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1 Introduction

Development methods which are compositional make it possible to justify one step of develop-
ment before proceeding to subsequent design activity: specifications need to isolate the sub-
components introduced in a development step. Compositional development methods offer scope
for improving the productivity of the design process by minimizing the ‘scrap and rework’ in-
herent in the late detection of early design errors. Relatively simple specification ideas (e.g. pre
and post-conditions) suffice for the compositional development of sequential programs; inter-
ference makes it difficult to find useful compositional approaches for concurrent programs (an
interesting account of this quest is contained in [dR85, HdR86]).

The research reported in this paper is intended to contribute to the quest for compositional
development methods for concurrent programs: the use of some notions from object-oriented
languages is a means to tame interference rather than a (fashionable) end in itself. Two papers —
[Jon93a, Jon93c]! — indicate that selected features from object-oriented languages might further
the quest for compositional development methods (they also provide references which trace the
evolution of the ideas). Interference is an issue for both shared-variable and communication-
based concurrency; object-based languages offer a compromise between the two extremes by
placing control of access to state (i.e. instance variables) in the hands of the developer and
supporting ways of controlling the activation of methods.

A way of limiting interference in object-based languages is exploited in [Jon93a] to show how
concurrency can be introduced by transformations. Central to the justification of observational
equivalence is the use of invariants on the object graphs which can arise. Interference can not
always be controlled in this way and [Jon93c] shows how a logic notation discussed in [Jon91]
can be used to reason about interference over complex object graphs. The design notation used
in both of these papers is currently known as mofA. Rather than being viewed as a contend-
ing programming language, it is hoped that mo8A will be used as a design notation for the
development of programs in languages like POOL [Ame89], ABCL [Yon90], Beta [KMMN91],
Modula-3 [Nel91] or UFO [Sar92]. But — if sound development methods are required — design
notations have to be given semantics. For example, the transformation rules used in [Jon93a]
have to be shown to preserve observational equivalence.

A denotational semantics for 7oA would have to deal with concurrency (relevant papers
include [Wol88, AR89, AR92, dBdV91]). In some respects, a semantics based on resumptions
fits this sort of parallel object-based language quite well but there are some difficulties and
these would even be shared by an operational semantics. The core of the problem — in such a
model-oriented semantics — is that it is necessary to describe a very fine level of granularity in
order to prove that this level of granularity does not actually make any difference. The approach
followed here is to map the constructs of 708\ to the w-calculus [MPW92, Mil92b]. It would
be possible to argue that this semantics is also giving too fine a level of granularity but in this
case the w-calculus has an algebra which makes it easy to reason about equivalencies between
processes.

The current paper investigates the task of basing arguments on that semantics. One of the
conclusions is that the familiar notions of bi-simulation etc. are not immediately applicable to
the proofs needed here. Although the arguments given below are hopefully convincing, they
are not completely formal and the current paper might be viewed as a challenge which could
stimulate the development of new approaches to equivalence proofs.

!The main content of these two papers are combined in [Jon92] but the appendix there on a possible approach
to the semantics of rofA is superseded by the current report.



Section 2 below introduces oA by an example. Section 3 describes the basic ideas of
mapping mofA into the w-calculus; the problem of handling instance variables and the special
case of those instance variables containing references is discussed in Section 4. Some detailed
problems of the mapping are described in Section 5 and the mapping itself is summarized in
Appendix C. The version of the w-calculus used is described in Appendix B. An argument to
justify one specific transformation which affects the degree of concurrency is tackled in Section 6
and more general results are addressed in Sections 7 and 8. (There are, of course, many simpler
transformation rules than those considered here: for example, rules can be given to insert
assignment of expressions to local instance variables.) The paper concludes with a discussion
in Section 9.

2 A 7mop)\ example

The moBA class presented in Figure 1 provides a sorting facility; instances of the class are linked
into a ‘sorting ladder’. FEach instance of the class has two instance variables. The variable v
contains the natural number which is stored in one element of the class and the variable [ — if
not nil — contains a reference to another instance of the class. By tracing along this series of
references, one can collect the sorted sequence of values from the v variables. The class — and
thus each of its instances — has three methods. The add method accepts a non-zero natural
number and stores it at an appropriate place in the sequence of instances; the remove method
returns the first (i.e. lowest) element of the sequence; and the test method determines whether
a given natural number is or is not in the sorted vector (for simplicity, zero is used to mark a nil
value). The semantics of Tof\ is such that only one method can be active in any one instance
of a class at a time. The code which invokes a method is held in a rendezvous until the method
being executed reaches a return statement. Notice that the add method contains a return as
its first statement so, as soon as the parameter has been passed, the caller is released from the
rendezvous. The remainder of the code of the add method does what one might expect: the
higher value is passed down a chain of method-calls linked by the [ instance variables. Because
of the way the returns work, concurrency is possible within a sequence of instances of the Sort
class. The only other point in add is to notice that when the first value is stored in an instance
of the class, a new next item is created in the linked-list. The remove method is similar, noting
only that it destroys the final element of the linked-list of instances when a zero is passed back
from further down the list. The idea of obtaining concurrency by making sure that returns are
executed as soon as possible would also be useful in the test method; but, here the invoking
procedure is bound to be held up because a value is required. The effect of the yield statement
in test is to delegate the task of returning a value but to terminate this instance of the test
method so that other methods can be invoked on the same instance of the class.

It is worth noting that the specification of the Sort class in Figure 1 is by no means trivial. It
is not possible to write a conventional pre/post-condition specification because the initial state
to which one might expect to relate the final state in a post-condition is in fact a composite
of the values stored in the v variables and any activity of add and remove operations which
is still rippling down the list. It would be necessary in order to write such a specification
to use some sort of ‘ghost variables’. The text presented in Figure 1 is actually developed
in [Jon93a)] via a sequential (i.e. non-concurrent) version of the same algorithm. The sequential
version differs from that presented in Figure 1 by having the return statements placed at the
end of add and remove methods and the yield statement in test written as a return. The



Sort class
vars v: [IN] < 0; [: private ref(Sort) < nil
add(z: Ni) method
return
if v =0 then (v < z; [ < new Sort)
elif v < z then lladd(z)
else ({ladd(v); v — z)
fi
rem() method r: N;
return v
if v # 0 then v — [lrem()
if v =0 then [ < nil fi
fi
test(z: Ny) method r: B
if = v then return true
elif v =0V z < v then return false
else yield [!test(z)
fi

Figure 1: Example program Sort

sequential program is easy to specify and to develop by normal concepts of data reification and
operation decomposition; the final concurrent code presented in Figure 1 is derived by a step of
transformation. Of course, it is necessary to know that such transformation rules are correct in
the sense that they preserve the intended behaviour of the methods of the class; in other words
it is necessary to show under what circumstances it is valid to permute the return statements
in methods and to substitute yield statements for return statements.

3 Basic mapping

This section (together with Sections 4 and 5) develops a mapping from w03 to the version of
the polyadic m-calculus given in Appendix B. In the spirit of Peter Landin’s [Lan66] — w-calculus
equivalents of increasingly complex o\ texts are considered; a complete mapping function is
given in Appendix C.

3.1 Representing Boolean values

Just as in the pure untyped A-calculus, values such as Booleans and integers have to be con-
structed from the raw w-calculus. Here, processes are given for the Boolean values and expres-
sions. The basic idea is simple — for example true located by some name b can be represented
as b(tf).t. So if vy then P else () could be represented as

b(tf).(t0.P+10-Q)

The process located at b is, however, ephemeral in that it can only be used once; replication
can be employed to provide Boolean values.

Bool " Vo, (1f).T| 1 bs(1f).T



This is a process which is run in parallel with the meaning of a family of classes and makes
available names (b;, by) for the two Boolean values. These values are immutable. Evaluation
of (Boolean) expression [e]! locates the name of the appropriate Boolean value at [; thus, for
example

[true]l = b,
[false]l = jbf o B B
le Nd]l = (whb)([c]h | Td]e | L(by).bi(tf).(£0).lo(ba). by + f().1by))

Notice that this coding relies on the fact that there are a finite number of Boolean values thus
allowing (finite) sums to be used to distinguish values. This is one reason for handling natural
numbers as TofA classes in Section 4.3. (Access to variables, and assignment, are postponed
to Section 4.1.)

3.2 Simple classes

Consider the simple mo8A class definition

¢ class
ml(x) method return
mz() method 7: ref return self

The semantics must show that multiple instances of ¢ can be created. This is modelled by
replication to provide an unbounded resource

', (1)

A private name (u) is passed on a channel named ¢. Because of the output binding, the name
is distinct for each instance.?

I. =%¢(u).B, (2)

The name u can be seen as a ‘capability’®; the naming rules of the 7-calculus ensure that
different instances of ¢ do not interfere with each other; interference can only occur when the
owner of the name u shares it between parallel threads. (As in [Mil92b], replication could also
be used to model the sort of recursion which unfolds a new body as it is required; here, recursion
is used directly.) So, the model of each instance is (with B, used recursively at the end of either

method)

B, =---.M,
My =(ay(...) . Bu+as(...)-.By)

°The definition B, is introduced for reference; here — and in similar cases below — the binding of u includes
the body of the definition which is considered as a syntactic expansion rule.

?On page 56 of ‘Time Sharing Computer Systems’ (MacDonald/Elsevier 1968), Maurice Wilkes attributes
the term capability to Van Horn (1966) in ‘Computer design for asynchronously reproducible multiprocessing’,

MAC-TR-34, M.I.T.



Bit class

vars v: B « false

w(z:B) method v «— z; return
T() method return v

Figure 2: Example program Bit

The selection of methods is handled by passing two private start names (a4, ay) to the invoking
process so that it can use the appropriate one. The ellipses above are completed as follows.

Bu = (o). M, 3)
= (o (w1 2).01. By + as(wsy).@au. By)

As well as any argument (e.g. z to my ), each start name carries a termination name (w;) which
is used to signal the end of the rendezvous. So the method call u!m,(e) is mapped to

u(ogas).(vw)(@ws e.ws())

and u!msy() is mapped to

U(O[laz)-(sz)(a_ZWZ'MZ(u/))

The mapping [¢] gives the semantics for class ¢ in the sense that the behaviour as seen by
invoking expressions which are also mapped via [-] must be reproduced by any implementation.

4 Handling instance variables

The preceding section has given the basic idea of the mapping but there is little real interest
in classes which contain no local state. This section reviews what changes in the mapping are
necessary when instance variables are added to classes and moves on to review the case where
these instance variables can contain references.

4.1 Boolean instance variables

Consider the class Bit in Figure 2. It has methods which write (w) and read (r) an instance
variable (v) which contains Boolean values. This can be modelled as in Equations 1 to 3 with
an additional stateful process (V,) for each instance variable. (The instance variable itself is like
a class for which only one instance is required; this degenerate class has methods for access (a,)
and setting (s,) whose interface is simple because they can only be invoked from one place.)

[Bi] = 1l (1)
Ipi = (Wsya,)( Vs, | bit(u ).By) (5)
Vy, = (Gy.V,+s,(2).V2) (6)
B, = @ ) (7)
M, = (ay ). 502y By + ap(wr).a,(y).0ry. By) (8)



Looking more closely at this use of the mapping function ([-]), its result — ! Ip;; — represents
the semantics of Bit by requiring a particular behaviour over its interface (bit,u,a,w); the
replication provides any number of instances of the class; each such instance is identical (again,
this fact is important in the following arguments) but has a unique name associated with it
by the binding output (bit(u)). The result of mapping a class has a process like V,, for each
instance variable and one (B,) for the body of the class; these communicate via strictly local
names s, to set and a, to access the variable; variables are initialized. The body of the process
B, has one summand per method. Private names for the methods are communicated by w(a)
from the u instance. The ordering of the statements within each summand of M, is shown here
by prefixing; the mapping in Appendix C has to cope with statements whose mapping can yield
a composition (the familiar baton passing trick is used); both forms of sequencing are subsumed
below under P before (). The rendezvous with a method terminates when the relevant w prefix
occurs as the mapping of the return statement. The fact that only one method can be active
in any instance of Bit is regulated by the way the recursion on B, works.

It is worth recording the SORTs (cf. [Mil92b]) for this definition:

bit: Bou: U,ay: Ay, o, Ay, Wyt 2y, wet $2, 8yt Sy, ay: Ay

where

B~ (U),U~ (A, A))
Aw = (“QUJ?B)7AT = ( 7')7 “Qw = ()7 “QT = (B)7
Sy — (B), A, — (B

Code which invokes new Bit is mapped to

bit(u). - -u---

Code to invoke w(e) is mapped to prefixes which firstly obtain (private) names for both methods
then select a,, and pass a private name for termination indication as well as a mapping of the
parameter.

U(@).(Vwy ) (A €.w, ()

The mapping of an invocation of r() reflects the fact that there is no parameter but there is a
value to be returned.

u(@).(vw, )(@rw, w, (Y))

In general, variable access and assignment are mapped as follows

[v]l dof ay(z).lz
[v — ] € wiy[e]l | i(b).50b)



4.2 Reference values

As indicated above, mo8\’s instance names are mapped to names in the w-calculus. Instance
variables which contain references store instance names just as those in Section 4.1 contain
the names of Boolean values. The only technicality which has to be addressed is that the nil
reference indicates an uninitialized reference. This is handled here by using a completely private
name ((rn)(L,)) whose use would cause the reductions to fail. (One could of course program
some exception handling mechanism for richer languages than mof3\.)

The way in which instance variables which contain references are mapped can be understood
by comparing Figure 1 with the following.

[Sort] = ! lsyn

Isore = (WSa)( Vo | (wvn)(Ly,) | sort(u).B,)
Vy = (@y.Vy+s,(2).V.)

Ly = (@y.Ly+ si(2).L.)

B, = w(@).M,

M, = Qp(Wp). e
ag(wer). .-~

4.3 Natural numbers

Rather than write out long 7-calculus expressions, the natural numbers are presented by oA
classes whose mapping would yield the appropriate meaning.

Zero class
vars p: ref(Zero); v: ref( Nat) < nil
new(z) method p «— self
testz() method return true
suce() method
if v = nil then v < new Nat(self) fi
return v

pred() method return p

Nat class
vars p: ref(Nat); v: ref( Nat) — nil
new(z) method p — z
testz() method return false
suce() method
if v = nil then v < new Nat(self) fi
return v

pred() method return p
Notice that Zero and Nat have to be regarded as having the same type.



4.4 Yield statements

The yield construct is handled by passing on the name (say, w;) to which the method containing
the construct was to return its result. Thus the test method of Sort in Figure 1 (which uses a
yield statement) is mapped to

P (% R
ar(wr)‘ PR
)5,

apwez).a,(v).Jr =v]. | +
fOJv=0V 2 <v].(t).S2+ f().5)

o~
—~

Sy = Wy [true]. B,
Sy = Wi [false]. B, o

S3 = a(u').v'(@).ahwz. B,

This releases the instance executing test before the answer is returned to its invoker. Whereas,
test with a return statement would be mapped to

Sy = ai(u').u'(&).(vwy)(dhwiz.wi (b)) b. B,

which causes the instance to wait for the result returned from the call to the [ instance.

5 More about composite statements

So far, the sequential order of S;; 9 has been modelled by prefixing the w-calculus mapping
of 9 to that of Sy (cf. Equation 8) but this idea will not cope with the case where S; has to
be mapped to a composition. In the mapping in Appendix C a completion signal is sent from
the m-calculus equivalent of 5) which is composed with an expression which is guarded by that
prefix. So [S1; 95] signals termination on [ by

WIS 11019501
Skip statements are modelled by

[Skip] &' 7.0

A conditional statement if e then s; else s, fi can then be modelled by

(Ul L)Y(BoolEval(l', 1, L) | [e]l' | (LO-[s1 ]l 4 L0-[s2]1))
where

BoolFval(l', 1, 1) € 1(b).5(tf).(t0. + 0. ) (9)
A while statement while e do s od can be modelled by the recursive equation

W = wl'lL L") (BoolEval(l', 1, 1) | [e]l’ | (LO)-[s]!" 4+ lz()j) | 1"(). W)

In [Jon93c], a parallel construct is used in the mofB\ design notation; this is not used
in [Jon93a] and is not considered in Appendix C but it could be mapped in much the way
that Milner discusses Section 8.3 of [Mil89]. (Recall that Milner explains there why adding a
sequential composition operator to interleaving-based process calculi can complicate the alge-

bra.)



6 A specific transformation

Many simple transformations such as removing temporary variables could be considered; in
this paper attention is focused on transformations which affect concurrency. The first example
considered is the relatively simple case of moving a return where no references are involved. For
Bit as in Figure 2 and the result of mapping as in Equations 4-8; suppose the w method were
transformed into

w(z:B) method return ; v — =z

Then it would be mapped to a w-calculus expression which only differs by the inversion of two
prefixes: M, of Equation 8 becomes

M = (aw(wwyc)..B; + - (10)

Consider the need to justify this transformation (i.e. showing that no 7o\ system can detect
which version of Bit is being used). A standard approach to equivalences in process algebras
is to prove bi-similarity. Unfortunately, the two m-calculus expressions from the two versions
of the method are not immediately bi-similar since prefixes can occur in different orders unless
the context is restricted. Any claim of equivalence needs to reflect the context. The approach
here is to argue that the two expressions eventually converge — under reduction — to the same
process. Specifically, suppose the using code

| — new Bit; lw(true); z < lIr(); ---

is mapped to

P1 = U(&)Pz
Py = (ww, ) (@gwi, by wiy (). Ps
P3 = U(&)P4

P4 = (Vwr)(a_rwr-wr(y))‘PS

where Py is not defined and just represents the rest of the process — it is assumed that no free
occurrences of u occur in Ps. The names within P; have been chosen so that they pun the
names sent and received; although this is convenient, it must be remembered that the names
are actually distinct. In fact, if the puns were not there one would have to use PAR steps (see
Appendix B).

The fact that the distinction between M, and M makes no difference to the context can be
shown by a series of m-calculus reductions. Using the version of the M, process from Equation 8
first, the composition of the invocation P, with the denotation of the class is

Po | [Bit] | Q

This reduces* in a number of COMM’ (see Appendix B) steps to

wu (P | ws,a)(Vi, | B)) | e | Q (11)

*See Appendix D for the detailed reductions.
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where, u is local to (P | (vs,a,)(Vy, | By)) — but @ could create its own instances of Bit.
Continuing the reductions one arrives at

(I/U) ((wa)(ww()'PS | (VS'Ua'U)(be | Ebthu))) | !IBit | Q (12)

This is the point at which the distinction between Equations 8 and 10 becomes visible. Con-
tinuing the reductions in this case yields

(wuy (w(@).Py | ws,a,)( Vi, | wa) (@@ M) | s | Q (13)

Were the definition from FEquation 10 used, Equation 12 would become
wu) () (@u0-Ps | v5,0,)(Vi, | T 5000B.))) | s | Q
which reduces to
(wu) (u(@).Ps | (s,a,)(Vs, | 5000-B,)) | s | Q (14)

Intuitively it is easy to see that no further negative occurrence (u) of u is available in Equa-
tion 14 until after the recursion triggers a further instance of B,; the reductions converge to
Equation 13 except for the original distinction between M, and M. This shows that the spe-
cific transformation preserves equivalence in this specific context. (Notice that [b;] has been
assumed to be immutable.)

7 Moving return statements

Of course, more general proofs are required. In the development of the example with which
the paper began (Sort in Figure 1), the return statement is permuted with statements which
cause non-trivial concurrent activity via references. The issue addressed in this section is the
conditions under which it is valid to commute return statements with statements which invoke
methods via (private) references. In order to see that the restriction to private references is
crucial, contrast the two following examples (with Bit as in Figure 2).

Flipflop class
vars [: private ref «— new Bit
v:B
f() method v — I!'r(); llw(— v); return
() method return {!r()

In this case the reference [ is marked private and, if the return statement were moved to the
beginning of method f, no invocation would detect the difference: e.g.

¢ — new Flipflop; c'f(); z — clr()

If, however, a new method e were added which exposes the [ reference, the situation is entirely
different.

Flipflop2 class
vars [:shared ref < new Bit
v:B
f() method v — I!'r(); llw(— v); return
() method return {!r()
e() method return (/)

11



Firstly, notice that the fact that the reference [ is copied forces it to be marked shared. Now,
consider

¢ — new Flipflop2; | — cle(); c!f(); = < U!r()

If the return statement is moved to the beginning of method f in Flipflop2, the value of x would
depend on the relative progress of the invoking and method code. It is therefore necessary to
be precise about the conditions under which concurrency can be introduced by repositioning a
return statement.

Transformation 1 The relevant transformation rule is
Sireturn € can be replaced by return €; 5

providing
1. S always terminates;®

2. e is not affected by S; and

3. 5 only invokes methods reachable by private references.

The example of a specific transformation is proved to give observational equivalence above
by showing that the reductions of the mapped forms of both versions of the class eventually
converge (under reduction) to equivalent processes. The argument which follows is more general
but employs essentially the same idea which is that certain reductions can not interfere with
each other. Notice however that this property is delicate in the w-calculus because it is not
sufficient to know that fn(P)Nfn(Q) = { } to conclude that P and @ cannot affect each other’s
reductions: consider

Ty.y(2).0 | 2'(y").y"2'

Although their free name sets are respectively {z,y} and {2, 2z}, these two terms interact if
composed with the additional term

As a basis for general argument, consider the following class.

D class

vars - - -

my(z) method Sy; S5 return y; s
mz(x) method - - -

®Termination is not, of course, a syntactically checkable property but it is in the spirit of the development
method envisaged here that termination would anyway be proved. This point does however make it doubtful
whether the kind of transformations being considered are suitable for automatic application by a compiler.

12



There is no loss of generality in considering a return with a variable (rather than an expression
e) because a simple transformation rule could be used to assign e to y. The interest is in
(non-trivial) activity in 5.

The class D is mapped as follows.

[D] = twsa)(--- | d(u).B,)
B, = u(®).M,
M, = (aj(wy2).[51] before [.S] before a,(y).w1y.[Ss] before B, + ---)

Notice that communication with any instance variables (shown by ---in [D]) is hidden by
(vsa); in fact, fn([D]) = {d}.

It is a key point of arguments about observational equivalence at the mo3A level that methods
are only invoked by 7-calculus expressions which also result from the mapping [-]. Consider
some context C' which invokes methods of class D (assume, without loss of generality, that
has no use of u).

C' = d(u).P;.Q before P,

where
P; = u(@).(vw;)(@w;z.w(y))

The effect of new D is to obtain a unique name u which, by COMM’, becomes hidden from any
other R.

C|[P]| R— (wu)(P,.Q before P; | (vsa)(---| By)) | R
The invocation of m; causes further reduction to

— (vu)(vwi)(w(y).Q before P; |
(vsay(-- - | [S1] before [.S] before a,(y).wory.[S2] before B,)) | R

Now [S;] can change R (and local variables elided by ---) but so far the distinction between
the two versions of D has not come into play and therefore the common reduction is to

— (vu)(vwi)(w(y).Q before P; |
(vsay(--- | [S] before a,(y).w1y.[Ss] before B,)) | R’

Even if new instances are created and their references stored in instance variables of D, their
names are kept local.

At this point, the distinction which comes from commuting [S] and return(y) becomes im-
portant. The alternative to the preceding equation is as follows.

— (vu)(vwi)(w(y).Q before P; |
(vsay(-- - | ay(y).wry.[S] before [Ss] before B,)) | R’

Now, the second side condition on Transformation 1 ensures that S cannot affect y; therefore
[S] cannot use 5,z. The only other possible source of 5,z — since s, and a, are hidden — is
another summand of B,; but these are not available until a negative u is encountered after B,
recurses. Therefore, y is bound to the same name in () before P, whichever version of D is used

13



providing @7y occurs. The first side condition of Transformation 1 requires that S terminates
so the w; prefix will occur.

The other — more interesting — effect of commuting the return statement is that whereas [.9]
has to complete before ) before P;, the repositioning of wyy allows them to run concurrently.
Firstly, notice that [S] actually only overlaps with @ since P; cannot begin until a negative
u is available and this only happens after B, recurses. Secondly, note that the transformation
allows all of the earlier reductions: if

([ST| R') — (0] R")
then

([S] before @ | R') — (Q | R")

but a possible reduction in the concurrent case is

([STI QI RB) — (QfR")

What needs to be checked, of course, is whether any of the extra reductions of [S] | @ produce
different 703X behaviour. Several things make an argument by bi-simulation difficult here.
Firstly, there is a technical problem in that [S] and @ do share names. This can be circumvented
since the only names that they can share are those for constants (e.g. b;) and class models. These
are all immutable so there would appear to be no problem. Formally, it is a property of the
m-calculus that

IP=1P|1P

The split replications can then be commuted and rebracketed so that (vb;) etc. can be inserted
to localize the communication. Notice this should be done for all class models because of
possible indirect calls.

The other issue which would have to be addressed to formalize this proof in terms of bi-
simulation is that there are still further steps in [S] which get merged with those of Q. As
observed above, the names s, @ are local; these can however be used to access names of other
processes (e.g. u’) stored as references in instance variables. The third side condition of Trans-
formation 1 ensures that no such name is shared. Therefore the v’ remains local to the (vu')
which created it: u’ is not passed as an object name. The only name which affects the reduction
of both invocation and D is then w; and that serves to re-synchronize the reductions. Thus the
two differing expressions converge under reduction.

8 Using yield statements

Transformation 2 The transformation rule needed in developing Figure 1 for the introduction
of yield statements is

return I!m(z) can be replaced by yield I!m(z)
providing

1. I'!'m() terminates; and

14



2. 1 is a private reference and m only invokes methods reachable by private references.

Consider the following class.

FE class

vars [: private ref

my() method Sy; return {1m,(); So
mz() method - - -

This translates to

[E] =" wsian((vn)L, | €(u).By,)

Ly = (@y.Ly+ si(2).L.)
B, = wa).M, o
M, = (ay(wy).[S1] before a;(u').u'(a').ay(w}).wi(y).wo1y.[.S2] before B, + ---)

Whereas the translation when a yield statement is substituted for the return is
M. = (ay(w).[S1] before al(u’).u’(&) _/zwl [52] before B, 4 ---) (15)

The value which is returned over w; is the same in both cases because the privacy of the
references prevents any interference. This would be formalized as in the previous section by
arguing that v localizes the immutable references.

Here again, the more interesting effect is that the process invoked by ) now runs concur-
rently with [S2]. But it can again be shown that they cannot interfere. It is also true that the
recursion on B, occurs earlier than that on B, because, in the former case, the delegation of
the task of returning on w, completes the m; method. This allows further negative occurrences
of u and thus invocations of either my or my. The privacy of names again removes the risk of
interference.

There is however an additional issue — with yield statements — which becomes clear in the
example of Figure 1: different uses of the test method can receive their results in orders which
are not possible with the sequential code. It is intended that no mo3A program can be written
which is sensitive to this difference but this conjecture has not yet been proved. Walker —
in [Wal93a] — constructs a detailed argument for the special case shown in Appendix A.

9 Discussion

9.1 Further work

As discussed in [Jon92] some language issues remain to be resolved in TofA itself. One radical
alternative which might be considered is to follow the Smalltalk-80 idea of getting by without
a while statement and using block statements in the language. This would obviate the need for
the while statement itself and in some senses amounts to doing in To3A what is already done
here in the w-calculus. Another idea for an extension to the o8\ language is that it would be
possible to give path expressions as constraints on the order in which methods can be invoked
(for example a w must precede any sequence of w or r in Bit of Figure 2). As also discussed
n [Jon92], oA needs an extension in order to handle situations where method calls cannot
necessarily be accepted. An obvious extension would be to add a conditional method accept
construct but it might also be possible to add a suspend idea or indeed the whole problem may
be circumvented by some form of exceptions.
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Much more work remains to be done. Although the arguments in Sections 7 are hopefully
convincing, more formality would permit the use of mechanical proof tools which might be
worthwhile as more proofs are needed. Moreover, the challenge of such formalization could yield
new insights into notions of behavioural equivalences. As the logic used in [Jon93c| stabilizes,
it will be necessary to undertake justification of its interference rules and this will require
proofs about the relationship between logical expressions and TofA statements. Furthermore,
continuing work on general properties of rely/guarantee specifications (notably [Col93, CC93])
could force reconsideration of the approach taken in [Jon93c].

9.2 Related work

The reader is referred to [MPW92, Mil92b] for notes on the evolution of process algebras which
permit name passing. Milner discusses useful examples of representing imperative languages in
CCS already in [Mil89]. An early version of the mapping contained in this paper was nearly
complete when [Wal91] was sent to the current author. In that paper, Walker maps POOL to
the monadic version of the w-calculus but the paper had a stimulating effect on the mapping
from wofB A to the polyadic w-calculus and resulted in a number of simplifications. A preliminary
sketch of the mapping from w083\ to the polyadic w-calculus is given in [Jon92]. In [Wal93b],
Walker, amongst other things, provides a mapping from POOL to the polyadic 7-calculus and
this again prompted revision of the mapping which is finally presented in [Jon93b] and repeated
in Appendix C here.

Other researchers who have provided semantics for object-oriented languages based on pro-
cess algebras include Honda and Tokoro [HT91b] (based on [HT91a]) and [Vaa90] (employs the
process algebra known as ACP). Davide Sangiorgi’s work on the higher-order w-calculus [San93b,
San93a] provides strong arguments for using a higher-order calculus; [Wal93c] actually provides
a mapping from mofBA to the higher-order 7-calculus; and the proofs in [Wal93a] are based on
this notion. The current author’s concern is that the extra power of the higher-order calcu-
lus may make it more difficult to prove the sort of results which are needed here. As is seen
in [Wal93a], it is in fact only necessary to use a second-order version of the 7-calculus and even
this is only really needed to provide a better model for value passing. It is still a research issue
to establish whether the extra power actually makes the sort of proof considered in the current
paper easier or not: it is a tenet of object-oriented thinking that everything is passed as a name.

David Walker in [Wal93a] has shown that two specific o8 transformations can be proved
weakly bi-similar; it is hoped to combine the formality of that proof with the generality of
arguing about the transformation rules themselves in a future paper.

Another author who has investigated calculi which are suitable for object-oriented program-
ming languages is Oscar Nierstrasz. His ‘object calculus’ in [Nie92] can be compared to the
higher-order 7-calculus. Further developments by the group at Keio University (e.g. [HY93])
on the v-calculus could influence the approach to the required formalization of the proofs;
furthermore [VH93] considers the problem of principal types in the w-calculus.
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A Further example

As indicated in [Wal93a], the situation with Symtab (for yield in particular) is more delicate
than for the linear object graphs. Figure 3 is the outcome of a development in [Jon93a] from a
simple specification describing an abstract machine for handling symbol tables which associate
Key/ Data pairs: the associations are created or modified by the insert method and used by the
search method. The representation used in Figure 3 is a binary tree whose nodes are instances
of the Symtab class. Each such instance — as well as storing a local Key (k) and Data (d) pair
— has references to two sub-trees. These (I and r) references are marked private to indicate that
they can not be be copied. This immediately ensures that the object-graph has no sharing: it
is a tree. (It is interesting to compare this with [HoaT75]).

The semantics of mo3A require that at most one method can be active in each (object)
instance at any one time. An interesting question is how this restriction admits concurrency
(see [Ame89] for a review of the options). The intention of the conditional statement in the
insert method should be obvious. But notice that this is preceded by a return statement. The
effect of the return is to release the invoking code from the rendezvous and to permit execution
of statements following the method call to overlap with that of the body of the insert method.
Given the restriction on only one method being active per instance, a further invocation might
be somewhat delayed. But notice that once the nested invocation (e.g. lYinsert(k’, d’)) is released
from its rendezvous, the first method can complete. In this way, a whole series of insert methods
can be rippling down a (binary tree representation of a) symbol table. Achieving a similar effect
for search (and an intermingling of the two activities) requires noticing that the invoking code
must be held up until a value can be returned but that — if the task of returning that value is
delegated — the instance first called can be made dormant and thus available for other method
calls. This is the semantics chosen for the yield statement of ToGA.

The class in Figure 3 is actually developed via the sequential version shown in Figure 4; the
final step of the design process in [Jon93a] is to apply given mofA transformation rules. One
reason for introducing concurrency at the end of the development becomes obvious if the task
of specifying — for example — the insert method of Figure 3 is considered: a post-condition alone
will not suffice unless some form of auxiliary variable is used to fix the methods which are active
on sub-trees when the method itself begins execution.® In contrast, the design in [Jon93a] is
not only based on a simple pre/post condition specification, but even the initial design steps
use standard sequential data reification and operation decomposition proofs.

Tt would, of course, be possible to define the task in terms of streams in the style of [Bro89].
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Symtab class
vars k: Key < nil; d: Data < nil; [: private ref(Symtab) < nil; r: private ref(Symtab) — nil
insert(k': Key, d’: Data) method
return
if k =nil then (k — k'; d — d')
elif &' = k then d — d’
elif k' < k then (if [ = nil then [ — new Symtab fi ; lYinsert(k’,d’))
else (if 7 = nil then r — new Symtab fi ; rlinsert(k’,d"))
fi
search(k': Key) method Data
if £ = k' then return d
elif k' < k then yield I!search(k’)
else yield r!search(k’)
fi

Figure 3: Example program Symtab (concurrent)

Symtab class
vars k: Key < nil; d: Data < nil; [: private ref(Symtab) < nil; r: private ref(Symtab) — nil
insert(k': Key, d’: Data) method
if k =nil then (k — k'; d — d')
elif &' = k then d — d’
elif k' < k then (if [ = nil then [ — new Symtab fi ; lYinsert(k’,d’))
else (if 7 = nil then r — new Symtab fi ; rlinsert(k’,d"))
fi
return
search(k': Key) method Data
if £ = k' then return d
elif k' < k then return [!'search(k’)
else return rlsearch(k’)
fi

Figure 4: Example program Symtab (sequential)
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B The n-calculus

Since the pioneering publications on CSP [Hoa78] and CCS [Mil80], many process algebras
have been studied (e.g. [Hen90, BW90, Hoa85, Mil89]). However, the treatment of names in the
m-calculus [MPW92] makes it an obvious candidate as a semantic base for object-oriented lan-
guages. The version of the w-calculus used here is a minor variant of the (first-order) polyadic
m-calculus proposed in [Mil92b]: the only difference is that the decision to identify abstrac-
tions and concretions as separate phrases of the language has not been followed: the symmetry
in [Mil92b] is pleasing but here there is little benefit in separating concretions — even for ab-
stractions, it appears to fit better with object-oriented thinking to locate everything by name.
Unlike [Wal93b, Mil92a], (binary) sums are employed here — the summands are always prefixed
so normal processes are identified as a separate class.
The syntax of the calculus is very simple. Processes (typical elements P, () can be

po=nN | PlQ| P | wor
Normal processes (typical elements M, N) can be
Nee=npP | 0| MW

Prefixes (typical element 7) are

Tii= 2(Y) | Ty

Typical elements for names here are z, y (names more closely linked to the objects being mapped
are used below). Prefix and v bind more strongly than composition; sum binds weakest of all.

A number of abbreviations are useful. Trailing stop processes are omitted, so 7.0 can be
written 7. Multiple new names are combined, so (vz)(vy) is written (rzy). A sequence of names
such as aq, as is sometimes abbreviated to @. Recursive definitions are written with an obvious
meaning; they can be viewed as an abbreviation of a ‘baton’ passing trick with replication.
The parentheses on the input prefix (z(¥)) should remind the reader that this — and of course
v — serve to bind names whereas the basic output prefix (zy) does not. There is however a
convenient abbreviation with a binding form of the output prefix.”

o~ def | ~ ,__~
T(y).P = (v)(Ty.P)
Structural equivalences can be defined. Alpha-convertible terms are taken to be structurally

equivalent. Structural equivalence laws include the following (the first three rules for 4 () can
be summarized by saying that (M, 4,0) and (P,|,0) are symmetric monoids).

M40 = M

M4+N = N4+M
M1+(M2+M3) = (M1+M2)+M3

M4+M = M

"This is not used in [Jon93b]. In fact, it would make the mapping somewhat simpler to employ finer binding
distinctions as in [Wal91].
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Plo = P

PlQ = QIP
PIQIR) = (PIQ)[R
'P = P|!'P
(rz)0 = 0

wrywy) P = (vy)va)P

A function (frn) which yields the free names of a process can be defined.

In(P]Q) = [a(P)U[n(Q)
fn(1P) In(P)
In((va)P) fn(P)—{z}
n(0) {}

fn(M +N) fn(M)U fn(N)
In(z(y).P) {z} U (n(P)—{y})

In(Ty.P) {ey ULyt U /n(P)
n(z(y).P) = {z}u(fn(P)-{y})

A similar function (bn) for bound names can be defined and P{Z/y} is the obvious syntactic
substitution (with avoidance of accidental capture). The following equivalences also hold.

wa)(P|Q) = Plw)Qifz ¢ fn(P)

(wz)y(Z).P = y&).(wa)P where 2 £ y,z ¢ Z
(va)yz.P = 7yZ.(va)P wherez #y,z ¢7Z
(ve)yr.P = 0if mis z(y) or Ty

The notion of reduction is key to the understanding of further equivalences. Reading P — @)
as P can immediately reduce to @, the following rules are taken from [Mil92b].

O P T a0 9= PTQGT

P — P

PAR ;
PlQ—P|Q

RES P—-P

(va)P — (va)P’

Q=P P—-P P =
STRUCT y
Q—«Q
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Notice that reduction is invalid under prefix or sum; there is also no rule given for reduction
under replication but its effect can be simulated.

As in CCS, bi-simulation can be defined. But it is argued below that this does not hold
for the examples in Sections 7 and 8. In arguments there, the reflexive, transitive closure of —
is discussed: this is written — . Omne rule for this can already be given: from COMM and

STRUCT it follows that

o] (- +zW).P)| (2(2).Q+ ) — (w(P | Q{y/Z})

C Mapping

This appendix contains both an abstract syntax for roA and the formal mapping to the 7-
calculus. For ease of reading, concrete Tof\ expressions are written as arguments to [-]. The
abstract syntax of a System shows it to be a collection of named class definitions (Cdef).

System = Id = Cdef

Its semantics is given by an n 4+ 1-fold composition

[ci: class Cy, -+, ¢, class C] def ‘ {1]] ) [Ci]ei | Bool
1e1,..., n

Notice that the class name is needed as an argument to the mapping of the class body. (Strictly,
there should be an argument — say p — which is a one:one mapping from {c,...,¢,} to a set of
m-calculus Names; this is avoided here by assuming that ¢; are Names.) A single class definition
contains

Cdef :: iars : Id == Type
mm : Id -2 Mdef

Its semantics is given by
[vars vy: Ty -5 0,0 Tos M]e defy (wsay( I V.| ¢u).[M]u)

Types are defined as follows (notice that NAT is handled as in Section 4.3).
Type = LocAaLREF | SHAREDREF | BooL

Method definitions contain

Mdef = r : [Type]
pl : (Id x Type)*
b : Stmt

The semantics of the collection of such definitions is given by

[mi(2) method S, -, m,(z) method 9,] df B,
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which is an n-fold (prefixed) sum

B, =u(a@).(wh(( ¥ a;(w; ). S [ S luw;) | 1().By)

The mapping of a statement requires a termination label [, the unique name of the current
activation u (for self), and an appropriate termination indicator w;. The different forms of
statement are defined

Stmt = Mref | Assign | Compound | Skip | If | While | Return | Yield

The syntax and mapping of these follow.
Mref :: en : Faxpr

mn : Id
al : Fxpr*
def

Tei!m(es)]luw =

Wl ([es]lu | [es]l"u | U(u" ) (@) (vwm ) (I (%) Qpwim & ()-1))

Assign i lhs : Id
rhs : Expr

[v — e]luw dof (wl)([e]l'u | 550.1)
Compound :: sl : Stmt*

[s1;- 3 8, luw def wh ... L_)([si]huw |-+ | Lio1O)-[sa]luw)

[Skip]luw L' 7.0

If =b : Fxpr
th : Stmt
el : Stmt

[if € then s; else sy fi]luw def

(Ul L)(Boolbval(U', 1, L) | [e]l'u | (LO)-[s1]luw 4 b().[s2]luw))

Where BoolFval is as Equation 9 of Section 5.
While = b : Fxpr
s 1 Stmt

[while e do s od]luw %" W

W = wl'LLI"Y(BoolEval(I', 1, L) | [e]l'u | (LO)-[s]!"uw =+ L)1) | I"(). W)

Return =2 r @ [Expr]
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[return Jluw def ol

[return e]luw dof wl([e]l'u | U'(r).or.d)

Yield :: r : Mref

[yield e;!'m(es)]luw dof wl'"y([e]l'u | [e]!"u | U'(uy. ' (@)1 (z).@pwe.l)

Expressions can be of the following forms.
Fxpr = New | Mref | NiL | SELF | Compare | And | Id | B
The mapping of expressions requires a label [ for the name of the result, and the unique name
of the current activation u (for self).
New :: en : Id
al : Fxpr*
The new construct has to invoke the new method of the instance.

[new c]lu def c(u). (@) (vw, ) (@pw, wy ().lu)

[eitm(es)]lu def
'y ([e]l'u | [ex]l"u | U(uy. ' (&).(vwm) (1" (2) @ & (1).17))

[nil] lu def (vn)(In)
[self]lu Lt 70

Compare :: el : Fxpr
e2 . Fxpr

[er = es]lu dof

And :: el : Fxpr
e2 : Faxpr
[er A es]lu def o ~ B

[o]lu dof ay(z).lz

[true]l def 1b,
false ld:ef 1b
[false] 1
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D Detailed reductions of Bit

This appendix shows the detail of the reductions in Section 6.

Py | [Bit] | Q
bit(u).Py | ' Iz | Q
— !
bit(u).Py | Iy | g | Q
— Ipit -
bit(u). Py | (vsya,)( Vi, | bit(u).By) | g | Q
— COMM’
wun (P | wsoa)(Vi, | B) | s | Q 1o

In Equation 16, u is local to (P | (vs,a,)( Vs, | By)) but @ could create its own instances of
Bit. Continuing the reductions

- PlvBu
(wu)(u(@).Py | ws,a,)(Va, | T@).M,)) | e | Q
— COMM’
(wud) (P2 | wsea)(Vo, | M) | s | Q
- PZvMu
(Vu&)((uww)(mww bewu (). Ps | (Usya,)(Vi, | (ay(wyz).552.0,.B, + ))) | ' | Q
— COMM
(v (Wwu)(@u0-Ps | ws,a)(Vi, | 500050 B)) | s | Q (17)

Equation 17 is the point at which the distinction between M, (of Equation 8) and M, (of
Equation 15) becomes visible. Continuing the reductions

— Vy
(Vu)((uww)(ww().Pg | ws,a)((-- - Fs,(2).V.) | Ebt.m.Bu))) | g | Q
— COMM
(wu) () (@u)-Ps | vs,a)(Vi, | T0.B)) | s | Q
— COMM
wu)(Ps | ws,a,)(Vo, | B)) | Mg | Q
- P37 Bu
(wu) (u(@).Ps | ws,a,)(Vy, | T@).M,)) | e | Q (18)

below the reductions are continued (just to give a better feel for the semantics); here return to
Equation 17 (where the permuted prefixes are first visible), M! would give

wu) (vwun)(@u)-Ps | ws,a,)(Vi, | G500 B0) | i | Q
— COMM

wu)(Ps | wsya,)(Vi, | 500.B0)) | Mg | Q
— Py
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(wu) (u(@).Ps | ws,a,)(Vs, | 5000B0)) | e | Q (19)

Intuitively it is easy to see that no further negative occurrence of u is available in Equation 19
until after the recursion triggers a further instance of B,; the reductions continue

— Vy
wu) (u(@).Ps | ws,a)((- + 5,2 V) | 5050BL)) | Vs | Q
— COMM
(Vu)(u(&).P4 | (ws,a,)( V3, | B;)) | ' | Q
— B,
(wu) (u(@).Ps | (vs,0,)(Vi, | T@).M) | g | Q (20)

Equations 18 and 20 are identical except for the original distinction between M, and M, and
therefore the permutation preserves equivalence.

Notice that [b;] has been assumed to be immutable.

Continuing reduction steps from Equation 18 gives a feel for the overall semantics of method
invocation.

— COMM'
(Vu&)(P4 | (vsya,)( V3, | Mu)) | 'Ipy | @
- P47 Mu
(vua) ((Vwr)(a_rwr'wr(y))'Pf) | (stav)(vbt | ( e +ar(wr)-av(y)-w_ry'BU))) | 'pay | Q
— COMM
(wu) (e, w, (1) Ps | ws,a)(Vi, | (). &79-Bu) | | Q
— Vy
(VU)((VWr)(wr(Z/)-Ps | (vspa,)((@be. Vi, + --+) | av(y).w_ry.Bu))) | Mg | €
— COMM
(wu) (e, w, (1) Ps | ws,a)( Vi, | @75 Bu) | s | Q
— COMM
wu)(Ps{bi/y}) | wspan)(Va | B)) | s | Q
— (because u ¢ fn(Ps)))
Ps{be/y} [ Mg | Q
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