eeeeeeeeeeeeeeeeeeeee

Enhancing the Tractability of
Rely/Guarantee Specifications in the
Development of Interfering Operations

Pierre Collette and CIiff B. Jones

Technical Report UMCS-95-10-3

Enhancing the Tractability of Rely/Guarantee
Specifications in the Development of Interfering
Operations

Pierre Collette and Cliff B. Jones

Department of Computer Science
University of Manchester

Oxford Road, Manchester, UK.
<{p.collette,c.b.jones}@cs.man.ac.uk>

*Copyright (©1995. All rights reserved. Reproduction of all or part of this work is permitted for
educational or research purposes on condition that (1) this copyright notice is included, (2) proper
attribution to the author or authors is made and (3) no commercial gain is involved.

Recent technical reports issued by the Department of Computer Science, Manchester University, are
available by anonymous ftp from ftp.cs.man.ac.uk in the directory pub/TR. The files are stored as
PostScript, in compressed form, with the report number as filename. They can also be obtained on
WWW via URL http://www.cs.man.ac.uk/csonly/cstechrep/index.html. Alternatively, all reports
are available by post from The Computer Library, Department of Computer Science, The University,
Oxford Road, Manchester M13 9PL, UK.

TThis work has been supported by funding from the UK EPSRC. We thank Ketil Stglen for his helpful
comments on a preliminary draft of this report. We also thank Juan Bicarregui, Yih-Kuen Tsay, and
especially Tim Clement for their careful reading of later versions.

Abstract

Various forms of assumption/commitment specifications have been used to spec-
ify and reason about the interference that comes from concurrent execution; in
particular, consistent and complete proof rules relating to shared state operation
specifications —with rely and guarantee conditions— have been published elsewhere.
This report investigates methodological issues in the formulation of such specifica-
tions, and their way to record design decisions. This work aims at making the use
of rely/guarantee conditions more tractable, both at the specification level and in
the development towards code.

1 Introduction

Formal methods based on model-oriented specifications like VDM or B are applicable to
the development of sequential operations. In such approaches, state components can be
common to several operations but only one operation is executed at a time. A sequential
operation can then be interpreted as a binary relation on the state space and specified
with pre and post conditions; examples are given below but readers are assumed to be
familiar with pre/post specifications in the style of VDM. In [Jon81], rely and guarantee
conditions are proposed as an extension to cope with the specification and development of
concurrent operations, a situation that occurs when operations sharing state components
have overlapping executions. The necessary background about rely/guarantee specifica-
tions is recalled in this report — detailed expositions (including sound and complete proof
systems) can be found in [Stg91]. The new insights here come from an emphasis on
methodological issues. Theoretical aspects of rely/guarantee specifications are intention-
ally omitted in favour of suggestions that improve their practicability in the development
of concurrent operations.

This research is concerned with imperative programs whose meaning can be discussed
with respect to a set of states — say s; € ¥. The additional complexity of concurrent
versus sequential operations is due to the presence of interference: operations access
state components that can be modified by the execution of other operations during their
own execution. This difference from sequential operations can be emphasized by looking
at computations. A computation of a sequential operation can be viewed as a single
transition

™
S0 — Sy

from a starting state sy to a final state s,. Of course, there might be many intermediate
states between sy and s, but only the initial and final states can be accessed by other
operations. The (superfluous) label 7 indicates that this transition is performed by the
operation. In the presence of interference, a computation not only includes steps of
the operation, but also steps from its environment (other operations). If the latter are
labelled with ¢, a computation can be represented by a sequence of transitions

5025 sy
where each label [; is either 7 or ¢; computations that terminate have a finite number of
m-labelled steps.!

Usually, termination in an acceptable state can only be ensured under assumptions
about the initial state. In specifications of sequential operations, such assumptions are
recorded in a pre condition, whereas the commitments of the operation (definition of
acceptability) are recorded in a post condition. It is understood that the commitments
are to be fulfilled when the assumptions are satisfied. Termination of an interfering
operation in an acceptable state also requires assumptions about the initial state but this

'Whether these are finer or coarser grained steps is a key issue that is discussed further below;
meanwhile the steps are referred to as the visible steps of an operation.

is not sufficient: one also needs assumptions about the interference from other operations
(e-labelled steps). Indeed, nothing reasonable can be expected from an operation whose
environment modifies the state in an arbitrary way.

The use of assumption/commitment specifications in the development of concurrent
systems 1s not restricted to the formalism discussed in this report: other examples are
[AL93, BK85, Col94, JT95, KR93, MC81, PJ91, Sta86, ZdBdR84]. Some of the method-
ological issues raised in this report hopefully spread across examples and formalisms but
the case study is only representative of one specific class of shared-state operations. In
general, operations have both an input/output behaviour and a reactive behaviour. The
former determines the result of an operation in terms of its inputs whereas the latter
describes the way it interacts with other operations. This research focuses on operations
for which the input/output behaviour is more important than the reactive behaviour;
what really matters for these operations is their final result. Any classification is highly
debatable but a possible characterisation is that, in the absence of interference, the same
operations should be meaningful and specifiable with pre and post conditions. The case
study illustrates this. Section 2 gives specifications for both the sequential and the inter-
fering versions of the same operations; the latter are inevitably more sophisticated than
the former but in both cases, what really matters is the input/output behaviour.

Section 2 illustrates the use of rely and guarantee conditions with top-level specifi-
cations from the case study; a brief sketch of the development is also given. No novelty
appears in Section 2; in particular, the specifications are subject to substantial improve-
ment —in accordance with the suggestions made— in the remainder of the report. Visible
steps are defined in Section 3. Next, the use of data invariants and other useful invariant
properties is advocated in Section 4. Finally, recommendations on writing specifications
and on the refinement of operations towards code are proposed in Sections 5 and 6 re-
spectively.

A warning. Sections 3 to 6 make constant use of excerpts from the case study sketched
in Section 2. Although the report is intended to be self-contained, interested readers can
find an account of all the development steps (from specifications to code) in the appendix.
Proof obligations, hence proofs, are omitted.

2 Introduction to the Case Study

The problem of recording equivalence classes over a (finite) set T of elements occurs in
a variety of contexts from controlling equivalent part numbers in manufacturing appli-
cations to tracking equivalence classes in cryptography. The two basic operations are
TEST(a,b) that tests if @ and b are elements of the same class and EQUATE(«a, b) that
merges the equivalence classes of @ and b into a single class. An efficient implementation
~both in terms of space and time— can be based on a representation which records equiv-
alence classes as trees (one tree per class); there are various proposals for keeping the
path lengths short within trees, and here a new operation CLEANUP(a) that shortens
the path from «a to its root in the tree is added.

The representation by trees and the introduction of the CLEANUP operation are
clearly insights in the development; but this case study has been carried out without
other insights than these. The deliberate ignorance of previous solutions and the hunger
for interfering operations actually led to tackling a more general problem. The com-
plexity of this problem increases with the degree of concurrency. In the absence of
interference, algorithms for the operations can be designed quite easily, with the usual
care for extreme cases in searching data structures. The task becomes more complex
when CLEANUP interferes with EQUATE or TEST, by modifying the inner structure of
trees. This development goes further in that it also permits the concurrent execution of
TEST and EQUATE, and the concurrent execution of several instances thereof. During
their execution, operations thus access trees which are reshaped and merged by others.
Although the usefulness of such a high degree of concurrency is debatable, it provides
a sufficiently complex problem to raise issues about the practicability of a development
method.

In model-oriented developments, operations are first specified over an abstract state
space, which is then progressively reified into more concrete ones until all operations are
specified in terms of implementable data structures. This section gives specifications of
TEST and EQUATE on abstract states. The unique state component is p: T-partition
where

T-partition = {p € (T-set)-set | is-partition(p)}.

The type invariant is-partition(p)? indicates that the union of the sets in p is T and
that sets are disjoint; each set in p records an equivalence class on T'. VDM specifications
for the sequential version of TEST and EQUATE are given first; rely and guarantee
conditions are then introduced to cope with the concurrent execution of several instances
of TEST with several instances of EQUATE.

2.1 Sequential Operations

Sequential operations can be specified by pre and post conditions; hooked variables in post
conditions refer to the initial state. Those elementsin the same class as @ in p are denoted
by P-class(a, p); the predicate P-equiv(a, b, p) stands for P-class(a,p) = P-class(b, p).
Specifications P-TESTy and P-EQUATE, should not require further explanation®.

P-TESTy (a: T,0:T) t: B

rd p : T-partition
post t & P-equiv(a,b,p)

P-EQUATEq (a: T,0: T')
wr p : T-partition
post p = (p \ {P-class(a, p), P-class(b, p)}) U {P-class(a, p) U P-class(b, p)}

2Omitted definitions can be found in the appendix.
3Specifications are prefixed and subscripted; undecorated names are reserved for informal references
to operations; collections of states and operations could be collected into VDM modules.

4

Note on data invariants. At this abstraction level, a state is a partition of T and
thus there exists no ‘state’ in which two sets in p have a non-empty intersection. Never-
theless, this does not exclude an (inefficient) implementation of EQUATE that first copies
all elements of one set into the other and then destroys the first set, thus creating inter-
mediate sets with a non-empty intersection. The correctness of this implementation can
be formally justified by a reification of the state space that removes the data invariant
is-partition(p) and adds it as a conjunct to the pre and post conditions of EQUATE. A
‘representation’ state is then just a set of sets in T but those sets must form a partition
when the operation terminates. In this sequential setting, data invariants can thus be
considered as pre and post conditions.

2.2 Interfering Operations

Because of the (potential) concurrent execution of EQUATE, equivalence classes might
be merged during the execution of TEST, and during the execution of another instance
of EQUATE too. The high degree of interference is more apparent when equivalence
classes are represented by trees (roots change, the inner structure of trees change), but
interference can already be specified, hence better understood, at this abstraction level.

Consider the specification P-TEST; below, where the keyword ext indicates that p can
be modified by other operations. Its rely condition asserts that classes only grow. This
rely condition is thus an assumption about the interference of the environment (other
operations) during the execution of TEST. It is interpreted as a reflexive and transitive
binary relation that characterises any pair of states linked by an uninterrupted sequence
of e-labelled steps in a computation.

P-grows(py,p2) & Va:T - P-class(a, p1) C P-class(a, ps)

P-TESTy (a: T,0:T) t: B

ext rd p : T-partition

rely P-grows(p,p)

post (P-equiv(a,b, p) = t)A(t = P-equiv(a,b,p))
An operation is only required to terminate and satisfy the post condition if the pre
condition holds initially and the rely condition holds for all e-labelled steps. Interference

is thus explicitly specified but, as for the specification P-TEST, (without interference),
the important part is the input/output behaviour. The post condition now consists of

e a sufficient condition that forces t to be true if @ and b were members of the same
class when the operation started; and

e a necessary condition that allows ¢ to be true only if @ and b are members of the
same class when the operation terminates.

The result of the operation cannot be determined in the case where the classes of ¢ and
b are initially disjoint and then merged by a concurrent execution of EQUATE. Wrong
post conditions can often be detected by the mandatory proof obligation that requires
them to be preserved by interference. In this case, the proof obligation is

Do, P1, p2: T-partition
(P-equiv(a,b,po) = t)AN(t = P-equiv(a,b,pr))
P-grows(pi, p»)

(P-equiv(a,b,po) = t)AN(t = P-equiv(a,b,ps))

where the subscripts 0, 1, and 2 refer to the initial state, a possible final state, and
another final state after additional interference from other operations. Note that, in the
presence of arbitrary interference (i.e. no rely condition), the result would be absolutely
unpredictable. In contrast, if no interference is allowed (i.e. a rely condition of p =),
the post condition of P-TEST; reduces to the post condition of P-TESTj.

The counterpart of the rely condition is the guarantee condition which specifies the
interference to others caused by an operation; this is what other operations may rely
upon. This guarantee condition is interpreted as a reflexive binary relation that holds
for all m-labelled steps in a computation. Together with the post condition, it forms
the commitments of the operation to its environment. There is no explicit guarantee
condition in P-TEST; above but the mode restriction rd p guarantees that no step of the
TEST operation modifies p. A guarantee condition appears in P-EQUATE;: it asserts
that classes only grow and no other classes than those of a and b can be modified by
steps of the operation.

P-EQUATE; (a: T,0: T)

ext wr p : T-partition

rely P-grows(p,p)

guar P-grows(p,p) A
let rest = T\ (P-class(a, p) U P-class(b, p)) in
Ve € rest - P-class(e, p) = P-class(e, p)

post P-equiv(a,b,p)

Here again, this specification can be shown —in the absence of interference— to specialise
to the non-interfering case (P-EQUATE,): the argument relies on the guarantee condition
as well as the post condition.

Coexistence. Whenever two operations are intended to be executed in parallel, there
is a coexistence proof obligation on their specifications by which it is verified that the
interference caused by one operation is allowed by the other. In this case, several instances
of TEST can be executed in parallel with several instances of EQUATE because TEST
is a read-only operation and the guarantee condition of P-EQUATE, implies the rely
conditions of P-EQUATE; and P-TEST;.

2.3 Data Reification

The recording of equivalence classes in a representation based on trees is captured by
the reification of partitions into forests. The concrete state contains a single component
J: T-forest that maps? each (non-root) element to its father in the tree. The type invariant
is-forest(f) prevents f from containing cycles.

T-forest = {feT =T | is-forest(f)}

Each tree in f represents an equivalence class. Those elements in the same tree as a
are denoted by F-class(a,f); F-equiv(a,b,f) stands for F-class(a,f) = F-class(b, f);
is-root(a, f) indicates that a is a root in f; ancestors(a, f) is the set of elements on the
path from a to its root (@ not included).

Partitions can be easily retrieved from forests:

p = {F-class(a,f) | a € T Nis-root(a,f)}.

In a second stage of reification, the forest is implemented by an array m from T to
T; m(a) = a indicates that a is a root; the set of roots in m is rts(m). This step merely
consists of technical manipulations that transform the type invariant is-forest into a state
invariant on directly implementable data structures (arrays). The new data invariant is
then

m-is-forest(m) 2L is-forest(rts(m) < m)

and the forest retrieved from m is fr(m).

fr:T-array — T-forest
fr(m) L& rts(m)<gm

pre m-is-forest(m)

2.4 Operation Refinement

First, the specifications of TEST and EQUATE over partitions are refined into operations
over forests and a new operation CLEANUP is added. Next, operation refinements are
carried out at the forest representation level. The resulting elementary operations (e.g.
move up in the tree, connect two elements) are then translated into operations on the
array m, which in turn are refined into code.

A typical operation refinement, which is often referred to in the sequel, is shown in
Figure 1. Equivalence classes of a and b can be merged in a sequential EQUATE operation
by computing their roots and connecting them. But this simple algorithm must be revised
to cope with interference from concurrent EQUATE operations that might turn roots into
inner elements of new trees. In this development of EQUATE, interference is allowed
during the computation of roots but is precluded by a protect mechanism during the

“The VDM notation m: A — B indicates a finite map m with domain type A and range type B; <
is the operator for domain subtraction (dom s ¢ m = dom m \ s).

local z,y: T;¢:B in
T, Y= a,b
repeat
F-ROOT;(z)||[F-ROOT:(y);
protect f in F-TEST-AND-CONNECT;(z, y, 1)
until ¢
end

Figure 1: Decomposition of F-EQUATE;

TEST-AND-CONNECT operation. This operation checks (with result in ¢) if two elements
are roots at the same time; in case t = true the operation connects one element to the
other and the loop in Figure 1 terminates. Detailed specifications of these operations are
purposely postponed to Section 5 but impatient readers can always consult the appendix
for an account of all specifications and development steps.

3 Visible Steps

The question of granularity arises as soon as interference is discussed; a detailed intro-
duction to this problem with examples can be found in [MP92]. In this context, the
question amounts to what are the w-labelled steps in a computation. This directly af-
fects the interpretation of the guarantee condition of an operation (and of course the rely
conditions of others). As discussed in next section, this also affects the interpretation of
invariants.

A visible step of an operation is one that produces values relevant to other operations.
These include the initial and the final values of its shared (non-local) variables (relevant
for sequential composition) but must also encompass every public intermediate value of
its shared variables. Each occurrence of a variable in the code of an operation can indeed
be classified as either public or private [MP92]. An occurrence of a shared variable is
private if the variable cannot be accessed by a concurrently executed operation, e.g. when
it appears inside mutually exclusive code sections.

In this case study, all occurrences of the array m in the code are public and thus
each assignment to m is a visible step. This however does not mean that all assignment
statements are executed atomically. For example, a crucial assignment statement for
detecting the termination of the computation of roots is r:= (m(z) = z). This statement
has been safely introduced in the development with the assumption that other operations
may interfere (and modify m hence the truth value of m(z) = z) between the read
and write memory accesses; r and z are local variables. Imposing atomicity for all
assignment statements would require a lot of synchronisation overhead to implement
them (see e.g. [And91]). Such overheads should only be incurred when required and
specified by the designer (e.g. using atomic brackets). The evaluation of expressions is
not assumed to be atomic either: the expression m(x) = ¢ A m(y) = y in the actual code

of TEST is not supposed to be executed atomically but enough synchronisation has been
introduced during the design to ensure that other operations may read but not modify
m when this statement is executed.

4 Invariants for Interfering Operations

A development method is helpful only if it helps master the inherent complexity of a
problem. The use of rely and guarantee conditions favours local reasoning but the first
draft versions (not shown in this report) of the specifications of TEST and EQUATE
were still too complex, hence their subsequent modification. Essentially, their gratuitous
complexity was due to the lack of invariant properties. This section first discusses the
application of data invariants (in the style of VDM) to interfering operations; it then
introduces a new kind of invariant property.

4.1 Data Invariants

Without doubt, it is much easier to view is-forest as a data invariant rather than to
repeat this predicate in almost every condition of each specification and in the pre con-
dition of auxiliary functions (is-root, ancestors, ...). Explicit data invariants also bring
insight to the problem. Data invariants are helpful in the development of sequential
operations[Jon90] and remain so in the development of interfering operations.

In the specification of sequential operations, data invariants can be considered as
implicit pre and post conditions on all operations on the state space. Since the initial
and final values are the only visible values of a sequential operation, this means that
data invariants are required to hold for all visible values of an operation. Remarkably,
this is conceptually the same for interfering operations. Data invariants are still required
to hold for all visible values; there are just more visible values than the initial and final
ones. Preservation of an invariant by visible steps can thus be considered as an implicit
guarantee condition on all operations (hence a rely condition as well). In this case study,
the preservation of the invariant is ultimately verified for the assignments to m, one in
EQUATE, and one in CLEANUP.

4.2 Evolution Invariant

Although helpful, data invariants are not enough. The complexity of a development can
be further reduced by the use of another invariant property. It should be clear from the
examples in Section 2 that the relation P-grows(p, p’) holds for any pair of states where
p’ follows p in a computation (no matter whether the intermediate steps are operation
or environment steps). This relation between computation states can be recorded by an
evolution invariant, that should appear just next to the data invariant, in the data part
of a specification.

ev-T-partition(py, p;) 2 P-grows(py, ps)

This evolution invariant can be interpreted as a reflexive and transitive binary relation
that characterises any pair of states in a computation of any operation, no matter whether
the steps that separate them are 7 or e-labelled. The evolution invariant can be viewed as
an implicit guarantee condition on all operations, and thus an implicit rely condition as
well. As illustrated by P-EQUATE,, the evolution invariant does not have to be repeated
in the individual specifications.

P-EQUATE, (a: T,0: T)

ext wr p : T-partition

guar let rest = T\ (P-class(a, p) U P-class(b, p)) in
Ve € rest - P-class(e,p) = P-class(e, p)

post P-equiv(a,b,p)

At the forest representation level, the evolution invariant records the fact that not
only do classes grow but also trees can only shrink. No descendant of an element later
becomes one of its ancestors, but new ancestors may still appear due to the possible
merging of trees. The proof obligation that the evolution invariant on forests implies the
one on partitions is easily discharged.

ev-T-forest(fi,) 2 F-grows(fi,) A F-shrink(fi, f2)

where

F-grows(fi, ;) & Va:T-F-class(a, fi) C F-class(a, f)
F-shrink(fi,f2) 2 Va: T - ancestors(a,f,) N F-class(a, f;) C ancestors(a, f,)

The evolution invariant at the array representation level just mimics the previous one:
ev-T-array(my, my) 2 ev-T-forest(fr(my), fr(ms)).

With computations restricted by ev-T'-forest, the three operations on forests are spec-
ified below. The guarantee condition in F-EQUATE, ensures that equivalence classes are
merged only by connecting the root of a tree to another tree. The rely condition of
F-CLEANUP; is not an evolution invariant because some steps of CLEANUP are obvi-
ously intended to modify the inner structure of trees. The same applies to its guarantee
condition (equivalence classes are untouched and nothing but f(a) changes) because f
can be modified by the environment in other ways.

bodyunch(fi,) & VYa:T-=is-rool(a,f) = —is-root(a,fy) A fp(a)= fi(a)
rootunch(fi,f,) £ Va:T-is-root(a,f) & is-root(a,f)

F-TESTy (a: T,6:T) t:B
ext rd f : T-forest

post (F—equiv(a,b,?) = t)A(t = F-equiv(a,bd,f))

10

F-EQUATE; (a: T,0: T)
ext wr f : T-forest

guar bodyunch(?,f) A
let rest = T\ (F-class(a, 7) U F-class(b, 7)) in

Pa—

Ve € rest - F-class(e, f) = F-class(e,)
post F-equiv(a,b,f)

F-CLEANUP; (a: T)
ext wr f : T-forest

rely bodyunch(?,f)
guar rootunch(?,f) Nal<af={a}<a ?
post —is-root(a, 7) A ﬁis—root(T(a), 7) = fla) # 7(“)

The mandatory proof obligation that requires post conditions to be preserved by inter-
ference again increases confidence in the specifications. Its formulation for F-CLEANUP,
reveals the role of the evolution invariant as both a post condition and a rely condition:

fo, fi, fo: T-forest
ev-T-forest(fo, i), ev-T-forest(f1, f2)
—is-root(a, fo) A —is-root(fo(a), o) = fila) # fo(a)
bodyunch(fi, f2)
—is-root(a, fo) A —is-root(fo(a), o) = fla)# fola)

Evolution invariants are not a novelty per se. Predicates that appear in the rely
and guarantee conditions of all operations were already emphasised in [Stg91] (called
there binary invariants). As explained in Section 5, there are advantages in moving
them from the specifications of individual operations into the specification of the shared
state. In fact, even the idea that properties of all computations can be attached to

the definition of a state is not new. The state specification modules of [Mid93] include
a dynamic constraint which is a temporal formula. Interestingly —in the detailed case
study of [Mid93]- the temporal formula has precisely the form of an evolution invariant.

5 Writing Specifications

Based on lessons learned from the case study, this section presents a few guidelines on
writing specifications. To understand their impact, there is some incentive to present
a ‘bad’ specification of ROOT first. This operation is introduced in the development of
both TEST and EQUATE.

11

BAD-ROOT,
f o T-forest
z T

Pa— Pa—

rely 2 = 7 A (connect(f ,f)V shorten([,f))

guar f = f Az =[(7)
post F-equiv(z , 2, f) A is-root(z, 7)

The predicates connect and shorten in the rely condition capture the interference
from EQUATE and CLEANUP respectively.

connect(fi,) 2 Va:T-fi(a) # fi(a) = is-root(a,fi) A — F-equiv(a, fr(a),fr)
shorten(fi, f2) 2 Va:T-f(a)# fila) = depth(a, fy) < depth(a,fr)

The first drawback of BAD-ROOTy lies in its rely condition which focuses on other
operations rather than on the assumptions needed by ROOT. The second drawback is
the occurrence of z in the rely and guarantee conditions. No other operation is accessing
z during the execution of ROOT and there should be no need to say anything about
interference on z. Mentioning 2z in the guarantee condition has another nasty impact
on subsequent developments: BAD-ROOT, can only implemented by an operation that
computes the new value of z (going up the tree) in an atomic step. A careful analysis of
the actual code developed from a better specification reveals harmless situations where,
because of interference, the new value of z is not an ancestor of its old value. This
unnecessary constraint on granularity is thus a third drawback of BAD-ROOTy. Its fourth
drawback is the lack of a clear indication that ROOT is a read-only operation on f; there
should be no guarantee condition at all. In fact, the actual specification of ROOT has
no rely condition either: all needed assumptions on interference are already captured by
the evolution invariant. Although a bad specification, BAD-ROOTy is not the worst one:
data invariants could be neglected and f be just a map from T to T, instead of a forest.

Moving away from this bad example, the rest of this section investigates methodolog-
ical issues in writing rely-guarantee specifications. New examples are given but of course
all specifications from Section 4 should be considered as ‘good’ examples too.

5.1 Usefulness of the Invariants

Data and evolution invariants do not increase the expressive power of specifications be-
cause they can be otherwise incorporated into specifications. Indeed, the data invariant
holds initially (pre condition), is preserved by visible steps (rely and guarantee condi-
tion) and thus holds upon termination (post condition); the evolution invariant holds for
every pair of visible steps (rely and guarantee condition) and by transitivity holds upon
termination (post condition).

12

Yet, data and evolution invariants are not just syntactic sugar: they each bring in-
sight into the problem. Having those invariants in mind helps the process of writing
specifications. Interesting properties can also be deduced from the invariants. Typical
examples are the irreversibility of the transformation of forests and the impossibility for
new roots to be created:

fis fay f5: T-forest a: T, fi, fo: T-forest
ev-T-forest(f1, f2), ev-T-forest(fz, f5) ev-T-forest(f1, f2)
h=h is-root(a, f2)
L=h is-root(a, fi)

The many roles of the evolution invariant (rely, guar, and post conditions) are especially
useful in proofs. The first premise of most proofs is usually a list of state components, e.g.
fo, fi, Jo: T-forest. The states in consideration can be the initial state, the intermediate
state in a sequential composition, the states before and after a visible step of the operation
(proof obligations for guarantee condition), a potential final state and a new one due to

interference, etc. In all cases, they represent successive states in a computation and this
means that

ev-T-forest(fo, i), ev-T-forest(f1, f2), ev-T-forest(fo, f2)

can be freely used anywhere in the proof, just as

is-forest(fo), is-forest(f1), is-forest(fz)

can be. Automatic inheritance of those predicates is convenient in proofs. A typical
proof step is the verification of F-equiv(a,b, f;) from F-equiv(a,b, fi) knowing that f
occurs after fi, e.g. when a suboperation and environment steps occur in between. This
proof follows easily from F-grows(fi, fz). The predicate F-shrink(fi,f2) is typically used
to prove (is-root(a,f;) = t) from (is-root(a,fi) =) when f, follows f;. Without
explicit invariants, those predicates would have had to have been reconstructed separately
from the guarantee conditions of the suboperations and from the overall rely condition.

In conclusion, although data and evolution invariants could be incorporated in the
individual specifications of the operations, what eases the development process is precisely
avoiding thinking about them in terms of assumptions and commitments. Invariants
should be considered as given and available for free use in writing and reasoning about
specifications. The same philosophy is adopted in [MV90]: the use of invariants in the
design should be separate from their ultimate verification. How the latter is carried out
is addressed in Section 6.

5.2 Enriched Mode Restrictions

Write-mode restrictions on variables can be understood as commitments of the operation:
no other variables can be modified. Read-mode can be interpreted in several ways [Bic92];
in this case study, all variables that can be accessed but not modified by the operation
are required to appear with read-mode; non-mentioned variables cannot be accessed by
the operation. The mode restrictions also play a syntactic role: only the variables in

13

write-mode can be hooked in post conditions of sequential operations. However, in the
presence of interference, it makes sense to use the hooked version of read-mode variables
in post conditions because these might have been modified by the environment during the
execution; P-TEST; in Section 2 is a typical example. This reveals an asymmetry in the
use of mode restrictions: they give commitments of the operations but no assumptions on
the environment. To compensate for this, the rd and wr mode restrictions are enriched
with:

e the keyword ext (external) if the variable can be modified by the environment;

e the keyword ptec (protected) if the variable can be accessed but not modified by
the environment;

e the keyword prv (private) if the variable cannot be accessed by the environment.

The result variables of an operation are implicitly of mode prv wr. The use of ext and
ptc mode restrictions was already advocated in [Stg91]; the novelty here is the explicit
distinction between protected and private variables.

Mode restrictions are well illustrated by the decomposition of F-EQUATE, in Figure 1
(Section 2) that introduces the specifications F-ROOT; and F-TEST-AND-CONNECT);.
The former is used in a context where z is private and the latter is used in a context where
f is protected; there are concurrent instances of ROOT in Figure 1 but the variables and
y match a prv mode because each of the two concurrent instances of ROOT manipulates
only one of these variables.

F-ROOT,
ext rd f : T-forest

prv wr z @ T

Pa—

post F-equiv(z , 2, f) A is-root(z, [)

F-TEST-AND-CONNECT, (¢,d: T) t:B
ptc wr f . T-forest
guar bodyunch(?,f) A
let rest = T\ (F-class(c, 7) U F-class(d, 7)) in
Ve € rest - F-class(e,f) = F-class(e, 7)
post (t & is-root(ec, 7) A is-root(d, 7)) A(t = F-equiv(c,d,f))
With richer mode restrictions, information on interference can be better organised.
First of all, only external variables have to be taken into account when the effect of

environment steps has to be considered (e.g. in writing post conditions or in the proof
obligations related to interference). Tool-supported proof obligations become simpler

14

because mode restrictions identify which variables are kept unchanged by environment
and/or operation steps and automatic substitution of equals simplifies proofs significantly.

Mode restrictions also play a syntactic role by restricting the set of variables whose
names may occur free in the various parts of a specification. It is first observed that
protected variables should not appear hooked in rely conditions because none can be
modified by the environment. Private variables should not appear in the rely and guar-
antee conditions because those characterise visible steps and the intermediate values of
private variables are invisible to other operations. As one would hope, this implies that
operations on private variables have pre and post conditions only; these are indeed se-
quential operations and thus sequential reasoning should be the standard.

5.3 Predominance of the Post Condition

Since both the guarantee and the post condition are commitments of the operations,
there can be a debate about where to put some information. For the considered class
of problems (when the input/output behaviour is more important than the reactive be-
haviour), preference should be given to the post condition. In other words, the guarantee
condition should be used for what it is intended, i.e the commitments of the operation
to interference, nothing else. This policy prevents overspecification in the guarantee con-
dition and consequently reduces the risk of unnecessary constraints on granularity. It
is partially enforced by the syntactic constraints due to mode restrictions (no private
variables in the guarantee condition).

5.4 Interference and Post Conditions

As the reader might have experienced in reading post conditions, these are inherently
weaker and more sophisticated than their counterparts for sequential operations. A typi-
cal example is given by P-TEST; in Section 2; the same pattern (sufficient and necessary
condition) can be found in F-TEST-ROOT;, which is used in the termination condition
of a loop in the development of F-ROOT;.

F-TEST-ROOT; (a: T) t:B
ext rd f : T-forest

Pa—

post (is-root(a,f) = t)A(t = is-root(a, [))

Overly restrictive post conditions can make the specifications impossible to implement
because of interference from other operations. Specification F-ROOT; shown earlier has
a non-trivial post condition too; the naive post-condition is-root(z, f) is unsatisfiable in
a concurrent environment that merges trees. This mistake would be revealed by (the
failure of) the most important proof obligation on specifications: the preservation of the
post condition by interference.

15

5.5 Reasoning about Specifications

The proof that the post condition is preserved by interference creates confidence in the
specification. But, as for the specifications of sequential operations, more confidence
can be gained by establishing further properties of specifications. A typical check for
interfering operations is to consider how the post condition simplifies in the case of less
interference. For instance, the fact that z is the root of ¢ in f easily follows from the
post condition of F-ROOT; if f is not subject to interference. A less trivial example is
given by the specification F-CLEANUP;. If the class of a is merged with another class
during its execution, CLEANUP might connect a to an element in that new class. But
suppose that the equivalence class of a is preserved throughout the computation (ii);
then, one may verify that the operation effectively shortens the path from a to its root
(v), if possible (ii¢). Premise (iv) is the post condition of F-CLEANUP;. This validation
thus additionally shows that the evolution invariant (i) can also be thought of as a post
condition.

(i) a:T;fo,fir T, ev-T-forest(fo, f1)

(ii) F-class(a,fr) = F-class(a, fo)

(iii) —is-root(a, fo) N\ —is-root(fo(a), fo)

(iv) —is-root(a, fo) N —is-root(fo(a), o) = fila)# fola)
(v) fila) € ancestors(fo(a), fo)

The proof is as follows:

(1) ancestors(a,fy) C F-class(a, f1) by (i), def(s)

(2) F- shrmk(fo,fl) by (i), def(s)

(3) ancestors(a,fy) N F-class(a, fo) C ancestors(a, fo) by (2),def(s)

(4) ancestors(a, fy) N F-class(a, fi) C ancestors(a, fo) by (i), (3)

(5) ancestors(a, f1) C ancestors(a, fy) by (1),(3)

(6) —is-root(a fl) by (ii),(2)

(7) fila) € ancestors(a, fi) by (i), (6),def(s)

(8) fi(a) € ancestors(a, fo) by (5),(7)

9) fla) % ila) by (i), (iv)
(10) ancestors(a, fo) = {fo(a)} U ancestors(fo(a), fo) by (i), (¢ii), def(s).

(v) fila) € ancestors(f(a)) by (8),(9),(10)

All specifications make an intensive use of auxiliary functions (ancestors, bodyunch,
etc). It is recommended [Jon79] to use them to develop a ‘theory’ of the data types
involved. This not only simplifies proofs but also improves the designer’s understanding
of the problem.

16

protect m in

b= (m(x) =z Am(y) = y);

if t A # y then m(z): = y endif;
end

Figure 2: Pseudo-code with critical sections

5.6 Transitivity

The verification that the evolution invariant and the rely conditions are transitive is an-
other useful proof obligation. An error in the development was spotted quite late because
that proof obligation had been postponed. Indeed, the evolution invariant prevents the
situation where the computation of roots does not terminate because of interfering oper-
ations that, for example, first connect an element a to an element b, then connect b to
a. In a preliminary development (without evolution invariant), the rely condition was

F—grows(?,f) A (Va,b: T - a € ancestors(b, 7) = b ¢ ancestors(a,f))

but this fails to prevent that situation because it is not transitive; any subsequent proof
using rules based on the transitivity of the rely condition is thus wrong.

6 Towards Code

The previous section was devoted to guidelines on writing specifications. How a specifica-
tion is written obviously influences its subsequent development towards code but further
comments can be made. Those presented in this section can only be subjective and in-
complete; in particular, only comments that are specific to the treatment of interference
are included.

6.1 Control over interference

As illustrated by the examples in previous sections, specification of interference is part of
the design method. But not only can interference be specified; it can also be controlled.
The search for the most adequate mechanisms to control interference in general is beyond
the scope of this work but some are of course needed in the examples. This case study uses
the protect mechanism that prevents the environment of an operation from modifying
state components (no e-labelled step modifies them). This mechanism is not assumed to
be part of the programming language, and the decision on how to implement it has in
fact been postponed.

The protected section of Figure 1 (around F-TEST-AND-CONNECT,) is eventually
developed into the pseudo-code of Figure 2. Protection prevents other operations from
modifying m and this ensures that

1. the same m is accessed twice in the expression m(z) =« A m(y) = y;

17

2. x and y are still roots in m when the connection occurs.

Nevertheless, m can still be accessed (but not modified) by other operations (e.g. TEST),
even between the two accesses to m in the Boolean expression. Thus, the assignment
statements in Figure 2 are not assumed to be executed atomically.

Critical sections are well known in concurrent programming (e.g. [And91]). The key
issue 1s that such critical sections should not appear all of a sudden in the final code.
They can be introduced during the design. This protect mechanism has been intro-
duced (cf. Figure 1) in the early refinement of EQUATE(a, b) before the specifications
F-ROOT; and F-TEST-AND-CONNECT; were further developed. Such control informa-
tion is recorded by the mode restrictions introduced in Section 5 and a specification like
F-TEST-AND-CONNECT; can be subsequently developed without worrying about write
accesses from the environment. Mode restrictions propagate through the design to the
final code: whether the occurrence of a variable in the code is protected or not follows
from the design.

Control over Granularity. The protect mechanism does not enforce mutual exclu-
sion in that other operations have read-access to the shared state components. If mutual
exclusion (or atomic execution of an assignment statement) was required, then this should
also be introduced explicitly during the design. Such a mechanism was introduced in a
first attempt to implement TEST-AND-CONNECT but this appeared to be a bad design
decision. Indeed, if m appears in any section where read access is forbidden, implemen-
tation of that critical section will require synchronisation overhead to be added before
and after every access to m, including in the much executed ROOT operation.

Easiness versus efficiency. Control over interference can be necessary: roots should
not be connected by other operations between the ‘test” and ‘connect’ parts in Figure 2:
protecting each part separately is not sufficient. At the other extreme, the development
of EQUATE would have been easier if the whole body of the operation was under the
scope of a protect mechanism. This would however drastically restrict concurrency! In
this development, the computation of roots, which is probably the most time-consuming
part of the execution of EQUATE, can be executed concurrently with any other operation.

Suppose that protect is implemented by a readers and writers protocol®. Then the
only synchronisation overhead is: a reader protocol around one test in TEST (after the
computation of roots), a writer protocol around the code for TEST-AND-CONNECT inside
EQUATE, and a writer protocol around the only assignment statement of CLEANUP.
There is no synchronisation overhead in the computation of roots.

The writer protocol around the assignment in CLEANUP is of special interest. Its
presence is due to the implementation of the protect mechanism in other operations.
This mechanism made the development of TEST-AND-CONNECT easier, but the loss of
efficiency in CLEANUP seems excessive: protection is against the destruction of roots
and the guarantee condition in F-CLEANUP; ensures that roots are unchanged. Thus,

®Details in the appendix.

18

on the one hand, the current formal development improves confidence in a safe removal
of the synchronisation overhead in CLEANUP. But, on the other hand, it is unclear how
to do it formally, in a cost-effective way.

Synchronisation and Compositionality. When the concurrent execution of sev-
eral instances of EQUATE was first considered, it seemed that the addition of explicit
synchronisation variables between the operations might be required. A fully composi-
tional development indeed requires each operation to be developed independently down
to machine code. But an attempt to add explicit synchronisation variables was quickly
abandoned, first because it was unclear how to choose the variables, and second because
this would have implied adding all ‘protocol information” in specifications and carry all
those complications through the development. An easier development that ends up with
(perhaps less efficient) pseudo-code like that in Figure 2 is preferred.

6.2 Introduction of Code

As illustrated in Figure 1, language constructs (loop, ’;’, assignment statements) appear
early in the development. This of course biases the development towards imperative
programming languages, but those are the target languages, at least for the code of
the individual operations. How those operations are actually activated (procedure call,
message passing, etc.) is not considered in this development.

But the most interesting feature is the introduction of assignment statements. Most
often, it is much easier to introduce an assignment statement than to describe it by a speci-
fication. A description of z, y: = a, b in Figure 1 with guarantee and post conditions is un-
necessarily opaque. A similar remark holds for the development of the elementary specifi-
cations M-CONNECT-TO-ANCESTOR, (used in CLEANUP) and M-CONNECT-ROOTS;
(used in EQUATE) into the assignment statement m(a):= b. There is no need for any
intermediate specification that would try to mimic the effect of the assignment statement
in the guarantee condition. This is in accordance with the suggestion of Section 5 that
the effect of an operation should be specified in the post condition rather than in the
guarantee condition.

M-CONNECT-TO-ANCESTOR; (a,b: T)
ext wr m : T-array

pre b € ancestors(a, fr(m))

rely bodyunch(fr(m), fr(m))

guar ris(m) = rts(m)A{a}<sm={a}<am
post m(a) =10

M-CONNECT-ROOTS; (a,b: T)

ptc wr m : T-array

19

pre a # bAa € rts(m)ANb e rts(m)

guar bodyunch(fr(m), fr(m)) A
let rest = T\ (F-class(a, fr(m)) U F-class(b, fr(m))) in
Ve € rest - F-class(e, fr(m)) = F-class(e, fr(m))

post m=m f{a b}V m="m1{b— a}

The proof that the implementation of those specifications by m(a): = b is correct proceeds
by taking into account interference from the environment before m is assigned to; the
interference after termination of the assignment statement has already been captured by
the proof obligation on the post condition. Three values of m can then be identified: the
initial value mg, the value my just before m is assigned to, and the value my just after
it is assigned to. The pre condition characterises mg, the rely condition characterises
the transitions from mg to my, and the transition from m; to my is characterised by
my = my 7 {a — b}. As usual, all transitions are also characterised by the evolution
invariant and m-is-forest(m;) can be assumed for each i.

6.3 Verification of the Invariants

As illustrated by M-CONNECT-TO-ANCESTOR;, invariants could be expanded into the
individual specifications before assignment statements are introduced.

M-CONNECT-TO-ANCESTOR; (a, b: T')
ptc wr m : T-array
pre m-is-forest(m) A b € ancestors(a, fr(m))
rely m-is-forest(m) =
m-is-forest(m) A ev-T-array(m,m) A bodyunch(fr('m), fr(m))
guar m-is-forest(m) =
m-is-forest(m) A ev-T-array(m,m) A rts(m) = rts(m) A {a} sm = {a} s m
post m(a) =10

But this does not help. Keeping the invariants outside the individual specifications until
code is introduced seems as easy. The preservation of invariants (between my and ms) by
the assignment statement is then to be verified first. There are only two such proof obli-
gations in this case study. The one for the refinement of M-CONNECT-TO-ANCESTOR;
into m(a): = b is:

mg, my, ma: T-array
m-is-forest(mg) N\ m-is-forest(my)
ev-T-array(mo, my)
a & rts(mo) N b € ancestors(a, fr(mg))
bodyunch(fr(ma), fr(m1))

my = m {{a b}

m-is-forest(my) A ev-T-array(mq, my)

20

Once this proof obligation is discharged, the invariants can be freely used in verifying
the guarantee and post conditions of M-CONNECT-TO-ANCESTOR;. Notice that a com-
mon pattern to all proofs related to assignment statements is to first show that the pre
condition is preserved by interference, that is to show b € ancestors(a, fr(my)) in this
case.

7 Conclusion

Rely and guarantee conditions have been proposed to handle concurrency while preserving
local reasoning in the development. Designed for the specification of interference, these
conditions can also be used in an anarchic way, by encoding as much information as
possible into them which quickly leads to intractable specifications. In contrast, despite
the high level of concurrency, this development makes a rather economic use of rely and
guarantee conditions: out of 11 specifications at the forest level, only 5 have an explicit
guarantee condition, and only 3 have an explicit rely condition. A development that tends
to generate many complicated rely and guarantee conditions is probably poorly organised
or indicates that the specified operations fall outside the considered class of problems. In
particular, the specification style in this report does not work well with operations whose
reactive behaviour is the most important feature; the use of other styles of rely /guarantee
specifications for the development of a non-trivial reactive system is illustrated in [IKR93].

Although rely and guarantee conditions favour local reasoning, this report empha-
sises the role of the invariants (data invariant and evolution invariant), which by nature
record global information. Therefore, local reasoning is not totally enforced because each
operation is not developed independently down to code: a data reification step (with
strengthening of the invariants) concerns all operations. But this is already the case
for data reification steps in the development of sequential operations in VDM [Jon90]
or B. The methodological importance of invariants in concurrency is not new; detailed
developments based on invariants can be found —for example- in [CM88, Gri93].

As mentioned in the introduction, theoretical aspects have been intentionally ne-
glected in the current paper. Expressiveness is one such aspect: an attentive reader should
have noticed that the only restriction to concurrency in this case study is the execution
of at most one instance of CLEANUP at a time. Concurrent execution of that operation
not only further complicates the development but also raises expressiveness problems: it
seems that the formulation of an adequate evolution invariant requires the use of history
determined auxiliary variables. Use of auxiliary variables with rely/guarantee specifica-
tions is detailed in [GNLI1, Stg91]. Auxiliary variables lead to clearer specifications than
nested temporal operators, but inappropriate use can lead to cumbersome specifications
too. At worst, rely and guarantee conditions could be reduced to an update of a history
variable that records all transitions in a computation and the post condition be then
expressed as a predicate on that history variable; guidelines for auxiliary variables are
thus required.

The design of appropriate proof rules for data reification with rely/guarantee condi-
tions is another theoretical aspect that deserves further work. Thanks to the evolution in-

21

variant, the problem of the appearance of new rely conditions with data reification [WD88]

does not occur in this case study but might appear in others.

References

[AL93]

[And91]

[Bic92]

[BKS85]

[CMSS]

[Col94]

[GNLY1]

[Gri93]

[JonT9]

[Jon81]

[Jon90]

Martin Abadi and Leslie Lamport. Composing specifications. ACM Trans-
actions on Programming Languages and Systems, 15:73-132, 1993.

Gregory R. Andrews. Concurrent Programming — Principles and Practices.
Benjamin/Cummings, 1991.

Juan Bicarregui. Operation semantics with read and write frames. In C.B.
Jones, R.C. Shaw, and T. Denvir, editors, 5th Refinement Workshop, pages
260-278. Springer-Verlag, 1992.

Howard Barringer and Ruud Kuiper. Hierarchical development of concurrent
systems in a temporal logic framework. In S.D. Brookes, A.W. Roscoe, and
G. Winskel, editors, Seminar on Concurrency, volume 197 of Lecture Notes
in Computer Science, pages 35—61. Springer-Verlag, 1985.

K.Mani Chandy and Jayadev Misra. Parallel Program Design — A Founda-
tion. Addison-Wesley, 1988.

Pierre Collette. Composition of assumption-commitment specifications in a
UNITY style. Science of Computer Programming, 23:107-125, 1994.

Peter Grgnning, Thomas (Qvist Nielsen, and Hans Henrik Lgvengreen. Refine-
ment and composition of transition-based rely-guarantee specifications with
auxiliary variables. In K.V. Nori and C.E. Veni Madhavan, editors, Founda-
tions of Software Technology and Theoretical Computer Science, volume 472
of Lecture Notes in Computer Science, pages 332-348. Springer-Verlag, 1991.

Pascal Gribomont. Concurrency without toil: a systematic method for par-
allel program design. Science of Computer Programming, 21:1-56, 1993.

Cliff B. Jones. Constructing a theory of data structure as an aid to program
development. Acta Informatica, 11:119-137, 1979.

ClLiff B. Jones. Development Methods for Computer Programs Including a
Notion of Interference. PhD thesis, Oxford University, 1981.

CLiff B. Jones. Systematic Software Development using VDM. Prentice-Hall
International, Second Edition, 1990.

22

[JT95]

[KR3]

[MC81]

[Mid93]

[MP92]

[MV90]

[PJ91]

[Sta86]

[Ste91]

[WDSS]

[ZdBdRS4]

Bengt Jonsson and Yih-Kuen Tsay. Assumption/guarantee specifications
in linear time temporal logic. In P.D. Mosses, M. Nielsen, and M.I.
Schwartzbach, editors, TAPSOFT 95: Theory and Practice of Software De-
velopment, volume 915 of Lecture Notes in Computer Science, pages 262-276.
Springer-Verlag, 1995.

Andrew Kay and Joy N. Reed. A rely and guarantee method for timed CSP:
a specification and design of a telephone exchange. [FEFE Transactions on

Software Engineering, 19:625-639, 1993.

Jayadev Misra and K.Mani Chandy. Proofs of networks of processes. [FEFE
Transactions on Software Engineering, 7:417-426, 1981.

Cornelis Middelburg. Logic and Specification — Fxtending VDM-SL for Ad-
vanced Formal Specifications. Chapman and Hall, 1993.

Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Con-
current Systems — Specifications. Springer-Verlag, 1992.

Caroll Morgan and Trevor Vickers. Types and invariants in the refinement
calculus. Science of Computer Programming, 14:281-304, 1990.

Paritosh K. Pandya and Mathai Joseph. P-A logic — a compositional proof
system for distributed programs. Distributed Computing, 5:27-54, 1991.

Eugene W. Stark. A proof technique for rely/guarantee properties. In
S.N. Maheshwari, editor, Foundations of Software Technology and Theoret-
ical Computer Science, volume 206 of Lecture Notes in Computer Science,

pages 369-391. Springer-Verlag, 1986.

Ketil Stglen. An attempt to reason about shared-state concurrency in the
style of VDM. In S. Prehn and W.J. Toetenel, editors, VDM’91: Formal
Software Development Methods, volume 551 of Lecture Notes in Computer
Science, pages 324-342. Springer-Verlag, 1991.

Jim C.P. Woodcock and B. Dickinson. Using VDM with rely and guarantee
conditions. In R. Bloomfield, L.. Marshall, and R. Jones, editors, VDM ’§8:
The Way Ahead, volume 328 of Lecture Notes in Computer Science, pages
434-458. Springer-Verlag, 1988.

Job Zwiers, Arie de Bruin, and Willem-Paul de Roever. A proof system
for partial correctness of dynamic networks of processes. In E. Clarke and
D. Kozen, editors, Logics of Programs, volume 164 of Lecture Notes in Com-
puter Science, pages H13-527. Springer-Verlag, 1984.

23

A Technical Summary

Types and auxiliary functions

1s-disj . T-set x T-set — B

is-disj(s1, $2) A 5 Nsy= {1}

is-partition : (T-set)-set — B

is-partition(p) JAN Up=TA{}¢pA(¥s1,52 € p 51 = sV is-disj(s1, $2))
T-partition = {p € (T-set)-set | is-partition(p)}

P-class . T x T-partition — T-set
P-class(a, p) A ysep-a€s

P-equiv : T 'x T x T-partition — B
P-equiv(a, b, p) JAN P-class(a, p) = P-class(b,p)

P-grows : T-partition x T-partition — B
P-grows(p1, p2) JA T P-class(a, p1) C P-class(a, p2)

in-cycles : (T 2+ T) — (T-set)-set
in-cycles(f) JAN {c:T-set | c CdomfAVe€ c-f(e) € c}

is-forest (T = T) — B
is-forest(f) & in-cycles(f) = { }

T-forest = {f € T 2% T | is-forest(f)}

F-class . T x T-forest — T-set
F-class(a, f) JAN {b] root(b, f) = root(a,f)}

F-equiv : T x T x T-forest — B
F-equiv(a, b, f) JAN F-class(a, f) = F-class(b, f)

1s-root . T x T-forest — B
is-root(a, f) JAN" ¢ dom f

24

ancestors : T x T-forest — T-set

ancestors(a, f) JANE 3 is-root(a, f) then {} else f(a) U ancestors(f(a),f)

depth : T x T-forest — N
depth(a, f) JANE 3 is-root(a, f) then 0 else 1+ depth(f(a),f)

F-grows : T-forest x T-forest — B
F-grows(fi, f2) JAR T F-class(a, fi) C F-class(a, f2)

F-shrink : T-forest x T-forest — B
F-shrink(fi, f2) JA 7T ancestors(a, f2) N F-class(a, fi) C ancestors(a, fi)

bodyunch : T-forest x T-forest — B
bodyunch(fi, f2) A Ve T —is-root(a, fi) = —is-root(a, fo) A fala) = fi(a)

rootunch : T-forest x T-forest — B
rootunch(fi, f2) A Ve T is-root(a, fi) < is-root(a,fa)

T-array = {meT - T |domm= T}

rts . T-array — T-set

rts(m) & {a:T | m(a)=a}

m-is-forest : T-array — B

m-is-forest(m) JAN is-forest(rts(m) < m)

fr:T-array — T-forest
fr(m) JAN rts(m) < m

pre m-is-forest(m)

Development

Operation TEST:

P-TESTy (a: T,6:T) t: B
ext rd p : T-partition
post (P-equiv(a, b, p) = t)A(t = P-equiv(a,b,p))

25

Operation EQUATE:

P-EQUATE, (a:T,b:T)

ext wr p : T-partition

guar let rest = T'\ (P-class(a, p) U P-class(b, p)) in
Ve € rest - P-class(e, p) = P-class(e, p)

post P-equiv(a, b, p)

Refinement of P-TESTs(a, b,1):

F-TEST; (a: T, 6:T) t:B
ext rd f . T-forest

post (F-equiv(a, b, ?) = t)A(t = F-equiv(a,b,f))
Refinement of P-EQUATE,(qa, b):

F-EQUATE, (a: T,56:T)

ext wr f : T-forest

guar bodyunch(?,f) A
let rest = T\ (F-class(a, ?) U F-class(b, ?)) in
Ve € rest - F-class(e, f) = F-class(e, ?)

post F-equiv(a,b,f)

Operation CLEANUP:

F-CLEANUP; (a: T)
ext wr f : T-forest

vely bodyunch(f ,f)

guar rootunch(f ,f)A{at<af={a}s f

post —is-root(a, f) A —is-root(f (a),) = f(a) % f (a)
Refinement of F-TEST; (a, b, {):

local z,y: T in
T,y = a,b;
repeat
F-ROOT,(2)||F-ROOT:(y);
tt=(z=1y)
until ¢ V (r from (protect f in F-TEST-2-ROOTS(z,y,1)))
end

Refinement of F-EQUATE, (a, b):

local z,y: T;{:B in
T,y:=a,b
repeat
F-ROOT,(2)||F-ROOT:(y);
protect f in F-TEST-AND-CONNECT(z, y, t)
until ¢
end

26

F-ROOT,
ext rd f . T-forest

prv wr z : T

pa—

post F-equiv(Z , z,f) Ais-root(z, f)

F-TEST-2-ROOTS, (a,b: T) 1: B
ptc rd f : T-forest
post t & is-root(a, f) Ais-root(b, f)

F-TEST-AND-CONNECT; (¢,d: T) t:B
ptc rd f : T-forest

guar bodyunch(?,f) A
let rest = T\ (F-class(c, ?) U F-class(d, ?)) in
Ve € rest - F-class(e, f) = F-class(e, ?)

post (1 < is-root(c, ?) A is-root(d, ?)) At = F-equiv(e,d, f))

Refinement of F-ROOT(z):

while -t from F-TEST-ROOT,(z, ?)
do
F—GO—UPl(I)
od

F-TEST-ROOT; (a: T) t:B
ext rd f . T-forest

pa—

post (is-root(a,f) =) A(t = is-root(a, f))

F-GO-UP,
ext rd f . T-forest
prv wrz : T

pre —is-root(z, f)

post F-equiv(w ,x,f) AN(F-equiv(T ,z, f) = z € ancestors(z, [))

Refinement of F-CLEANUP (a):

local z: T in
if =t from F-TEST-ROOT;(q,1)
then F-FATHER;(«,z);
if =t from F-TEST-ROOT;(z,1)
then F-FATHER,(z,z);
F-CONNECT-TO-ANCESTOR (a, z)

end

27

F-FATHER, (a: T) «: T
ext rd f . T-forest
pre —is-root(a, f)

rely bodyunch(?,f)

post z = ?(a)

F-CONNECT-TO-ANCESTOR; (a, b: T)
ext wr f : T-forest
pre b € ancestors(a, f)

rely bodyunch(?,f)
guar rootunch(?,f) ANMataf=1{at g ?
post f(a) =15
Refinement of F-TEST-AND-CONNECT; (a, b, 1):

F-TEST-2-ROOTS, (a, b, {);
iftha#b
then F-CONNECT-ROOTS, (a, b)

F-CONNECT-ROOTS; (a:T,6:T)

ptc wr f . T-forest

pre a # b Ais-root(a, f) A is-root(b, f)

guar bodyunch(?,f) A
let rest = T\ (F-class(a, ?) U F-class(b, ?)) in
Ve € rest - F-class(e, f) = F-class(e, ?)

post f= f f{a—b}Vvf=Ffi{b—a}
Refinement of F-TEST-2-ROOTS,(q, b,1):
M-TEST-2-ROOTS, (a,b: T) #:15

ptc vd m : T-array
post t < a € ris(m) A b € rts(m)

Refinement of F-TEST-ROOT(q,t):

M-TEST-ROOT; (a: T) wr t: B
ext rd m : T-array
post (a € rts(m) = AT = a € ris(m))

Refinement of F-GO-UPy(z):

M-GO-UPy

ext rd m : T-array

prv wrz : T

pre z & rts(m)

post F-equiv(z ,x, fr(m)) A (F-equiv(T ,z, fr(m)) = = € ancestors(z , fr(m)))

28

Refinement of F-FATHER,(«, z):

M-FATHER; (a: T) «: T
ext rd m : T-array

pre a & rts(m)

rely bodyunch(fr('m), fr(m))

post z = m(a)
Refinement of F-CONNECT-TO-ANCESTOR; (a4, b):

M-CONNECT-TO-ANCESTOR; (a,b:T)
ext wr m : T-array

pre b € ancestors(a, fr(m))
rely bodyunch(fr('m), fr(m))
guar rts(m) = rts(m)A{a}am = {a}am
post m(a) = b
Refinement of F-CONNECT-ROOTS, (4, b):

M-CONNECT-ROOTS; (a,b: T)
pte wr m : T-array
pre a b Aa € ris(m) A b € rts(m)
guar bodyunch(fr('m), fr(m)) A
let rest = T\ (F-class(a, fr(m)) U F-class(b, fr(m))) in
)

pa—

Ve € rest - F-class(e, fr(m)) = F-class(e, fr(m))
post m=mi{a—b}Vm="mi{b— a}
Refinement of M-TEST-2-ROOT;:
= (m(a) = a) A (m(b) = b)
Refinement of M-TEST-ROOT];:
t:=m(a) =a
Refinement of M-GO-UP;:
z:=m(x)
Refinement of M-FATHER;:
z:=m(a)
Refinement of M-CONNECT-TO-ANCESTOR;:
m(a):=b
Refinement of M-CONNECT-ROOTS;:
m(a):=b

29

Code for the operations

TEST(a, b): ¢ EQUATE(q, b)
local z,y: T,r:Bin local z,y: T;t:Bin
T,y = a,b; r,y.=a,b;
repeat repeat
ROOT(z)||ROOT(y); ROOT(z)||ROOT(y);
ti=(z =y); writer-entry-protocol
reader-eniry-protocol ti=(m(z) =2z Am(y) =y);
ri=(m(z)=zAm(y)=y) iftAz#y
reader-exit-protocol then m(z):=y
until ¢t v r writer-exit-protocol
end until ¢
end
CLEANUP(a)

ROOT(var 2)
local z: T,1:B in

t:=m(a) = a; local #:B in
if —¢ t:=m(z) = z;
then while —t
z:=m(a); do
t:=m(z) = z; zi=m(z);
if —¢ tt=m(z) ==z
then od
z:=m(z); end
writer-entry-protocol
m(a): ==t

writer-exit-protocol

end

30

