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Introduction

This technical report lists references located during research undertaken into the history of the eld of
research which has become known as ‘formal methods’. This historical work has so far resulted in a
paper of which a technical report version is available (‘The Search for Tractable Ways of Reasoning
about Programs’, UMCS-92-4-4). The accumulated references are also being used as reference material
in preparation – with Fred Schneider – for ‘The Quest For Program Correctness: Selected Readings’
and a paper on the history of ‘programming language semantics’ which is being written with Joe Stoy.
Since a substantial number of references have been discovered it seems worthwhile to make the list
available to others. The references are being collated and checked by AM; both AM and CBJ would
be grateful for corrections. The current list1 has been checked for accuracy as far is possible with the
sources available. It should be noted that this is not a complete list of all Formal Methods references
and the authors would therefore be grateful for both corrections and suggestions for further items.

It should also be noted that there is often more than one citation for the same text. This is particularly
true where a technical report has later been published as a paper in a major journal. Pre-prints are not
listed unless they are of special signicance because – for example – they were inuential before nal
publication. It seems reasonable to focus on papers more than ten years old.

The authors regret that they cannot undertake to provide copies of the cited material.
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