

ISSN 0105-8525

SIS - Semantics Implementation System

Reference Manual and User Guide

by
Peter Mosses

DAIMI MD-30
August 1979

Computer Science Department
AARHUS UNIVERSITY

Ny Munkegade- OK 8000 Aarhus C - DENMARK
Telephone:06-128355

ABSTRACT

The Semantics Implementation System, SIS, provides the
following facilities:

a parser-generator, producing parsing tables from
grammars written in GRAM (an extension of BNF);

a encoder-generator, producing "encodersfl (code­
generators) from semantic descriptions written in DSL (a
variant of the Scott-Strachey notation for denotational
semantics); and

an interpreter, evaluating expressions in LAMB (a version
of lambda-notation).

This document explains the general structure of SIS, and
describes the notations GRAM, DSL and LAMB.

lt is assumed that the reader is familiar with the method of
denotational semantics, at least to the level of Tennent's tutorial
paper [Comm.ACM, 19:8].

SIS has been implemented in BCPL on a PDP-10. A hard copy of
the implementation - which is reasonably portable - can be
obtained by writing to the author.

- m -

ACKNOWLEDGEMENTS

SIS has been a long time under development, and people too
numerous to list here have given advice and inspiration at various
times. My thanks to them all - not least to the long-suffering
students at Aarhus who experienced SIS' teething troubles!

The original inspiration for SIS came from the late Christopher
Strachey. The encouragement and support from his Programming
Research Group at Oxford were crucial to the initial development
of SIS.

Karsten Bank Petersen, Aarhus, helped in rewriting parts of SIS to
improve the portability. Gilles Kahn, IRIA, was brave enough to
try out an early version of SIS, and his -enthusiasm for SIS was a
real help in completing what had turned into a rather long project.

The SIS project has been supported financially by the British
Science Research Council, and by the Computer Science
Department of Aarhus University.

- iv -

CONTENTS

Abstract iii
Acknowledgements iv
Contents V

CHAPTERS

1. SIS

2. LAMB 5

2.1. Domains 6
2.2. Constants 7
2.3. Identifiers 7
2.4. Operators 7
2.5. Enquiry 10
2.6. Binding 12
2.7. Miscellaneous 14

3. GRAM 17

3.1. General 17
3.2. Notes on Example 18
3.3. Parsing 25

4. DSL 27

4.1. General 27
4.2. Notes on Example 29
4.3. Cases 36
4.4. Definitions 37
4.5. Nodes 38
4.6. Domains 39
4.7. Type-checking 41

-V -

r
!

5. PRAGMATICS 43

5.1. LAMB 43
5.2. GRAM 45
5.3. DSL 47

References 50

APPENDICES

A. LAMB Syntax 53

B. GRAM Syntax 55

C. DSL Syntax 59

D. DSL Semantics 63

E. LAMB Reduction Rules 71

F. LAMB Evaluator 75

G. Loop Semantics (in LAMB) 87

~ vi -

1. SIS

SIS is basically a compiler~generating system. The part of it concerned with
parsing is fairly conventional: it takes a context-free grammar, specified in an
extension (called GRAM I of BNF, and produces a parsing table. This table can
then be used to produce parse-trees (the parse-trees are more ~abstract syntax
treesH than derivation-trees) from programs in the specified language, as the
first step towards compiling them. The parsing is usually split into two passes
- lexical and syntax analysis - and use is made of the SLRI11 algorithm
[Andersen,Eve&Horning73].

The rest of the system is less conventional. In contrast to other
compiler-generating systems [Feldman&Gries68], the "encoder
(code-generator) part of a compiler is produced from an independently-useful
formal semantics for the programming language. The type of formal semantics
used by the system is so-called "denotational semantics" [Tennent76, Stoyn].
However, the original - rather exotic - notation of Scott and Strachey (used
by Tennent and Stay) is not very convenient for computer processing; so a
variant of the notation, called DSL, has been devised land formally defined, see
Chapter 4). it is easy to translate Scott-Strachey notation into DSL, and vice .

versa.

The encoder, produced from the semantic description, takes the parse-tree of a
program and gives what is basically an expression in lambda-notation
[e.g.Stoy77]. The expression denotes the semantics of the program, usually a
function from (a list of) inputs to (a list of) outputs. The particular version of
lambda-notation used in SIS is called LAMB.

To run the code of a program with a particular input, the lambda-expression
produced by the encoder is formally applied to a lambda-expression
corresponding to the input; this application is then evaluated, i.e. reduced to
"normal form", giving the output of the program. The reduction algorithm uses
a "call-by-need" strategy [Vuillemin73]idue also to Chris Wadsworthl.

The system is not closely tied to the use of the particular notations GRAM and
DSL, which are described below. The user may define new notations, using
the standard versions of GRAM and DSL.

2 SIS

The main components of SIS, which enable the above operations to be carried
out, are as follows:

(P) The parser. lt takes a source text and a parsing-table, and parses the
text to produce a parse-tree.

(G) The parser-generator. lt takes the parse-tree of a grammar written in
GRAM, and produces a parsing-table. (Standard parsing-tables are
provided for LAMB, GRAM and DSL.I

(0) The encoder-generator. lt takes the parse-tree of a semantic description
written in DSL, and produces a LAMB-expression denoting the specified
semantic function. When this LAMB-expression is applied to the
parse-tree of a program, it produces a LAMB-expression denoting the
semantics of the program (usually an "input-outpu(function).

(R) The LAMB-reducer. lt is used to evaluate applications of semantic
functions to parse-trees of programs, and also applications of
input-output functions to inputs. lt can also be used for reducing
arbitrary LAMB-expressions to "normal form".

The diagrams below illustrate the use of the main components of SIS. Let PL
be some programming language.

Compiler Generation:

PL-grammmar } P, G
}------------------> PL-parser

GRAM-parser }

PL-semantics } P, D
}------------------> PL-encoder

DSL-parser }

I
!

I

I
I
I
~>

3

Compilation:

PL-program } P
}------------------> PL-program tree

PL-parser }

PL-program tree } R
}------------------> PL-program code

PL-encoder }

Execution:

PL-program code } R
}------------------> output

input }

See [Mosses75, 76] for more explanation of (and motivation for) the structure of

SIS.

The following Chapters describe LAMB, GRAM and DSL in detail (albeit rather
informally), and a final Chapter gives some practical advice on techniques
which will enable the user to get the best out of SIS.

5

2. LAMB

This Chapter introduces LAMB. on which DSL and (to a lesser extent) GRAM
are based. lt is assumed that the reader is familiar with the lambda- notation
used in denotational semantics (see [Tennent76, Stoy77]).

LAMB is a particular version of lambda-notation, formally based on Scott's
LAMBDA [Mosses75, Scott76]. As such, it is a suitable notation, or "code", for
representing abstract mathematical functions, such as semantic functions, or
input-output functions. A concrete syntax for LAMB is given in Appendix A.
The formal definition of the semantics of LAMB (by translation into LAMBDA!
is not very illuminating, and therefore will not be given here; it is hoped that the
informal description below will suffice for the general user of SIS.

LAMB-expressions satisfy certain "laws", which can be used as reduction rules
for simplifying expressions. Note that, in contrast to the lambda-calculus,
these laws are not 'a priori' axioms, but theorems provable from the semantics
of LAMB. The reduction rules are given in Appendix E.

The LAMB-reducer in SIS is an algorithm for applying the reduction rules in a
particular order. Thus LAMB-reduction of an expression produces a new
expression denoting exactly the same value. For example, if a
LAMB-expression f denoting a function is applied to another expression e, the
LAMB-reducer can be used to "evaluate" the application f(e}, giving some
(hopefully simpler!) expression e'. The important point is that e' denotes
exactly the same value as f(e)l In fact, it is only because of our limited ability to
grasp the meaning of complex expressions, that LAMB-reduction is needed at
all.

The reduction algorithm used in SIS is described in Appendix F. lt uses a
"call-by-need" strategy for applying the reduction rules.

The remaining sections of this Chapter give an informal description of the
semantics of LAMB.

6 LAMB

2.1. Domains

Let a "domain" be a complete partial order with a miliimal element "bottom".
For the use that is made of LAMB in SIS, it is unimportant whether a domain is
taken to be a complete lattice, a chain-complete partial order, or whatever - all
that is required is that solutions of domain equations and least fixed points of
functions exist and are well-defined {up to isomorphism). Power domains are
not provided in the current version of LAMB.

The meanings of LAMB-expressions belong to a domain E satisfying the
following equation (up to isomorphism):

E= N+G+T+E•+P+F+?
where +

N =

Q=
T=

is the coalesced sum, and
non-negative integers (flat, i.e. no ordering between the proper
elements)

so-called "quotations" (flat, countable)
truth-values (flat)

E* finite tuples with components in E
P = "parse-trees" with node-labels in Q and components in E
F = E -> E, the continuous functions from E to E
? = the domain with just one proper element (which is also denoted by

'?')

Note: E* = ? + E + E x E + ; .. , so the size of a tuple can be tested. This is
in contrast to tuples in LAMBDA [Scott76], which are simply abbreviations for
functions: they have no size, and cannot be concatenated.

In the following, the small letters n, q, t, p, f and e (possibly subscripted) will
stand for arbitrary LAMB-expressions with meanings in the corresponding
domains. A small letter followed by an asterisk'*' will represent an expression
denoting a tuple with components in the indicated domain. Finally, the letter
'x' will stand for an arbitrary identifier of LAMB.

LAMB-expressions may be built up from constants, identifiers and operators, in
accordance with the concrete syntax given in Appendix A. All
syntactically-valid LAMB-expressions denote elements of E: the
semantically-" nonsensical" expressions simply denote'?'.

Constants 7

2.2. Constants

The constants of LAMB consist of:

the decimal numerals 0, 1, ... , 9, 10, ...
denoting elements of N;

quoted sequences of characters, e.g. "I am a quotation", T, ""
denoting elements of Q;

TT and FF
denoting elements ofT;

and?
denoting the proper element of the domain ? .

2.3. Identifiers

LAMB identifiers are basically sequences of small letters. However, the first
letter may be a capital, and dashes '-' may be used. An identifier may be
"decorated" with a subscript (a sequence of digits), or with one or more primes
('). (Also, the character'#' is used in LAMB-identifiers generated by SIS.)

2.4. Operators

Operators may be used as follows, to build up LAMB-expressions denoting
more complex elements of E:

<e1, e2, ... , en>
denotes a tuple in E*, whose components are the values of e1,e2, ... ,en.
The tuple may be empty, i.e. n = 0. ITuples with different numbers of
elements are always distinct.)

SIZE e•
denotes the number of components of the tuple e*.

e* EL n
denotes the nth component of the tuple e*, provided that 1.::;;; n.::;;; SIZE e*.

8 LAMB

e1• CATe2•
denotes the concatenation of the tuples e1* and e2*.

e1• AUG e2
augments the tuple e1• with the value e21equivalently e1• CAT<e2>).

e1 PRE e2•
prefixes the value e1 to the tuple e2• (equivalently <e1>CAT e2•).

CONC e••
concatenates the tuple components of the tuple B**

(equivalently le** El1) CAT ... CAT le** El SIZE e**)).

q NODE e•
denotes a "parsEHree" in P, whose label is q, and whose immediate
branches are the components of the tuple e*.

LAM x. e
binds the identifier x in the expression e, and denotes the function in
E -> E which takes the values of e as x varies over E. (See also
Section 2.6.)

t -> e1, e2
is the conditional expression, equivalent to (i.e. denoting the same value
as) e1 if t denotes true, equivalent to e2 if t denotes false.

Note that (all) the usual arithmetic and Boolean operators are verbalised in
LAMB, to avoid confusion with the other uses of the symbols+,-,*,<,>.

n1 PLUS n2
n1 MINUS n2
n1 MULT n2
n1 DIV n2
n1 REM n2

(when n1;>n2)

(when n2>0l
(when n2>0)

all denote the obvious integer values.

n1 LS n2 "less"
n1 GR n2 "greater"
n1 LE n2 "less or equal"
n1 GE n2 "greater or equal"

are equivalent to TT if n1 is in the specified relation to n2
- otherwise equivalent to FF.

Operators 9

NOT t
t1 AND t2
t1 OR t2

all denote the obvious truth-values.

e1 EQ e2
is generally equivalent to TT if e1 and e2 denote the same value, and
otherwise equivalent to FF. However:
- testing fun~tional values always yields FF;
- testing 'bottom' always yields 'bottom'.

e1 NE e2
is the negation of e1 EQ e2.

The following operators can be used to construct "atomic" values (numbers,
quotations, truths) from their character representations:

NUMBER q•
denotes the number whose decimal digits are the components of q*,
provided that q* has at least one component.

QUOTE q•
denotes the quotation whose characters are the characters of the
components of q*, provided that all these components denote
single-character quotations. Note that QUOTE<> is equivalent to "".
(Tuples of multi-character quotations may also be QUOTEd - distinct
operand values yield distinct quotations.)

TRUTH q•

cc q

is equivalent to TT if Q* is equivalent to <"T', "T">, and to FF if Q* is
equivalent to <"F" ;F">.

denotes the quotation of a "special" character:
if q = 'Q" then the quote-mark (');
if q = "C" then the carriage-return character;
if q = "L" then the line-feed (or new-line) character;
if q = 'T' then (horizontal) tab;
if q = 'p' then page-throw (form-feed); and
if q = "E" then end-of-file.

10 LAMB

Function application is denoted by simple juxtaposition - but note that a
space, or parentheses, may need to be inserted to separate the two operands
(see Appendix Al.

f e

denotes the value of the function fat the value e.

2.5. Enquiry

The "enquiry" operator
e1 IS e2

has a rather different nature from the operators described in the previous
Sections. Its basic purpose in life is to tell whether the arbitrary value denoted
by el is of the particular "form" described by e2 ~ e.g., whether el denotes a
number, or a tuple, etc. More generally, it can be used to investigate structure
to any depth, and resembles a "pattern·matching" operator (but without
"back-tracking"). Constructor-operators for the particular forms are used in the
"pattern~ ~expression e2, and '?' is used to match any value.

For example, the pattern to match any 3-tuple is<?, ?, ?>, hence:

e1 IS<?, ?, ?>is equivalent to
TT, if e1 denotes a 3-tuple;
FF, if e1 denotes some other tuple; also

FF, if e1 denotes a non-tuple - even if it is the special value '?' (but
bottom, of course, if e1 denotes bottom).

There are pattern operators for matching each of the sub-domains of E (except
for ?, which can however be tested for by the use of e1 EQ ?), and pattern
expressions can be nested to any depth, in general.

The following operators may be used to build up pattern-expressions:

<e1, e2, ... , en>
matches tuples with n components.

e * (a pattern-expression followed by a star)
matches tuples with any number of components.

e +
matches tuples with at least one component.

Enquiry 11

e1 NODE e2
matches nodes.

LAM?. ?
matches functions (note that this is only a 1-level pattern).

NUMBER e
matches numbers.

QUOTEe
matches quotations.

TRUTH e
matches truth-values.

CC e
matches special characters (newline, etc.).

Note that NUMBER, QUOTE, TRUTH and CC are the atom-constructor
operators mentioned earlier. Hence one may specify the form of their

operands. E.g.,
e1 IS QUOTE<?>

can be used to test whether e1 is the quotation of a single character. (Actually,
this would also match, e.g., QUOTE<" ab"> -single character quotations care
exactly characterised by QUOTE<c> EO c being equivalent to TT.)

Constants may be used in patterns, and (with the exception of '?') they simply

match themselves.

For technico-pragmatic reasons, identifiers are permitted in pattern-expressions.
However, in this context, they are completely equivalent to '?', matching any
value. Therefore it is not possible to bind pattern-expressions to identifiers, and
then use the identifiers in a pattern context. For example, LAM x.(e IS x) is
absofutely equivalent to LAM x. TT .

To summarise the use of pattern-expressions with the operator 'IS':
e1 IS e2 is equivalent to:

TT, if the value denoted by e 1 can be "constructed" by the pattern e2;
FF, if it cannot possibly be so constructed.

Pattern-expressions look basically the same as ordinary LAMB-expressions, but
only "constructive operators (NODE, NUMBER, etc.) may be used.

In effect, the notation 'e1 IS e2' is a generalisation of the "enquiry" notation
used in [Tennent76, Stoy77] for separated sums, applied to the domain of
values

E = N + Q + T + E• + P + F + ? .

2.6. Binding

If one has tested that a value is of a particular form, using e1 IS e2, it might
then be desired to extract the (so-far untested) components of the value -
perhaps for further testing. For example, if e1 IS<?*)*> is true, then one
might wish to extract the first and second components of e1, in order to test
whether they are of the same size. LAMB follows ordinary lambda-notation in
allowing tuples of identifiers in lambda-abstractions, to acheive this extraction.
Thus xl and x2 will be bound to the first and second components of e1

ILAM<x1,x2>. elle11.

However, LAMB goes on to generalise this idea (after [Burstall69]1: it allows
not only tu pies of identifiers, but also n pattern" ~expressions (described in the
previous Section) to occur in lambda-abstractions. If e' is any
pattern-expression, then LAM e'. e is called a pattern-abstraction. Suppose e1
IS e' is equivalent to TT; then ILAM e'. O")(e11 denotes the value of e with the
identifiers (if any) occurring in e' associated with the "corresponding"
components of e1. E.g., if e1 IS QUOTE<?,?> is equivalent to TT, then
I LAM QUOTE<x1,x2>. x1lle1) denotes the first of the two characters of the
quotation denoted by e1.

When a pattern-abstraction LAMe'. e is applied to a value e1 such that e1 IS e'
is equivalent to FF, then the value denoted by the application is simply '?'.
Hence, if e' is any pattern-expression, then LAM e'. e' denotes the function
which is identity on the sub-domain of E corresponding to e', but which maps
all other values to '?'.

The reader may have noticed that operators for selecting the labels and
branches of nodes have not been introduced. This is because one can simply
use the application

ILAMix1 NOOE x2). e1lle21
to select and bind the label (x11 and the tuple of branches lx2J of a node e2.

Binding 73

In a similar way, LAMB allows the tuple~prefixing operator 'PRE' to be used in
pattern~expressions. This enables tuples to be regarded as lists, since the
"head" and the "tail" of a tuple can be selected (and bound) by

(LAM(x1 PRE x2). e)(e') .
The nil-list is simply the empty tuple <>.

For symmetry, 'AUG' is also allowed in pattern~expressions. Note that 'CAT' is
not allowed - it would introduce an unwelcome non~determinism into LAMB's
semantics.

There are two forms of pattern-expression which do not always have an
obvious meaning in a binding context (i.e. after 'LAM'). These are e *and e +
(matching tuples of arbitrary and non-zero lengths). What identifier(s) should
be bound in an application of LAM X*. e, for example? One could imagine
some sophisticated scheme in which (LAM X*. e)(e1) would cause the creation
and binding of "new" identifiers x~ 1, x-2, ... , x~n, where n would be the length
of the tuple denoted by e1. LAMB steers clear of such a dynamic sort of
binding, and takes a simple-minded view of LAM X*. e: X* is treated as a single
identifier, and occurrences of X* in e refer to the whole (tuple) value bound to
X* when the abstraction is applied. The same goes for x + (for non-empty
tuples), and for any identifier x followed by a sequence of * and/ or + signs.

Pattern-expressions e *, e +, where e contains both identifiers and operators,
can be used in binding contexts - they do NOT contribute to the binding, but
do affect the pattern-matching. E.g.,

(LAM(QUOTE x)•. e)(e1)
is equivalent either toe or to?, depending on the form of e1. (lt would be
"nice(to use the equivalent

(LAM(QUOTE ?)•. eHe1) .)

Finally, pattern~expressions may include the monadic operator V AL. This
corresponds closely to "call-by-value in Algol60 - semantically, it makes the
enclosing operator ('LAM' or 'IS') "strict" (mapping bottom to bottom) in the
qualified component. For example, LAM VAL x. e denotes a strict function,
and <e1,e2> IS <?,VAL ?>will denote bottom if e2 denotes bottom. The main
use of VAL in SIS is in achieving the desired termination semantics for
programming languages.

(Note: Because it is possible for a LAMB-expression to have a non-bottom
meaning, but not have a normal form, VAL-abstractions are ~ over~strict" in the
present implementation. See Appendices E, F.)

14 LAMB

There is one other binding operator in LAMB: the fixed~point operator,
'FIXLAM'. FIXLAM x. e is basically equivalent to y(LAM x. e), where y is the
usual expression for the fixed-point operator:

LAM x1. (LAM x2. x1(x2(x211)(LAM x2. x1(x2(x2111.
As in LAM~abstractions, LAMB allows a pattern-expression in place of the
bound identifier x. However, in FIXLAM e'. e, there is a minor restriction, in
that e IS e' must be Nmanifestly" true. E.g. if e' is a tuple of identifiers, then e
must also be a tuple-expression with the same number of components - it
could not be of the form e1 CAT e2, even if e1 and e2 were tuple expressions
with the correct (total) number of components.

2.7. Miscellaneous

The operators described above were mostly concerned with tuples and atoms,
and with function abstraction. There are also operators providing function
compositions commonly used in denotations! semantics:

11 ; e
11 CIRC 12
11 STAR 12.

These operators can be explained simply in terms of LAM~abstraction and
application:

11 ; e = 11(el

11 CIRC 12 = LAM VAL x. (LAM VAL x1. 12(x1))(11(xll

11 STAR 12 =
LAM VAL x. (LAM VAL<x1,x2>. 12(x1)(x2))(11(x)).

The semicolon operator ';' is useful, simply because it has a different
precedence from the usual application operator (juxtaposition) - and it
associates the opposite way, i.e. to the right (as do 'CIRC' and 'STAR', in
contrast to all the other diadic operators). Thus

11 (12(e))
can be written as

11; 12; e
which facilitates the reading of large LAMB~expressions corresponding to
continuation semantics for programs.

Miscellaneous 15

Note the order of composition for 'CIRC' and 'STAR', it is the (often more
convenient) reverse of that for the usual circle and star operators. Note also
that 'CIRC' and 'STAR' have been made "strict", anticipating their use in
representing sequencing in DSL descriptions.

There are two remaining operations in LAMB:

SEG q
denotes the LAMB-expression residing on the "file" identified by q, thus
facilitating the combination of independently-produced
LAMB-expressions; and

ACTIVATE p
transforms the parse-tree of a LAMB-expression into the actual ("active")
expression it denotes.

See the Pragmatics Chapter for further details.

So much for the meaning of the various constructs of LAMB. Of course, it is
not claimed that the preceding informal description constitutes a complete
definition of LAMB - though hopefully it is reasonably ambiguous. (One of
the main points of incompleteness concerns the behaviour of the operators on
'?'- and 'bottom'- operands: not all of them are strict.)

The Chapter concludes with a small example in LAMB. Further examples will
be given in Chapter 5. (See also Appendix G for a larger example!)

16 LAMB

Table 2.1

(i,MI t.
flXLAH mdp•f, ! applies f to all elerrents of n*
LA:~ n*.

51Zl n* ~V 0 ~> <>,
(LAH(nl PR~ 11l*l. f(nll PBE ~ap•f(nl*l J(ntl

(.FlXLArl tot,
LAH n. gives 0 + 1 t ••• t n

ni::QO~>o,

n PLUS tot (n !HNU.S ll

<U,l ,2, 3, 4,5 ,6, 7, 8,9>

LA~ill "t·lap•tot"

< o, 1,), b, 10, 15, 21, 28, J6, 45>

END

17

3. GRAM

This Chapter presents GRAM, a notation for specifying syntax. GRAM has
been designed to provide a transparent interface between concrete syntax
(used for parsing) and abstract syntax (used in semantic descriptions). lt is
assumed that the reader is familiar with BNF [Naur63], and with the general
concepts of context-free parsing.

3.1. General

GRAM is a formal notation, similar to BNF, for describing the context-free
syntax of programming languages. SIS can take a syntactic· description of a
language, written in GRAM, and produce a parsing decision-table from it. The
parsing algorithm of SIS can then interpret this table to parse programs in the
described language, producing parse-trees conforming to a convenient abstract
syntax. However, the grammar has to satisfy some constraints, corresponding
roughly to the the SLR(l) condition [DeRemer71] these constraints are
described in Section 3.3.

Usually, a description in GRAM consists of two parts: LEXIS and SYNTAX.
This corresponds to parsing taking place in two successive passes. LEXIS
describes the lexical analysis pass, which takes the source text (considered as a
LAMB-tuple of single-character quotations) and recognises a sequence of
"basic symbols", such as "reserved words", identifiers, numerals, strings, etc.
The output of the lexical pass is a tuple formed from the recognised symbols,
which are represented by LAMB-quotations (in general). This tuple is then
input to the syntax analysis pass, described by SYNTAX, which parses the
sequence of basic symbols to yield a parse-tree - composed of LAMB
NODE-values.

lt is possible to specify extra passes, to occur before or and after lexical
analysis. Such a pass is called a TRANSFORM: it could, e.g., remove all
layout characters, as for Algol60; or insert semicolons ·between certain
combinations of basic symbols, for BCPL. (A TRANSFORM has the same
structure as a LEXIS, and it will not be described further here.)

18 GRAM

The same notation is used in GRAM for describing both lexical and syntactical
analysis. The notation is basically BNF, but it allows explicit indication of the
value to be yielded when an instance of an production is recognised. The
LEXIS and SYNTAX parts differ in form only in that the values specified in
LEXIS productions are generally quotations (or tuples of them), whereas those
specified in SYNTAX productions are NODEs - and leaves - of parse~ trees.

Apart for this explicit indication of values to be yielded, the main extensions of
BNF in GRAM are "iterators" and "ranges". lterators correspond to the
Kleene~star, and ranges are a convenient way of specifying particular sets of
terminal symbols.

For the concrete syntax of GRAM (in GRAM I see Appendix B. GRAM will now
be described informally, with the help of the following example.

3.2. Notes on Example

Consider the example GRAM specification given in Table 3.1. The language
described is a simple extension of LOOP (see [Tennent76]). The various
features of GRAM will be explained with reference to the example, using '!n' to
refer to the corresponding line. ('!' is used to introduce an "end~of-line"

comment in GRAM descriptions.)

A GRAM specification starts with the symbol 'GRAM', followed by a string
which is taken as the title ! 1. The SYNTAX !2 and LEX IS !25 are more or less
of the same form: a sequence of "productions~, each terminated by a
semicolon ';'. The non~ terminals are formed from lower-case letters and dashes
('exp', 'exp~a') whereas the terminal symbols of the grammar are quoted
("READ", H;")- the LAMB-notation for representing "control characters" is also
allowed (CC"C"" !39).

A production has a non-terminal to the left of ':: = ', and a list of "alternatives",
separated by '/', to the right.

Loop Syntax

Table 3.1

GHAM ~LUOP-Parser"

S¥NTAX

prog ··- read-cmd ~." cmd-seq ~;" write-cmd

read·cmd : := ''RC.:AD" var*·", " ["READ~ var*l

write-emu : := "WRITE" exp-t-•", " ["WfliT~" exptl

cmd•seq ::= cmd•seq ~;" omd (cmd•seq ";'' cmdl
omd ,.,

omd ::= ,., ":=~ '" ~TO" oxp "00" omd
"(" cmd•seq ~}" cmd•seq

OXP : := e>p add•op exp•a I
exp-a exp•a

add•op .,. H.,.ol

exp-a ::= exp•a mult•op exp-b I
exp•b exp·b

mult•op "*" J "I"

exp•b : := '"' """
'"' : := "VAR" q q

""· ::= "NUM" n n

DOMAINS

cmd-seq, cmd Cmd;

exp, exp-a, exp•b Exp

add•op, mult•op Op

19

01

02

03

04

os

06
07

os
09
10

11
12

13

14
15

16

17
18

19

20

21

22

23

24

20

L!::XlS

o-rogram : :=

word :: =

letter ::=::

uum : :=

dhJit

comment : :=

'"' nu m
comment
layout+

GRAM

Table 3.1 (cont.)

CDNC word+

<OUT"VAF", var>
<OU1 "NUH", nu m>
0 I
0

letter letter~digit*

: QUOTECletter PRE letter•digit*)

"d",,, "Z"

digit+ : NUMBER digitt

"0" ••• "9"

"C" "M" "T" comment-cha.r*

comment-char =\= "·"

layout === CC"C" I CC"L" cc~t"

EN!.l

25

26

21
26
29
30

ll
32

33

34

35

36

37

38

39

40

r

Notes on Example 21

An alternative specifies a "phrase", consisting of a possibly-empty sequence of
so~called "elements", which are usually simple "items", i.e. terminals or
non-terminals. However, it is also possible for elements to be "iterators" !4 !5
!26 of the form:

item*
allowing zero or more occurrences of item;

item+
allowing one or more ...

item1 *- item2
allowing zero or more occurrences of item1, separated by occurrences
of item2 (which is restricted to be a terminal); or

item 1 + - item2
allowing one or more ...

lterators allow the convenient expression of commonly-occurring constructs !4,
and avoid the introduction of extra non-terminals. Of course, recursion (left !6,
or right) may be used instead, if preferred. (Actually, the current
implementation of iterators gives the same effect as using right·recursion, as
regards the language accepted.)

For each alternative, the value to be produced when the phrase is recognised
may be specified by a (restricted) LAMB-expression, following a colon':' !4 !5
!6 !7. Identifiers (non·terminals) occurring in the expression refer to the values
yielded by the recognition of the elements of the phrase. Tu pie-identifiers, e.g.
var* !4, exp + !5, refer to the values yielded by the recognition of iterators -
naturally enough, these values are always tuples. However, note that with a
"separator" element, such as var*-"," !4, the tuple value has components
corresponding only to the main item, here 'var'; furthermore, the separator '-",n'

is NOT used in the non-terminal referring to the tuple in the value expression.

Often, the identifiers occurring in the value-expression will be in the same order
as the corresponding elements in the phrase which precedes it. (GRAM is
designed for specifying simple-minded parsing, not for general syntactic
translation.) However, there is no ambiguity when the same non-terminal
occurs more than once in a phrase, e.g.

real::= digit+ "." digit+ : QUOTE<digit+, digit+>;
- the successive value-identifiers refer to the successive- occurrences of
non-terminals in the phrase, and subscripts on identifiers are neither needed nor
allowed.

22 GRAM

Value expressions may contain literal LAMB constants, i.e. numerals, strings,
truths and '?'.

The only LAMB operators allowed in value-expressions are 'CAT', 'AUG' and
'PRE' !diadic) and 'NUMBER', 'QUOTE', 'CC' and 'CONC' lmonadicl. Tuples
may be specified explicitly with the '<e1, ... ,en>'-notation. For specifying
nodes of parse-trees, the DSL notation '[e1 ... en]' should be used !4 !5 !6. A
full description of this notation is given in Chapter 4, the main idea is simply
that '[e1 ... en]' specifies a node of a parse-tree, with a branch for each identifier
'ei'. The label of the node is formed partly from any literal strings occurring in
the expression, partly from the identifiers occurring - more precisely, form
their corresponding domain identifiers specified in the DOMAINS section of the
grammar !21. For example, '[cmd-seq ";" cmd]' specifies a node with two
branches identified by 'cmd-seq' and 'cmd', and with a label formed from
"Cmd", ';"and "Cmd" (see !221. (The label is NOT simply the concatenation of
the component strings - see Section 4.6 for details - so the direct use of the
LAMB NODE operator is not recommended in GRAM.) For iterators, note that
'["READ" var*]' !4 specifies a node with just one branch: the tuple identified by
'var*'.

In fact, it is seldom necessary to use the '[e1 ... en]' construction in GRAM
descriptions. This is because there is a default convention in the SYNTAX part:
if no value is specified explicitly, the "obvious" node is produced. Thus the
value specifications in !4 !5 !6 - but not in !7 - are actually superfluous, and
correspond to the implicit default values.

All this machinery enables one to obtain the desired "abstract syntax" with the
minimum of effort. By using the DOMAINS to associate one domain-identifier
with several non-terminals 122 123 !24, one can cause the precedence
information, present in the concrete syntax, to disappear from the abstract
syntax. The reader should compare the abstract syntax in Table 4.1 with the
concrete syntax in Table 3.1. Note that SYNTAX alternatives without explicit
value specifications yield nodes with the same label On the same abstract syntax
domain) if and only if their phrases become identical on replacing non-terminals
by their corresponding domain identifiers, and removing separators such as
'-","' !4 !5. Note also that if there is no domain-identifier specified for a
non-terminal, then one is provided automatically by putting the first letter of the
identifier into upper case. E.g.

var: Var ;
is implicit in the example in Table 3. 1.

Notes on Example 23

Thanks to the above conventions, explicit value specifications can generally be
omitted in SYNTAX. However, they are useful for inhibiting "chain-reduction"
nodes, when alternatives have no significance for the abstract syntax. For
example, the specification of the value 'cmd' in !7 (instead of the default
'[cmd]'l means that no node will be constructed when that alternative is
recognised: the value yielded by the recognition of 'cmd' is simply passed
along.

On the other hand, there is no default convention for value specifications in
LEXIS. A glance at the variety of value specifications in the example (which is
not atypical) will show why not.

Ranges were mentioned at the beginning of this Section. They are especially
simple productions, capable of recognising only single terminal symbols !13 !J6.
The value yielded is always the symbol recognised, i.e. a quotation. Ranges are
distinguished from productions by the use of '= = =' or '= \ =' instead of
'::=', after the non-terminal. Thus the range identified by 'add-op' !13 is
equivalent to the production

add-op ::="+":"+"I·-·:·-··
(where the explicit specification of values is necessary, to avoid the default
convention yielding the nodes '[" + "]', '["-"]'). Apart from being a single
terminal symbol, an alternative of a range can also be an interval 134 !36,
consisting of two single-character quotations separated by three dots. In
principle, the only meaningful intervals are "a" ... "z", 'A' .. ."£, "0" .. ."9" and
sub-intervals of these. Observe that the range identified by digit in the example
!35 is exactly equivalent to

digit = = = ·o· rn·z !"3" !"4" ro rer n· ra· /"9"; .

When the sign '= \ =' is used instead of '= = =' in a range, only terminals
NOT in the specified intervals will be recognised. Again, the value yielded is
the recognised symbol itself. Such ranges are particularly useful for describing
the lexical analysis of strings and comments.

Finally, the special intervals 'QUOTE ?' and 'NUMBER ?' may be used (only) in
ranges, to match arbitrary quotations and numbers. The range-identifiers 'q'
and 'n' are pre-defined in GRAM, equivalent to specifying

q ===QUOTE?;
n = = = NUMBER ? ;

See !19 !20 (and 127 !281 for examples of the use of 'q' and 'n'.

24 GRAM

Perhaps the reader has noticed that the LEXIS of the example (Table 3.1) is
rather small - it doesn't explicitly specify the reco9nition of the "ordinar{
symbols, such as "READ", "WRITE", ";", which are used in SYNTAX. In fact,
GRAM sees to this automatically: any literal string which occurs in a SYNTAX
phrase, but which is not yielded by some LEXIS alternative, causes the addition
of a suitable alternative to LEXIS. For example, the occurrence of "READ" in
SYNTAX causes the automatic generation of an alternative

"R" "E" "A" "D" : "READ" I
in LEXIS.

Unfortunately, it is rather difficult to decide whether a quotation could be the
result of an arbitrary value-expression, so the GRAM-user has to indicate
explicitly just which literal strings are yielded by LEXIS. This done by preceding
them with the "pseudo-operator" 'OUT', when they occur in value specifications
in LEXIS !27 !28. 'OUT has no other effect on values, it does NOT cause their
"outputting"! In effect, 'OUT' prevents the generation of an extra alternative for
the symbol it precedes - the symbol may then be safely used for ~private
communication" between the lexical and syntactical analysis, and does not get
added to the language being described. In the example, the symbols

"·" "READ" "WRITE" . - "TO" "DO"

"(" ")" + - "... "/"
will be recognised by LEXIS, but not the symbols

"VAR" "NUM"
(which are not part of the language LOOP, and are used only as "markers" in
the output of the lexical analysis pass).

Apart from this influence just described, the LEXIS and SYNTAX parts should
be considered as specifying completely independent parsers, communicating
only by the tuple of symbols produced by the lexical analysis. In particular,
there is no interference between the names used for non~terminals in LEXIS and
SYNTAX. Thus, in the example, the use of 'var' in both LEXIS and SYNTAX is
purely coincidental, and does not contribute to the parsing process.

Appendix B gives the circular description of the concrete syntax of GRAM, an~
can serve as an additional example of the use of the various features of GRAM,
as well as making precise some of the above informal comments about the form
of the various constructs of LAMB.

Parsing 25

3.3. Parsing

Finally, the problem of ambiguity should be faced. Completely unambiguous
grammars are not very suitable for lexical anlysis: it happens quite often that
some basics symbols are simply composed from others. A classic example is
':', '=' and ':=' in Algol60 - or identifiers 'a', 'b' and 'ab'. A suitable
"disambiguating rule", adopted by GRAM, is that the longest possible symbol is
always recognised - symbols continue until "stopped".

But consider the following example. Suppose a language has symbols
'REPEAT, 'REPEATUNTIL' and 'UNLESS' (BCPLl. What should be the effect
when the sequence of characters 'REPEATUNLESS' is met? Should it be an
error, or should it be recognised as two symbols? This is not entirely a matter
of esthetics, or "style" in language design: it affects the "powe(of the parsing
algorithm needed.

The parsing algorithm used in SIS is basically the SLR(1) algorithm described in
[Andersen,Eve&Horning73], and thus has a one-symbol look-ahead but no
"back~tracking" capability. lt has been extended with the disambiguating rule
mentioned above, and the net effect is that symbols such as 'REPEATUNLESS'
will be treated as errors (although 'REPEAT UNLESS' would be OK).

No attempt will be made here to formalise the details of the semantics of
GRAM in this (or, for that matter, in any other) respect. lt is hoped that the
meaning of GRAM is clear enough to enable the user to get a grammar
"working" quickly - although it must be admitted that the required adherence
to the SLR(l) condition can be tiresome at times. For some practical hints on
writing SLR(1) grammars, see Chapter 5.

27

4. DSL

This Chapter describes DSL - Denotational Semantics Language - which is
the semantic notation used with SIS. The reader is assumed to be familiar with

LAMB (Chapter 2).

4.1. General

OSL is an extension of LAMB, in the direction of the so~called "Scott-Strachey
notation" (SSN). lt would have been nice to use SSN itself in SIS, so that the
reader could be spared the details of yet another new notation; however,
certain features of SSN make it rather unsuitable for computer processing.
Among these features are: the lack of a formal definition of the notation; the
many informally-described conventions, in particular those connected with
"separated sums"; the use of the ellipsis I ...) notation, which is very difficult to
formalise; and the almost mandatory use of symbols and alphabets unavailable
on (most) present hardware.

DSL is admittedly not as elegant or compact as SSN. However, it is hoped
that it comes sufficiently close to the essence of SSN to make translation
between the two notations quite easy. Programmers may even find comfort in
using DSL, which has unashamedly "borrowed" features from such languages
as Lisp, Gedanken and ISWIM. However, it should be stressed that DSL is a
completely mathematical, non-imperative notation - there is no hidden
dynamic state underlying its meaning.

LAMB is a sub-language of DSL, and was described in detail in Chapter 2. The
remaining features of DSL are: the use of domain definitions, the form of
function definitions, the 'CASE' construct, and the '[...]' notation for nodes
(used also in GRAM, see Chapter 31.

28 DSL

Domain defintions in DSL have two purposes: they correspond to domain
definitions in SSN, and they will aid the "type-checkirig" of DSL descriptions.
Every identifier in a DSL description must have a domain-expression associated
with it, either implicitly or explicitly. it is required that the domain information
be sufficient to determine that all operations (including application) have
type-compatible operands. This type-checking will catch most of the simple
"bugs" in OSL descriptions.

A domain can be associated with an identifier when the latter is abstracted
(defined), or, as in SSN, a domain can be "globally" associated with a whole
family of identifiers, by means of the domain definition itself. For exa~ple, if
'n: N' occurs in the domain definitions, then this associates N with n, arid also
with any "decorated" version of n, such as n', n1, etc. -it also associates N*
with the tuple identifiers n*, n'*, n1*, etc.

Function definitions in DSL are very similar to those in SSN. The parameters
may be "Curried" in the usual way. Identifiers may also be defined to denote
values other than functions, e.g. tuples and ~atoms". Definitions may be
combined either recursively, "simultaneously" or sequentially, to allow some
control of scopes (lacking in SSN).

Recall that in SSN, a semantic function is generally defined by a group of
"semantic equations". DSL does not try to make a sPecial distinction between
the defintions of semantic functions and other functions, and so it provides an
explicit 'CASE'-selection construct: this can be used as the body of a function
definition, and also in other contexts. A 'CASE' "works" in just the same way
as the semantic equations do (insofar as the latter has ever been formalised
[Scott76]1.

An important feature of SSN is the use of the "syntactic brackets" {or
quasi-quotes)'[...]'. Together with an abstract syntax specification, it allows a
compact - and readable - description of functions defined on syntactic
objects (e.g. semantic functions defined on programs) and avoids the need for
verbose selector functions and predicates [McCarthy63]. DSL has more-or-less
taken this feature directly from SSN. The notation in DSL is'[...]', where the
items between T and T may be either identifiers or quoted strings (other literal
LAMB constants are also allowed). Note, however, that'[...]' is an operator­
it yields a LAMB node - whereas '[...]' is generally considered to be just a
means for "insulating" the abstract syntax notation from the rest of SSN.

To avoid confusion with the '[...]' notation, DSL uses 'f\e1<-e2' instead of
the SSN 'f[e2/e1]', for "perturbing" functions (usually representing
environments and stores). Note the reversal of e1 and e2.

General 29

The formal definition of DSL consists of a concrete syntax (Appendix C) and a
function giving a translation of DSL parseMtrees into LAMB. A description of
this function, written circularly in DSL, is given in Appendix D. However, this
circular description is not put forward as the canonical definition of DSL. The
canonical definition is a LAMBMexpression corresponding to Appendix D. lt is
not included in this document, because, firstly, it is not easily comprehensible
by itself; secondly, the user of SIS can produce it easily from the DSL version.

The remainder of this Chapter gives an example in DSL, explains the form of
DSL desriptions with reference to the example, and gives an informal
description of the semantics of the main features of DSL.

4.2. Notes on Example

The general form of DSL descriptions will now be described, with reference to
the example in Table 4.1 (which matches the grammar in Table 3.1). '!n' will be
used to refer to a particular line of the example. As in GRAM, 'l' introduces an
"endMofMiine" comment.

A DSL description starts with the symbol 'DSL', followed by a string which is
taken as the title of the description ! 1. The description finishes with the symbol
'END' !83. Usually, the body of the description will consist of some
domainMdefinitions !6-!31, followed by a sequence of definitions of functions (or
other values). The meaning of the whole description is given by a final
expression !82, which is in the scope of all the preceding definitions.

In the domain definitions, there is a uniform treatment of syntactic (abstract
syntax) domains and semantic domains. Domain identifiers begin with a capital
letter ('Prog', 'S') whereas ordinary value-identifiers (sometimes referred to as
"variables") begin with a small letter ('prog', 's'). Note that, to avoid confusion
with the reserved words of DSL ('DSL', 'IN', etc.) capitals may not occur in the
middle of identifiers. However, dashes '-' may be used, to aid readability
('Read-cmd'). Identifiers may be "decoratedn with a subscript (to be a sequence
of digits) or with a sequence of primes (') - or both.

30 DSL

Table 4.1

!.>.SL "LUUP~.Semantics" 01

'ft.e "direct" style of semantics ls used, tc enable comparison 02
·,l'ith Tennent's semantics tor LCOP [CAO~ 19:6J. 03

Expressions cannot !1ave slde~effects in LOCP. As there are no ! 04
declarations in LOOP, environments are not used in the semantics l 05

DU~1AIN.S

SYNTACTIC:

prog Prog

reao•cmd:

write•cmd Write•cmd

lRead•cmd ";" Cmd

["REA!::" var*l

{"WRITE" Exp+]

06

07

OB

09

10

cmd Cmd (Cmd ";" Crrdl I (Var ":=" ExpJ 11
{"TU" EXP "DO" Cmdl I ("(" Cmd ")"] ;! 12

Exp (Exp c~ Expl .I [Var J I [Numl

nom

' n
q

VP ;:

cc :=

Var

Num

SEMANTIC~

S Var ~> N
N
Q

FUNCTIONS:

Prog -> N* ~> N+

Cmd m> S -> S

ee-list :=

ee := Exp ·> s -> N

Q

N

repeat := N -> (S ·> SJ ·> s

States
Numbers
Quotations

update-list := <Var*,N*> -> s -> S

initial-s := s

update := <Var,N> -> s ~> s

"I"

13

14

15

16

17

18
19
20

21

22

23

24

25

"
27-

28

29

30
I

WiTH

Loop Semantics

Table 4.1 (cont.)

OJl>lredJwcmd ";" cmd ";" write-cmdl(nt-): Nt

LU'
AL:.iO
Lt:T
LET
w

t"REALl" Vdr*J = react-cmd
["~RITE" exp+l = write-crrd
s1 = update-list(v<>r*,n*l (lnitldl•s)
s2 = cc(crr,J}(s1)
ee•li~t(exp+Jis2J

cclcmdO)(s): S

CASE cmdO

/lcmdl "•" crod2l ·>

/[var ":=" expl ->

cclcrod2JC cc(crrdl)(S)

LET n = ee(exp)lsl
IN u~date(var,nl(s)

/l"TO" exv "lJO" cmdl ·>LET n = ee(exp)(S)
IN repeatln}(cc(cmdl)(S)

/["(" cwd "l"l -> cc(cmd)(s)

Wl'l.'H ee-list(expOtJ(sJ: Nt =

CASt: expO+

l<exp> ·> <ee(expJ(sJ>

/exp PRE expt -> eetexp)(s) PRE ee·llst(exp+)(S)

ESAC

W!TH ee(expOJ (s): N =
CASE expO

/[expl op eXp2] -> LET nl = eecexp1Hsl
ALSO n2 = ee(exp2)(S)
IN ocCop) (nl ,n2l

/[vdrl -> content(Var){Sl

/[numl -> nom ' N

!!:SAC

31

J;

J4

" 36
37

]9

40

41

"
43
44

45

46

47

48

49

50

5!

52

53

54
55
56

57

58

59

32

1-H'fll

CA<it: op

vd'l'H

WITH

WlTH

WITH

WITH

Ill

DSL

Table 4.1 (cont.)

OO(O..,)(nl,n2): N

I'' t"
_,

/"~"
_,

/""' ,, _,
1"1" _,

nl PLU.S n2
nl 1\INUS n2
nl MUL'l n2
nl DIY n2

repeat(n)(c;(S w) S))(s): S

nf:Q?->?,
n !::IJ 0 -> s,
repeat(ll MINUS l)(C)(c(S))

update-list(varO*,nO*)(s): S

ViHO* EQ 0 w) s,

gives

91 ves

if n2 greater than nl

it n2 is zero

SlZE
Lt:T
ALSO
lN

var PRE var* = varO*
n PRE n* = nO*
update-list(var*,n*J(update(var,nJ(s))

in1 t1al-s : s =
LM var. ?

update(var,nJ(s): s

s\var<-n

content(var)(s): N

S (Vil.r)

61

62
63
64
65
66

67

68
69
70

71

12
73
74
75

76

77

76

79

BO

'1

83

Notes on Example 33

As in SSN, a domain definition can accomplish three things. Firstly, it can
introduce a new domain~identifier. Secondly, it can specify, recursively with
other domain definitions, the domain to be denoted by the identifier. Finally, it
can associate the domain~identifier with a family of variables. In DSL - as in
the DOMAINS part of GRAM - the specification of the family of variables
comes first, and is followed by a colon ':'. (The variables should not be
decorated here.) The specification of the domain is preceded by '=' - even
when the domain is a "syntacticy one- and is terminated by a semicolon';'.
DSL provides standard domain~ identifiers 'N', 'Q' and 'T' denoting the
non-negative integers, the domain of LAMB-quotations, and the usual
truth-values respectively !19 !20. Compound domains are formed with the aid
of separated sums '/' 111-!14, products '< ... >' !26 !28 !30 (also '+' and '•'),
nodes'[...]' 18-113 and functions'->' 118 122 To allow the customary list
of the types of the semantic functions, domain-identifiers may be omitted
between the ':' and '~' 122-131.

OSL is intended to be portable, and thus uses only a restricted character set.
This rather restricts the choice of identifiers; compared to that in SSN
[Milne&Strachey77]. Those who enjoy using Greek, Italic and Script alphabets
{not mentioning Bold, Sans-serif and Gothic) are likely to feel frustrated in DSL.
it is up to the reader to judge whether or not the rather strict conventions used
in the example, such as double letters for semantic functions ('pp', 'ee-list'),
and the close correspondence between the names of variables and their
domains, are appropriate. -The conventions are not mandatory, and may be
varied {within the limits mentioned above) to suit personal tastes.

Moving on to the start of the function definitions !32, the usual form is a
sequence of mutually recursive definitions, introduced by 'DEF' and separated
by 'WITH'. The scope of the definitions is the expression following the
matching 'IN' 182. The symbol 'IN' may in fact be omitted if the expression
starts with more defintions. Note that

DEF d1 DEF d2 IN e
is not "as recursive~ as

DEF d1 WITH d2 IN e
in that the scope of the definition d2 includes d1 in the latter form.
Non-recursive definitions are introduced by 'LET' and separated by 'ALSO' 133
134.

Each function definition specifies the domain of its result explicitly (after':' !32
!38 etc.). The domains of the "Curried· parameters may be either implicit ~
using an association set up by a domain definition- or explicit, after':' !67. In
general in DSL, the domain of an expression or variable may be made explicit
using ':' !58 !82. Although theoretically superfluous, such "assertions" of
domains can do much to increase the comprehensibilty of complex semantic

34 DSL

descriptions On this author's opinion).

Consider now the definition of 'cc' !39. This corresponds to a set of p semantic
equations" in SSN, one for each of the alternatives !40 !41 !43 !45 9f the
'CASE' -construct !39, which is terminated by 'ESAC' !46. The "test value"
follows the symbol 'CASE' - it is usually one of the parameters of the function
being defined. Each alternative starts with the symbol 'I', and the following
expression - terminated by '->' - gives the form of value which that
alternative matches, in the same way that "pattern expressions" are used with
the operator 'IS' in LAMB. The exact mechanism of the 'CASE'-construct will
be explained later; the basic idea is that the first alternative whose pattern
expression matches the test value ls selected, the identifiers in the pattern
expression are bound to the corresponding components of the test value, and
the expression following the symbol '->' gives the value of the whole
'CASE' -construct. If no alternative matches the test value, the result is simply
'?'.

There are two points to note about the ~bodies" (following '->') of the
alternatives. The first is that any DSL constructs may be used in them, e.g.
nested 'CASE's, function definitions - in contrast to SSN. Secondly, the
reader may have noticed that ordinary round parentheses'(',')' have been used
around the syntactic parameters in the example, e.g. cc(cmd1)(s) !40; whereas
in SSN, the brackets'[',']' would have been used. Aficionados of this feature
of SSN - which can be helpful in a sea of round parentheses! - may be
comforted to know that they may continue to ~wrap up" syntax in square
brackets '[',']', provided that they are consistent. The definition of 'cc' could
have just as well been written as

WITH cc[cmdO](s) :S = ! N.B. [...]
CASE cmdO ! Not: CASE [cmdO]
I [cmd1 ";" cmd2] -> cc[cmd2](cc[cmd1j(s))

etc. - but note that the type of 'cc' is now
cc : = [Cmd] -> S -> S ;

where the domain-expression '[Cmdj' denotes the domain of parse-trees with
the label "Cmd" and with a single branch in the domain identified by 'Cmd'.
Putting it another way, everything will be OK if'[...]' in DSL is treated with just
as much care as '< ... >' (tupling) - for one does not expect '<e>' to be
equivalent to 'e'.

Notes on Example 35

The definition of 'pp' !32 is perhaps rather atypical - although it does resemble
a semantic equation rather closely. The parameter of 'pp' is expected to be in
the domain 'Prog', which means that it is a node with three branches, in the
domains 'Read~cmd', 'Cmd' and 'Write~cmd'. This has been taken advantage
of in the definition, by using the pattern expression

'(read-cmd ";" cmd ";" write-cmd]'
as a formal parameter. (Hopefully this no more mysterious than defining a
function 'f(a,b)' expecting to be applied to a 2*tuple.) Such pattern expressions
can also be used as left~hand~sides of ordinary (non~function) definitions !33
!34.

Moving on to the definition of 'ee-list' !47, the Lisp-programmer should start
feeling more at home. Recall from the description of LAMB that 'e1 PRE e2*'
prefixes the value e1 to the tuple e2*. When used in a "binding context~, the
operation is inverted, splitting a non-empty tuple into its "head" and "tail''.
{Note that the alternatives !49 !50 are mutually exclusive, thanks to the use of
'exp+' instead of 'exp*' in !50.)

The definition of 'update-list' !71 could also have been written like 'ee-list',
using a 'CASE' instead of a conditional. Note that the value '?' will be given if
the list of inputs 'nO*' is shorter than the list of variables 'varO*'.

The final three definitions !76 !78 180 are those of the "primitive" auxiliary
functions for handling states. Note that in the rest of the description,
knowledge of the structure of the domain 'S' has not been used. lt would have
been possible - and in the author's opinion, preferable - to abstract away
these definitions into a separate "segment", in attempt to introduce a smidgin of
modularity into the semantic description. Details of how to do this will be given
in Chapter 5, Pragmatics.

Before delving into the finer details of DSL, it should perhaps be mentioned
that the aim with DSL has been to get as close to SSN as possible, so far as
compatible with keeping DSL implementable. To a large extent, the
development of DSL has been simply the formalisation of notations and
conventions used by various authors in SSN - especially Tennent - with the
help of some ideas of Burstall. The aim has not been to innovate (that is the
next phase of the project, producing a version of DSL allowing high modularity
in semantic descriptions). Thus it ought to be quite easy to transl(iter)ate SSN
into OSL, and vice versa.

36 DSL

The only feature of SSN which may cause some difficulty, is the use of the
ellipsis' ... ' convention, e.g.

ee[E1, ... ,En]lr)(k) =
ee[E1]r{)-e1 ee[En]r{)-en. k<e1, ... ,en>} ... }

this must be completely reformulated in DSL, using a recursive
list-evaluating semantic function Hike 'ee-list' !47}. DSL has been forced to
diverge from SSN here, simply because it seems unlikely that a reasonable
formal definition of the ' .. .' convention can be given - in spite of its frequent
use in mathematics. (The author would welcome suggestions!)

Now for a more detailed description of the constructs of DSL.

4.3. Cases

The 'CASE'-construct is perhaps the easiest feature of DSL to explain in detail
- assuming that the reader understands the use of "pattern expressions"
(consistently represented by primed meta-variables below, e.g. e1') and the
operators 'IS' and 'LAM' in LAMB.

Consider an arbitrary CASE-expression in DSL:
CASE e I e1' -> e1

I e2' -> e2

I en' ->en ESAC
where the ei' are pattern expressions, as in LAMB (but generalised to include
the DSL NODE-constructor '[...]') and e, e1, ... , en are ordinary
value-expressions. This entire construct is exactly equivalent to the following
LAMB-expression:

le IS e1') ->
le IS e2') ->

le IS en') ->

ILAM e1'. e1)(e),
ILAM e2'. e2)1e),

ILAM en'. en)le),?.
Note that if any pattern is simply '?' (or a simple identifier x) then e IS ei' will
always be true. Therefore the alternative

I? ->en

acts as a "catch-all" (default) alternative - obviously it is only sensible to use it
as the last alternative in a case, as any alternatives following it could never be
selected.

Definitions 37

4.4. Definitions

Definitions are also quite simple to explain in detail. First of all, function
definitions may be "desugared" into simple value-definitions by making the
LAM-abstractions of the formal parameters explicit. A definition of the form

x(e1') ... (en'l :d = e
- where x is an identifier, the ei' are pattern expressions, d is a domain
expression and e is a value expression - becomes

x :(d1 -> ... -> dn ->d) = LAM e1' LAM en'. e
where the domain expressions di are given (implicitly or explicitly) by the formal
parameters ei'. For example,

content(var)(s) :N = s(varl
becomes

content :(Var -> S -> NI = LAM var. LAM s. s(varl
(The domain expressions in definitions will be omitted in the rest of this section,
as they are only of interest in relation to type-checking- see Section 4.7.)

In fact, non-function definitions (and de-sugared function definitions) in DSL
are of the general form

e' = e
where e' may be any pattern expression. The nice thing about this form is that
combinations of definitions can now be "collapsed":

e1' = e1 WITH WITH en' = en and
e1' = e1 ALSO ... ALSO en' = en

can be rewritten as
<e1', ... ,en'> = <el, ... , en>.

Because tuples of pattern expressions are perfectly good pattern expressions,
this produces a valid definition.

Now the only thing left to do to explain definitions, is to de-sugar
LET e' = e IN eO
DEF e' = e IN eO

into LAMB. This is simple:
LET e' = e IN eO becomes (LAM e'. eO He)

whereas
DEF e' = e IN eO becomes (LAMe'. eOHFIXLAM e'. e) .

Domain definitions contribute only indirectly to the meaning of DSL, via the
'[...]' notation (see the next Section). They do not have direct counterparts in
LAMB. For a description of their effect on type-checking in DSL, see Section

4.7.

38 DSL

4.5. Nodes

The '[...]' notation will now be explained. The reader is warned that the
"mechanism" may seem overly complicated at first sight; however it is difficult
to find a simpler method of formalising something pragmatically close the the
SSN usage of "abstract syntax".

Consider the expression
[e1 ... en]

where e1, ... , en are either identifiers, strings or other literal constants. The
expression is exactly equivalent to

q NODE <e1', ... , em'>
where e1', ... , em' are the non-strings occurring in e1, ... , en (if any), and
where q is defined as follows:
q ~ QUOTE <q1, ... , qn> where, fori ~ 1, ... , n,

if ei is an identifier, then
qi is the (string formed from the) associated domain identifier;

if ei is a string, then
qi is the same string; or

if ei is some other literal constant, then
qi is the corresponding domain name ("Nff, "T" or"?").

E.g. [cmd1 ";" cmd2] ~
QUOTE<"Cmd",";","Cmd"> NODE <cmd1,cmd2>

[var] ~ QUOTE<"Var"> NODE <var>
[" + "] ~ QUOTE<"+"> NODE<> (~ "+" NODE<>)
[27] ~ QUOTE<"N"> NODE <27> (~ "N" NODE <27>)

Tuple identifiers, e.g. var*, exp+, may also be used - domain names are
constructed accordingly. For example,

["READ" var• J ~
QUOTE<"READ", QUOTE<"Var","*'>> NODE <var•>.

A useful rule·of·thumb is that the labels on '[...]' nodes will be the same, if and
only if they look the same (up to layout) when the non~strings in the expressio':1
are replaced by the associated domain identifiers.

Warning for SIS users: when LAMB-NODEs are printed by the system, no
distinction is made between 1~1evel~ and multi~levei~QUOTEs, i.e.
QUOTE<"Cmd",";","Cmd"> will be printed the same as "Cmd;Cmd".

The'[...]' notation may be used wherever the LAMB NOOE·operator is allowed,
l.e. in value expressions, in patterns, and in domain expressions - which brings
us to the final feature of DSL to be described here.

Domains 39

4.6. Domains

Recall that in SSN, domains are specified using separated sums, Cartesian
products and functions. DSL allows all these, and in addition introduces
notation for domains of nodes.

Let the meta-variables d, d1, ... stand for arbitrary domain expressions. Then
the following are all domain expressions:

<d1, ... , dn> - n-tuples
d * - any-tuples
d + - non-empties
[d1 ... dn] - nodes

(where the di are identifiers or literal constants)
d1 -> d2 - functions
d1 I ... I dn - union.

Domain identifiers may also be used. Literal constants (numerals, strings, 'TT',
'FF' and'?') all denote domains whose only "proper" element is that constant.
See also the concrete syntax in Appendix D.

However, in DSL it is also possible to consider separated sums to be "ordinary
unions". The aim of this is to help the user who thinks in terms of manipulating
individual values, and who wants to forget about the isomorphisms, injections
and projections connected with separated sums and the solution of recursive
domain equations.

DSL achieves this conceptual flexibility by not providing any notation for
injections, projections and a enquiries" - it is also necessary to forbid "circular"
sums such as D = A I D. Injections and projections may be considered to be
inserted automatically, where necessary. (This is commonly assumed in SSN
as a "convention" it is formalised in the semantics of DSL.)

As for enquiries, i.e. tests for which (summand) domain a value is in, one has to
"implement" them oneself! When the components of two summands are
structurally distinguishable, one can use the CASE-construct (or the
IS-operator): either to define a particular enquiry funtion, e.g.

DOMAINS ...
d: D = F I <A,B> ;
f: F = D -> D;

LET is-f(d):T =
CASEd

ESAC

I I LAM?.?) ->TT
I ? -> FF

40 DSL

or else to combine enquiry with (projection and) selection of components:
CASEd I <a,b> -> ... a ... b ... ESAC .

When the summands are not structurally distinguishable (e.g. different function
domains) or when it is too tedious to list all the cases, then the DSL
'[...]'-notation can be used to "label" the summands differently, thus making
them distinguishable. E.g.

DOMAINS ...
d: D ~ [L] I [V] ;
1: L ~ N;
v: V~ NIT;

LET is·vldi:T ~
CASEd I [1] -> FF

I [v] ->TT
ESAC

or,combining with projection,
CASEd I [v] -> ... v ... ESAC .

"Injection" of a value v in V into D must now be done explicitly, either by
LET d ~ [v] IN ... d ...

or by
LET v·in·dlvi:D ~ [v]IN ... v·in·dlv')

The advantage of the second form is that it can be used with values which are
in subdomains of (here) V: v-in-d(n) gives the expected value in D, whereas
using [n] would give a value with the label "N" rather than 'V". (This is a
consequence of the implicitness of the label in the '[...]' notation - the
problem does not arise if the LAMB NODE-operator is used explicitly.)

Note that the use of nodes as components of sums is exactly what is wanted
for the syntactic domains. There, the summands will be distinguishable by
virtue of their different labels, e.g.

DOMAINS ...
cmd: Cmd ~ [Dec ";" Cmd] I [Cmd ";" Cmd]l ... ;

CASEcmd
I [dec ";" cmd] -> .. .
I [cmd1 ";" cmd2] -> .. .

ESAC
Apart from being a useful aide-de-memoire, the domain definitions have an
important use in DSL: they enable SIS to do "type-checking" on DSL
descriptions, as described in the following Section.

Type-checking 41

4.7. Type-checking

This facility is not implemented in the current version of SIS, so it will not be
described in detail here. As in SSN, all operators in DSL (including application)
must be given operands of the correct type, and definitions may only bind
identifiers to values of the associated type. The type of an operand will be
considered correct, if it is possible to arrive at the desired domain by a series of
injections and projections between sums and summands.

Although LAMB is basically type-free, the reducer does catch and warn about
such things as mismatches between actual parameters and formal patterns.
Thus SIS does provide some protection against type-errors in DSL, albeit
dynamically.

Note that the operator'@' in DSL is entirely concerned with the type-checking
of SO·Called npolymorphicn functions. Basically, '@' is used to abstract a
domain as parameter of a function definition, and then a domain is supplied
eaCh time the function is used. For example,

map-list@ Z (f: (Z ->Z)) (z•: Z•) : Z• = ...
defines a gene-ral-purpose list·processing function, which can be used on a
particular domain as follows:

LET n• = map-list@N(LAM n. n PLUS 1)<1,2,3.4>

So that is (the present version of) DSL. Suggestions for improvements are very
welcome!

43

5. PRAGMATICS

This Chapter attempts to point out some of the known inadequacies of SIS and
gives some hints on how to get the best out of SIS. lt is based mainly on the
experiences of the author and the students at Aarhus. Hopefully, a reading of
this Chapter, supplemented by a careful study of tested examples [Mosses79b],
will help the new user of SIS to avoid some of the potential pitfalls! See also
the Operating Notes [Mosses79a].

5.1, LAMB

Termination
A LAMB-expression without a normal form does not always correspond to the
value "bottom" (in the domain of meanings of LAMB-expressions). 1t is to be
expected that one will encounter n sensible" expressions without normal forms,
their reductions consequently not terminating. Of course it is impossible for
SIS to predict such non-terminations in general, so it is up to the user to
diagnose the situation.

One aid for diagnosing the cause of non~termination of a reduction is to limit
the number of reduction cycles and inspect the approximate normal forms
produced. Often, the approximate normal forms will expand in a regular way
when the number of cycles is increased. Note, however, that "direct
recursions" give rise to constant approximate normal forms, e.g.

(FIXLAM f. LAM n. n EQ 0 -> 1, n MULT f(n PLUS 11)(11
has - eventually - the constant approximate normal form '?'. (If one is lucky,
the replacement of unreduced sub~expressions by '?' when the cycles limit is
reached may trigger a warning from the reducer, showing what it was in the
process of reducing at that moment.)

FIXLAM
Fortunately, the presence of the FIXLAM operator in LAMB does allow
recursively~defined LAMB functions and lists to have normal forms. E.g.
(•I FIXLAM f. LAM n. n EQ 0 -> 1, n MULT f(n PLUS 11
and

FIXLAM t. <O,t>

44 PRAGMATICS

are both in normal form. This is in contrast to the pure lambda-calculus, where
the expression corresponding to(*) above has no normal form, because of the
explicit use of the lambda-expression for the fixed-point operator.

However, note that it is quite possible for FIXLAM x. e to be in normal form,
but for the reduction of

LAM x'. (FIXLAM x. e)(x'l
to not terminate! Roughly speaking, the reducer leaves a F!XLAM expression
unexpanded until one tries to use it in some way - here, by applying it to a
"dummy" argument. Then it is as it the_ FIXLAM "explodes" into an infinite
expression!

The reduction algorithm is technically inadequate {unsafe) here, in that the
above expression might have a normal form if the FIXLAM were to be
expanded only once. Usually, this seems to be not the case, as recursions are
generally "genuine", with the variable 'x' being used {e.g. applied) i_n the body of
the FIXLAM. The current reduction algorithm is rather more efficient {on
expressions with normal forms) than the safe version would be.

LAM VAL
If one wants to model the evaluation of strict functions, then one should use
LAM VAL x. e instead of LAM x. e . This will cause non~termination when
applying the abstraction to an expression with no normal form. Note, however,
that this gives rather "over-stric(functions, unless one ensures that all
arguments of abstractions have the value bottom whenever they have no
normal form. (This is true of expressions denoting values in flat domains.)

Subscripts
Don't be surprised if "subscripts" of the form '#n' get appended to identifiers by
the reducer. lt is to guard against the capture of free variables during the
simulated substitution in beta-reduction.

Identifiers of the from '##n' are generated by SIS, mostly during the
translation of DSL into LAMB.

SEG
Although without interest from the point of view of reduction, SEG is
pragmatically rather useful. it allows the easy "linking" of
independently¥produced LAMB-expressions {e.g. corresponding to separate
DSL descriptions).

For a simple example, suppose one wishes to test a LAMB-expression by
applying it to several other expressions. If "fun" refers to the file containing (the
LAMB-code of) the main expression, then one can avoid editing and parsing it

LAMB

for each test by using the expression
ISEG "fun")(...) .

45

SEG q is not substituted for by the parser, this is done dynamically during
reduction.

Some of the SIS commands involving combination and reduction (Apply,
Compile, Execute, Interpret) could be implemented by simply using Reduce on
small files containing SEG-expressions. (Warning: on the current DEC-10
implementation, one cannot refer directly to files produced by the parser -
only to "code" files. Also, the form of the quotation given as operand to SEG is
implementation-dependent.)

ACTIVATE
This operator is in LAMB (and DSL) only to allow the circular semantics of DSL
to be expressed. In effect, it represents the semantic function for LAMB,
taking trees representing LAMB~expressions and producing the expressions
themselves. For cognoscenti only !

5.2. GRAM

SLRII!
The author was originally persuaded by [Andersen,Eve&Horning73] that it was
reasonable to impose the SLR(1) condition on grammars: "Amending a
grammar to enable the use of the more restrictive [than LRI1)] SLR(1) algorithm
... is at worst a small additional burden which can be treated in conjunction
with the problem of eliminating genuine ambiguities." Experience with SIS has
indicated that the SLR(1) restriction is actually rather annoying- for example
the grammar for DSL is not SLR(1), and it would probably take substantial
distortion to make it satisfy the condition.

Ambiguities
Luckily GRAM has some features which help to minimise the annoyance of the
SLR(1) restriction. The most important of these is the automatic resolution of
most ambiguities ("genuine" or not). If there is a choice between recognising
one alternative and continuing to scan another alternative, then latter action is
taken. This gives the effect of recognising the (locally) longest instances
possible, e.g. the "dangling 'else'" ambiguity is resolved as usual, giving

[IF exp THEN [IF exp THEN cmd1 ELSE cmd2]]
rather than

[IF exp THEN [IF exp THEN cmd1] ELSE cmd2] .
This automatic resolution of ambiguities is also invaluable in lexical analysis.

46 PRAGMATICS

lt is also possible for ambiguities between recognising two different alternatives
to occur. The alternative which comes first in the grammar text is preferred.

If one is in doubt about the choices which are made to resolve ambiguities, then
one can get SIS to write out the resulting parsing-table. The non-SLR(1) states
are distinguished by comments in the table.

Watch out for alternatives which become "masked" by the resolution of
ambiguities - SIS unfortunately gives no warning about this.

Note that using left-recursion instead of right-recursion can help to make a
grammar SLR(1). See the definition of 'cmd·seq' in Loop, Table 3.1.

TRANSFORM
One can use a TRANSFORM pass before the LEXIS pass (i.e. last in the GRAM
description) to do character conversion and removal of layout, for example. A
TRANSFORM pass between LEXIS and SYNTAX could be used to handle
things like BCPL's convention for insertion of semicolon and other symbols.

Abstract Syntax
The abstract syntax trees produced by the parser can be adjusted by a judicious
use of the DOMAINS section and of the value-fields in the alternatives. The
former allows syntactic categories to be combined, thus removing (typically)
precedence information from the tree; ·the latter allows the elimination of
redundant "chain-reduction" nodes. lt is advisable to have a close look at some
trees produced by the parser, to see whether they conform to expectations.
Note that there is no automatic check that the sytactic domains specified in a
DSL description match the trees produced by the corresponding GRAM
grammar.

The abstract syntax should be chosen to make the definition of the semantics
as natural as possible. The choices made in the examples (such as Loop) are
not necessarily the best!

DSL 47

5.3. DSL

Typechecking
In the absence of the implementation of typechecking, careful hand-checking of
the domains of operands in DSL descriptions is essential. The use of
conventions linking value-identifiers to domain-identifiers - as used in the Loop
description, Table 4.1 - helps by factoring the checking into two phases: first
to check that the right-hand-sides of all definitions yield values in the domain
associated with the identifier being defined; then to check all the uses of
identifiers in expressions.

Experience has shown that some caution is necessary with the '[...]' notation.
If using it to separate the summands of semantic domains, remember that the
node labels depend entirely on the domain names associated with the variables
used between '[' and ']': there are no automatic coercions between domains in
this context.

A useful way of tracking down missing (or wrong) alternatives CASE-constructs
is to use something like

I ? -> rsuitable messageN
as the last alternative. If this alternative is selected during reduction, the
warning from the reducer will include the quotation.

Segmentation
lt is advisable to keep the size of DSL descriptions small by splitting larger ones
into segments (of, say, 5 pages or less). Often, it is quite natural to factor a
denotational semantics into parts such as static semantics (typechecking,
normalisation). dynamic semantics {the main semantic functions) and the
auxiliary functions {the storage model, etc.). These parts can then be
combined using the various SIS-commands, or with the aid of the
SEG-operator - see the description of this under LAMB above. Not only does
this facilitate editing and parsing, it also allows a more systematic testing of the
semantics: one can inspect the value produced by the static semantics before
beginning to test the dynamic semantics, etc. Because of the abstraction of
the auxiliary functions, it is much easier to read the "code" produced by the
"compiler".

By the way, one should not have any free variables in DSL segments - so a
warning from the reducer about free variables should be taken seriously, it
usually indicates a spelling mistake in an identifier, or a missing definition
(hereunder the mistaken use of 'LET' instead of 'DEF'I.

48 PRAGMATICS

Termination
Unfortunately it is quite possible for the semantics of a particular program (i.e.
some LAMB~expression denoting an input-output function) to have no normal
form - even for a program that will always terminate when executed.

In this case one is unable to inspect the code of the program, all one can do is
to provide the data for the program n at compile-time"' thus getting the output
of the program instead of its code. This clearly corresponds to interpreting the
program rather than compiling it. Incidentally, this is the reason that SIS is
called a Semantics Implementation System rather than a compiler-generating
system -:- apart from the niceness of the acronym, that is!

One can guard against the lack of a normal form for the semantics of a program
in some cases. Basically, the trick is to make sure that recursively-defined
functions do not get applied until they can "evaluate out". Consider the Loop
semantics, Table 4.1. There the (recursive) function 'repeat' is applied to 'n',
which is the result of evaluating an expression, and not in general known at
"compile-time". This makes it unsuitable for use as a "compile(: it should be
used as an "interpreter" instead. The easiest way to enable it to be used as a
compiler is to abstract 'repeat' (and maybe the other auxiliary functions) into a
separate segment. The body of the main semantics segment would then start
with

LAM prog'.
LAM <repeat:IN ->IS ->SI-> S ->SI, ... >.

and finish with
IN pplprog'l : IN• -> N• I .

Using the Compile command, this segment could now be applied to a program
tree, and the resulting code inspected. The code would start with

LAM <repeat, ... >. LAM n•.
and should be applied both to the segment defining <repeat, ... > and to the
data using the Execute command, to obtain the output.

lt would also be possible to reformulate the Loop semantics using CIRC and
STAR, so that compiled code would always have a normal form. Similarly,
with a continuation semantics the use of the operator ';' instead of application
can help in avoiding the premature application of (FIXLAM expsressions and)
recursively-defined functions. However, one should not let this feature of SIS
influence the way one writes denotational semantics: the technique of
abstraction is better, and has the beneficial side-effect of introducing some
modularity into DSL.

For advice on localising the cause of the non-termination of a reduction, see the
comments on LAMB above, under Termination. lt may be useful to inspect the
LAMB-expressions produced by SIS from DSL descriptions.

I

I

I
I.

I

DSL 49

General
At least to start with, it should be easier to sketch a semantics in (one's
favourite flavour of) SSN, and then translate it into DSL - rather than trying to
formulate the description in DSL straight away.

lt pays to take some care in designing a Ncomplete" set of test~programs, to
explore all the corners of the semantic description. Also, when a semantics is
split into segments, it is as well to test the first segment before even typing in
the others: thus getting feedback on one's understanding of the abstract

syntax - and of DSL!

That is all the advice that I can give at present on using SIS: the rest is up to
you! Please send me any comments you may have about this Reference
Manual and User Guide. Corrections can be published in the SIS Newsletter,
and incorporated in any future reprinting of this document. Happy SISsing ~

and Good Luck!

50

REFERENCES

[Andersen, Eve&Horning 73]
"Efficient LRI1) Parsers".
Acta lnf. 2, 12-39 11973).

[Bursta/169]

"Proving Properties of Programs by Structural Induction".
Comp.J. 12, 41-48 11969).

[DeRemer71]
"Simple LRik) Grammars".
Comm.ACM 14, 453-460 11971).

[Feldman&Gries68]
"Translator Writing Systems".
Comm.ACM 11, 77-11311968).

[McCarthy63]

"Towards a Mathematical Science of Computation".
Information Processing 1982, 21-28, North-Ha/land, 1963.

[Milne&Strachey77]

"A Theory of Programming Language Semantics".
Chapman & Hall, 1977.

[Mosses75]

"Mathematical Semantics and Compiler Generation".
D.Phil. Thesis, Oxford Univ., 1975.

[Mosses76]

"Compiler Generation Using Denotational Semantics".
Proc.Symp. on Math.Found. of Comp.Sc., Gdansk, 1976;
Lect.Notes in Comp.Sc. 45, 436-441, Springer-Verlag, 1976.

[Mosses79a]

"SIS ~Semantics Implementation System~ Operating Notes".
DAIMI MD-32, Comp.Sc.Dept., Aarhus Univ., 1979.

REFERENCES

[Mosses79b]
"SIS - Semantics Implementation System - Tested Examples".
DAIMI MD-33, Comp.Sc.Dept., Aarhus Univ., 1979.

[Naur63]
"Revised Report on the Algorithmic Language Algol60".
Comm.ACM 6, 1-17 (19631.

[Scott76]
"Data Types as Lattices".
SIAM J. Comp. 5, 522-587 (1976).

[Stoy77]
"Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory".

The MIT Press, 1977.

[Tennent76]
"The Denotational Semantics of Programming languagesu.
Comm.ACM 19, 437-453 (19761.

[Vuillemin73]
"Correct and Optimal Implementations of Recursion in a
Simple Programming Language".

IRIA-Laboria Rep.24 (1973).

57

A. LA!W Syntax

GRAM "LA~1B~Porser"

SYI1TAX

segment : :=

title ; :=

exp : :=

exp~<l : :=

ex~-b : :=

ex p-c ::=

exp•d :: :=

exp ... ide ::=

atom : :=

number ::::

string ;:=

seq•op ===
di•op ===

mon·op ===

"LAMB" title exp "ENO"

string strinq

"LAM" exp•a •xp I
"flXLAM" exp•a up I
exp·a "•>" up " " up I
eXP'"'il seq-op up I
exp-a exp•a

exp-a d1-op exp-b I
exp•a "NODE:" exp•b I
exp-a "lS" exp·b I
exp•b exp•b

mon-op exp-b I
ex p-c exp•c

ex p-c exp•d
exp•d exp-d

" (" up ")" up I
"<" exp*•",~ ">" I
exp•d rep•op I
exp•ide exp·lde I
atom atom

"ll.l" q I
"ID" q " ... number

number number I
string string I
"TT" 1T I
"Ff" FF I
"?" '
"NM" " "
"ST'' q q

";'' I "CIRC" I "S!AR"

"AND" I "OR" I "E\<" I "NE" I
"LS" I "GR" I "LE" I "GE" I
"PLUS" I "MINUS" I "MULT" I "DIV" "REM"
"CAT" I "AUG" I "P!<E" I "EL"

"IWT" I "NUM!l£R" I "QUCTE" I "TRUTH" I "CONC"
"CC" I "SIZE" I "VAL" I "SEG" I "ACTIVATE'' .,. ''+"

54

UOMAl~iS

seyment, exp,
exp•ide
se<.J•ov
number
string

Lf.XIS

segment ::=

word ::=

exp-a, exp-b,
Id•
DJ.·op
N
d

word+

bold•ident
ident
ident decor
numeral
string
layout+
"!" comment*

Appendix A

CONC word+

<OUT "ID", bold•ident> I
<OUT "ID", ident> I
<OUT "ID~, QUOIE<1Cent,decor>> I
<OUT "NM", numeral> I
<OUT "ST", strin11> I
<> I

<>

bold•ident : := upper lower•dash* QUOTE(upper PFE lower·daSh*l

QUOTE(lower PRE lower-dash*) ident ::=

decor ::=

numeral : :=

string : :=

upo.>er ===

lower ===

lower-dash

digit ===

prime

lower lower•dash*

digit+)!rime*
prime+ diglt*

di;Jit+

CC"Q~ strin9•ch*

"AK ••• ''Z"

"a" •• ,"z"

"0" ••• "9"

CC''\<"

QUGTE(digit+ CAT prime*)
QUGT£(pri~e+ CAT digit*)

NUIIBEF digit+

QUCTE strJ.ng•ch*

strJ.ug•ch =\= CC"Q" I CC"C" I CC"L" I CC"P" I CC"T"

layout === CC"P" I CC"T"

comment =\=

GRAM "GRAM"

SYNTAX

title ::=

pass : :=

~GRAM" title passt "END~

string string

pass "DOMAINS" domain-dect .I
mode prod-ranget

domain-dec ::= idet-~," ":" ide ";"

mode === "SYNTAX" I nLEXIS" "tRANSFOJ<!I'"

prod-range ::= prod
range

prod ;:;=

altern ::=

elem :::::

item : :=

rep•op ===

exp : :=

elem• ":" exp I
elem•

item sep•op item
item rep-op I
item ·

ide I
string I
control-char

"*" I "+"

exp di-op exp-a 1
exp "NODE" exp•a 1
exp-a

prod .I
range

item

exp-a

"CAT" I "AUG" I "PFlE~

exp-a ::= mon-op exp•a I
"OUT" string I
exp-o ext'-b

"NUMBEI<" I "QUOTE" I "CONC" I "CC"

Appendix B

exp-~ : :=

exv-c : :•

tup·J.de ::=

range : :=

quality ===

spec : :=

id• : :=

numeral : :=

string : :=

control-char

DUMAlNS

" (" exp "l"
"<" exp•-"," ">"
"[" exp·c• "l" I
tup-ide
string
numeral
"TT"
"1-'f"
"?"

exp•b
tup•ide
string

tup-ide 1

lde rep·op I
id•

"===" I "=\="

string
stri_nq
control•ch.u

"ID" Q

~tlM" "
"S'I''' Q

::="CC" "ST" q

string I

exp, exp-a, exp-b, exp•c: Exp

tup-ide, lde: Ide

string, control-char: Term

exp I

tup-ide 1
String I
nurreral I
1! I
FF I

tup•ide
strinQ

Q

q

(CC q)

LlXIS

wor1 : :;;

layout-char ;;;;;;

word+

layout~char+

identifier
nl.lmeral
string
"!" comment~char*

I CC"C"

GRAM Synt<lx

(CCJlC ~'<ord+)

" <OUT ~ID", identifier> I
<OUT ~NM", numeral> I
<OUT "ST", string> I

"

identifier ::= letter low•letter•dash*
(QUOTE (letter PRE low•letter•dash*))

letter ;;;;;;

low•letter·dash ==="a" ••• "z" I

numeral ::= digit+ (NUMBEP digit+)

diYit ;;;;;; "0" ••• "9"

string ; := CC''Q" string•char* cc~Q"
(QUOTE string•char*J

string•char ;;\: CC"QH I CC"C" I CC"L" CC"P" CC"!"

comment-char =\=CC"C" I CC"L" I CC"P"

END

59

c. DSL s;rntax

SYNTAX

segment : := "OSL" title exp "ENC~

title ; := string string

"' : := detn•list"" "IN" "' I
"LAM" exp•a . " "' I
"f'IXLAM" exp•a " . '" I
exp·a "->~ "' . . " "' I
exp-a .,. "' ~<-" "' I
exp•a seq .. op "' I
exp•a exp•a

exp-a : := exp•a di•op exp-b I
exp•a "%" exp•ide exp·b I
exp-a "NODE" exp-b I
exp•a "IS" exp-b I
exp-a "." dotn•b I
exp-b exp•b

exp•b : := mon-op exp-b I .,. exp•ide exp-b I
exp-c exp•c

exp•c : := exp-c exp-d I
exp-c "@" d01!1'"'b I
exp-d exp-d

exp-d : := "CASE" exp·a al tern+ "ESAC" I . (" exp*-"•" ")" I
"<" exp*-"•" ">" I . (. exp-e* • J. I
exp-d re p-op I
exp•ide exp-ide I
atom atom

exp-e : := exp-f exp-f
atom atom

exp-t ::= exp-f rep-op I
exp•ide exp•ide

exp•ide : := "10" q I
"ID-DECOR" q q

do m : := dom-a+-"1"

dorn•a : := dom•b "->" dom•a I
dom·b dom•b

dom•b : :=

Uom•c ::=

Uom·d :;:::

dom•icte ::=

altern ::=

defn•list : :=

defn ::=

p<~.r : :-=

dom•defn ::-=

atom : :=

number ::=

string ::-=

seq•op

di•op ===

mon·op

Appendix c

''(" dom•·"," ")"
"<" dom••"," ">" 1
"[" dom•c .. "1" I
<lom•b rep-op I
dom•ide dom•ide I
atom atom

dom•d
atom

dom•d rep-op I
dom•ide dom·ide

"DEF'' defn+·"11ITil"
"LET" defn+•ftAL.SO"
"DOMAINS~ dom•defn-t

exp•a "=" '" exp•ide par"+

"@" dorn•d 1
"•" exp•d I
exp•d

"'"

I
I

don: "•"

exp•ide+-","
exp•idet•","
exp•lde+·","
dom-ide "="

":" dom•ide

number
string
"TT"
"ff"
"?"

"NM" n

"ST" q

":" dom•1de
":" "=" doo
dorn ";"

number I
string I
TT I
ff I

n

"P

"="
";"
";"

do m ";"
I

"AND" I
"LS" I
"PLUS" I
"CAT" I

"OR" I "EQ" I "NE" I
"GR" I "LE" I "GE" I

"MINUS" I "MULT" I "DIV"
"AUG" I "PFE" I "EL"

I "RE!1" I

"NOT" I "NUMBER" I "QUCTE" I "TRUTH" I "CONC" I
"CC" I "SIZE" I "VAL" I "SEG" I "ACTIVATE"

DSL Synt<>X

DOMAINS

seyment,
exp, exp-a, exp-b, exp•c, exp-d, exp-e, exp•t,
dom, dom-a, dom•b, dom-e, dom·d Exp

exp-ide, dom-ide Ide

number N

string Q

Lf.:XIS

segment : :=

word : :=

bold-ident ; •=
ident : :=

decor ::=

numeral : :=
string ::=

upper

lower ===
lower-dash ===
cUgi t ===
l>time ===

layout ===
comment =\=

END

wordt

bold•ident
ldent
ident decor
numeral
string
layoutt
"!" comment*

CONC wordt

<OUT ~EOLD•ID", bold•ident> I
<OUT "ID~, ident>
<OUT "ID-DECOR", ident, decor> I
<OUT "NM", numeral> 1
<OUT "ST", string> I
<> I

upper lo'ller -dash* QUGTE(upper PNE lower-dash*)

lower lower-dash*

digitt prime*
prime+ digit*

digiti-

CC"Q" strin<J-ch*

"A" ••• "Z"

"aH, •• "z"

"a" ••• "Z" I ·-·
"0" ••• "9"

CC"Q"

QUGTE(lower PRE lower-dash*)

QUOTE(dlgiti- CAT prime*)
QUOTE(prime+ CAT digit*)

NUP'BER digit+

QUOTE string-eh*

61

r

D, OSL Sewantics

OSU "DSL•Semantics"

DOMAINS l Syntactic:

segrnent:Segrnent

title: Title

exp:

ide: Id•

atom: Atom

detn: Defn

par:

dom~defn :Dom~defn

altern: Altern

["DSL" Title EXP "END")

Q

[Oefn•liSt+ "IN" EXp) I
["LAM" Exp "·" Expl I
["f'lXLAM" Exp "•" Expl I
[Exp ~->" Exp "•" Expl I
(Exp "\" Exp "<·" EXp] I
(Exp Di•op Expl I
[Exp "l" Ide ExpJ I
(Exp "NODP Expl I
CExp "IS" Exp) I
(Exp ":" Expl I
(Mon•op ExpJ I
[~%" lde EXp] I
[Exp Expl I
[E;xp ".@" Expl I
["CASE" Exp Altern+ "ESAC") I
["(" Exp* "}"l I
("<" EXP* ">"] I
["[" EXP* "]"] I
[Exp Rep·opl 1
IExp+l I
[Exp "·>" Exp} I
!de .I A torn

["ID" QJ I
["ID•DECOR" Q Cl
("BOLD•ID" Ql I
["ID" Q "~" Nl

N I Q I T I

("DEf" Defn+l I
["LET" Defn"tJ I
["DOMAINS" Dom•defntl

[Exp "=" Expl I
Lide Par+ ":" Exp "=" Expl

[".@" ExpJ I
[";" Exp] I
(ExpJ

[lde+ ":" Ide "=" Exp ";"l
[!de+ H:'' Ide ";"l I
(Ide+ ":" "=" Exp ";"l I
[!de ""'" Exp ";"l

£"1" Expt "·>" ExpJ

LAMB only

di ~op: ";" I
"t:Q" I
"PLUS"
"CAT"

Apt;endh D

"CIRC" I "STAI<" I "AND" I "01<"
"NE" I ~LS" I "GR" I "LE" I

I "MINUS" I "MULT" I "DIV"
I "AUC" I "PFIE" I ".EL"

"GE"
"Rt:M"

"NOT" I "NUMEEil" I "QUCTE" I "TRUTH" I
"CONC" I "CC" I "SEG" I "ACTIVATE" "VAL"

DOMAINS

n
<
r

DOMAINS

ee :=

ee-s : =

N
Q
R

ee•qs : =

map :=

dd•l :=

dd•r :=

pp•s :=

dd•doms :=

dd•dorn :=

lay-ides :=

aa•s :=

aa•es :=

private•ide :=

"*" ./ "t"

Semantic:

Q ·> Q

numbers
quotations
environments

Functions:

t:xp -> R _,
'"

I::XP* -> R _, i::J<P*

El<p* _, R _, ,,
Exp* -> R _, I::XP*

Defn•Ust* -> Exp -> R _,
'"

(Defn ·>R ·>Exp) _, Defn'l- -> R

(Defn ->R ·>Exp) -> Defn* -> R

Detn _, R _, t:xp

Detn _,
R _, Exp

Par* _, Exp -> R _,
'"

Dom•defn* -> R -> R

Dom•defn -> R -> R

R -> I de* -> I dO ·>R

Id• _,
Q

Altern* -> R ·> Exp _, ,,,
EXP* _,

'" -> R
_,

'"
_, Exp

l::xp

meaning of description := Exp -> Exp

Hote; LAM!:; 1s a sub•dornain ot Exp.

_, Exp

-> Exp*

_,
Exp

To tu~lP the reader, identifiers denoting LAMB-expressions
(exp) are decorated w1th primes {')below.

I
I

DSL Semantics

DEF ee(exp)r

CA.::>E exp

/t"DSL" title expl "ENDnl •>LET ex~1· = ee(expl)r IN
(~LAME" title eXPl' "END"]

/!defn•list-t "IN" expl) -> dd•lists(defn•Hstt)(expl)r

/["LAM" expl "•" exp2l -> LET (eXpl',exp2') = ee•s(expt,exp2)r IN
("LAM" expl' "•" exp2'J

/["FIXLMI" expl "•" exp2) •>LET (expl',exp2') = ee•s(expl,exp2)r IN
["FIXLAMn expl' "•" exp2'l

/[eXPl "->" exp2 "•" expJ)•>LET (expl',exp2',expJ') =
ee•s(expt,exp2,expJ)r

IN texpl' "->" exp2' "•" expJ'l

/[expl "\" exp2 "<·" expJJ•>LET (expl' ,exp2_' ,expJ'l =

/[expl dl•op exp2J ->

I rexpl "%" lde exp2l ->

/[expl "NODE" exp2l ->

/(expt "IS" exp2l ->

/[expt h:" exp2l .. >

/tmon-op explJ •>

/[expt exp21 ->

/[expl "i" exp2l •>

LET
LET

ee•s{expt,exp2,expJ)r
explO' = private•ide
exp20' =
LE1 exp21' LET di•op : "EQ" Il\1

[explO' di•op exp2'J
ALSO EXP22' exp3'
ALSO exp23' [expl' explO'J IN
(exp21' "·>" exp22' "•" exp23'l

IN ("LAMh explO' "·" exp20'l

LET (expl',exp2') = ee•s(expt,exp2Jr IN
[expl' di-op exp2'l

LET explO' = ee(idelr
ALSO exp20'• = ee•s(expt,exp2)r
LET exp20' : ["<" exp20'f ">"l IN
{exptO' exp20'l

LET (expl',exp2') = ee•s(exp1,exp2lr IN
!expl' "NODE" exp2'l

LET (exp1' 1 exp2'} = ee-s(expt,exp2)r lN
(expl' "IS" exp2'l

ee(expUr

LET expl' = ee(exp1)r IN
lmon .. op exp1'l

LET •xp10' = ee(ide)r
ALSO exp20' = ee(eXPl}r IN
texplO' exp20'l

LET (expl',exp2') = ee-s{expt,exp2)r IN
[expt' exp2')

ee(expl)r

65

Appendix o

I["CAZE" expl alternt "ESAC"l ·>

ESAC

WITH

CASE

f.: SAC

WlTH

CA:iE

I NUMBER ?
I QUOTE
I TRUTH ? ~>

I ? ·>

ee•scexpt)r

expt

I <> ->

I expt PRE expt*

ee•qs(expt)r

exp*

I <> ->

I expl PRE eXPl*

ESAC

->

->

Exp*

<>

LET ex~l' = eeCexpl)r
LET ex~ll' = prlvate·lde
LET ex~2· = aa•s(altern+)r exp11'
LET explO' = ("LAM" expll' ".~ exp2'1 lN
texplO' expt'J

LET ex~·• = ee•s(exp*)r IN
SIZE exp'* EQ 1 •> exp'* EL 1,
t"<H exp'* ">"l

LET exp'* = ee•s(exp*)r IN
t"<" exp'* ~>"l

LET qt = ee-qsCeXP*)r
ALSO exp'* = ee·bs(exp*Jr
LET expl' =QUOTE q*
ALSO exp2' = rncn exp't ">"] IN
texpl' "NODE~ exp2'l

LET exfl' = eecex~l)r IN
texpt' rep•opl

["ID" qll

LET q': QUOTE Cql,q2> IN

["10" q ']

eeCexpl)r PRE ee-s(explt)r

o•

<>

ee-q(explJr PRE ee-qsCexptt)r

WITH

CASE

I

I

I

ESAC

WITH

WITH ee•q(exp)r

CASE exp

I {expl rep•op) ->

/t~ID" "' I (" ID•DECOR" q) "'
I NUMBER ·>

I QUOTE ·>

I TRUTH ' •>

I 1 •>

.ESAC

ee-bs(exp*lt Exp*

exp*

<> -> <>

QUOTE PRE expl* ·>

expl PRE exp 1* •>

DSL .semantics

•> LE1 q• = r(qi) IN
q' EQ 1 •> "?", q•

"N •

"T" .,.

ee·bs(expl*lr

ee(expl)r PRE ee-bs(exP1*lr

dd·lists(defn•list•lCexpJr EXp =

CASE defn•list*

ESAC

1 <> -> ee(exp)r

/["DEF" defn+l PRE
defn-listl* ·> LET exp1' = round•map(dd•l){defn+lr

ALSO exp2' = round•map{dd·t)(defn+lr
ALSO exp• = dd•lists(defn-listl*l<expJr
LET explO' = ["LA!~!" expl' "•" exp'J
ALSO exP20' = ["FIXLAM" exp 1' "•" exp2 • J
IN tex:p10' exp20'l

/["LET" defn+l PRE
defn·llstl* -> LET expl' = round•map(dd•l)(defn+lr

ALSO exp2' = round·map(dd-rl(defn+Jr
ALSO exp• = dd·lists(defn•llstl*l(exp)r
LET exp10' = ["LAM" expl' "•" exp'l
IN texp10' exp2'l

/["DOMAINS" dom•defn+l PRE
defn·llstl* -> LET r' = dd•do~s(dom•defn+lr

IN dd•lists(defn•listl*l<exp)r'

"

WITH

Appendix D

round•roap(f :(Cefn •>R •>E.xp)J(defr:+>r

SIZE defn+ ~Q 1 •> f(defn+ EL llr,
L~T exp'* = map(f)(defn+Jr IN
["<" exp'* ">"l

W1TH map(f :(Detn •>R ->Exp)J(detn*)r Exp*

CASE defn*
I <> •> <>
I defnl PRE defnl* -> f(defnllr PRE map(fl(defnl*)r

ESAC

WITH E>p

CASE defn

ee(ide)r

ESAC

WlTH I::Xp :;

CASE defn

l[expl "=" exp2] ·>

expl

ESAC

WITH pp•s(par*JCexpJr

CASE par*

I["@~ expll PRE parl* ·>

I[";" expll PRE parl*
l[eXPll PRE parl* •>

£SAC

ee(exp2)r

exp2J •> pp•s(par+)(exp2Jr

pp•s(parl*lCexpJr

LET expl' = ee(exp1Jr
ALSO exp' = pp-s{parl*lCexpJr
IN ["LAM" expl' "·" exp'J

PSL Sem<31ltics

CAS~ dom•defn*

ESAC

WITH

I <> ->

I Jom-defnl PRE dom•detnl* ·>
LET r• = dd-don:(dorr·detnllr IN
dd-doms(doll!•defnl*lr'

dd-domtdom•detnlr R

CASE dom-detn

ESAC

/(ide+ • ide "=" exp ";~J
/tide+ ":~ ide ~;"J -> lay-ides(r){ide+)(ide)

/(ide+ ~:" "~" exp "J"l
I (ide "=" expJ -> '

WITH lay•idesCrlCide*)Cide} R

CASE ide*

I <> ·> '
I idel PRE idel* •> LEt r• = r \ ii•q(idel) <- ii•q(ide)

IN lay•ides(r')(idel*l(ide)

ESAC

WITH ii•q(ide) Q •
CASE !de

I ["ID~ ql)
/["ID-DECOR" ql q2l
/["SOLD-ID" q1] ·> qi

ESAC

Appendix D

WITH dd·~l•ltern*llrllexp') Exp ::

CA.SE altern*

WITH

IN

/["/" exp+ "·>" ex!Jl PRE a.lternl* ·>

WITH

LJ::T exp" = a.a.•s(alternl*HrlCexp') IN
aa·e~Cexpt){ex~)Crlexp'exp''

I <> ~> exp''

I expl PRE eXpl* ->

ESAC

LET ~ = "#" IN
("ID" q]

LET cexp1',exp2'J:: ee•s(expl,exp2Jr
LET exp3' = a.a·es(expl*Jiexp2J(r)exp'exp''
LET explO' = [exp1' "IS" exp'l
ALSO exp20' =

LE'I exp21' = ["LAM" expl' "•" exp2'l
IN Cexp21' exp 'l

IN [explO' "•>" exp20' "•" expJ'l

E>P

LAM exp, ACTIVATE { ee{exp)(LA~ q, ?J)

END ! of "DSL•Semantic~"

71

E, LAMB Reduction Rules

The reduction rules for LAt4B are basically the beta-rule of the lambda-calculus
together with rules for operators acting on tuples, nodes and constants, The
rules concerned wlth pattern-expressions may be regarded as "eXplaininq awayN
this feature of LAMB ln terms of the otner features.

As in Chapter 2, the small letters n, q, t, p', e and (possibly subscripted)
will stand tor LAMB-expressions with meanings in the corresponding domains, a
suffixed '*' indicating a tuple. The letter •x• will stand for an arbitrary
identifier. Howev'er, in descrlbin~ the reduction rules, it is more appropriate
to consider the syntactic form of an expression, rather than just its meaning,
Therefore n, q and t below will be restricted to denote literal constants
(numerals, strings and 'TT', 'ff'l; and p, f and e* will denote
expressions of the form e NODE e', LA~ e. e' and <e, ••• > respectively, The
letter 'a' wlll stand for a constant tn,q,t) or '1'.

An occurrence of the left-hand-side of a reduction rule is called a "redex", An
expressl-on is said to be "in normal fonr" when it contains no redexes, (This
definition is actuallY recursive, as some of the reduction rules impose the
condition that particular components of the redex be already in normal form,)
The predicate 'is-norm(e)' is to be true for exactly those expressions e which
are in normal form.

N.B. The following reduction rules do NOT attempt to define LAMB: they are
merely consistent with the semantics of LAMB.

72

TT
_,

"' '' ., el,

tl AND t2
tl OR t2

a! EQ a2

e2 "' e2 "'
"' "'
"'

Appendix E

el ,,
conjunction of .tl and t2
disjunction of tl and t2

TT when al identical to a2
(leading zeros ignored)

FF otherwise

(q1 NODE el*l EQ (q2 NODE e2*) =>

(LAM et'. ell EQ (LAM e2', e2) =>

(ql J::Q q2) AND (e1* EQ e2*l

"
<el,.,.em> EQ <el', ••• en'>

' EQ p "' p EQ • • EQ f "' f EQ • • EQ " "' " EQ
p EQ f "' f EQ p
p EQ ,, "' " EQ
f EQ ,, "' " EQ

el NE "
nl LS n2

nl GP n2

nl LE n2

nl GE n2

nl PLUS n2

nl MINU.S n2

nl MULT n2

nl DIV n2

nl REM n2

<el, •• ,,em> CAT <el", ••• ,en'>

<et, ••• ,em> AUG e'

e' PRE <et, •• ,,em>

eel, ••• ,em> EL n

•
p
f

(el EQ el'l ANO,,,(em EQ en'l when m=n
FF otherwise

"' " "' " "' " "' " "' '' "' "
=> NOT (el EQ e2)

=> TT when nl less than n2
=> FF otherwise
=> TT when nl greater than n2
=> FF otherwise
=> TT when nl less than or equal to n2
=> Ff otherwise
=> TT when nl greater than or equal to n2
=> FF otherwise

=> nl plus n2

=> nl minus n2
when nl 9reater than or equal to n2

=> ?,otherwise

=> nl times n2

=> nl divlded by n2 (with truncation)
when n2 greater than 0

=> 1 otherwise

"' =>

=>

nl modulo n2 When n2 greater than 0
1 otherwise

<el, ••• ,err,el', ••• ,en'>

<el, ••• ,ef!l,e'>

<e',el, ••• ,em>

en when 0 less than n
anc n less than or equal to m

? otherwise

NOT t

NUMBER <ql,,,,,qn>

QUOTE <qt, ••• ,qn>

TRUTH <"T", nT">
TRUTH <;"F", "F">

CONC <el•, ••• ,em*>

cc "0"
cc •c•
cc "L"
cc .,.
cc "P"
cc "En

SIZE <et, •• ,,en>

SEG q

ACTIVATE e

e IS ?
e IS X
e IS a

(q NODE '" IS (el NODE e2)

(LAM e'. e) IS (LAM ?. 1)

<et, ••• ,em:> IS <:el', ••• ,en'>

<et,. o o ,em:> IS .. • <> IS e' •
<el, •• o ,em> IS .. +
<> IS e' +

<el, ••• ,em> IS Cel' .,, e2' l

<el, o o o ,em> IS (el' AUG e2'l

n .. {NUMI3ER e)
q IS (QUOTE e)
t IS (TRUTH e)
q IS (CC q)

• IS (VAL .. ,
e IS ••

LAMB Reduction Bules

negation of

the nurreral formed from the characters
Of ql, ••• ,qn when they are all diglts
? otherwise

the quotation formed from ql, ••• ,qn

.,
=>

=>

TT
ff

el* CA'I ••• em•

=> quote n:ark: "
=> carriage-return
=> line-feed
=> horizontal tab
=> page-throw
=> end~of•file

=> n

=> expression in the file identified by q

=> expression represented bY tree e
when is-norm{e)

TT
TT
e EQ a when a is not '?'

=> (q IS el) AND (e* IS e2)

=> TT

=> Cel IS el') ANO ... Cem IS en') when m=n
=> FF otherwise

=> {el IS e') ANO,,,(em IS e')
=> T'I

=> Cel IS e') AND, •• Cem IS e'J when m>O
=> Ff

=> (el IS el') AND {<e2,o •• ,em> IS e2')
when m>O

=> (<el, ••• ,en-1> IS el'J AND (em IS e2'J

=>
=>
=>
=>

=>

•• •• •• ••
e

when m>O

IS • when NUMBER q• => n
IS e when QUOTE q* => q
IS e when TRUTH q• => t
IS e when cc q' => Q

IS e' when is•norm(e)

=> FF in all other cases
{e.g., n IS (LAM ?. ?) => ff')

13

74

(LAr1 x. eJ(e'J

(l.AM ?. e){e'l •>

(LAM a. e)(e'l •>

(LAM(el NOD£ e2). e)[q NUDE e*l =>

Appendix £

e 'liitll e' substituted for x
(beta-reduction, avoiding "captures")

'
Ce' IS a) •> e, ?

(LAM e1, LAM e2, e)(ql(e*)

(LAMCLA!H.?J, e)(LAM el', e2') => e

(LAM<el,,.,,em>. el<el,,,,,en'> =>

CLAM " .. e){e') •>

CLAM ,, .. e)(e' l .,

CLA!Hel PRE e21. eJ<et',,,,,em'>=>

(LAM(el AUG e2J. eJ<el',,,.,em'>=>

(LAM(NUMBER el). e) (n)
CLAMCQUOTE ell. e)(q)
(LAM(TRUTH etJ, e)(t)
CLAMCCC el), eJ(q)

(LAM(VAL el). e)(e')

(e1; e2J(e')

(el CIRC e2)(e'l

(el STAR e2)(e'l

fiXLAM X. e

fiXLAM et, e2

=>

=>

CLAM et ••• LAM em, eHel'J,,,(en'l
when rn=n ,, .

" "
., •>

' W1th '. subst, tor ,, •• ,,.
" el ., •>

e with '. subst, tor ., ••
CLAM "· LAM ''· e)(el'l<e2',,,.,em'>

when m>O
CLAM ''· LAM ''· e)<el' 1 ,, , ,em•l'>Cem' J

when m>O

CLAM ''· e) Cq'-) when NUMBEF! q'- => n
CLAM ''· eJ Cq'-J
CLAM "· e l (q'-)
CLAM ''· el (q' l

(LAM ''· e)(e' l

(el{e2))(e')

CLAM VAL x.
(LAM VAL Xl,

when QUOTE q'- =>
when TRUTH q'- =>
when cc q' => q

when 1s~norm(e 'l

e2Cx1))(el(x))) (e')

CLAM VAL x.
CLAM VAL<X:t,x2>.

q
t

e2CxllCx2l lCe1CxJJ l Ce'J

(LAM x. e) CFIXLAM x. e)
only in the follow1nq contexts []:

[] ~> el, e2
tJ d1-op tl
[J NODE (]
() IS e'
mon-op ()
tl Ce •)

CLM4 et. e2)(
CLAM x', e')(FIXLAM et. e2) l

where e' is such that
CLAM et. et)(e'J => e'

and CLAM x. e')(e2) => e2

15

f, LAME Eval~ator

srs evaluates LAM~·expressions by applyin9 the reduction rules ot Appendix E in
a particuldt order. The algorithm used, called 'red', is based on the "call•bye
need" or "lazy evaluator" strategy [Vuillemin73l (due also to Chris Wadsworthl,
As with a "call•by•name" (normal order) strategy, the leftmost outermost redex
is reduced at each step; so in general it is a "safe" strategy, not embarKing on
the reduction of a sub-expression whiCh may later oe "thrown away". (Actually,
it is slightly unsafe on FIXLAM x. e, wen X is not used in e see Chapter 5,)
The inefficiencY usuallY associated with call•by-name is avoided by ensuring
that redexes are Kept linked together, so that parameters of abstractions are
not reduced more than once. E.g.

(LAM x. x PLUS Xl(l PLUS 2) =>• 6
in 3 steps cas in a "call•by-value" or "aPPlicative order"
to the 4 steps taken with call~by•name. Unfortunately
oPtimal, as redexes can be Rhiddenn from being Kept
abstractions:

{LAM f. f(i)
takes a steps, with
not a real source of

PLUS f(2))(LAM x. X PLUS (3 PLUS 4))
(3 PLUS 4) being reduced to 7 twice.
inefficiency in practice.

strategy) as opposed
red is not completely
linked together by

=>* 17
It seems that this is

Rather than iteratively searching for and reducing redexes, red uses recursion
to Keep tracK of wnat to reduce next. Substitution is simulated by the use of
environments, associating identifiers ~ith "closures" (pairs of expressions and
environments). The call-by-need strategy is effected bY updating the
environment after reducing the closure associated ~ith an identifier.

The following description corresponds
in the current version of SIS (1.1),
are omitted, as the main purpose is
redexes.

quite closely to the actual implementation
bUt the details of the auxiliary functions
to specifY the order of reduction of

Appendix F

! N.B. This description has not been tested.

OUNAINS

! LAMB syntax:

segment
title
"P

ide

mon~op

rep•op

! Environments

'"'
! States
state
mom
cell
files

Continuations

' k

' y
a

.Standard
n
q
t

Main functions
m
<Od
red-list
match
match-list

Segment
Title
<>p

I do

Dl•op

Mon-op

'"'
State
Mom
Cell
Files

c
K
X
y
A

N
Q
T

M
:=
:=
:::
:=

(•LAMB" Title Ex~ fl£ND~J
Q
[HLAM" Exp " " Exp]

I ("FIXLAM" Ex~ " " ExpJ
I tExp "·>~ Ex~ " " ExpJ
I [Exp Di-oP Exp]
I [Exp "NODE" Exp]
I [Exp "IS" Expl
I [Mon•op Expl
I !Exp Exp]
I ["<" EXP* ">"]
I [Exp Rep~opl
I Ide
I N I Q I T I
I <Exp,Env> ; l created by red - not in LAMB

["ID" Ql
I {"Io• Q "t" Nl ;
= ";" I •crRc• I •sTAR" I •AND" I •OR"
I •EQ" I "NE• I "LS" I "GR• I "LE• I "GE"
I "PLUS" I "MINUS" I "~ULl" I "DIV" I "REM"
I "CATR I "AUG" I "PRE" I "EL•
= "NOT" I "NUMBER" I flQUOTE" I "TRUTH"
I "CONC" I •cc~ I "SEG" I "ACTIVATE" I "VAL"

"*" I "+" ;

<Env,Exp,Cell> I ?

<Mem,Cell,N,Flles>
::: Cell -> Exp
::: N i

Q -> Exp

= State -> Exp
Exp •> c
Env -> c

= <A,EXP> •> C
T I ? ;

Natural numbers
Quotations
Truth values

= "norm" 1 "part~ ;
M •> Exp -) K •> C
M -> Exp -) K ·> C ;
Exp -> Exp ·> Y ·> C
Exp -> Exp -> Y ·> C

Mode of reduction for red

LAMB EvalUator

Identifier Handling

Fresh identifiers are supplied by n;odlfy•Ides , which uses the N•component
of Stdte to remember the highest subscript so far.

LE:T modity•ides(exp);k : C:: ? l (omitted expressions are represented bY '?'.)
1 gives a result of the same shaPe as exp , but with all Identifiers
1 having fresh subscripts. Modifies the N•component of State •

Environments

71

To achieve the call·by•need/lazy evaluator effect, environments are directly
updatable, as well as extensible. !he ~em-component of State remembers the
currents contents of cells, and the Cell-comPonent points to a fresh cell.

LJ::T void : Env :: 1 1 (Here '?' Is actually the value
1 EQ will be used to test whether an env is void
1 which is the reason that Env is not just Exp

LET bind(enV)(exp,exp");x : c :: ?

wanted!)
or not,

-> Cell.

1 exp should be an identifier perhaps with subscript and rep•ops
! or else an expression with the same shape as exp'. env gets extended
I bY binding all identifiers in exp to the corresponding components of
! exp•, and the resulting environment is passed to the continuation x.

LET find{enV)(expJ;y :.C::?
! If the identifier exp is not bound in env, then the continuation y
! is applied to the pair <rF,?> t:<A,Exp>l; otherWise, y is applied to
1 <TT, the current contents of the cell associated with exp in env>.

LET rebind<env)(exp,exp");c : C = ?
1 updates the cell associated with (identifier) exp in env to be exp•.

LET tix<env,env•l;c : C = 1
1 env must be an extension of env•, by cells containing pure

expressions onlY. All the extra associations in env• are updated
! to contain closures termed from the original expressions and env•.

suspensions

These are (in general) compound closures, i.e. expressions with environments
attached to sub~expressions. (The domain of suspensions could have been made
distinct from that of pure expressions, but the "[••• l' notation would then
insist on a lot of renamings to get the labels right!)

LET sus-exp(exp) ; Exp =
CASE exp
l<exp•,env> ~> exp•
I 1 -> exp
ESAC

LET sus-env(expl : Env ::
CASE exp
l<exp•,env> -> env
I ? -> void
ESAC

78 Appendix f

Control

Initialisation, finalisation, result•passing

LET set•up(expJCcHtiles) : Exp = ?
! applies c to initial state made from exp and files.

LST stop(expJ(state) : Exp = exp

LST res(exp);k : C kCexpJ

LET res•a(a);y ; C y(a)
It would be "nicern to maKe res Polymorphic:
LET res@ZCz:Z)(f:(Z ·>C)) : C = f(Z)
but then one has to specify a dorrain every time, e,.:,t. res@I::Xp(exp);k,
"Overloading" is what is wanted, but it is not in DSL (yet),

! Abbreviations

LET is·ideCexpJ : T =
CASE exp
/["ID" q] I {"ID" q "~n nl •> TT
/[expl rep-opJ ·> is-ide(exp1J
I ? •> fF
ESAC

LET is•basic(eXp) T =
CASE exp
/<exp',env> •> is•basic(exp')
/["LAM" eXpl ~." exp2]
I [€XP1 "NODE" exP2l
/{"<~ exp* ''>"l
I NUMBER ? I QUOTE ? J TRUTH ? -> TT
I ? ·> Cexp EQ 1 ·> TT,FFJ
ESAC

LET is•normCexp) : T = ?
! true when no redexes in exp. ACtually in;plemented by "tagging"
! expressions with a bit indicating whether they have been reduced.

L!::T lam-query-query ' Exp ? tree of 'LAM ?. 1'
LET number-query ' Exp = 1 tree Of 'NUMBEfl ,.
LET quote-query ' Exp = tree of 'QUOTE 1'
LET truth-query ' Exp = tree of 'TflUTH 1'
LET query•star Exp = ? tree of . , , .
LET query•star-star ' Exp = ? tree of • ? ' .. LET quote-query-star Exp = tree of '(QUOTE ?l ,.
LET cl re Exp = 1 tree of 'LAM tU. LAM 1#2. LAM 80. U2CU1CU3})'

LET star E>P 1 tree of 'LAM Ut. LAM U2. LAM UJ.
(LAM<f14,115>.##2(JJ4)(##5))(~11(1#3)}'

! Monadic operators

! -----------------
LE'r mon•op•arq(mon·op)

CASE mon·op
I "NOTn
I "NUMBER~
I "QUOTEH
I "TRUTH"
I "CONC"
I "CC" I "SEG"
ESAC

LAMB Evaluator

: Exp =
·> truth-query

•> quote-query-star
·> query·star•star
-> quote·query

LET mon•op•fn[mon·op expJ : Exp = ?
! the result of applying the mon•op to exp

L~T mon•op·inv(mon·op,exp} : Exp = ?
1 the result ot inverting the n-on-op on exp

1 Uiadic operators

! ----------------
LET di·op-arg(di-op,n) : Exp ! n is 1 or 2

CASE di•op
1 "AND" 1 ~oR" ·> truth-query
I "LS" I "GR" I "LE" .I "GE~ •> number-query
I "PLUS" I "MINUS" I "MULT"
1 "DIV" 1 "REM" •> number-query
1 "CAT" .. > query-star
1 "AUG" •> n EQ 1 -> query-star,
1 "PRE" •> n EQ 2 ·> query-star,
1 "EL" •> n EQ 1 ·> query-star, number-query
ESAC

LET di•op-fn{expl di•op
CASE di"'OP
I ";"
I "CIRC"
I "STAR"
I 1
ESAC

exp2J : Exp =
-> [exp1 exp2l
-> ? ! tree of 'circ(expll(exp2)'
•> 1 tree of 'star(expl)(exp2)'
-> ? the result of applying the di•op to expl, exp2

79

LET di•op•invCdi•op,n,exp} : Exp = ? ! n is 1 or 2
1 the result of inverting the di•op on exp and taking the nth component

1 IS•operator
!

LET is•fn[exp1 "IS" eXp2J : Exp = ?
! see the reduction rules

! Application

! -----------

LET a~p-fn[exp1 exp2l : Exp = ?
: see the reduction rules

80 Appendix f

Reducer

red(mJ(expOJ;k reduces the expression (suspensionJ expO either to
normal torm, or to a basic form ~~ abstraction, tuple, node or atom,
The parameter m specifies whicn ("norm" or "part"). It m is "part"
but no basic form is found, the normal form is given as result.

DLF red(mJ (expO) ;k. : C

LL1' (exp, envl (sus~exp(expO), sus~env(expOJl IN

is•norm(exp) AND (env EQ void) ·> res(expJ; k.,

CASE exp

/<exp' ,env'> ·>
env EQ void·> red(mJ<exp',env'>; k.,
env' EQ void ·> red(m)<exp',env>; k,

/{"LAMB~ title expl nENDH] •>
red(ml<expl,env>; k

I ("LAM" expl "." exp2J ->
m NE "norm" ·> res<exp,env>; k,
modify•ides(exp1); LAM expl',
bindCenV)(expl,exPl'l; LAM env•,
red"norm~<exp2,env'>; LAM exp2'.
rest"LAM~ expl' n,H exp2'l; k

lt"fiXLAM" expl ".~ exp2J ·>
m NE "norm" ·>

bind(env)(expt,exp2); LAM env•,
fix(env,env');
red(m)<exp2,env'>; k,

modity·ides{expl}; LAM expl'.
bind(env)(expl,eXpl'); LAM env•.
red"norm"<exp2,env'>; LAM exp2',
tes["FIXLAM~ expl' ~." exp2'l; k

l(ex~l "·>'' exp2 "•" expJJ ·>
match(truth•query)<expl,env>; LAM<a,expl'>.
CASE a
I TT •> CASE expl'

1 TT ·> red(mJ<exp2,env>; k
I Ff •> red(ml<expJ,env>; k
ESAC

I ff ·> resC?l; K
I ? ·> red"norm"<exp2,env>; LAM exp2'.

red"norm"<expJ,env>; LAM expJ'.
res(expl' "•>" exp2' "•" expJ'J; K

ESAC

l[expl di•op exp2l ·>
CASE di-op

LAMB Evaluator

I ";" I "CIRC" I nsTAR" •>
LET (expl', exp2') = (<expl,env>, <exp2,env>) IN
m NE "norm"-> red(ml(di·o~·fn(expl' di•op exp2'JJ; K,
red"normHexpl'; LA!>(expl' •.
red"norm"exp2'; LAM exp2'',
res(expl'' di•op exp2''l; k

I "EO" I "NE" •>
red"part~<expl,env>; LAM expl'.
red"part"<exp2,env>; LAM exp2'.
1s•baS1c(expl') ANC 1S•basic{exp2'J •>

redtmHdi•op•fntexPl' di•op exp2'l); k,
red"norm"expt'; LAM expl'',

I 1 ·>

red"norm"exp2'; LAM exp2'',
res[ext:1'' di•op exp2''l; k

match(dl•op•arg<d1•op,l))<expl,env>;
match(di•op•arg{di•op,2))<exp2,env>;

LAM<al,expl'>,
LAM<a2,exp2'>,

CASE (a1,a2l
I(TT,TT) •>
I(Ff,1)
1(1, Ff) •>
I<?, 1) ->

red(m)(d1•op-fntexpl' dl-op exp2'l); K

ESAC
ESAC

l[expl "NODE" exp2J ->

rest?); k
red"norm"expl'; LAM exp1''.
red"norm"exp2'; LAM exp2'',
restexpl'' dl•op exp2''l; k

match{quote•quetY)<expt,env>; LAM<at,expl'>,
match(query•star)<exp2,env>; LAM<a2,exp2'>.
CASE (a1,a2,11l)
I(TT,TT,"part"l -> res[expl' "NODE" exp2'l; K
I{Ff, ?, 1)
10, FF, ?) ·> res(?); K
1(?, ?, ?) ·> red"norm"expl'; LAM expl''•

red"norm"exp2'; LAM exp2 • •.
res (exp 1 • • "NODEn exp2 • 'l; K

ESAC

/(expt "IS" exp2J ... >
match(eXP2)<expl,env>; LAM<a,expl'>,
CASE a
1 TT-> red(m){is-fn[expl' "IS" exp2JJ; k
I FF •> res(FF); k
I 1 -> res(expl' "IS" exp2J; K
£SAC

81

62 Appendix r

ltmon•op expll ·>
CASE rnon•op
I "ACTIVATE" •>

I ·>

m NE "norm" •> resC?J; k,
red"norm"exp1; LA~ exp1',
res(rnon·op·fntrron•op exp1'JJ; k

match(mon•op•arg(mon•opJJ<exp1,env>;
CASE a1
I TT •>
I ff •>
I ? •>
E.SAC

LAM<al,eXpl'>.

ESAC

red(m)(rnon•op•fntmon•op
res(?); k
res(mon·op exp1'l; k

exp 1 'l); k

LAMB Evaluator

/texpl exp2l ~>
match{larn~querr~queryl<expl,env>; LAM<al,expl'>.
CASE al
I TT •>

I Ff ->

ESAC

LET ("LAM" exp11 "•" exp12J = sus~exp(expl'l
LET envl = sus•envcexpt') IN
rnatch(exP11)<exp2,env>; LAM<a2,exp2'>,
CASE a2
I TT ~> is·ide(explll ->

bind{env1J<expt1,exp2'>; LAM env•.
red{m)<expl2,env'>i K,

red(m)(app~fn(expl' exp2'l); k
1 Ff •> res(?); k
I ? -> red"norm"expt'; LAM expl' ';

res[expt'' exp2'J; K
ESAC

red"normh<exp2,env>; LAM exp2'.
res[expl' exp2'l; k

I("<" eXP* ">h) •>
LET eXp'* = rnap·list{LAM exp',<exp',env>J(exp*J
LET exp' = ("<" exp'* ">"1 IN
m NE "norm" -> res{exp'); k,
red-list"norm"{exp'J; k

l(expt rep-opl
/[''ID" q}
/["!Du q "J" n] ->

f1nd<envJ(exp);
CASE a
I TT ->

I FF ·>
ESAC

LAM<a,exp'>.

red(m)(exp'J; LAM exp''•
rebind(envJ(exp,exp''J;
res(exp''); k.
res(expJ; K

83

I NUMaER ?
I \.lUt.JTE
I TRUTH ? ·>

res(exp); k

' ->

Appendix f

exp EQ ? "> rest?); k, 1

ESAC

WITH map•l!st(f;(Exp •> Exp)J(exp*J : EXP* =
CASE exp*
I <> ·> <>
I expl PRE expl* ·> f(expl) PRE map•l!st(f)(expl*l
ESAC

WITH red•llst(mJ[~<" exp* ">"l;
CASE eXP*
I <> •>
I exp1 PRE expl* ·>

ESAC

Matcher

k • c =
<>
red(m)(expl); LAM expl'.
red•list(m)("<" expl* ~>"l;LAM["<" expl'* ">"l.
LET exp'* = expl' PRE expl'* IN
res("<~ exp'* ">"J; k

match(expO)(~xp);y tries to make exp match the shape of expO, by reducing
(as little as possible) and by inverting operators. It is basically l•level,
although (exp rep•op] does not count in this respect. The A-comPonent of the
value passed to the continuation y is

TT lf the match was successful
Ff if the match failed (i.e. was lwpossible)

if the normal form of exp is not a basic expression, thus containing
potential redexes and free variables.

WITH match(expO)(expJ; y : C

(expO EQ ?J OR (expO IS ["ID" ql) OR (eXpO IS ["ID'' q "t" nl) •>
res•a<TT,exp>; y,

red"part"exp; LAM exp'.
NOT is•basicteXp'J .. >

res-a<?,exp'>; y,

CASE expO

/["LAM" expt "•" exp2) ->
CASE exp•
I <("LAM" expl' ''•" exp2'l, env> ~>

res~a<TT,exp'>; y

res-a<fF, ?>; y
ESAC

LAMB- Evaluator

/(exp1 di~op exp2l •>
CAS£ (di~op,exp')
/(~AUC", ["<" exp'* ">"ll
/("PRE", ["<" exp'* ">")) •>

I 1 •>

ESAC

SIZE exP1'* EO 0 •> res•a<FF,?>I y,
L~T expl' = d1•op•1nv{d1•op,1,exp'}
LET exp2' = d1•op•invtd1•op,2,exp'} IN
ru•a<TT, texp1' di•op exp2'J>; y

res•a<FF', ?>1 y

/[UPl "NODE" exp2) w)

CASE exp'
I texp1' "NODE" exp2 'l ->

res•a<TT,exp'>; y
I ? •>

res•a<FF, ?>; y
ESAC

/[mon•op expll •>
CASE {mon•op,exp'}
/("NUMBER", NUMBER ?l
/("QUOTE", QUOTE ?)
I ("TRUTH", TRUTH 1)
/("CC", CC ? l •>

ESAC

LET expl' = mon·op·invcmon•op,exp') IN
res•a<TT, [mon•op expl'l>; y

/("<" exp* ">"~ •>
CASE exp'
/["<" exp'* ">"l •>

I ? ·>

ESAC

SIZE eXP* NE SIZE exp'* ">
res•a<FF',?>; y,

res<TT,exp'>; y

res-a<FF,?>; y

/[expl rep•opl •>
CASE (rep-op,exp')
/("*"• ("<" exp'* ">"1) .. ,

match-l1stcexp1l£"<" exp'* ">"l; y
/{"+", {"<" exp'* ">"ll ->

SIZE exp'* EQ 0 -> res•a<FF,?>; y,
match·l1St(exp1)["<" exp'* ">"l; y

I NUMBER ?
I QUOTE ?
I TRUTH 1 ·>

ESAC

expO EO exp• •> res•a<TT,exp'>; y,
reswa<FF', 1>: y

"

So

IN

END

Appendix f

CASE exp*

res-a<IT, rnc~ eXP* u>"J>; y
I exp1 PRE expl* ·>

ESAC

match(expO)(expl); LAM<a,exp1'>.
rnatch•list(expO)[nc~ exPl* u>"J; LAM<a',exp'>,
CASE ca,a',exp')
/(T!,TT,["<" exp1'* ">"]) ·>

LET exp'* = expl' PRE expl'* IN
res-a<'IT, ("<" exp'* ">"l>; y

/(ff,;' ,?)
/(?, ff,?) ->

res•a<FF,?>; y
/C?, ?, ("<" exp1'* ">"ll ->

red"norm"expl'; LAM exp1'',

ESAC

red"norm"("<" expl'* ">"J; LAM("<" expl''* ">"J,
LET exp''* = expl'' PRE exPl''* IN
res•a<?, ["<" expl''* ">"l>; y

(LAM exp, set•up(exp); red"norn"exp; stop) (files ·> Exp •> Exp)

G, LOOP Semantics (in LAMS)

LAMB M~OOP•Semantics"

(LAM <pp, cc, ee•Ust, ee, oo, repeat, update-list, initial·s,
update, content>. pp}(

FlXLAM
<pp, cc, ee•list, ee, oo, repeat, update•list, initial•s,

update, content>.
< (LAM "Read•cmd;Crnd;Write-cmd"NODE<read-cmd, crrd, write•cmd>,

LAM n*.
(LAM <"READVar*"NODE<var*>, "WRITEEXp+QNODE<exp+>>,

CLAM s1,
(LAM s2, ee•l1st(eXP+)(S2))(

cc<cmdJCs1ll)(
update•listC<var•, n*>J(initial-s)J)(

< read•cmd, write-cmd>)), {
LAM cmdO.

LAM s,
CLAM HO,

HO IS ("Cmd;Cmd''NODE<cmdt, cmd2>} ·>
(LAM "Cmd;Cmd"NODE<crrdl, cmd2>,
ccCcmd2)(cc{cmdl)(S)})(ffOJ,

ffO IS ("Var:=Exp"NODE<var, exp>) •>
(LAM "Var:=Exp"NOOE<var, exp>,

CLAM n. update<<var, n>J(s))(
ee<expJ(s)))(ftOl,

UO IS ("TOExpOOCmd"NOOE<exp, cmd>) •>
{LAM "TOExpOOCmd"NOOE<exp, cmd>.

{LAM n. repeat(n){cc(cmd)l(s)){
ee<exp){s)))(IIO),

110 IS c~ccmctJ"NODE<cmo>> •>
{LAM ~(Cmd}"NODE<Cmd>. CC(Cmd)(S))(ffO),

?HcmdO)), (
LAM l!xpO+.

LAM s.
(LAM UO.

UO IS <exp> ·>
(LAM <exp>. <ee(exp)(sJ>l(tfO),

110 IS {exp PRE exp+) •>
(LAM exp PRE exp+.
ee(eXp)(s) PRE ee-liSt{exp+}(S))(IIO),

?J(exPO+)J, <

"

88

END

Apyendix G

LAM expO.
LAM s,

CLAM UO,
uo IS c~ExpOpExpnrwDE<expi, op, exp2>) ·>

CLAM "ExpOpExp~NODE<expl, op, e>:p2>.
(LAM <n1, n2>,
oo(op){<nl, n2>ll(
< ee(expl)Cs), ee(exp2){s)>))(•tOl,

UO IS ("Var"NODE<var>) •>
(LAM "Var"NODE<var>, contentCvarlCsllCU:O),

-~0 IS C"Num"NODE<num>l •>
CLAM "Num"NODE<num>. nutn)(##O),

?HexpO)l, C
LAM op,

LAM <nl, n2>,
CLAM UO,

f#O IS M+" ->
CLAM"+". nl PLUS n2)(f#O},

UO IS "·'' ·>
CLAM "•", nl MINUS n2)(#10l,

UO IS "*" ->
CLAM "*"• nl MULT n2)(UO),

1#0 IS "/" ·>
(LAM"/", nl DIV n2)(f.Ol,

?)(op)J,
LAM n,

LAM c.
LAM s,
n EQ 1 -> ?,
n EQ 0 -> s,
repeatCn MINUS l)(c)(c(s))),

LAM <vatO*, nO*>,
LAM s,

SIZE varO* EQ 0 ·> s,
CLAM <var PRE var*, n PBE n*>,
update•listC<var•, n*>lCupdate(<var, n>)(S)))(

< varo•, nO*>ll, (LAM var. ?), (
LAM <var, n>.

LAM s.
LAM UO.

UO EO var -> n,
5(1#0)), (LAM var. LAMs. S(Var))>)

	SMonmouth160721104403
	SMonmouth160720133602
	SMonmouth160720133601
	SMonmouth160720133600

