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The main ideas are presented in the form of a discussion. This was partly prompted by Lakatos’
book ‘Proof and Refutations’ but, since this paper is less profound, characters from the childrens’
television series ‘The Magic Roundabout’ are the speakers: Zebedee speaks for Z, Dougal puts
the VDM position, and Florence acts as the user.

The specifications which are presented have been made similar so as to afford comparison —
in neither the VDM nor the 7 case would they be considered to be ideal presentations. Some
technical details are relegated to footnotes.

Discussion

Florence: I know that some people are confused by the existence of two specification languages,
7, and VDM, which have a lot in common.

Dougal: Yes, there is certainly a common objective in Z and VDM and in many places one can
see that the same solution has been adopted.

The use of both VDM and Z has been concentrated on the specification of abstract machines,
and they both take the same so called ‘model-oriented’ approach. Jointly they differ from the
so called ‘algebraic’ specification languages (these might be better called ‘property-oriented’ to
contrast with ‘model-oriented’) which concentrate on specifying abstract data types.

Zebedee: The primary difference between these approaches is that VDM and 7 both give an
explicit model of the state of an abstract machine — the operations of the abstract machine are
defined in terms of this state — whereas ‘algebraic’ approaches give no explicit model of the type
— an abstract data type is specified by axioms giving relationships between its operations. For
(a much-overused) example, a stack in VDM and 7 would typically be modelled as a sequence,
while in the ‘algebraic’ approaches axioms such as

pop(push(z, s)) = s
would be given.

Dougal: Before going further, let’s be clear what we mean by ‘VDM’. Strictly, VDM was
always seen as a development method in the sense that rules are given to verify steps of devel-
opment (data reification and operation decomposition). I guess that our discussion today will
be confined to the specification language used in VDM.

Florence: Does that have a name?

Dougal: T wish I could say ‘no’! But I have to confess that it is sometimes known as ‘Meta-IV’ —
the draft VDM standard talks about ‘VDM-SL’.! but let’s talk about the significant differences
between the two specification languages.

Florence: Probably what hit me first about the difference between VDM and 7 specifications
is the appearance of the page. VDM specifications are full of keywords and 7 specifications are
all ‘boxes’. Is this a significant difference?

Dougal: VDM uses keywords in order to distinguish the roles of different parts of a specification.
For example, a module corresponds to an abstract machine with state and operations; a state
has components and an invariant; and operations have separate pre- and post-conditions. These

!The notation used here is close to that of the ‘Committee Draft’ of the VDM-SL Standard but there may be
minor syntactic differences.



different components are distinguished as they have different purposes in the specification. To

do this VDM makes use of keywords to introduce each component. All this structure is part of
the VDM language.

Zebedee: In 7 almost none of the structure Dougal mentioned is explicit in the language.
A typical specification consists of lots of definitions, many of which are schemas — the boxes
Florence was referring to. Schemas are used to describe not only states but also operations. The
status of any particular schema is really only determined by the text introducing it, although
it isn’t hard to guess the purpose of a schema by looking at its definition. Schemas are also
used as building blocks to construct descriptions of machine states or facets of operations. Such
component building blocks may not correspond to any of the VDM categories.?

Florence: But don’t you need the extra structure that VDM gives if you want to do formal
refinements?

Zebedee: Yes, but to perform refinements you also need to consider a target programming
language. For example, if you wanted to produce Modula code then you could give a definition
module for an abstract machine in which the state and the operations are defined by 7 schemas.
Such a definition module would be very close to a VDM module in terms of structure.

Florence: How about an example — something other than stacks please!

Zebedee: A simple relational database, known as NDB, has been presented in both notations.
Let’s use that.? After you Dougal.

Dougal: Someone writing a VDM specification of a system normally sketches a state before
going into the details of the operations which use and modify that state.*

For the NDB description, the overall state will have information about entities and relations.
In order to build up such a state, a number of sets are taken as basic.

Fid Each entity in the database has a unique identifier taken from the set Fid.
Value Entities have values taken from the set Value.

Fsetnm An entity can belong to one or more entity sets (or types). The names of these sets
are taken from the set Fsetnm.

Rnm The database consists of a number of relations with names taken from the set Rnm.

All but the first of these can conveniently be thought of as parameters to the specification of
the NDB database system; Fid is an internal set about which we need to know little — we just
regard it as a set of ‘tokens’.

Now we can begin to think about the types which are constructed from these basic sets.
NDB is a binary relational database consisting of relations containing tuples which each have

2Tt is perhaps worth explaining that Z has a number of levels: a basic mathematical notation (similar to that
of VDM); the schema notation; and conventions for describing the state and operations of an abstract machine
using 7 schemas. Little new notation is introduced in the third level, only conventions for making use of the
other notation to describe abstract machines. Tt is worth noting that Z notation — the first two levels — has been
used with a different set of conventions for other purposes, such as specifying real-time systems.

#Originally formally specified in [Wel82] and revised in [Wal90], this was used as a challenge problem in [FJ90]
to which a Z response is given in [Hay92].

*The description of the NDB state presented here is given postfacto rather than attempting to emulate the
process by which specifications are produced.



two elements: a from value and a to value. A tuple contains a pair of Fids; in VDM the type
Tuple is defined as follows
Tuple :: fv : Fid
tv : Fid
Then a relation can be defined as a set of such pairs:

Relation = Tuple-set

To define whether a relation is to be constrained to be one-to-one — or whatever — four distinct
constants are used

Maptp = ONEONE | ONEMANY | MANYONE | MANYMANY

Relation information (Rinf) contains information stored for a relation: apart from the Tuple set,
an element of Maptp provides the constraint on the form of relation allowed. The consistency
of the tp and r fields of Rinf is expressed as an invariant.
Rinf = tp : Maptp
r : Relation
inv (mk-Rinf(tp,r)) &
(tp = ONEMANY = Vi, b € r-t.tv = lhtv = §.fv = to.fo) A
(tp = MANYONE = Vi, b € r-t.fo = to.fo = t.tv = th.tv) A
(tp = ONEONE = Vi, € r-ti.fo =t.fo & tH.tv = th.tv)
It’s worth noting that the set of values defined by a definition with an invariant only contains
values which satisfy the invariant. So we can only say that rel € Rinf if the relation, rel.r
is consistent with the map type rel.tp. Because invariants can be arbitrary predicates, type
membership is only partially decidable.

Florence: Is 7Z’s notion of type the same as what Dougal just described?

Zebedee: No, but this is a difference in the use of the word ‘type’ rather than a real difference
between Z and VDM. In Z the term ‘type’ is used to refer to what can be statically type checked.
This is more liberal than what 7Z calls a ‘declared set’ which is what VDM calls a ‘type’.

Dougal: Well, let me get through the rest of the state; then we can make more comparisons.
In NDB, relations are identified not only by their names but also by the entity sets of the
values they relate (so a database can contain two relations called OWNs: one between PEOPLE
and CARs and — at the same time — another between PEOPLE and HousEs). So a key for a
relation contains three things
Rkey :: nm : Rnm
fs 1 Fsetnm
ts : Fsetnm

The overall state which we are aiming for has three components: an entity set map (esm)
which defines which entities are in each valid entity set; a map (em) which contains the value
of each identified entity; and a third map (rm) which stores the relevant Rinf for each Rkey.
The invariant records the consistency conditions between the components.

Ndb :: esm : Fsetnm —— Fid-set
em : Eid = Value
rm : Rkey =2+ Rinf



inv (mk-Ndb(esm, em,rm)) &
domem = |Jrng esm A
Vrk € domrm -
{rk.fs, rk.ts} C domesm A
Vmk- Tuple(fo, tv) € rm(rk).r - fo € esm(fs) A tv € esm(ts)
Later, we'll look at how this (together with the initial state and the operations) gets grouped
into a module.

Florence: How would the above state be presented in Z?

Zebedee: All the details would be almost identical, but the specification would be structured
differently. The specification would consist of a sequence of sections and each section would
present a small set of the state components along with operations on just those components.
The 7 approach to structuring specifications is to try to build the specification from near
orthogonal components. We look for ways of splitting the state of the system so that we can
specify operations on just that part of the state that they require.
For NDB we have chosen to split the specification into three parts:

1. entities and their types or entity sets,
2. a single relation, and
3. multiple relations.

Finally, we put these specifications together to give the final specification.

Rather than follow the normal 7Z approach here, I'll give all of the state components from
the different sections together, so that we can compare the state with that used for the VDM
specification. As for the VDM, our basic sets are the following:

[Fid, Esetnm, Value]

As with the VDM the sets Esetnm and Value can be thought of as parameters, and the set Fid
is used locally within the specification.

For a database we keep track of the entities that are in an entity set (of that type). Ev-
ery entity must be of one or more known types. The following schema, FEntities, groups the
components of the state together with a invariant linking them.

__ FEntities
esm: Fsetnm — (F Fid)
em: Fid 4+ Value

dom em = |Jran esm

Florence: How does this differ from the VDM so far?

Zebedee: It’s virtually identical — bar the concrete syntax. The notation F Fsetnm is equivalent
to the VDM notation Esetnm-set.

Another approach to defining the state in 7Z would be to define esm as a binary relation
between Fsetnm and Fid. This leads to simpler predicates in the specifications because the Z
operators on binary relations are closer to the operations required for NDB’s binary relations.
Entities is defined using 7Z’s binary relations in [Hay92], but for our comparison here it is simpler



to use the same state as the VDM version. That way we can concentrate on more fundamental
differences.

Dougal: Yes, these modelling differences are interesting but not the point of today’s discussion;
but it is worth saying that binary relation notation could also be added to VDM and the same
alternative state used.

Florence: So far that only covers the components esm and em of the VDM Ndb state.

Zebedee: Right, and at this point we would give a set of operations on the above state, but
in order to provide a more straightforward comparison with the VDM state, we shall skip to
the remainder of the state. The relations used in NDB are binary relations between entity
identifiers (rather than entity values). A Tuple is just a pair of entity identifiers and a Relation
is modeled as a 7 binary relation between entity identifiers.

Tuple == Fid x Fid
Relation == Fid +— Fid

Florence: Is that really different from VDM?

Zebedee: Well, yes and no. Both the VDM and 7 versions use a set of pairs for a relation —
note that Fid «— Fid is a shorthand for P(Eid x Fid). The difference is that, in Z, relations
are predefined and have a rich set of operators defined on them.

Dougal: There are a couple of points I'd like to pick up from what Zebedee has said. When
we make a selection of basic building blocks for specifications, we are clearly influenced by
experience. There is nothing deep in, say, the omission of relations from VDM (or - say of
optional objects from 7). Once again, the remarkable thing is just how similar the selection in
7 and VDM is. As I said above, if I were writing a large specification which needed relations, 1
would just extend VDM appropriately.

Florence: What about the Maptp in 77
Zebedee: Maptp is virtually identical:

Maptp :: = OneOne | OneMany | ManyOne | ManyMany

When a relation is created its type is specified as being one of the following four possibilities:
it is a one-to-one relation (i.e., an injective partial function), a one-to-many relation (i.e., its
inverse is a partial function), a many-to-one relation (i.e., a partial function), or a many-to-
many relation. In Z, the set of binary relations between X and Y is written X <= Y, the set of
partial functions is written X — Y, the set of one-to-one partial functions is written X - Y,
and the inverse of a relation r is written r~.

A relation is created to be of a particular type and no operation on the relation may violate
the type constraint.

— Rinf
tp: Maptp
r: Relation

(tp = OneOne = r € Fid —+ Fid) A
(tp = ManyOne = r € Fid - Fid) A
(tp = OneMany = r~ € Fid =+ Fid)




Dougal: If you expanded the definitions you would get the same constraint as in the VDM
version.

Zebedee: Yes, they are exactly the same.
Florence: We still don’t have NDB’s named relations in Z.

Zebedee: That’s next, but again at this point in the normal flow of a 7 specification operations
would be defined on the state Rinf. The database consists of a number of relations with names
taken from the set Rnm (essentially a parameter set).

[Rnm)]

A relation is identified by its name and the ‘from’ and ‘to’ entity sets that it relates. This
allows a number of relations to have the same Rnm provided they have different combinations
of from’ and ‘to’ entity sets.

Rkey
nm: Rnm
fs, ts: Esetnm

The entities related by each relation must belong to the entity sets specified by the relation key.

— Ndb
FEntities
rm: Rkey -+ Rinf

Vrk:domrm e
{rk.fs, rk.ts} C dom esm A
(Vit:(rmrk).r e
firstt € esm(rk.fs) A\ second t € esm(rk.ts))

Florence: Because you have included Entities you now have all the state components, so that
this is equivalent to the VDM Ndb state.

Zebedee: Yes.
Florence: Why don’t we look at initialisation?

Dougal: The initial state (in this case it is unique) is defined in VDM as
init(ndb) 2 ndb = mk-Ndb({ },{},{})

Zebedee: In 7 the initial state is defined by the following schema (given using the horizontal
form of presentation):

Ndb_Init = [Ndb | esm = {} A em = {} A rm = {}]

Again, if we followed the more structured presentation of NDB, we would probably define the
set of allowable initial Fntities and then define the allowable initial Ndb states in terms of it.

Florence: Why don’t we look at operations?



Dougal: The simplest operation adds a new entity set name to the set of known entity sets,
esm. The set of entities associated with this new name is initially empty. In VDM this can be

defined.

ADDES' (es: Esetnm)
ext wr esm @ Fsetnm —— Fid-set
pre €s ¢ dom esm

post esm = esm U {es — {}}

Zebedee: In 7 that’s

__ADDESO
A FEntities
es?: Fsetnm

es? ¢ dom esm A
esm’ = esm U {es — {}} A
em’ = em

where AFEntities introduces the before and after (primed) states:

AFntities = Entities N\ Entities’

Florence: One obvious syntactic difference is that VDM uses hooked variables for the before
state and unhooked variables for the after state, whilst 7Z uses undecorated variables for the
before state and primed variables for the after state. In addition, 7 uses variable names ending
in ‘77 for inputs (and names ending in ‘" for outputs). Apart from the differences in syntax, I
notice that VDM uses an externals clause and distinguishes the pre-condition.

Zebedee: Yes, 7 does not have any equivalent of an externals clause. The predicate must
define the final values of all variables, even if the variable is unchanged, such as em. This is
why in 7 one divides up the state into small groups of components and defines sub-operations
on each group, before combining the sub-operations in order to define the full operation. For
a large specification with many state components, if one had to define the operations on the
whole state, then there would be many boring predicates stating that many of the variables are
unaffected. Dividing up the state avoids this problem, although it is still necessary to promote
the operations on the substates to the full state at some stage.

Dougal: In VDM, an operation is always written in a module. This provides the appropriate
state but one can use the external clause of an operation specification to make it self-contained
and to restrict the frame.

Zebedee: In 7, the state is explicitly included — via a ‘A’ or ‘57 schema usually — within the

operation, so the operation schema can stand on its own.

With regard to the pre-condition, although the same logical expression appears in the 7
schema ADDFESO as in the VDM operation ADDFES, it is not separated out. For this operation
that doesn’t make a large difference between the 7 and VDM versions, but for other operations
it can.

Dougal: OK, let’s look at deleting an entity set in VDM.



DELES (es: Esetnm)

ext wr esm : Fsetnm -2 Fid-set
rd rm  : Rkey - Rinf
pre es € domesm A esm(es) = { } A
Vrk € domrm - es # rk.fs N es # rk.ts

post esm = {es} < esm

Zebedee: In 7 this would be written

__ DFELESO
A FEntities
es?: Fsetnm

es? € domesm A esm(es) = {} A
esm’ = {es?} 4 esm A
em' = em

Florence: But isn’t it missing part of the pre-condition in the VDM version?

Zebedee: Yes, DELFESQ is only defined on the state Fntities, so it is impossible to talk about
the state component rm. To define the equivalent of the VDM operation, we need to promote
DFELESO to the full Ndb state. We do this by defining the schema ZRM which introduces the
full Ndb state and constrains rm to be unchanged. This is then conjoined with DFELESO.

ERM = [ANdb | rm’ = rm]
DELES = DELESO A ZRM

Florence: But I still can’t see the missing bit of the pre-condition!

Zebedee: That’s because it’s not visible! But the Z DFLES has the same pre-condition as the
VDM operation.

Florence: How do I get to see it?

Zebedee: In 7, the pre-condition of an operation characterises exactly those inputs and initial
states such that there exists a least one possible combination of outputs and final state that
satisfies the operation specification. For DELFES the pre-condition is

__pre DELES
Ndb

es?: Fsetnm

ANdY e
es? € domesm A esm(es)={} A
esm’ = {es?} 4 esm A
rm’ = rm

The predicate can be expanded to



__pre DELES
Ndb

es?: Fsetnm

A FEntities’; rm’: Rkey —+ Rinf o

(Vrk:domrm’ e

{rk.fs, rk.ts} C dom esm’ A

(Yt:(rm' rk).r o

first t € esm/(rk.fs) A second t € esm/(rk.ts))) A

es? € domesm A esm(es) = {} A
esm’ = {es?} 4 esm A
rm’ = rm

which can be simplified to

__pre DELES
Ndb

es?: Fsetnm

es? € domesm A esm(es)={} A
(Vrk:domrm e es? # rk.fs A es? # rk.ts)

Dougal: That’s now the same as the VDM pre-condition.
Florence: Wasn’t all that a bit complicated compared to the VDM version?

Zebedee: Well, yes and no. If you want to compare it with the VDM version, then we have
also done the equivalent of discharging its satisfiability proof obligation. In VDM this proof
obligation is the main consistency check available for the specifier, and the 7Z pre-condition
calculation can be likewise seen as a consistency check — that the calculated pre-condition
agrees with the specifier’s expectations.

Dougal: T believe that this is a significant difference between Z and VDM. There is a technical
point: when development steps are undertaken, the pre-condition is required.® But there is also
a pragmatic point: in reading many industrial (informal) specifications, I have observed that
people are actually not so bad at describing what function is to be performed; what they so
often forget is to record the assumptions. I therefore think that it is wise to prompt a specifier
to think about the pre-condition.

Zebedee: I'd agree with that, but in both VDM and 7, provided the respective consistency
checks are done, we do end up at the same point. It’s only the path that is different.

With the 7 approach of constructing the specification of an operation it is only when you
have the final operation that the concept of a pre-condition really makes sense.®

Florence: What does a pre-condition mean? I’'m really not clear about whose responsibility it
is to avoid calls that violate the pre-condition — or are these exceptions?

®Tony Hoare in [Hoa91] appears to argue for the use of Z to develop specifications and the use of VDM for
development of the design and implementation.

® Although it is possible to define operators similar to schema conjunction and disjunction on pre/postcondition
pairs; see [War93].



Dougal: A pre-condition is essentially a warning to the user: the behaviour defined in the
post-condition is only guaranteed if the starting state satisfies the pre-condition. In formal
development, the user should treat the pre-condition as a proof obligation that an operation is
only invoked when its pre-condition is true. It is perhaps useful to think of the pre-condition as
something that the developer of an operation can rely upon; it is permission for the developer
to ignore certain situations. Exceptions are quite different — VDM does have notation (not used
so far in this example) to mark error conditions which must be detected and handled by the
developer. In VDM an operation specification can consist of a normal pre/postcondition pair
followed by a set of exception pre/postcondition pairs.

Florence: Can we compare the treatment of exceptions? I've noticed 7 doesn’t have exceptions
as part of the language.

Zebedee: 1 guess one way of viewing the 7 approach is to say that it doesn’t really have
exceptions at all. As part of specifying an operation one specifies its behaviour both in the
normal case and in the exceptional cases. Both the normal case and each exceptional case
are specified in the same manner in a 7 schema. FEach of these schemas corresponds to a
pre/post-condition pair in the VDM version.

Florence: So the difference about the use of pre/postcondition pairs in the VDM version versus
a single schema in the 7 version crops up here as well.

Zebedee: That’s correct.
Florence: How else do they differ?

Zebedee: In terms of what they both mean, not at all. The complete operation is specified
in Z by taking the disjunction of the schemas for the normal and exceptional cases. It has
the same meaning as the corresponding VDM specification. For example, in both 7 and VDM
the preconditions of the alternatives may overlap, either between the normal case and an error
case or between error alternatives, and in both Z and VDM there is a nondeterministic choice
between alternatives that overlap.

Dougal: Yes, that’s correct. Although VDM and Z appear to describe exceptions differently,
the semantic ideas underneath the concrete syntax are virtually identical.

Florence: So why do they look so different?

Zebedee: Well mostly it is just differences in syntax but I guess there are a couple of points
about building an operation specification from 7 schemas using schema operators that are worth
noting. Firstly, it is possible to specify more than one normal case and these further alternatives
just become part of the disjunction of cases. (There is no real distinction between normal and
error cases, so one can have as many of either as suits the problem in hand.) Secondly, the same
exception schema can be used for more than one operation. This has the twin advantages of
avoiding repetition and maintaining consistency between different operations in their treatment
of the same exception.

Dougal: T see those advantages; it is just in the spirit of VDM to have a place for exceptions
marked by keywords. As always, syntactic issues tend to be more an issue of taste than of hard
scientific arguments.

Florence: How about an example?

Zebedee: Let’s consider the possibility of trying to add a new entity set when the name is
already in use. In 7 the exception alternative is specified by

10



_ ESInUse
ZFEntities

es?: Fsetnm

es? € dom esm

where Z'Fntities introduces the before and after states and constrains them to be equal:
EFEntities = [AEntities | 0 Entities’ = 0 Entities]
The operation augmented with the error alternative is

ADDESX = ADDESO vV ESInUse

Dougal: In VDM ADDES with an exception if the entity set is already in use would be specified
by adding the line

err ESINUSE es € dom esm

Zebedee: In both the VDM and 7 we should really add an error report to be returned by the
operation. This would be done in essentially the same way in both VDM and 7.

Dougal: In VDM, the whole specification gets put into a module: this is a structuring mecha-
nism that makes it possible to build one module on top of others. One possible module syntax
is illustrated in Appendix A. But I have to confess that this is still a subject of debate. In
fact [FJ90] was written precisely because this debate is not yet settled.

Zebedee: 7 also needs a modularisation mechanism and one proposal is developed in [HW93].

Florence: Does the issue of pre-conditions have any connection with the fact that I suspect
the two notations handle partial functions differently?

Dougal: Yes, there is a loose connection and there are differences between 7 and VDM here.
In fact, I'll be interested to hear what Zebedee has to say on this point.

Let me set the scene.” Both operators like hd and recursively defined functions can be partial
in that a simple type restriction does not indicate whether they will evaluate to a defined result
for all arguments of the argument type: hd[] or factorial applied to minus one are examples
of non-denoting terms. VDM uses non-standard logical operators which cope with possibly
undefined operands: so true V undefined is true as is undefined V true.

Zebedee: In [Spi88] Mike Spivey uses existential equality which always delivers a truth value
— where either of the operands are undefined, the whole expression is false. This enables him
to stay with classical (two-valued) logic.

Dougal: Yes, I should have said that there are a couple of different approaches where one tries
to trap the undefined before it becomes an operand of a logical operator. Thus, in hd[] =3 5 it
is possible to define the result as false. Unfortunately, the task does not end here — any relational
operators need similar special versions. Moreover, the user has to keep the distinction between
the logical equality and the computational equality operator of the programming language in
mind. As they say ‘There ain’t no such thing as a free lunch’.

TA fuller discussion can be found in [BCJ84, CJ91, TM93].

11



Zebedee: Yes, but I did say Spivey took that approach; in the beginning, I believe that Jean-
Raymond Abrial wanted to formalize the view that while ‘the law of the excluded middle’ held,
for undefined formulae, one never knew which disjunct was true. (The work on the new 7
standard is still evolving.)

Florence: This is all a bit technical — does it matter?
Zebedee: Not much — but it is an interesting difference!
Florence: What about recursively defined structures such as trees?

Zebedee: Before we start into the details of the definition of recursive structures, one approach
often taken in 7 specifications is to avoid recursive structures and use a flattened representation
instead. For example, the specification of the Unix filing system [MS84] represents the hierar-
chical directory structure by a mapping from full path names to the file’s contents. All prefixes
of any path name in the domain of the map must also be in the domain of the map.

A representation of the filing system state® as a recursive structure can be defined by con-
sidering a directory to be a mapping from a single segment of a path name to a file, where a
file is either a sequence of bytes or is itself a directory.

It is interesting to compare specifications of filing system operations on both representations.
On the flat representation finding a file is simply application of the map representing the filing
system state to the file name, whereas a recursive function needs to be provided for the recursive
representation. If one considers updating operations, the flat representation provides even
simpler descriptions of operations.

Dougal: The recursive approach description is used in [Jon90] and I’'m not sure that I'd concede
the advantages that Zebedee claims for the flat specification. But that’s a modelling issue not
a difference between the two specification languages.

Florence: So when do we need to use recursive structures?
Dougal: A good example is the specification of the abstract syntax of a programming language.
Florence: Are there examples outside the rather special field of programming languages?

Zebedee: Yes, consider a simple binary tree. This can be specified in 7 via the following
T::=nil | binnode(T x N x T))

This introduces a new type T, a constant of that type nil and an (injective) constructor function
binnode, that when given a (left sub-) tree, a natural number and a (right sub-) tree returns a
tree.

Dougal: In VDM that would be
binnode ::'1 : T
v : N
r: T
T = [binnode]

Zebedee: There are some technical differences in the approach taken here. In Z, T is a new
type, whereas for the VDM binnode is a new type but T is not a new type. Also, in neither

8We avoid consideration of inodes and links here.
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Spivey [Spi92] nor the Z Base Standard are mutually recursive structures (as used in the VDM
version above) allowed.

Dougal: Wouldn’t that cause problems for specifying the abstract syntax of a programming
language? For an Algol-like language it is common to distinguish the syntactic categories of
commands and blocks, but a command may be a block and a block may contain commands.

Zebedee: If you wanted to follow the draft 7 standard then you would have to merge commands
and blocks into a single syntactic category and then add consistency constraints to the language
to ensure that they are correctly used.

Dougal: So, it is possible to specify it, but it isn’t the most natural specification.

Zebedee: True. I have to admit that I would be very tempted to extend 7 to allow mutually
recursive definitions.’

Florence: I suppose this is all linked to the semantics of the specification languages themselves.

Zebedee: To the average user, the semantics of the meta-language might not be bedtime
reading. The aim has always been to base the semantics of 7 on set theory; Mike Spivey gives
a semantics in [Spi88] but a new semantics is being developed for the language standard.

Dougal: VDM has its origins in language description and it has to cope with reflexive domains
etc. The semantics in the ‘Committee Draft’ of the VDM-SL standard is certainly not ‘bedtime
reading’ but for simple operations a relatively simple set theoretic semantics would suffice.

Florence: Could you each tell me a bit about the history of your chosen specification languages?

Dougal: VDM was developed at the IBM Laboratory in Vienna. The Laboratory came into
existence in 1961 when Professor Heinz Zemanek of the Technical University in Vienna decided
to move his whole group to an industrial home. They had previously developed a computer
called Mailiifter] at the Technical University. From 1958 the group had been increasingly
involved in software projects including the construction of one of the early compilers for the
ALGOL 60 programming language. As time went on they found it difficult to get adequate
support for their projects and eventually joined IBM. Still in the first half of the 1960s, IBM
decided to develop a new programming language for which the ambition was to replace both
FORTRAN and COBOL. The language, which was at first called New Programming Language
(until the National Physical Laboratories in the UK objected to the acronym — the language
became known as PL/I), was clearly going to be large and it was decided that it would be useful
to try to apply some formal techniques to its description.

Based on their own work — and influenced by research work by Cal Elgot, Peter Landin
and John McCarthy — the Vienna group developed an operational semantics definition of PL/I
which they called ULD-3 (Universal Language Description; ULD-2 was the name which had
been applied to the IBM Hursley contribution to this effort; the language itself was being
developed mainly from Hursley along with the early compilers. ULD-1 was a term applied to
the natural language description of the language.)!® The description of PL/T in ULD-3 style
ran through three versions. These are very large documents. Operational semantics is now seen
as unnecessarily complicated when compared to denotational semantics. However, to make the
principles of denotational semantics applicable to a language like PL /T with arbitrary transfer

°The problem here is the scope of the definitions wvis a vis constraints on the set defined by the recursive
structure.
10yVDL stands for Vienna Description Language and was a term coined by JAN Lee for the notation used in

ULD-3.
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of control, procedures as arguments, complicated tasking, etc. required major theoretical break-
throughs and a considerable mathematical apparatus not available at the time. The effort of
the formal definition uncovered many language problems early and had a substantial influence
on the shape of the language.

Towards the end of the 1960s serious attempts were made to use the ULD-3 description as
the basis of compiler designs. Many problems were uncovered. The over-detailed mechanistic
features of an operational semantics definition considerably complicated the task of proving
that compiling algorithms were correct. But again one should be clear that an achievement was
made; a series of papers was published which did describe how various programming language
concepts could be mapped into implementation strategies which could be proved correct from
the description. A series of proposals were made which could simplify the task of developing
compilers from a semantic description. One of these was an early form of an exit construct
which actually led to an interesting difference between the Vienna denotational semantics and
that used in Oxford. Another important idea which arose at this time was Peter Lucas’ twin
machine proof and subsequently the observation that the ghost variable type treatment in the
twin machine could be replaced by retrieve functions as a simpler way of proving that this sort
of data development was correct. It is worth noting that Lucas’ twin machine idea has been
re-invented several times since: the generalization of retrieve functions to relations can be seen
as equivalent to twin machines with invariants.

The person who initiated the move that pushed the Vienna group in the direction of de-
notational semantics was Hans Beki¢’s; he spent some time in England with Peter Landin at
Queen Mary College.

During the period from 1971 to 1973, the Vienna group was diverted into other activities not
really related to formal description. Cliff Jones at this time went back to the Hursley Laboratory
and worked on a functional language description and other aspects of what has become known
as VDM. In particular he published a development of Earley’s recogniser which is one of the
first reports to use an idea of data refinement. In late 1972 and throughout ’73 and 74 the
Vienna group (CIliff Jones returned and Dines Bjgrner was recruited) had the opportunity to
work on a PL/T compiler for what was then a very novel machine. They of course decided to
base their development for the compiler on a formal description of the programming language.
PL/T at that time was undergoing ECMA /ANSI standardisation. The Vienna group chose to
write a denotational semantics for PL/I. This is the origin of the VDM work. VDM stands
for Vienna Development Method. When they decided not to go ahead with the machine, IBM
decided to divert the Vienna Laboratory to other activities in 1976. This led to a diaspora of
the serious scientists. Dines Bjgrner went to Copenhagen University then on to the Technical
University of Denmark. Peter Lucas left to join IBM Research in the States. Wolfgang Henhapl
left to take up a chair in Germany and CIiff Jones left to move to IBM’s Furopean System
Research Institute (ESRI) in Brussels.

Cliff Jones and Dines Bjgrner took upon themselves the task of making sure that something
other than technical reports existed to describe the work that had gone on on the language
aspects of VDM. LNCS 61 ([BJ78]) is a description of that work. At ESRI, CIliff Jones also
developed the work on those aspects of VDM not specifically related to compiler development
and the first book on what is now generally thought of as VDM is [Jon80]. Both of these books
have now been supplanted. The language description work is best accessed in [BJ82] and the
non-language work is best seen in — second edition — [Jon90].

Dines Bjgrner’s group at the Technical University of Denmark strenuously pursued the use
of VDM for language description and he and his colleagues were responsible for descriptions
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of the CHILL programming language and a major effort to document the semantics of the
Ada programming language. CIliff Jones spent 1979 to 81 at Oxford University (collecting a
somewhat belated doctorate). This was an interesting period because Cliff and Jean-Raymond
Abrial arrived within a few days of each other in Oxford and had some interesting interchanges
about the evolving description technique which through many generations has been known as
7.

The non-language aspects of VDM were taken up by the STL laboratory in Harlow and,
partly because of their industrial push, BSI were persuaded to establish a standardisation
activity. This activity has not been easy to get going because of the differences between the
pressures of the language description aspects of VDM and those who are only interested in
pre/post-conditions, data reification and operation decomposition. It is to the credit of the
standards committee that they have managed to bear in mind the requirements of both sorts of
user and come up with a standard which embraces such a wide scope of technical ideas. There
are now many books on VDM and more papers than even Dines Bjgrner’s energy could keep
in a bibliography although Peter Gorm-Larsen has made an attempt to continue the work of
keeping the key references in a single bibliography [Lar93].

The ideas in VDM have influenced several other specification languages including RAISE,
COLD-K and VVSL.

Florence: Can you tell me how 7 started?

Zebedee: Well, although there was a 7 notation before 1979, many people associate the early
development of 7 with the period spent by Jean-Raymond Abrial in Oxford from 1979 to 1981.
Abrial had used a paper he had written with Steve Schuman and Bertrand Meyer as lecture
notes for a course given in Belfast. He was invited by Tony Hoare to Oxford, and presented
similar material to the Programming Research Group (PRG) where it generated considerable
interest and resulting activity. The notation described in this paper includes a basis in set
theory and predicate calculus, although at this time the schema notation had not been fully
developed.

Jean-Raymond Abrial wasin Oxford at the same time as Cliff Jones, who had already worked
on the Vienna Definition Language and the Vienna Development Method. The intention was
that the two should exchange ideas and objectives and there were productive communications
between the two, although in the end each pursued a distinctive path.

Florence: Is there such a thing as a Z method?

Zebedee: 7 is a notation, and there is no official method attached to it, though there are
conventions and practices that make it specially suitable for specifications written in the model-
oriented style. The status of 7 as a mathematical notation (rather than a method) is deliberate,
and gives it flexibility and open-endedness.

Florence: How did the notation develop after the first proposals?

Zebedee: As with much of the PRG research, early development of 7Z centred on industrial
case studies. An important early case study was CAVIAR, a visitor information system for an
industrial company based on requirements from STL; other case studies carried out in the early
stages included those based on the UNIX File System, the ICL. Data Dictionary, and several
on topics in Distributed Computing. PRG members carrying out case studies included Carroll
Morgan, Tan Hayes, Bernard Sufrin, Ib Sgrensen, and others. Tan Hayes, in addition to his
contributions to the IBM CICS project, later collected these case studies and published them
in the first book on 7 [Hay93].
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One of the most extensive case studies has been the use of 7Z for defining CICS, a transaction
processing system developed by IBM. The collaboration between the PRG and the Hursley
development laboratory, starting in 1982 and still continuing, has been a valuable source of
information and experience for both groups.

During this early period the design of the most distinctive feature of 7, the schema, together
with related schema operations, emerged in its present form. The 7 schema notation was
originally introduced as a technique for structuring large specifications and was seen as a means
of naming and copying segments of mathematical text, much like a textual macro language.
It was later apparent that schemas could be used more generally to define the combination
of specifications, and the basic operations of schema inclusion and conjunction were extended
to form the more comprehensive operations that make up what has been called the schema
calculus.

Florence: You’ve talked about the PRG contribution to application case studies — what about
the underlying theory?

Zebedee: In early stages of Z development, the notation was described in documents produced
in the PRG and locally distributed. The complete language description, The Z Handbook by
B. A. Sufrin [Suf88], was given only a limited circulation, and in fact the first account of the
notation published in book form was in the 1987 edition of the collection of Case Studies (second
edition [Hay93]) mentioned above. Theoretical work on the foundations of 7 continued in the
PRG and elsewhere, and an important contribution was provided by the D.Phil. thesis of Mike
Spivey, subsequently published as a book [Spi88].

With a growing number of industrial users of 7, requests for standardisation were made at
7, User Meetings in 1987 and 1988. Work was started in the Programming Research Group to
establish an agreed definition of the language. Starting with the best available documentation,
including [Suf88], the document produced in 1989 as a result of this work, the Reference Manual
by J. M. Spivey became a widely accepted description of Z and provided the main starting point
for the standards work described below — it is now in its second edition [Spi92].

Florence: I believe there is now a draft standard for Z — what is the status of this?

Zebedee: Towards the end of 1989 a project to develop Standards, Methods and Tools for 7 was
set up, with supporting funding from the UK Department of Trade and Industry. The formation
of the ZIP project marked the beginning of a further stage of development, providing a stable
basis for the development of national and international standards for Z. As with other projects
of this kind, members of the project included both industrial and academic partners. The
project was divided into four main working groups dealing with Standards, Methods and Tools
— there was also a Foundations group providing theoretical support, mainly for the standards
work.

The 7 Standard Group developed new material for the standard, not only providing a newly
written document in the style needed for a standard, but also introducing new material for the
semantics (see for example [GLWO91]) and logic [WB92] defined in the standard. The first
draft, Version 1.0 (reference) was presented at the Z Users Meeting in December 1992 and the
standards committee is now at work, reviewing and revising the document as it becomes ready
for standardisation in ISO.

Meanwhile, industry users are busy using 7 on projects, writing tools for 7 and considering
how it can be combined with other notations and methods. A good idea of the breadth and
variety of interest can be gained from the 7 Bibliography [Bow92].
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The standards committees for Z and VDM-SL keep in touch by exchange of documents
and by the appointment of liaison members. They are both subcommittees of the same BSI
standards committee.

Florence: Could you give me some useful references?

Zebedee: For 7, the standard reference for the language (until the language standard appears)
is Mike Spivey’s [Spi92]. However, this is a language reference manual and there are some more
introductory texts such as [PST91, Wor92] and a book of case studies [Hay93].

Dougal: For the non-compiler aspects of VDM, the standard reference has been [Jon90] and a
case studies book is [JS90]; but [WH93] refers to Jones” book as ‘austere’ and either of [AI91,
LBC90] might be more approachable. A good overview of VDM-SI is contained in [Daw91];
although there are several books on the language description and compiler development aspects
of VDM, they haven’t really come up very much in our discussion.

Florence: You have both ignored details of concrete syntax of the mathematical notation: these
differences confuse some people.

Zebedee: Yes, but they are just an accident of history.

Dougal: A list of the syntactic differences has been given in a note [ISO91] from the Japanese
ISO representatives.

Florence: Well, it’s time for bed.
Zebedee: Boing!
Dougal: Chases his tail for a bit before running off to bed.
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A VDM specification

This specification has been adapted from the NDB specification in [FJ90]. In some minor
respects (e.g. optional relation names), it is more restrictive than the original [Wel82] (to which
the reader is referred for a description of the operations — such as ADDTUP — which are not
discussed above).

module NDB

parameters
types Value, Esetnm, Rnm: Triv

exports

operations ADDES, ADDENT, ADDREL, ADDTUP,
DELES, DELENT, DELRFEL, DELTUP

definitions
defined types

Fid = token

Maptp = {ONEONE, ONEMANY, MANYONE, MANYMANY}

Tuple :: fv : Fid
tv : Fid

Relation = Tuple-set

Rinf = tp : Maptp

r : Relation
inv (mk-Rinf(tp,r)) & arity-match(tp,r)
Rkey :: nm : Rnm

fs 1 Fsetnm

ts : Esetnm

state

Ndb :: esm : Esetnm — Fid-set
em : Fid == Value
rm : Rkey =~ Rinf
inv (mk-Ndb(esm, em,rm)) &
domem = |Jrng esm A
Vrk € domrm -
{rk.fs, rk.ts} C domesm A
Vmk- Tuple(fo, tv) € rm(rk).r - fo € esm(fs) A tv € esm(ts)

init(ndb) £ ndb = mk-Ndb({ },{}.{})
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defined functions

arity-match(tp,r) 2
(tp = ONEMANY = Vi, € 7-t.tv = lhtv = 1.fo = to.fo) A
(tp = MANYONE = Vi, b € 1 t.fo=t.fo = t.tv=th.tv)A
(tp = ONEONE = Vi, by € r-ti.fo = to.fo & 1.tv = fy.10)

defined operations

ADDES' (es: Esetnm)
ext wr esm : FEsetnm —— Fid-set

pre €s ¢ dom esm

post esm = esm U {es — {}}

DELES (es: Esetnm)
ext wr esm : Esetnm - Fid-set
rd rm  : Rkey - Rinf
pre es € domesm A esm(es) = { } A
Vrk € domrm - es # rk.fs N es # rk.ts

post esm = {es} < esm

ADDENT (memb: Esetnm-set, val: Value) eid: Fid

ext wr esm : FEsetnm —— Fid-set
wr em : Fid = Value

pre memb C dom esm
post eid ¢ dom em A
em = em U {eid — val} A

esm = esm t {es — esm(es)U {eid} | es € memb}

DELENT (eid: Eid)
ext wr esm @ Fsetnm —— Fid-set
wrem : Fid -2 Value
rd rm  : Rkey - Rinf
pre eid € domem A
Vit e U{ri.r | ri € mgrm}-t.fo # eid A t.tv # eid
post esm = {es — esm(es) — {eid} | es € domesm} A

em = {eid} g em
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ADDREL (rk: Rkey, tp: Maptp)
ext rd esm : Esetnm - Fid-set
wr rm : Rkey - Rinf
pre {rk.fs, rk.ts} C dom esm A

rk ¢ dom rm

post rm = rm U {rk — mk-Rinf(tp,{})}

DELREL (rk: Rkey)
ext wr rm : Rkey -~ Rinf
pre rk € domrm A r(rm(rk)) ={}

post rm = {rk} < rm

ADDTUP (foal, tval: Fid, rk: Rkey)

ext wr rm @ Rkey - Rinf
rd esm : FEsetnm —— Fid-set

pre vk € dom rm A
let mk-Rkey(nm, fs,ts) = rk in
let mk-Rinf(tp,r) = rm(rk) in
fval € esm(fs) A tval € esm(ts) A arity-match(tp, r U mk- Tuple(fval, tval))

post rm = rm 1 {rk — p(rm(rk), r — r(rm(rk)) U {mk- Tuple(foal, tval)})}

DELTUP (fval, tval: Fid, rk: Rkey)
ext wr rm : Rkey -~ Rinf

pre 7k € dom rm
post let ri = p(rm(rk), r — r(rm(rk)) — {mk- Tuple(fval, tval)}) in
rm = rmt{rk — ri}

endmodule NDB
B Z specification
This specification has been adapted from the specification of NDB given in [Hay92].

B.1 Entities and entity sets (or types)
[Fid, Esetnm, Value]

__ FEntities

esm: Fsetnm — (F Fid)
em: Fid -+ Value

dom em = |J(ran esm)
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AFntities = Entities A Entities’
EFEntities = [AEntities | 0 Entities’ = 0 Entities]

—ADDESO

A FEntities
es?: Fsetnm

es? ¢ dom esm A
esm’ = esm U {es? — {}} A
em' = em

— DELFESO

A FEntities
es?: Fsetnm

es? € dom esm A esm(es?) = {} A
esm’ = {es?} 4 esm A
em’ = em

—ADDENTO

A FEntities
memb?: F FEsetnm
val?: Value

eid!: Pid

memb? C dom esm A

eid! ¢ dom em A

em’ = em U {eid! — val?} A

esm’ = esm @ {es: memb? @ es — esm(es) U {eid!}}

— DELENTO

A FEntities
eid?: Fid

eid? € dom em A
em’ = {eid?} 9 em A
esm’ = {es:dom esm o es — esm(es)\ {eid?}}

B.2 A single relation
Tuple == Fid x Fid
Relation == Fid «— Fid

Maptp:: = OneOne | OneMany | ManyOne | ManyMany
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— Rinf

tp: Maptp
r: Relation

(tp = OneOne = r € Fid —+ Fid) A

(tp = ManyOne = r € Fid - Fid) A
(tp = OneMany = r~ € Fid =+ Fid)

ARinf = [Rinf; Rinf’ | tp’ = tp]

—_ADDTUPLFEOQ

ARinf
t?: Tuple

r=ruU{t?}

— DELTUPLFEQ

ARinf
t?: Tuple

r=r\{t7}

B.3 Multiple relations
[Rnm)]

Rkey

nm: Rnm
fs, ts: Esetnm

— Ndb

FEntities
rm: Rkey -+ Rinf

Vrk:domrm e
{rk.fs, rk.ts} C dom esm A
(Vit:(rmrk).r e
firstt € esm(rk.fs) A\ second t € esm(rk.ts))

ANdb = Ndb A Ndb'
ARFEL = ANdb A EFEntities
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— ADDRFEL

ARFL
tp?: Maptp
rk?: Rkey

rk? ¢ dom rm A
{rk?.fs,rk?.ts} C dom esm A
rm’ = rm U {rk? — (p Rinf | r ={} AN tp = tp?)}

— DFELRFEL

ARFL
rk?: Rkey

rk? € domrm A
(rmrk?).r ={} A
rm’ = {rk?} 9 rm

B.4 Promotion of operations

ERM = [ANdb | rm’ = rm]

ADDES = ADDESO AN ZRM
DELES = DELESO A ZRM
ADDENT = ADDENTO A ZRM
DELENT = DELENTO A ERM

__ Promote

ARFL
rk?: Rkey
ARinf

rk? € dom rm A
ORinf = rm(rk?) A
rm’ = rm ) {Tk? — ORan/}

ADDTUPLE = (3 ARinf « ADDTUPLFEQ A Promote)
DELTUPLE = (3 ARinf ¢« DELTUPLEO A Promote)
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