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Abstract

A Theorem Proving Assistant is taken to be a computer program which can be used
interactively to keep track of, and automate some steps of, attempts to prove theorems.
This paper describes an experiment in the design of user interfaces to such programs. The
approach is introduced using a formal description from which the program has been imple-
mented in Smalltalk-80.
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1 Introduction

The authors of this paper are involved in a major collaborative Alvey/SERC project to
build an “Integrated Project Support Environment” (IPSE). The aims of the project place
it between the second and third generation objectives of the Alvey Software Engineering
Strategy (see [20]). For this reason the project was christened “IPSE 2.5”. One major
innovative aspect of the project is the planned support for formal methods. (For a wider
view of the project see [5], [19], [18].)

Work on the project is divided into five themes. That concerned with formal reasoning is
being conducted by researchers at Manchester University and SERC’s Rutherford Appleton
Laboratory. The aim is to create a “FRIPSE” (i.e. Formal Reasoning IPSE) which is
generic in that different logics and/or proof styles are supported. Such a FRIPSE would,
for example, help with the construction of formal proofs to discharge the sort of proof
obligations which arise in the development of programs using VDM (cf. [6]).

Early in the FRIPSE sub-project a list of basic ideas was recorded in a, so-called, concept
paper; this document [7] is now somewhat dated but it does provide useful background
information. The authors had experimented with several different Theorem Provers before
writing [7] but a more detailed survey has also been undertaken subsequently: the published
version of this is available as [11]. Nearly all of the systems surveyed had been created with
far more emphasis on underlying theory than on user interface issues: many of them use the
“glass teletype” as the mode of interaction. Perhaps as a consequence of this, most users
find such systems of little help when trying to discover proofs. The typical approach is for
the user to carefully plan a proof before trying to persuade the system to accept it.

The overriding objective of the FRIPSE project is to design a Theorem Proving Assistant
which provides enough support for the activity in hand that a user would prefer to use the
system rather than pencil and paper. Some computer scientists doubt the wisdom of this
objective; many more question its feasibility. It is, therefore, worth trying to give some
indication of why the FRIPSE group believe the goal to be worthy of pursuit. Nearly
all of the proof obligations which arise in, for instance, the examples discussed in [6] are
provable in rather simple steps. They can be characterized as being rather shallow results:
their purpose is not to extend mathematics but rather to provide a cross-check between
a specification and its putative design. Experience in constructing large numbers of such
proofs by hand suggests that a system providing powerful symbol manipulation facilities
could help remove the tedious aspects of the process.

The aim of FRIPSE is to build a system which leaves the user free to provide the insight
which steers the proof in as natural a way as possible. The next section explores some of
the user interface questions prior to the specification being developed in Section 3.

Before embarking on this, it is necessary to clarify the (rather limited) objectives of the
current experiment. Several members of the FRIPSE team were involved in earlier projects
to write systems which supported formal methods. In particular, the “Mule” project (cf. (2],
[17), [3], [4]) built a “Structure Editor” which went significantly beyond the then current
“Syntax Directed Editors”. This work helped us identify the following objectives for the
experiment described in this paper:

1. we believe that formal specifications help fix many aspects of such projects — this belief
should be tested;

2. in particular, the underlying data structures of the implementation are crucial — could
these be fixed ahead of implementation;

3. it was appreciated that we do not yet know how to (formally) specify good properties
of user interfaces (and develop designs which provably fulfil them) — to what extent do
these underlying data structures dictate what is referred to below as “deep UI” and
leave the “surface UI” open to experimentation;

4. specifically, we wanted to find ways of letting a user focus on the essential details of
one part of a proof at a time;

5. one possible way of limiting the length of proofs is to use derived rules — we wanted to
experiment with their efficacy;



6. it was not an objective to handle any specific logic — the experiment could be under-
taken with something as simple as propositional calculus.

It was therefore decided that some experimentation was necessary in the User Interface
area. The internals of the system were described in VDM specification style (see [14])
before any code was written. Furthermore, the implementation language chosen to provide
the underlying data structures was Smalltalk-80. A lack of familiarity with this language
provided another argument for an experimental system.

In order to simplify the task, a trivial logic was chosen as the basis. Our experimen-
tal system (known as “Muffin”) supports proofs in Propositional Calculus only—we could
clearly have written a decision procedure but the experiment in interactive use has been
revealing even in such a simple problem domain. Actually, Muffin has to be seeded with
a set of axioms and we have used the Logic of Partial Functions of [1] as well as classical
Propositional Logic. In fact, a range of logics could be supported. It would be interesting
to characterize exactly what assumptions on this class of logics have been made in the de-
sign of Muffin: this task is left for the work on the (full) FRIPSE (cf. [10]). Furthermore,
in the final system, it will be necessary to construct a proof that a specification like that
given in Appendix A has operations which are consistent with a formal notion of proof: this
has not been attempted for Muffin. This limitation made it possible to postpone questions
about, for example, bound variables and substitution. None of the limitations is such that
it invalidates the use of the interaction style with other logics. In fact, it is hoped that the
proof style will be readily extendible to other domains.

2 Basic Issues

A distinction can be made between “surface UI” questions, which concern the appearance
of the screen of the workstation, and “deep UI” issues, which govern the sort of interactions
which are possible. These two points are first enlarged, then a final section discusses a
particular problem with the representation of large formal objects.

2.1 Surface Ul

The evolution of workstation technology has brought to the user both significant compu-
tation speed and screens larger than the “24 by 80 glass teletype”. One of the reasons for
believing that “proof at the workstation” might be possible is the change to the surface Ul
brought about by the workstations now available.

Ideally, a screen as large as the desk on which one might do proofs by hand should be
available. Apart from specifications and designs which give rise to a proof obligation, one
might want to look both at results from the theories of data types in use and at derived
inference rules in the logic itself. To some extent, multi-windowing systems, with their
ability to overlay and collapse windows to icons, ameliorate the constraint to “A3 screens”,
and the speed of the processor means that even complex rearrangements of screen layout
can be carried out extremely rapidly. Unfortunately, the need to rearrange the screen can
be distracting to a user, so the limitations are still annoying and the size of the screen is
still of concern.

Very early in the FRIPSE project it was realised that different users would want to be able
to project the information held in the system in different ways. It has subsequently become
clear that a single user might also wish to view the same information in different ways. That
the design of Muffin was based on an underlying abstract state was a great advantage here
as it meant that this facility could be provided simply by designing alternative “projection
functions”.

In [3] it was envisaged that a user would interact with a theorem proving assistant via
the natural deduction proof style used in [6], an example of which is shown in Figure 1.
Experimentation with other longer proofs has shown, however, that, for such proofs, the
amount of information presented to the user in this natural deduction style display is more
that can comfortably be assimilated. This prompted the design of an alternative projection
in Muffin (Muffin’s “prover” — see Section 3.2 for more details), which focuses on one “box”



of such a proof at a time and which attempts to reduce the information presented to the user
to essentials. The natural deduction style projection is also available, and it is sometimes
useful to look at both views side by side (though not one on top of the other!). Modification
of the proof can, however, only be made via the single box view (the prover).

and-elim-r h
and-elim=-l h

and=intro  h3 1

E1 A E2 v E1 A ES or-intro-r 3.2

and-intro h4 1

E1 A E2 v E1 A E3 or-intro-l 4.2

Infer
E1 A E2 WV E1T A E3 or-elim 3 2 4

Figure 1: Proof of and-or-dist

2.2 Deep Ul

A bad surface UI can mar a good design; it cannot redeem a poor one. The deep Ul
questions are the real concern of the Muffin experiment. Experience with many other, in
themselves excellent, theorem proving systems gives rise to a deep sense of frustration. One
has the feeling that, with a huge body of code embodying many clever algorithms, the user
is limited to a very restricted, pre-planned, menu of options: much of the functionality of
the system is hidden from the user. The ground rule of our Ul design has been to expose
the whole state of the system both to view and to modification.

The idea of projection functions is mentioned above. This must be extended to allow
the user to interact with the state through these projections, thus invoking changes to the
state. For example, in Section 3, either forward or backward proof steps are catered for,
and in a more powerful system, one would be able to unify two arbitrary expressions or to
instantiate any definition with chosen arguments. Of course, the alterations that can be
made to the state must be such that the logical soundness and consistency of the system,
achieved in LCF-like systems by careful use of the type structure of ML, is preserved.



2.3 Beyond Trees

It is almost axiomatic that (abstract) syntaxes of things like Ezpressions describe them as
«Trees”. It would be possible to extend this to cope with Proofs etc. but a difficulty arises
which makes it worth considering an alternative. In the specification developed in Section
3.1 and collected in Appendix A, references are introduced in a way which permits (acyclic)
graph-like structures to be created. This section motivates that development.

A first guess at the underlying state of Muffin might lead one to view Theorems and
Axioms as subsets of Problems. Thus the database might be:

Dby = set of Problemy

Problemy = hyp : set of Ezpy
con : Ezp
proofs : [set of Proofi]

Axioms would have nil proofs; unproven theorems would have empty sets; whilst proven
theorems would have one, or more, proofs in the set.

When attention is turned to Proofs it is clear that individual steps could be justified by appeal to other
Problems (be they axioms or proven theorems). This means that a series of Problems/ Proofs constitute
a graph-like structure which is more general than can be represented by a tree. This sort of “sharing”
is inevitable and it is normal in formal descriptions to model it by the use of some “reference” object.
(The archetypal example being Locations in the denotational semantics of imperative programming
languages.) Introducing ProblemRef one might define the proof database as:

Dby :: pm : map ProblemRef to Problemy
jm : map ProblemRef to (set of Proofy)

Problemy =2 hyp : set of Ezpy
con : Ezp;

Here, references to axioms are simply omitted from the domain of the justification map ym. The reader
should be able to picture how graph-like structures can be built; acyelicity would be defined by an
invariant. The next section shows how expressions can also be treated as graphs.

One other detail is worth mentioning. Some inference rules permit a sequent, rather than just an
expression, to be present in the hyp component of a Problem. This is handled by bringing in the notion
of a Subseguent to restrict the nesting to one level {other reasons for using Subsequents are given below).

3 Muffin
3.1 Muffin’s State

This section contains a description of the state underlying the actual Muffin system, though concrete
formulae are only given here for the abstract syntax of the state and for the abstract syntax and the
invariants on the basic objects comprising the state. The interested reader can find full details of the
formal specification of Muffin, including the invariant on the state as well as the operations for changing
the state, in Appendix A.

First, the full description of the Muffin state. The first four components are object stores for each of
the basic types of object in Muffin, that is, expressions, subsequents, problems and proofs. Their domains
are infinite sets of structureless tokens and are all disjoint. Next come name stores for each type of object.
The Proofmap associates problems with complete proofs, and some solved problems are designated as
rules of inference via the Rulemap. The Incomplete-proofmap associates problems with incomplete proofs.
As has been mentioned above, Muffin supports both forward and backward inferencing, which, in terms
of the state, means that an incomplete proof effectively consists of two parts, a forward proof and a
backward proof. Elements can be added either to the tail of the forward proof or to the head of the
backward proof, as explained in more detail later in this section. The remaining component of the state,
the Indezmap, therefore records the last element of the forward proof for each incomplete proof, that is
the point in the sequence at which new elements can be inserted.



Muffin :: es : Ezpstore
3s : Subseqstore
ps @ Problemstore
fs = Proofstore
en : ErpNames
sn : SubseqNames
pn : ProblemNames
fn : ProofNames
jm : Proofmap -~
rm : Rulemap X
im : Incomplete-proofmap
zm : Indexmap

where

inv-Muffin(mk-Muffin(es, s, ps, fs, en, sn, pn, fn, jm, rm, im, zm)) &
is-valid-subsegstore(ss, es) A
is-valid-problemstore(ps, 83, es) A
is-valid-proofstore(fs, ps, 53, es) A
is-valid-ezpnames(en, es) A
is-valid-subsegnames(sn, ss) A
is-valid-problemnames(pn, ps) A
is-valid-proofnames(fn, fs) A
is-valid-proofmap(jm, fs, ps, ss, es) A
is-valid-rulemap(rm, jm, fs) A
is-valid-incomplete-proofmap(im, jm, fs, ps, ss, es) A
is-valid-indezmap(zm, im, jm, fs, ps, 35, €s)

In the remainder of this section, each component of Muffin, together with the appropriate validity
conditions that it has to satisfy, will be dealt with in turn.

The fundamental entities in Muffin are ezpressions. These are either meta-variables (Atoms in the
specification) or are built up of some logical connective having other expressions for its operand(s). In
order to make the specification and the description clearer, a particular set of logical connectives has
been chosen and is built into Muffin, though the particular choice made is essentially unimportant to
the specification.

A particular expression may, of course, be a subexpression of many different expressions (though not
of itself!) and it is therefore appropriate to make use of the acyclic graphs described above and make the
arguments of expressions references to other expressions. The Ezpstore records the relationship between
expressions and their references. For ease of testing of equality on expressions, we make the Ezpstore
1-1; this means that any two expressions are the same if and only if their references are the same.

Other conditions are imposed on the Ezpstore for consistency. First, all subexpressions of any ex-
pression in the Ezpstore must also be in the Ezpstore (closedness), and second, the graphical structure
representing the Ezpstore must be acyclic (finiteness). This latter condition is equivalent to saying that
no expression can be a subexpression of itself. The full syntax for expressions is therefore given by:

Ezp = Not | And | Or | Impl | Equiv | Delta | Atom
Not :: not : Ezpref

And :: andl : Ezpref
andr : Ezpref

Or = orl : Ezpref
orr : Ezpref

Impl :: ant : Ezpref
con : Erpref

Equiv :: egql : Ezpref
eqr :_E:cpref



Delta :: del : Exzpref

Ezpstore = map Ezpref into Exzp

where
inv-Ezpstore(es) £ is-closed(es) A is-finite(es)

Note that Atom and Ezpref are (disjoint) infinite sets of structureless tokens.

‘Concrete examples of how expressions are stored in Muffin according to this syntax, as well as
examples of the other types of object in Muffin which are described in this section, can be found in
Section 3.3, where the data structures behind the problem {E1A(E2V E3)}F E1AE2V E1AE3, the
proof of which is shown in Figure 1, are explained.

In addition to the standard logical expressions, Muffin also contains the subsequent, written a ~ b .
This is introduced largely to avoid arbitrary nesting of turnstiles, as has already been mentioned above.
A subsequent has a left-hand side, which is a set of expressions, and a right-hand side, which is a single
expression. Again, references to the expressions rather than the expressions themselves are used for the
arguments of subsequents.

Expressions and subsequents, collectively referred to as nodes, form the building blocks for problems,
which represent many similar entities, such as azioms, (derived) rules of inference, lemmas, theorems
and conjectures, in Muffin. Problems have a set of hypotheses to the left of their turnstile, and a single
conclusion to the right. The arbitrary nesting of turnstiles is avoided by restricting the hypotheses to be
nodes and the conclusion to be an expression. In addition, a subsequent with an empty left-hand side can
be identified with the expression on its right-hand side. This gives rise to an invariant on subsequents:

Subseq == lhs : set of Expref
rhs : Ezpref

where

inv-Subseq(mk-Subseq(z,y)) & z#{}

Subsequents and problems are stored respectively in the Subsegstore and the Problemstore, with both
stores being taken to be 1-1 mappings as for the Ezpstore. The validity condition on the Subsegstore
states that any expression which forms part of some subsequent in the Subsegstore must be in the
Ezpstore, that on the Problemstore that any expression or subsequent forming part of some problem in
the Problemstore must be in, respectively, the Ezpstore or the Subsegstore.

Subsegqstore = map Subsegref into Subseg

Node = Ezpref | Subsegref

Problem :: hyp : set of Node
con : Expref

Problemstore = map Problemref into Problem

The Subsegrefs and the Problemrefs are both infinite sets of structureless tokens, assumed disjoint from
each other and from both Ezprefs and Atoms.

At this basic level, the notions of substitution and matching can also be introduced. Thus, one is
allowed to build an instance of, for example, some expression e by substituting expressions for any
meta-variables occurring in e. In the formal specification a map Atom to Ezpref represents such a
substitution. If the result of making some substitution m in an expression A yields the expression B
then the expression A is said to match the expression B. Alternatively, B is an instance of A, with the
particular instance being given by the substitution m. The notions of matching and substitution extend
trivially to both subsequents and problems.

Problems divide naturally into several different categories. They may be assumed true without proof
(corresponding to the axioms of the system), proved (corresponding to derived inference rules, lemmas
and theorems) or unproven (corresponding to conjectures). The first two categories together will be
referred to as solved problems, the third as unsolved problems. Some subset of the solved problems is
designated as the rules of inference of the system.



Given some existing set of solved problems, there are essentially two ways of creating a new solved
problem. First, one can simply build an instance of some existing rule of inference by replacing some or
all of the variables appearing in the statement of the rule with expressions. The new solved problem so
created then has a proof which is simply an instentiation, consisting of a reference to the problem which
is the statement of the rule together with a map recording the necessary variable substitution. Thus:

Instantiation :: of : Problemref
by : map Atom to Ezpref

where
inv-Instantiation(mk-Instantiation(o,m)) & m#{}

Note that the case in which the substitution map is the empty map is excluded — building an instance
of something with a null substitution does nothing.

The second way of creating new solved problems is by combining existing solved problems together in
some order as a composite proof. This is represented in Muffin simply as a sequence of solved problems:

Compostie-proof = seq of Problemref
Proofs as a whole are then just the union of Instantiations and Composite-proofs:
Proof = Instantiation | Composite-proof

For a composite proof c, the knowns of some problem p with respect to ¢ are the set of things deducible
from the hypotheses of p via the elements of ¢ taken in order. Thus, if ¢ is empty, the knowns of p are
the same as the hypotheses of p. Otherwise, the i + 1 th element v of ¢ contributes an expression or
a subsequent to the knowns as follows: if the hypotheses of v are all contained in the knowns collected
with the first i elements of ¢, then v contributes its conclusion to the knowns; if not, but if there is
some subsequent s in the Subsegstore whose right-hand side is the same as the conclusion of v and whose
left-hand side added to the hypotheses of p gives the hypotheses of v, then v contributes s to the knowns;
if neither of these two conditions is satisfied, » contributes nothing to the knowns. A composite proof ¢
is therefore a complete proof of a problem p if the knowns of p with respect to ¢ contains the conclusion
of p; otherwise ¢ is an incomplete proof of p.

The method by which the knowns of the problem p with respect to the composite proof ¢ are generated
also forms the basis for the full natural deduction style display of Figure 1. Taking the elements of the
proof ¢ in turn, if a particular element e adds an expression to the knowns, that element adds a line like
line 1 to the display, with the line showing the new known generated and the justification of the new
known. If the element e adds a subsequent to the knowns, this generates a from-infer box in the display,
the from line listing the elements of the left-hand side of the subsequent, the infer line the right-hand
side. The lines of the proof internal to that box or subproof are generated similarly by displaying the
proof of the problem e between the from and the infer lines.

Each proof is assigned a reference via the Proofstore, with the Proofrefs being yet another infinite
set of structureless tokens, disjoint from all the others:

Proofstore = map Proofref to Proof

where
inv-Proofstore(fs) £ Vp,q € domfs - fs(p) = fs(q) A ts-Instantiation(fs(p)) = p=g¢

The invariant states that each Instantiation is assigned a unique reference via the Proofstere. This
restriction turns out to be impractical for composite proofs in general, however — new complete proofs
are going to be built by editing existing incomplete proofs, so sometimes different references to the same
proof might be required (for example, it may not be clear to a user how exactly to proceed from the
current state of some proof in order to complete the proof, and he might wish to try several different
possibilities, thus necessitating duplicating the current state of the proof). In Muffin, this restriction is
in fact taken to the other extreme and mo composite proof is shared. The difficulties only really occur
in the case of incomplete proofs, however, so it would in fact be possible to extend the invariant here so
that all complete proofs were assigned unique references.

The validity condition on the Proofstore states simply that any component of any proof in the
Proofstore has to be in the Ezpstore, the Subsegstore or the Problemstore as appropriate.



Any of the objects introduced so far can be given a name, so that the user of Muffin can more readily
identify those objects of particular interest. The names are stored in a name store for each of the basic
types of object, though no two objects of the same type may have the same name, and the empty string
is not a valid name. It is possible, however, for objects of different types to have identical names. Thus:

EzpNames = map Siring into Ezpref
SubseqNames = map String into Subsegref
ProblemNames = map String into Problemref

ProofNames = map String into Proofref

Note that String here represents non-empty sequences of characters.

The validity constraints ensure that only existing objects, that is objects in the relevant object stores,
can be given a name.

In order to associate proofs with problems, the Proofmap and the Incomplete-proofmap are introduced.
The first of these associates problems with complete proofs, the second with incomplete proofs.

Proofmap = map Problemref to set of Proofref

Incomplete-proofmap = map Problemref to set of Proofref

where
inv-Incomplete-proofmap(im) & {} ¢ rngim AVE, m € domim - im(k)nim(m) £ {} = k=m

The first part of the invariant on the Incomplete-proofmap says that it doesn’t bother to record the fact
that a given problem has no incomplete proofs as this can be inferred from the absence of the problem
in question from the domain of the Incomplete-proofmap. The second part of the invariant occurs as
a result of the restriction that no composite proof is shared (note that only composite proofs can be
incomplete — instantiations are by definition always complete).

Those problems occurring in the domain of the Proofmap are the solved problems, those not, the
unsolved problems. The axioms of Muffin are made to conform to this definition by mapping them to
the empty set under the Proofmap. In addition, some of the solved problems are designated as the rules
of inference of the system, and these are given names via the Rulemap:

Rulemap = map String into Problemref

Again no two rules may have the same name, and the empty string is not a valid rule name.

The validity condition on the Rulemap states that all rules are solved problems, all axioms are rules,
and all Instantiations are instantiations of rules. The condition on the Proofmap 1s, however, somewhat
more complicated. First, all the solved problems must be in the Problemstore and all the complete
proofs in the Proofstore. Second, any proof attached to some problem via the Proofmap must not only
be a complete proof of that problem but may itself only contain solved problems. Thirdly, it must be
possible to associate exactly one of its complete proofs with each solved problem other than the axioms
in such a way that there are no circularities of reasoning amongst this set of associations, that is the
system must be logically sound. Note however, that circularities can exist due to a problem being
allowed to have multiple complete proofs. Thus, for instance, a user might prove result A from the basic
axioms, then prove B making use of A as a derived rule, then prove 4 again using B as a derived rule,
without destroying the logical soundness of the system. Finally, no two solved problems share a complete
composite proof.

The validity condition on the Incomplete-proofmap is built up similarly. First, any problem in its
domain must be in the Problemstore and any incomplete proof attached to that problem in the Proo fstore.
In fact, this condition is extended to state that the Proofstore contains only those proofs which are
attached to some problem via either the Proofmap or the Incomplete-proofmap. Here, however, the
proof must not be a complete proof of the problem, though it must still consist only of solved problems.
There should be no Instantiations occurring in any element in the range of the Incomplete-proofmap,
and no proof is both an incomplete proof of some problem and a complete proof of some other.

Incomplete proofs consist effectively of two parts, the forward proof and the backward proof, with
the proof as a whole being the concatenation of the backward proof onto the forward proof. When



attempting to convert an incomplete proof of some problem into a complete proof thercof, new elements
can be added either to the tail of the forward proof or to the head of the backward proof, corresponding
respectively to forward inferencing and backward inferencing. In order to be able to insert new elements
into a proof at the correct point, it is therefore necessary to record for each incomplete proof the position
in the sequence which marks the division between the forward and backward proofs. The last component
of Muffin, the Indezmap, does this by recording the index of the last element of the forward proof:

Indezmap = map Proofref to N

The elements of the forward proof give rise to all the knowns, with part of the validity condition on the
Indezmap being that each element of the forward proof should actually contribute to the knowns. Thus,
by adding a new element to the tail of the forward proof which satisfies one of the conditions for adding
to the knowns it is possible to increase the current knowns (forward inferencing).

The elements of the backward proof, on the other hand, provide a proof of the conclusion of the
relevant problem from some set of subgoals. Proving all these subgoals would be sufficient to complete
the proof. In this case, a new element can be added to the head of the backward proof if the conclusion of
that element is amongst the current subgoals. (This condition also forms part of the validity constraint.)
The conclusion of the element is then removed from the subgoals and all its hypotheses are added to get
the new subgoals, that is, one of the existing subgoals is itself reduced to subgoals. This is backward
inferencing.

Another part of the validity condition on the Indezmap states that the backward proof should contain
no element all of whose hypotheses are among the current knowns — such an element would correctly
contribute its conclusion to the knowns and should therefore be positioned at the tail of the forward proof.
After every forward inferencing step, therefore, any such elements in the backward proof must be removed
therefrom and transferred to the tail of the forward proof, then any spurious elements in what remains
of the backward proof must be discarded (this latter is necessary because the new forward element might
have added something to the knowns which had previously been reduced to subgoals by some backward
step). If the new knowns contains the conclusion of the problem, the new forward proof forms a complete
proof of it and so the problem-proof association can be removed from the Incomplete-proofmap and added
to the Proofmap, at the same time removing the proof-index association from the Indezmap. Otherwise,
the new incomplete proof becomes the new forward proof concatenated with the new backward proof,
with the appropriate change to the Indezmap. Note that this reorganisation is unnecessary for backward
inferencing as this does not alter the knowns.

The remaining parts of the validity condition on the Indezmap say that it records an index for each
incomplete proof but for no complete proof, and that the value of the index lies somewhere between zero
and the number of elements in the proof.

3.2 Muffin’s Ul

The various components of the surface Ul can be conveniently divided into three categories, the browser,
the builder and the prover.

The browser essentially allows the user to inspect the current state of Muffin. The user selects
the type of object he wishes to inspect from the list azioms, proofs, rules, problems, subsequents and
ezpressions. The browser will then show all objects of the selected type. Where the particular type
selected has multiple subtypes, e.g. complete and incomplete for proofs, and, or, etc. for expressions, the
user can additionally select one of these subtypes and the browser will then show only those objects of
the selected subtype. Objects can be accessed via their names or via some textual representation of the
objects themselves. When the particular object selected is a problem, the browser shows additionally
either the status of any existing proofs of that problem or that the sclected problem is an axiom. In
the latter case, the axiom name is also shown. Figure 2 shows the browser where the selection is the
unsolved problem named and-or-dist and its incomplete proof of the same name, the completed version
of which is shown in Figure 1.

In addition, the browser allows a few simple changes to be made to the state of Muffin, such as
naming and renaming of objects, conversion of an unsolved problem to an axiom, conversion of a solved
problem to a (derived) rule, and addition of a new empty composite proof to the set of incomplete proofs
of some problem. The interested reader can find the specification of these actions amongst the operations
on the Muffin state given in Appendix A.
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Completed Proofs

ncornplete Proofs

and-or-dist

Figure 2: Muffin’s Browser

Finally, the browser acts as a controller for the other components of Muffin. Thus, for instance, it
allows the user to start up either a builder or a prover, to inspect the current status of some existing
proof, to remove incomplete proofs and unsolved problems from Muffin’s stores, and to restart some
abandoned proof at the point at which it was abandoned.

The builder, of which there are several different forms, allows the user to create new expressions,
subsequents and problems and add them to the relevant object stores. The operations for updating the
object stores can also be found in Appendix A.

Lastly, the prover allows the user to edit an incomplete proof with a view to converting it into a
complete proof. Both forward and backward inferencing are supported, together with the ability to
undo proof steps (by removing them either from the tail of the forward proof or from the head of the
backward proof).

Proofs in the style of [6], an example of which was given in Figure 1, contain much information which
is in general of little help to someone actually in the process of constructing such a proof. Muffin’s prover
therefore attempts to reduce the information presented to the user to essentials in two ways. First, proof
steps internal to some subproof or “box” in such a proof are only meaningful within that subproof and
not within the containing proof. Muffin therefore restricts attention to one box at a time, with any
subproof of that box being represented as a subsequent. A set containing all the expressions appearing
on the from line of the box forms the left-hand side of the subsequent, whilst the right-hand side is what
appears on the infer line of the box.

Second, the prover hides all the details of ordering of lines and justification of proofsteps within a
box by using the knowns and the goals as described above as the basis for its display. The prover thus
displays the problem the user is attempting to solve, the current knowns, and the visible goals, where the
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visible goals are those current goals (as obtained via the elements of the backward proof) not amongst
the current knowns. I"“lgure 3 shows a prover at that point during the construction of the proof of Figure
1 at which the proof is complete apart from the subproof at box 4.

and-or-dist

{E1A(E2V E3)} F E1 AE2 v E1AE3

E1

E1 A (E2 ¥ E3 )

E2 v EB
{E23}»E1AE2 Vv E1AES3

Figure 3: Muffin’s Prover

The full natural deduction style display of Figure 1 is also available, however, and the user can
additionally display any complete or incomplete proof in this style if so desired.

In addition, the user can choose to further reduce the amount of information displayed by the prover
by making use of the facility of elision of knowns. Thus, if the user decides that a particular element of
the knowns is not going to be of any use in the remainder of the proof, it can be designated as hidden
and it will be removed from the display. When a prover has hidden knowns, Muffin reminds the user of
this by displaying ellipsis points at the foot of the list of displayed knowns. Any hidden known remains
a known of the proof, of course, and the reverse operation of redisplaying hidden knowns is available to
the user at any time.

The prover offers the user three ways of adding a new element to an incomplete proof. First, if it is
possible to build some instance i of some rule of inference such that all hypotheses of 7 are amongst the
current knowns, then i can be added to the tail of the forward proof. If, on the other hand, the user
can build such an i such that the conclusion of 4 is amongst the current goals, then i can be added to
the head of the backward proof. Finally, if there is a subsequent a ~» b amongst the current goals and if
the problem p is solved and has hypotheses A U a and conclusion b, where k represents the hypotheses
of the problem the user is currently trying to solve, then p can be added to the tail of the forward proof
(the conditions on p are exactly those that must be satisfied in order for it to contribute the subsequent
a ~ b to the knowns).
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Muffin offers assistance with each of these three processes. In the first two cases, the user can select
an expression from either the knowns or the goals and ask Muffin to provide a menu of rules matching
the selection. When matching to a goal, Muffin returns the list of rules whose conclusions match the
selected goal; when matching to a known, it returns the list of rules which have amongst their hypotheses
something which matches the selected known. Selecting a rule from the list returned then causes Muffin
to try to build the relevant instance of the selected rule and add this to the proof.

The variable substitution deduced from the initial matching process is not always complete, however.
For instance, more than one element of the hypotheses of the selected rule might match the selected
known, or the rule might contain more variables than the expressions which were matched do. In such
circumstances, Muffin prompts the user to complete the parts of the variable substitution it was unable to
deduce for itself (this is done via the substitution editor—see Section 3.3). Then, when the instantiation
is complete, it adds the new element to the proof.

The assistance offered with the third method of adding a new element to a proof is less sophisticated.
Here, the user can select a subsequent from the current goals and ask Muffin to search through the
solved problems to see whether the problem p which would have to be added to the tail of the forward
proof in order for the selected subsequent to be added to the knowns is amongst them. If it is, Muffin
automatically adds p to the forward proof. If not, the user is given the opportunity to open a new prover
in order to attempt to solve the problem p.

The user may have as many provers, browsers and builders as he wishes active and displayed on the
screen at once, and can at any time change which one he is currently working in. In particular, he may
have provers in which he is attempting to solve different problems as well as provers showing different
attempted proofs of the same problem. Thus, for example, if, while working on some proof, he decides
that the proof would be more straightforward if he were to prove some new derived rule first, he can
leave the current proof, build the problem stating that derived rule in a builder, prove it in some other
prover, then designate it as a derived rule, maybe in a browser. On returning to the original proof, the
new rule will now be available and it can be used there as desired.

Finally in this section, it is worth noting that any window appearing on the screen is simply a view
of the current underlying Muffin state. Closing a window simply removes a particular view from the
display; it never changes the state. Thus, if the user is unable to complete a particular proof, the prover
showing that proof can be safely deleted from the display; it can later be retrieved via the browser in
exactly the same form as it had when deleted.

3.3 A Sample Session

This section explains in some detail the sequence of actions a user of Muffin would typically perform
in order to state and prove the theorem and-or-dist of Figure 1. For the purposes of this exercise, it is
assumed that all the rules of inference used to justify the steps of the proof as shown in Figure 1 are
already rules of inference in Muffin.

First, the user has to build the problem {E1 A (E2 v E3)} b E1A E2 V E1 A E3, which is the
statement of the theorem he wishes to prove. Using the bottom-up approach, which is the easier to
explain, he begins by creating the three Atoms E1, E2 and E3. Assuming, for sake of argument, that
E1 is already in the Ezpstore, that E2 and E3 are not, and that rl is the existing reference of F1.
Two new Erprefs must be created and the associations 72 — FE2 and 73 +— E3 added to the Ezpsiore.
The next step is to build E2 v E3, E1 A E2 and E1 A E3. In the correct internal syntax, these are
represented respectively as mk-Or(r2,r3), mk-And(rl, r2) and mk-And(rl, r3). Since it was assumed
that neither £2 nor E3 were existing expressions, the closedness condition on the Ezpstore implies that
none of these expressions can already exist, so all must be assigned new references, say 4,75 and 76, and
the associations r4 +— mk-Or(r2,73), r5 — mk-And(rl, 72) and 76 — mk-And(rl, r3) must be added to
the Ezpstore. The last step is entirely analogous and results in the addition of two new associations to
the Ezpstore, 7 — mk-And(rl, r4) and r8 — mk-Or(r5, 76). Of course, all the 7’s are simply internal
references and are not seen by the user: Muffin always simply displays the formulae in concrete form
(e.g. v8 will always be displayed as E1 A E2V E1 A E3).

If p 1s some new Problemref, the statement of the theorem is completed by adding the association
p +— mk-Problem({r7}, r8) to the Problemstore.

The new problem will now appear in the browser as an unsolved problem (cf. Figure 2). By selecting
it there, the user can give it a name (and-or-dist in Figure 2), associate a new empty incomplete proof
with it, and give the new proof a name (also and-or-dist in Figure 2). The effect of these actions on

12




the Muffin state is as follows. The first adds the association end-or-dist — p to ProblemNames. The
second begins by adding the association f  [] to the Proofstore, where f is some new Proofref, then
adds p — {f} to the Incomplete-proofmap and f — 0 to the Indezmap. The third adds and-or-dist — f
to the ProofNames.

A side effect of adding the new proof f is that Muffin automatically opens a prover on f. Initially,
this shows the problem p in its top pane, and there is a single known E1A(E2 Vv E3) (i.e. the hypothesis
of p), and a single goal, E1 A E2 V E1 A E3 (i.e. the conclusion of p).

As afirst step, the user might select the known E1A(E2 Vv E3) and ask Muffin to display the matching
rules. One of these will be the rule called and-elim-r, which corresponds to the problem {X A Y} I X.
Suppose that gl is the reference of this problem in the Problemstore. Selection of the rule causes several
changes to be made to the state. First, Muffin builds the problem {E1 A (E2 Vv E3)} I E1 and adds
it to the Problemstore by adding the association pl — mk-Problem({r7},r1) thereto. This problem
is, of course, just an instance of the and-elim-r rule. It is therefore solved, and its proof is simply the
relevant instantiation. The next step is therefore to build the instantiation and add the new proof to
the Proofstore. This is done by adding the association f1 +» mk-Instantiation(ql, {X — r1, Y — r4})
thereto. The fact that the problem p1 is solved is then recorded by adding the association pl — {f1}
to the Proofmap. Finally, the problem pl is added to the forward proof of the proof f. Thus, in the
Indezmap, the association f +— 0 is replaced by f + 1, and in the Proofstore f + [] is replaced by
f — [p1]. Since the backward proof is empty, no reorganisation of the backward proof is necessary.

All this behind the scenes activity is, of course, hidden from the user, and the only visible effect is
that E'1 is added to the knowns.

To proceed from here, the user again selects E1 A (E2 vV E3) from the knowns and asks for the menu
of matching rules. This time he selects and-elim-l, which corresponds to the problem {X A ¥} F Y.
This step proceeds entirely analogously to that just described, so will not be dealt with in detail here.
It results in the element p2, corresponding to the problem {E1 A (E2 Vv E3)} F E2 v E3, being added
to the tail of the forward proof of f and the index of f being incremented by 1. The expression E2 v E3
now additionally appears in the knowns.

Next, the user selects the goal E1 A E2 V E1A E3 in the goals pane and asks for the matching rules.
One of these will be the or-elim rule, which has the form {X v Y, {X} ~ Z,{Y} ~ Z} - Z. The
user selects this rule. From the match so far performed, Muffin can deduce that it must instantiate 2
to E1 A E2V E1 A E3, but not what substitutions to make for the X and Y appearing in the rule. It
therefore prompts the user for the required substitutions by opening a substitution editor. He chooses
that X should be replaced by F2 and ¥ by F3. Muffin then builds the instance of the or-elim rule
defined by this substitution, namely {E2 v E3,{E2} ~» E1A E2V E1A E3,{E3} ~ E1AE2 V
E1ANE3}FELAE2V ELAE3.

The two subsequents appearing in the hypotheses of this problem are new, so the first step is to add
them to the Subsegstore. This is achieved by adding the associations s1 — mk-Subseq({r2}, r8) and
82 — mk-Subseq({r3}, r8), where s1 and s2 are new Subsegrefs.

Now the new problem can be included in the Problemstore by adding to it the association p5 —
mk-Problem({r4, 51,82}, r8), with p5 some new Proofref. Next, the new instantiation is added to the
Proofstore via f5 +— mk-Instantiation(q2, {X ~— r2,Y + r3,Z ~ r8}), where ¢2 is the reference of
the or-elim rule in the Problemstore. The association p5 +— {f5} is now added to the Proofmap, thus
marking p5 as a solved problem, and the value of f under the Proofstore becomes [p1, p2, p5]. The value
of the index remains unaltered in this case since the step was a backward inference. The goals pane of
the prover now shows the two subsequents {E2} ~» E1IANE2V E1AE3 and {E3} ~» ELAE2V E1AE3.
Note that the subgoal E2 vV E3 does not appear as it is amongst the current knowns (that is, it is a
current goal but not a visible goal).

Next, the user selects the first of these two subsequents in the goals pane and asks Muffin if the
problem which would contribute the selected subsequent to the knowns if it were added to the tail
of the forward proof has already been solved. Since the variable E2 was only recently introduced, it
should come as no surprise to him to be told that it is unsolved. He is then offered the chance to open
a new prover in order to attempt to solve the problem in question, namely {E2, E1 A (E2 v E3)} F
E1AE2V E1A E3. Accepting the offer causes the new problem to be added to the Problemstore via
p3 +— mk-Problem({r2, r7},78), adds a new empty proof to the Proofstore via f3 — [], and designates
f3 as an incomplete proof of p3 by adding p3 — {f3} to the Incomplete-proofmap and f3 — 0 to the
Indezmap.

The user now switches attention to the new problem p3 and tries to solve it. By using forward and/or
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backward inferencing as detailed above, he should eventually arrive at the point at which f3 is a composite
proof containing (references to) the three elements {E1 A (E2 v E3)} - E1, {E1,E2} F E1 A E2 and
{E1AE2}+ E1A E2V E1A E3, in that order. It is worth noting that the first of these three elements
is identical to the first element of the main proof f. It is, however, not redundant here, but is, as can
readily be seen, a vital step in the proof of p3 as it contributes E1 to its knowns. Some redundancy
does occur, however, when this proof is considered as a subproof of the proof f. In that case, this step
contributes E1 to the knowns just as the identical step in f does. Muffin realises this when displaying
the proof of f in the natural deduction style of Figure 1 and simply doesn’t bother to display the known
E1 when it generates it for the second time as part of the subproof at box 3.

Having completed the proof of p3, the user can now return to the proof f of the problem p and ask
Muffin again to search for the solved problem it failed to find earlier. Now, of course, the problem is
solved, and Muffin duly finds it. The problem p3 is added to the tail of the forward proof of f and the
index of f becomes 3. The subsequent {E2} ~» E1 A E2V E1 A E3 vanishes from the goals pane and
appears in the knowns pane.

The user completes the proof f by dealing with the remaining subsequent in an entirely analogous
way. The goals pane finally shows “Q.E.D.” to indicate that the proof is complete. The association
f + 4 is removed rom the Indezmap, and p — {f} is removed from the Incomplete-proofmap and added
to the Proofmap.

The interested reader can find details (in concrete form) of the full proof structure behind the proof
and-or-dist in Appendix B.

4 Evaluation

As stated earlier, one of the main aims of the Muffin exercise was to develop both a proof style and an
interaction style which would encourage a user to use the system to actually discover formal proofs rather
than just as a proof checker. Ideas on what form this proof style would take were initially somewhat
nebulous, of course, so the first stage of the process consisted simply of designing and specifying a
theorem store for simple propositional calculus. The resulting specification [14] then formed the basis
for a prototype working system possessing a rudimentary user interface (see [15]).

This prototype system was implemented in Smalltalk—80, a language with which we were totally
unfamiliar prior to our using it as the implementation language for Muffin. The second of the main aims
of the exercise was therefore to assess the suitability or otherwise of Smalltalk-80 as an implementation
language for formal reasoning systems.

One of the main reasons for choosing Smalltalk-80 as opposed to, say, standard ML, was that a
lot of basic UI components are already built into the basic Smalltalk system. It is therefore very easy
to construct a user interface simply by combining these existing primitives as desired. Moreover, it is
also very easy to experiment with different user interface designs by simply combining these primitives
in different ways. In fact, it turned out that the choice of language was even more fortuitous, due to
the strong natural parallel between on the one hand the abstract data types and the operations and
functions defined thereon of the formal specification and on the other hand the object classes and the
messages acting thereon of the language. Exploiting this parallel made it possible to progress from
the formal specification of the theorem store to a working prototype of Muffin with an expenditure of
only two man-months of effort. Such rapid progress was no doubt partly due to the fact that much of
the design of the system had been carried out at the specification level, which probably accounted for
approximately three quarters of the total effort expended on Muffin. Nevertheless, we do not believe
that such rapid progress would have been made had, for instance, standard ML been chosen as the
implementation language, because it would not have offered the pre-packaged user interface components.
The availability of Smalltalk-80 classes corresponding to VDM’s type formation operators (e.g. sets,
maps, etc.) made it very easy to implement the specification in this language. We therefore conclude
that Smalltalk—80 is eminently suited not only to the implementation of formal reasoning systems but
also to the implementation of formally specified systems. For a fuller assessment of these points see [8].

Following the completion of the prototype system, an attempt was made to evaluate the rudimentary
interface it possessed by inviting people to come and try to prove theorems using Muffin. Those who
took part in this evaluation exercise covered the whole spectrum, from rank novice to complete expert,
in terms of familiarity with each of workstation technology and propositional logic, and came from
a wide variety of backgrounds. The most important factor influencing the ease with which a given
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person managed to complete his proof seemed to be his familiarity with the workstation, with the depth
of knowledge of propositional calculus being far less significant. Indeed, those expert in workstation
technology but having little or no knowledge of propositional logic generally managed to complete their
proofs successfully simply by making extensive use of Muffin’s pattern matching facilities. Familiarity
with Smalitalk—80 was, of course, an extra bonus as the functionality of the mouse parallels that in the
standard Smalltalk system closely. Most participants felt that the proof style of Muffin’s prover was
easier to understand than the natural deduction style of Figure 1.

The evaluation exercise also provided a large and varied range of opinions as to how the prototype
Muffin might be modified to malke it easier to use. Some of these suggested modifications (e.g. the
provision of a parser) went beyond Muffin’s stated aim of investigating novel proof and interaction styles
for formal reasoning systems, though some of these will undoubtedly be relevant to the design of the
general FRIPSE user interface. Those suggested modifications lying within Muffin’s scope, along with
opinions similarly elicited from colleagues within the FRIPSE project, provided extremely useful input,
however, and some of these have since been incorporated into a new version of Muffin.

It was observed above that it is not possible to formally specify (and reason about) properties like
“yser-friendliness”. In keeping with this observation, our development path can be viewed as one of
evolution of the user-interface aspects. It should, however, be noted that the changes made during this
process were mainly at the level of the surface Ul and that the (formally specified) deep UI aspects
remained largely constant.

Whilst this evaluation exercise was underway, one of us (RM) was invited to give a talk ([13]) on
and a demonstration of the prototype Muffin at the Workshop on Programming for Logic Teaching,
held at the University of Leeds, 6-8 July 1987. The participants at this workshop were in the main
academics drawn from philosophy, computer science and pure mathematics (with particular emphasis
on mathematical logic) departments. Their reactions, as well as the other talks and demonstrations
presented at the workshop, also provided much useful input to the considerations of how to modify the
prototype. In addition, many of the participants expressed an interest in acquiring a copy of Muffin for
their own experimentation and use. This caused us to reconsider our original conception of Muffin as
an essentially throwaway experiment within the wider FRIPSE project, and led to our decision to make
the new version generally available for research purposes?.

Up to this point, only the theorem store of Muffin had been formally specified, and all the higher
level interactive mechanism had simply been coded on top of that, due mainly to the uncertainty as
to the exact form it would take. Having fixed on the version of the system for general release, it was
decided that, for the purpose of this exercise of documenting Muffin, the formal specification should be
extended to cover the whole of the system as it then stood (apart, of course, from the actual surface
UI which we still don’t know how to describe formally, but see [12]). It is interesting to note that this
additional specification exercise led to the discovery of a couple of bugs in the code!

The importance of the “derived rule” feature cannot be too strongly emphasised. Even in the very
simple domain of propositional calculus to which Muffin restricts attention, it soon becomes extremely
tedious if a user has to prove everything from the basic axioms. The ability to store a proved result
and make use of it in later proofs, thus augmenting the set of rules, makes what might be a very long
proof when proved from first principles much shorter, and hence much easier to understand. In fact,
it is obvious from the Muffin experiment that a theorem proving system would be unusable without
concepts such as derived rules which bring the level of interaction closer to that of normal mathematical
reasoning.

If we ourselves look at the evaluation exercise, we cannot help but think Muffin’s proof style(s) are a
significant step towards the objective of proof discovery at the terminal. People who have never written
a proof in a formal logic before have proved theorems using Muffin; what’s more they have enjoyed the
experience!

5 Beyond Muffin

Within the FRIPSE project as a whole, the Muffin exercise has always been looked upon as a simple
experiment aimed at providing input to the eventual design of the general FRIPSE user interface, with
the result that it was assigned only limited resources and a fixed duration. These limitations have meant

!Contact M.K.Tordoff, STL NW, Copthall House, Nelson Place, Newcastle-under-Lyme, Staffs ST5 1EZ
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that some issues, which will obviously be important in FRIPSE, remain unexplored, though after the
Muffin exercise some aspects of these are perhaps clearer.

One possible extension to Muffin, namely the generalisation of the syntax of expressions to allow for
an essentially user-defined set of logical operators as opposed to the specific set built into Muffin, has,
in fact, already been explored. The modifications which have to be made to the specification of Muffin
as given in Appendix A in order to achieve this generalisation can be found in [16].

The same document also mentions a second important way in which the syntax of expressions could
be extended, namely by introducing the notions of commutativity and associativity of binary operators.
This would then permit further generalisation of the syntax of expressions so that expressions built
from such operators could be stored in, say, some normal form, with the different equivalent forms being
simply different projections of that normal form. This would have the additional implication that certain
proofsteps, for example the commuting of the operands of a commutative binary operator, could be made
automatic. .

A second area in which Muffin could be developed further is that of the rules of inference. One
possibility here would be an extension of the mechanism by which matching rules are determined to
allow the user to match to more than one expression, for instance to a goal and a known. It is believed
that this could go a long way towards reducing the number of rules presented to the user, thus making the
choice of rule that much easier. Unfortunately, given enough stamina, a persistent user will eventually
be able to create so many derived rules that even this more sophisticated matching process will produce
a menu of matching rules containing more elements than the user can comfortably assimilate (“lemma
explosion”). Some structuring of the menu of matching rules will therefore also be required. One
possibility here would be to order the matching rules according to how closely they match the current
selection(s) then present them a few at a time according to this ordering.

Another way in which the task of proving some theorem might be simplified is via the use of tactics.
Some thought has been given to how tactics might be incorporated into Muffin, with the conclusion
that it would be relatively straightforward to include a simple tactic language consisting of a set of
combinators for derived rules, with a tactic being applied in much the same way as a derived rule, but
that it was unclear how to deal with anything more sophisticated.

This document marks the end of the “official” work on Muffin, and attention is now being switched
to the formal specification of FRIPSE as a whole, with work on outstanding issues, such as the general
treatment of tactics, genericity over logics and proof styles, etc., proceeding in parallel with this. Some
details of this work can be found in [9] and [10]. Muffin, of course, remains available as a test bed on
which we can easily try out any new ideas arising from this more general FRIPSE work.
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A Formal Specification

A.1  Muffin

Muffin :: es : Expstore
33 : Subsegstore
ps : Problemstore
f8 : Proofstore
en : EzpNames
sn : SubseqNames
pn : ProblemNames
fn ¢ ProofNames
jm : Proofmap
rm : Rulemap
im : Incomplete-proofmap
zm : Indexmap

where
inv-Muffin(mk-Muffin(es, ss, ps, fs, en, sn, pn, fn, jm, rm, im, zm)) -2

is-valid-subseqstore(ss, es) A
is-valid-problemstore(ps, ss, es) A
is-valid-proofstore(fs, ps, ss, es) A
is-valid-ezpnames(en, es) A
is-valid-subsegnames(sn, s3) A
is-valid-problemnames(pn, ps) A
is-valid-proofnames(fn, fs) A
is-valid-proofmap(jm, fs, ps, ss, es) A
is-valid-rulemap(rm, jm, fs) A
is-valid-incomplete-proofmap(im, jm, fs, ps, ss, es) A
is-valid-indezmap(zm, im, jm, fs, ps, ss, es)

add-exp (z: Ezp) y: Expref

ext wr es : Ezxpstore

pre args(z) C dom es

post z €Ernges Ay Edomes Aes(y)=zAes=es V
z¢mges Ay ¢ domes Aes="esU{yr» z}

add-subseq (z:set of Ezpref,y: Expref) g: Subsegref

ext rd es : Ezpstore
wr 38 : Subsegstore

prezU{y} CdomesAygzAnz+#{}

post let ¢ = mk-Subsegq(z,y) in
temgssAgedomss Ass(g)=tAss =5V
t¢rngss Ag ¢ domss Ass=ssU{g 1}

add-problem (n:set of Node, y: Ezpref) u: Problemref

ext rd es : Ezxpstore
35 : Subsegstiore
wr ps : Problemstore

pre y Edomes An CdomesUdomssAy én
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post let ¢ = mk-Problem(n, y) in
termgps AuEdomps Aps(u) =tAps=ps V
t¢mgps Au¢ domps Aps=psU{ur t}

instantiate-ezp (y: Ezpref, m: map Atom to Ezpref) r: Expref
ext wr es : Fzpstore
pre y € dom es A is-substitution({y}, m,{}, es)
post €3 C es AT € dom es A is-exp-match(y, v, m, es) A
dom es = dom ‘e3 U descendents({r}, es)

instantiate-exp-set (y:set of Expref, m:map Atom to Ezpref) r:set of Ezpref
ext wr es : Ezpstore
pre y C dom es A is-substitution(y, m, { }, es)
post es C es A 7 C dom es A is-exp-set-match(y, 7, m, es) A
dom es = dom ‘e U descendents(r, es)

instantiate-subseq (y: Subsegref, m: map Atom to Ezpref) r: Subsegref

ext wr es : Ezpstore
ss : Subsegstore

pre ¥ € dom ss A is-substitution({y}, m, ss, es)
post 55 C ss Adomss =domss U{r}A

post-instantiate-ezp-set(ezps(ss(y)), m, s, ezps(ss(r)), es)
A is-subseg-match(y, v, m, 33, es)

instantiate-node (n: Node, m:map Atom to Expref) r: Node

ext wr es : Erpstore
ss : Subseqstore

pre n & dom es U dom ss A is-substitution({n}, m, ss, es)

post n € dom 85 A post-instantiate-subseq(n, m, €3, 55,7, es,s3) V
n € dom es A post-instantiate-ezp(n, m, €s, T, es) A 'ss = 88

instantiate-node-set (n:set of Node, m: map Atom to Ezpref) r:set of Node

ext wr es : Ezpstore
38 : Subseqstore

pre n C dom es U dom ss A is-substitution(n, m, ss, es)
post 33 C 33 A'es C es At C dom es Udom ss A is-node-set-match(n, r, m, ss, es) A

dom es = dom ‘es U descendents(components(r, ss, es), es) A
dom ss = dom s5 U (r N dom s3)

instantiate-problem (p: Problemref, m: map Atom to Ezpref) r: Problemref

ext wr es : Fzpstore
33 : Subseqstore
ps : Problemstore

pre p € dom ps A is-substitution(nodes(ps(p)), m, 33, es)

post o3 C ps A dom ps = dom ps U {r} A is-problem-match(p, r, m, ps, 83, es) A
post-instantiate-node-set(nodes(ps(p)), m, €3, 83, nodes(ps(r)), es, ss)
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name-exp (n:String, e: Ezpref)
ext wr en : FrxpNames
rd es : Ezxzpsiore

pre e € domes A (n € domen A en(n) = e Vn ¢ domen)

post n EdomenAen=enVan=[]Aen={e}penV
n¢domenAn#[]Aen = ({e} pen)U{n— ¢}

name-subseq (n: String, s: Subsegref)

ext wr sn : SubseqNames
rd ss : Subsegstore

pre 8 € domss A (n € domsn A sn(n) = sV ¢ domsn)

post n EdomsnAsn=snVn=[]Asn={s}psaV
ngdomsnAn#[JAsn=({s}psn)U{n— s}

name-problem (n: String, p: Problemref)

ext wr pn : ProblemNames
rd ps : Problemstore

pre p € domps A (n € dompn A pn(n) = p V n ¢ dom pn)
post n €dompn Apn =pnVn=[]Apn={p}bpnV
n ¢ dompn An # [[Apn = ({p} Bpr)U {n— p}

name-proof (n: String, f: Proofref)
ext wr fn : ProofNames
rd fs : Proofstore
prefedomfs/\(n € domfn A fa(n) = f V n ¢ dom fn)
postnEdom‘szﬁz:Jf;Vn:[]/\fn:{f}bdf:V
n ¢ domfa An# [JAfn=({f} bFe)Ufn 1}

remove-problem (p: Problemref)

ext wr ps : Problemstore
fs : Proofstore
im : Incomplete-proofmap
zm : Indezmap
pn : ProblemNames
fan : ProofNames
rd jm : Proofmap

pre p € dom ps A p & dom jm

post ps = {p}<ps Apn = {p} bpn A
(p € domim Aim = {p}<tim A fs = im(p)<4fs A zm = im(p)<im A fr = im(p) b fn
Vpgdom%/\im:%/\fs:ﬁ/\mm:ﬁ/\fn:‘ﬁ)

remove-proof (f: Proofref)

ext wr fs : Proofstore
im : Incomplete-proofmap
zm : Indexmap
fn : Proofnames

pre f € incomplete-proofs(im)
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postffﬁ:{f}e‘f;/\zm:{f}qm/\fn:{f}bf?/\pédom%?z.f\fE%()/\
(im(p) = {f} Aim = {p}<tim V im(p) # {f} Aim = im { {p — 1m(p) — {f}})

name-rule (n: String, p: Problemref)
ext wr rm : Rulemap
rd jm : Proofmap
pre n # [JA p € domjm A (n € domrm = rm(n) = p)

post rm = ({p} prm)U{n — p}

make-aziom (p: Problemref, n: String)
ext wr im : Incomplete-proofmap

jm : Proofmap

rm : Rulemap

zm : Indezmap

fs : Proofstore

fn : ProofNames

pre n #£ [] A [p € azioms(jm) A (n € dom rm = rm(n) = p)V p ¢ dom jm]

post p ¢ domjm Ajm = jmU{p = {}} Arm =Fm U {n — p} Aim = {p}<im A
(pedom%/\zm: %(p)élﬁ/\f.&:%(p)ﬁﬁ /\fn:%(p)él‘f:V
pﬁdom%/\xm:ﬁf\fs:}gl\fn:‘f;)v
pEdom%/\_im:%/\mm=ﬁAjm:ﬁArm:({p}pm)U{an}

Afs=TfsAfn=fn

add-instantiation (p: Problemref, m:map Atom to Ezpref, q: Problemref)
ext wr fs : Proofstore
jm : Proofmap
rd rm : Rulemap
ps : Problemstore
38 : Subsegstore
es : Erpstore

pre p € rngrm Am # {} Adomm C vars(nodes(ps(p)), ss, €s) A
is-substitution(nodes(ps(p)), m, 3, es) A is-problem-match(p, ¢, m, ps, 55, es) A
g ¢ azioms(jm)
post let 1 = mk-Instaniiation(p, m) in
icmgfs Afedomfs Afs(f)=iAfs =fs V
igmgfo Afgdomfs Afs=fs U{f— i}]Alg € domjm As=jm(q)U{f}V
g ¢ domimAs={fAim=jmt{g s}

add-assumption (p: Problemref)
ext wr fs : Proofstore

jm : Proofmap
rd ps : Problemstore

pre p € dom ps A p & azioms(jm) A con(ps(p)) € hyp(ps(p))
postfédom}?_/\fs - ‘f;‘_L_J{fr—» [0} A
(p € domjm Ajm = jm t {p — jm(p) U{f}} V p ¢ dom jm A jm = jm U {p — {f}})




add-empty-proof (p: Problemref)

ext wr im : Incomplete-proofmap
zm : Indezmap
fs : Proofstore
rd jm : Proofmap
ps : Problemstore

pre p ¢ azioms(jm) A p € dom ps A con(ps(p)) ¢ hyp(ps(p))
postfgdom};_/\fa:ﬁi{fH[]Ezm:‘mu{fHo}/\ B
(pedomim Adm = im t {p— im(p) U{f}} Vp ¢ domim Aim = im U {p+ {f}})

spawn-proof (p: Problemref, f: Proofref)
ext wr im : Incomplete-proofmap

zm : Indezmap
fs : Proofstore

pre p € domim A f € im(p)

postgQ_fdoz?;Afsi‘EU{gH‘ﬁ(f)}AzmzEﬁu{gHﬁc_ﬁ(f)}/\
im = im 1 {p — im(p) U {g}}

add-fwd-step (p: Problemref, f: Proofref, s: Problemref)

ext wr fs : Proofstore
im : Incomplete-proofmap
zm : Indexrmap
jm : Proofmap
rd ps : Problemstore
ss : Subsegstore
es : Frpstore

pre let k = knowns(p, hyp(ps(p)), forward-proof(f, fs, zm), ps, ss) in
p € domim A f € im(p) A s € dom jm A adds-known(p, k, s, ps, ss)

post let y = forward-proof(f, :E, zm) r~ [8],

z = backward-proof(f, ‘fg, zm),

k = knowns(p, hyp(ps(p)), ¥, ps, 83),
1 = new-fwd-steps(k, z, ps),
bwd = new-bwd-steps({con(ps(p))}, reverse(rngl bz), ps),

fud =y~ 1,
new-proof = fwd ~ bwd
in

—(is-complete-proof(fwd, p, ps, 33, €s)) A fs = ‘ﬁ T {f — new-proof} A
jm:j%/\z’mz%/\mm:ﬁi{fl—rﬁ(f)—%lenl—i—l}V
is-complete-proof(fwd, p, ps, 33, es) A zm = {f}gzm A

(im(p) = {f} A im = {p}<im V im(p) # {f} Aim = im t {p — im(p) — {/}})

add-bwd-step (p: Problemref, f: Proofref, s: Problemref)

ext wr fs : Proofstore
rd im : Incomplete-proofmap
zm : Indexmap
jm : Proofmap
ps : Problemstore
ss : Subsegstore
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pre let k = knowns(p, hyp(ps(p)), forward-proof(f, fs, zm), ps, ss),
g = goals({con(ps(p))}, reverse(backward-proof(f, fs, zm)), ps)
in
p € domim A f € im(p) A s € dom jm A —=(hyp(ps(s)) C k) A con(ps(s)) Eg—k

post let new-proof = forward-proof(f,‘f?,a;m) ~[s] backward-proof(f,?;, zm) in

= "5 P o5 newpioel)

undo-fwd-step (p: Problemref, f: Proofref)

ext wr fs : Proofstore
gm : Indezmap
rd im : Incomplete-proofmap

pre p € domim A f € im(p) A zm(f) #0
post zm = zm 1 {f + zm(f)-1} A

fs=Fs t{f — m(f)afe ()}

undo-bwd-step (p: Problemref, f: Proofref)

ext wr fs : Proofstore
zm : Indezmap
rd im : Incomplete-proofmap

pre p € domim A f € im(p) A zm(f) # len f3(f)
post zm = Zm A fs = ‘f_s P{f— (am(f) + I)QEU)}

A.2 Expressions

Tezp = Tnot | Tand | Tor | Timpl | Tequiv | Tdelta | Atom
Tnot :: tn : Texp

Tand :: tandl : Tezp
tandr : Texp

Tor = torl : Tezxp
torr : Texp

Timpl 2 tant : Texp
tcon : Texp

Tequiv :: teql : Texp
tegr : Tezp

Tdelta :: td : Tezp
Ezp = Not | And | Or | Impl | Equiv | Delta | Atom
Not :: not : Ezpref

And :: andl : FEzpref
andr : Ezpref

Or 2 orl : Ezpref
orr : Expref

Impl :: ant : Ezpref
con : Erpref
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Equiv = eql : Erpref
eqr : Erpref

Delta :: del : Expref

Ezpstore = map Ezpref into Ezp

where

inv-Ezpstore(es) £ is-closed(es) A is-finite(es)

args : Exp — set of Ezpref

args(z) £ cases z of
mk-And(l,7) — {l,7}
mk-Or(l,r) — {l,7}
mk-Impl(l,7) — {l,7}
mk-Equiv(l,7) — {l,r}
mk-Not(1) — {1}
mk-Delta(l) — {i}
Atom —{}

end

i3-closed :map Ezpref to Ezp — B
is-closed(m) £ Vz € rngm - args(z) C domm

offspring : set of Expref x map Ezpref to Ezp — set of Ezpref
offspring(z,m) & | Hargs(m(y)) |y €dommnz}uUz

descendents :set of Ezpref x map Ezpref to Ezp — set of Ezpref

descendents(z,m) £
let I = offspring(z, m) in
i l=
then z
else descendents(l, m)

trace : set of Ezpref x map Ezpref to Exp — map Fzpref to Ezp

trace(z, m) A descendents(z, m) < m

is-finite : map Ezpref to Ezp — B
is-finite(m) & Vy € domm - Pz € mgtrace({y}, m)- y € args(z)

leaves (z:set of Expref, es: Ezpstore) r:set of Atom
pre z C dom es
post 7 = {z | z € rngtrace(z, es) A is-Atom(z)}
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expand (y: Ezpref, es: Ezpstore) t: Tezp
pre y € dom es

post ¢ = cases es(y) of
mk-Not(l) — mk-Tnot(ezpand(l, es))
mk-And(l,7) — mk-Tand(ezpand(l, es), ezpand(r, es))
mk-Or(l,7) — mk-Tor(ezpand(l, es), ezpand(r, es))
mk-Impl(l,7) — mk-Timpl(ezpand(l, es), expand(r, es))
mk-Equiv(l, ) — mk- Tequiv( ezpand(l, es), ezpand(r, es))
mk-Delta(l) — mk-Tdelta( ezpand(l, es))
Atom — es(y)
end

ezpand-inst (y: Ezpref, m: map Atom to Ezpref, es: Ezpstore) t: Tezp
pre y € dom es A is-substitution({y}, m, { }, es)

post let z = es(y) in
t=ifz €domm

then ezpand(m(z), es)

else cases ¢ of
mk-Not(l) — mk-Tnot(erpand-inst(l, m, es))
mk-And(l,r) - mk-Tand(ezpand-inst(l, m, es), ezpand-inst(r, m, es))
mk-Or(l,7)  — mk-Tor(expand-inst(l, m, es), ezpand-inst(r, m, es))
mk-Impl(l,v) — mk-Timpl(ezpand-inst(l, m, es), expand-inst(r, m, es))
mk-Equiv(l, r) — mk- Tequiv(ezpand-inst(l, m, es), expand-inst(r, m, es))
mk-Delta(l) — mk-Tdelta(ezpand-inst(l, m, es))
Atom — z
end

is-exp-match (z: Ezpref, y: Ezpref, m: map Atom to Ezpref, es: Ezpstore) m B
pre z,y € dom es A is-substitution({z}, m,{ }, es)
post 7 < ezpand-inst(z,m, es) = ezpand(y, es)

is-exp-set-match (2:set of Expref, a: set of Ezpref, m: map Atom to Ezpref, es: Expstore) r: B
pre (z U a) C dom es A is-substitution(z, m, { }, es)
post 7 <> {ezpand-inst(z,m,es) |z € z} = {ezpand(y,es) | y € a}

A.3 Subsequents

Tsubseq :: tlhs : set of Tezp
trhs : Texp

where

inv- Tsubseq(mk-Tsubseg(l,7)) & 1+#{}

Subseq :: lhs : set of Ezpref
rhs : Ezpref

where

inv-Subseq(mk-Subseg(z,y)) & z#{}
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Subsegstore = map Subsegref into Subseq

exps : Subseq — set of Expref
ezps(q) 2 lhs(q) U {rhs(q)}

is-valid-subsegstore : Subsegstore x Ezpstore — B

is-valid-subseqstore(ss, es) £ Vg € rngss - exps(q) C domes

ezpand-subseq (g: Subsegref, m: map Atom to Ezpref, ss: Subsegstore, es: Expstore) t: Tsubseq
pre ¢ € dom ss A is-substitution({q}, m, s, es) A is-valid-subsegstore(ss, es)

post let r = ezpand-inst(rhs(ss(q)), m, es),
[ = {ezpand-inst(y, m, es) | y € lhs(ss(g))} in
t = mk-Tsubseq(l, )

is-subseqg-match (g: Subsegref, ¢: Subseqref, m: map Atom
to Ezpref, ss: Subsegstore, es: Ezpstore) m: B

pre g, ¢ € dom 53 A is-valid-subsegstore(ss, es) A is-substitution({g}, m, ss, es)
post r & ezpand-subseq(g,m, 33, es) = expand-subseq(q, { }, 53, es)

A.4 Nodes
Tnode = Tezp | Tsubseq

Node = Ezpref | Subsegref

parts (n: Node, ss: Subsegstore, es: Expstore) r:set of Expref
pre n € dom g3 U dom es
post (n € domes Ar = {n}) V (n € domss AT = ezxps(ss(n)))

components (n:set of Node, ss: Subsegstore, es: Ezpstore) r:set of Ezpref
pre n C dom ss U dom es
post 7 = | J{parts(k, ss, es) | k € n}

vars (n:set of Node, ss: Subseqstore, es: Ezpstore) 7:set of Atom
pre is-valid-subsegstore(ss, es) A n C dom es U dom ss

post = leaves(components(n, 33, es), es)

is-substitution (n:set of Node, m:map Atom to Ezpref,ss: Subseqstore, es: Expstore) r: B
pre is-valid-subsegstore(ss, es) An C dom es U dom 33
post 7 < Vz € domm -z € vars(n,ss,es) = m(z) € domes A es(m(z)) # =

ezpand-node (n: Node, m:map Atom to Ezpref, ss: Subseqstore, es: Expstore) t: Tnode
pre n € dom ss U dom es A is-valid-subsegstore(ss, es) A is-substitution({n}, m, ss, es)

post n € dom ss A t = ezpand-subseq(n, m, ss, es) V
n € dom es At = expand-inst(n, m, es)
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is-node-match (n: Node, k: Node, m: map Atom to Ezpref, ss: Subsegstore, es: Ezpstore) 7: B
pre {n,k} C dom es U dom ss A is-valid-subsegstore(ss, es) A 1s-substitution({n}, m, ss, es)

post » < ezpand-node(n,m, ss, es) = ezpand-node(k, { }, ss, es)

is-node-set-match (n:set of Node, k: set of Node, m:map Atom
to Expref, ss: Subsegstore, es: Expstore) t: B

pre n Uk C dom ss Udom es A is-valid-subsegstore(ss, es) A is-subsiitution(n, m, ss, es)
post t < {ezpand-node(l, m, ss, es) | 1 € n} = {ezpand-node(r,{}, ss, es) | r € k}

A.5 Problems

Problem :: hyp : set of Node
con : Ezpref

Problemstore = map Problemref into Problem

nodes : Problem — set of Node

nodes(o) &  hyp(o) U{con(o)}

is-valid-problemstore : Problemstore x Subsegstore x Ezpstore — B

is-valid-problemstore(ps, ss,es) O Vo € rngps- nodes(o) C dom ss U dom es

is-problem-match (o: Problemref, u: Problemref, m: map Atom
to Ezpref, ps: Problemstore, ss: Subsegstore, es: Ezpstore) r: B

pre o, u € dom ps A is-valid-subseqstore(ss, es) A .
is-valid-problemstore(ps, ss, e3) A is-substitution(nodes(ps(o)), m, ss, es)
post let | = ps(0),t = ps(u) in
r &
1s-exp-match(con(l), con(t), m, es) A
is-node-set-match(hyp(1), hyp(2), m, ss, es)

A.6 Proofs

Instantiation :: of : Problemref
by : map Atom to Exzpref

where

inv-Instantiation(mk-Instantiation(o, m)) 2 m#{}
Composite-proof = seq of Problemref

Proof = Instantiation | Composite-proof

Proofstore = map Proofref to Proof

where

inv-Proofstore(fs) £ Vp,q € dom fs- fs(p) = fs(q) A is-Instantiation(fs(p)) = p=gq
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ném-known (u: Problemref, k: set of Node, ¢: Problemref,
ps: Problemstore, ss: Subsegstore) r:set of Node
pre {u, ¢} C dom ps
post r = if hyp(ps(q)) C &k
then {con(ps(q))}
else if 3g € dom ss - Ths(ss(g)) U hyp(ps(w)) = hyp(ps(q)) A rhs(ss(g)) = con(ps(q))
then {g}
else {}

adds-known (u: Problemref, k: set of Node, g: Problemref,
ps: Problemstore, ss: Subsegstore) r:B

pre {u, g} C dom ps
post 7 <> mew-known(u,k, ¢, ps,ss) # { }

knowns (u: Problemref, n:set of Node, c: seq of Problemref,
ps: Problemstore, ss: Subsegstore) 7: set of Node
pre {u} Urng ¢ C dom ps
post 7 =if ¢ =]
then n
else let ¥y = new-known(u, n,hd ¢, ps, 83) in
knowns(u,n Uy, tlc, ps, 8s)

problems : Proof — set of Problemref
problems(v) £ cases v of
mk-Instantiation(o, m) — {o}
otherwise rngv
end

is-valid-instantiation (i: Instantiation, ps: Problemstore, ss: Subsegstore,
es: Expstore) r:B
pre is-valid-subsegstore(ss, es) A is-valid-problemstore(ps, ss, es)
post let mk-Instantiation(o, m) =1 in
let n = nodes(ps(0)) in
r < problems(i) C dom ps A dom m C vars(n, ss, es) A is-substitution(n, m, ss, es)

is-valid-composite : Composite-proof x Problemstore — B

is-valid-composite(c, ps) £  problems(c) C dom ps

is-valid-proofstore (fs: Proofstore, ps: Problemstore, ss: Subsegsiore, es: Ezpstore) r: B

pre is-valid-subseqstore(ss, es) A is-valid-problemstore(ps, ss, es)

post 7 < Yu € rngfs - (is-Instantiation(v) = is-valid-instantiation(v, ps, ss, es))
A (is-Composite-proof(v) = is-valid-composite(v, ps))

new-fwd-steps (n:set of Node, c: Composite-proof,
ps: Problemstore) v: Composite-proof

pre rng ¢ C dom ps

post v = if 3g € rngc - hyp(ps(g)) Cn

then [g] ~ new-fwd-steps(n U con(ps(g)), {9} B¢, ps)
else []
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new-bwd-steps (n: set of Node, ¢c: Composite-proof,
ps: Problemstore) v: Composite-proof
pre rng ¢ C dom ps
post v = if ¢ =[]
then ¢
else let y = con(ps(hd c)), z = hyp(ps(hd c)) in
ifyen
then new-bwd-steps((n — {y}) Uz, tle,ps) ~vhd e
else new-bwd-steps(n, tl ¢, ps)

A.7 Names

EzpNames = map String into Ezpref

where

inv-ExpNames(en) 2 []¢ domen

SubsegNames = map String into Subsegref

where

inv-SubsegNames(sn) £ []¢ domsn

ProblemNames = map String into Problemref

where

inv-ProblemNames(pn) & []¢ dompn

ProofNames = map Siring into Proofref

where

inv-ProofNames(fn) & []¢ domfn
String = seq of Character

is-valid-ezpnames : ExpNames x Ezpstore — B

is-valid-expnames(en,es) £ rngen C domes

is-valid-subseqnames : SubseqgNames x Subsegstore —

is-valid-subseqnames(sn,ss) 2 rngsn C dom ss

is-valid-problemnarmes : ProblemNames x Problemstore — B

is-valid-problemnames(pn, ps) £ rngpn C dom ps

is-valid-proofnames : ProofNames x Proofstore — B

is-valid-proofnames(fn, fs) £ ngfn C domfs
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A.8 Solved and Unsolved Problems and Rules of Inference
Proofmap = map Problemref to set of Proofref

Incomplete-proofmap = map Problemref to set of Proofref

where

inv-Incomplete-proofmap(im) 2 {} & rngim AVk, m € domim - im(k) Nnim(m) #{} = k=m

Rulemap = map String into Problemref

where

inv-Rulemap(rm) £ []¢ domrm

solved-problems : Proofmap — set of Problemref

solved-problems(jm) £ domjm

rules : Rulemap — set of Problemref

rules(rm) £ rngrm

azioms : Proofmap — set of Problemref

azioms(jm) 2 {u|u € solved-problems(jm) A jm(u) = { }}

complete-proofs : Proofmap — set of Proofref
complete-proofs(jm) & Jrmgim

is-valid-rulemap : Rulemap X Proofmap x Proofstore —

is-valid-rulemap(rm, jm, fs) & azioms(jm) C rules(rm) A rules(rm) C solved-problems(jm) A
Vp € complete-proofs(jm)- p € dom fs = (is-Instantiation(fs(p)) = of (fs(p)) € rules(rm})

derivable-results (jm: Proofmap, fs: Proofstore,
w: set of Problemref) r:set of Problemref

pre complete-proofs(jm) C dom fs A w C solved-problems(jm)
post let I = {b | b € azioms(jm) V b € solved-problems(jm) A
v € jm(b) - problems(fs(v)) C w)} Uw in
ri= [Fli=
then w
else derivable-results(jm, f3, 1)

is-self-consistent (jm: Proofmap, fs: Proofstore) r:

pre complete-proofs(jm) C dom fs
post & solved-problems(jm) = derivable-resulis(jm, fs, axioms(jm))
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is-complete-proof (v: Proof, u: Problemref, ps: Problemstore, ss: Subsegstore,
es: Ezxpstore) r: B
pre © € dom ps A is-valid-subsegstore(ss, es) A is-valid-problemstore(ps, 33, es) A
(is-Instantiation(v) = is-valid-instantiation(v, ps, s, es)) A
(is-Composite-proof(v) = is-valid-composite(v, ps))
post let t = cases v of
mk-Instantiation(o, m) — is-problem-match(o, w, m, ps, ss, es)
otherwise con(ps(u)) € knowns(u, hyp(ps(u)), v, ps, ss)
end
in
T &t

is-mllid-proofmap (jm: Proofmap, fs: Proofstore, ps: Problemstore,
ss: Subsegstore, es: Ezpstore) r:B
pre is-valid-subsegstore(ss, es) A is-valid-problemstore(ps, ss, es) A
is-valid-proofstore(fs, ps, ss, es)

post 7 < solved-problems(jm) C dom ps A complete-proofs(jm) C dom fs A

is-self-consistent(jm, fs) A

Yu € solved-problems(jm) - Vv € jm(u) -

problems(fs(v)) C dom jm A is-complete-proof(fs(v), u, ps, s, es)
AVE, m € dom jm - (3v € jm(k) N jm(m) - is-composite-proof(fs(v))) = k=m

incomplete-proofs : Incomplete-proofmap — set of Proofref
incomplete-proofs(im) & |Jrngim

is-valid-incomplete-proofmap (im: Incomplete-proofmap, jm: Proofmap, fs: Proofstore,
ps: Problemstore, ss: Subsegstore, es: Ezpstore) r: B
pre is-valid-subsegstore(ss, es) A is-valid-problemstore(ps, ss, es) A
is-valid-proofstore(fs, ps, 33, es) A is-valid-proofmap(jm, fs, ps, s3, €s)
post 7 <> domim C dom ps A azioms(jm) Ndomim = { } A
complete-proofs(jm) U incomplete-proofs(im) = dom fs A
complete-proofs(jm) N incomplete-proofs(im) = { } A
Yu € domim - Vv € im(u) - problems(fs(v)) C solved-problems(jm) A
is-Composite-proof(fs(v)) A —(is-complete-proof(fs(v), u, ps, s, es})

Indexmap = map Proofref to N
forward-proof (h: Proofref, fs: Proofstore, rm: Indezmap) v: Composite-proof

pre b € dom fs N dom zm A is-Composite-proof(fs(h)) A0 < zm(h) < len fs(h)
post v = {n € N|1< n<zm(h)} < fs(h)

backward-proof (h: Proofref, fs: Proofstore, zm: Indezmap) v: Composite-proof
pre h € dom fs N dom zm A is-Composite-proof(fs(k)) A0 < zm(h) < len fs(h)
post fs(h) = forward-proof(h, fs,zm) ~ v
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goals (n:set of Node, c: seq of Problemref, ps: Problemstore) r:set of Node
pre rng ¢ € dom ps
post r = if ¢ = []
then n
else let k£ = hyp(ps(hd c)), y = con(ps(hd ¢)) in
ifyen
then goals({n — {y}) Uk, tl ¢, ps)
else goals(n,tlc, ps)

is-valid-indezmap (zm: Indezmap, im: Incomplete-proofmap, jm: Proofmap, fs: Proofstore,
ps: Problemstore, ss: Subsegstore, es: Ezpstore) r:B
pre is-valid-subseqstore(ss, es) A is-valid-problemstore(ps, ss, es) A
is-valid-proofstore(fs, ps, s3, es) A is-valid-proofmap(jm, fs, ps, ss, es) A
is-valid-incomplete-proofmap(im, jm, fs, ps, ss, es)
post dom zm = incomplete-proofs(im) A Vu € domim - Vv € im(u) -
let fp = forward-proof(v, fs, zm),
bp = backward-proof(v, fs, zm),
gp = reverse(bp) in
0 < zm(v) < len fs(v) A
3z € rng bp - hyp(ps(z)) C knowns(u, hyp(ps(v)), o, ps, 38) A
Vg € dom gp - con(ps(gp(g))) € goals({con(ps(w))};{g,---,len gp}<gp, ps) A
Vb € dom fp -
adds-known(u, knowns(x, hyp(ps(u)), {b,...,len fp}<fp, ps, ss), fo(b), ps, s3)

B The Proof of and-or-dist

This appendix gives the full proof structure arising from the proof of {E1A(E2V E3)} - ELAE2V
E1 A E3 as dealt with in Section 3.3. For clarity, objects are written here in concrete (dereferenced)
form, though it should be borne in mind that all are stored internally as references to objects.

Following the session described in Section 3.3, the complete proof of {E1A(E2V E3)}F E1AE2V
E1 A E3 will be a composite proof consisting of five elements, [p1, p2, p3, p4, p5], where

pl={E1A(E2V E3)}+ El

p2={E1A(E2V E3)} - E2V E3

p3={E1A(E2V E3),E2} - ELAE2V E1AE3

pa={E1A(E2V E3),E3}+F E1AE2V E1AE3

ph={E2V E3,{E2}ME1AE2VEl/\E3,{E3}ME1AE2VE1/\E3} FE1AFE2V E1AES.

Each of pl to p5 is a solved problem, and therefore itself has a proof. The problems pl, p2 and p5
are simply instances of rules. Their proofs, f1, 2 and f5 are thus instantiations:

f1 = Instantiation of {XAY}F X by {X — E1,Y — E2V E3}

72 = Instantiation of {X AY}F Y by {X — EL,Y s B2V E3}

#5 = Instantiation of {X V Y, {X}~ Z,{Y}~ 2} Z by {X = E2,Y — E3,Z = E1AE2V
E1AE3} o T

The other two elements, p3 and p4, themselves have composite proofs f3 = [pl, p6,p7] and f4 =
[p1, p8, 9], where

p6 = {E1,E2}F E1 AE2

p7T={E1AE2}-E1ANE2V E1AE3

p8 = {E1,E3} + E1 A E3

p7T={E1AE3}-E1ANE2V E1AE3

Again, each of p6 to p9 is a solved problem and has a proof. Their proofs are simply the instantiations
6 to f9:

£6 = Instantiation of {X,Y}F XAY by {X — E1, Y > E2}

£7 = Instantiation of {X}F X VY by {X - E1AE2,Y > E1A B3}

78 = Instantiation of {X,Y}F X AY by {X — E1, Y — E3}

9 = Instantiation of {Y}F X VY by {X = E1AE2,Y v+ E1 A E3}
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