
Department of Computer Science
University of Manchester
Manchester M13 9PL, England

Technical Report Series
UMCS–92–12–2

C. B. Jones and A. M. McCauley

Formal Methods –
Selected Historical References



Formal Methods – Selected Historical References

C. B. Jones and A. M. McCauley!

Department of Computer Science
University of Manchester

Oxford Rd., Manchester, U.K.
cbj@cs.man.ac.uk

1992-12-09

Abstract

This report contains citations to papers which are of historical interest in the area of formal ap-
proaches to software development.

!Copyright "1992. All rights reserved. Reproduction of all or part of this work is permitted for educational or research
purposes on condition that (1) this copyright notice is included, (2) proper attribution to the author or authors is made and (3)
no commercial gain is involved.
Technical Reports issued by the Department of Computer Science, Manchester University, are available by anonymous

ftp from m1.cs.man.ac.uk (130.88.13.4) in the directory /pub/TR. The les are stored as PostScript, in compressed form,
with the report number as lename. Alternatively, reports are available by post from The Computer Library, Department of
Computer Science, The University, Oxford Road, Manchester M13 9PL, U.K.



Introduction

This technical report lists references located during research undertaken into the history of the eld of
research which has become known as ‘formal methods’. This historical work has so far resulted in a
paper of which a technical report version is available (‘The Search for Tractable Ways of Reasoning
about Programs’, UMCS-92-4-4). The accumulated references are also being used as reference material
in preparation – with Fred Schneider – for ‘The Quest For Program Correctness: Selected Readings’
and a paper on the history of ‘programming language semantics’ which is being written with Joe Stoy.
Since a substantial number of references have been discovered it seems worthwhile to make the list
available to others. The references are being collated and checked by AM; both AM and CBJ would
be grateful for corrections. The current list1 has been checked for accuracy as far is possible with the
sources available. It should be noted that this is not a complete list of all Formal Methods references
and the authors would therefore be grateful for both corrections and suggestions for further items.

It should also be noted that there is often more than one citation for the same text. This is particularly
true where a technical report has later been published as a paper in a major journal. Pre-prints are not
listed unless they are of special signicance because – for example – they were inuential before nal
publication. It seems reasonable to focus on papers more than ten years old.

The authors regret that they cannot undertake to provide copies of the cited material.

References

[1] J.-R. Abrial and S. A. Schuman. Non-deterministic system specication. In [305], pages 34–50,
1979.

[2] J.-R. Abrial, S. A. Schuman, and B. Meyer. Specication language. In R. M. McKeag and A. M.
Macnaghten, editors, On the Construction of Programs, pages 343–410. Cambridge, 1980.

[3] P. Aczel. A note on program verication. Manuscript, Manchester, January 1982.

[4] P. Aczel. Non-Well-Founded Sets. CSLI Lecture Notes: 14. Center for the Study of Language
and Information, Stanford, 1988.

[5] C. D. Allen, D. N. Chapman, and C. B. Jones. A formal denition of ALGOL 60. Technical
Report 12.105, IBM Laboratory Hursley, August 1972.

[6] J. Alton, H. Weiskittel, and J. Latham-Jackson. Catalogue of the papers of Christopher Strachey
(1916–75). Technical Report CSAC 71/1/80, Contemporary Scientic Archives, Deposited in
the Bodleian Library, Oxford, 1980.

[7] K. R. Apt. Ten years of Hoare’s logic: A survey – part I. ACM Transactions on Programming
Languages and Systems, 3:431–483, 1981.

[8] K. R. Apt. Ten years of Hoare’s logic: A survey – part II: Nondeterminism. Theoretical Computer
Science, 28:83–109, 1984.

[9] K. R. Apt, N. Francez, and W.-P. de Roever. A proof system for communicating sequential
processes. Technical Report RUU-CS-80-4, University of Utrecht, The Netherlands, May 1980.
Also published as [10].

1Compiling this list has resulted in the production of a second list of other material, particularly unpublishedmanuscripts.
At the time of publication the authors are still trying to develop precise citations for them.

1



[10] K. R. Apt, N. Francez, and W.-P. de Roever. A proof system for communicating sequential
processes. ACM Transactions on Programming Langauges and Systems, 2:359–385, 1980.

[11] J. Arsac. Foundations of Programming, volume 23 of APIC Studies in Data Processing. Aca-
demic Press, 1985. Translated by F. Duncan.

[12] E. A. Ashcroft. Proving assertions about parallel programs. Journal of Computer and System
Sciences, 10:110–135, 1975.

[13] E. A. Ashcroft, M. Clint, and C. A. R. Hoare. Remarks on “Program proving: Jumps and
functions”. Acta Informatica, 6:317–318, 1976.

[14] E. A. Ashcroft and Z. Manna. Formalization of properties of parallel programs. Technical Report
AIM–110, Stanford Articial Intelligence Project, February 1970. Published as [15].

[15] E. A. Ashcroft and Z. Manna. Formalization of properties of parallel programs. In B. Meltzer
and D. Michie, editors,Machine Intelligence, 6, pages 17–41. EdinburghUniversity Press, 1971.

[16] E. A. Ashcroft and W. W. Wadge. R for semantics. Technical Report CS-79-37, Faculty of
Mathematics, University of Waterloo, Canada, December 1979.

[17] A. Avron. Foundations and proof theory of 3-valued logics. Technical Report ECS-LFCS-88-48,
Department of Computer Science, University of Edinburgh, April 1988.

[18] A. Avron. Natural 3-valued logics – characterization and proof theory. Journal of Symbolic
Logic, 56(1):276–294, March 1991.

[19] R. J. R. Back. Correctness of explicitly specied procedures. Technical Report IW 154/80,
Mathematisch Centrum, Amsterdam, Decmeber 1980. Preprint.

[20] R. J. R. Back. Correctness preserving program renements: Proof theory and applications. Tech-
nical report, Mathematisch Centrum Tract, 131, 1980.

[21] R. J. R. Back. On correct renement of programs. Journal of Computer and System Sciences,
23:49–68, August 1981.

[22] R. J. R. Back. Proving total correctness of nondeterministic programs in innitary logic. Acta
Informatica, 15:233–249, 1981.

[23] R. C. Backhouse. Program Construction and Verification. Prentice-Hall International, 1986.

[24] R. C. Backhouse, P. Chisholm, G. Malcolm, and E. Saaman. Do-it-Yourself type theory. Formal
Aspects of Computing, 1:19–84, 1989.

[25] J. Backus. Can programming be liberated from the von Neuman style?: a functional style and its
algebra of programs. Communications of the ACM, 21:613–641, 1978.

[26] J. Backus, J. H. Williams, and E. L. Wimmers. FL language manual (preliminary version).
Technical Report RJ 5339, IBM Almaden Research Center, San Jose, 1986.

[27] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur, A. J. Perlis, H. Rutishauser,
K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and M. Woodger. Revised report
on the algorithmic language Algol 60. Communications of the ACM, 6(1):1–17, 1963.

2



[28] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge University Press, 1990.

[29] K. Bandat. Tentative steps towards a formal denition of semantics of PL/I. Technical Report
TR 25.056, IBM Laboratory, Vienna, July 1963.

[30] K. Bandat. Heinz Zemanek and the IBM laboratory. In [466], pages 53–60, 1985.

[31] H. P. Barendregt. The Lambda Calculus – Its Syntax and Semantics. North Holland, 1981.

[32] H. Barringer, J. H. Cheng, and C. B. Jones. A logic covering undenedness in program proofs.
Acta Informatica, 21:251–269, 1984.

[33] H. Barringer, R. Kuiper, and A. Pnueli. Now you can compose temporal logic specication. In
Proceedings of 16th ACM STOC, pages 51–63, Washington, April–May 1984.

[34] D. W. Barron, J. N. Buxton, D. F. Hartley, and C. Strachey. The main features of CPL. Computer
Journal, 6:134–143, 1963.

[35] D. W. Barron and C. Strachey. Programming. In L. Fox, editor, Advances in Programming and
Non-numerical Computation, pages 49–82. Pergamon Press, 1966.

[36] J. L. Bates and R. L. Constable. Proofs as programs. Technical Report TR 82-530, Cornell
University, February 1983. Also published as [37].

[37] J. L. Bates and R. L. Constable. Proofs as programs. ACM Transactions on Programming
Languages and Systems, 7:113–136, 1985.

[38] F. L. Bauer and K. Samelson. Language Hierarchies and Interfaces. Number 46 in Lecture Notes
in Computer Science. Springer-Verlag, 1976.

[39] F. L. Bauer and H. Wössner. Algorithmic Language and ProgramDevelopment. Springer-Verlag,
1982.

[40] H. Bekic. Towards a mathematical theory of processes. Technical Report TR 25.125, IBM Lab.
Vienna, 1971.

[41] H. Bekic, D. Bjørner, W. Henhapl, C. B. Jones, and P. Lucas. A formal denition of a PL/I subset.
Technical Report 25.139, IBM Laboratory Vienna, December 1974.

[42] H. Bekic, H. Izbicki, C. B. Jones, and F. Weissenböck. Some experiments with using a formal
language denition in compiler development. Laboratory Note LN 25.3.107, IBM Laboratory,
Vienna, December 1975.

[43] H. Bekic and C. B. Jones, editors. Programming Languages and Their Definition, volume 177
of Lecture Notes in Computer Science. Springer-Verlag, 1984.

[44] H. Bekic and K. Walk. Formalization of storage properties. In [183], pages 28–61. 1971.

[45] U. Berger, W. Meixner, and B. Möller. Calculating a garbage collector. In M. Broy and M. Wirs-
ing, editors, Methods of Programming: Selected papers on the CIP-Project, Lecture Notes in
Computer Science, Vol. 544, pages 138–192. Springer-Verlag, 1991.

3



[46] J. A. Bergstra and J. W. Klop. A formalized proof system for total correctness of WHILE pro-
grams. Technical Report IW 175/81, Mathematisch Centrum, Amsterdam, October 1981. Pre-
print.

[47] J. A. Bergstra and J. V. Tucker. Two theorems about the completeness of Hoare’s logic. Technical
Report IW 165/81, Mathematisch Centrum, Amsterdam, April 1981. Preprint.

[48] D. Bjørner, C. A. R. Hoare, and H. Langmaack, editors. VDM’90: VDM and Z – FormalMethods
in Software Development, volume 428 of Lecture Notes in Computer Science. Springer-Verlag,
1990.

[49] D. Bjørner, C. B. Jones, M. Mac an Airchinnigh, and E. J. Neuhold, editors. VDM’87 – A Formal
Definition at Work, volume 252 of Lecture Notes in Computer Science. Springer-Verlag, 1987.

[50] D. Bjørner, editor. Abstract Software Specifications: 1979 Copenhagen Winter School Proceed-
ings, volume 86 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1980.

[51] D. Bjørner and C. B. Jones, editors. The Vienna Development Method: The Meta-Language,
volume 61 of Lecture Notes in Computer Science. Springer-Verlag, 1978.

[52] D. Bjørner and C. B. Jones. Formal Specification and Software Development. Prentice Hall
International, 1982.

[53] D. Bjørner and O. N. Oest, editors. Towards a Formal Description of Ada, volume 98 of Lecture
Notes in Computer Science. Springer-Verlag, Berlin, 1980.

[54] S. R. Blamey. Partial Valued Logic. PhD thesis, Oxford University, 1980.

[55] A. Blikle. A metalanguage for naive denotational semantics. Technical Report 104, Consiglio
Nazionale Delle Ricerche, ETS, Pisa, 1983.

[56] A. Blikle. Three-valued predicates for software specication and validation. In [57], pages
243–266, 1988.

[57] R. Bloomeld, L. S. Marshall, and R. B. Jones, editors. VDM’88: VDM – The Way Ahead,
volume 328 of Lecture Notes in Computer Science. Springer-Verlag, 1988.

[58] E. K. Blum, M. Paul, and S. Takasu, editors. Mathematical Studies of Information Processing,
volume 75 of Lecture Notes in Computer Science. Springer-Verlag, 1979.

[59] A. Borning. Computer system reliability and nuclear war. Communications of the ACM, 30:112–
131, February 1987.

[60] K. Bothe. Specication and vericiation of abstract data types. Seminarbericht 13, Humboldt-
Universität zu Berlin, April 1979.

[61] K. Bothe. A generalized abstract data type concept. Preprint. (Neue Folge) 3, Humboldt-
Universität zu Berlin, 1980.

[62] K. Bothe. An algorithmic interface structure for PASCAL compilers: Compiler portability by
modularization. Seminarbericht 73, Humboldt-Universität zu Berlin, September 1985.

[63] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, 1979.

4



[64] R. S. Boyer and J. S. Moore. The Correctness Problem in Computer Science. International
Lecture Series in Computer Science. Academic Press, London, 1981.

[65] R. S. Boyer and J. S. Moore. A verication condition generator for FORTRAN. In [64], pages
9–102. Academic Press, 1981.

[66] P. Brinch Hansen. Operating System Principles. Prentice-Hall Series in Automatic Computation.
Prentice-Hall, 1973.

[67] P. Brinch Hansen. Concurrent Pascal – a programming language for operating system design.
Technical Report 10, Information Science, Cal. Tech., April 1974.

[68] P. Brinch Hansen. A programming methodology for operating system design. In J. L. Rosenfeld,
editor, Information Processing 74, pages 394–397, 1974. Proceedings of IFIP’74.

[69] P. Brinch Hansen. The programming language concurrent Pascal. IEEE Transactions on Software
Engineering, 1:199–207, June 1975.

[70] P. Brinch Hansen. The programming language concurrent Pascal. In [38], pages 82–110. 1976.

[71] P. Brinch Hansen. The Solo operating system: A concurrent pascal program. Software— Practice
and Experience, 6:141–149, 1976.

[72] P. Brinch Hansen. Distributed processes: A concurrent programming concept. Communications
of the ACM, 21:934–941, 1978.

[73] P. Brinch Hansen. EDISON – a multiprocessor language. Technical Report Unnumbered, Uni-
versity of Southern California, Computer Science Department, September 1980.

[74] C. Bron and M. M. Fokkinga. Exchanging robustness of a program for a relaxation of its spe-
cication. Memorandum 178, Twente University of Technology, The Netherlands, September
1977.

[75] C. Bron, M. M. Fokkinga, and A. C. M. de Haas. A proposal for dealing with abnormal ter-
mination of programs. Memorandum 150, Twente University of Technology, The Netherlands,
November 1976.

[76] S. D. Brookes. A model for communicating sequential processes. Technical Report CMU-CS-
83-149, Department of Computer Science, Carnegie-Mellon University, January 1983.

[77] S. D. Brookes. A semantics and proof system for communicating processes. Technical Report
CMU-CS-83-134, Department of Computer Science, Carnegie-Mellon University, May 1983.

[78] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31:560–599, July 1984.

[79] M. Broy. Denotational semantics of concurrent programs with shared memory. In M. Fontet and
K. Mehlhorn, editors, STACS 84: Symposium of Theoretical Aspects of Computer Science, Paris,
April 1984, volume 166 of Lecture Notes in Computer Science, pages 163–173. Springer-Verlag,
1984.

[80] M. Broy. Semantics of communicating processes. Information & Control, 61:202–246, 1984.

5



[81] M. Broy. A theory for nondeterminism, parallelism, communication and concurrency. Theoretical
Computer Science, 45:1–61, 1986.

[82] M. Broy and F. L. Bauer. A systematic approach to language constructs for concurrent programs.
Science of Computer Programming, 4:103–139, 1984.

[83] M. Broy and G. Schmidt. Theoretical Foundations of Programming Methodology. NATO Ad-
vanced Study InstitutesSeries. D. Reidel, 1982. Lecture notes of an International Summer School.

[84] J. R. Buchanan and D. L. Luckham. On automating the construction of programs. Technical
Report STAN-CS-74-433, Computer Science Department, Stanford University, May 1974.

[85] W. H. Burge. The evaluation, classication and interpretation of expressions. In Proceedings of
the 19th ACM National Conference, 1964, 1964. Paper A1.4.

[86] W. H. Burge. Proving the correctness of a compiler. Technical Report RC-2111, IBM Yorktown
Heights, New York, June 1968.

[87] R. M. Burstall. Semantics of assignment. In E. Dale and D. Michie, editors,Machine Intelligence,
2, pages 3–20. Edinburgh University Press, 1967.

[88] R. M. Burstall. Formal description of program structure and semantics in rst order logic. In
B. Meltzer and D. Michie, editors, Machine Intelligence 5, pages 79–98. Edinburgh University
Press, 1969.

[89] R. M. Burstall. Proving properties of programs by structural induction. Computer Journal, 12:41–
48, 1969. Earlier available as Experimental Programming Report, No. 17, DMIP, Edinburgh,
1968.

[90] R. M. Burstall. Program proving as hand simulation with a little induction. In J. L. Rosenfeld,
editor, Information Processing 74, pages 308–312, 1974. Proceedings of IFIP’74.

[91] R. M. Burstall and J. Darlington. A transformation system for developing recursive programs.
Journal of the ACM, 24:44–67, 1977.

[92] R. M. Burstall and J. A. Goguen. The semantics of CLEAR, a specication language. In in [50],
pages 292–332. 1980.

[93] R. M. Burstall and J. A. Goguen. An informal introduction to specications using CLEAR. In
[64], pages 185–214. 1981.

[94] R. M. Burstall and P. J. Landin. Programs and their proofs: an algebraic approach. In B. Meltzer
and D. Michie, editors,Machine Intelligence 4, pages 17–43. Edinburgh University Press, 1969.

[95] J. N. Buxton and B. Randell, editors. Software Engineering Techniques. NATO Science Com-
mittee, 1970. Report on a conference Rome, Italy, 27th to 31st October 1969.

[96] M. Campbell-Kelly. Christopher Strachey, 1916–1975: A biographical note. Annals of the
History of Computing, 7:19–42, January 1985.

[97] A. Caracciolo di Forino and L. Carlucci. On and algorithmic interpretation of the formal denition
of PL/I. Internal Note B 69-4, ConsiglioNazionale delle Ricerche, University of Pisa, April 1969.

6



[98] L. Cardelli. An Algebraic Approach to Hardware Description and Verification. PhD thesis,
Computer Science Dept., University of Edinburgh, 1982.

[99] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism. ACM
Computing Surveys, 17:471–522, December 1985.

[100] A. K. Chandra and Z. Manna. Program schemas with equality. Technical Report CS-250, Com-
puter Science Department, Stanford University, December 1971.

[101] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley, 1988.

[102] G. Chroust, editor. Heinz Zemanek – Ein Computerpionier. R. Oldenbourg, 1985.

[103] A. Church. The Calculi of Lambda-Conversion. Princeton University Press, 1941.

[104] CIP Language Group. The Munich Project CIP, Volume I: The Wide Spectrum Language CIP-L,
volume 183 of Lecture Notes in Computer Science. Springer-Verlag, 1985.

[105] CIP System Group. The Munich Project CIP, Volume II: The Program Transformation System
CIP-S, volume 292 of Lecture Notes in Computer Science. Springer-Verlag, 1987.

[106] M. Clint and C. A. R. Hoare. Program proving: Jumps and functions. Acta Informatica, 1:214–
224, 1972.

[107] J. Coenen, W.-P. de Roever, and J. Zwiers. Assertional data reication proofs: Survey and
perspective. In J. M. Morris and R. Shaw, editors, 4th Refinement Workshop, pages 97–114.
Springer-Verlag, 1991.

[108] A. Colmerauer. PROLOG and innite trees. In K. L. Clark and S. A. Tärnlund, editors, Logic
Programming. Academic Press, 1982.

[109] R. L. Constable. Constructive mathematics and automatic program writers. In C. V. Freiman,
editor, Information Processing 71, volume 1, pages 229–233. North-Holland, 1971. Proceedings
of IFIP’71.

[110] R. L. Constable et al. Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall, 1986.

[111] D. C. Cooper. The equivalence of certain computations. BCS, Computer Journal, 9:45–52, 1966.

[112] D. C. Cooper. Theorem-proving in computers. In L. Fox, editor, Advances in Programming and
Non-numerical Computation, pages 155–182. Pergamon Press, 1966.

[113] D. C. Cooper. Mathematical proofs about computer programs. In N. L. Collins and D. Michie,
editors, Machine Intelligence, 1, pages 17–28. Olliver and Boyd, 1967.

[114] D. C. Cooper. Some transformations and standard forms of graphs, with applications to computer
programs. In E. Dale and D. Michie, editors, Machine Intelligence, 2, pages 21–32. Edinburgh
University Press, 1967.

[115] D. C. Cooper. Program schemes, programs and logic. In [183], pages 62–70. 1971.

7



[116] P. Cousot. A Hoare-style axiomatization of Burstall’s intermittent assertions method for non-
deterministic programs. Technical Report LRIM-83-04, Metz University, France, September
1973.

[117] D. Craigen. A technical review of four verication systems: Gypsy, Afrm, FDM and Revised
Special. Technical Report FR-85-5401-01, I. P. Sharp Associates, August 1985.

[118] O-J. Dahl. Can program proving be made practical? In M. Amirchahy and D. Néel, editors,
EEC-Crest Course on Programming Foundations, pages 57–114. IRIA, 1978. Also printed as
Technical Report 33 of Institute of Informatics, University of Oslo.

[119] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, editors. Structured Programming. Academic
Press, 1972.

[120] O.-J. Dahl, D. F. Langmyhr, and O. Owe. Preliminary report on the specication and program-
ming language ABEL. Technical Report 106, University of Oslo, Institute of Informatics, Uni-
versity of Oslo, December 1986.

[121] O.-J. Dahl, B. Myhrhaug, and K. Nygaard. SIMULA 67 common base language. Technical
Report S-2, Norwegian Computing Center, Oslo, 1968.

[122] J. Darlington. A Semantic Approach to Automatic Program Improvement. PhD thesis, University
of Edinburgh, 1972.

[123] J. Darlington and R. M. Burstall. A system which automatically improves programs. Acta
Informatica, 6:41–60, 1976.

[124] M. Davis. The Undecidable. Raven Press, 1965.

[125] J. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall International, 1980.

[126] J. W. de Bakker. Formal denition of algorithmic languages, with an application to the denition
of ALGOL 60. Technical Report MR–74, Stichting Mathematisch Centrum, May 1965.

[127] J. W. de Bakker. Axiomatics of simple assignment statements. Technical Report 94, Mathemat-
isch Centrum, Amsterdam, June 1968.

[128] J. W. de Bakker. Semantics of programming languages. Technical Report Unnumbered, Math-
ematical Centre, Amsterdam, 1968.

[129] J. W. de Bakker. Semantics of programming languages. In J. T. Tou, editor, Advances in Inform-
ation Systems Science, volume 2, pages 173–227. Plenum Press, 1969.

[130] J. W. de Bakker. Axiom systems for simple assignment statements. In [183], pages 1–22. 1971.

[131] J. W. de Bakker. Recursive procedures. Draft copy of Mathematical Centre Tract 24, August
1971.

[132] J. W. de Bakker. Inleiding bewijsmethoden. Mathematical Centre Syllabus, 21(1):1–17, 1975.

[133] J. W. de Bakker. Correctness proofs for assignment statements. Technical Report IW 55/77,
Mathematisch Centrum, Amsterdam, January 1977. Preprint.

8



[134] J. W. de Bakker. Recursive programs as predicate transformers. Technical Report IW 83/77,
Mathematisch Centrum, Amsterdam, June 1977. Preprint.

[135] J. W. de Bakker, J. W. Klop, and J.-J.Ch Meyer. Correctness of programs with function proced-
ures. Technical Report IW 170/81, Mathematisch Centrum, Amsterdam, July 1981. Preprint.

[136] J. W. de Bakker and D. Scott. A theory of programs. Manuscript notes for IBM Seminar, Vienna,
August 1969.

[137] J. W. de Bakker and J. I. Zucker. Processes and the denotational semantics of concurrency.
Technical Report IW 209/82, Mathematisch Centrum, Amsterdam, September 1982. Preprint.

[138] N. G. de Bruijn. The mathematical language AUTOMATH – its usage and some of its extensions.
In Symposium on Automatic Demonstration, volume 125 of Lecture Notes in Mathematics, pages
29–61. Springer-Verlag, 1970.

[139] R. de Nicola. Two complete axiom systems for a theory of communicating sequential pro-
cesses. Technical Report CSR-154-83, Department of Computer Science, University of Edin-
burgh, December 1983.

[140] W.-P. de Roever. Recursion and parameter mechanisms: An axiomatic approach. In J. Loeckx,
editor, AutomataLanguages and Programming, volume 14 of Lecture Notes in Computer Science.
Springer-Verlag, 1974.

[141] W.-P. de Roever. Call-by-value versus call-by-name: A proof theoretic comparison. Technical
Report IW 23/76, Mathematical Center, Amsterdam, September 1976.

[142] W.-P. de Roever. Dijkstra’s predicate transformer, non-determinism, recursion and termination.
Technical Report 37, I.R.I.S.A., University of Rennes, 1976.

[143] W.-P. de Roever. The quest for compositionality: A survey of assertion-based proof systems for
concurrent programs: Part I: Concurrency based on shared variables. In [466], pages 181–205,
1985.

[144] W.-P. de Roever, Jr. Recursive Program Schemes: Semantics and Proof Theory. PhD thesis,
Mathematisch Centrum, Amsterdam, 1974.

[145] P. Degano and U.Montanari. Distributed systems, partial ordering of events, and event structures.
In M. Broy, editor, Control Flow and Data Flow: Concepts of Distributed Programming – NATO
ASI Series F: Computer and System Sciences, Vol. 14, pages 7–106. Springer-Verlag, 1985.

[146] P. Degano, R. De Niccola, and U. Montanari. Partial ordering derivations for CCS. In L. Budach,
editor, Fundamentals of Computation Theory,FCT 85. Cottbus, GDR, September 1985, volume
199 of Lecture Notes in Computer Science, pages 520–533. Springer-Verlag, 1985.

[147] R. A. DeMillo, R. J. Lipton, and A. J. Perlis. Social processes and proofs of theorems and
programs. Communications of the ACM, 22:271–280, May 1979.

[148] B. T. Denvir, W. T. Harwood, M. I. Jackson, and M. J. Wray. The Analysis of Concurrent
Systems: Cambridge, September 1983, Proceedings of a Workshop, volume 207 of Lecture Notes
in Computer Science. Springer Verlag, Berlin, 1985.

9



[149] N. Dershowitz and Z. Manna. Inference rules for program annotation. Technical Report STAN-
CS-77-631, Computer Science Department, Stanford University, October 1977.

[150] E. W. Dijkstra. Recursive programming. Numerische Mathematik, 2:312–318, 1960.

[151] E. W. Dijkstra. Programming considered as a human activity. In W. A. Kalenich, editor, Inform-
ation Processing 1965. Proceedings of the IFIP Congress, pages 213–217, New York City, May
1965.

[152] E. W. Dijkstra. A constructive approach to the problem of program correctness. BIT, 8:174–186,
1968.

[153] E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, ProgrammingLanguages,
pages 43–112. Academic Press, New York, 1968.

[154] E. W. Dijkstra. Go to statement considered harmful. Communications of the ACM, 11(3):147–
148, 1968.

[155] E.W. Dijkstra. A short introduction to the art of programming. TechnischHogeschool Eindhoven,
EWD-316, 1971.

[156] E. W. Dijkstra. The humble programmer. Communications of the ACM, 15:859–866, 1972.

[157] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Com-
munications of the ACM, 18:453–457, 1975.

[158] E. W. Dijkstra. A synthesis emerging? In [164], pages 147–160. Springer-Verlag, 1975.
EWD508-0.

[159] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[160] E. W. Dijkstra. Guarded commands, non-determinacy and a calculus for the derivation of pro-
grams. In [38], pages 111–124. 1976.

[161] E. W. Dijkstra. On-the-Fly garbage collection: An exercise in cooperaton. In [38], pages 43–56.
1976.

[162] E. W. Dijkstra. A personal summary of the Gries-Owicki theory. In [164], pages 188–199.
Springer-Verlag, 1976. EWD554-0.

[163] E. W. Dijkstra. Introduction: Why correctness must be a mathematical concern. In [64], pages
1–8. Academic Press, 1981.

[164] E. W. Dijkstra. Selected Writings on Computing: A Personal Perspective. Texts and Monographs
in Computer Science. Springer-Verlag, 1982.

[165] E. W. Dijkstra. A tutorial on the split binary semaphore. In [83], pages 555–565. 1982.

[166] E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics. Springer-Verlag,
1990.

[167] B. Dömölki, Zs. Farkas, and E. Sántáné–Tóth. On the formal description of software objects.
In Second Hungarian Computer Science Conference, Budapest, 27 June–2 July, 1977, pages
338–361, 1977. Preprints I.

10



[168] J. E. Donahue. Complementary denitions of programming language semantics. Technical Report
CSRG-62, University of Toronto, Canada, November 1975.

[169] J. E. Donahue. Complementary Definitions of Programming Language Semantics, volume 42 of
Lecture Notes in Computer Science. Springer-Verlag, 1976.

[170] J. E. Donahue and A. Demers. Data types are values. Technical Report CSL-83-5, Xerox Cor-
poration, Palo Alto, March 1984.

[171] J. E. Donahue, J. D. Gannon, J. V. Guttag, and J. J. Horning. Three approaches to reliable
software: Language design, dyadic specication, complementary semantics. Technical Report
CSRG-45, Computer Systems Research Group, University of Toronto, December 1974.

[172] V. Donzeau-Gouge, G. Kahn, and B. Lang. A complete machine-checked denition of a simple
programming language using denotational semantics. Research Report 330, IRIA Laboria,
France, October 1978.

[173] V. Donzeau-Gouge, G. Kahn, and B. Lang. On the formal denition of ADA. In [301], pages
475–489. Springer-Verlag, 1980.

[174] A. J. W. Duijvestijn. Correctness proof of an in-place permutation. BIT, pages 318–324, 1972.

[175] F. G. Duncan. Possibilities for rening an object program compiled with an Algol translator. BIT,
5:85–95, 1965.

[176] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Initial Se-
mantics. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1985.

[177] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module Specifications and
Constraints. EATCS Monographs on Theoretical Computer Science. Springer-Verlag, 1990.

[178] S. Eilenberg and C. C. Elgot. Iteration and recursion. Technical Report RC 2148, IBM Research,
July 1968.

[179] C. C. Elgot. A notion of interpretability of algorithms in algorithms. Technical Report TR 25.068,
IBM Laboratory, Vienna, August 1966.

[180] C. C. Elgot. Algebraic theories and program schemes. In [183], pages 71–88. 1971.

[181] C. C. Elgot. Remarks on one-argument program schemes. In [512], pages 59–64. 1972.

[182] C. C. Elgot and A. Robinson. Random access stored-program machines: An approach to pro-
gramming languages. Journal of the ACM, 11:365–399, October 1964.

[183] E. Engeler. Symposium on Semantics of Algorithmic Languages. Number 188 in Lecture Notes
in Mathematics. Springer-Verlag, 1971.

[184] A. P. Ershov. On programming arithmetic operators. Communications of the ACM, 1(8):3–6,
August 1958.

[185] A. P. Ershov. Parallel programming. Technical Report CS-224, Computer Science Department,
Stanford University, July 1971.

11



[186] A. P. Ershov. Theory of program schemata. In C. V. Freiman, editor, Information Processing 71,
volume 1, pages 28–46. North-Holland, 1971. Proceedings of IFIP’71.

[187] A. P. Ershov. Axiomatics for memory allocation. Acta Informatica, 6(1):61–76, 1976.

[188] A. P. Ershov. Origins of Programming: Discourses on Methodology. Springer-Verlag, 1990.
Original Russian in 1977.

[189] A. P. Ershov and G. D. Chinin. Design specications of a quality compiler factory. In Construct-
ing Quality Software. International Federation for Information Processing, Technical Committee
2 on Programming. Working Conference, pages 203–228, Novosibirsk, May 1977.

[190] A. Evans. Syntax Analysis by a Production Language. PhD thesis, Carnegie Institute of Techno-
logy, 1965.

[191] A. D. Falkoff, K. E. Iverson, and E. H. Sussenguth. A formal description of SYSTEM/360. IBM
Systems Journal, 3(2 and 3), 1964.

[192] J. A. Feldman. A Formal Semantics for Computer Oriented Languages. PhD thesis, Carnegie
Institute of Technology, May 1964. Reprinted June 1965.

[193] L. Flon. On the Design and Verification of Operating Systems. PhD thesis, Carnegie-Mellon
University, May 1977.

[194] L. Flon and N. Suzuki. Consistent and complete proof rules for the total correctness of parallel
programs. Technical Report CSl-78-6, Xerox, Palo Alto, 1978.

[195] R. W. Floyd. On the nonexistence of a phrase structure grammar for ALGOL 60. Communications
of the ACM, 5:483–484, 1962.

[196] R. W. Floyd. The syntax of programming langauges–a survey. IEEE Transactions on Electronic
Computers, 13, 4:346–353, August 1964.

[197] R. W. Floyd. Assigning meanings to programs. In Proc. Symp. in Applied Mathematics, Vol.19:
Mathematical Aspects of Computer Science, pages 19–32. American Mathematical Society, 1967.

[198] M. Foley and C. A. R. Hoare. Proof of a recursive program: Quicksort. BCS, Computer Journal,
14:391–395, November 1971.

[199] N. Francez, C. A. R. Hoare, D. J. Lehmann, and W.-P. de Roever. Semantics of nondetermin-
ism, concurrency and communication. Journal of Computer and System Sciences, 19:290–308,
December 1979.

[200] N. Francez and A. Pnueli. A proof method for cyclic programs. Acta Informatica, 9:133–157,
1978.

[201] R. Gerth. A sound and complete Hoare axiomatization of the Ada-Rendezvous. Technical Report
RUU-CS-82-5, University of Utrecht Vakgroep Informatica, April 1982. Extended Abstract.

[202] J. A. Goguen. On homomorphisms, correctness, termination, unfoldments, and equivalence of
ow diagram programs. Journal of Computer and System Sciences, 8:333–365, 1974.

12



[203] J. A. Goguen and K. Parsaye-Ghomi. Algebraic denotational semantics using parameterized
abstract models. Technical Report CSL-119, Computer Science Laboratory, SRI International,
February 1981.

[204] J. A. Goguen and J. W. Thatcher. Initial algebra semantics. Technical Report RC 4865, IBM
Yorktown Heights, 1974. Extended Abstract.

[205] J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach to the specication,
correctness, and implementation of abstract data types. Technical Report RC 6487, IBM T.J.
Watson Research Center, October 1976.

[206] J. A. Goguen, J. W. Thatcher, E. G.Wagner, and J. B. Wright. Initial algebra semantics. Technical
Report RC 5243, IBM Yorktown Heights, January 30th 1975.

[207] J. A. Goguen, J. W. Thatcher, E. W. Wagner, and J. B. Wright. Initial algebra semantics and
continuous algebras. Journal of the ACM, 24:68–95, 1977.

[208] A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation. Addison-
Wesley, 1983.

[209] H. H. Goldstine and J. von Neumann. Planning and coding of problems for an electronic com-
puting instrument, 1947. Part II, Vol. 1 of a Report prepared for U.S. Army Ord. Dept.; also
published as pages 80–151 of [569].

[210] D. I. Good, R. M. Cohen, C. G. Hoch, L. W. Hunter, and D. F. Hare. Report on the language
Gypsy, version 2.0. Technical Report ICSCA-CMP-10, University of Texas at Austin, September
1978.

[211] M. Gordon. Operational reasoning and denotational semantics. Technical Report STAN-CS-75-
506, Stanford University, Computer Science Department, August 1975.

[212] M. Gordon. Why higher-order logic is a good formalism for specifying and verifying hardware.
In G. Milne and P.A. Subrahmanyam, editors, Formal Aspects of VLSI Design, pages 153–177.
North-Holland, 1986.

[213] M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF, volume 78 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1979.

[214] M. J. C. Gordon. The Denotational Description of Programming Languages: An Introduction.
Springer-Verlag, 1979.

[215] M. J. C. Gordon. Programming Language Theory and its Implementation. Prentice-Hall Inter-
national, 1988.

[216] S. Gorn. Common programming language task: Final report No. AD59UR1. Contract No. DA-
36-039-SC-75047, DA Proj. No. 3-28-01-201, PR and C No. 58-ELC/D-4457, Part I, Section 5:
On The Logical Design of Formal Mixed Languages, 1959.

[217] S. Gorn. Specication languages for mechanical languages and their processors – a baker’s dozen.
Communications of the ACM, 4:532–542, 1961.

[218] D. Gries. An exercise in proving parallel programs correct. In [38], pages 57–81. 1976.

13



[219] D. Gries, editor. ProgrammingMethodology: A Collection of Articles by Members of IFIP W.G.
2.3. Springer-Verlag, 1978.

[220] D. Gries. The Science of Programming. Springer-Verlag, 1981.

[221] D. Gries and G. Levin. A procedural call proof rule (with a simple explanation). Technical Report
TR 79-379, Cornell University, New York, May 1979.

[222] O. Grümberg, N. Francez, J. A.Maskowsky, andW.-P. de Roever. A proof rule for fair termination
of guarded commands. Technical Report RUU-CS-81-2, University of Utrecht, The Netherlands,
January 1981.

[223] Y. Gurevich. Logic and the challenge of computer science. Technical Report CRL-TR-10-85,
Computing Research Laboratory, University of Michigan, September 1985.

[224] J. V. Guttag. The Specification and Application to Programming of Abstract Data Types. PhD
thesis, University of Toronto, Computer Systems Research Group, September 1975. CSRG-59.

[225] J. V. Guttag, J. J. Horning, and R. L. London. A proof rule for Euclid procedures. Technical
Report ISI/RR-77-60, University of Southern California, Information Sciences Institute, May
1977.

[226] J. V. Guttag, J. J. Horning, and R. L. London. A proof rule for Euclid procedures. Technical
Report ISI/RR-77-60, University of Southern California, Information Sciences Institute, May
1977.

[227] J. V. Guttag, J. J. Horning, and J. M. Wing. Larch in ve easy pieces. Technical Report 5, DEC,
SRC, July 1985.

[228] J. V. Guttag, E. Horowitz, and D. R. Musser. Abstract data types and software validation. Tech-
nical Report ISI/RR-76-48, University of Southern California, Information Sciences Institute,
August 1976.

[229] J. V. Guttag, E. Horowitz, and D. R. Musser. The design of data type specications. Technical Re-
port ISI/44-76-49, University of Southern California, Information Sciences Institute, November
1976.

[230] A. Hansal. A formal denition of a relational data base system. Technical Report UKSC 0080,
IBM UK Scientic Centre, Peterlee, Co. Durham, June 1976.

[231] S. L. Hantler and A. C. Chibib. Effigy Reference Manual. IBM Yorktown Heights, January 20
1975. Technical Report RC 5225.

[232] S. L. Hantler and J. C. King. An introduction to proving the correctness of programs. ACM
Computing Surveys, 8:331–353, September 1976.

[233] D. Harel. On the total correctness of nondeterministic programs. Technical Report RC 7691,
IBM, Yorktown Heights, New York, May 1979.

[234] R. Harper, F. Honsell, and G. Plotkin. A framework for dening logics. Technical Report ECS-
LFCS-87-23, Dept of Computer Science, University of Edinburgh, March 1987.

14



[235] R. Harper, R. Milner, and M. Tofte. The denition of standard ML version 2. Technical Report
ECS-LFCS-88-62, Deptartment of Computer Science, University of Edinburgh, August 1988.

[236] J. He, C. A. R. Hoare, and J. W. Sanders. Data renement rened: Resumé. In B. Robinet
and R. Wilhelm, editors, ESOP’86, volume 213 of Lecture Notes in Computer Science, pages
187–196. Springer-Verlag, 1986.

[237] E. C. R. Hehner. The Logic of Programming. Prentice-Hall International, 1984.

[238] E. C. R. Hehner, L. E. Gupta, and A. J. Malton. Predicative methodology. Acta Informatica,
23:487–505, 1986.

[239] P. Henderson and J. H. Morris. A lazy evaluator. Technical Report 85, University of Newcastle-
upon-Tyne, January 1976. Believed to be a preprint of a paper which appeared in the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages in Atlanta, January
1976.

[240] W. Henhapl. A proof of correctness for the reference mechanism to automatic variables in the
F-compiler. Technical Report LN 25.3.048, IBM Laboratory Vienna, Austria, November 1968.

[241] W. Henhapl and C. B. Jones. The block concept and some possible implementations, with proofs
of equivalence. Technical Report 25.104, IBM Laboratory Vienna, April 1970.

[242] W. Henhapl and C. B. Jones. On the interpretation of GOTO statements in the ULD. Technical
Report LN 25.3.065, IBM Laboratory, Vienna, March 1970.

[243] W. Henhapl and C. B. Jones. A run-time mechanism for referencing variables. Information
Processing Letters, 1:14–16, 1971.

[244] W. Henhapl and C. B. Jones. A formal denition of ALGOL 60 as described in the 1975modied
report. In [51], pages 305–336. Springer-Verlag, 1978.

[245] M. Hennessy and R. Milner. On observing nondeterminism and concurrency. In J. W.de Bak-
ker and J. van Leeuwen, editors, Automata, Languages and Programming. Seventh Colloqium,
Noordwijkerhout, July 1980, volume 85 of Lecture Notes in Computer Science, pages 299–309.
Springer-Verlag, 1980.

[246] M. C. B. Hennessy and G. D. Plotkin. Full abstraction for a simple parallel programming lan-
guage. In J. Becvár, editor,Mathematical Foundations of Computer Science 1979. Proceedings,
Olomouc, Czechoslovakia, volume 74 of Lecture Notes in Computer Science, pages 108–120.
Springer-Verlag, 1979.

[247] P. Hitchcock. An Approach to Formal Reasoning about Programs. PhD thesis, Department of
Computer Science, University of Warwick, June 1974.

[248] P. Hitchcock and D. Park. Induction rules and termination proofs. In Proceedings of a Sym-
posium on Automata, Languages and Programming, France 3-7 July, 1972, pages 225–251.
North-Holland, 1973.

[249] C. A. R. Hoare. Algorithm 63, Partition; Algorithm 64, Quicksort; Algorithm 65, Find. Commu-
nications of the ACM, 4(7):321–322, July 1961.

15



[250] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12:576–580, 583, October 1969.

[251] C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In E. Engeler, editor, Sym-
posium on Semantics of Algorithmic Languages, volume 188 of Lecture Notes in Mathematics,
pages 102–116. Springer-Verlag, 1971.

[252] C. A. R. Hoare. Proof of a program: FIND. Communications of the ACM, 14:39–45, January
1971.

[253] C. A. R. Hoare. Notes on data structuring. In O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare,
editors, Structured Programming, pages 83–174. Academic Press, 1972.

[254] C. A. R. Hoare. Proof of a structured program: ‘the sieve of Eratosthenes’. Computer Journal,
15:321–325, November 1972.

[255] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1:271–281, 1972.

[256] C. A. R. Hoare. Towards a theory of parallel programming. In C. A. R. Hoare and R. Perrot,
editors, Operating System Techniques, pages 61–71. Academic Press, 1972.

[257] C. A. R. Hoare. Monitors: An operating system structuring concept. Communications of the
ACM, 17:549–557, October 1974.

[258] C. A. R. Hoare. Parallel programming: An axiomatic approach. Computer Languages, 1:151–
160, June 1975.

[259] C. A. R. Hoare. Parallel programming: An axiomatic approach. In [38], pages 11–42. 1976.

[260] C. A. R. Hoare. Proof of correctness of data representation. In [38], pages 183–193. 1976.

[261] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21:666–677,
August 1978.

[262] C. A. R. Hoare. Some properties of predicate transformers. Journal of the ACM, 25:461–80, July
1978.

[263] C. A. R. Hoare. A calculus of total correctness for communicating processes. Science of Computer
Programming, 1:49–72, October 1981.

[264] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[265] C. A. R. Hoare. Programs are predicates. In C. A. R. Hoare and J.C. Shepherdson, editors,
Mathematical Logic and Programming Languages, pages 141–154. Prentice-Hall, 1985.

[266] C. A. R. Hoare et al. Data renement rened. Typescript, Programming Research Group, Oxford
University., May 1985.

[267] C. A. R. Hoare, I. J. Hayes, J. He, C. Morgan, A. W. Roscoe, J. W. Sanders, I. H. Sørensen, J. M.
Spivey, and B. A. Sufrin. The laws of programming. Communications of the ACM, 30:672–687,
1987. see Corrigenda in ibid 30:770.

[268] C. A. R. Hoare and J. He. The weakest prespecication. InformationProcessing Letters, 24:127–
32, January 1987.

16



[269] C. A. R. Hoare, J. He, and J. W. Sanders. Prespecication in data renement. Information
Processing Letters, 25:71–76, May 1987.

[270] C. A. R. Hoare and C. B. Jones. Essays in Computing Science. Prentice Hall International, 1989.

[271] C. A. R. Hoare and J.R. Kennaway. A theory of non-determinism. In Proceedings ICALP ’80,
volume 85 of Lecture Notes in Computer Science, pages 338–350. Springer-Verlag, 1980.

[272] C. A. R. Hoare and P. E. Lauer. Consistent and complementary formal theories of the semantics
of programming languages. Acta Informatica, 3:135–153, 1974.

[273] C. A. R. Hoare and J.C. Shepherdson, editors.Mathematical Logic and ProgrammingLanguages.
Prentice-Hall, 1985. The papers in this bookwere rst published in the PhilosophicalTransactions
of the Royal Society Series A, Vol. 312, 1984.

[274] C. A. R. Hoare and N. Wirth. An axiomatic denition of the programming language Pascal. Acta
Informatica, 2:335–355, 1973.

[275] A. Hodges. Alan Turing: The Enigma. Burnett Books, 1983. Vintage edition, 1992.

[276] A. Hoogewijs. Partial-predicate logic in computer science. Acta Informatica, 24:381–393, 1987.

[277] J. Hooman and W.-P. de Roever. The quest goes on: A survey of proof systems for partial
correctness of CSP. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Current
Trends in Concurrency, volume 224 of Lecture Notes in Computer Science. Springer-Verlag,
1986.

[278] G. E. Hughes and M. J. Cresswell. A Companion to Modal Logic. Methuen, 1984.

[279] J. Hughes. Graph reduction with super-combinators. Technical Report PRG-28, Oxford Uni-
versity Computing Laboratory, Programming Research Group, June 1982.

[280] T. E. Hull, W. H. Enright, and A. E. Sedgwick. The correctness of numerical algorithms. ACM
SIGPLAN Notices, 7(1):66–73, January 1972.

[281] S. Igarashi. An Axiomatic Approach to the EquivalenceProblems of Algorithmswith Applications.
PhD thesis, University of Tokyo, 1964. Reprinted as Report of the Computer Centre University
of Tokyo, No. 1, in 1968.

[282] S. Igarashi. A formalization of the descriptions of languages and the related problems in a
Gentzen-Type formal system. RAAG Research Notes 80, Research Association of Applied Geo-
metry, University of Tokyo, May 1964.

[283] S. Igarashi. On the equivalence of programs represented by Algol-like statements. Report of the
Computer Centre University of Tokyo, 1(1), April–September 1968.

[284] S. Igarashi. Semantics of Algol-like statements. Technical Report CS167, Stanford University,
Computer Science Dept, June 1970.

[285] S. Igarashi. Semantics of ALGOL-like statements. In [183], pages 117–177. 1971.

[286] S. Igarashi. Admissibility of xed-point induction in rst-order logic of typed theories. Technical
Report STAN-CS-72-287, Stanford University Computer Science Dept, May 1972.

17



[287] S. Igarashi. Automatic program verication I: A logical basis and its implementation. Technical
Report STAN-CS-73-365, Stanford University Computer Science Dept, May 1973.

[288] INMOS. occam 2: Reference Manual. Prentice Hall, 1988.

[289] K. E. Iverson. A Programming Language. J. Wiley, 1962.

[290] C. B. Jones. A technique for showing that two functions preserve a relation between their do-
mains. Technical Report LR 25.3.067, IBM Laboratory, Vienna, April 1970.

[291] C. B. Jones. Yet another proof of the correctness of block implementation. Technical Report LN
25.3.075, IBM Laboratory, Vienna, August 1970.

[292] C. B. Jones. Formal development of correct algorithms: an example based on Earley’s recogniser.
ACM SIGPLAN Notices, 7(1):150–169, January 1972.

[293] C. B. Jones. Formal development of programs. Technical Report 12.117, IBM Laboratory Hurs-
ley, April 1973.

[294] C. B. Jones. Formal denition in compiler development. Technical Report 25.145, IBM Labor-
atory Vienna, February 1976.

[295] C. B. Jones. Implementation bias in constructive specication of abstract objects. unpublished
manuscript, September 1977.

[296] C. B. Jones. Constructing a theory of a data structure as an aid to program development. Acta
Informatica, 11:119–137, 1979.

[297] C. B. Jones. Software Development: A Rigorous Approach. Prentice Hall International, 1980.

[298] C. B. Jones. Denotational semantics of goto: An exit formulation and its relation to continuations.
In [51], pages 278–304. Springer-Verlag, 1981.

[299] C. B. Jones. Development Methods for Computer Programs including a Notion of Interference.
PhD thesis, Oxford University, June 1981. Printed as Technical Monograph No. PRG-25.

[300] C. B. Jones and P. Lucas. Proving correctness of implementation techniques. In E. Engeler,
editor, Symposium On Semantics of Algorithmic Languages, volume 188 of Lecture Notes in
Mathematics, pages 178–211. Springer-Verlag, 1971.

[301] N. D. Jones. Semantics-Directed Compiler Generation. Proceedings of a Workshop, Aarhus,
Denmark, January 1980, volume 94 of Lecture Notes in Computer Science. Springer-Verlag,
1980.

[302] N. D. Jones and D. A. Schmidt. Compiler generation from denotational semantics. In [301],
pages 70–93. Springer-Verlag, 1980.

[303] G. Kahn. Normalisation et documentation des programmes. In Synthése, Manipulation et Trans-
formation de Programmes, pages 97–110. IRIA sesori, May 1978. Journées D’études Sesori.

[304] G. Kahn. A preliminary theory for parallel programs. Research report 6, INRIA, France, January
1973.

18



[305] G. Kahn, editor. Semantics of Concurrent Computation: Proceedings, Evian, France 1979,
volume 70 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1979.

[306] G. Kahn and D. MacQueen. Coroutines and networks of parallel processes. In B. Gilchrist,
editor, Information Processing’77, pages 993–998, 1977.

[307] D. M. Kaplan. Correctness of a compiler for Algol-like programs. Articial Intelligence
Memo 48, Stanford University, July 1967.

[308] D. M. Kaplan. A formal theory concerning the equivalence of algorithms. Articial Intelligence
Memo 59, Stanford University, May 1968.

[309] E. W. Karlsen. The draft formal denition of Ada. Technical Report AdaFD/DDC/29/V 1.0,
Dansk Datamatik Center, Denmark, March 23 1987.

[310] S. Katz and Z. Manna. Logical analysis of programs. Technical report, The Weizmann Institute
of Science, Rehovot, Israel, September 1974. Unnumbered.

[311] S. Katz and Z. Manna. A practical approach to termination. Technical report, The Weizmann
Institute of Science, Rehovot, Israel, September 1974. Unnumbered.

[312] R. A. Kemmerer. Verication assessment study: Final report, volume 1 overview, conclusions
and future directions. Technical Report C3-CR01-86, Library No. S-228,204, National Computer
Security Center, Maryland, USA, March 1986.

[313] J. C. King. A Program Verifier. PhD thesis, Department of Computer Science, Carnegie-Mellon
University, 1969.

[314] J. C. King. A program verier. In C. V. Freiman, editor, Information Processing 71, pages
234–249. North-Holland, 1971. Proceedings of IFIP’71.

[315] J. C. King. Symbolic execution and program testing. Communications of the ACM, 17(7):385–
394, July 1976. Preprint available, May 1975.

[316] J. C. King and R. W. Floyd. An interpretation-oriented theorem prover over integers. Journal of
Computer and System Sciences, 6:305–323, August 1972.

[317] S. C. Kleene. Introduction to Metamathematics. Van Nostrad, 1952.

[318] C. D. Kloos. Semantics of Digital Circuits, volume 285 of Lecture Notes in Computer Science.
Springer-Verlag, 1987.

[319] D. E. Knuth. The remaining trouble spots in ALGOL 60. Communications of the ACM, 10:611–
618, October 1967.

[320] D. E. Knuth. FundamentalAlgorithms, volume I of The Art of Computer Programming. Addison-
Wesley Publishing Company, 1968.

[321] D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory, 2:127–145,
June 1968.

[322] D. E. Knuth. Examples of formal semantics. In [183], pages 212–235. 1971.

19



[323] D. E. Knuth. The dangers of computer-science theory. In P. Suppes, L. Henkin, A. Joja, and
Gr.C. Moisil, editors, Studies in Logic and Foundations of Mathematics Vol. 74 (Proc. of the 4th
International Congress for Logic, Methodology and Philosophy of Science, Bucharest, 1971),
pages 189–195. North Holland Publishing Company, 1973.

[324] D. E. Knuth. Sorting and Searching, volume III of The Art of Computer Programming. Addison-
Wesley Publishing Company, 1973.

[325] D. E. Knuth. Structured programming with GO TO statements. Technical Report STAN-CS-74-
416, Computer Science Dept, Stanford University, May 1974.

[326] D. E. Knuth. Mathematics and computer science: Coping with niteness. Technical Report
STAN-CS-76-541, Computer Science Dept, Stanford University, February 1976.

[327] D. E. Knuth and L. T. Pardo. The early development of programming languages. In [422], pages
197–273. 1976.

[328] B. Konikowska, A. Tarlecki, and A. Blikle. A three-valued logic for software specication and
validation tertium tamen datur. In [57], pages 218–242, 1988.

[329] R. Kowalski. Predicate logic as a programming language. In Information Processing’74, pages
569–574, 1974.

[330] R. Kowalski. Algorithm = logic + control. Communications of the ACM, 22:424–436, 1979.

[331] R. Kowalski. Logic for Problem Solving. North-Holland, 1979.

[332] G. Kreisel. Five notes on the application of proof theory to computer science. Technical Report
182, Inst. for Mathematical Studies in the Social Sciences, Stanford University, December 10th
1971.

[333] F. Kroger. Temporal Logic of Programs. EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, 1987.

[334] R. Kurki-Suonio. Towards better structured denitions of programming languages. Technical
Report STAN-CS-75-500, Computer Science Dept, Stanford University, September 1975.

[335] W. Lamersdorf and J. W. Schmidt. Specication of Pascal/R — the formal semantic specication
using VDM. Technical Report IFI-HH-B-74/80, University of Hamburg, July 1980.

[336] L. Lamport. Proving the correctness of mutiprocess programs. IEEE Transactions on Software
Engineering, 3:125–143, 1977.

[337] L. Lamport. The ‘Hoare Logic’ of concurrent programs. Technical Report CSL-79, SRI Interna-
tional, November 1978. Revised 14 January 1980.

[338] L. Lamport. The ‘Hoare logic’ of concurrent programs. Acta Informatica, 14:21–37, 1980.

[339] L. Lamport. On interprocess communication. Technical Report 8, Digital Systems Research
Center, Palo Alto, December 1985.

[340] L. Lamport. Control predicates are better than dummy variables for reasoning about program
control. ACM Transactions on Programming Languages and Systems, 10:267–281, April 1988.

20



[341] L. Lamport. A theorem on atomicity in distributed algorithms. Technical Report 28, Digital
Systems Research Center, Palo Alto, May 1988.

[342] L. Lamport. A temporal logic of actions. Technical Report 57, DEC, SRC, 1990.

[343] B. W. Lampson. A description of the Cedar language: A Cedar language reference manual. Tech-
nical Report CSL-83-15, Xerox Corporation, Palo Alto Research Center, California, December
1983. Printed November 1986.

[344] B. W. Lampson, J. J. Horning, R. L. London, J. G. Mitchell, and G. J. Popek. Report on the
programming language Euclid. Technical Report CSL-81-12, Xerox, Palo Alto, October 1981.

[345] P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6:308–320, 1964.

[346] P. J. Landin. A correspondence between ALGOL-60 and Church’s lambda-notation. Parts I and
II. Communications of the ACM, 8:89–101, 158–165, 1965.

[347] P. J. Landin. A #-calculus approach. In L. Fox, editor, Advances in Programming and Non-
numerical Computation, pages 97–141. Pergamon Press, 1966.

[348] P. J. Landin. The next 700 programming languages. Communications of the ACM, 9:157–166,
1966.

[349] B. Lang. Threshold evaluation and the semantics of call by value, assignment and generic pro-
cedures. Technical Report 211, INRIA, France, January 1977.

[350] J. Laski. The morphology of prex – an essay in meta-algorithmics. In D. Michie, editor,Machine
Intelligence, 3, pages 3–18. Edinburgh University Press, 1968.

[351] H. C. Lauer. Correctness in Operating Systems. PhD thesis, Carnegie-Mellon University, 1972.

[352] P. E. Lauer. Formal denition of ALGOL 60. Technical Report TR 25.088, IBM Laboratory
Vienna, December 1968.

[353] P. E. Lauer. Consistent Formal Theories of the Semantics of Programming Languages. PhD
thesis, Queen’s University of Belfast, 1971. Printed as TR 25.121, IBM Lab. Vienna.

[354] J. A. N. Lee. The Vienna denition language: A generalization of instruction denitions. Paper
prepared for submission to the SIGPLAN Symposium on Programming Language Denition,
San Francisco, California, August 1969.

[355] D. J. Lehmann and M. B. Smyth. Algebraic specication of data types — a synthetic approach.
Technical Report 115, Dept of Computer Studies, University of Leeds, September 1978.

[356] A. A. Letichevskii. Functional equivalence of discrete processors II. Cybernetics (USA), 6(2):28–
42, Mar–Apr 1970.

[357] G. M. Levin. Proof Rules for Communicating Sequential Processes. PhD thesis, Cornell Uni-
versity, August 1980.

[358] R. C. Linger, H. D. Mills, and B. L. Witt. Structured Programming: Theory and Practice.
Addison-Wesley, 1979.

21



[359] R. J. Lipton. Reduction: A method of proving properties of parallel programs. Communications
of the ACM, 18(12), December 1975.

[360] B. Liskov and J. Guttag. Abstraction and Specification in Program Development. MIT Press,
1986.

[361] B. Liskov and S. Zilles. Programming with abstract data types. Computation Structures Group
Memo 99, Massachusetts Institute of Technology, March 1974.

[362] R. L. London. A Computer Program for Discovering and Proving Sequential Recognition Rules
for Well-formed Formulas Defined by a Backus Normal Form Grammar. PhD thesis, Carnegie
Institute of Technology, 1964.

[363] R. L. London. A correctness proof of the Fisher-Galler algorithm using inductive assertions.
Technical Report 102, The University of Wisconsin, Computer Sciences Dept, October 1970.

[364] R. L. London. Experience with inductive assertions for proving programs correct. Technical
Report 92, The University of Wisconsin, Computer Sciences Dept, May 1970.

[365] R. L. London. Proof of algorithms – a new kind of certication. Communications of the ACM,
13(6):371–373, 1970.

[366] R. L. London. Proving programs correct: Some techniques and examples. BIT, 10:168–182,
1970.

[367] R. L. London. Correctness of two compilers for a Lisp subset. Technical Report CS240, Computer
Science Dept, Stanford University, October 1971.

[368] R. L. London. Experience with inductive assertions for proving programs correct. In [183],
pages 236–251. 1971.

[369] R. L. London, J. V. Guttag, J. J. Horning, B. W. Lampson, J. G. Mitchell, and G. J. Popek. Proof
rules for the programming language Euclid. Acta Informatica, 10:1–26, 1978.

[370] P. Lucas. On the formalization of syntax and semantics of PL/I. Technical Report TR 25.060,
IBM Vienna, November 1965.

[371] P. Lucas. Introduction to the method used for the formal denition of PL/I. Technical Report TR
25.081, IBM Vienna, 28th June 1968. Revised.

[372] P. Lucas. Two constructive realizations of the block concept and their equivalence. Technical
Report TR 25.085, IBM Laboratory Vienna, June 1968.

[373] P. Lucas. Equivalence of the verication conditions of Floyd and Scott. LN 25.3.055, IBM
Laboratory Vienna, 18th September 1969.

[374] P. Lucas. Formal denition of programming languages and systems. In C. V. Freiman, editor,
Information Processing 71. Proceedings of the IFIP Congress 1971, volume 1, pages 291–297.
North-Holland, 1971.

[375] P. Lucas. On the semantics of programming languages and software devices. In [512], pages
41–57. 1972.

22



[376] P. Lucas. Formal semantics of programming languages: VDL. IBM Journal of Research and
Development, 25(5):549–561, September 1981.

[377] P. Lucas. VDM: Origins, Hopes, and Achievements. In [49], pages 1–18, 1987.

[378] P. Lucas and K. Walk. On the documentation of programming ideas. Paper presented at the
European Patent-Seminar in Vienna, 1969.

[379] P. Lucas and K. Walk. On The Formal Description of PL/I, volume 6, Part 3 of Annual Review
in Automatic Programming. Pergamon Press, 1969.

[380] D. Luckham. The resolution principal in theorem proving. In N. L. Collins and D. Michie,
editors, Machine Intelligence, 1, pages 47–61. Olliver and Boyd, 1967.

[381] D. C. Luckham, D. M. R. Park, and M. S. Paterson. On formalised computer programs. Journal
of Computer and System Sciences, 4:220–249, 1970.

[382] J. !ukasiewicz. O logice trójwartościowej (on three-valued logic). Ruch Filozoficzny, 5:169–171,
1920.

[383] S. MacLane and G. Birkoff. Algebra. Collier Macmillan, 1967.

[384] D. B. MacQueen. Models for distributed computing. Technical Report 351, INRIA, France, April
1979.

[385] Z. Manna. Formalization of properties of programs. Technical Memorandum AI-64, Stanford
Articial Intelligence Department, July 1968.

[386] Z. Manna. Termination of Algorithms. PhD thesis, Carnegie-Mellon University, April 1968.

[387] Z. Manna. The correctness of non-deterministic programs. Memo AI-95, Department of Com-
puter Science, Stanford University, August 1969.

[388] Z. Manna. The correctness of programs. Journal of Computer and System Sciences, 3:119–127,
1969.

[389] Z. Manna. Mathematical theory of partial correctness. In [183], pages 252–269. 1971.

[390] Z. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

[391] Z. Manna. Verication of sequential programs: Temporal axiomation. Technical Report STAN-
CS-81-877, Stanford University, Stanford, California, September 1981.

[392] Z. Manna and J. McCarthy. Properties of programs and partial function logic. In B. Meltzer and
D. Michie, editors, Machine Intelligence, 5, pages 27–37. Edinburgh University Press, 1969.

[393] Z. Manna, S. Ness, and J. Vuillemin. Inductive methods for proving properties of programs.
Technical Report 243, Computer Science Department, Stanford University, November 1971.

[394] Z. Manna and A. Pnueli. Formalization of properties of recursively dened functions. Technical
Report 82, Department of Computer Science, Stanford University, March 1969.

[395] Z. Manna and A. Pnueli. Temporal verication of concurrent programs: the temporal framework.
In [64], pages 215–273. Academic Press, 1981.

23



[396] Z. Manna andA. Pnueli. Specication and verication of concurrent programs by forall-automata.
In Conference Record of the 14th Annual ACM Symposium on Principles of Programming Lan-
guages Munich, West Germany 21–23 January, pages 1–12. ACM, 1987.

[397] Z. Manna and A. Shamir. The convergence of functions to xedpoints of recursive denitions.
Theoretical Computer Science, 6:109–141, 1978.

[398] Z. Manna and R. Waldinger. Synthesis: Dreams $ programs. Technical Report STAN-CS-77-
630, Department of Computer Science, Stanford University, November 1977.

[399] Z. Manna and R. J. Waldinger. Towards automatic program synthesis. In [183], pages 270–310.
1971.

[400] Z. Manna and P. Wolper. Synthesis of communicating processes from temporal logic specic-
ations. Technical Report STAN-CS-81-872, Department of Computer Science, Stanford Uni-
versity, September 1981.

[401] M. Marcotty, H. F. Ledgard, and G. V. Bochmann. A sampler of formal denitions. ACM
Computing Surveys, 8:191–276, 1976.

[402] E. Marmier. Automatic Verification of Pascal Programs. PhD thesis, Swiss Federal Institute of
Technology, Zurich, 1975.

[403] I. A. Mason. Hoare’s logic in the LF. Technical Report ECS-LFCS-87-32, Laboratory for Found-
ations of Computer Science, Department of Computer Science, EdinburghUniversity, June 1987.

[404] B. H. Mayoh. Comparative semantics of programming languages. Technical Report DAIMI
PB-173, Aarhus University, Denmark, April 1984.

[405] A. Mazurkiewicz. Iteratively computable relations. Bulletin de L’Academie Polonaise des Sci-
ences, XX(9):793–798, 1972. Presented by A. Mostowski on May 6, 1972.

[406] A. Mazurkiewicz. Recursive algorithms and formal languages. Bulletin de L’Academie Polonaise
des Sciences, XX(9):799–803, 1972. Presented by A. Mostowski on May 6, 1972.

[407] A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI report PB 78,
Aarhus University, 1977.

[408] A. Mazurkiewicz. The semantics of concurrent systems: A modular xed-point trace approach.
5th European Workshop on Applications and Theory of Petri Nets, 1984.

[409] A. Mazurkiewicz. Traces, histories, graphs: instances of a process monoid. In M. P. Chytil and
V. Koubek, editors, Mathematical Foundations of Computer Science 1984, Praha, Czechoslov-
akia, Proceedings., volume 176 of Lecture Notes in Computer Science, pages 115–133. Springer-
Verlag, 1984.

[410] A. W. Mazurkiewicz. Proving algorithms by tail functions. Information and Control, 18(3), April
1971.

[411] J. McCarthy. Programs with common sense. In Teddington Conference on the Mechanization of
Thought Processes, 1959.

24



[412] J. McCarthy. Recursive functions of symbolic expressions and their computation by machine,
Part I. Communications of the ACM, 3:184–195, April 1960.

[413] J. McCarthy. 3-valued sentencial calculus. Manuscript., 1961.

[414] J. McCarthy. Computer programs for checking mathematical proofs. In Proc. Symp. in Pure
Mathematics, Vol. 5, pages 219–227. American Mathematical Society, 1962.

[415] J. McCarthy. A basis for a mathematical theory for computation. In P. Braffort and D. Hirschberg,
editors, Computer Programming and Formal Systems, pages 33–70. North-Holland Publishing
Company, 1963. (A slightly extended and corrected version of a talk given at the May 1961
Western Joint Computer Conference).

[416] J. McCarthy. Towards a mathematical science of computation. In C. M. Popplewell, editor,
Information Processing’62, pages 21–28. North-Holland, 1963.

[417] J. McCarthy. A proof-checker for predicate calculus. Stanford Articial Intelligence Project
Memo 27, Computer Science Department, Stanford University, March 1965.

[418] J. McCarthy. A formal description of a subset of ALGOL. In [547], pages 1–12, 1966.

[419] J. McCarthy. The programming language elephant. Incomplete Draft., 1985.

[420] J. McCarthy and J. Painter. Correctness of a compiler for arithmetic expressions. Technical
Report CS38, Computer Science Department, Stanford University, April 1966. See also pages
33–41 Proc. Symp. in AppliedMathematics, Vol.19: Mathematical Aspects of Computer Science,
American Mathematical Society, 1967.

[421] C. L. McGowan. An inductive proof technique for interpreter equivalence. In [512], pages
139–148. 1972.

[422] N. Metropolis, J. Howlett, and G.-C. Rota, editors. A History of Computing in the Twentieth
Century. Academic Press, 1980.

[423] A. R. Meyer. What is a model of the lambda calculus? Information and Control, 52(1), January
1982. Special issue NSFWorkshop on Recursion Theoretic Aspects of Computer Science, Purdue
University, May 1981.

[424] B. Meyer. Object-oriented Software Construction. Prentice-Hall, 1988.

[425] H. D. Mills. Mathematical foundations for structured programming. Technical report, IBM
Gaithersburg, February 1972.

[426] H. D. Mills. How to write correct programs and know it. ACM Sigplan Notices, 10(6):363–370,
June 1975.

[427] R. Milne and C. Strachey. A theory of programming language semantics, 1974. An essay sub-
mitted for the Adams Prize 1973–74.

[428] R. Milne and C. Strachey. A Theory of Programming Language Semantics. Chapman and Hall,
1976. Part A: Indices and Appendices, Fundamental Concepts and Mathematical Foundations.

25



[429] R. Milne and C. Strachey. A Theory of Programming Language Semantics. Chapman and Hall,
1976. Part B: Standard Semantics, Store Semantics and Stack Semantics.

[430] R. Milner. The difculty of verifying a program with unnatural data representation. Technical
Report 3, Computation Services Dept., University College of Swansea, January 1969.

[431] R. Milner. Equivalences on program schemes. Memorandum 5, Department of Computer Science,
University College of Swansea, March 1969.

[432] R. Milner. A formal notion of simulation between programs. Technical Report 14, Department
of Computer Science, University College of Swansea, October 1970.

[433] R. Milner. An algebraic denition of simulation between programs. Technical Report CS-205,
Computer Science Dept, Stanford University, February 1971.

[434] R. Milner. Program simulation: An extended formal notion. Technical Report 17, University
College of Swansea, April 1971.

[435] R. Milner. Logic for computable functions description of a machine implementation. Technical
Report STAN-CS-72-288, Computer Science Department, Stanford University, May 1972.

[436] R. Milner. An approach to the semantics of parallel programs. In Proceedings of the Convegno
di Informatica Teorica, pages 285–302, 1973.

[437] R. Milner. A Calculus for Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer-Verlag, 1980.

[438] R. Milner. On relating synchrony and asynchrony. Technical Report CSR-75-80, University of
Edinburgh, Department of Computer Science, December 1980.

[439] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[440] J. Misra and K. M. Chandy. Proofs of networks of processes. IEEE Transactions on Software
Engineering, 7:417–426, 1981.

[441] E. Moggi. The Partial Lambda-Calculus. PhD thesis, Department of Computer Science, Uni-
versity of Edinburgh, August 1988. Published as TR CST-53-88.

[442] B. Möller. Formal derivation of pointer algorithms. In M. Broy, editor, Informatik und Mathem-
atik, pages 419–440. Springer-Verlag, 1991.

[443] B. Q. Monahan. Data Type Proofs using Edinburgh LCF. PhD thesis, University of Edinburgh,
1984. Published as TR CST-34-85.

[444] F. L. Morris. Criteria for semantical analysis, July 1970. Manuscript.

[445] F. L. Morris. The next 700 formal language descriptions. Manuscipt, 1970.

[446] F. L. Morris. Correctness of Translations of Programming Languages – An Algebraic Approach.
PhD thesis, Computer Science Department, Stanford University, August 1972. Printed as STAN-
CS-72-303.

[447] F. L. Morris. Advice on stucturing compilers and proving them correct. In ACM Symposium on
Principles of Programming Languages, pages 144–152. ACM, 1973.

26



[448] F. L. Morris and C. B. Jones. An early program proof by Alan Turing. Annals of the History of
Computing, 6:139–143, April 1984.

[449] J. H. Morris. Lambda-calculus models of programming languages. Technical Report MAC-TR-
57 (Thesis), MIT, December 1968.

[450] J. H. Morris. A correctness proof of the Fisher-Galler algorithm using inductive assertions. In
[512], pages 107–124. 1972.

[451] J. H. Morris. Types are not sets. In ACM Symposium on Principles of Programming Languages,
pages 120–124. ACM, October 1973.

[452] P. D. Mosses. The mathematical semantics of Algol 60. Technical Monograph PRG-12, Oxford
University Computing Laboratory, Programming Research Group, January 1974.

[453] P. D. Mosses. Mathematical Semantics and Compiler Generation. PhD thesis, University of
Oxford, April 1975.

[454] P. D. Mosses. SIS — semantics implementation system: Tested examples. Technical Report
DAIMI MD-33, Aarhus University, Denmark, August 1979.

[455] P. D. Mosses. SIS - semantics implementation system: Reference manual and user guide. Tech-
nical Report DAIMI MD-30, Aarhus University, Denmark, August 1979.

[456] P. D. Mosses. A constructive approach to compiler correctness. In [301], pages 189–210.
Springer-Verlag, 1980.

[457] P. D. Mosses. Action Semantics. Cambridge Tracts in Theoretical Computer Science, 26. Cam-
bridge University Press, 1992.

[458] B. Moszkowski. Executing Temporal Logic Programs. Cambridge University Press, 1986.

[459] R. Nakajima and T. Yuasa. The IOTA Programming System: A Modular Programming Environ-
ment, volume 160 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1983.

[460] P. Naur. Proof of algorithms by general snapshots. BIT, 6:310–316, 1966.

[461] P. Naur. Programming by action clusters. BIT, 9:250–258, 1969.

[462] P. Naur. An experiment on program development. BIT, 12:347–365, 1972.

[463] P. Naur. Concise Survey of Computer Methods. Studentlitteratur, Lund, 1974.

[464] P. Naur. Formalization in program development. BIT, 22:437–453, 1982.

[465] P. Naur and B. Randell, editors. Software Engineering. NATO Science Committee, 1969. Report
on a conference Garmisch, Germany, 7th to 11th October 1968.

[466] E. J. Neuhold and G. Chroust. Formal Models in Programming. North-Holland, 1985. Pro-
ceedings of the IFIP TC2 Working Conference on The Role of Abstract Models in Information
Processing. Vienna, Austria, 30 January – 1 February 1985.

[467] A. Newell and H. A. Simon. The logic theory machine. In IRE Transactions on Information
Theory IT-2, pages 61–79, 1956.

27



[468] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains. In [305], pages
266–284. Springer-Verlag, 1979.

[469] T. Nipkow. Behavioural Implementation Concepts for Nondeterministic Data Types. PhD thesis,
University of Manchester, 1986. Reprinted as UMCS-87-5-3, May 1987.

[470] T. Nipkow. Non-deterministic data types: Models and implementations. Acta Informatica,
22:629–661, 1986.

[471] E. R. Olderog and C. A. R. Hoare. Specication-oriented semantics for communicating processes.
Acta Informatica, 23:9–66, 1986.

[472] A. Ollongren. On the Vienna method for the denition of programming languages. Technical
Report TR 25.120, IBM Laboratory Vienna, May 1971.

[473] S. S. Owicki. Axiomatic Proof Techniques for Parallel Programs. PhD thesis, Department of
Computer Science, Cornell University, 1975. Published as technical report 75-251.

[474] S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta Inform-
atica, 6:319–340, 1976.

[475] J. Owlett. A Theory of Database Schemata – Studies in Conceptual and Relational Schemata.
PhD thesis, Wolfson College, Oxford University, October 1979.

[476] J. A. Painter. Semantic correctness of a compiler for an Algol-like language. Technical Report
AI Memo 44, Computer Science Department, Stanford University, March 1967.

[477] D. Park. Some semantics for data structures. In D. Michie, editor,Machine Intelligence, 3, pages
351–371. Edinburgh University Press, 1968.

[478] D. Park. Fixpoint induction and proofs of program properties. In B. Meltzer and D. Michie,
editors, Machine Intelligence, 5, pages 59–78. Edinburgh University Press, 1969.

[479] D. Park. Notes on a formalism for reasoning about schemas, November 1970. Manuscript.

[480] D. Park. A theorem on loops, using Scott’s induction principle, November 1970. Manuscript.

[481] D. Park. The Y-combinator in Scott’s lambda-calculus model. Symposium on Theory of Pro-
gramming, University of Warwick. Unpublished, 1970.

[482] D. Park. On the semantics of fair parallelism. In [50], pages 504–526. 1980.

[483] D. Park. Concurrency and automata on innite sequences. In Theoretical Computer Science,
5th GI-Conference, Karlsruhe, March, 1981, number 104 in Lecture Notes in Computer Science,
pages 167–183. Springer-Verlag, 1981.

[484] M. S. Paterson. Equivalence Problems in a Model of Computation. PhD thesis, University of
Cambridge, 1967.

[485] M. S. Paterson. Program schemata. In D. Michie, editor, Machine Intelligence, 3, pages 19–31.
Edinburgh University Press, 1968.

[486] L. C. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF. Cambridge
University Press, 1987.

28



[487] J. S. Pedersen. VDM in three generations of Ada formal descriptions. In [49], pages 33–48,
1987.

[488] C. A. Petri. Kommunikation mit Automaten. PhD thesis, University of Darmstadt, 1962.

[489] C. A. Petri. Nichtsequentielle prozesse. Technical Report ISF-76-6, GMD, Bonn, 1976.

[490] C. A. Petri. Non-sequential processes. Technical Report ISF-77-05, GMD, Bonn, 1977. Trans-
lation of ISF-76-6.

[491] G. D. Plotkin. A powerdomain construction. SIAM Journal on Computing, 5:452–487, September
1976.

[492] G. D. Plotkin. Dijkstra’s predicate transformers and Smyth’s power domains. In [50], pages
527–553. 1980.

[493] G. D. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,
Aarhus University, 1981.

[494] G. D. Plotkin. An operational semantics for CSP. Technical Report CSR-114-82, Department of
Computer Science, University of Edinburgh, May 1982.

[495] A. Pnueli. The temporal logic of programs. In Proceedings of Eighteenth Foundations of Com-
puter Science, pages 46–57, 1977.

[496] A. Pnueli. The temporal semantics of concurrent programs, 1977. Tel-Aviv University.

[497] A. Pnueli. The temporal semantics of concurrent programs. In [305], pages 1–20. Springer-
Verlag, 1979.

[498] A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer Science,
13:45–60, 1981.

[499] W. Polak. Compiler Specification and Verification, volume 124 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1981.

[500] D. Prawitz. Natural Deduction: A Proof-Theoretical Study. Almqvist and Wisell, Stockholm,
1965.

[501] B. Randell. The Origins of Digital Computers: Selected Papers. Springer-Verlag, second edition,
1975.

[502] J. C. Reynolds. Denitional interpreters for higher-order programming languages. In Proceedings
of the 1972 ACM Annual Conference, pages 717–740, New York, 1972. ACM.

[503] J. C. Reynolds. On the relation between direct and continuation semantics. In Proceedings of the
2nd Colloqium on Automata, Languages and Programming, Saarbrucken, July 29–Aug2, 1974,
volume 14 of Lecture Notes in Computer Science, pages 141–156. Springer-Verlag, 1974.

[504] J. C. Reynolds. The Craft of Programming. Prentice Hall International, 1981.

[505] J. C. Reynolds. Idealized Algol and its specication logic. Technical Report 1-81, School of
Computer and Information Science, Syracuse University, July 1981.

29



[506] J. A. Robinson. Theorem-proving on a computer. Journal of the ACM, 10:163–174, 1963.

[507] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM,
12:23–41, 1965.

[508] J. A. Robinson. Logic and logic programming. Communications of the ACM, 35(3):40–65,March
1992.

[509] A. W. Roscoe and C. A. R. Hoare. Laws of occam programming. Technical Report PRG-53,
Oxford University Computing Laboratory, Programming Research Group, 1986.

[510] G. Rozenberg. Advances in Petri-nets, volume 188 of Lecture Notes in Computer Science.
Springer-Verlag, 1985.

[511] B. Russell. On an equivalence between continuation and stack semantics. Acta Informatica,
8:113–123, 1977.

[512] R. Rustin. Formal Semantics of Programming Languages. Prentice-Hall, 1972. Courant Com-
puter Science Symposium 2, September 14-16, 1970.

[513] J. D. Rutledge. On Ianov’s program schemata. Journal of the ACM, 11:1–9, January 1964.

[514] J. G. Sanderson. The lambda calculus, lattice theory and reexive domains, 1973. Mathematical
Institute Lecture Notes, University of Oxford.

[515] D. T. Sannella. Semantics, Implementation and Pragmatics of Clear, A program Specification
Language. PhD thesis, Department of Computer Science, University of Edinburgh, July 1982.

[516] R. W. Scheier. A donotational semantics of CLU. Technical Report MIT/LCS/TR-201, Laborat-
ory for Computer Science, Massachusetts Institute of Technology, Cambridge, Mass., May 1978.

[517] D. A. Schmidt. Denotational semantics as a programming language. Technical Report CSR-100-
82, Department of Computer Science, University of Edinburgh, January 1982.

[518] D. A. Schmidt. Denotational Semantics: a Methodology for Language Development. Allyn &
Bacon, 1986.

[519] C. S. Scholten. An axiomatic basis for non-deterministic programs. Technical Report
CD.R/73/200/172, MIG Data Systems, November 1973.

[520] J. S. Schwartz. Sematics of Partial Correctness Formalisms. PhD thesis, Syracuse University,
December 1974.

[521] J. S. Schwartz. Denotational semantics of parallelism. In [305], pages 191–202. Springer-Verlag,
1979.

[522] J. T. Schwartz. Semantic denition methods and the evolution of programming languages. In
[512], pages 1–24. 1972.

[523] D. Scott. Existence and description in formal logic. In R. Schoenman, editor, Bertrand Russell,
Philosopher of the Century, pages 181–200. Allen and Unwin, 1967.

[524] D. Scott. Some denitional suggestions for automata theory. Journal of Computer and System
Sciences, 1(2):187–212, August 1967.

30



[525] D. Scott. A construction of a model for the # calculus. Manuscript, November 1969.

[526] D. Scott. Models for the # calculus. Manuscript – Draft, December 1969.

[527] D. Scott. A type-theoretical alternative to CUCH, ISWIM, OWHY. Typed script – Oxford,
October 1969.

[528] D. Scott. The lattice of ow diagrams. Technical Report PRG-3, Oxford University Computing
Laboratory, Programming Research Group, November 1970.

[529] D. Scott. Outline of a mathematical theory of computation. Technical Report PRG-2, Oxford
University Computing Laboratory, Programming Research Group, November 1970.

[530] D. Scott. Continuous lattices. Technical Report PRG-7, Oxford University Computing Laborat-
ory, Programming Research Group, August 1971.

[531] D. Scott. The lattice of ow diagrams. In [183], pages 311–366. Springer-Verlag, 1971.

[532] D. Scott. Lattice theory, data types and semantics. In [512], pages 65–106. 1972.

[533] D. Scott. Models for various type-free calculi. In P. Suppes, L. Henkin, A. Joja, and Gr.C. Moisil,
editors, Studies in Logic and Foundations of Mathematics Vol. 74 (Proc. of the 4th International
Congress for Logic, Methodology and Philosophy of Science, Bucharest, 1971), pages 158–187.
North Holland Publishing Company, 1973.

[534] D. Scott. A simplied construction for # calculus models. Manuscript, April 1973.

[535] D. Scott. Data types as lattices. Technical Report PRG-5, Oxford University Programming
Research Group, September 1976. Reprinted from the SIAM Journal on Computing, Volume 5,
1976, pp. 522–587; manuscript version dated 1972.

[536] D. Scott. Lectures on a mathematical theory of computation. Technical Report PRG 19, Oxford
University Computing Lab, Programming Research Group, May 1981.

[537] D. Scott. Lectures on a mathematical theory of computation. In [83], pages 145–292. 1982.

[538] D. S. Scott. Identity and existence in intuitionistic logic. In M. P. Fourman, C. J. Mulvey, and
D. S. Scott, editors, Applications of Sheaves. Proceedings, Durham 1979, volume 753 of Lecture
Notes in Mathematics, pages 660–696. Springer-Verlag, 1979.

[539] R. Sethi and A. Tang. Constructing call-by-value continuation semantics. Journal of the ACM,
27,3:580–597, 1980.

[540] H. A. Simon. Models of my life. Basic Books, 1992.

[541] R. L. Sites. Proving that Computer Programs Terminate Cleanly. PhD thesis, Computer Science
Department, Stanford University, 1974. Printed as STAN-CS-74-418.

[542] R. L. Sites. Some thoughts on proving clean termination of programs. Technical Report STAN-
CS-74-417, Computer Science Department, Stanford University, May 1974.

[543] M. B. Smyth. Powerdomains. Technical report, Department of Computer Science, University of
Warwick, May 1976.

31



[544] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive domain equations.
Technical Report CSR-102-82, Department of Computer Science, University of Edinburgh, Feb-
ruary 1982.

[545] S. Soko"owski. Partial correctness: The term-wise approach. Science of Computer Programming,
4:141–157, 1984.

[546] N. Soundararajan. A proof technique for parallel programs. Theoretical Computer Science,
31:13–29, 1984.

[547] T. B. Steel. Formal Language Description Languages for Computer Programming. North-
Holland, 1966.

[548] C. Stirling. A compositional reformulation of Owicki-Gries’s partial correctness logic for a con-
current while language. In L. Kott, editor, Automata, Languages and Programming: ICALP’86,
volume 226 of Lecture Notes in Computer Science, pages 407–415. Springer-Verlag, 1986.

[549] C. Stirling. A generalisation of Owicki-Gries’s Hoare logic for a concurrent while language.
Theoretical Computer Science, 58:347–359, 1988.

[550] K. Stølen. Development of ParallelPrograms on SharedData-Structures. PhD thesis,Manchester
University, 1990. Also published as technical report UMCS-91-1-1.

[551] J. E. Stoy. The Scott-Strachey approach to the mathematical semantics of programming lan-
guages. Course notes of MIT subject 6.971, Fall 1973. Limited preliminary edition. From MIT
Project MAC., December 1974.

[552] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming Language
Theory. MIT Press, 1977.

[553] J. E. Stoy. Foundations of denotational semantics. In [50], pages 43–99. 1980.

[554] J. E. Stoy. The congruence of two programming language denitions. Theoretical Computer
Science, 13:151–174, 1981.

[555] J. E. Stoy. Semantic models. In M. Broy and G. Schmidt, editors, Theoretical Foundations of
Programming Methodology, pages 293–328. D. Reidel, 1982.

[556] J. E. Stoy. Some mathematical aspects of fuctional programming. In Functional Programming
and its Applications : CREST-ITG–Advanced course proceedings, pages 217–252. Cambridge
University Press, 1982.

[557] J. E. Stoy. The development of programming language semantics. In [466], pages 229–230,
1985.

[558] J. E. Stoy and C. Strachey. OS6 – an operating system for a small computer. Technical Report
PRG-8, Oxford University Computing Laboratory, Programming Research Group, May 1972.

[559] C. Strachey. Systems analysis and programming. Scientific American, 215(3):112–124, Septem-
ber 1966.

[560] C. Strachey. The varieties of programming language. Technical Monograph PRG-10, Oxford
University Computing Lab, March 1973.

32



[561] C. Strachey. How can we put programming theory into practice? In Software ’73. Loughborough,
July 9–11 1973, pages 115–122. Transcripta Books, 1974.

[562] C. Strachey and D. Scott. Mathematical semantics for two simple languages, August 1970. Paper
read at Princeton.

[563] C. Strachey and J. E. Stoy. The text of OSPub. Technical Report PRG-9(t), Oxford University
Computing Laboratory, Programming Research Group, July 1972.

[564] C. Strachey and J. E. Stoy. The text of OSPub, (Commentary). Technical Report PRG-9(c),
Oxford University Computing Laboratory, Programming Research Group, July 1972.

[565] C. Strachey and C. P. Wadsworth. Continuations – a mathematical semantics for handling jumps.
Monograph PRG-11, Oxford University Computing Laboratory, Programming Research Group,
January 1974.

[566] H. R. Strong. Algebraically generalized recursive function theory. IBM Journal of Research and
Development, pages 465–475, November 1968.

[567] N. Suzuki. Automatic program verication ii: Verifying programs by algebraic and logical reduc-
tion. Technical Report STAN-CS-74-473, Computer Science Department, Stanford University,
December 1974.

[568] A. Tarlecki. A language of specied programs. Science of Computer Programming, 5:59–81,
1985.

[569] A. H. Taub, editor. John von Neumann: Collected Works, volume V: Design of Computers,
Theory of Automata and Numerical Analysis. Pergamon Press, 1963.

[570] R. D. Tennent. The denotational semantics of programming languages. Communications of the
ACM, 19:437–453, 1976.

[571] R. D. Tennent. Principles of Programming Languages. Prentice-Hall International, 1981.

[572] R. D. Tennent. Semantic analysis of specication logic. Technical Report ECS-LFCS-86-5,
LFCS, Department of Computer Science, University of Edinburgh, June 1986.

[573] J. W. Thatcher, E. G. Wagner, and J. B. Wright. More on advice on structuring compilers and
proving them correct. Technical Report RC-7588, IBM Research Division, New York, April
1979.

[574] J. W. Thatcher, E. G. Wagner, and J. B. Wright. More advice on structuring compilers and proving
them correct. In [301], pages 165–188. Springer-Verlag, 1980.

[575] B. A. Trakhtenbrot, J. Y. Halpern, and A. R. Meyer. From denotational to operational and ax-
iomatic semantics for Algol-like langauges: An overview. Technical Report RJ 4105, IBM
Research Division, New York, November 1983.

[576] A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Pro-
ceedings of the LondonMathematical Society, Series 2, 42:230–265, 1936. Correction published:
ibid, 43:544–546, 1937.

33



[577] A. M. Turing. Checking a large routine. In Report of a Conference on High Speed Automatic Cal-
culating Machines, pages 67–69. University Mathematical Laboratory, Cambridge, June 1949.

[578] W. M. Turski. ALGOL 68 revisited twelve years later or from AAD to ADA. In J. W. de Bakker
and J. C. van Vliet, editors, Algorithmic Languages, pages 417–431. IFIP, North-Holland, 1981.

[579] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a programming
language. Journal of the ACM, 23:733–742, 1976.

[580] A. van Wijngaarden. Numerical analysis as an independent science. BIT, 6:66–81, 1966. (Text
of 1964 talk).

[581] A. van Wijngaarden, M. Sintzoff, B. J. Mailloux, C. H. Lindsey, J. E. L. Peck, L. G. L. T.
Meertens, C. H. A. Koster, and R. G. Fisker. Revised report on the Algorithmic Language ALGOL
68. Mathematical Centre Tracts 50. Mathematisch Centrum, Amsterdam, 1976.

[582] A. van Wijngaarden B. J. Mailloux, J. E. L. Peck, and C. H. A. Koster. Report on the Algorithmic
Language ALGOL 68. Mathematisch Centrum, Amsterdam, October 1969. Second printing , MR
101.

[583] C. P. Wadsworth. Semantics and Pragmatics of the Lambda-Calculus. PhD thesis, Programming
Research Group, University of Oxford, September 1971.

[584] C. P. Wadsworth. The relation between computational and denotational properties for Scott’sD%-
models of the lambda-calculus. SIAM Journal on Computing, 5(3):488–521, September 1976.

[585] C. P. Wadsworth. Approximate reduction and lambda-calculus models. SIAM Journal on Com-
puting, 7(3):337–356, August 1978.

[586] R. J. Waldinger. Constructing Programs Automatically using Theorem Proving. PhD thesis,
Carnegie-Mellon University, 1969.

[587] M. Wand. Specications, models and implementations of data abstractions. Technical Report 88,
Indiana University, Computer Science Department, March 1980.

[588] M. Wand. Deriving target code as a representation of continuation semantics. ACM Transactions
on Programming Languages and Systems, 4:496–517, July 1982.

[589] H. Wang. Towards mechanical mathematics. IBM Journal of Research and Development, 4:2–22,
1960.

[590] P. Wegner. Programming language semantics. In [512], pages 149–248. 1972.

[591] R. L. Wexelblat, editor. History of Programming Languages. Academic Press, 1981.

[592] M. V. Wilkes. Constraint-type statements in programming languages. Communications of the
ACM, 7:587–588, October 1964.

[593] M. V. Wilkes. Memoirs of a Computer Pioneer. MIT Press, 1985.

[594] W. T. Wilner. Formal semantics denition using sythesized and inherited attributes. In [512],
pages 25–40. 1972.

34



[595] J. Winkowski. Behaviours of concurrent systems. Theoretical Computer Science, 11:39–60,
September 1980.

[596] N. Wirth. On certain basic concepts of programming languages. Technical Report CS 65, Com-
puter Science Department, Stanford University, May 1967.

[597] N. Wirth. The design of a pascal compiler. Software — Practice and Experience, 1:309–333,
1971.

[598] N. Wirth. Systematic Programming: An Introduction. Prentice-Hall, 1973.

[599] N. Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, 1976.

[600] Y I. Yanov. The logical schemes of algorithms. Problems of Cybernetics, 1:82–140, 1960.

[601] H. Zemanek. Semiotics and programming languages. Communications of the ACM, 9:139–143,
1966.

[602] H. Zemanek. Formalization, history, present and future, 1974. Paper for Newcastle IBM Seminar.

[603] H. Zemanek. Formal denition: The hard way. In [466], pages 411–418, 1985.

[604] S. N. Zilles. Abstract specications for data types. Technical Report 11, M.I.T. Progress Report,
1974.

[605] K. Zuse. Der Computer: Mein Lebenswerk. Springer-Verlag, 1984.

35


