
Department of Computer Science
University of Manchester
Manchester M13 9PL, England

Technical Report Series
UMCS–92–12–1

C. B. Jones

An Object-Based Design Method for
Concurrent Programs

An Object-Based Design Method for Concurrent Programs

C. B. Jones

Department of Computer Science
University of Manchester

Oxford Rd., Manchester, U.K.
cbj@cs.man.ac.uk

1992-12-04

Abstract

The property of a (formal) development method which gives the development process the potential
for productivity is compositionality. Interference is what makes it difficult to find compositional
development methods for concurrent systems. This paper is intended to contribute to tractable de-
velopment methods for concurrent programs. In particular it explores ways in which object-based
language concepts can be used to provide a compositional development method for concurrent pro-
grams. This text summarizes results from three draft papers. It firstly shows how object-based
concepts can be used to provide a designer with control over interference and proposes a trans-
formational style of development (for systems with limited interference) in which concurrency is
introduced only in the final stages of design. The essential idea here is to show that certain object
graphs limit interference. Secondly, the paper shows how a suitable logic can be used to reason
about those systems where interference plays an essential role. Here again, concepts are used in the
design notation which are taken from object-oriented languages since they offer control of granu-
larity and way of pinpointing interference. Thirdly, the paper outlines the semantics of the design
notation mapping its constructs to Milner’s -calculus.

Copyright 1992. All rights reserved. Reproduction of all or part of this work is permitted for educational or research
purposes on condition that (1) this copyright notice is included, (2) proper attribution to the author or authors is made and (3)
no commercial gain is involved.
Technical Reports issued by the Department of Computer Science, Manchester University, are available by anonymous

ftp from m1.cs.man.ac.uk (130.88.13.4) in the directory /pub/TR. The files are stored as PostScript, in compressed form,
with the report number as filename. Alternatively, reports are available by post from The Computer Library, Department of
Computer Science, The University, Oxford Road, Manchester M13 9PL, U.K.

Contents

1 Introduction 2

2 Linked-lists of objects 4

3 Tree-like object graphs 9

4 Interference 12

5 Sieve of Eratosthenes 13

6 Global safety assertions 16

7 Reasoning about interference 17

8 Discussion 22

A o 27
A.1 Relationship of o to POOL . 27
A.2 Abstract syntax . 28

B Using constant references 29

C Semantics 30
C.1 The -calculus . 30
C.2 Representing values . 31
C.3 Mapping . 32
C.4 Proofs . 35
C.5 Related work . 37

1

1 Introduction

The most difficult aspect of finding tractable development methods for concurrent systems is to provide
a useful notion of compositionality which facilitates division of work. Compositionality can be defined
as follows (adapted from [Zwi88])

A development method is compositional if the fact that a design step satisfies a given
specification can be justified on the basis of the specifications of any constituent components
without knowledge of their interior construction

Earlier work on shared-variable concurrency (see [Jon83a] which is significantly extended in [Stø90,
Stø91a, Stø91b]) used rely and guarantee conditions both to describe and to reason about interference.
The fixed format of these specificationswas rejected in [Jon91a] in favour of a logicwith operators which
use predicates of pairs of states (there are similarities with Lamport’s TLA [Lam90, Lam91]). But the
proofs remain long-winded and the earlier work has been dogged by issues like atomicity (granularity)
and questions about where invariants etc. are supposed to hold.

In common with many others, the current author sees language restrictions as a way of constraining
concurrency so as to reduce the number of proof obligations in development. The current approach
uses concepts of object-oriented languages in order to constrain interference and fix a level of granular-
ity. (The idea to use object-oriented languages was made more tempting by the positive experience of
building a theorem proving assistant [JJLM91] in Smalltalk and more recent discussions about exploit-
ing parallel hardware and tackling a multi-user version of mural .) It is not, however, the aim to add
yet one more language to those claiming to be object-oriented; the development method envisaged here
ought be used for programs in languages such as ABCL [Yon90], Modula-3 [Nel91], Beta [KMMN91]
or UFO [Sar92]. The claim is that some carefully chosen subset of object-oriented concepts makes the
design of concurrent programs more tractable than in arbitrary shared-variable languages (or even lan-
guages like CSP). The move to an object-based language has not made the interference logic redundant
it has only reduced the need for interference arguments; Sections 4 to 7 explore the situation where
interference is essential.

The design notation used in this paper (known as o) is heavily influenced by the programming
language ‘POOL’ (see Appendix A.1 for references and some comparative notes); it also reflects dis-
cussions with colleagues at Manchester University. Most of the features of the language are presented
by examples. Points of interest include the following. Classes have methods only one of which may
be active at any one time (for a particular instance); invocation of methods is synchronous but methods
can return before they complete and this releases the invoking process from the rendezvous. Consider
the following

2

Priq class
vars m: [] nil; l: private ref(Priq) nil
add(e:) method
return
if m = nil then (m e; l new Priq)
elif m < e then l!add(e)
else (l!add(m); m e)
fi

rem() method r:
return m
if m nil then m l!rem()

if m = nil then l nil
fi

fi

This can be read as an object-oriented program (which is actually developed from a specification in
Section 2). The programming task which is considered concerns sorting: a priority queue delivers –
and removes – its smallest value via a remove method (rem); new values can be added by another
method (add). Programs obtain a reference to (an instance of) a priority queue by using a new Priq
statement. In fact, the created queue can be a linked list of instances of Priq but the using program
would have no way of detecting this. Each instance has two variables containing a value and a link
(possibly nil) to the next element.

In the class Priq, the new method is implicit; all that happens is that the instance variables (m and
l) is initialized. Once created, there are two methods which can be invoked in an instance of the Priq
class: add puts its argument into the queue and rem – which takes no arguments – returns the smallest
value contained in the queue. Methods are invoked by expressions like l!add(7) (where l is a reference
to an instance of Priq). The semantics dictates that only one method can be active at any time in a
particular instance of Priq.1 Notice that the return statements occur at the the beginning of the add and
rem methods. This releases the user from the rendezvous and lets the remaining code run in parallel
with other activity of the invoking program. Furthermore, once – say – the call to the next add has been
released, the method terminates and its instance is available for other method calls. One can picture a
whole sequence of add and remmethods rippling along the linked-list structure. The fact that the activity
can never get out of order is important and results from the object graph which is created. Marking
the contained references as private makes it easier to establish results about the object graphs. Were
o a programming language, all sorts of concrete syntax details would have to be resolved – here,
a rather relaxed syntax is used with line breaks playing a meaningful part. (The abstract syntax of the
language used here is given in Appendix A.2.) The reader should remember that o is intended as a
design notation to be used to develop programs in a language where issues like parsing have received
due attention.

In addition to the return statement, there is a yield statement which provides a way of delegating the
responsibility to answer a method invocation. As in Priq, objects (instances of classes) are created by
activating new for a class name; in o explicit methods for new can be written. The language has
no inheritance yet (it is tempting to try something like ‘theory morphisms’ – cf. [JJLM91] – because
inheritance is often used to solve too many problems at once).

1It can be useful to think of classes as blocks which can be multiply instantiated; each instance has local (instance)
variables and procedures (methods); the instance variables can only be accessed or changed by the methods; methods are
called (invoked) by sending messages.

3

In addition to the language presentation herein, it is to some extent true that the search for a de-
velopment method has been driven by examples: the approach has been to find plausible development
steps and then to look for formal rules which justify them. This is largely motivated by the experience
which shows that the thing which makes formal development work like mathematics is finding the right
steps of development; detailing the proofs of individual steps is less rewarding. One key insight was
the realization that assertions (invariants etc.) about the object graphs created by object references are
central to the explanation of many algorithms. This first part of this paper looks at two topologies in
Sections 2 and 3 which both support a ‘promotion’ of properties about instances to properties about
collections of instances. This can be compared with the way in which an inference rule for a while
statement can be used to infer results about a composite statement from properties of its components.

Section 5 also shows the sort of transformational development – usable on simple object graphs –
which is discussed above but Section 7 tackles the problem of interference when such simple object
graphs do not suffice. Section 6 discusses the logic used.

There are at least two options for giving the semantics: a resumption semantics which fits the way
methods work here (cf. [AR89, pp111]; see also [Wol88, AR92]) or mapping to Milner’s Polyadic -
calculus [Mil92]. Since the mapping to the -calculus is quite far advanced, the working name for the
design notation is o . (see Appendix C).

2 Linked-lists of objects
The first example illustrates the object-based nature of the programming language and the role that this
plays in developing programs. What follows is a step-wise development of a program which stores each
element of the queue as a local variable in an instance of an object; these objects are organized into
a linked-list. Because the specifications are simpler, the first steps of development assume sequential
execution within a queue (there might – however – be other concurrent threads); concurrency within a
queue is considered in the final development step where its use is justified by arguing that it provides
the same visible behaviour as the sequential implementation.

Specification

As in a Larch [GHW85, GH93] ‘interface language’, the design notation is used here to provide a
framework for the specification which is given as a class definition. The methods are specified by
pre- and post-conditions in a style similar to that used in VDM [Jon90]. 2 In post-conditions, hooked
identifiers refer to the value of the instance variables before execution of the method and undecorated
identifiers refer to the values after execution of the method. Thus

b = b e

requires that the value of the instance variable b after an invocation of add is the bag union of the value
of that variable before execution of the method with a unit bag containing the value of the parameter.
Notice that rem is a partial method and – as in VDM – the post-condition can be undefined if its pre-
condition is not satisfied. (The external clauses from VDM are barely necessary in the context of a class
but there are places where one really ought note that some variables are read-only.) Values of type bag
etc. and operators like are part of the specification language.

2The classes here can be compared with modules in VDM-SL [BSI92, Daw91].

4

Priq class
vars b: -bag
add(e:) method
post b = b e

rem() method r:
pre b
post r = min(b) b = b r

Just as in VDM, ‘satisfiability’ proof obligations can be generated for each method specification.

Straightforward data reification

It is possible to undertake a step of data reification of the bag b to an ascending sequence. Such a step
is sketched here in order to afford comparison with the reification to a linked-list which follows. The
objects concerned are

AscSeq =
inv (b) is-ascending(b)

The invariant is a restriction on the elements which are in the set AscSeq (is-ascending – and other
simple functions – are taken to be obvious).3

The relationship between this representation and the abstract objects is defined

retr :AscSeq -Bag

retr(b) bagof (b)

bagof :X X-Bag

bagof(t) e card i inds t | t(i) = e | e elems t

This representation is ‘adequate’ (there is at least one element of AscSeq which corresponds – under retr
– to each element of -bag). The methods of Priq can be specified on this representation as follows.

Priq class
vars b: AscSeq []
add(e:) method
post i inds b b(i) = e del(b, i) = b

rem() method r:
pre b []

post r = hd b b = tl b

del(t, i) t(1,… , i 1) t(i + 1,… , len t)

3Throughout this paper, VDM notation [Jon90] is used for sequences, maps etc.

5

The correctness of such a step can be justified by further rules (operation domain/result) of [Jon90].
It is worth taking this opportunity to reflect on where the invariant must hold: a user would pre-

sumably accept an implementation of add which put new elements at the end of a list and then sorted
it. In this view, an invariant does not have to be true mid-operation: it is really a way of abbreviat-
ing pre-/post-conditions. It would be possible to develop from here a sequential implementation using
decomposition rules to justify the use of while statements etc.

Reification involving class instances

The main line of object-based development is now considered (i.e. the reification to AscSeq is ignored
and the reference point for this step is the initial specification). Here again, a reification focuses on
the development of the data structure and finding an appropriate invariant is a key to the design. This
development step employs multiple instances of class Priq; their local variables (m) collectively rep-
resent b; the instances form a linked-list with the l variable in one instance pointing to the next. The
use of references necessitates talking about a global state (). This is viewed as a mapping from
references to instances

= Ref m Inst

and variable names can be applied as selectors to objects of Inst (e.g. if p is a reference to an instance
of Priq, then m((p)) is a natural number). The state is a Curried argument to functions which depend
on the global state. The predicate is-linked-list(p, l)() is true if the instance pointed to by p (in)
is the start of a linked-list via the references contained in the l variables of each instance. Although
the objective here is to talk about linked-lists etc. without needing to think at the reference level, this
predicate can be defined in terms of as follows.4

is-linked-list :Ref × Name

is-linked-list(p, l)()
pl Ref
pl(1) = p l((pl(lenpl))) = nil
i 1,… , len pl 1 pl(i + 1) = l((pl(i)))

Similarly, a function to extract a sequence from a linked list is extract-seq(p, l, n) which generates a
sequence of the (non-nil) n values from instances linked by the l references.

extract-seq :Ref × Name × Name X

extract-seq(p, l, n)()
if p = nil then []
elif n((p)) = nil then extract-seq(l((p)), l, n)()
else [n((p))] extract-seq(l((p)), l, n)()
fi

This can be used to define the set of references which can be reached from a reference.

reach :Ref × Name X

reach(p, l)() elems extract-seq(p, l, l)()

4It would be possible to pass a lambda expression (or simply make l a constant) in order to avoid passing a name to
is-linked-list.

6

The data type invariant can then be defined as follows.

inv :Ref

inv(p)()
is-linked-list(p, l)() is-ascending(extract-seq(p, l, m)())
r reach(p, l)() l((r)) = nil m((r)) = nil

The invariant is considered to be true only between method invocations (rather than during the execution
of a method). The retrieve function is as follows.

retr :Ref -Bag

retr(p)() bagof (extract-seq(p, l, m)())

It is now possible to specify Priq on the linked-lists. 5

Priq class
vars m: [] nil; l: private ref(Priq) nil
add(e:) method
post let b = extract-seq(self, l, m)() in

let b = extract-seq(self, l, m)() in

i inds b b(i) = e del(b, i) = b
rem() method r:
pre extract-seq(self, l, m)() []

post let b = extract-seq(self, l, m)() in
let b = extract-seq(self, l, m)() in

r = hd b b = tl b
Any user of a Priq would be unaware that the implementation involved multiple instances; since the
references are private (cannot be copied) they are invisible and free from danger of interference. In
order to state the pre- and post-conditions, the sequences are extracted from the state with a reference to
the current instance (self) providing the start of the list. A simple generalization of standard refinement
rules will cover such a reification step.

Operation decomposition

The next step of development is to look at code which satisfies the above: the specifications are decom-
posed into executable statements.

5Notice m can contain a VDM-like nil; for the Ref type, a nil value is a normal null reference; there is a sort of pun here
since a ‘real’ object-oriented language would anyway make all values into objects.

7

Priq class
vars m: [] nil; l: private ref(Priq) nil
add(e:) method
if m = nil then (m e; l new Priq)
elif m < e then l!add(e)
else (l!add(m); m e)
fi
return

rem() method r:
t:
t m
if t nil then m l!rem()

if m = nil then l nil
fi

fi
return t

The inductive justification of this decomposition relies on rules which promote assumptions on one
instance of the class to collections of such instances; the linear reference topology justifies a structural
induction argument about the recursive calls to methods. The base case for add which starts with b
as the empty sequence is straightforward (p and l are both nil). The inductive step assumes that the
recursive call to l!add(m) performs according to specification. Notice that inv above implies that there
can not be a loop in the reference chain which is important since otherwise calls to add would deadlock.
Notice also that it is not necessary to rely on pre-rem: the implementation happens to deliver a nil result
if the method is used outside its intended domain.

Equivalent code

As mentioned above, the initial steps of this development have not employed concurrency within a
queue: in the preceding code, add and rem hold the invoking process in a rendezvous until they complete
and a method call at the head of the list does not complete until all recursive calls terminate. (Recall
that only one method can be active in each instance of a method at any one time.) Parallelism can
be achieved by letting – for example – rem return the local m before it ripples through bringing up
values as required; the invoking process is released from the rendezvous and can run in parallel with
the Priq methods. Furthermore, this also applies to the instances of Priq within one queue: once rem
has obtained a value from the next element in the queue, it can terminate making it possible for either
of the methods of this instance to be invoked. Because of the linear reference topology controlled by
private refs, no other thread of control can interfere with the queue.

The argument for the correctness of this step follows from a transformation which permits moving
statements. Essentially

S; return e return e; S (1)

providing e is not affected by S2 and S2 only changes (other than its own state) states reachable by
private references. Thus the preceding code can be transformed as follows.

8

Priq class
vars m: [] nil; l: private ref(Priq) nil
add(e:) method
return
if m = nil then (m e; l new Priq)
elif m < e then l!add(e)
else (l!add(m); m e)
fi

rem() method r:
return m
if m nil then m l!rem()

if m = nil then l nil
fi

fi

This step uses algebraic laws to re-order code which is an observationally equivalent parallel program to
the one which was first specified. Apart from offering what is hopefully an intuitive development route,
this has obviated the need to describe post-conditions for the concurrent behaviour of the methods. It is
not immediately obvious how to write such post-conditions because at the point at which an execution
of a method begins, methods on other instances might still be active (such post-conditions appear to
need something like Lamport’s ‘prophesy variables’).

The final code behaves in much the same way as BUBLAT (cf. [CLW79]) did in earlier work on
‘interference’ proofs (e.g. [Stø90]) but there is much less ‘mechanism’ visible here – further steps of
development could bring in the extra variables of the earlier code if so desired.

Alternatives

A couple of general observations can be made even after this simple example. There is a reliance above
on the fact that the values (in) are immutable; while this is taken for granted in non-OO-languages, it
is not the norm in the OO-world (cf. open issue 2 in Appendix A.1). If the element values could change,
such changes would need to be constrained by interference assertions like those used in Section 7.

It must be conceded that – thus far – it would be possible to use a development method in which
objects can be guarded from interference by encapsulation and then to have a compiler generate the
actual class instances. The reason for taking the approach of creating the instances and reasoning
about (non-)interference is that it prepares for the more general approach below. It is – for example
– interesting to consider what would go wrong with the above development if a ‘fast path’ vector of
pointers to every tenth element in the list existed. The sharing of pointers which would result would
undermine the equivalence shown in Equation 1 and observational equivalence would not be guaranteed.

3 Tree-like object graphs
The programming task considered in this specification is similar to that in the preceding section but it
shows that references defining a tree-like topology of instances can also be used as a basis for reasoning;
this development also introduces a new statement of the language.

Specification

The example of building a simple symbol table is used in [Ame89]; its specification is very simple.

9

Symtab class
vars st: (Key m Data)
insert(k: Key, d: Data) method
post st = st † k d

search(k: Key) method res: Data
pre k dom st
post res = st(k)

Reification

The first design idea is to represent the mapping as a binary tree.
Tree :: mk : [Key]

md : [Data]
l : [Tree]
r : [Tree]

inv (mk-Tree(mk, md, l, r)) (mk = nil md = nil) (mk = nil l = r = nil)
Over which an invariant might be defined

is-ordered-tree : Tree

is-ordered-tree(mk-Tree(mk, md, l, r))
if mk = nil
then true
else (lk coll(l) lk < mk) (rk coll(r) mk < rk)

(l nil is-ordered-tree(l)) (r nil is-ordered-tree(r))
fi

where the coll function simply collects the set of Keys

coll : [Tree] Key-set

coll(t)
cases t of
nil ,
mk-Tree(nil, md, l, r) ,
mk-Tree(mk, md, l, r) coll(l) mk coll(r)
end

Nested objects like Tree have, in o , to be represented by structures built with references. An
invariant must specify that the reference structure forms a genuine tree (is-linked-tree) and that the Tree
obtained by using extract-tree on the instances satisfies is-ordered-tree.

inv :Ref

inv(p)() is-linked-tree(p, l, r)() is-ordered-tree(extract-tree(p, l, r, mk)())

10

The functions is-linked-tree and extract-tree can be defined in an analogous way to is-linked-list above. 6
The retrieve function follows.

retr :Ref (Key m Data)

retr(p)()
retrm(extract-tree(p, l, r, km)())

retrm : [Tree] (Key m Data)

retrm(t)
cases t of
nil ,
mk-Tree(nil, md, l, r) ,
mk-Tree(mk, md, l, r) retrm(l) mk md retrm(r)
end

The methods are respecified as follows.

Symtab class
vars mk: Key nil; md: Data nil; l: private ref(Symtab) nil; r: private ref(Symtab) nil
insert(k: Key, d: Data) method
post retr(extract-tree(self, l, r, mk)()) = retr(extract-tree(self, l, r, mk)()) † k d

search(k: Key) method res: Data
pre k dom retr(extract-tree(self, l, r, mk)())
post res = (retr(extract-tree(self, l, r, mk)()))(k)

Operation decomposition

It is straightforward to provide code which satisfies the pre-/post-conditions on methods of Symtab.

Symtab class
vars mk: Key nil; md: Data nil; l: private ref(Symtab) nil; r: private ref(Symtab) nil
insert(k: Key, d: Data) method
if mk = nil then (mk k; md d)
elif mk = k then md d
elif k < mk then (if l = nil then l new Symtab fi l!insert(k, d))
else (if r = nil then r new Symtab fi r!insert(k, d))
fi
return

search(k: Key) method res: Data
pre k dom retr(self)
if k = mk then return md
elif k < mk then return l!search(k)
else return r!search(k)
fi

The argument that this code satisfies its specification uses structural induction over the tree topology.
6It might, however, by worth passing lambda expressions rather than names to define the link tracing.

11

Equivalent code

As in Section 3 the above code is sequential (within one instance of a tree). The transformation in
Equation 1 can be used to justify executing the return at the beginning of insert. There is, however, a
problem with re-ordering the steps of search: no result can be available until it has been found so the
caller of the method has to be held up. But an instance of Symtab can be used by another process if the
task of delivering a result is delegated (to another instance). This is exactly the semantics of the yield
statement. The equivalence used is

return l!m(x) yield l!m(x) (2)

providing l is a private reference and only references via private references. Thus the above code can
be transformed into the following.

Symtab class
vars mk: Key nil; md: Data nil; l: private ref(Symtab) nil; r: private ref(Symtab) nil
insert(k: Key, d: Data) method
return
if mk = nil then (mk k; md d)
elif mk = k then md d
elif k < mk then (if l = nil then l new Symtab fi l!insert(k, d))
else (if r = nil then r new Symtab fi r!insert(k, d))
fi

search(k: Key) method res: Data
if k = mk then return md
elif k < mk then yield l!search(k)
else yield r!search(k)
fi

4 Interference
There are many aspects of concurrent programs and many different problems; the remainder of this
paper focuses on interference. It is argued above that methods of reasoning about concurrent programs
must accommodate interference. To provide useful compositionality, development methods must offer
help also at the earliest stages of design: proofs at lowest level of detail are of less value than those
in earlier design phases. The main idea is to structure the design (record) so as to be provable. In
fact, much of the motivation of the ideas presented here has been to offer ways of formalizing steps of
development which are intuitively acceptable.

It might appear that interference completely rules out the possibility of compositional development
but a number of authors have attempted to tame this dragon by recording facts about interference in
specifications. An early attempt is presented in [FP78] but this does not offer compositionality. The
interference approach in [Jon81, Jon83a, Jon83b] suggested a compositional approach related to the
Owicki/Gries method [Owi75, OG76]: rely and guarantee conditions were used to record acceptable
and promised interference; proof obligations were given for operation decomposition including parallel
statements. The original rely/guarantee method did not cope with liveness issues but there has recently
been a flurry of activity and both Stølen [Stø90, Stø91a, Stø91b] and Xu [XH91, Xu92] have proposed
extensions to cover liveness. It was always clear that [Jon81] presented only an existence proof of
ways of recording and reasoning about interference and that more research was required to make the

12

ideas useful in practice (but [WD88, GR89], for example, show the method has been used on industrial
applications). The attempt to find compositional development methods for parallel programs has influ-
enced others – including some work on temporal logic (see [BKP84, dR85]) and the VVSL specification
language [Mid90]; related references include [BK84, Sta85, Sti86, Sti88, Sta88, BM88, Ded89, Bro89,
SW91]. But by the time the ideas were being recognised, it had become clear that it was possible to
improve on the rather heavy proof rules for rely/guarantee conditions and to replace them by a logic
with a more pleasing algebra [Jon91b, Jon91a].

5 Sieve of Eratosthenes
The ‘Sieve of Eratosthenes’ can be used to determine prime numbers up to some stated maximum. Its
justification has been used in the literature to illustrate several ways of reasoning about concurrency.
The implementation developed in this section is in the spirit of various programs shown in the POOL
literature (versions exist in different dialects in [Ame86, AdB90]) but a test function has been added
here since, without some ‘observer’, the POOL specifications were forced to talk about internal states
rather than behaviours (an alternative observer would be to add a way of listing the primes).

Section 7 presents an alternative development where a DAG-like object graph allows interference;
that development is also shown to satisfy the specification below.

Specification

It is easy to write a specification for a prime number tester; what follows already embodies the use of a
sieve since starting at a user-oriented view shows nothing new. The specification could be written in a
specification notation like that used in VDM. Here, the operations are described as methods of a class
called Primes. It is obvious that a test method is required; here the new method is also given explicitly
since it has a parameter. The specifications of the methods are

Primes class
vars max: ; sieve: -set
new(n:) method r: ref(Primes)
post r = self max = n sieve = 2 i max | is-prime(i)

test(n:) method r:
rd sieve, max
pre n max
post r (n sieve)

Instances of Primes are created by new Primes(n) which returns a reference, say p; providing the pre-
condition is respected, any process to which p is disclosed can then use p!test(i) to obtain a Boolean value
which indicates whether i is composite or prime. Although there may be many concurrent threads, only
one method can be active at one time per instance of Primes (of course, there can be many instances).
It is up to the developer of Primes to avoid unwanted interference by keeping control of any internal
references.

Reification involving class instances

The route to concurrency adopted in this design is to create one process (here, instances of Sift) per
prime. This is achieved by an initialization in which each instance of Sift sifts out any composites for
which its index is a factor; each instances pass (to the next) any potential prime which it does not divide

13

(m div n). At the end of the list of instances, an uninitialized process receives a number which must be
a prime, stores it and sets up a new instance of Sift. Testing for primality is similar. Thus the instance
variables of Sift are

Sift class
vars m: [] nil; l: private ref(Sift) nil

The initial specification of Primes is given in terms of local assertions on each method. In contrast,
the invariant which plays a part in this design step concerns the multiple instances of Sift which are
created. These instances form a linked-list object graph in which the variable l of one instance contains
the reference of the next instance (with nil marking the end of the list). The use of such references
requires that assertions are couched in terms of a global state () which is viewed as a map from
references to instances

= Ref m Inst

Variable names are treated as selectors to objects of Inst (thus, if p is a reference to an instance of Sift,
m((p)) selects the natural number in m). The state is a Curried argument to functions which depend on
. The predicate is-linked-list:Ref ×Name and the function extract-seq:Ref ×Name ×Name

X are as in Section 2. In terms of these, it is straightforward to define an invariant which
limits the object graph of Sift instances to a linear list and, furthermore, requires that the m values are
in ascending order (is-ascending: Bool is assumed to be obvious).

inv :Ref

inv(sr)() is-linked-list(sr, l)() is-ascending(extract-seq(sr, l, m)())

The intuitive idea that the m values in this linear list represent the sieve value in the specification of
Primes can be formalized by a retrieve function

retr :Ref -set

retr(p)() elems extract-seq(p, l, m)()

Now, still following the general pattern of development steps by data reification in [Jon90], the methods
of Primes can be specified on this representation as follows.

Primes class
vars max: ; sr: private ref(Sift) nil
new(n:) method r: ref(Primes)
post r = self max = n retr(sr)() = 2 i max | is-prime(i)

test(n:) method r:
rd sieve, max
pre n max
post r (n retr(sr)())

Notice that clauses of the invariant such as is-linked-list do not have to be stated in, for example, the
post-condition of new.

Decomposition

It is a straightforward task to write sequential object-oriented programs which satisfy the specification
of Primes which has resulted from the reification and which also preserve the invariant. In a fully

14

formal operation decomposition one would need inference rules about the specifically object-oriented
statements which supplement those (e.g. in [Jon90]) for iterative statements etc. In the code which
follows, an outline proof is adumbrated by assertions.

Primes class
vars max: ; sr: private ref(Sift) nil
new(n:) method r: ref(Primes)
ctr:
max n
sr new Sift

retr(sr)() =
ctr 2
while ctr max do
sr!setup(ctr)

retr(sr)() = i 2,… , ctr | is-prime(i)
ctr ctr + 1

od
retr(sr)() = i 2,… , max | is-prime(i)

return self
test(n:) method r:
return sr!test(n)

Sift class
vars m: [] nil; l: private ref(Sift) nil
setup(n:) method
if m = nil then (m n; l new Sift)
elif ¬m div n then l!setup(n)
else skip
fi
return

test(n:) method r:
if m = nil n < m then return false
elif m = n then return true
else return l!test(n)
fi

The formal argument would use structural induction over the linked-list structure to promote results
about one instance to properties of the whole network.

Equivalent code

As in Section 3, the real interest is how to move from the sequential solution to one which realizes the
potential for concurrency which is inherent in the many instances of Sift. As the code above stands,
any invocation of setup of Sift will not release its invoker until the effect has travelled all the way along
the linked list and the returns have come all of the way back. This delay is unnecessary as can be
proved using Equation 1. This justifies moving the return statement to the first position in setup. The
method now releases its invoker as soon as possible and generates activity further along the list; once the
method in one instance terminates, it is open to have further methods invoked even though the activity

15

from the first call is still going on. The point of the rule in Equation 1 is that it preserves observational
equivalence. The same transformation can be applied to new of Primes.

In essence, a similar transformation is required for test of Sift where the change from return to yield
is justified by Equation 2. Thus the final code is as follows.

Primes class
vars max: ; sr: private ref(Sift) nil
new(n:) method r: ref(Primes)
ctr:
max n
return self
sr new Sift
ctr 2
while ctr max do sr!setup(ctr); ctr ctr + 1 od

test(n:) method r:
return sr!test(n)

Sift class
vars m: [] nil; l: private ref(Sift) nil
setup(n:) method
return
if m = nil then (m n; l new Sift)
else if ¬m div n then l!setup(n) fi
fi

test(n:) method r:
if m = nil n < m then return false
elif m = n then return true
else yield l!test(n)
fi

The development route adopted in this section is to stay with data reification and operation de-
composition for sequential programs until the final step of development; concurrency is introduced by
transformations which preserve observational equivalence. The validity of the transformations rely on
restrictions to the object graphs. Where, as in Section 7, sharing of references occurs this is not an
appropriate development method.

6 Global safety assertions

The arguments used in Section 7 use global assertions about the evolution of computations. These
assertions are written in a logic which is a development of that presented in [Jon91a]. In addition to
predicates of one state p: and relations on states r: × , various modal operators are
allowed. The most basic operator for safety reasoning is S links rmeaning that any step in the execution
of S makes a state transition which satisfies the relation r. Some arguments can be documented more
concisely using derived operators. For example

confirms -defn
S links (p p)

S confirms p

16

maintains -defn
S links (p p)
S maintains p

and for f : Val

conserves -defn
S links (f = f)
S conserves f

An operator which asserts that S does terminate – and that the final state satisfies p – is S fin p. Assertions
about the behaviour of an execution under interference (S e) are written – for example

e links (retr(sr)() retr(sr)()) new Rem(i, sr) e fin (retr(sr)() mults(i) =)

In addition, the following two rules are used below

-links i(Si links r)
i Si links r

-I

i(Si links r)
i(e links r Si e fin pi)

e links r (i Si) e fin i pi

7 Reasoning about interference
This section shows how to cope with interference; both specifications and development steps must be
considered. A program is developed which employs concurrency in much the same way as [Jon83a]
implements the prime sieve – here, of course, the program is built from multiple instances of classes.
The development in this section is based on the initial specification of Section 5. The final program uses
an acyclic directed graph (DAG) of objects: references which are shared by several objects bring with
them many of the problems of shared variables but the fact that the interface of an object is constrained
by the available methods simplifies reasoning about interference. But there is certainly a price to pay
for the interference: the DAG object graph can no longer support the form of induction proof used in
Section 5.

Reification

A straightforward step of data reification could represent sieve of Section 5 as an array of Booleans
(giving its characteristic function). A general array is however too flexible in that its elements could
be changed by assignment in either direction between the two Boolean values; furthermore, such an
array offers no scope for distribution. Given that sieve is initialized to a large set and then elements
are only ever removed, it is a better design decision to place each Boolean in a separate instance of a
class El which only has a method which deletes its element; these separate instances provide potential
parallelism.7 The instances are located via a map

m Ref (El) (3)
7In o as it stands, some of this potential is squandered. If it were possible to use the natural numbers themselves as

references, the program and its development would be shorter and more parallelism would be available (such a ‘program’
is given in Appendix B) but the fact that a separate mapping from natural numbers to references is required here makes no
difference to the sort of interference proof required. Unfortunately, the mapping does introduce an addressing bottleneck. It
would be possible to use multiple copies of Vector after its initialization and Pierre America (private communication) has ideas
about pragmaswhich would request ‘one copy per processor’. (Justification of this split would be trivial.)

17

The El class is simple enough that it is easier to document the design decisions directly in its code than
to interpose a specification.

El class
vars b: true
test() method r:
rd b
return b

del() method
b false
return

Instances of El are initialized (to true) when created by a new statement. Notice that there is (after
creation) only a del method available thus restricting interference. This intuitive idea can be formalised
by

p Ref (El) p!test() links (b((p)) b((p)))

It is more convenient to record this as

p Ref (El) p!test() links (p!b p!b)

or even

p Ref (El) p!test() maintains p!b

and similarly

p Ref (El) p!del() confirms ¬ (p!b) (4)

Since there are only these two methods, any designer can rely on El’s contribution to the environment
satisfying

e confirms ¬ (p!b) (5)

Furthermore

p Ref (El) p!del() fin (¬ p!b) (6)

The map of Equation 3 is stored in a variable v of (an instance of) class Vector which provides via
its method lu a way of looking up the reference to El for an index. Since the references to El are to be
returned as results, they must be marked as shared. Thus

Vector class
vars max: ; v: m shared ref(El)
new(n:) method r: ref(Vector)
post r = self max = n i 2,… , max b((v(i))) true

lu(n:) method r: ref(El)
rd max, v
pre n max
return v(n)

18

Getting back to the task of re-specifying the methods of Primes on this representation, it is necessary
to relate the representation to the abstraction (i.e. sieve) in the normal way. The functionwhich retrieves
sieve of the specification is8

retr :Ref -set

retr(sr)() let m = rmap(v((sr)))() in i domm | m(i) true

rmap : (m Ref) (m)

rmap(rm)() i b((rm(i))) | i dom rm

Adequacy etc. can be proved.
The specification of the main part of Primes (its new method) is

Primes class
vars max: ; sr: shared ref(Vector)
new(n:) method r: ref(Primes)
post r = self max = n retr(sr)() = i is-prime(i) | i 2,… , max

test(n:) method r:
return (sr!lu(n))!test()

Completing the proof that this is a reification of Primes at the beginning of Section 5 is not difficult.
The interesting part of the design task is the use of parallelism which now follows.

Decomposition of Vector and Primes

Developing code to satisfy the specification of the newmethod of Vector is an easier job than for Primes.
Since this is the first exposure to the parallel statement of o the easier task is tackled first. The
post-condition of new (of Vector) can be satisfied if new El is invoked to set up each v(i). This could be
achieved by a while statement but here it is possible to use a parallel statement which creates independent
threads. Since each v(i) is independent, no interference can arise. Thus the code is

Vector class
vars max: ; v: m shared ref(El)
new(n:) method r: ref(Vector)
max (n)2

i 2,…,max
v(i) new El

return self
lu(n:) method r: ref(El)
pre n max
return v(n)

But the rule 1 can again be used to make the return come after the first assignment in new.
It is now time to turn to the interesting task of designing Primes so as to satisfy the specification

above. The new method has to create an instance of Vector (which sets the b in each El to true) and
then arrange that the b of each composite number is ‘deleted’ (set to false). This deletion could be

8In several places below, m(i) true is written for emphasis where m(i) would be equivalent.

19

implemented by nested loops and such a sequential approach would pose no interference problems.
Here the design decision is to use parallel instances of a Rem process: each Rem(i, sr) is responsible for
sieving out those composites of which i is a factor; sr gives access to the instance of Vector. Given that
sr is shared by the parallel instances of Rem the object graph is a DAG. It is easy to see from the types
of the variables containing references that no cycles can be present.

It is then, now essential to face the problem of interference. Fortunately the notation and rules
of [Jon91a] cover the needs here with little modification. The designer of Primesmight choose to make
a step in which the new method is designed and justified in terms of a specification for Rem (postponing
its implementation).

In order to obtain an understanding of the specification for the newmethod of Rem, the simplification
where it is assumed to run in the absence of interference is considered first. An initial stab at a post-
condition might be9

retr(sr)() retr(sr)() = mults(i)

But, even for isolated instances of Rem, this is wrong because (other than the first instance executed)
some composite c mults(i) – which the ith instance of Rem would have deleted – might be absent
from its initial state because it was removed by some earlier invocation of Rem (with an index which is
another factor of c). The correct post-condition for an isolated version of Rem is

retr(sr)() retr(sr)() = mults(i) retr(sr)() (7)

If, however, instances of Rem are run in parallel, interference can occur and it is possible that this can
delete elements which are not multiples of i in Equation 7. This suggests focusing on the actions of
Rem(i, sr) by writing a dynamic constraint

new Rem(i, sr) links (retr(sr)() retr(sr)() mults(i)) (8)

Use of -links of Section 6 makes it possible to conclude from Equation 8 that

i
new Rem(i, sr) links (retr(sr)() retr(sr)()

i
mults(i)) (9)

So far so good – but this is not enough for the designer of Primes since it is necessary to show that
enough elements are removed (Equation 9 is satisfied by skip).

Referring back to Equation 7, what is missing is a constraint that

new Rem(i, sr) e fin (retr(sr)() mults(i) =)

But the designer of Rem will be unable to construct an implementation which achieves this requirement
unless permission is given to rely on

e links (retr(sr)() retr(sr)())

So the contract includes

e links (retr(sr)() retr(sr)()) new Rem(i, sr) e fin (retr(sr)() mults(i) =) (10)
9Where mults: -set yields the set of multiples of i.

20

It is now appropriate to use -I of Section 6 to conclude

new Primes fin retr(sr)()
i
mults(i) =

So the class Primes (with annotations) is

Primes class
vars max: ; sr: shared ref(Vector)
new(n:) method r: ref(Primes)
max n
sr new Vector(max)

let m = rmap(v((sr))() in rngm = true

i 2,…, max
new Rem(i, sr)

let m = rmap(v((sr))() in i 2,… , max m(i) is-prime(i)
return self

test(n:) method r:
return (sr!lu(n))!test()

Decomposition of Rem

The remaining task is to develop code which satisfies the requirements on Rem (cf. Equations 9 and 10).
It follows by -links from Equation 4 that

m 2,…, max/i
(sr!lu(i m))!del() links (retr(sr)() retr(sr)() mults(i)) (11)

from which Equation 8 is a consequence. The post-condition in Equation 10 requires -I again so Rem
satisfies the annotations shown in the following.

Rem class
new(i: , sr: ref) method

m 2,…, max/i
(sr!lu(i m))!del()

let m = rmap(v((sr))() in c mults(i) m(c) false
return

Final code transformation

Finally, El can be transformed to

21

El class
vars b: true
test() method r:
rd b
return b

del() method
return
b false

8 Discussion

Clearly there is much more work to be done. Apart from considering other examples, the major activity
is to complete the appendix which provides a semantics for o . This will be the basis on which
the proof obligations are to be justified. Examples of liveness proofs have been undertaken but need
polishing. Influences on choice of logical operators include UNITY [CM88] (and Misra’s more recent
work), as well as Lamport’s TLA [Lam90, Lam91] (it might be worth defining the operators of Section 6
on top of TLA.

Acknowledgements
The author is grateful to Mario Wolczko, Carlos Camaroa, Trevor Hopkins, John Sargeant, Michael
Fisher and John Gurd for stimulating discussions on topics related to the implementation of object-
based languages and machine architectures and to Robin Milner, David Walker, Kohei Honda, Akinora
Yonezawa, Ole-Johan Dahl, Ketil Stølen and Manfred Broy for detailed technical discussions. The
incentive provided by the discussions with the ‘Object-Z’ group at the University of Queensland is also
remembered. Ketil Stølen prompted the use of predicates like is-linked-list during an enjoyable visit
to Munich. Anders Ravn made useful comments on a draft of this paper and Kohei Honda provided
a detailed criticism of both content and presentation style. Feedback from the 1992 meeting of IFIP
WG 2.3 was stimulating as were the questions on a trip to NWPC-4 in Bergen and at a seminar in Oslo.
The support of a Senior Fellowship from the SERC is gratefully acknowledged.

References
[AdB90] P. America and F. de Boer. A proof system for process creation. In [BJ90], pages 303–332,

1990.

[Ame86] Pierre America. A proof theory for a sequential version of POOL. Technical Report
0188, Philips Research Laboratories, Philips Research Laboratories, Nederlandse Philips
Bedrijven, B.V., September 1986.

[Ame89] Pierre America. Issues in the design of a parallel object-oriented language. Formal Aspects
of Computing, 1(4), 1989.

[Ame91a] P. America, editor. ECOOP’91, volume 512 of Lecture Notes in Computer Science.
Springer-Verlag, 1991.

[Ame91b] P. America. Formal techniques for parallel object-oriented languages. In [BG91], pages
1–17, 1991.

22

[AR89] Pierre America and Jan Rutten. A Parallel Object-Oriented Language: Design and Se-
mantic Foundations. PhD thesis, Free University of Amsterdam, 1989.

[AR92] Pierre America and Jan Rutten. A layered semantics for a parallel object-oriented language.
Formal Aspects of Computing, 4(4):376–408, 1992.

[Bae90] J. C. M. Baeten, editor. Applications of Process Algebra. Cambridge University Press,
1990.

[BF91] J. A. Bergstra and L. M. G. Feijs, editors. Algebraic Methods II: Theory Tools and Ap-
plications, volume 490 of Lecture Notes in Computer Science. Springer-Verlag, 1991.

[BG91] J. C. M. Baeten and J. F. Groote, editors. CONCUR’91 – Proceedings of the 2nd Inter-
national Conference on Concurrency Theory, volume 527 of Lecture Notes in Computer
Science. Springer-Verlag, 1991.

[BJ90] M. Broy and C. B. Jones, editors. Programming Concepts and Methods. North-Holland,
1990.

[BJM88] R. Bloomfield, R. B. Jones, and L. S. Marshall, editors. VDM’88: VDM – The Way Ahead,
volume 328 of Lecture Notes in Computer Science. Springer-Verlag, 1988.

[BK84] H. Barringer and R. Kuiper. Hierachical development of concurrent systems in a tem-
poral logic framework. In Proceedings of NSF/SERC Seminar on Concurrency, CMU,
Pittsburgh, 1984.

[BKP84] H. Barringer, R. Kuiper, andA. Pnueli. Now you can compose temporal logic specification.
In Proceedings of 16th ACM STOC, Washington, May 1984.

[BM88] J. Bruijning and C.A. Middelburg. Esprit project 1283: VIP VDM extensions: Final
report. Technical Report 2.0, PTT Research, Neher Laboratories, The Netherlands, 1988.

[Bro89] Manfred Broy. On bounded buffers: Modularity, robustness, and reliability in reactive
systems. Technical Report MIP-8920, Universitat Passau, Fakultat fur mathematik und
Informatik, June 1989.

[BSI92] BSI. VDM specification language protostandard. Technical Report N-231, BSI IST/5/19,
1992.

[CLW79] K. M. Chung, F. Luccio, and C. K. Wong. A new permutation algorithm for bubble
memories. Technical Report RC 7633, IBM Research Division, 1979.

[CM88] K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,
1988.

[Daw91] J. Dawes. The VDM-SL Reference Guide. Pitman, 1991.

[dB91] Frank S. de Boer. Reasoning about Dynamically Evolving Process Structure. PhD thesis,
Free University of Amsterdam, 1991.

[Ded89] Frank Dederichs. Zur strukturierung von spezifikationen verteilter systeme, March 1989.

23

[dR85] W. P. de Roever. The quest for compositionality: A survey of assertion-based proof sys-
tems for concurrent programs: Part I: Concurrency based on shared variables. In E. J.
Neuhold and G. Chroust, editors, Formal Models in Programming. North-Holland, 1985.

[Dür92] E. H. H. Dürr. Syntactic description of the VDM++ language. Technical report, Rijksuni-
veriteit Utrecht, 1992.

[FP78] N. Francez and A. Pnueli. A proof method for cyclic programs. Acta Informatica, 9:133–
157, 1978.

[GH93] J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal Specification.
Springer-Verlag, 1993.

[GHW85] J. V. Guttag, J. J. Horning, and J. M. Wing. Larch in five easy pieces. Technical Report 5,
DEC, SRC, July 1985.

[GR89] David Grosvenor and Andy Robinson. An evaluation of rely-guarantee, March 1989.
Submitted to Formal Aspects of Computer Science.

[HHJ+87] C. A. R. Hoare, I. J. Hayes, He Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders,
I. H. Sørensen, J. M. Spivey, and B. A. Sufrin. The laws of programming. Communications
of the ACM, 30(8):672–687,August 1987. see Corrigenda in Communications of the ACM,
30(9): 770.

[HT91a] K. Honda and M. Tokoro. An object calculus for asynchronous communication. In
[Ame91a], pages 133–147, 1991.

[HT91b] K. Honda and M. Tokoro. A small calculus for concurrent objects. ACM, OOPS Messen-
ger, 2(2):50–54, 1991.

[IM91] T. Ito and A. R. Meyer, editors. TACS’91 – Proceedings of the International Conference
on Theoretical Aspects of Computer Science, Sendai, Japan, volume 526 of Lecture Notes
in Computer Science. Springer-Verlag, 1991.

[JJLM91] C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural: A Formal Development
Support System. Springer-Verlag, 1991.

[Jon81] C. B. Jones. Development Methods for Computer Programs including a Notion of Inter-
ference. PhD thesis, Oxford University, June 1981. Printed as: Programming Research
Group Technical Monograph 25.

[Jon83a] C. B. Jones. Specification and design of (parallel) programs. In Proceedings of IFIP’83,
pages 321–332. North-Holland, 1983.

[Jon83b] C. B. Jones. Tentative steps toward a development method for interfering programs. ACM
Transactions on Programming Languages and Systems, 5(4):596–619, 1983.

[Jon90] C. B. Jones. Systematic Software Development using VDM. Prentice Hall International,
second edition, 1990.

[Jon91a] C. B. Jones. Interference resumed. In P. Bailes, editor, Engineering Safe Software, pages
31–56. Australian Computer Society, 1991.

24

[Jon91b] C. B. Jones. Interference revisited. In J. E. Nicholls, editor, Z User Workshop, pages
58–73. Springer-Verlag, 1991.

[JPZ91] W. Janssen, M. Poel, and J. Zwiers. Action systems and action refinement in the develop-
ment of parallel systems. In [BG91], pages 298–316, 1991.

[KMMN91] B. B. Kristensen, O. L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object oriented
programming in the Beta programming language. Technical report, University of Oslo
and others, September 1991.

[Lam90] L. Lamport. A temporal logic of actions. Technical Report 57, Digital Equipment Cor-
poration, Systems Research Center, 1990.

[Lam91] L. Lamport. The temporal logic of actions. Technical Report 79, Digital, SRC, 1991.

[Lan66] P. J. Landin. The next 700 programming languages. Communications of the ACM, 9:157–
166, 1966.

[Len82] C. Lengauer. A Methodology for Programming with Concurrency. PhD thesis, Computer
Systems Research Group, University of Toronto, 1982.

[Mid90] C.A. Middelburg. Syntax and Semantics of VVSL A Language for Structured VDM Spe-
cifications. PhD thesis, PTT Research, Department of Applied Computer Science, Septem-
ber 1990.

[Mil89] R. Milner. Functions as processes. In MSCS, 1989. (submitted to).

[Mil92] R. Milner. The polyadic -calculus: A tutorial. In Logic and Algebra of Specification.
Springer-Verlag, 1992.

[MPW91] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. In [BG91], pages
45–60, 1991.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information and
Computation, 100:1–77, 1992.

[Nel91] G. Nelson, editor. Systems Programming with Modula-3. Prentice Hall, 1991.

[OA91] E.-R. Olderog andK. R. Apt. Using transformations to verify parallel programs. In [BF91],
pages 55–82, 1991.

[OG76] S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta
Informatica, 6:319–340, 1976.

[Owi75] S. Owicki. Axiomatic Proof Techniques for Parallel Programs. PhD thesis, Department
of Computer Science, Cornell University, 1975. 75-251.

[PT91] S. Prehn and W. J. Toetenel, editors. VDM’91 – Formal Software Development Meth-
ods. Proceedings of the 4th International Symposium of VDM Europe, Noordwijkerhout,
The Netherlands, October 1991. Vol.1: Conference Contributions, volume 551 of Lecture
Notes in Computer Science. Springer-Verlag, 1991.

25

[RH86] A.W. Roscoe and C.A.R. Hoare. Laws of occam programming. Monograph PRG-53,
Oxford University Computing Laboratory, Programming Research Group, February 1986.

[Sar92] J. Sargeant. UFO – united functions and objects draft language description. Technical
Report UMCS-92-4-3, Manchester University, 1992.

[Sta85] Eugene W Stark. A proof technique for rely/guarantee properties, August 1985.

[Sta88] Eugene W Stark. Proving entailment between conceptual state specifications. Theoretical
Computer Science, 56:135–154, 1988.

[Sti86] C. Stirling. A compositional reformulation of Owicki-Gries’ partial correctness logic for
a concurrent while language. In ICALP’86. Springer-Verlag, 1986. LNCS 226.

[Sti88] C. Stirling. A generalisation of Owicki-Gries’s Hoare logic for a concurrent while lan-
guage. TCS, 58:347–359, 1988.

[Stø90] K. Stølen. Development of Parallel Programs on Shared Data-Structures. PhD thesis,
Manchester University, 1990. available as UMCS-91-1-1.

[Stø91a] K. Stølen. A Method for the Development of Totally Correct Shared-State Parallel Pro-
grams. In [BG91], pages 510–525, 1991.

[Stø91b] K. Stølen. An Attempt to Reason About Shared-State Concurrency in the Style of VDM.
In [PT91], pages 324–342, 1991.

[SW91] J. Sa and B. C. Warboys. Specifying concurrent object-based systems using combined
specification notations. Technical Report UMCS-91-7-2, Manchester University, 1991.

[Vaa90] F. W. Vaandrager. Process algebra semantics of POOL. In [Bae90], pages 173–236. 1990.

[Wal91] D. Walker. -Calculus semantics of object-oriented programming languages. In [IM91],
pages 532–547, 1991.

[Wal93] D. Walker. Objects in the -calculus. Information and Computation, 1993. (to appear).

[WD88] J. C. P. Woodcock and B. Dickinson. Using VDM with rely and guarantee-conditions:
Experiences of a real project. In [BJM88], pages 434–458, 1988.

[Wol88] Mario I. Wolczko. Semantics of Object-Oriented Languages. PhD thesis, Department of
Computer Science, University of Manchester, January 1988.

[XH91] Qiwen Xu and Jifeng He. A theory of state-based parallel programming by refinement:
Part I. In J. Morris, editor, Proceedings of The Fourth BCS-FACS Refinement Workshop.
Springer-Verlag, 1991.

[Xu92] QiwenXu. A Theory of State-basedParallel Programming. PhD thesis, OxfordUniversity,
1992.

[Yon90] Akinori Yonezawa, editor. ABCL: An Object-Oriented Concurrent System. MIT Press,
1990.

[Zwi88] J. Zwiers. Compositionality, Concurrency and Partial Correctness: Proof theories for
networks of processes, and their connections. PhD thesis, Technical University Eindhoven,
1988. available as LNCS 321, Springer-Verlag.

26

A o

A.1 Relationship of o to POOL

This section comments on the differences between o and the language which inspired its creation.
A useful overview of the work on POOL is [Ame89]. Pierre America and Jan Rutten produced a
combined doctoral thesis [AR89] which contains a collection of papers (some published elsewhere) on
the formal aspects of the POOL project including their work on (metric space methods of) denotational
semantics. A proof theory for a sequential version of POOL is given in [Ame86], while [AdB90]
addresses proofs about process creation in a language called P which is more like CSP or CCS in the
way that communication is a single event without any way to return a value. A proof method for the full
rendezvousmechanism of POOL is given in [dB91]: but this multi-level approach is not compositional
in a useful sense.

The main changes from POOL (see [Ame89, Ame91b]) are:

1. In o , methods do not have a body (which, in POOL, is a statement which says – for instances
of the class – when a rendezvous can occur as well as executing autonomous code between method
invocations); the examples here were longer with a body and it rarely did anything interesting;
one can simulate the effect of this body by code in methods and switches etc.

2. The new message to a class can be defined by an explicit method in o .

3. Methods in o which do not return a value are distinguished from those which do.

4. The yield statement is new in o .10

5. The Parallel statement is also new but is an obvious extension.

6. References in o are typed.

7. POOL has a local call; this could easily be added to o .

8. Clearly, o needs some way of controlling conditional ‘firing’ of methods.

The development method presented here is not like any in the POOL literature. The approach illustrated
in the current paper is the way that developments can first employ normal sequential reasoning based
on pre-/post-conditions and then use transformations to admit concurrency (similar ideas are present in
the works of Lengauer [Len82], Zwiers [JPZ91] and Xu/He [XH91, Xu92]; equivalence laws are given
in [HHJ+87, RH86]; see [OA91]).

Some open issues in o are:

1. Methods could be divided into those which have a side-effect and those which are purely func-
tional – this is done in UFO [Sar92].

2. It is not clear whether it would be worth distinguishing mutable values from what are con-
stants in other languages – this affects the need for interference assertions (cf. the infamous
ordered-collection example).

10I suspect it would not be liked by the POOL authors who would deprecate such a form of ‘future communication’ – but
compare Section 3 with [Ame89].

27

3. So far, o has not used the (ST) trick of defining operators (e.g. +,¬) as methods; since there
are no ‘block expressions’ (yet?), the option to do the same for while does not exist.

4. Block statements and exceptions might be added (exceptions could be in the style of VDM’s exit).

5. There is some case for adding constant (e.g. numeric) channel names (cf. AppendixAC).

A.2 Abstract syntax

System = Id m Cdef

Cdef :: ivars : Id m Type
mm : Id m Mdef

Type = LOCALREF | SHAREDREF | BOOL | INT

Mdef :: r : [Type]
pl : (Id × Type)
tvars : Id m Type
b : Stmt

Stmt = Mref | Assign | Parallel | Compound | If | While | SKIP | Return | Yield

Assign :: lhs : Id
rhs : Expr

Parallel :: m : Index m Stmt

Compound :: sl : Stmt

If :: b : Expr
th : Stmt
el : Stmt

While :: b : Expr
s : Stmt

Return :: r : [Expr]

Yield :: r : Expr

Expr = New | Mref | NIL | SELF | Compare | Id | |

New :: cn : Id
al : Expr

Compare :: e1 : Expr
e2 : Expr

Mref :: ob : Expr
mn : Id
al : Expr

28

B Using constant references

This appendix indicates how constants (in this case natural numbers) could be used as channel names:
writing ri for i .

Primes class
vars max:
new(n:) method r: ref(Primes)
max n

i 2,…,max
new El(i)

i 2,…, max
Rem(i)

return self
test(n:) method r:
return n!test()

Rem: class
new(i:) method

m 2,…, max/i
(ri m)!del();

return

El class
vars b:
new(i) method r: ref
b true
return ri

test() method r:
return b

del() method
return
b false

29

C Semantics

The body of this paper uses object-based notation as a way of recording design decisions; it is certainly
not the intention to design a new programming language. It is however still necessary to fix its semantics
in much the same way as one would for a programming language since the proof obligations which are
proposed for the development method must be justified against some semantic base. My own earlier
work on operational and denotational semantics naturally led me to attempt a model-oriented semantics
(for alternatives see [Wol88, AR89, AR92, Wal93]) and, in fact, a semantics based on resumptions
fits some aspects of parallel object-based languages quite well. But there are serious difficulties which
appear to arise from not being able to capitalise on the limitationson interference: one ends up describing
a detailed level of granularity and then proving that a coarser notion of atomic step would give the same
overall result. In contrast, it is possible to map o to Milner’s -calculus [Mil92].

C.1 The -calculus

This section pins down the version of the polyadic -calculus used below; the main source is [Mil92].

Syntax

Processes (typical elements P, Q)

P : : = N | P | Q | !P | (x)P

Normal processes (typical elements M,N)11

N : : = .P | 0 | M+N

Prefixes (typical element)12

: : = x(ỹ) | xỹ

Names (typical elements x, y)

Abbreviations

Trailing stop processes are omitted, so .0 is written .
Multiple new names are combined, so (x)(y) is written (xy).

11Unlike [Wal93, Mil89], (binary) sums are used; the summands are always prefixed.
12In [Mil92] abstractions and concretions are identified as separate phrases. Although the symmetry is pleasing, separating

concretions appears to achieve little for the purposes here; the question of abstractions is more subtle: for now, the object-
oriented position is taken that everything is located by name – this would certainly change if a higher-order calculus were
used.

30

Structural equivalence

Assume functions which yield the free (fn) and bound (bn) names of processes.
Structural equivalence laws include the following13 (Alpha-convertible terms are taken to be struc-

turally equivalent).

M+ 0 M
M+N N +M

M1 + (M2 +M3) (M1 +M2)+M3

M+M M
P | 0 P
P | Q Q | P

P | (Q | R) (P | Q) | R
!P P | !P

(x)0 0
(x)(y)P (y)(x)P
(x)(P | Q) P | (x)Q if x fn(P)
(x)y(z̃).P y(z̃).(x)P where x y, x z̃
(x)yz̃.P yz̃.(x)P where x y, x z̃
(x) .P 0 if is x(ỹ) or xỹ

Reduction

COMM
(+ .xỹP) | (x(z̃).Q+) P | Q ỹ/z̃

PAR
P P

P | Q P | Q

RES
P P

(x)P (x)P

STRUCT
Q P P P P Q

Q Q

Notice that there are no reductions under prefix (or replication).

C.2 Representing values

Note14
13The first three rules for + (|) can be summarized by saying that M/+ /0 (P/ | /0) are symmetric monoids.
14One might prefer to mirror the OOL idea of any value being an object; strictly, there is a problem here because the
-calculus allows only a finite number of instances; how would one show that – in any program – only a finite number of
integers were required?

31

Booleans

true b b(tf).t

false b b(tf).f

So if vl then P else Q can be represented as

(tf)ltf.(t().P+ f ().Q)

Then

Copy(b, c) (tf)btf.(t(). true c + f (). false c)

And(b, c, d) (tf)btf.(t().Copy(c, d)+ f (). false d)

Natural numbers

0 l l(zs).z

succ(n) l (l)(l(zs).sl | n l)

So, for example 1 is

(l)(l(zs).sl | l (zs).z)

Then15

Copy(l, m) (zs)lzs.(z(). 0 m + s(l).(m)(m(zs).sm | Copy(l , m)))

Add(k, l, m) (zs)kzs.(z().Copy(l, m)+ s(k).(m)(m(zs).sm | Add(k , l, m)))

Equal(l,m, b) (zs)lzs.(z().EqualZ(m, b)+ s(l).EqualNZ(l , m, b))

EqualZ(m, b) (zs)mzs.(z(). true b + s(m). false b)

EqualNZ(l , m, b) (zs)mzs.(z(). false b + s(m).Equal(l , m, b))

C.3 Mapping

This section develops a mapping from o to the version of the polyadic -calculus given above. In
the spirit of Landin [Lan66] – -calculus equivalents of increasingly complex programs are shown.

15It is – just – worth recording the SORTs here: with N (Z, S), Z (), S (N) , then (including primed versions)
k, l, m: N, (for n) n: N, z: Z, s: S.

32

Classes

Consider the class definition

C class
m1(x) method return
m2() method r: ref return self

The semantics must show that multiple instances ofC can be created: the creation of instances of classes
is modelled by replication with a private name (u) being passed out for each instance. (It is assumed
that a static association will be made of names like c to class names like C.)

! (u)cu.()(| Gu) (12)

Then the creation of new instances of C (new C) can be modelled by

c(u). u(…)

A ‘baton’ () is used to make sure that only one method (within any particular instance) is active at
any one time.16 17

So, in outline

Gu
def= ! (). .(s1(). . + s2(). .)

The selection of method is handled by passing out two names (s 1s2) so that the invoking process can
use the appropriate one.

Gu
def= ! ().(s1s2)us1s2.(s1(f1x).f1. + s2(f2).f2u.) (13)

The method u!m1(e) is invoked by

u(s1s2).(f1)s1f1e.f1()

and u!m2() is invoked by

u(s1s2).(f2)s2f2.f2(u)

Instance variables

Consider the class with methods which set (s) and access (a) an instance variable (v) where variables
contain names.

C class
vars v: nil
s(x) method v x; return
a() method return v

16This is the coding for recursion given in [Mil92].
17This ‘mutex’ behaviour for methods could be relaxed as in VDM++ [Dür92]: I might even follow their use of Deontic

logic to fix the activation possibilities.

33

This can be modelled as in Equation 12 with an additional process (Mv and baton v) for each instance
variable.

! (u)(cu.(vvrvw)(vnil | Mv | | Gu)) (14)

The instance variable itself is like a class for which only one instance is required; this degenerate class
has methods for read (mr) and write (mw) whose interface is simple because they can only be invoked
from one place this is modelled by

Mv
def= ! v(y).(vry. vy+ vw(z). vz) (15)

The definition of Gu is:18

Gu
def= ! ().(sssa)usssa.(ss(fsx).vwx.fs. + sa(fa).vr(y).fay.) (16)

Code after return statement

Were the s method above written

C class
…
s(x) method return ; v x
…

then the vwx.fs is commutated in Equation 16 to give

Gu
def= ! ().(sssa)usssa.(ss(fsx).fs.vwx. +) (17)

Of course, under what circumstances this is equivalent to Equation 16 (or even what this means) is the
interesting question (see Section C.4).

Yield statement

The yield construct is handled by passing on the name (say, f) to which the method containing the
construct was to return its result. Thus while

C class
vars l: private ref(C)
f (…) method return l!f ()

is modelled by (cf. Equation 16)

! ().(sf)(usf .(sf (ff x). vr(u).u (sf).(ff)(sf ff x.ff (r).ff r.)))

substituting yield for return gives

! ().(sf)(usf .(sf (ff x). vr(u).u (sf).sf ff x.))

18Here it is worth recording the SORTs: with C (U), U (SS, SA), SS (FS, VAL), SA (FA), FS (), FA
(VAL), A (), AVAL (VAL) < VR (VAL), VW (VAL) then c: C, u: U, ss: SS, sa: SA, fs: FS, fa: FA, : A, V: AVAL,
vr: VR, vw: VW .

34

Statement composition

So far, order has been modelled by prefixing (see Equation 13); an alternative is to have a link on which
a completion signal is sent and to use composition. So S 1; S2 signals termination on l by

(l)(S1(l) | l ().S2(l))

and skip statements are modelled by

l.0

Conditional statements

A conditional statement if E then S1 else S2 can be modelled by

(l l1l2)(BoolEval(l , l1, l2) | E(l) | (l1.S1(l)+ l2.S2(l))) (18)

BoolEval(l , l1, l2)
def= l (b).btf | (t.l1 + f.l2) (19)

While statements

A while statement while E do S od can be modelled by (using the baton trick)

(w)(w | ! w().W(l)) (20)

W(l) def= (l l1l2)(BoolEval(l , l1, l2) | E(l) | (l1.S(w)+ l2.l)) (21)

There is here a radical alternative: if block statements were added to o , the ST-80 trick of
programming out a while statement could obviate the need for this statement as a primitive. (This
probably amounts to doing in o what is done here in the -calculus.)

Parallel statement

Just maps to composition!

C.4 Proofs

Basic results

To warm up, prove something like i + j m is observationally equivalent to

(kl)(Add(k, l, m) | i k | j l)

35

Transformation 1

Consider the need to justify repositioning the return statement as in Section C.3 (i.e. showing that no
o system can detect which version of C is being used). The composition of the invocation with the
denotation of the class is (where the version of the Gu process corresponding to Equation 16 is used;
also we unfold – once each – Equations 15 and 16)

u(sssa).(fs)(ssfsl.fs()). u(sssa).(fa)(safa.fa(r)) |
(vvrvw)((sssa)(usssa.(ss(fsx).vwx.fs. + sa(fa).vr(y).fay.)) |

! ().(sssa)(usssa.(ss(fsx).vwx.fs. + sa(fa).vr(y).fay.)) |

vrnil. vnil+ vw(z). vz |
! v(y).(vry. vy+ vw(z). vz))

(Where the elided expressions from the invocation contain no reference to u but other terms in a com-
position could refer to u.) The set of free names of this whole expression is u ; intuitively it is easy to
see that no further positive occurrence of u is available until after triggers a further unfolding; there-
fore the permutation preserves equivalence. More formally, the first two elements of the composition
reduce to

(fs).(fs()). u(sssa).(fa)(safa.fa(r)) |
(vvrvw)(sssa)(vwl.fs. |)

From this it should be clear that vwl.fs. can be commuted to fs.vwl.
But handling non-trivial values will mess up the locality of names – unless values are copied –

remember distinguishing immutable values is a problem in OOLs so the difficulty is not the fault of the
-calculus.

Transformation 2

Consider the change from return to yield: following a similar pattern to above

u(sf).(ff)(sf ff x.ff (r)). r |

(vvrvw)((sf)(usf .(sf (ff x). vr(u).u (sf).(ff)(sf ff x.ff (r).ff r.)) |

! ().(sf)(usf .(sf (ff x). vr(u).u (sf).(ff)(sf ff x.ff (r).ff r.)) |

(vru . u u + vw(z). vz) |
! v(y).(vry. vy+ vw(z). vz)))) |

(vvrvw)((sf)(u sf .(sf (ff x).ff … .)) |

! ().((sf)(u sf .(sf (ff x).ff … .))))

the composition reduces to

(ff).(ff (r)). r |

(vvrvw)(u (sf).(ff)(sf ff x.ff (r).ff r.) |) |

(vvrvw)((sf)(u sf .(sf (ff x).ff … .)) |)

36

then changing the second line to

u (sf).sf ff x.

is OK!

Logic

Need to prove that logical expressions make sense. For now at least, look at idea of adding (models of)
methods which expose values.

C.5 Related work

Milner already discusses interesting examples in [MPW92]19 While this author was working on an
early version of a mapping to the polyadic -calculus, [Wal91] was sent to him: this mapping from
POOL to the monadic version of the calculus [MPW92, MPW91] had a stimulating effect on the work
and resulted in a number of changes. Similarly [Wal93] (which inter alia maps POOL to the polyadic
calculus) provided useful ideas. Other researchers who have provided (process algebra based) semantics
of object-oriented languages include Honda and Tokoro ([HT91b] is based on [HT91a]) and [Vaa90]
which employs ACP.

19See [MPW92, Mil92] for historical notes on name passing calculi.

37

