate symbol—thus,
using the weakest precondition of {14]:

wp(GCD, p(z)) = p(ged(z,y))

None of these methods is entirely satisfactory and this section preseuts proof obligations
which directly handle post-conditions of {wo states’?,

Another issue which divides some specification methods from VDM is its separation of
the pre-condition. It should be clear that (a form of) the pre-condition could be conjoined
to the post-condition so as to yield a single predicate which comprises the whole specification
of an operation. In Z, for example, there is one predicate to define an operation (cf. [19]).
The decision to separate the pre- and post-conditions in VDM’s operation specification was
initially motivated by purely pragmatic considerations. It does appear to be good discipline
to make a distinction between the assumptions (that an implementor is invited to make) and
the requirement that the (output of the created) program must satisfy. In many industrial
specifications with which this author has had contact, the requirement was better thought out
than the assumption. Thus, it seems wise to put some focus on the pre-condition. It so happens
that the separation of the pre-condition has a number of formal advantages including the role
that pre-conditions play in the various data reification proof obligations.

What form are the proof rules for operation decomposition to have when post-conditions do
relate final to initial states? Unfortunately, the proof obligations given in [30] are rather heavy.
They do succeed in splitting the task of checking a decomposition step into small, separate,

'414 must be conceded that the term “post-condition” is not well-chosen; its wide use, however, makes it
prefersble to the introduction of a new term like “input/output relation™.

!5 These free variables can be made more apparent by selecling some special fount.

'€ The method used here should be compared wilh {49] where pre-canditions are also truth-valued functions of
pairs of states.



proof steps. But the rules are certainly not memorable. The suggestions made by Peter Aczel
(cf. [3]), however, have led to rules which bear comparison with those in [23).

The proof rules, whose application gives rise to proof obligations, are explained here together
with a style in which programs can be annotated with their correctness arguments. Ways in
which the proof ideas can be used in the development of programs are discussed at the end of
this section.

This section presents proof rules only for some simple programming language constructs,
The general form of these rules is similar to those of logic. Here, the conditions under which a
rule can be applied require that certain properties hold for sub-operations and the conclusions
are that {other) properties hold for combinations of the sub-operations!?, The proof rules
facilitate proofs that pieces of program satisfy specifications. Thus it can be shown that:

ird < 0thent,ji= -1, —7 eise skip
satisfies the specification:

MAKEPOS
ext wr i1, wr j1Z
pre true

postogi/\i*jm"i‘**j“

For small examples, it is convenient to record the specification and its implementation together,
thus: ‘

MAKEPOS
extwr i: 4, wr j: Z
pre true
11 <0thent,j:= —{,~7 elsa skip
post 0 S iAi#f="T "7

Such an annotated program is written when the code has been shown to satisfy the specification.
The name of the operation and the externals line are sometines omitted when they are clear
from context.

A natural extension of this style is to write specifications for sub-operations—rather than
their code; see Figure 1. This can be read as saying that the composition of two sub-operations
MAKEPOS and POSMULT would satisfy the specification of MULT. The sub-operations are

not (yet) coded—rather, their specifications are given'8. The proof rule for sequential execution
is discussed below.

1714 is, in part, the form of the prool rules used here which prompted the decision to mark initial values with
a hook (rather than priming the final values) in post-conditions.

187 design can be presented as a combinalion of (specificd) sub-problems. A compositional development
method permits the verification of a design in terms of the specification of its (syntactic) sub-programs. Thus,
cne step of development is independent of subscquent steps in the sense that any implementation of a sub-
program can be used to form the implementation of the specification which gave rise to the sub-specification.
In a non-compasitional development method, the correctuess of one step of developinent might depend on the
subsequent development of the sub-programs.




MULT
extwr f,7,m: %
pre true
MAKEFPQOS
ext wri,:Z
pre true
posti> OAE+j="7T +'F

)

POSMULT

pret > 0

post i =1 %'

Lt

Dostmm‘?* 7
1

Figure 1: Example of Specifications in Place of Code

When programs are presented in this way, the effect is intentionally similar to natural
deduction proofs (¢f. Section 4). (There are, however, some important differences which are
discussed below.) The proof rules are somewhat similar to the deduction rules for logic. Broadly,
there is one proof rule for each language coustruct. In order to present the proof rules'® in a

compact way, the pre- and post-conditions are written in braces before and after the piece of
code to which they relate—thus:

{pre}S{post}

It is sometimes necessary to use information from a pre-condition in the post-condition,
Decorating P with a hook to denote a logical expression which is the same as P except that all
free variables are decorated with a hook, the relevant proof rule is:

{PYS{h)
{P}s{P AR}

Thus, for example, from:

{fn = 1}FACTB{fn = fu + W1}
it follows that:

{fn= 1}FACTB{fn = fa + WA fn = 1}
and thus:

{fn = 1}FACTB{fn = 7!}

Notice that the hooking of P (and thus its free variables) is crucial—it is not true that, in the
final state:

'*Readers who are familiar with Lhe original lorm of Hoare-logic should be reassured that the assertions writlen
here are for total correciness: termination is required for sl stales satisfying pre.

10



Mm=1

The most basic way of combining two operations is to execute them in sequence, It would
be reasonable to expect that the first operation must leave the state so that the pre-condition
of the second operation is satisfied. In order to write this, a distinction must be made between
the relational and single-state properties guaranteed by the first statement. The names of the
truth-valued functions have been chosen as a reminder of the distinction between:

P B
R:LxL—-B

Writing:

By | Ry
for®9:

doi « By('T,0i) A Ry(0i,0)
the sequence rule is:

{P1}51{P2 A Ry}, {P2)S,{ R}
{P1}51; S2{ Ry | Ry}

The predicate P, can be seen as the designer's choice of interface between S; aud Sy whereas
R; and R; fix the functionality of the two components.

Referring to Figure 1, the first conjunct of post-MAKEPOS is also seen in pre-POSMULT:
this defines the interface between the two (as yet to be coded) components, The condition
given as post-POSMULT is the same as post-MULT but the position of the former shows that
its hooked variables refer to values which will arise between the execution of MAKEPOS and
POSMULT. The second conjunct of post-MAKEPOS is the simplest expression {for R, in the
rule) which ensures that post-MULT is satisfied—in detail, post-MAKEPOS can be written as:

post-MAKEPOS('T, 7, m,i,j,m) £ ixj=T+TAm="

(The non-appearance of m in the external clause of MAKEPOS justifies the second conjunct.)
Also:

post-POSMULT('T,'7, %, i,7,m) & m="T4+7
Thus:

post-MAKEPOS | post-POSMULT
becomes:

gy foami - GG = T+ T Amy =T Am =i+

from which:

3This is, of course, familiar relntionn]l composition. The teason that this does not imply “angelic non-
determinism” is the assumption (implementability} given above on pre/post paies.

11



follows.

In practice, it is not normally necessary to proceed formally with such proofs. It becomes
rather easy to check an annotated text like that for MULT. The only care required is the
association of the hooked variables with the values at the beginning of the appropriate operation.

A good visual check is given by the nesting. (The generalization to a sequence of more than
two statements is straightforward.)

Proof obligations for conditional statements are given by:

{PAD}TH{R}, {P A-B}EL{R}
{P} vt B wen TH eise EL{R}

Looking at this proof rule, it would appear that the designer has little freedom of choice other
than the selection of cases. Consideration of even a simple application-—again taken from the
multiplication example—shows how the designer’s freecdom actually arises:

MAKEPQS
extwri,5: 2
pre true
ri<o
then prei1 <0
post 0 CiAi=~T Aj= T
eise pre <1
post 0 < tAi="T Aj="T
post 0 SiAT#j="T 7

This argument is also using a rule which permits the use of (stronger pre-conditions or) weaker
post-conditions:

PP = P, {PYS{RR}, RR = R
{PP}S{R}

The post-conditions of the two statements imbedded within the conditional have been chosen
to express the intentions of the designer rather than just being copies of post-MAKEPOS. In

this way—on a problem of greater size—the designer decouples the design of sub-components
from their context.

The proof obligation for iteration-—as would be expected——is the most interesting. The
general form is:

{PADB}S{PAR}
{P} white B do S{P A =D A R*}

R is required to be well-founded and transitive. In order to be well-founded, the logical expres-
sion R must be irreflexive, for example:

z< T
Since the body of the loop might not be executed at all, the state might not be changed by the

white loop. Thus the overall post-condition can (only) assume R* which is the reflexive closure
of R—ior example:

12



z<T

There is a significant advantage in requiring that R be well-founded since the above proof
obligation then establishes termination. The rest of this rule is easy to understand. The
expression P is an invariant which is true after any number of iterations (including zero) of
the loop body. This is, in fact, just a special use of a data type invariant. (Notice that such
an invariant could fail to be satisfied within the body of the loop.) The falseness of B after
the loop follows immediately from the meaning of the loop construct?!, Returning again to the
multiplication example, POSMULT might be implemented as in Figure 2. The reader should
check carefully how the terms in these logical expressions relate to the proof rule. Notice that
rel is well-founded, since 1 is always positive and cannot be decreased indefinitely (cf. inv).

POSMULT
extwri,miZ,rdj: 2
pre0 < ¢
mi={
H
pre < i
while i # 0 do
invD <4
ti=1{—1:

Figure 2: Development for Multiplication Example

The implementation in Figure 2 is slow in that it is linear in the value of i. Using the ability
of a binary computer to detect the difference between even and odd numbers (by checking the
least significant bit) and to multiply or divide by twa (by shifting), an algorithm which takes
time proportional to the logarithm (base 2) of 1 is shown in Figure 3. The outer loop of these
two algorithms is the same. Notice, however, that the externals clause of POSMULT has been
modified to permit the necessary assignments to j: the rei clause of the loop has also been
changed to cater for the more general case??.

The comparison is made above between annotated program texts and natural deduction
proofs. Although this similarity can be useful, it is important to notice the differences. In
the program texts, the same expression denotes different things in different places. The effect
of assignment statements is to destroy so-called “referential transparency”. It is therefore not
possible to simply refer to any earlier line in a text in the same way as is done in natural
deduction proofs.

It would be reasonable, at this point, to ask how the inv/rel expressions are discovered. The
discovery of proofs from code is not the main objective, and this discussion is avoided. It is,
however, possible to observe that the proof step is, in some sense, the inverse of the program

The proof rule here and its use of R can be compared with the “decrensing function” in {14]}—there it is used
only in the terminalion proof. (This function is called n “varinut™ ju {22])

32 A comparison of these Lwo predicates is zctually quile inleresting. The catlier one shows directly the remain-
ing work Lo be done; the latter predicnte shows an expression whose value is to be kept constant,
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POSMULT

ext wr f,7,m:2

pre <1
m. =
i
pre 0 < §
while § # 0 do
vl <1
extwri, 71 2
prei # 0
while 13-even(i) do
invl <1
=12
j:mj*2
relixj= 1% 7T AI< T
?ostf*jo*TAiST
1
mi=m+ g
ti:=1~1
relmbixf=M+ T+ TAI<T
postm:?ﬁ"%-"i“*‘"}"
postm =T %7

Figure 3: Alternative Development for Multiplication Example
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design activity. As such it serves as a check in the same way that differentiation of an expression
derived by integration is a standard check in the infinitesimal calculus.

It is now shown how the proof obligations for programming coustructs can be used to
stimulate program design steps. It is, however, important that one does not expect too much
from this idea. Design requires intuition and cannot, in general, be automated, What is offered
is a framework into which the designer's commitinents can be placed. If done with care, the
verification then represents alinost no extra burden. Even so, false steps of design cannot be
avoided in the sense that even a verified decision can lead to 2 blind alley (e.g. a decomposition
which has unacceptable performance implications). If this happens, there is no choice but to
reconsider the design decision which led to the problem. A mould is being given into which a
design explanation can be fitted; it aims only to show that the need for verification can also
help the design process.

A simple example of the way in which a proof rule can help a designer’s thoughts about de-
composition is given by the rule for sequential composition-~the assertion P, fixes an interface
between the two sub-operations. There are advantages in not making such interfaces unnec-
cssarily restrictive. The choice of a general pre-condition for the second operation can result
in the specification—and eventual implementation—of a piece of software which is applicable
outside the context of the first operation. Such meaningful decompositions are to be sought in
all designs.

The design problems presented by iterative constructs are more interesting. Here, judicious
use of the reifinv clauses lead to the specification of the loop body. Two different approaches to
the problem of design can be illustrated on the simple example of computing (general) addition
by successor. The first of these programs in its annotated form is23:

pref 20
li=0r:=1{
3

pral < jAr=i41

white £ 3  do
invt<jAr=4{+1t
ti=141;
ri=r+1
rel T <tAi="TAj="F

post r = T 7
aostr:‘:T«%‘"f

The overall post-condition here is
r=1 4 T

The design decisions to not change i and j and to introduce a temporary variable (¢) suggests
an invariant (inv):

r=1{i+41

to express the progress of the calculation. This easy to establish by initialization. This only
leaves, for the relation (ret), the establishinent of termnination (the relation must be well-founded)
and the preservation of the initial values. It is obvious that this relation is transitive. (Strictly
in 2 subsequent step of development) the assignment statements in the body of the loop can be
seen to preserve the invariant aud to satisfy the relation.

A different program which satisfies the same overall specification is:

23These should really be presented in a step-by-step design but their size is such that this would be a waste of
space,
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pre j > 0
ri=id
:
pre0 < j
while § # 0 do

post r = 1 4 7

In this program, the decision to avoid a temporary variable gives rise to a different pattern. The
initialization does not obviously establish an invariant which relates the variables. The plan to
reduce j suggests something like:

r=i+(7-J)

but this is not an expression in a single state. However, rel does not have to be: it reflects the
work which remains to be done. This time the invariant is simpler because it only serves as a
data type invariant (which plays a part in checking that rel is well-founded).

The following table attempts to capture the main differences between loops which work
“up” using temporary variables and those which work “down” avoiding temporaries.

i
33 ”

up “down”
compute the required function eliminate work “remaining”
of temporary variables at each iteration
temporaries | yes 1o
initialization | temporaries and results set to “zero” | reflect whole task as “remaining”
initial state | undisturbed changed
inv locals = { (temporaries) data type invariant (only)
rel current = jnitial f(current) = f(initial)
temporaries decreased distances fo intial decreased
loop test temporary = some initial test for “zero”

The two approaches® to the task of computing factorial yields a similar analysis of the
assertions, The overall post-condition is:

]

=%

Taking this as an invariant of the temporary variable leaves only the preservation of n and well-

foundedness for rel—see Figure 4. The body of the loop can be completed with the assignments
shown.

With the version of the program which does not have a temporary variable, the factorial
is computed backwards (n«(n — 1}+...). This is done by overwriting the value in n, and re
captures this with an expression equivalent to:

s
faxnl= fnx 7!

This gives rise to the development shown in Figure 5.
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pre < n

fi=4ti=0

'

pret < nAfn=t!
white ¢ 3 1 do
invt<nAfa=tl

ti=td4d; = fuxt

min:‘ﬁ“/\‘?*(t

pst fi=tlAt=n="H

post fn = 7'}

Figure 4: Development of Factorial

prad <n
=1
H

preQ < n

while 1 3 0 do
nv(l<n

Myn:=fxnn-1
reiﬁz:%*?f!/n!/\n(?
postﬁlz‘ﬁ:*‘ﬁ!
post fn = 7!

Figure 5: Alternative Development of Factorial

pref # 0
g:=20
'
prej # 0
while § 2 J do
Inv true
Lgi={i-j,q+1
rlj="TAI< T Ajrq+i="T+F+7
post T 4#(q—"Fl+i=TAi<T
post T ag4iz=TAi<T

Figure 6: Development of Integer Division Algorithm
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A straightforward development of an integer division algorithm which does overwrite its
initial values is shown in Figure 6. As an illustration of a more interesting problem, consider
describing how a mechanical calculator performs the same task. In a first stage (SL), j is shifted
left until it is larger than i~—the number of shifts is recorded in n. The second stage (SR) shifts
7 back and at cach step keeps the expression j+ g+ ¢ constant. There are two places this must be
done: shifting at SRS and re-establishing i < j by stepping down § at SRC, The presentation
in Figure 7 is made simpler by assuming that all variables are natural numbers.

prej £0
prej # 0 {sL}
ext rd f,wr §,q, 1
n:=10
while J < T do
inv true
hni=j+10,n+1
el j4107 = Tx10"Aj > T
postf= "7 #10"Ai <
1g:=0
pre 10™ divides j A1 < j {5}
while n % 0 do
Iny 10™ divides J AT < 7

n,j,9:=n-—1,7/10, ¢ * 10; {SRS}
while j € 1 {SRClext wr i,q,rd j
inv (0 < 1)

hgi=i-jg+1
el TG+ T =jrqbinic T
rel j/10" = FT/0 Ajsqti=T+ T+ T An<®
post j= FT/I0M™ Ajeq4i="Tr T+ T Ai<]

post 7 xq+i=1 AiI<’T

Figure 7: Development of Alternative Integer Division Algorithm

1t would be interesting to try to present these stralegies in the “d-Caleulus” proposed by Michel Sintzoff
elsewhere in these proceedings.
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Programs for searching and sorting (cf. [36]) provide many interesting examples for proof
construction. In the case of searching, the basic vector involved is not changed and proofs using
input/output relations differ little from those which use post-conditions of the final state alone.
The utility of the more general post-conditions becomes apparent on sorting examples where
the basic vector is changed®®. Consider the following specification:

SORT ()
extwr{ ! seqorIN

post ig-ord(l) A iz-perm(l, T)
The truth-valued function for ordering:
is-ordiseq of N -+ I
and that for permutations:

13-perm:seq of N X seq of N — B

are obvious (although it might be interesting to define the latter via its properties rather than
directly).

A very simple sorting strategy is to absorb, at each iteration of the loop, the “next” element
into its correct position. This design decision can be shown by:
SORT
var 1IN
=1,
white { < 71 do
inv is-ord(I(1,...,1))
f1em f 1

¥

BODY (1)

pre 1 € dom |

post l(i-+1,..0= l(i+1,..)A

di e {1,...,4}-
{f)= L()A 1(2,...,i~1) =del(l(1,...,1),7)

ret 23-perm(l, ‘T)
post is-ord({) A is-perm(l, )
An equally simple (and similaily inefficient) sorting algorithm is one which picks the lowest

of the remaining elements and moves it to the next position on cach iteration. The additional
property is clearly shown in the following invariant:

25 During the Summer School, Jon Garnsworthy pointed out that the same problem arises in the so-called
“Dutch National Flag” problem—ci (14}
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SORT
var i: N
ii=0;
whilei < n— I da
inv is-ord({(1,...,1)) A
Vme{1,...,il,ne{i+1,...}-{(m)<i(n)
fie= i ]

t
BODY (i)
pre i € dom |
post I(1,...,i—1)= 1 {1yeeyi=1)A
3j € {i,.. L _
)= L ()IAIE+ 1, )=del( 1 {,...),7)

rel is-perm(!, T)

post is-ord(l) A is-perm(l, ‘T)

A comparison of post-BODY in the two cases shows the essence of the work to be performed.
The development of more efficient algorithms is left as an exercise to the interested reader.

This section should have established that post-conditions of two states (input-output rela-
tions) can be profitably used in program design. The proof rules shown above®? are only slightly
more complicated than those in {23] and the examples here have shown that the separation of,
for example, invariants and relations can actually aid the design process.

Several recent papers have attempted to show how programining and specification notation
can be merged by translating the former into predicates (sce, for example, [25,22,2]). In {25] a
motivation is provided for the idea of “weakest pre-specification”. The ordering corresponding
to sat above is relational containment and does not cope with termination as here. The paper
by Eric Hehner in these proceedings manages to use an implication ordering on predicates in

a way which gives very attractive properties. The single predicate is formed, essentially, by an
expression of the form:

pre =3 post

As such, the definition is very similar to that used in this paper. Apart from the pragmatic
arguments for separating the pre-condition, the system used here does allow additional distinc-
tions to be made between specifications. In both {25] and [22], the basic definitions are used
to derive convenient algebraic laws for programming constructs. The presence of these laws
blurs the distinction made in the introduction to this paper between the transformational and
specify/design/ verify approaches to program development.

4 Logic for Partial Functions

One area of VDM research which has recently made some progress is the selection of a logic
which handles partial expressions in a convenient way. Such partial expressions arise frequently
in the specification and design of programs but earlier treatments have not been fully successful.
As well as reviewing the sources of partial expressions, this section offers some requirements for
an appropriate logic and compares the proposal in [5] and [10] with the requirements.

Many of the operators on the basic VDM data types are partial (e.g. hd, map application).
They arise in expressions like:

26 The proof rules presented above can be justified with respect to a denotational semantics of the programming
language in question. For the while copstruct, this is done in Appendix A along with other consequences of the
definitions.
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t =[]V t=append(ndt,ut)
if pis a member of map Id to Den:
id € domp A p(id) € Proctype

The fact that the operators are partial gives rise to terms which may fail to denote a value.
Another obvious source of partial terms is recursion—for example:

subp :NxXN = N
subp(i,7) L& i=7 then 0 else subp(i,j+ 1)+ 1

Providing that { > j, this function yields a defined result, This prompts the writing of expres-
sions like:

Vi,jjeEN-i2j = subp(i,j)=i-j

it can clearly be seen how the problem of undefined terms propagates up to the meaning of the
logical operators: what does this last expression mean when the antecedent of the implication
is false?

There have been a number of historical approaches to this problem. John McCarthy showed
how logical expressions could be defined by conditionals ({41])~for example:

pPAg

is defined as:

it p then ¢ else false

Operators defined in this way are obviously not commutative. Thus VDL’s (cf. {39]) adoption
of such a set of operators led to a logic in which familiar properties do not hold. This was
unfortunate because many of the operands were completely defined and proofs were hamstrung
unnecessarily. (This approack is, however, being further explored in {8].)

In [28] and [14]*7, 2 distinction is made between the conditional {cand, cor) and the classical
(and, or) operators, Unfortunately, neither reference offers an axiomatization of the logic and
there are some slightly messy properties. For example, while it is obvious that:

~(E; or (Ee cand E4)), ~E; and (~Es cor ~Ey)
are equivalent, it is perhaps less obvious that;
Ey and (-E; cor Ey), E; cand E,

are equivalent,

In [30] an attempt was made to limit variables by bounded quantifiers as a way of avoiding
undefined terms—for example:

ig-ordered 1seq of N — B

is-ordered(t) £ Vie {1,...,0ent— 1} t(i) < i+ 1)
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true false

LA
1A

Figure 8: Ordering for Truth Values

This does not always work and in other places explicit conditional expressions were written,
None of these approaches is satisfactory when judged against the following criteria:

* Both a model and a proof theory should be given and the latier should be proved consistent
and complete with respect to the former.

+ There should be clear links to classical logic—for example:

- The proof rules should be consistent with classical logic;

- conjunction and disjunction should be commutative;

- most standard laws of logic should hold;

and there should be a clear way of building a link to those which do not hold;

— familiar operators should be monotone with respect to the ordering in Figure 8;
— implication should fit the standard abbreviation( p = ¢ as ~pV g ).

o If there is a need for non-classical, non-monotonic operators, their use should be localized
and not inflicted on the developer of standard programs;

¢ It should be possible to prove results about functions (e.g. subp) without a separate proof

of definedness of terms??,

The model theory of [5] is summarized in the following truth tables in which * is used to
denote a missing value. The extended truth table for disjunction is:

v true & false
true | true | true | true
* true * *
false | true ¥ false

Notice that the truth table is symumetrical, as also is that for conjunction:

Al true * false
true true * faise
* * * false
{alse | false | faise | false

The table for negation is:

27The notation of the latter is used here since it is more widely known.
23 This requirement was added after several proposals (e.g. Manfred Bray's proposals elsewhere in these pro-
ceedings which do require such a separation) were made al the Summer School.
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—

trie | faise
* *
false | true

The truth tables for implication and equivalence are derived by viewing them as the normal
abbreviations:

= true * falge

true | true * falsa
* true - L]

false | true | true § true

L true | % { false
true true | & 1 falze
* * * *
false | false | # | true
b

The proof rules for this logic (derived from {37]) are presented in a way which is intended

to be used in (linear-style) natural deduction proofs. The proof rules support the deduction of
sequents of the form:

I'hHE

where I' is a list of expressions. The intended interpretation of such sequents is that E should
be true in all worlds where all of the expressions in I' are true. Notice that the sequent:

E; & Fy

is valid if E; is false or undefined, whatever the value of E,.

For the basic propositional operators (=, V) there are the obvious introduction and elimina-
tion rules. (All of the rules are given in Appendix B.) In addition, it is necessary to have rules
for negated disjunctions (i.e. =V-I). Tle need for these rules arises from the fact that the “law
of the excluded middle” does not hold in this logic. Conjunction and implication are introduced
by definitions and their introduction and elimination rules are proved as derived results. An
example of a natural deduction proof using these rules to show:

(Ej V.Eg)A(E; VEs)E v E;AE;s

is given® in [33]—the proof would be valid in classical logic whereas the normal proof written
in classical logic (cf. {17]) is not valid here because it uses the “law of the excluded middle™.

The axiomatization of the predicate calculus follows a similar pattern with the existential
quantifier being treated as basic and the universal quantifier being introduced as an abbreviation
for which inference rules have to be derived (cf. Appendix B)"?. The main point with this
treatment is to constrain the bound variable of a quantified expression to range only over
“proper elements”,

The basic characterization of sets like the natural numbers is given by constructor functions:

0N

suce:N — N

29The functional style of the justifications permils compositions of steps to be used—-the whale style is very
much in the spirit of the “d-Caleulus” proposed by Michel Sintzoff elsewhere in these proceedings.

99 Considerable eflort Lias been put into the development of derived rules for this version of logic. Many of the
prools are contained in [33].
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and an induction axiom:
Neind p(0)i n€N,p(n)F p(n + 1)
ne NF p(n)
Notice that the induction rule is presented via a turastile rather than using implication. This
simplifies subsequent proofs becanse it avoids the need to use the =-I rule. The induction ruleis
also presented without quantifiers since they can be inserted using the V-I rule. For recursively
defined types such as Dinnode an induction rule is generated for each type, thus for:
Binnode :: It : [Dinnode)
k : Key
d : Data
rt : [Binnode]
the induction rule is:

p(mk-DBinnode(nil, k, d, nil}));
k € N,d € Data, it rt € Dinnode, p(it), p(rt) F
p(mk-Binnode(lt, k, d, rt}))
bn € Binnode t p(bn)
The requirement to minimize the use of non-monotonic operators has proved the most elusive
and several attempts have been made in order to minimize the use of non-monotonic operators

in normal proofs. The approach in [5] was to handle definitions like that for subp by generating
inference rules of the form:

dy

Binnode-ind

subp(n,n) =0

d ny # ng; subp(ng,na + 1) = ng
subp(n;,na) =ng + 1
The reason that this works revolves around the distinction between strong (==) and weak (=)
equality and, in particular, the use of the latter in the hypothesis of d; (rule d; relies on the
fact that the second hypothesis is undefined in exactly the cases needed to avoid relying on the
conclusion of the rule), The differences between the strict weak equality and the non-monatonic
strong equality can be seen from the following tables (here, the undefined values are shown as
“bottom” elements (1)).

= 0 1 2 “E‘N
g true | false | faise J..B
1 false | true | false .LB
2 false | faise | true ipg
iN|ip|iB|1iB 1ip
== 0 1 . 2 e -LN
g true | false | false false
1 false | true | false false
2 false | false | true false
.L.N false | false | false true

The justification of such rules (with respect to the definition of subp) does require the use
of—and reasoning about—strong cquality; but the proof of the appropriate property in the
referenced paper only uses the rules dy and d;.
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In [32] a slightly different approach is used which obviates the need to create the inference
rules. The idea is to use definition rules in direct substitutions (cf. = -subs, &-subs, if-subs ).
This permits proofs to avoid mentioning undefined values. The only non-obvious step in devising
the proof shown in Figure 9 was deciding to conduct the main induction on subp(i, i-n).

from §,j € N
1 {—-0=1€N kN
2 subp(i,i ~0)=10 ifth-subs/subp(h,1)
3 0<i = gubp(i,i -0)=0 vac = -1(2)
4 fromn €N; n<1 = subp(i,i-n)=n
4.1 fromn+$1<4
4.1.1 n<i h4.1, N
4.1.2 subp(i, i —-n)=n vac = -E(h4,4.1.1)
4.1.3 ii-(n+1) N, h4
41.4 nt+l=n+1 =-term({h4, IN)
4.1.5 subp(i,i -n)+i=n+1 =t-subs(4.1.2, 4.1.4)
infer subp(d, i~ (n+1))=n+1 ifel-subs/subp(h,4.1.3,4.1.5)
4.2 (n+1<i)eB h4, h, N
infern+1 <4 = gubp(i,i~(n+1))=n+1 =>-1(4.1,4.2)
5 VneN -n<i = subp(i,i—~n)=n Y-I(N-ind(3,4))
6 from & 2 j
6.1 i-jEN N,h6
6.2 0<7 = subp(i,jl=1i-7 V-E(5,6.1),N
infer subp(i,j) =1 —; vac = -E(6.2,h)
7 (i24)eB h,N
infer 4 2> § => subp(i,j)=1-7] =-1{6,7}

Figure 9: Proof about subp

The principal differences between LPF {*Logic for Partial Functions”) and classical logic
should be noted. It is an obvious consequence of the truth-tables that the law of the excluded
middle does not hold. Nor does the deduction theorem hold without an additional hypothesis
(cf. = -I). For weak equality it is not necessarily true that ¢ = ¢ for an arbitrary term ¢.

On the other hand, A and v are commutative and monotone, I'roperties like:

z€ERVFz=0Vz/z=1

are easily proved. The implication operator fits its normal abbreviation and also has an inter-
pretation which fits the needs of the result on subp. Many of the results from classical logic do
hold {cf. Appendix B—even most of the properties of ¢ presented by Edsger Dijkstra in his
Royal Society Lecture of 1985) although simple tautologies have to be re-expressed as sequents.
Where properties would otherwise fail to hold, hypotheses can be added as to the definedness
of expressions which bring the results back to those of classical logic.

In {10] (whick should also be consulted for a full list of references) a number of completeness
results are given:

¢ The operators 8, ff, uu, =, A, vV fonin 2 set which are expressively complete for monotonic
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operators {result due to Koletsos).

The set =, V, uu, A are expressively complete for all operators (Cheng 3.1(1)).

The basic axiomatization is consistent and complete (propositional calculus—Cheng 3.3;
predicate calculus——Cheng 4.3/4.4).

The “cut elimination™ theorem holds (Cheng 5).

The I/ E rules for linear-style natural deduction proofs are consistent and complete (Cheng
7.4).

The thesis also contains a discussion of the influence of equality on the logic. There are, of
course, still unresolved questions:

+ Before this logic can be compared with others such as those in [45], [47], [7], [2], it will be
necessary to conduct a number of experiments with typical application proofs.

¢ The use of undefined predicates needs further study.

¢ The problems caused by implementing such a monotonic logic in a programming language
must be assessed.

Other approaches are the use of LCF in {16}, the constructive approach in [15] and the work
of Dana Scott (see, for example, [43]). A forthcoming paper will make a fuller comparison with
the usability of various systems ([11])%.
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A Proofs about Operation Decomposition

The main purposes of this Appendix are to provide a semantic model against which the proof
rules for operation decomposition can be judged and to prove that the rules are consistent with
that model. Some other important properties of the model are also discussed.

A.1 Semantics

The constructs used for operation decomposition in the body of this paper are sequential compo-
sition, conditional statements and a repetitive construct. The following abstract syntax shows
the language to be considered:

Stmt = Atomic | Composition | If | While

Compasition :: Stmt Stmt

If :: Ezpr Stmt Stmt

While :: Ezpr Stmt

The definition of this language has to cope with both non-termination and nou-determinacy.
it is clear that the While construct could result in non-termination; it is also assumed that the
elements of Atomic might be undefined for some states. Non-determinacy can arise from the
Atomic statements. (It is shown below that specifications in the pre-/post-condition form can
be used in place of such statements.) The semantic model used here to cope with these problems

consists of a pair with a first element which is a termination set (of elements of X') and a meaning
relation (from £ x Z)! Thus:

M:Stmt — P(Z x 5)

T:Stmt — P(X)

The set given by 7 is the set over which termination is guaranteed; the domain of the relation
M can be thought of as showing a set over which termination is possible. Intuitively, it should
be clear that :

Vs € Stmt - T3] C dom M{s]

That this property holds for non-atomic statements is proved below: it is an assumption on the
meaning of the Atomic statements:
Assumption (Al)

Vs € Atomic- T{s] C dom M[4]

The meaning 1elation for the sequential composition of two statements is defined as the relational
composition® of the meaning relations of these two statements:
M[mk-Composition(Sy, 52)] & M[S:]; M[Sz]

This would, taken alone, require so-called “angelic nondeterminism”; this is avoided by showing
the required termination set to be (only)’:

T [mk-Composition(S;, Sz)] & T[S:] — dom (M[S, ] bT[S:])

I'This follows the approach used in [26] which was, in turn, prompted by [46].
231 ;R2 9_'_‘{(0‘, "} s’ - (cr,o") € Ri A (a", e’} e RZ }
T RpSD{(F,e)e R ¢S)
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This definition shows that the composition is only required to terminate if both Sy terminates
and if the meaning relation can not give rise to a state in which Sy fails to terminate.
The meaning relation for this simple conditional construct? is given by?:

M{mk-If(B, TH, EL)] & (B a M{TH])U (5B « MIEL])
The termination set is given by:
T[mk-If(B, TH, EL)| 2 (B n T{TH}) u (5B n T[EL])

The least fixed point operator (fiz) is needed to define the semantics for While statements.
The meaning relation is defined by:

M[mk-While(B, )] & fiz(Ar < (7B < I)u (T a M[S];r)

This presents the same (angelic non-determinism) problem as with sequential composition. A
similar approach to Its resolution can be given:

T[mk-While(B,5)] & fiz(As - 2B U ((Fn T[S]) — dom (M[S] b 8)))
It is shown below that this definition does present some problems since it is equivalent to:
fe(Xs - SBU {7 e (BnT[S]| VYo (F,0) e M[S] = o€ s}
because:
{7 €3, |Vo . (F,0)er; = o€ 3}
={F €38 |Vo.-(F,0)¢r Voe )
{6 €8 |-30-(F,0)eriAc ¢s)
{? € 3y | K ¢ dom (ry b-s_g)}
= §; — dom (7 b382)
and the equation with the embedded universal quantifier is not w-continuous.

1l

A.2 Properties of Semantics

The first property to be considered is the containment of the termination set within the domain
of the meaning relation. This has been assumed for Atomic statements; it must now be shown
to inlierit across each of the constructions for composite statements.

The result required for Composition is:
Lemma (C1)

T[5] € dom M[S, ], T[52] C dom M[S: ]+
T [mk-Composition(S;, Sz )] € dom M{mk-Composition(S;, Ss)]

The proof? is given in Figure 11 this proof uses a Lemma (T1) on T7 whose proof is given
in Figure 10.

The result required for If statements is:
Lemma (I1)

T{TH] C dom M[TH], T[EL] C dom M[EL] F

T[mk-If (B, TH,EL)] € dom M[mk-If(B, TH,EL)]

4 The set of states satisfying the truth-velued function p is written 5 [ is the identity relation {on F). Here,
expression evalualion is assumed to be total; (26] shows kow the more general case is handled by a (T) function
whiclh gives the states over which an expression is defined.

# An additional source of non-determinzcy can be brought in by using guarded conditional or loop constructs
&s discussed in {14); the sermantics is given for the former (and the relevant properties proved) in [26].

®In each of these proofs an appesl to M or T is to be read as a reference to the appropriate case of the
semantic function.

7This Lemma was suggested by Lynn Marshall.
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== B2 L BT - A

from 8; C dom Ty
s —dom{s<qr)=3—domr
dom ry — domry C dom(rg ~ ry)
dom (r — (r p38)} = dom(r b s)
8 --dorn(f‘; bs:)
= g5 — dom(8; <A r; b 8s)
o dom(s; <qr;)—dom(s; 41y B*.'Jg)
C dom((sg < I";) - (81 < ry Ps;))
infer 8y — dom (ry B 3¢) C dom(s; A 1; b 32)

Figure 10: Proof of Lemma T1

from T[S}B C dom .M;ISI]}, T[Szﬂ C dom aM&Szﬂ
dom (M[mk-Composition(S;, S2)]) = dom (M[S; ]; M[S:])
T[mk-Composition(S;, S2)]
= T[[Sj}] — dom (M[Sj]] 97'&52}])
¢ dom (T[S} a4 M[S,] & T[5:])
C dom (M[S,] b T[S:])
C dom (M'IS;]} > domMESz]])
C dom (M[S5,]; M[5:])
infer T[mk-Composition(S;, Ss)] € dom (M[mk-Composition(Sy, 52)})

Figure 11: Proof of Lemma C1
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The proof of this is straightforward.
The result required for While statements is:
Lemma (W1)
T[5] C dom M[S] - T{mk- While(B, 5)] C dom M[mk- While(B, 5)]

A direct proof of this result is made difficult to understand because the technicalities of the need
to reason about a continuous version of 7 are obscured by the length of the specific definitions

for While statements., It is worth proving a more general result about such recursive semantic
equations:
Lemma (R1)

BS € dom BR, IS € dom IR
fiz(As - BS U (IS ~ dom (IR b-5))) C dom fiz(Ar - BRU (IR 1))
A continuous version of the expression in the first term is used in the proof:

F(s)aBsSu{c elIS|3o-(F,0)e IRAv € s}
C DS Udem (IR b 8)

another expression used in the proof is:
G(ryABRU(IR;r)

The proof is given in Figure 12, Then, using the following identities:

BS =50
BR=SF«qlI
IS = “B:f‘l 7151
IR = B q M[S5]
and noting that:
BS = dom BR

T15] ¢ dom M[S]} IS C dom IR
the proof of W1 is an immediate corollary of R1.

The above results (AL, C1, I1, W1) combine to give the result for the whole language:
Theorem (L1)

Vs € Stmt - T{s] C dom M[s}

The notion of satisfaction is introduced in the body of this paper. It can be expressed in
the notation used here as:

S sat § & T[S] € T[] A T[S] < M[S'] € M[S]

If § and S’ are set/relation pairs, 7 and M select the first and second elements respectively.
The reduction of a pre/post-condition specification to such pairs is described in Section 2.
The semantics for Stm¢ given above completes the picture: specifications and programs can
be treated on a common semantic footing. There is, furthermore, no difficulty with inserting
specifications as Afomic statements in programs as was done iz Section 3 (cf. the division and
the SORT examples). Footnote 18 pinpoints the requirement that a development method be
compositional, What does this mean in terms of the sat rtelation? It requires that each of the
ways of forming composite statements is monotone in the sat ordering. Thus for sequential
composition:

Lemma (C2)

St sat Sy, Sy sat Sg b mk-Composition(S}, 53) sat mk- Caomposition(S;, Ss)

33




3.1
3.2
3.3
3.4

3.5

[» o]

The proof of this. result is straightforward, as is that for If statements:
Lemma(12)

TH' sat TH,EL' sat EL v mk-If(B, TH', EL') sat mk-If(B, TH, EL)

from BS € dom BR, IS C dom IR

Fo({}) CeamG°({})
FI{Y) € domG'({})
from F*{{}) C domG*({})yn 2 1
FH({}) € BS Udom (IR b F*({}))
C BS U dom (IR b domG™{({}))
g™t i({}) = BRU(IR;¢"({})
dom Gt ({})
= dom BR U dom (IR;G%({}))
= dom BR U dom (IR b dom G™({}))
infer F*H({}) € dom grti({})
Vne N-F*({}) € domG"({})
U#({}) € dom U 8°({})
ngo nsd
fiz(As - BS U (IS ~ dom (IR b 3)))
C fiz(As - BS Udom(IS < IR b 3))
C fir(As - BS Udom (IR 1 8))
cUsdn

n>0

infer fiz(As « BS U (IS ~ dom (Il b 38))) C

dom ﬁx(Ar ~BRU IR; r)

Figure 12: Proof of Lemma R1

set
F,0.h

T
3.1,h3

14
3.2,dom

3.4, dom, >
3.2,3.5,h
N-ind(1,2,3)

4, monotonicity

T1(6)

6,h
F, fz

8,59, fiz

The final result of this form on the whole language (1.2 below) ensures that, if a series of state-
ments are developed 5o as to satisfy a specification SP, then the statements can be used in the
implementation of any design which needs a component specified as SP; and that implementa-
tion is bound to satisfy its specification even though its proof used only the properties SP and
not the series of statements,

But the achicvement of this goal requires that the corresponding property is proved for
While statements. As would be expected, this result is a little more difficult and is split into
three lemmas. Firstly:
Lemma (W2)

§' sat § - T[mk-While(B, S)] € T[mk-While(B, 5')]
Lemma (W3)
T[S} <a M[5] € M[S]F

T[mk-While(B, §)} @ M[mk-While(B, 5")] C M[mk-While(B, S)]

These proofs are given in Figures 13 and 14 respectively.

The final result:
Lemma (W4)

5" sat § + mhk-While( 3, S') sat mk-While(B, S)
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from S’ sat S

1 TS| 7(s]
2 T[s] <« M[5] € M[S]
3 T[mk-While(B, 8)]
= fiz(As - B U (TN T[S]) ~ dom (M[S] b 5)))
4 € fiz(Aa - =T U (DN T[S']) = dom (M[S5'] b3)))

infer C T[mk- While(B, sh1

Figure 13: Proof of Lenuna W2

from T[S] < M[5'] € M[S]

1 T [mk-While(B,S)} € =F U T{S]
2 “BQICI]
3 (T[5] - ~B) a M[s'] € M[S]

infer T{mk-While(B, S)] <« M[mk-While(B,5)]
C M[mk-While(B, S)]

Figure 14: Proof of Lemma W3

from S sat §

1 T mk-While(B,S)] C Tmk- While(D, S")]
2 T{S] @ M{5]) € M[S]
3 T[mk-While(B,S)] <t M[mk- While(B, §')]

C M{[mk-While(B, S)]
infer mk- While(B, S') sat mk- While(D, S)

Figure 15: Proof of Lemma W4
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is proved in Figure 15.

The overall result that all of the language constructs are monotone in sat follows from C2,
12 and W4.

A.3 Justification of the Proof Obligations

The proof obligations for the various language constructs can now be justified with respect to
the 7 /M semantics which is given above. The link between the triples:

{P}S{R}
where:

Py - B
REXE—D

is given by®:
[(PYS{RYAPCTI[S}IAPaAM[SICR

Here, only the proof obligation for while is considered. The use of a transitive, well-founded
relation 2 in that rule gives rise to a (complete) induction rule:

sCS;mg(SaQRY)CTrsCT
S¢c’T

This rule can be used to reason about T (where Scott induction is not applicable because of the
lack of continuity). As in the complete induction rule over integers, the induction hypothesis is
taken here to cover all (R*) predecessors of the required set. To find the apparently ommitted
base case for the inductive proof one must consider those elements with no predecessors (s —
dom R}. It is however possible to avoid this case distinction in some proofs and the proof of
Lemma W5 is given below is simpler than the corresponding proof in [26] for precisely this
Teason.

The result about the termination of the while is:
Lemma (W5)

PnBCTISL PnB)aM[SICR, me((PNnB)a M[S])C FI
P C Tmk-While(B, S)]
The proof of this is given in Figure 16.

R-ind

The proof about the meaning function be conducted with:
Gg(rY&(~Ba)u (T aM[S];r)
This is suitable for:

(r) L({}()'g( )
. prir) F pr{G(r
Scott-ind or(fiz Ar - G(r))

The proof of:
Lemima (W6)

PABCTISL PnB)aM[SIC R, me((PnB)a M[S)C PF
P q M{mk-While(B,S)]C R A
tng (P < M{[mk-While(B, 5)]

CPA
g (P Q M[mk-While(B,S5)} € =8
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from PN B C T[S],
(PnEB)a M[S]C R,
rng ((Fn_T_D AM[SPHDCP

1 from 3 G P,
mg (s <4 Rt) C T{mk-While(B,S)]
1.1 8N =B C T[mk-While(B, 5)]
1.2 sNIT CT[S]
1.3 (snB)aM[SJC R
1.4 ((s N B) <1 M[S]) > T[mk-While(B,5)] = {}
1.5 s NI C T{mk-While(B,5)]

infer 3 C T[mk-While(B, S)]
infer P C T [[mk- While(B, S)]

Figure 16: Proof of Lemma W5

rom PN B C T[S],
(PnB)aM[S]C T,
mg((PnBya M[S))C P

1 PallcT
2 ma(Pa{}HCPuUSE
3 tem PrCR,
mg(P<r)C P,
mg(P < r)C B
3.1 (Pn-B)<ICR
3.2 mg((PN=B<aI)C Fu=T
3.3 (P aM[Shirc
3.4 ma((PN By < M[S];r) C PUST

infer P < G(r)C A
mg (P <1 6(r)) G PA
mg (P < G(r)) C -0
infer 7 <3 M[mk-While(B,5)] € A
rng (P <t M{mk-While(B, S)} € PA
rng (F < M[mk-While(B,5)} C 5B

Figure 17: Pzroof of Lemma W6

h,h1
h,h1
1.3,h1
14,7
1.1,1.5
R-ind(1)

set
set

R* is reflexive

set

h3,R* is transitiveh
Lh3,R* is transitive,h
¢,3.1,3.3,2.34
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is given in Figure 17,
These two lemmas combine immediately to prove:
Theorem (W7)'
The rule:
{PAD}S{PAR}
{P} while B do S{P A R* A-B}

is consistent with the 7/AM semantics.

while

%Some care is needed in the interpretation of post-conditions which are conjunctions,
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B

Inference rules for LPF

Conventions

8,
9,

. E,Ey,... denote logical expressions.
. Z,Y,... denote variables over proper elements in a universe,

. €,¢1,... denote constants over proper elements in a universe.

1
2
3
4,
5
6

8,81,... denote terms which may contain partial functions.

. E(z) denotes a formula in which z occurs free.

. E(a/z) denotes a formula obtained by substituting all free occurrences of z by s in E.

If a clash between free and bound variables would occur, suitable renaming is performed
before the substitution.

+ E[sa/s] denotes a formula obtained by substituting some occurrences of 8; by s3. If a

clash between free and bound variables would occur, then suitable renaming is performed
before the aubstitution.

X is a non-empty set.

An “arbitrary” variable is one about which 1o results have been established.

General Properties

. B By By

inf ———— e
E,

var-I FCX

commutativity (V/ A /¢-comm)

By v By B A B, E & E
EV E EAE E & E

associativity (V/ A /4-ass)

(El VEg)VE;; (Elt\Eg)/\Es (E1 = E),) & By
EIV(EzVEa) ElA(.E;A.E'a) B o (Ez = Ea)

transitivity ( = /<-trans)

B = B By = B3 E & By B & Ej

By = B3 Ey & B3
substitution
8 = 8; B
==t-subs e s
Efs3/3,]

°z is arbitrary
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=v-subs

=~-Comm

=.{rans

:D— R
fld) 2 e
e = e{dgy/d)

&.subs

Ainst

seX;z€ Xk E(z)
E(s/z)

do € D} E{eg)
E(f(do)/eo}

do € D; E(f(dv))

Eleo/f(da)]

f(d) 2 if e then et else ef

if-subs

do € Dj eg; E{etg)

dg € D; ~ey; E(efy)

E{f(do)/eto]

Definitions of Connectives

f-defn

A-defn

=.defn

&.defn

V-defn

=-itrue

false

""’(‘“‘E[ AY2 "!Ez)

EiA B

-Ei VvV E;
E1 = [y

(Ey = E)A(E, = E)

E{f(do)/efo]

B & B

=3z € X - -B(z)

Ve e X - B(z)
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Relationships between Operators

deM “(Ey Vv Ey) | (B A E)
B A=E “By V - E
ndz € X - B(z) Yz € X . E{z)
Vz € X - ~E(z) dz € X « ~E(z)
dist .El v Eg/\ Ea - E1 /\(E-z \"4 Ea)
(By VEOGA(E,V E;) EAEVEAE3
Jv-dist dre X - El(ﬂ‘.‘) v Ez(iﬂ)
(Jz € X - Ei(z)) V (Iz € X - Ey(z))
\ dz € X - Ey(z) A Ba(2)
IA-dist
N @z e X B A(F e X - B(2))
) (Vz € X - Ei(z)) v (Vz € X - Ey(x))
Vv : -
v-dist V2 e X - Bi(z) v Bi(2)
ndist (Vz € X - Bi(2)) A(Va € X - By(z))
Vz € X « Ei(z) A Ey(z)
Substitution
A-subs EiAN . ANEAN...NE,; E;+ E
= EIANNEAN...NE,
Vesl E\V..VEV ..V E: EFE
Euns EV..VEV..VE,
dz € X - Ey(z); Bi(z)F E(z)
d-subs T e X E(a)
Ey; By
t [l A %
contr E;
B, = E
=»-contrp m
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INTRODUCTION (op-I) ELIMINATION(op-E)
{ E -~ F
Ev...v En;
v By EFE;, . ..;E. F
EEVEV..VE, E
A Eyy By ..oy By EiNEA...ANE,
ENANB,A...ANE, E;
v mE By oy By (B, v B v...VE)
-
ﬂ(E;V&V...VE,,) -5
“#(E}/\.”AE“);
-A - E; - E .. By E
‘“‘l(Ele-»AEn) E
= Ey By EyeB
E1 =
vac = E, By = Ey; ~Ey
E, = E ~ By
-E1 B = Ei B
Ey = B Ey
o EANE; B & B
B & B ETNE VBl AR
"“IE} A"tEQ
B e B
o EiAE, (B & E)
(B, & E) ElAﬂEZMV —:ElAEgM
By A By

(B, & Ej)




dz e X - E(x);

3 s € X; E(s/z) y'° € X, EB(y/z) F E
3z € X - E(z) B
v e X F E(z) Vie X B(z);seX
Vz € X - E(z) E(s/z)
3 € Xt -E(z) «dze X - E(z); s X
-3dz € X - E(z) ~E(s/z)
~Vz e X . E(z);
- s € X; ~E(s/z) y'? e X,-~E(y/z)+ E
VYo € X + E(z) E
Miscellaneous
, dze X « B(z,z)
Jsplit dz,y € X - E(z,y)
Vr,y € X - B(z,y)
viix Ve e X « E(z,z)
Vo 3 Ve € X13 . E(z)

dz € X « E(z)

dze X -VyeY - E(z,y)
VyeY -3z€ X« E(z,y)

Yz € X - Bi(z) & Ez)
(Ve e X - Ei(z)) & (VzeX - Byz))

(3 = s)

s=-contr
E

==-term

8= 8

% is arbitraty and not free in £,
Y1 is arbitrary

12y is arbitrary and not free in £
13 % is non-empty
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8,55 € X

=-comt
P (81 = 82) V ~(s; = 83)
E
A'I "“A“"‘“E""
AE AE; EV Ey; mEF Ey
B,
AEF Eyy ABF -E;
-1 N
-AE kR Ep; ~AEF =B
-A-E AE
= =.yaf] —_
—_— 3

==-subs == B

Els2/s1]

8 ==&y
==-COmIn

H==48
= trans S| == 8§ == 5

§y == §3
8§ == &; 5 € X
ey
5] = 82
51 = &

mR—hmmom
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