

ISSN 0105-8525

SIS — Semantics Implementation System

Reference Manual and User Guide

by
Peter Mosses

DAIMI MD-30
August 1979

Compurter Science Department
AARHUS UNIWEASITY

Telephone: 06 — 12 83 58

Ny Munkegade — DK 8000 Aarhus C ~ DENMARK |

Hinsll

LR

ABSTRACT

The Semantics Implementation System, SIS, provides the
following facilities:

- a parser-generator, producing parsing tables from
grammars written in GRAM (an extension of BNF);

- a encoder-generator, producing “encoders’ (code-
generators) from semantic descriptions written in DSL {a
variant of the Scott-Strachey notation for denotational
semantics); and

- an interpreter, evaluating expressions in LAMB {a version
of lambda-notation).

This document explains the general structure of SIS, and
describes the notations GRAM, DSL and LAMB,

it is assumed that the reader is familiar with the method of
denotational semantics, at {east to the level of Tennent's tutorial
paper [Comm.ACM,19:8].

SIS has been implemented in BCPL on a POP-10. A hard copy of

the implementation — which is reasonably portable -~ can be
obtained by writing to the author.

i -

ACKNOWLEDGEMENTS

SIS has been a long time under development, and people too
numerous to list here have given advice and inspiration at various
times. My thanks to them all — not least to the long-suffering
students at Aarhus who experienced SIS’ teething troubles!

The original inspiration for SIS came from the late Christopher
Strachey. The encouragement and support from his Programming
Research Group at Oxford were crucial to the initial development
of SIS,

Karsten Bank Petersen, Aarhus, helped in rewriting parts of SIS to
improve the portability. Gilles Kahn, IR1A, was brave enough to
try out an early version of 5138, and his enthusiasm for SIS was a
real help in completing what had turned into a rather long project.

The SIS project has been supported financially by the British
Science Research Council, and by the Computer Science
Department of Aarhus University.

CONTENTS

Abstract] i

Acknowledgements - : v
Contents . v
CHAPTERS
1. SIS ' 3
2. LAMB o 5

2.1. Domains 6
2.2, Constants 7
- 2.3. ldentifiers 7
2.4. Operators _ ‘ 7
2.5, Enquiry _ 10
2.6. Binding . 12
2.7. Miscellaneous 14
3. GRAM - 17
3.1. General : 17
3.2. Notes on Example 18
3.3. Parsing 25
4, DSL ' 27
4.1, General ' ' 27
4.2. Notes on Example 29
4.3. Cases 36
4.4, Definitions 37
4.5. Nodes 38
4.6. Domains , 39
4.7. Type-checking _ 41
_V-

5. PRAGMATICS

5.1. LAMB

5.2, GRAM

5.3. DSL
References

APPENDICES

A, LAMB Syntax
B. GRAM Syntax
C. DSL Syntax
D. DSL Semantics
E. LAMEB Reduction Rules

F. LAMB Evaluator

G. Loop Semantics (in LAMB)

-y

43

45
47

53

55

59

63

71

75

a7

1. SIS

SIS is basically a compiler-generating system. The part of it concerned with
parsing is fairly conventionat: it takes a context-free grammar, specified in an
extension (called GRAM) of BNF, and produces a parsing table. This tabie can
then be used to produce parse-trees (the parse-trees are more "abstract syntax
treas’ than derivation-trees) from programs in the specified language, as the
first step towards compiling them. The parsing is usually split into two passes
— lexical and syntax analysis — and use is made of the SLR(1} algorithm
{Andersen,Eve&tHoming73].

The rest of the system is less conventional. in contrast to other

compiler-generating systems [Feldman&Gries68}, the "encoder”

{code-generator) part of a compiler is produced from an independently-useful

formal semantics for the programming language. The type of formal semantics

used by the system ig so-cailed "denotational semantics” [Tennent?8, Stoy77].

However, the original — rather exotic — notation of Scott and Strachey {used

by Tennent and Stoy) is not very convenient for computer processing; so a

variant of the notation, cafled DSL, has been devised {and formally defined, see

Chapter 4). it is easy to translate Scott-Strachey notation into DSL, and vice .
versa,

The encoder, produced from the semantic description, takes the parse-tree of a
program and dives what is basically an expression in lambda-notation
[e.g.Stoy77]. The expression denotes the semantics of the program, usually a
function from {(a list of) inputs to {a list of} outputs, The particular version of
tambda-notation used in $i5 is calied LAMB.

To run the code of a program with a particular input, the lambda-expression
produced by the encoder is formally applied to a iambda-expression
correspanding to the input; this application is then evaluated, i.e. reduced to
"normal form”, giving the output of the program, The reduction algorithm uses
a "call-by-need” strategy [Vuillemin73] (due also to Chris Wadsworth).

The system is not closely tied to the use of the particular notations GRAM and
DSL, which are described below. The user may define new notations, using
the standard versions of GRAM and DSL.

2

SIS

The main componenis of SIS, which enable the above operations to be carried
out, are as follows:

(P

()

(D}

{R)

The parser. It takes a source text and a parsing-table, and parses the
text to produce a parse-tree.

The parser-generator, It takes the parse-tree of a grammar written in
GRAM, and produces a parsing-table. (Standard parsing-tables are
provided for LAMB, GRAM and DSL.}

The encoder-generator. [t takes the parse-tree of a semantic description
written in DSL, and produces a LAMB-expression denoting the specified
semantic function. When this LAMB-expression is applied to the
parse-tree of a program, it produces a LAMB-expression denoting the
semantics of the program {usually an “input-output” function},

The LAMB-reducer. It is used to evaluate applications of semantic
functions to parse-trees of programs, and also applications of
input-output functions to inputs. It can alsc be used for reducing
arbitrary LAMB-expressions to “normal form”,

The diagrams below iliustrate the use of the main components of 5iS. Let PL
he some programming Janguage.

Compiler Generation:

PL-grammmar } P, G
Jemmmmme e > PL-parser

GRAM-parser }

PL-semantics 5 P.D :
 E— > PL-encoder

DSL-parser }

Compitation:
PL-program i P
_ | > PL-program tree
PL-parser i

PL-program tree } R
Jarsmsomamennnnnne > PL-program code

PL-encoder ~ }

Execution:
PL-program code } R
input }

See [Mosses?5,76] for more explanation of {and motivation for} the structure of
SIS,

The foliowing Chapters describe LAMB, GRAM and DSL in detail {albeit rather
informally}), and a final Chapter gives some practical advice on technigues
which wilt enable the user to get the best out of SIS.

2. LAMB

This Chapter introduces LAMB, on which DSL and {to a lesser extent) GRAM
are based. it is assumed that the reader is familiar with the lambda- notation
used in denctational semantics (see {Tennent?6, Stoy77]}.

LAMB is a particular version of lambda-notation, formally based on Scott's
LAMBDA [Mosses/5, Scott76]). As such, it is a suitable notation, or "code’, for
representing abstract mathematical functions, such as semantic functions, or
input-output functions. A concrete syntax for LAMB is given in Appendix A.
The formal definition of the semantics of LAMB {by translation into LAMBDA]}
is not very illuminating, and therefore will not be given here; it is hoped that the
informal description below will suffice for the general user of SiS.

LAMB-expressions satisfy certain “"laws’, which can be used as reduction rules
for simplifying expressions. Note that, in contrast to the lambda-caiculus,
these laws are not 'a priori’ axioms, but theorems provable from the semantics
of LAMB. The reduction rules are given in Appendix E.

The LAMB-reducer in SIS is an algorithm for applying the reduction rules in a
particutar order. Thus LAMB-reduction of an expression produces a new
expression denoting exactly the same wvalue. For example, if a
LAMB-expression f denoting a function is applied to another expression e, the
LAMB-reducer can be used to “evaluate” the application fie), giving some
{hopefully simpler!} expression e’. The important point is that e’ denotes
exactly the same value as f{e)! In fact, it is only because of our limited ability to
grasp the meaning of complex expressions, that LAMB-reduction is needed at
alk. :

The reduction algorithm used in SIS is described in Appendix F. [t uses a
“call-by-need” strategy for applying the reduction ruies.

The remaining sections of this Chapter give an informal description of the
semantics of LAMB.

6 LAME
2.1. Domains

Let a "domain” he a complete partial arder with a minimal element “bottom”.
For the use that is made of LAMB in SIS, it is unimportant whether a domain is
taken to be a complete lattice, a chain-complete partiai order, or whatever — all
that is required is that solutions of domain equations and Jeast fixed points of
functions exist and are well-defined (up to isomorphism}. Power domains are
not provided in the current version of LAMB.

The meanings of LAMB-expressions belong to a domain E satisfying the
following equation {up to isomorphism):

E= N+Q+T+E+x+P+F+7?
where + is the coalesced sum, and

N = non-negative integers (flat, i.e. no ordering between the proper
elements)
Q = so-called "quotations” (flat, countable}
T = truth-values (flat}
E+ = finite tuples with components in E
P = “parse-trees’ with node-abels in Q and components in E
F = E --> E, the continuous functions from E to E
? = the domain with just one proper element {which Is also denoted by
)

Note: E» = 7 + E + E'x E + ..., so the size of a tuple can be tested. This is
in contrast to tuples in LAMBDA [Scott76], which are simply abbreviations for
functions:; they have no size, and cannot be concatenated.

In the following, the small letters n, q, t, p, f and e {possibly subscripted) will
stand for arbitrary LAMB-expressions with meanings in the corresponding
domains. A small letter followed by an asterisk '+* will represent an expression
denoting & tuple with components in the indicated domain. Finally, the letter
'x’ will stand for an arbitrary identifier of LAMB.

LAMB-expressions may be built up from constants, identifiers and operatars, in
accordance with the concrete syntax given in Appendix A. Al
syntactically-valid LAMB-expressions denote elements of E: the
semantically-"'nonsensical” expressions simply denote ’?". '

Constants 7
2.2. Constants
The constants of LAMB consist of:

the decimal numerais 0, 1, ..., 9,10, ...
denoting elements of N;

quoted sequences of characters, e.g. | am a qugtation”, *1", ™
denoting elements of Q;

TT and FF
denoting elements of T;

and ?
denoting the proper element of the domain ?.

2.3. ldentifiers

LAMB identifiers are basically sequences of small letters. However, the first
letter may be a capital, and dashes ‘- may be used. An identifier may be
“decorated” with a subscript {a sequence of digits), or with one or mare primes
{'). (Also, the character "#' is used in LAMB-identifiers generated by SiS.)

2.4, Operators

Operators may be used as follows, to build up LAMB-expressions denoting
more compiex elements of E:

<el, e2, ..., en>
denoctes a tuple in E*, whose cdmponents are the values of e1,e2,...,en.
The tuple may be empty, i.e. n=0. (Tuples with different numbers of
elements are always distinct.}

SIZE ex
denotes the number of components of the tupla e*.

ex EL n :
denotes the nth component of the tuple e+, provided that 1€n<SIZE e+,

& LAMEB

el+ CAT a2+
denotes the concatenation of the tuples e+ and a2+,

el AUG e2
augments the tupfe e1+ with the value e2 {equivalently e1* CAT<e2>).

el PRE e2+
prefixes the value el to the tuple e2~ {equivalently <e1>CAT e2»}.

CONC e#»
concatenates the tuple components of the tuple ex»
{equivalently (ex» EL 1) CAT ... CAT (e»» EL SIZE e»+) }.

q NODE e~ o
denotes a "parse-tree” in P, whose label is q, and whose immediate
branches are the components of the tupie e,

LAM x. e
binds the identifier x in the expression e, and denotes the function in
E —> E which takes the values of e as x varies over E. (See also
Section 2.6.)

t —>etl, e2
is the conditional expression, equivalent to {i.e. denoting the same value
as) el if t denotes true, equivalent to e2 if t denotes false.

Note that {all} the usual arithmetic and Boolean operators are verbalised in
LAMB, to avoid confusion with the other uses of the symbols +,-,+,<,>.

n1 PLUS n2

n1 MINUS n2 {when n12n2}
nt MULT n2

nl DIV n2 {when n2>0}
n1 REM n2 {when n2>0)

all denote the obvious integer values.

n1 LS n2 "less’

nt GRn2 “greater”

n1 LE n2 ’less or equal”

n1 GEn2 “greater ar equal’
are equivalent to TT i n1 is in the specified relation to n2
— otherwise equivalent to FF.

Operators g

NOT t
t1 AND 12
t1 OR t2
all denote the obvious truth-values.

el EQ e2
is generally equivalent to TT if e1 and e2 denate the same value, and
otherwise equivalent to FF. However:
— testing functionat values always vyields FF;
— testing ‘bottom’ always vields "bottom’.

el NE e2
is the negation of e1 EQ e2.

The following operators can be used to construct “atomic” values (numbers,
quotations, truths} from their character representations:

NUMBER g+ .
-denotes the number whose decimal digits are the components of g+,
provided that g+ has at least one component.

QUOTE q+
denotes the quotation whose characters are the characters of the
components of q+, provided that all these components denote.
single-character quotations. Note that QUOTE<> is equivalent to ™.
{Tuples of multi-character quotations may also be QUOTEd — distinct
operand values yield distinct quotations.)

TRUTH g+
is equivalent to TT if g» is equivalent to <"T","T">, and to FF if g« is
equivatent to <"F","F">.

CCaq
denotes the quotation of a "special’ character:
if ¢ = "Q" then the quote-mark {"};
if ¢ = "C" then the carriage-return character;

if q = "L" then the line-feed (or new-line} character;
if q = "T" then (horizontal} tab;
if q = "P" then page-throw (form-feed); and

if q = “E then end-of-file.

r\'?

10 LAMB

Function application is denoted by simple juxtaposition — but note that a
space, or parentheses, may need to be inserted to separate the two operands
{(see Appendix A},

fe
denotes the value of the function f at the value e,

2.5. Enquiry

The “enquiry” operator

6115 e2
has a rather different nature from the operators described in the previous
Sections. Its basic purpose in life is to tell whether the arbitrary value denoted
by et is of the particular "form” described by 82 — e.g., whether el denotes a

_ number, or a tuple, etc. More generally, it can be used to investigate structure

to any depth, and resembles a “pattern-matching” operator {but without
“back-tracking”). Constructor-operators for the particular forms are used in the
"pattern’-expression &2, and '?" is used to match any value.

For example, the pattern to match any 3-tuple is <?, ?, >, hence:

el iS <2, ?, > is equivalent to
TT, if et denotes a 3-tuple;
FF, if el denotes some other tuple; also
FF, if el denotes a non-tuple — even if it is the special value "? {but
bottom, of course, if 81 denotes bottom).

There are pattern operators for matching each of the sub-domains of E (except
for ?, which can however be tested for by the use of et EQ ?}, and pattern
expressions can be nested to any depth, in general.

The following operators may be used to build up pattern-expressions:

<el, e2, ..., en>
matches tuples with n components,

e~ {a pattern-expression followed by a star)
matches tuples with any number of components.

e +
matches tuples with at jeast one component.

Enquiry 11

el NODE e2
matches nodes.

LAM 2,7
matches functions {note that this is only a 1-level pattern).

NUMBER e
matches numbers.

QUOTE e
matches quotations.

TRUTH e
matches truth-values.

CCe
matches special characters (newline, etc.}.

Note that NUMBER, QUOTE, TRUTH and CC are the atom-constructor
operators mentioned eadier. Hence one may specify the form of their
operands. E.g.,

el IS QUOTES?>
can be used 1o test whethar e1 is the quotation of a singte character. (Actually,
this would also match, e.g., QUOTE<"ab"> — single character quotations ¢ are
exactly characterised by QUOTE<c> EQ ¢ being equivalent to 1T

Constants may be used in patterns, and {with the exception of "7’} they simply
match themselves.

For technico-pragmatic reasons, identifiers are permitted in pattern-expressions.
However, in this context, they are completely equivalent to '?", matching any
value. Therefore it is not possible to bind patterm-expressions to identifiers, and
then use the identifiers in a pattern context. For example, LAM x.(e IS x}is
absolutely equivalent to LAM x. TT . '

To summarise the use of pattern-expressions with the operator ’IS":
el IS e2 is equivalent to:
TT, if the value denoted by el can be "constructed” by the pattern e2;
FF, if it cannot possibly be so constructed.
Pattern-expressions look basicaily the same as ordinary LAMB-expressions, but
only “constructive” operators (NODE, NUMBER, etc.) may be used.

12 LAMB

in effect, the notation ‘et 1S e2' is a generalisation of the “enquiry” notation
used in [Tennent76, Stoy77] for separated surms, applied to the domain of
values

E=N+Q+T+Ex+P+F+ 7.

2.6, Binding

. If one has tested that a value is of a particular form, using el 1S e2, it might
then be desired to extract the {so-far untested} components of the value —
perhaps for further testing. For example, if et IS <?«,?+> is true, then one
might wish to extract the first and second components of el, in order to test
whether they are of the same size. LAMB follows ordinary lambda-notation in
allowing tuples of identifiers in lambda-abstractions, to acheive this extraction,

- Thus x1 and x2 will be bound to the first and second components of el

(LAM<x1,xZ>, eliel) .

However, LAMB goes on to generalise this idea (after [Burstall69}}: it allows
not only tuples of identifiers, but also “pattern”-expressions (described in the
previous Section) to occur in lambda-abstractions, f e is any
pattern-expression, then LAM e’. e is called a pattern-abstraction. Suppose et
IS €' is equivalent to TT; then (LAM e’. elle1) denotes the value of e with the
identifiers ({if any} occurring in e associated with the “corresponding”
components of el. E.g., if el IS QUOTEL?,?> is equivalent to TT, then
(LAM QUOTE<x1,x2>. x1}el} denotes the first of the two characters of the
quotation denoted by et.

When a pattern-abstraction LAM €'. e is applied to a value el such that e? IS €’
is equivalent to FF, then the value denoted by the application is simply ‘7.
Hence, if ¢ is any pattern-expression, then LAM e’, ¢’ denotes the function
which is identity on the sub-domain of E corresponding to €', but which maps
all other values to ‘7.

The reader may have noticed that operators for selecting the labels and
branches of nodes have not been introduced. This is because one can simply
use the application

(LAM{x1 NODE x2). e1He2}
to select and bind the label {x1} and the tuple of branches {x2) of a node e2.

Binding 13

In a similar way, LAMB allows the tuple-prefixing operator ‘PRE’ to be used in
pattern-expressions. This enables tuples to be regarded as lists, since the
“head” and the "tait” of a tuple can be selected {and bound) by

{LAM{x1 PRE x2}. el{e’} .
The nit-list is simply the empty tuple <>,

For symmetry, "AUG’ is also allowed in pattern-expressions. Note that 'CAT' is
not allowed — it would introduce an unwelcome non-determinism into LAMB’s
semantics.

There are two forms of pattern-expression which do not always have an
cbvious meaning in a binding context {i.e. after 'LAM’). Thesearee+ande +
{matching tuples of arbitrary and non-zero lengths). What identifieris} shouid
be bound in an application of LAM x«. e, for exampie? One could imagine
some sophisticated scheme in which (LAM x*. e}{e1} would cause the creation
and binding of "new” identifiers x-1, x-2, ..., x-n, where n would be the length
of the tuple denoted by el. LAMB steers clear of such a dynamic sort of
binding, and takes a simple-minded view of LAM x*. e: x~ is treated as a single
identifier, and occurrences of x+ in e refer to the whole (tuple) value bound to
x+* when the abstraction is applied. The same goes for x+ (for non-empty
‘tuples), and for any identifier x followed by a sequence of » and/or + signs.

Pattern-expressions e *, e +, where e contains both identifiers and operators,
can be used in binding contexts — they do NOT contribute to the binding, but
do affect the pattern-matching. E.qg.,

{LAM{QUOTE x}*. e}e?}
is equivalent either to e or to ?, depending on the form of el. (It would be
“nicer” to use the equivalent

{LAM{QUOTE ?}«. eMel) .)

Finally, pattern-expressions may include the monadic operator VAL. This
corresponds closely to “cali-by-value” in Algol80 — semanticaily, it makes the
enclosing operator {{LAM’ or 'IS’) "strict” {mapping bottom 1o bottom} in the
qualified component. For example, LAM VAL x. e denotes a strict function,
and <et,eZ> 1S <?,VAL > will denote bottom if €2 denotes bottom. The main
use of VAL in SiS is in achieving the desired termination semantics for
programming languages.

{Note: Because it is possible for a LAMB-expression to have a non-bottom
meaning, but not have a normal form, VAL-abstractions are “over-strict” in the
present implementation. See Appendices E, F.}

14 LAMB

There is one other binding operator in LAMB: the fixed-point operator,
‘FIXLAM'. FIXLAM x. e is basically equivalent to y{LAM x. e}, where vy is the
usual expression for the fixed-point operator:
LAM x1. { LAM x2, x1(x2(x2}) i LAM x2. x1{x2(x2}}) .

As in LAM-abstractions, LAMB allows a pattern-expression in place of the
bound identifier x. However, in FIXLAM e’. e, there is @ minor restriction, in
" that e 1S e must be "manifestly” true. E.g. if €’ is a tuple of identifiers, then e
must also be a fupie-expression with. the same number of components — it
could not be of the form. el CAT e2, even if e1 and 82 were tuple expressions
with the correct (total} number of components.

2.7. Miscellaneous

The operators described above were mostly concerned with tuples and atoms,
and with function abstraction. There are aiso operators prowdlng function
composat:ons commoniy used in denotattonal semantics:

fl:e .

1 CERC f2

f1 STARf2 .
These operators can be explained Stmply in terms of LAM-abstraction and
application;

fl1;e = fl{e}

f1 CIRC f2 = LAM VAL x. (LAM VAL x1. f2ix1){f1{xH

f1 STARf2 =
LAM VAL x. (LAM VAL<x1,x2>. f2{x1){x2)){f1{x}}.
The semicolon operator ‘)’ is useful, simply because it has a different
precedence from the usual application operator {juxtaposition} — and it

" associates the opposite way, i.e. to the right (as do ‘CIRC’ and 'STAR', in
contrast to all the other diadic operators). Thus
fl1{f2ie))
can be written as
f1; f2; e
which facilitates the reading of large LAMB-expressions corresponding to
continuation semantics for programs.

-

Miscelfanaous 15

Note the order of composition for 'CIRC’ and 'STAR’, it is the (often more
convenient) reverse of that for the usual circle and star operators. Note also
that ‘CIRC’ and ‘STAR’ have been made “strict’, anticipating their use in
representing sequencing in DSL descriptions.

There are two remaining operations in LAMB:

SEG q
denotes the LAMB-expression residing on the "fite” identified by q, thus
facilitating the combination of independently-produced
" LAMB-expressions; and
ACTIVATE p
transforms the parse-tree of a LAMB-expression into the actual {"active’)
expression it denotes.
See the Pragmatics Chapter for further details.

So much for the meaning of the various constructs of LAMB. Of course, itis

not claimed that the preceding informal description constitutes a complete

definition of LAMB — though hopefully it is reasonably ambiguous. (One of '
the main points of incompleteness concerns the behaviour of the operators on

'?'- and ‘bottom’- operands: not ali of them are strict.}

The Chapter concludes with a smalt example in LAMB. Further examples will
be given in Chapter 5. (See also Appendix G for a larger example!}

HJ)

LAMB
Table 2.1
LAME ®Map=tot"
(Al £.
F1ELAM map=~f, ! applies f to ail elements of n¥
LAY n¥.

SIZE n* EQ Q =~> <>,
{LAK{nl PRE ul¥*). £{nl) PRE map~f{ni*) :(n%*)
)
(F1XLAM tot,
LAH n. P glves 6 + 1 4 .. +
nEQ O ->»0,
n PLYS tot(n MINUS 1)
3
U, ,2,3,4,5,6,7,8,9>

EHD

LAML "Hap=tot™

< 0, Ly 3, &, 10, 15, 21, 28, 36, 45>

END

17

3. GRAM

This Chapter presents GRAM, a notation for specifying syntax. GRAM has
been designed to provide a transparent interface between concrete syntax
fused for parsing} and abstract syntax (used in semantic descriptions}). It is
assumed that the reader is familiar with BNF [Naur63], and with the general
concepts of context-free parsing.

3.1. General

GRAM is a formal notation, similar to BNF, for describing the context-free
syntax of programming languages. SIS can take a syntactic description of a
language, written in GRAM, and produce a parsing decision-table from it. The
parsing algorithm of SiS can then interpret this table to parse programs in the
described language, producing parse-trees conforming to a convenient abstract
syntax. However, the grammar has to satisfy some constraints, corresponding
roughly to the the SLR{1} condition [DeRemer71] ~ these constraints are
described in Section 3.3.

Usually, a description in GRAM consists of two parts: LEXIS and SYNTAX.
This corresponds to parsing taking place in two successive passes. LEX{S
describes the lexical analysis pass, which takes the source text {considered as a
LAMB-tuple of single-character quotations} and recognises a sequence of
“basic symbols”, such as “reserved words”, identifiers, numerals, strings, etc.
The output of the lexical pass is a tuple formed from the recognised symbols,
which are represented by LAMB-quotations {in general). This tuple is then
input to the syntax analysis pass, described by SYNTAX, which parses the
sequence of basic symbols to yield a parse-tree — composed of LAMB
NOQDE-values.

It is possible to specify extra passes, to occur before or and after lexical
analysis. Such a pass is called a TRANSFORM: it could, -e.g., remove all
layout characters, as for Algol60; or insert semicolons "between certain
combinations of basic symbols, for BCPL. (A TRANSFORM has the same
structure as a LEXIS, and it will not be described further here.) -

18 GRAM

The same notation is used in GRAM for describing both lexical and syntactical
analysis. The notation is basically BNF, but it alows explicit indication of the
value to be yielded when an instance of an production is recognised. The
LEXIS and SYNTAX parts differ in form only in that the values specified in
LEXIS productions are generally quotations {or tuples of them}, whereas those
specified in SYNTAX productions are NODEs — and leaves — of parse-trees.

Apart for this explicit indication of values to be yielded, the main extensions of
BNF in GRAM are ‘iterators” and ‘ranges’. Iterators correspond to the
Kleene-star, and ranges are a convenient way of specifying particular sets of
terminal symbols.

For the concrete syntax of GRAM {in GRAM]} see Appendix B. GRAM will now
be described informally, with the help of the following exampte.

3.2. Notes on Example

Consider the example GRAM specification given in Table 3.1. The language
described is a simple extension of LOOP (see [Tennent76]). The various
features of GRAM will be explained with reference to the example, using "In’ to
refer to the corresponding line. (I’ is used to introduce an "end-of-ine”
comment in GRAM descriptions.} '

A GRAM specification starts with the symbol 'GRAM’, fcllowed by a string
which is taken as the title 1. The SYNTAX 12 and LEXIS 125 are more or less
of the same form: a sequence of "productions’, each terminated by a
semicolon ";". The non-terminais are formed from lower-case letters and dashes
{'exp’, 'exp-a’} whereas the terminal symbols of the grammar are quoted
{"READ", ";"} ~ the LAMB-notation for representing “control characters” is also

allowed {CC"C” 139).

A production has a non-terminal to the left of '::="', and a list of "alternatives’,
separated by '/, to the right.

Loop Syntax 79

Table 3.1

GHAM "LUOP-Parser" o1
SYNTAX L o2
pragd i read=cmd ";" cmdeseg ";" write-cmd 103
read=cnd i "READ" vapx="," :+ ["READ"™ var®l ; i 04
write=cmd ii= "wra_iTE'¥' TExpreT, : [MRRITE" expel 105
crd=seqg iF cmd-seq 3" cmd ¢ fcmd=segq "3 cmd] / ! 06

cmd H crnd» H 107
cmd fi® va-r “iz® exp [/ & 108

aTgY exp "DO" cmd / t 09

(" cmd-seq 1" : Chd=seq 110
QAP I3i= exp add«pop exp-a /. st

exp=a ;I exp-a P12
add=op =®a 4gH 4 ter g 11l
exp~a i@ expra mult=gp exp=b / 114

exp~b T expe=b . 15
nult=op === E A P A L 16
exp~b ::= var / P17

num 118
var = . "VAR" q 19 L 19
num iE ANUM" n in 20
DOMAIRS P21
cmd-seq, cmd : Cmd: . 122
eKp, exp-a, exp=b : Exp + 23
add=op, mult=op ¢ op g 124

20 GRAM -

Tabie 3.1 (cont.)

LEXIS 28
program ::i= WoTdt : CONC word+ P26
word 1:ix var ¢ <CUT"VAR", var» / 127
tum s <OUT"NUM®™, num> 7 28

comirent LR & B L 28

layouts HEE S L]

var iw letter ietter-djigfit¥ Y
1 QUCTECietter PRE letter~digit¥*) ; Loz

letter ==z “aleeltzt g L33
letfer-digit === Ya",,,"z* F "g¥,.."9" ; L34
nun pi= digit+ : NUMBER digits ; 135
digit ==x "RTLLI 36
comment 3:i= ‘g MMt eT" comment-char* L £ 37
comment-char =\= ";v ! 39
layout =su=s e poccect / CCeL™ 4 cCHT" g b P39

LEND 140

Notes on Example 21

An alternative specifies a “phrase’, consisting of a possibly-empty sequence of
so-called “elements’, which are usually simple “items’, ie. terminals or
non-terminais, However, it is also possible for elements to be “iterators” 14 15
126 of the form:

itemn »
aliowing zero or more occurrences of item;

item +)
aliowing one or more ...

item1 *- item2
allowing zero or more occurrences of item1, separated by occurrences
of item2 {which is restricted to be a terminal}; or ' :

item1 +- item2
allowing one or more ...

lterators allow the convenient expression of commoniy-occurring constructs 14,
and avoid the introduction of extra non-terminals. Of course, recursion {left 16,
or right) may be used instead, if preferred. (Actually, the current
implementation of iterators gives the same effect as using right-recursion, as
regards the language accepted.}

For each afternative, the value to be produced when the phrase is recognised
may be specified by a {restricted} LAMB-expression, following a colon :" 14 15
16 17. Identifiers (non-terminals} occurring in the expression refer to the values
yielded by the recognition of the elements of the phrase. Tuple-identifiers, e.qg.
var+ 14, exp+ 15, refer to the values yielded by the recognition of iterators -
naturally enough, these values are always tuples. However, note that with a
"separator’ element, such as vars-",” 14, the tuple value has components
corresponding only to the main item, here 'var’; furthermore, the separator *-",”’
is NOT used in the non-terminal referring to the tuple in the value expression.

Often, the identifiers occurring in the value-expression will be in the same order
as the corresponding elements in the phrase which precedes it. (GRAM is
designed for specifying simple-minded parsing, not for general syntactic
transtation.} However, there is no ambiguity when the same non-terminat
cccurs more than once in a phrase, e.g.

real ;= digit+ "." digit+ : QUOTE<digit+, digit+> ;

— the successive value-identifiers refer to the successive occurrences of
non-terminals in the phrase, and subscripts on identifiers are neither needed nor
atlowed.

22 GRAM

Value expressions may contain literal LAMB constants, i.e. numerals, strings,
truths and '7".

The only LAMB operators allowed in valug-expressions are "CAT', 'AUG’ and
‘PRE' {diadic} and 'NUMBER’, ‘QUOTE', 'CC’ and 'CONC’ {monadic}. Tuples
may be specified explicitly with the '<el,...,en>'-notation. For specifying

nodes of parse-trees, the DSL notation ‘{e1...en]’ should be used 14 15 16. A
“full description of this notation is given in Chapter 4, the main idea is simply
- that '[e1...en] specifies a node of a parse-tree, with a branch for each identifier
. 'ei’. The label of the node is formed partly from any literal strings occurring in
" the expression, partly from the identifiers occurring — more precisely, form
. their corresponding domain identifiers specified in the DOMAINS section of the
grammar 121. For example, ‘{cmd-seq ";" ¢cmd}’ specifies a node with two
branches identified by ‘cmd-seq’ and. ‘cmd’, and with a fabel formed from
"Cmd”, ";" and "Cmd” (see 122}. {The label is NOT simply the concatenation of
the component strings — see Section 4.6 for details — so the direct use of the
LAMB NODE operator is not recommended in GRAM.) For iterators, note that
'["READ” var+}' 14 specifies a node with just one branch: the tuple identified by
‘vars’,

In fact, it is seldom necessary to use the ‘[el...en]’ construction in GRAM
desciiptions. This is because there is a default convention in the SYNTAX part:
if no value is specified explicitly, the "obvious” node is produced. Thus the
vaiue specifications in 14 16 16 — but not in 17 — are actually superituous, and
correspond to the implicit default values.

All this machinery enables one to cbtain the desired "abstract syntax” with the
minimum of effort. By using the DOMAINS to associate one domain-identifier
with several non-terminals 22 123 !'24, one can cause the precedence
information, present in the concrete syntax, to disappear from the abstract
syntax. The reader should compare the abstract syntax in Table 4.1 with the
concrete syntax in Table 3.1. Note that SYNTAX alternatives without explicit
value specifications yield nodes with the same label {in the same abstract syntax
domain) if and only if their phrases become identical on replacing non-terminals
by their corresponding domain identifiers, and removing separators such as
*"" 14 15. Note also that if there is no domain-identifier specified for a
non-terminal, then one is provided automatically by putting the first letter of the
identifier into upper case. E.g.
var: Var ;
is implicit in the example in Table 3.1.

Notes on Example 23

Thanks to the above conventions, explicit value specifications can generally be
omitted in SYNTAX. However, they are useful for inhibiting “chain-reduction”
nodes, when alternatives have no significance for the abstract syntax. For
exampie, the specification of the value ‘cmd’ in 17 {instead of the default
‘femd]’) means that no node will be constructed when that alternative is
recognised: the value yielded by the recognition of ‘cmd’ is simply passed
along.

On the other hand, tﬁere is no default convention for value specifications in
LEXIS. A glance at the variety of value specifications in the example (which is
not atypical} will show why not.

Ranges were mentioned at the beginning of this Section. They are especially
simple productions, capable of recognising oniy single terminal symbois 113 !16.
The value yielded is always the symbol recognised, i.e. a quotation. Ranges are
distinguished from productions by the use of "= ==" or "=\ ="' instead of
‘11=", after the non-terminal. Thus the range identified by add-op’ 113 is
equivalent to the production

add-op = "+":"4"7 ["7
{where the explicit specification of values is necessary, to avoid the default
convention yielding the nodes "+, '["-"]'). Apart from being a single
terminal symbol, an alternative of a range can also be an interval 134 136,
consisting of two single-character gquotations separated by three dots. In
principle, the only meaningful intervals are “a’..."z", "A"..."Z", "0"..."9" and
sub-intervals of these. Observe that the range identified by digit in the example
135 is exactly equivalent to

digit === "0°/"V/"2 XS TIRIY

When the sign "=\="'is used instead of "= = ="' in a range, only terminals
NOT in the specified intervals will be recognised. Again, the value yieided is
the recognised symbol itseif. Such ranges are particularly useful for describing
the lexical analysis of strings and comments.

Finally, the special intervals ‘QUOTE ?' and "NUMBER ?" may be used {only} in
ranges, to match arbitrary quotations and numbers. The range-identifiers ‘q’
and 'n’ are pre-defined in GRAM, equivalent to specifying

q === QUOTE ?;
=== NUMBER ?;
See 119 120 (and 127 128) for examples of the use of ‘g’ and 'n’.

24 GRAM

Perhaps the reader has noticed that the LEXIS of the example {Table 3.7} is
rather small — it doesn't explicitly specify the recognition of the "ordinary”
symbols, such as "READ", "WRITE", “;", which are used in SYNTAX. In fact,
GRAM sees to this automatically: any literal string which occurs in a SYNTAX
phrase, but which is not yielded by some LEXIS alternative, causes the addition
of a suitable alternative to LEXIS. For example, the occurrence of "READ" in
SYNTAX causes the automatic generation of an alternative
"R" “E" "A" D" : "READ" /
in LEXIS.

Unfortunately, it is rather difficult to decide whether a quotation could be the
result of an arbitrary value-expression, so the GRAM-user has to indicate
explicitly just which literal strings are yielded by LEXIS. This done by preceding
them with the “pseudo-operator’ ‘OUT’, when they occur in value specifications
in LEX{IS 127 128. 'OUT’ has no other effect on values, it does NOT cause their
“outputting”! In effect, 'OUT’ prevents the generation of an extra alternative for
the symbol it precedes ~ the symbol may then be safely used for “private
communication’ between the lexical and syntactical analysis, and does not get
added to the janguage being described. in the example, the symbols

" "READ")7 WRITE® ":=" 'TQ" 'DO"
T Ry
will be recognised by LEXIS, but not the symbols

"VAR" "NUM’ .
{which are not part of the language LOOP, and are used only as ‘markers’ in
the output of the lexical anaiysis pass).

Apart from this influence just described, the LEXiIS and SYNTAX parts shouid
be considered as specifying completely independent parsers, communicating
only by the tupie of symbols produced by the lexical analysis. In particular,
there is no interference between the names used for non-terminals in LEXIS and
SYNTAX. Thus, in the example, the use of "var’ in both LEXIS and SYNTAX is
purely coincidental, and does not contribute to the parsing process.

Appendix B gives the circular description of the concrete syntax of GRAM, and
can serve as an additional example of the use of the various features of GRAM,
as well as making precise some of the above informal comments about the form
of the various constructs of LAMB.

Parsing 25

3.3. Parsing

Finally, the problem of ambiguity should be faced. Completely unambiguous
grammars are not very suitable for lexical anlysis: it happens quite often that
some basics symhois are simply composed from others. A classic example is
', ‘="' and ":=" in Algol60 — or identifiers ‘a’, 'b' and ‘ab’. A suitable
dlsambtguatmg rule’, adopted by GRAM, is that the longest possible symbol is
always recognised — symbols continue until “stopped”.

But consider the following example. Suppose a language has symbols
‘REPEAT’, "REPEATUNTIL’ and 'UNLESS’ (BCPL). What should be the effect
when the sequence of characters 'REPEATUNLESS’ is met? Shouid it be an
arror, or should it be recognised as two symbols? This is not entirely a matter
of esthetics, or "style” in language design: it affects the "power” of the parsing
algorithm needed.

The parsing algorithm used in SIS is basically the SLR{1} algorithm described in
[Andersen, Eve&tHoming73], and thus has a one-symbol look-ahead but no
"back-tracking” capability. It has been extended with the disambiguating rule
mentioned above, and the net effect is that symbols such as 'REPEATUNLESS’
will be treated as errors lalthough 'REPEAT UNLESS’ would be OK).

No attempt will be made here to formalise the details of the semantics of
GRAM in this {or, for that matter, in any other) respect. It is hoped that the
meaning of GRAM is clear enough to enable the user to get a grammar
"working” quickly — although it must be admitted that the required adherence
to the SLR{1} condition can be tiresome at times. For some practical hints on
writing SLR{1) grammars, see Chapter 5.

27

4, DSL

This Chapter describes DSL — Denotational Semantics Language — which is
the semantic notation used with S1S. The reader is assumed to be familiar with
LAMB {Chapter 2}.

4.1. General

DSL is an extension of LAMB, in the direction of the so-called "Scott-Strachey
notation” {SSN). it would have been nice to use SSN itself in 51S, so that the
reader could be spared the details of yet another new notation; however,
certain features of SSN make it rather unsuitable for computer processing.
Among these features are: the lack of a formal definition of the notation; the
many informally-described conventions, in particular those connected with
"separated sums”; the use of the ellipsis {...) notation, which is very difficult to
formalise; and the almost mandatory use of symbois and alphabets unavailable
on {most} present hardware,

DSL is admittedly not as elegant or compact as SSN. However, it is hoped
that it comes sufficiently close to the essence of SSN to make translation
between the two notations quite easy. Programmers may even find comfort in
using DSL, which has unashamediy “borrowed” features from such languages
as Lisp, Gedanken and ISWIM. However, it should be stressed that DSLisa
completely mathematical, non-imperative notation — there is no hidden -
dynamic state underlying its meaning. .

LAME is a sub-language of DSL, and was described in detail in Chapter 2. The
remaining features of DSL are: the use of domain definitions, the form of
function definitions, the 'CASE’ construct, and the '[...]" notation for nodes
(used also in GRAM, see Chapter 3}. : R

28 DSL

Domain defintions in DSL have two purposes: they correspond to domain
definitions in $SN, and they will aid the "type-checking” of DSL descriptions.
Every identifier in a DSL description must have a domain-expression associated
with it, either implicitly or explicitly. It is required that the domain information
be sufficient to determine that all operations {including application} have
type-compatible operands. This type-checking will catch most of the simple
"bugs” in DSL descriptions. Y

A domain can be associated with an identifier when the latter is abstracted
{defined), or, as in $SN, a domain can be "globally’ associated with-a ‘whole
family of identifiers, by means of the domain definition itself. For example, if
‘n: N' occurs in the domain definitions, then this associates N with n, and also
with any "decorated” version of n, such as n', ni, etc, — it also associates N«
with the tuple identifiers n+, n'+, n1x, etc: :

Function definitions in DSL are very similar to those in $SN. The parameters
may be "Curried” in the usual way. Identifiers may also be defined to denote
values other than functions, e.g. tuples and "atoms’. Definitions may be
combined either recursively, "simuitaneously’ or sequentially, to allow some
control of scopes {lacking in SSN).

Recall that in SSN, a semantic function is generally defined by a group of
“semantic equations’. DSL does not try to make a special distinction between
" the defintions of semantic functions and other functions, and so it provides an
explicit 'CASE'-selection construct; this ¢an be used as the body of a function
definition, and also in other contexts. A "CASE’ "works” in just the same way
as the semantic equations do {insofar as the latter has ever been formalised
[Scott76]}.

An important feature of SSN is the use of the "syntactic brackets” {or
quasi-quotes) '[...]'. Together with an abstract syntax specification, it allows a
compact — and readable — description of functions defined on syntactic
objects (e.g. semantic functions defined on programs) and avoids the need for
verbose selector functions and predicates [McCarthy63]. DSL has more-or-less
taken this feature directly from SSN. The notation in DSL is ‘[...]", where the
items between '{' and ‘] may be either identifiers or quoted strings {other literal
LAMB constants are also allowed). Note, however, that '[...]" is an operator —
it yields a LAMB node ~ whereas ‘[...]" is generally considered to be just a
means for “insulating” the abstract syntax notation from the rest of SSN.

To avoid confusion with the ‘[...]" notation, DSL uses ‘f\e1<—e2 instead of
the SSN ‘fle2/et]’, for ’perturbing’ functions {usually representing
environments and stores}. Note the reversal of el and e2.

General 29

The forma! definition of DSL consists of a concrete syntax (Appendix C} and a
function giving a transtation of DSL parse-trees into LAMB. A description of
this function, written circularly in DSL, is given in Appendix D. However, this
circular description is not put forward as the canonicat definition of DSL. The
canonical definition is a LAMB-expression corresponding to Appendix D. It is
not included in this document, because, firstly, it is not easily comprehensible
by itself; secondly, the user of SIS can produce it easily from the DSL version.

The remainder of this Chapter gives an example in DSL, explains the form of
DSL desriptions with reference to the example, and gives an informal
description of the semantics of the main features of DSL.

4.2. Notes on Example

The generat form of DSL descriptions will now be described, with reference to
the example in Table 4.1 {which matches the grammar in Table 3.1}. 'In’ wilt be
used to refer to a particular line of the example. Asin GRAM, '!" introduces an
“end-of-line” comment.

A DSL description starts with the symbol ‘DSL’, followed by a string which is
taken as the titie of the description !1. The description finishes with the symbot
"END’ 183. Usually, the body of the description will consist of some
domain-definitions !6-13%, followed by a sequence of definitions of functions {or
other values}). The meaning of the whole description is given by a final
expression !82, which is in the scope of all the preceding definitions.

in the domain definitions, there is a uniform treatment of syntactic (abstract
syntax} domains and semantic domains. Domain identifiers begin with a capital
letter {"Prog’, 'S’} whereas ordinary value-identifiers (sometimes referred to as
"variables”} begin with a small letter {'prog’, 's’). Note that, to avoid confusion
with the reserved words of DSL {'DSL’, "IN’, etc.} capitals may not gccur in the
middie of identifiers. However, dashes ’-° may be used, to aid readability
{'Read-cmd’). identifiers may be "decorated” with a subscript {to be a sequence
of digits) or with a sequence of primes {'} — or both,

30 DSt

Table 4.1 !
[3
#
DSL "LOUpP~Semantics™ Lo0%
H The "direct® style of semantics 1s used, tc emable comparison 10z i
. with Tennent's semantics for LCOP [CACH 19:83. 103 §
i
! EXpressions cannot have side-effects ip LOCP. As there are no 1 04 !
! declarations in LOOP, envirepments are not used in the semantics) 0% :
DUMAINS ! 06
]
H SYNTACTIC: o7
prog 3 Preog = [Read~cmd ";" Cmd ";" Write=-cmdl ¢ ! 08 %
read~cmd: Read=cmd = ["REAC" Var#*l i {08
write-cmd Write=cmd = ["WRITE" Exp+l ¢ 110
cmd 3 Cmd = {Cmd ";" CI:Fd] / {VYar "i=" Expl / [N B
["T0" Exp "DO" Cmdl / {"(" Cmd ")®1 7! 12
BXP 3 Exp = {Exp Cp Expl ~ [Varl 7 {wuml ; ' 13
op up = L A B VI L A L 1 1q
var i Var = | [115 !
num Num = N : [Y] !
: SEMANTIC: P17
s 3 5 = Yar => N : . States F 3}
no: N ! Numbers P18
q 3 Q ! Quotations i 20
L FUNCTIONS: P21 b
pp = Prog => N¥ => N+ ; P2z
cc = Cmd => 5 «> & 23 L
ee=list = Expt => S => N+ } I 24
ee 1= Exp => 5 => N ; t 25
N X
o0 = Qp =» SN H> => N P2
repeat = N «» (§ «> §5) =>» 5 ; ~ 27
h
update=list is <¥ar¥,N¥> => 5 «> 5 ; i 28
initial«s := 5 3 N 29
update := <¥ary,N> => 5 =» 5 3 P30 _B
!
i
by

Loop Semantics 37

Table 4.1 (cont.}

BLEF priread=crd *;" cmd ";" write-cmdlin*): N+ = i3z

LEY L"READ" var¥} = read-cmd)
ALSD ["WRITE" exp+] = write=cxd 134
LET s% = udpdate~iist(var#¥,n¥j(initial-s) Do3s
LET 52 = cc{crdi(s}) i

!

i ee-list{eAp+){sd] X

WiTH cof{cmdd){sis S = 138
CASE ¢mdQ 39
/lcnagi "3® cmd2) => cef{cmdZ)(ce(crdllis)) 140

/lvar ":i1=" expl =» LET n = eef{exp}is) D41

IN updatei{var,n)(s) 42

/I"TO" exp YDO® cmd]l =» LET n = ee{expl(s) D43

IN repeat{n}{ cclcmd] }(s) Lo44

ALt oemd ")) => cc{cmd}(s} i 45

ESAC 446
WilH ee«list(expd+){(s5): R+ = LoaT
CASE expO+ L 48
FLexpr =->» <ee{expl(si> i 49

/exp PRE exp+ => celexp)(s) PRE ee~listl(exp+}(s) 150

ESAC ! 51
WITH ee{exp0l(s): N = 52
CASE expl i 53
/lexpl op exp2} => LET nl #= ee{expi){s) 154

ALSO nZ = ee{exp2){s) 155

iN oglopl)(ni, n22 ! 56

/lvar] =>» . centent(var){sl P57

/inuwl -> num : M ! 58

ESAC ! 59

32 DSt

Tahle 4.1 {cont.)

WITH golopiinl,n2): N = HCYe}
CAsSE gp L6t
FAE RN nt PLUS p2 L6z
Aran = Dt MINUS n2 i gives ? if p2 greater than nl ! 43
AR LR n!l MULT n2 1 64
FAVAN 4 ni DIV n2 ! gives ¥ If n? is zerog 4 a5
EsAC i a6
WltH Yepeat{n}{c;{5 «> 5)}{s): & = 1 er
noEQ ? => 7, ! 68
nEYQ ~>s, P69
repeat{n MINUS 1}(cl(c(s5} } i 70
WITH update~list(vard¥,nd*)(s): 5 = 1
S1ZE var0* EQ 0 => 3, . 172
LET var PRE var* = varo#¥ 173
ALS0 n PRE n* = ng¥ P74
it update-list{var*,n*){ update(var,n)(s) } [
WITH initial-s ¢+ 5 = 176
LAY var. ? [
WITH update(var,n)(s}; s = i 78
s N\ var <~ n 79
WEITH contept(var)(s)i N = . 1 8O
s(var} ' 181
IH PP i (Prog => K¥ «> N¢) 18

END ! 83

Notes on Example 33

As in SSN, a domain definition can accomplish three things. Firstly, it can
introduce a new domain-identifier. Secondly, it can specify, recursively with
other domain definitions, the domain to be denoted by the identifier. Finally, it
can associate the domain-identifier with a family of variables. In DSL — as in
the DOMAINS part of GRAM — the specification of the family of variables
comes first, and is followed by a colon "', (The variables should not be
decorated here.} The specification of the domain is preceded by ‘=’ — even
when the domain is a "syntactic’ one — and is terminated by a semicolon ;.
DSL provides standard domain-identifiers 'N', 'Q" and 'T' denoting the.
non-negative integers, the domain of LAMB-quotations, and the usual’
truth-values respectively 119 120. Compound domains are formed with the aid’
of separated sums '/ 111-114, products '<...>' 126 128 130 {also '+ and '},

nodes ‘[...]" 18-113 and functions '—>‘ 118 122... . To allow the customary list
of the types of the semantic functions, domain-identifiers may be omitted
between the "’ and "=" 122-131.

DSL is intended to be portable, and thus uses only a restricted character set.
This rather restricts the choice of identifiers; compared to that in SSN
[Milne&Strachey77]. Those who enjoy using Greek, ltalic and Script alphabets
{not mentioning Bold, Sans-serif and Gothic) are likely to feet frustrated in DSL.
{tis up to the reader to judge whether or not the rather strict conventions used
in the example, such as double letters for semantic functions {'pp’, "ee-list’),
and the close correspondence between the names of variables and their
domains, are appropriate. The conventions are not mandatory, and may be
varied {within the [imits mentioned above) to suit personal tastes.

Moving on to the start of the function definitions 132, the usual form is a
sequence of mutually recursive definitions, introduced by ‘DEF’ and separated
by ‘WITH'. The scope of the definitions is the expression following the
matching ‘IN’ 182, The symbol "IN’ may in fact be omitted if the expression
starts with more defintions. Note that

DEF d1 DEFd2 IN e
is not “as recursive” as

DEFd1 WiITHdZ IN e
in that the scope of the definition d2 includes d1 in the latter form.
Non-recursive definitions are introduced by 'LET" and separated by 'ALSQO’ 133
134.

Each function definition specifies the domain of its resuit explicitly {after *:" 132
138 etc.}. The domains of the “Curried” parameters may be either implicit —
using an association set up by a domain definition — or explicit, after °." 167. In
general in DSL, the domain of an expression or variable may be made explicit
using ;" {68 182. Although theoretically superfluous, such "assertions” of
domains can do much to increase the comprehensibilty of complex semantic

54 DSL
descriptions (in this authors opinion).

Consider now the definition of ‘cc’ 139. This corresponds 1o a set of “semantic
equations” in SSN, one for each of the alternatives 140 1471 143 145 of the
"CASE'-construct 139, which is terminated by 'ESAC’ 146, The "test valug”
follows the symbol "CASE" — it is usually one of the parameters of the function
being defined. Each alternative starts with the symbol '/’, and the following
expression — terminated by "—>' — gives the form of value which that
alternative matches, in the same way that "pattern expressions” are used with
the operator ‘IS in LAMB. The exact mechanism of the 'CASE'-construct will
be explained fater; the basic idea is that the first alternative whose pattern
expression matches the test value is selected, the identifiers in the pattern
expression are bound to the corresponding components of the test value, and
the expression following the symbol '->' gives the value of the whole
'CASE'-construct. If no alternative matches the test value, the resuit is simply
-

There are two points to note about the "bodies’ {following ‘'—>') of the
alternatives. The first is that any DSL constructs may be used in them, e.g.
nested ‘CASE's, function definitions — in contrast to SSN. Secondly, the
reader may have noticed that ordinary round parentheses ‘{’, '}’ have been used
around the syntactic parameters in the example, e.g. cclemdi}{s) 140; whereas
in SSN, the brackets ‘[", ']" would have been used. Aficionados of this feature
of SSN — which can be heipful in a sea of round parentheses! — may be
comforted to know that they may continue to “wrap up’ syntax in square
brackets ‘{’,’]’, provided that they are consistent. The definition of ‘cc’ could
have just as weil been written as

WITH cc[emd0](s) :S = IN.B. [...]

CASE cmd(! Not; CASE [cmd(]

/ [emd1 ™" emd2] —> cc[emd2]{ cc[emd1]is) }
etc. — but note that the type of ‘cc’ is now

cc:= [Cmd] —>S —>85;
where the domain-expression "{Cmd]’ denotes the domain of parse-trees with
the fabel "Cmd” and with a single branch in the domain identified by 'Cmd’.
Putting it another way, everything will be OK if “[...}" in DSL is treated with just
as much care as ‘<...>" {tupling} — for one does not expect '<e>' to be
equivalent to ‘e’.

Noates on Example 35

The definition of "pp’ 132 is perhaps rather atypical — although it does resemble
a semantic equation rather closely. The parameter of ‘pp’ is expected to be in
the domain "Prog’, which means that it is a node with three branches, in the
domains 'Read-cmd’, ‘Cmd’ and "Write-cmd'. This has been taken advantage
of in the definition, by using the pattern exprassion
‘[read-cmd “;" cmd ”;" write-cmd)]’

as a formal parameter. (Hopefuilly this no more mystericus than defining a
function ‘f{a,b}’ expecting to be applied to a 2-tuple.} Such pattern expressions
can also be used as left-hand-sides of ordinary {non-function} definitions 133
124,

Moving on to the definition of 'eeist’ 147, the Lisp-programmer should start
feeling more at home. Recall from the description of LAMB that ‘e? PRE a2+’
prefixes the value el to the tuple e2+. When used in a "binding context’, the
operation is inverted, splitting a non-empty tuple into its "head” and "tail”,
{Note that the alternatives 149 150 are mutually exclusive, thanks to the use of
‘exp+ ' instead of "exp+’ in 150.}

The definition of ‘update-list’ {71 could also have been written like ‘ee-list’,
using a ‘CASE’ instead of a conditional. Note that the value "7 will be given if
the list of inputs 'n0+" is shorter than the list of variables "var0+'.

The final three definitions 176 178 I80 are those of the "primitive” auxiliary
functions for handling states. MNote that in the rest of the description,
knowledge of the structure of the domain 'S’ has not been used. |t would have
been possible - and in the author’s opinion, preferable — to abstract away
these definitions into a separate "sagment’, in attempt to introduce a smidgin of
modularity into the semantic description. Details of how to do this will be given
in Chapter 5, Pragmatics.

Before delving into the finer details of DSL, it should perhaps be mentioned
that the aim with DSL has been to get as close to SSN as possible, so far as
compatible with keeping DSL implementable. To a large extent, the
development of DSL has been simply the formalisation of notations and
conventions used by various authors in SSN — especially Tennent — with the
help of some ideas of Burstall. The aim has not been to innovate {that is the
next phase of the project, producing a version of DSL allowing high modularity
in semantic descriptions). Thus it ought to be guite easy to transi{iter)ate SSN
into DSL, and vice versa,

36 DSt

The only feature of SSN which may cause some difficulty, is the use of the
eliipsis “..." convention, e.g. ‘
ee[E1,....En){ri{k) =
ee[ETIr{kel. ... ee[En]r{hen. k<el,...,en>} ... }

— this must be completely reformulated in DSL, using a recursive
list-evaluating semantic function {like 'ee-list’ 147). DSL has been forced to
diverge from SSN here, simply because it seems unlikely that a reasonable
formal definition of the *...” convention can be given - in spite- of its frequent
use in mathematics. {The author would welcome suggestions!)

Now for a more detailed description of the constructs of DSL.

4.3, Cases

The ‘CASE'-construct is perhaps the easiest feature of DSL to explain in detail
— assuming that the reader understands the use of “pattern expressions”
{consistently represented by primed meta-variables below, e.g. el1’} and the
operators ‘IS’ and 'LAM’ in LAMB.

Consider an arbitrary CASE-expression in DSL:
CASE e /el —> el ’
/e2 —> e2

/en” —> enESAC
where the ei’ are pattern expressions, as in LAMB (but generalised to include
the DSL NODE-constructor '[...]) and e, el, .., en are ordinary
value-expressions. This entire construct is exactly equivalent to the following
LAMB-expression:
{elSel’}) —> (LAM el'. el}le),
e 1S e2') > {LAM e2'. e2He),

{elSen) —> {LAM en’. en}{e}, ? . .
Note that if any pattern is simply ‘?" {or a simple identifier x} then e IS ef’ will
always be true. Therefore the aiternative
/7?7 —>en
acts as a "catch-all” {default) alternative — obviously it is only sensible to use it
as the last alternative in a case, as any alternatives following it could never be
selected.

Definitions 37

4.4, Definitions

Definitions are also guite simple to explain in detail. First of all, function
definitions may be “desugared” into simple value-definitions by making the
LAM-abstractions of the formal parameters expiicit. A definition of the form
x{et)..len} d = e
— where x is an identifier, the ei’ are pattern expressions, d is a domain
expression and e is a value expression — becomes
x +{dl —>...—>dn —>d) = LAMel. ... LAMen'. e
where the domain expressions di are given (implicitly or explicitly) by the formal
parameters ei’. For example,
content{varl{s} :N = slvar)
becomes '
content :(Var —> S —> N} = LAM var. LAM s. s{var)
{The domain expressions in definitions will be omitted in the rest of this section,
as they are only of interest in relation to type-checking - see Section 4.7.}

In fact, non-function definitions {and de-sugared function definitions} in DSL
are of the general form

e = @
where &’ may be any pattern expression. The nice thing about this form is that
combinations of definitions can now be "collapsed”:

el” = el WITH ... WITH en’ = enand

el’ = el ALSO ... ALSO en” = en
can be rewritten as

<el’, ...,en’> = <el, ..., en>.
Because tuples of pattern expressions are perfectly good pattemn expressions,
this produces a valid definition.

Now the only thing left to do to explain definitions, is to de-sugar
LET " == e IN o0
DEF & = e IN &0

into LAMB. This is simple:

) LET e = e INe0 becomes {(LAM &'. eOle)

whereas ’

DEFe = eiNe0 becomes (LAM e eQ){FIXLAMEe'. e},

Domain definitions contribute only indirectly to the meaning of DSL, via the
’[...} notation (see the next Section}. They do not have direct counterparts in
LAMB. For a description of their effect on type-checking in DSL, see Section
4.7. :

38 DSL

4.5. Nodes

The ‘[...]' notation wili now be explained. The reader is warned that the
‘mechanism” may seem overly complicated at first sight: however it is difficuit
to find a simpler method of formalising something pragmatically close the the

55N usage of “abstract syntax”,

Consider the expression

[e? . en}
where el, ..., en are either identifiers, strtngs or other literal constants, The
expression is exactly equivalent to

q NODE <e?’, ..., em™>
where el’, ..., em’ are the non-stnngs occurting in el, ..., en {if any), and

where gis defmed as foliows:
= QUOTE <g1, ..., gn> where, fori = 1, ..., n,
if ei is an identifier, then
qi is the {string formed from the) associated domain identifier;
it ei is a string, then
qi is the same string; or
if ei is some other literal constant, then
gi is the corresponding domain name ("N”, "T" or "?").

Eg. [cmd?1”” emd2] =
QUOTE<"Cmd",”;","Cmd"> NODE <cmd1,cmd2>
[var} = QUOTE<"Var"> NODE <var>
["+"] = QUOTES"+"> NODE <> {= "+" NODE <>}
27] = QUOTE<'N> NODE <27> {= "N’ NODE <27>)

Tupie identifiers, e.g. var*, exp+, may also be used — domain names are
constructed accordingly. For example,
["READ" var+} =
QUOTE<"READ", QUOTE<"Var’,”»">> NODE <var+> .

A useful rule-of-thumb is that the labels on '[...}’ nodes will be the same, if and
only if they look the same (Up to jayout) when the non- strings in the expression
are replaced by the associated domain identifiers.

Warning for SIS users: when LAMB-NODEs are printed by the system, no
distinction is made between 1-level- and multi-level-QUOTEs, i.e.
QUOTE<"Cmd",";","Cmd"> will be printed the same as “Cmd;Cmd".

The ‘'{...]" notation may be used wherever the LAMB NODE-operator is allowed,
i.e. in value expressions, in patterns, and in domain expressions — which brings
us to the final feature of DSL to be described here.

Domains 39

4.6. Domains

Recall that in SSN, domains are specified using separated sums, Cartesian
products and functions. DSL allows all these, and in addition introduces
notation for domains of nodes. -

Let the meta-variables d, d1, ... stand for arbitrary domain expressions. Then
the following are all domain expressions:

<d1t, ..., dn> — n-tuples

d» - any-tuples

d + — non-empties

[d1 ... dn] — nodes

{where the di are identifiers or literal constants)
dl —->d2 — functions
di/ .../ dn — union.

Domain identifiars may also be used. Literal constants (numerals, strings, ‘'TT’,
'FF” and "?') all denote domains whose only "proper” alement is that constant.
See also the concrete syntax in Appendix D.

However, in DSL it is also possible to consider separated sums to be “ordinary
unions’. The aim of this is to help the user who thinks in terms of manipulating
individual values, and who wants to forget about the isomorphisms, injections
and projections connected with separated sums and the solution of recursive
domain equations.

DSL achieves this conceptual flexibility by not providing any notation for
injections, projections and "enquiries” — it is also necessary to forbid “circular’
sums such as D = A / D. Injections and projections may be considered to be
inserted automatically, where necessary. {This is commonly assumed in SSN
as a "convention” ~~ it is formalised in the semantics of DSL.)

As for enquiries, i.e. tests for which (summand) domain a value is in, one has to
“implement” them oneselfl When the components of two summands are
structurally distinguishable, one can wuse the CASE-construct (or the
IS-operator): either to define a particular enquiry funtion, e.g.
DOMAINS ...
d: D = F/<AB>;
tF=D-—->D;

LET is-fldy:T =
CASEd /[I(LAM2.2} —> TT
/ ?—>FF

ESAC

40 DSL

or else t0 combine enquiry with {projection and) sefection of components:
CASEd [/ <a,b> —> ...a...b... ESAC .

When the summands are not structurally distinguishable {(e.g. different function
domains) or when it is too tedious to Jist all the cases, then the DSL
"[...] -notation can be used to “label’ the summands differently, thus making
them distinguishable. E.g.

DOMAINS ...
d: D = L] / [V];
l: L= N;
viV=N/T;

LET is-wvid):T =
CASEd /] —=> FF

/vl =>TT

ESAC

ar,combining with projection,
CASEd / [v] —> ...v... ESAC .
"Injection” of a value v in V into D must now be done explicitly, either by
LETd = [v]IN ...d...
or by
LET v-in-d{v}:D = [v] IN ...v-in-div'}... .
The advantage of the second form is that it can be used with values which are
in subdomains of {here} V: v-in-din} gives the expected value in D, whereas
using [n] would give a value with the label "N” rather than "V’. (This is a
consequence of the impiicitness of the label in the ‘{...]" notation — the
problem does not arise if the LAMB NODE-operator is used explicitly.)

Note that the use of nodes as components of sums is exactly what is wanted
for the syntactic domains. There, the summands will be distinguishable by
virtue of their different labels, e.g.
DOMAINS ...
cmd: Cmd = [Dec ”;” Cmd] / {Cmd ;" Cmd] / ...;

CASE cmd
/idec " emd] —> ..,
/ femdl”;" emd2] > ...

ESAC
Apart from being a useful aide-de-memoire, the domain definitions have an
important use in DSL: they enable SIS to do "type-checking” on DSL
descriptions, as described in the following Section,

Type-checking 41
4.7. Type-checking

This facility is not implemented in the current version of SIS, so it will not be
described in detail here. Asin SSN, all operators in DSL {including application)
must be given operands of the correct type, and definitions may only bind
identifiers to values of the associated type. The type of an operand will be
considered correct, if it is possible to arrive at the desired domain by a series of
injections and projections between sums and summands.

Although LAMB is basically type-free, the reducer does catch and warn about
such things as mismatches between actual parameters and formal patterns.
Thus SiS does provide some protection against type-errors in DSL, albeit
dynamicalily.

Note that the operator ‘@’ in DSL is entirely concerned with the type-checking
of so-called "polymorphic” functions. Basically, '@ is used to abstract a
domain as parameter of a function definition, and then a domain is supplied
gach time the function is used. For example,

map-list @ Z {f: (Z —>2Z)) (z»: Zx} 1 Z» =
defines a general-purpose list-processing function, which can be used on a
particular domain as follows:

LET n* = map-list@N{LAM n. n PLUS 1)<1,2,3,4>

So that is {the present version of} DSL. Suggestions for improvements are very
welcome!

5. PRAGMATICS

This Chapter attempts to point out some of the known inadequacies of S{S and
gives some hints on how to get the best out of SIS. it is based mainly on the
experiences of the author and the students at Aarhus. Hopefully, a reading of
this Chapter, supplemented by a careful study of tested examples [Mosses79b],
will help the new user of SIS to avoid some of the potential pitfalls! See also
the Operating Notes [Mosses79al.

5.1. LAMB

Termination

A LAMB-expression without a normal form does not always correspond to the
value "bottom” {in the domain of meanings of LAMB-expressions}. It is to be
expected that one will encounter “sensible” expressions without normal forms,
their reductions consequently not terminating. Of course it is impossible. for
SIS to predict such non-terminations in generaf, so it is up to the user to
diagnose the situation.

One aid for diagnosing the cause of non-termination of a reduction is to limit
the number of reduction cycles and inspect the approximate normal forms
produced. Often, the approximate normal forms will expand in a regular way
when the number of cycles is increased. Note, however, that “direct
recursions’ give rise to constant approximate normat forms, e.g.
(FIXLAM f. LAM n. n EQ 0 —> 1, n MULT fin PLUS 1}){(1}

has — eventually — the constant approximate normal form '?'. (if one is lucky,
the replacement of unreduced sub-expressions by '?" when the cycles limit is
reached may trigger a warning from the reducer, showing what it was in the
process of reducing at that moment.}

FIXLAM
Fortunately, the presence of the FIXLAM operator in LAMB does allow
recursively-defined LAMB functions and lists to have normal forms. E.g.
{*) . FIXLAMf. LAMn. n EQO —> 1, n MULT #{n PLUS 1} =~
and
FIXLAM t. <0,t>

Py PRAGMATICS

are both in normat form. This is in contrast to the pure lambda-calcuius, where
the expression corresponding to {*} above has no normal form, because of the
explicit use of the [ambda-expression for the fixed-point operator.

However, note that it is quite possible for FIXLAM x. ¢ to be in normal form,
but for the reduction of

LAM x'. (FIXLAM x. e}{x'}
to not terminate! Roughly speaking, the reducer leaves a FIXLAM expression
unexpanded untit one tries to use it in some way — here, by applying it to a
“dummy” argument. Then it is as if the. FIXLAM “explodes’ into an infinite
expression]

The reduction algorithm is technically inadequate {unsafe) here, in that the
above expression might have a normal form if the FIXLAM were to be
expanded only once. Usually, this seems to be not the case, as recursions are
generally “genuine”, with the variable "'x’ being used {e.g. applied} in the body of
the FIXLAM. The current reduction algorithm is rather more efficient {on
expressions with normal forms) than the safe version would be,

LAM VAL

If one wants to model the evaluation of strict functions, then one shouid use
LAM VAL x. e instead of LAM x, € . This will cause non-termination when
appilying the abstraction to an expression with no normal form. Note, however,
that this gives rather "over-strict’ functions, unless one ensures that all
arguments of abstractions have the value bottom whenever they have no
normal form. (This is true of expressions denoting values in flat domains.}

Subscripts

Don’t be surprised if "subscripts” of the form '#n’ get appended to identifiers by
the reducer. It is to guard against the capture of free variables during the
simulated substitution in beta-reduction.

Identifiers of the from '##n” are generated by SIS, mostly during the
translation of DSL into LAMB.

SEG
Although without interest from the point of view of reduction, SEG is
pragmatically rather useful, it allows the easy ’‘linking" of

independentiy-produced LAMB-expressions (e.g. corresponding to separate
DSL descriptions).

For a simple example, suppose one wishes to test a LAMB-expression by
applying it to several other expressions. If “fun” refers to the file containing (the
LAMB-code of) the main expression, then one can avoid editing and parsing it

LAMB 45

for each test by using the expression

(SEG “fun’){ ... }.
SEG q is not substituted for by the parser, this is done dynamically during
reduction. '

Some of the SIS commands involving combination and reduction {Apply,
Compile, Execute, Interpret} could be implemented by simply using Reduce on
small files containing SEG-expressions. (Warning: on the current DEC-10
implementation, one cannot refer directly to files produced by the parser —
only to “code” files. Also, the form of the quotation given as operand to SEG is
implementation-dependent.}

ACTIVATE

This operator is in LAMB {and DSL} only to allow the circular semantics of DSL
to be expressed. In effect, it represents the semantic function for LAMB,
taking trees representing LAMB-expressions and producing the expressions
themselves, For cognoscenti only |

5.2. GRAM

SLAR(1}

The author was originally persuaded by [Andersen,Eve&Horning73] that it was
reasonable to impose the SLR{1) condition on grammars: "Amending a
grammar to enable the use of the more restrictive [than LR{1}] SLR(1}algorithm
... is at worst a smali additional burden which can be treated in conjunction
with the problem of eliminating genuine ambiguities.” Experience with SIS has
indicated that the SLR({1} restriction is actually rather annoying — for example
the grammar for DSL is not SLR{1), and it would probably take substantial
distortion to make it satisfy the condition,

Ambiguities
Luckily GRAM has some features which help to minimise the annoyance of the
SLR(1) restriction. The most important of these is the automatic resolution of
most ambiguities {"genuine” or not}. If there is a choice between recognising
one alternative and continuing to scan another alternative, then latter action is
taken. This gives the effect of recognising the {locally} longest instances
possible, e.g. the "dangling "else’” ambiguity is resolved as usual, giving

[IF exp THEN [iF exp THEN cmd1 ELSE cmd2]]
rather than

[tF exp THEN [IF exp THEN cmd?} ELSE cmd2) .
This automatic resolution of ambiguities is also invaluable in lexical analysis.

46 PRAGMATICS

it is aiso possible for ambiguities between recognising two different alternatives
to occur. The alternative which comes first in the grammar text is preferred.

if one is in doubt about the choices which are made to resolve ambiguities, then
one can get SIS to write out the resulting parsing-table. The non-SLR{1) states
are distinguished by comments in the table.

Watch out for alternatives which become “masked” by the resolution of
ambiguities -—— SIS unfortunately gives no warning about this.

Note that using left-recursion instead of right-recursion can help to make a
grammar SLR{1). See the definition of 'cmd-seq’ in Loop, Table 3.1.

TRANSFORM

One can use a TRANSFORM pass before the LEXIS pass {i.e. last in the GRAM
description) t0 do character conversion and removal of layout, for example. A
TRANSFORM pass between LEXIS and SYNTAX could be used to handie
things like BCPL's convention for insertion of semicolon and other symbots.

Abstract Syntax

The abstract syntax trees produced by the parser can be adjusted by a judicious
use of the DOMAINS section and of the value-fields in the alternatives. The
former allows syntactic categories to be combined, thus removing (typically}
precedence information from the tree; 'the latter allows the elimination of
redundant “chain-reduction” nodes. It is advisable to have a close look at some
trees produced by the parser, to see whether they conform to expectations.
Note that there is no automatic check that the sytactic domains specified in a
DSL description match the trees produced by the corresponding GRAM
grammar.

The abstract syntax should be chosen to make the definition of the semantics
as natural as possible. The choices made in the examples {such as Loop} are
not necessarily the best!

DSt 47
5.3. DSL

Typechecking

In the absence of the implementation of typechecking, careful hand-checking of
the domains of operands in DSL descriptions is essential. The use of
conventions linking value-identifiers to domain-identifiers — as used in the Loop
description, Tabie 4.1 — helps by factoring the checking into two phases: first
to check that the right-hand-sides of all definitions yield values in the domain
associated with the identifier being defined; then to check all the uses of
identifiers in expressions.

Experience has shown that some caution is necessary with the ’[...]" notation.
If using it to separate the summands of semantic domains, remember that the
node labels depend entirely on the domain names associated with the variables
used between '[" and '}"; there are no automatic coercions between domains in
this context.

A useful way of tracking down missing {or wrong} alternatives CASE-constructs
is to use something like

/ ? —> ?suitable message”
as the last alternative. If this ailternative is selected during reduction, the
warning from the reducer will include the quotation.)

Segmentation

it is advisable to keep the size of DSL descriptions small by splitting larger ones
into segments {of, say, 5 pages or less}. Often, it is quite natural to factor a
denotational semantics into parts such as static semantics (typechecking,
normalisation}, dynamic semantics {the main semantic functions) and the
auxiliary functions {the storage model, etc.). These parts can then be
combined using the various SlS-commands, or with the aid of the
SEG-operator — see the description of this under LAMB above. Not only does
this facilitate editing and parsing, it also allows a more systematic testing of the
semantics: one can inspect the value produced by the static semantics before
beginning to test the dynamic semantics, etc. Because of the abstraction of
the auxiliary functions, it is much easier to read the “code” produced by the
"compiter”. ‘

By the way, one should not have any free variahles in DSL segmants — so a
warning from the reducer about free variables should be taken seriously, it.
usually indicates a spelling mistake in an identifier, or a missing definition
(hereunder the mistaken use of "LET" instead of 'DEF’).

48 PRAGMATICS

Termination

Unfortunately it is quite possible for the semantics of a particular program (i.e.
some LAMB-expression denoting an input-output function) to have no normai
form - even for a program that will always terminate when executed,

In this case one is unable to inspect the code of the program, ail one can do is
1o provide the data for the program "at compile-time”, thus getting the output
~ of the program instead of its code. This clearly corresponds to interpreting the

program rather than compiling it. incidentally, this is the reason that SIS is

‘called a Semantics Implementation System rather than a compiter-generating

" system — apart from the niceness of the acronym, that is!

QOne can guard against the lack of a nermal form for the semantics of a program
in some cases. Basically, the trick is to make sure that recursively-defined
" functions do not get applied until they can "evaluate out’. Consider the Loop
. semantics, Tabte 4.1. There the {recursive) function 'repeat’ is applied to 'n’,
" which is the result of evaluating an expression, and not in general known at
“compile-time”. This makes it unsuitable for use as a "compiler’: it shouid be
used as an “interpreter” instead. The easiest way to enable it to be used as a
compiler is to abstract ‘repeat’ {and maybe the other auxiliary functions} into a
separate segment. The body of the main semantics segment would then start
with
LAM prog’.
LAM <repeat:(N —>{S —> S5}=> S —> S},...>.
and finish with
IN ppiprog’) : {(N* > N»} .
Using the Compile command, this segment could now be applied to a program
tree, and the resulting code inspected. The code would start with
LAM <repeat,...>>. LAM n».
and shouid be applied both to the segment defining <repeat,...> and to the
data using the Execute cornmand, to obtain the output.

It would also be possible to reformulate the Loop semantics using CIRC and
STAR, so that compiled code would always have a normal form. Similarly,
with a continuation semantics the use of the operator *;* instead of application
can help in avoiding the premature application of {FIXLAM expsressions and}
recursively-defined functions. However, one should not let this feature of SIS
influence the way one writes denotational semantics: the technique of
abstraction is better, and has the beneficial side-effect of introducing some
modularity into DSL.

For advice on localising the cause of the non-termination of a reduction, see the
comments on LAMB above, under Termination. It may be useful to inspect the
LAMB-expressions produced by SIS from DSL descriptions.

S—

DSL 49

General
At least to start with, it should be easier to sketch a semantics in {one's

favourite flavour of) SSN, and then translate it into DSL — rather than trying to
formulate the description in DSL straight away.

It pays to take some care in designing a "complete” set of test-programs, to
explore all the corners of the semantic description. Also, when a semantics is
split into segments, it is as well to test the first segment before even typing in
the others: thus getting feedback on one's understanding of the abstract
syntax — and of DSL!

That is all the advice that | can give at present on using SIS: the rest is up to
you! Please send me any comments you may have about this Reference
Manual and User Guide. Corrections can be published in the SIS Newsletter,
and incorporated in any future reprinting of this document. Happy $iSsing —
and Good Luck!

&0

REFERENCES

[Andersen, Eve&Horning73]
"Efficient LR{1) Parsers”.
Acta Inf. 2, 12-39 (1973).

[Burstali6g]
"Proving Properties of Programs by Structural induction”.
Comp.J. 12, 41-48 {1969).

[DeRemer71]
"Simple LR(k} Grarmmars".
Comm.ACM 14, 453-460 {1971).

iFeldman& Gries68]
“Translator Writing Systems”.
Comm.ACM 11, 77-113 (1968}.

[McCarthy83]
"Towards a Mathematical Science of Computation”,
Information Processing 1962, 21-28, North-Holland, 1963,

[Milne&Strachey77]
"A Theory of Programming Language Semantics”.
Chapman & Hali, 1977.

[Mosses75]
"Mathematical Semantics and Compiler Generation”,
D.Phil. Thesis, Oxford Univ., 1975.

{Mosses76]
"Compiler Generation Using Denotational Semantics”.
Proc.Symp. on Math.Found. of Comp.Sc., Gdansk, 1976;
Lect.Notes in Comp.Sc, 45, 436-441, Springer-Vertag, 1976.

[Mosses79al]
"S5 - Semantics Implementation System - Operating Notes™.
DAIMI MD-32, Comp.Sc.Dept., Aarhus Univ., 1979.

REFERENCES 57

[Mosses79b]
“SIS - Semantics Implementation System - Tested Examples’,
DAIMI MD-33, Comp.Sc.Dept., Aarhus Univ., 1979.

[Naur63]
"Revised Report on the Algorithmic Language Algol60”.

Comm.ACM 6, 1-17 {1963).

{Scott76]
“Data Types as Lattices’.
SIAM J. Comp. 5, 522-587 {1976).

[Stoy77]
"Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory".
The MIT Press, 1977.

[Tennent7€]
"The Denotational Semantics of Programming Languages’.
Comm.ACM 19, 437-453 {1976).

[Vuillemin73]
“Correct and Optimal Implementations of Recursion in a
Simple Programming Language’.
IRIA-Laboria Rep.24 (1973).

GRAM
SYNTAX
segmen

title

expma

expu=b
exp=c

exp=q

A. LA¥B Syntax

"LAMB~Parser"”

t =

exp~ide 3:=

atom

number
sLring
seq-op

di-op

mon=-op

rep=op

H

YLAME" title exp “EKD" ;

string & string ;| '
"LAM" exp~-a M. exp /

"F1ALAM® exp=a "." exp :/

gxp=a ">t exp *,* exp /

exp=a seqmop exp /

exp=a & exp=a ;

exp=a dl=ap exp=b /

exp=a "NODE" exp=b /

exp-a "lS" exp«p /

exp~b i exp~b ;

mon=aop eip~b /

exp=c H exp=c ;

exp~c exp=d /

exp~d i exp~d ;

(" exp ")yt 3 exp /

nge @axpRer," Ex¢ s

exp=d rTep~op /

exp=ide exp=ide /

atom 3 atem ;

"1D* q /

nipw q W number ;

number number /

string @ string /

bk T /

"FF" 3 FF 7

L A ?

“NM" p 3 no;

"ET* g9 & a J.

e / “CIRC" / I'STAR" ;

“AND" / "OR" s MELY / ®NE™ /

Ls® /4 "GR® / "LE® / "GE" /

"pPLUS* ¢ “*MINUS® s *MOULT" / *"DIV® / MREM" /
"CAT" / M“AUG* /¢ “PRE™ / TEL"

SHUT" / “NUMBER" / "QUCTE®™ / “TRUTH" / “COWC™
=CC" / PSIZE" / “VAL" s “SEc™ / “ACTIVATE" ;
wgn g omgnm

/

/

3
H

54 Appendix A
DOMAINS
seyment, eXp, exp-a, eXp~pb, eXp-c, exp~d 1 EXF
exp~ide ide
sey=ap & Dl=ap
number N O
string [V
LEXIS
seqment iz waords+ 3 CONC word+
word $:= pold=ident ¢ <OUT *ID", bold=ident> /
ident <QuUT "ID", ident» /
ident degor 3 <QUT *"ID", QUOIE<ident,decor>>
numeral <OUT "NM", numeral> /
string 3 <0UT "ST", string> /
layout+ @ </
wiv comment* 3 < 3
poid«ident :i= upper lowerwdash* i QUGTE(upper PRE Llawer=dash¥}
idept = iower lower~dash¥ QUAOTE(lower PRE lower-dash#}
degar ::= digit+ prime¥ QUCTE(digit+ CAT primex)
prime+ digit¥ & QUESTE(primre+ CAT digit®)
numeral 3:i= digit+ & NUMBER diglit+ ;
sering ii=m ccro® string«ch¥® CCUE" QUCTE string=ch®*
upper === "ARLL LML
lower =s= an, k2
lower~dash === *a",,,"z" / ©®="
digit === “grLLa"9t
prime ==z wew
string~ch =\= CC"Q" s cCec® /s CCHL® / cCYe* /7 CcCv1v
layoutr ==z e P A o Y A] T
COmMMEnt =h\= ccrec# 4 cCHL® ¢4 Cco'P™
EiD

GRAM "GRAHM"
SYNTAX

grammar ::=

domain-~dec
mode ==%

pProd=range

rep~op ===
exp =
divop ===

“GRAM" tlitle
string

pass "DOMALN
mode prod=-ra

jdet=n,u wgw
"SYNTAX® /

prod :
range i

ide *“::=" a

B. GRAM Syntax

rass+ M"END®
string

$" domain«dec+ ./
nge+ ;

ide ";" 3
TLEXIS" /

pred ./
range ;

Ny w .
H

ltern+=n/" i

elem* *:" exp /

elem*

ltem sep=op
item rep-op
lrem @

ide /

string /
control~char
L2 L / Il+_ll

wEN S Ay

item /
!
item

i

H

exp di=op exp=a /

exp “NODE®
exp~a i

®CAT® /
monh=0p exp=a
*OUT" string
exp~b

"NUMBER" /

HAUGH s

exp=a /
exg=a }

"PRE" ;

/
/

exp-b ;

*QUQTE" /

"CANC*

"TRANSFORKE" ;

/ooneer

55

1
exXp-i iis (Y oexp M)tk
NG gxpkev, M W
Wln pxpecs)%
tup-ide :
string @
nuneral i
wppu g
b 2
wpw g
e¥p~c 17 exp~b M"i" tup=
typ~ide 3
string :
tup=ide ii= ide rep=op /
ide
range :i= ide quality sp
gquallty === szzzh / FmA\EM
spec 3iw string "..." 8
string /
centrol=char
ide i3= DY q
numerai ::= *NMY n g
string 1:= TET" Q&
controk=char r:=“"CC" “"ST" q 3
DUMALINS

exp, exp-a, exp=b, exp=ci
tup~ide, ide:

string, controi~char:

Appendix B

RXF /
st g
/
Tup=ide
string
nureral
T 7
FF /
? 3
ide /
tup~ide
string
gcamign mpn o
H
tring /
Q i
oo}
q
! cc q)
EXp
Ide. ;
Term

H

/
/
/

LEXIS
grammar ;:=

word ::s

layout=char ===

identifier ::=

jetter ===
iow-letter=dash
numeral ::=
digit ===

siring 23z

string=char =\=

word+

laycut«char+
identifier
numeral
string
comment=char*

LERT

letter

LF LI A

EETLELIR T 1

dlgit+

LI LI

corgy

ccrge

comment=-char =\=CC"C"

END

low=letter-dash¥*

GRAM Syntax

(CCRC word+)

</

<QuT *Ip*, identifier>
<OUT "NM", numeral>
<0UT "sT*, string>

<> 7

4 ccmpe 4 conr

I3
+

(QUOTE ()etter PRE low=lettfer~dash¥*})

r

(NUMBER digite)

ccrgr
(QUOTE string=char¥)

cc*L* s cCC"pP* f

ccrp"

GRAM “D5L=Payser”

SYNTAX
segment iz
title iz

exXp s

exp=a

an

exp~b iz

exprc IS

exp«d i

exp-e

-
L3

exp-i

we
.
il

exp~ide

C. DSL Syntax

exp “"ENE"
string ;
IN® exp /

"Loexp S/
=3 “.* exp f

exp "," eip /.
/

Xp "<~" exp
exp /
exp~a
exp=b /
Xp=ide exp~b /
exXp=b /
eXp=b /
am~+b /
exp~b ;
/
edlp=b /
exp-c 7§
s

ng* domp~b /

"DSL" title
stripg 3
defn-1ist+
"LAM" exp=-a
"FIXLAM" exp
exp=a M=
exp=a “"\" e
eXp~a seq=ap
exp=a |
exp~a di=op
exp=a *g" e
exp=a "NODE"
exp+a "Ig*
expwa “:" d
exp=b :
mon=-op exp=b
*4" exp=lde
Qup*c ¢
exp=c exp=d
exp=C

exp=-d
"CASE" exp=a
l'(!l exp*"",“
<" exp¥er,®
win exp=e¥
eXp~d rep=ap
exp-lde :
atom

exp-£f @

atom

exp={ Trep-op
exp~ide
IIIDSI /

"ID=DECOR" g

dom=at+=*/"

dom+b
dem~b

L

exp=d ;

alternt+ "ESAC®
!I}‘l /
nyw oy

!Ilﬂ /
/
exp~ide /
ataom ;

exp=f /
atom H

/
exp~ide ;

q i

dam+a /
dom=b ;

59

ul

dom=p 3:is
dom=c 1i=
dom=d iiwm
dom=ide 3=
altern iz

dom=defn

number
string
seq=ap

di~op

W
wn

n
dome=b
dom~i
atom

dom=gd
atom

dom«d
dom=4i

*BOLD
ngn

" DEF"
NLET®
"DUOMA

exp=a
exp~i

wan

"en
H

eip=d

exp-i
exp=i
exp=i
dom=3}

numbe
strin
npqH
REEH

wan
M
ngpn
wen
nANDH
apgY
YPLUS
wORT

KO
acen

ngn

domFen,n
dom#«" "
dom=c*

rep=ap
de &

H

Tep-ef
de :

-ID* g

2Ap=a+=",

defne-
defn+=
iNs"

Azn e

de par+

dom=a /

2Ap=a /

P

de4=1,"
de+=","
det=", "
de "=

r
9

H
H

YR

no:

q

/ MCIRC
/ "OR

/ M"GR"

" FERET"|
/o whU

wyn
wy
nyn g
7
dom
ato

dom
atg

/
dom

v

VLT N
"WITH"
"ALSO®

AP

wen
H

Hen
H
Kb
1
wyw

dam

num
str
IT
F¥
1

"

L

P
INUS™®
G" 7/

/ "HUMBER™
/4 MSIZE" /

IS

;

Appendix ¢

7
/
«ijde ~/
ooy
-d /
moy
-ide
>t exp
/
7

dom=defnt+

dom M=" exp ¢
dam=%de “=* dom Mi" /
dom=ide ;" /
LEL SIS S PR
n;!l H
ber /
ing ~/
/
/
H
H
H
"ETAR"
“EQ" , nNEll /
LE" / "GE® /
¢/ "MULT* / "DIV® ¢/ REW" /
"FFE* ~/ "EL™
/ "QUCTE"™ , “TRUTH" / “CONCY

VALY 7 "SEGT

£ "ACTIVATE"™

/

DOMAINS

seyment,
exp, eXp-a,
dom, dom=a,

exp-
dom-

eXpwide, dom=~ide
seqy~ap 3
number H

string

LEXIS
segment @

word

ii=

bold=ident

ldent

decor

RS

numeral
string
upper

lower

lower=dash
digic
prime
string=ch =\=

layout

comment

END

DSL Syntax

b, exp+«c, exp=d, exp=e, exp=i,
b, dom=c, dom=d & Exp
: de ;
Vi=op ;7
N
Q i
word+ CONC wordt 7
bold~ident <QUT “EOLD=ID", pbold-ident> /
ident s <QuUT “ID", fdent> /
ident decor 1 <GUT "“I1D«DECGOR", ident, decor> /
numeral i <0UT “NM", numeral> /
string i <0UT "ST", string> /
layout+ & <>
*i% comment¥ <
upper lower~dash¥ QUOTE(upper PRE lower=dash#*)
ioWer luuer*dash! : QUCTE{lower PRE lower-dash¥}
digit+ primer* ¢ QUOTE(digit+ CAT prime*; /
Frime+ digit* 3 QUOTE(Frime+ CAT digit*}; ¢
digity @ NUMBER diqit+
ccgr Strinq-ch*. ccHgr oz QUCTE string~ch* ;
"ATL.LTE
Naﬂ..'uzi! '»
nat...zh /o et g
nge,, 9t
n*n ’
ccege / CCRCc* /4 CC®L™ 4 CCUP® s CCMTR
®on 4 CCHC* / CCYLY /4 CCUWP* / CCMT"
[of ol v NP S ol oS P 4

ccrpr

o5L "DSL=Semantics”

DOMAINS
segment:Segment
title; Title =

exp: Exp =

ide: Ide =

atoms: Atom =

defn=listiDefn~-list

defn: Defn =

par: Far =

dom=defn:Dem~defn

aitern: Aitern

63

pP. PSL Semantics

syntactici

[*DSL" Title Exp "ENWD™}

g 7

[Defp~-list+ "IN" Expl /
["LAM" Exp "." Expl /
{“FIXLAK" Exp *." Expl /
fExp "=>" Exp "," Expl /
[(Exp "\" Exp "<~" Expl /
[Exp Di=op Expl /

fExp *%" Ide Expl /

EExp "NODE®" Expl /

{Exp "IS" Expl ¢

{Exp ":" Expl 7/

tMon=op Exp) /

{"%" Ide Expl /

{Exp Exp} /

i{Exp *&" Expl /

["CASE" Exp Altern+ "ESAC"]} /
[*(* Exp¥ "}*} /

(*«¢* Exp* ">»"] /

[*t™ Expr "1} /

[Exp Rep=apl /

[Exp+) +

{EXp "=>" Expl /

Ide ./ Atem ;

{"3D0% Q3 /

£vID~DECOR" Q@ C) /

{"BOLD-XD* Q) /

£7ID® Q "#" Kl 5 ! LAMB oniy

N/ Q0 /T /4 T

L*DEF" Defn+l /
[*LET" Defn+) /
["DOMAING® Dom-defn+l

[Exp "=" Expl 7/
[Ide Par+ “:" Exp *=* Expl

Eret Expl /
i";" Expl /
iExpl ;

{Ide+ ":" Ide "=" Exp ";"1 /
{Ide+ ":" Ide ™;"* /

{Idey 3" M=t Exp "pwi /
i{Ide "=* Exp ";")

{949 Exp+ "=2»" Expl

64 Aprendix D

di=op: Di=op = "y /4 “CIRC" / “STAR" 4 YAND"™ s rQrv
FIEQ" 7 |INEII / HLSH , I’GRI! / IlLElI / IIGEH /
"BLUS" /4 "MINUS® / UMULT" / *DIVM / MREMY g
“CAT™ / "AUG" / MPRE™ / MELY 3

man*opi don=op = "NOT" / “NUMBER" s FPQUCTE" / “TRUTH® /
"CANC* / "gC" / MBEG® 4 MACTIVATEM / wyaALe H

1

Fep=ap: HRep=up TEE S Mgt g

DUMAINS ! Semaptict

n N ! numbers

g "I i quotatians

r s R = Q=>q 3 { environments

DUMAINS ! Functlons;

[T Exp «> R => Exg

gErs 3= EXp# => R => Exp* ; !
ee=gs = EXp#* => R «> Q¥

ee~bs =z Exp¥ => R => Eap* ;

dd~lists 3= Defn=1lst* =>» EXp => R => Exp ;

round=map = {Defn =>R =»EXp} => Defn+ => R => Exp

map = (Defn =>R «>EXp) ~> Defn* => R «> Exp¥* ;

dd=1 ;= Defn => R => Exp ;
dd-1r iz Defn => R => Exp ¢

pp=s = Par* => Exp => R => Exp

dd~doms := Dem~defn¥ -> R ~>» R ;

dd~dam := Dom=-defn => R => R ;

iay~ides = R => Ide¥ > Ide =>R ;

li=q = Ide «> 0

aa=s 3= Altern* => R «» Exp => Exp ;

aa«es jz Exp¥ «> EXp => R ~> EXp #> EXp =>» Exp ;

private~jide = Exp ;

! meaning of description := Exp =» Exp ¢

Wote; LAME is a sub~domain of Exp.
To help the reader, identifiers denoting LAMB-expressions
(exp} are deccorated with primes (') belaw,

USL semantics

{7LAMB" title expl”

DEF ee(expir : Exp =

CASE exp
/I"DSL" titlie expl "END"} «>LET
/ldegn~list+ “IN" expll =2
Z{"LAM™ expi “." expl => LET

{“LAN" expl”

/L*FIXLaM™ expl "," exp2] =>LET

E"FIXLAM" expi’

/lexpl "=>" expz ",* expll=>LET
IN
Jlexpl Y\" expZ "<=" exp3l->LET

LET
LET

IH [(“LAM" expic”

65

ee(explly IN
"ENDY}

eXgY " =

dd=-lists(defn=1ist+)(expi}r

{expl”,exp2’}) = ee-s{expi,exp2)r IN
"L, exp2’l

(expl®,expi’) = ee~s(expl,exp2)r 1IN
. exp’)

(expl®,exp2’,expi’) =
ee~5{expl,eXpZ,exp3ir
{expl® "=>" gxp2* "," expi’l

(expl’,expl’,expl’) =
ee~s{expl,exp2,explir

expld’ = private~ide

exp20*” =

LE1 exp2t* = LET di~op = "EQ" 1IN
[expl0’ di=op €xp2”}

ALSQ exp22’ = expl’
ALSO exp23’ = [expl’ edpl0’] iIN
Fexp2l® "=»" exp22* "," exp2id’}

v." expz0”]

flexpi dl-ap expl} => LET (expl’,exp2*') = ee~s(expl,exp2)r IN
fexpl” di-op exp2’}

/lexpl "% lde exp2) =-» LET expl0‘ = ee(icelr
ALSQ exp20‘* = ee-5(eXpl,exp2)r
LET exp20® = ["¢" exp20*'* ">") IN
lexpi0” exp20°] ’

/lexpl "NODE™ exp2]l => LET (expil’,exp2’} = ee=5(expl,explr IN
{expt® °NODE" expl’]

/lexpi "I5" exp2] ~> LET (expl‘,exp2’} = ee=-s{expi,exp2)r IN
{expl® "IS" exp2”]

/Eexpl Pi' expll => ee(expilir

/Eman«op expll => LET expl’ = eef{expllr IN

{mon=op expil’)}

/E*R" ide expll =>» LET

expil’ = ga{lidelr

ALSO exp20* = ee(expl)r IN
fexpid’ expl0’l

/{expi exp2l =>

LET (expl’,exp2'} = ee=s{expi,expz)r IN

{expi”® exp2°]

-

flexpl "e" expi)

ee(explir

b Appendix D

/IUCASE" expl altern+ "ESAC"] =>
LET expl" = ee(expi)lr
LET expll’ = private-ide
LET exp2' = aa=s(alrern+)r expii”
LET expl0” = ["LAM® expli' "." exp2'l 1IN
[expl0” exp1°}

AEULY expE® ")) => LET exp“#% = ee=s(exp*)r IN
SIZE exp‘* EQ) =-> exp** EL i,
iner exp'* "yt

Al exp* "»U] - LET exgp*¥ = ee-s{exp?)r IN
U™ pxp’s UM}

ALELY exp¥® ")) e LET q¥% = ee=gs(exp*)r
ALSO exp'¥ = ee=ps(exp*ir
LET expt’ = QUOTE g%
AL30 exapl” = {“<" exp’* ">"] iN
[expl® "NCDE® exp2’}

/lexpl Tep=opl => LET expl’ = eelexpi)r IN
{expl’ rep-opl

ALEDY i} => ["ID"* ql]

/{7ID=DECORY ql q2] =» LET q4' = QUUTE <gl,q92> IN
["ED" g°]

/ NUMBER 7?7

/ QUOTE 7

/ TRUTH 7 => exp

L K

ESAC

WITH ee~5{exp*¥)r ¢ Expy =

CASE exXp¥

£ - <

/ expl PRE expi* «> ee(expt)r PRE ese~s{expl*)r
ESAC
W1TH ee~ys{exp¥)r 1 Q» =
CASE exp¥

£ - S]

¢/ expl PRE expi* «> ee~q(expilr PRE ee-ﬁs(expl*)r
ESAC

WITH

CASE

ESAC

WITH

‘CASE

ESAC

DSL Semantics

WITH ee=glexplr g =
CASE exp
/{expl rep=apl ~> QUCOTE <ee=g{expi)r, rep-ap>»
AI0ID" q11
/{PID~DECOR" qi 921 =+> LET g* = z(ql1) IN
q' EQ 7 »» 2", g°
/ NUMBER 7 => "N
/ QUOTE ? => exp:
/ TRUTH 7 =>» HT* -
T Bt] "?"
ESAC
ge-bs(exp*)r : Exp¥ =
expk
[+] <
/ QUOTE ? PRE expi¥ => ee~bs (expi¥)r
/ expl PRE eXpi*¥ => eefexpllr FRE ee~bs{eXxpi¥)r
dd~1ists{defn~1ist*){explr : Exp =
defn~11st*
PR ¢ IS] ee(exp)r
/{“DEF*" defn+] PRE
degn=1ist1* => LET expl” = round=map{dd«l}{defnt)r
ALSD exp2’ = round=map{dd=r){defn+)r
ALSD exp’ = dd=llsts{defn=1lsti?i(explr
LET expl0’ = ["LAM" ewpl® ™." exp']

/E"LET" defn+) PRE
defn=listi* ->

ALSO

exp20°® = E"FIXLAM" exgi’ "." exp2°l

IN [expi0® exp20’]

LET
ALSO
ALSO
LET

expl’ = round-map(dd=1){defn+)r
exp2’ = round=-map{dd=r){defn+)r
exp’ = dd-lists{defn~1isti*)(exp)r
explQ’ = E"LAM™ expl® *.* exp']

IN [expl0” exp2‘]

/E"DOMAINS® dom-defn+) PRE
LET r* = dd-dons(dom~defn+}r
IN dd=lists{defn=-listiv){axpir’

defn=1isti¥ =->

X/

08

hppendix D

WITH round-=map(f :{Cefn ~>R ~>Expll(defr+ir : Exp =

3IZE defn+ E@ 1 =>» f(defn+ EL iir,
LET exp*# = map(f){defn+)r IN
[P¢Y exp'® Bue)

HITH map(f :{Defn +>R =>Exp))(defn¥)r 1 Exp¥ =
CASE defn¥
PR S I <>

/ defni PRE defnl* => f(detnl)r PRE map(f)(defni*}r
Esac

WITH dd=1(defn}r : Exp =

CASE defn

/ieXpl "s" exp2] => eelexpidr

/lide par+ ®"i" expl “=" exp2l => eef{jde)r
ESAC

WLTH dd-r{defn)r 3 Exp =
CASE defn
/lexpi "=" exp2l => ee{exp2}r
/lide par+ ":" expl "=" exp2} =» pp-=s{par+liexplr
ESAC
WiTH ppus(par*}(exp)t 3 Exgp =

CASE par¥

L

AR+ B ‘\:/} L

/I"B" expi] PRE parl¥ => pPE*s{parl*){exp)r
/l%;" expil PRE parl# .

/lexpil PRE pagi¥ => LET expl’ = eelexpidr

ALED exp" = ppws{pari*)(explr
IN ["LAM" expl”® *." exp’]

ESAC

NsL Semaptics

®ITH dd~donms (dom~Jetn¥)r : R =
CASE dom=defn*
/K> => 3
/ Jom-defnt PRE dom=defnl#* =>
LET ¢’ = dd=dom(den=defnl)r IR
dd«doms{domr~defnl*}r”

ESAC

WITH dd~gom{dom~defnir : R

CASE dom=defn
/Eide+ "i" 1lde "=" exp "; "]
Alides "r® ide ;"] -3 lay~-ides{rj{ide+){ide’
Jlide+ ":® "z' oexp ";¢]
flide "=z" exp] = T
ESAC

WiTH tay=ides(r}{ide*)(ide} "¢t F =
CASE ide* '
/<> => r

/ idel PRE ldel¥ => LET 1" = r \ ii~q(idel)} <+ ii=q(ide)
IN lay=-ides{r")(idei¥)(lde)

ESAC

WEITH il-q(ide} 3 C =

CASE lde

ZEMID" q1]
/["ID=DECOR" g1 gz}
/["BOLD=ID" qi] -> ql

ESAC

69

74
WITH aa=s
CASE alte
/6> =2
PASTANN T
ESAC
WITH
CAsE
ESAC
WITH Priv
LET
{rIp
IN
LAM
END 14

Appendix D

(altern*j(r)(exp’) i Exp =
n¥
?
p+ "«>" pap] PRE allernit «>
LET exp’’ = aa+s(aiterni*®)(r)(exp’) IN
aa~as(exp+){eXp)(Tiexp’exg””
aa=es(exp¥) (exp2)(rlexp’exp*” 3 Exp =
exp¥
FAR ¢ IR exp’’
/ eXpl FRE expl¥ =)
LET (expl®,exp2’} = ee-s{expl,exp2lir

LET exp3’ = aa=-es{expl¥)(exp2)(rlexp’exp”’

LET explQ’ = [expi’ "I5" exp’]
ALSO explQ’ =
LET eXp21° = ["LAM" expi’ "." exp2’]
IN [exp21* exp’]
IN f[expl0” ®=>" exp20* "," expl’]
ate~jde ; Exp =
q = "g" IN
" gl
exp. ACTINATE ¢ ee{eXp)(LAM gq. 2} }

"DSL«Semantics"

71

E. LAMB Reduction Rules

The reduction rules for LAMB are basically the beta=rule of the lambda-calculus
together witn tules for operators acting on tuples, nodes and constants, The
ruies concerned with patterpvexpressions may be regarded as "explaining away"
this feature of LAMB 1n terms of the other features,

As in Chapter 2, the small letters n, g, t, p, e and £ (possibly subscripted)
will stand for LAMB=expressions with meanings in the corresponding domains, a
suffixed *¥° {pdicating a tuple. The letter “x' will stand for an arbitrary
identifier, However, in describing the reductfon rules, it Is more appropriate
to ¢onsider the syntactic form of an expression, rather than just jits meaning.
. Therefore n, 4 and t below will be restricted to depote literal constants
{humerals, strings "..." and *TT*, 'FF“); and. p, £ and e* w%{ii denote
expressions of the form e NODE e°, LAM e, e” and <e,...>» respectively. The
- letter "a‘’ wlll stapnd for a constant (n,q,t) er “%°.

An occurrence of the left=-hand-side of a reduction rule is called a "redex", &n
expression is said to be "ip normal ferm® when it contains no redexes, (This
definition 15 actually recursive, as same of the reduction rules impose the
condition that particular compohents c¢f the redex be already in normal form.)
The predicate "is=norm(e)’ Is to be true for exactly those expressions e which
are- in nerwal form.

N.B. The following reduction ruies do NOT attempt to define LAME: they are
merely conslstent with the semantics of LAMB. :

72 Appendix E

TT => el, e2 = el

Ft' = el, e2 = el

ti AND 12 => conjunction of ti and t2
ti QR &2 => disjuncticn of ti: and t2
al Eg a2 => TIT when al identical to a2

{leading zeros ignored)
FF otherwise

{4yl NODE el*) EQ (4R NODE e2¥) => (af EQ q2}) AND (ei#¥ EQ e2%)}

{LhM e1’. el) EQ (LAM e2*, e2) =» FF

CBis..e€l> EQ <el’,...8n"> => (el EQ €4") AND...(em EQ en*} when m=n

FF otherwise

a EQp => " pEQa > FF

a EQ £ =2 £ EQ a z> FF

a EQ ex => e¥ £Q a => FF

F EQ £ => i Eg p z=> FF

p EQ e¥ =R e¥ EQ p => FF

£ EU ex¥ => e¥ EQ f » FF

el NE el £ NOT {el EQ e2}

nl L& n2 => © TT when nl less than n2
= FF otherwise

ni GR niZ > TT when nl greater than n2
=> FF otherwise

nl LE n2 => 1T when ni less than oI equal to n2
=> FF gtherwise

ni GE n2 = TT when nl greater than or eguai to n2
= FF otherwlse

nl PLUS n2 2> ni plus n2

nl MINUS nZ => nl minus n2

when nl greater than or equal to n2

= ?.0Lherwise

ni MULT n2Z => nl times n2

nil DIV n2 => ni divided by n2 (with truncation)

when n2 greater than ¢

=> ? otherwise

nl REM n2 B4 ni meduic n2 when n2 greater thanm 0
=> ? otherwise

Selyias,em> CAT <el”,...,€Nn*> > <ef,searem,el’,vu,80’>

€elrssssem> AUG & > <el,...,em,e’>

e’ PRE <el,ss.sem> => e’,el; .., em>

€€i,4..58m> EL N s> én whep @ iess than n

ané n iess than or equal to m
=> ? otherwise

LAMB Reductlon Rules 13

NOT ¢ X =2 negatfon of ¢
NUMBER €ql;sss.qn> = the nureral formed from the characters
0f Qi,..s,5n When Lhey are ail digits
> 7 otherwise
QUUTE <qi,;essrqn> =2 the guotation formed from qQi,.s.,4n
TRUTH <"TI°,°"T"> Ed TT
TRUTH <"F","F"> => FF
CONC <@l¥;usv,em¥> => ei¥ CAT.,.em*
cCo Mg =3 quote park
[ol o] &> carriage~return
cC "L¥ => lline=feed
cC ovge =» horizontal tab
[= page=throw
cC sE" = endwof«file
S1ZE <elseavetn> > n
SEG g => expression In the file jideptified by q
ACTIVATE e =2 expression represented by Lree e
when is=norm{e)
e 15 ? =» TT
e IS x = 1T o
e I5 a e EQ a when a is not "7°
{g NODE e*) IS5 {el KODE e2) => (q IS el) AND (e¥ I5 e2}
{LAM e’, e) IS {LAM 7. 27 . = TT
C@lseessem» ES €el',usas€n’> = (el IS el*) AND...(em IS en") when mzn
> FF otherwise
€el,eeesem> IS €° % => (el IS e*) AND...(em 15 e”)
> IS5 e* # => TT
<elieeesEm> IS &7 + = {el1 I5 e') AND,.,.(em IS e¢'} when m>0
<> I3 e" + => FF
<elrese,8m> IS5 (el” PRE e27) > (el I5 el’) ARD {<e2,...,em> I5 €2’}
. when m>Q
Cel;...,en> IS5 (el® AUG e2”) => {€€1, ... 8n=1> i5 @}") AND (em IS e2"2
when m>0Q
n LS (HUMBER e} = ‘g% I5 e when NUMBER gq* 2> n
g IS {QUOTE e} =» q* IS5 e when QUOTE gq* => g
t IS (THUTH e} => q* IS5 e when TRUTH gq* => t
q I8 (CC 92 =3 q° IS e when €C q" => g
e 18 (YAL ¢*) > e I3 e’ when fs-norm{e)
g 1S e* => FF in ail other cases

(e.g,, n IS {LAM 7. ?) => FF }

74

(Lar x. ej(e’} =2
{LAM 7. el){e") >
(LAM a. e)(e"’) =>

(LAM(el NODE e2). e)(q NODE e*} =>
{LAM{LAM?. %), e} {LAM el', €2") =>

{LAM<el, ey, 0>, €}<€l 44y 8N"> =2

(LAM ei #, el{e”) =»

(LAM et +. e){e”) s>

{LAM{el PRE e2). e}<ei’,...,em’>»a>

({LAM(el ANG e2). ¢)<el’, .., ,em >=>

(LAM(NUMBER el). e)(n} =
{LAM{QUOTE e1), e){q) =2
(LAM(TRUTH et), e){t) >
{LAM(CC et}. el(q) >
(LAM(YAL el). e)(e’) =>
(el; e2)(e*) >
{el CIRC e2}{e"} =>
(el STAR e2}(e"} =
FIXLAM x. e E3)
FIXLAM el, =2 =>

Appendix E

e with e’ substituted for x
{beta~reduction, avolding "captures®}

e

(e’ Is a} =~> e, ?

(LAM el. LAM 22, e)(g)(e¥)
e

(LAM ei,..LAM em, e)}(el"}.v.(en*)
when m=n

(e’ IS el ¥} =~>»

e with e’ subst. far el », ?
(e" IS el +} =>

e with e° subst, for et +, ?

(LAM el. LAM 8], e){el }<eZ’,s.e,em*>
when m>Q

(LAM el. LAM €2, e)<el’,...,em~1">{en"}
when m>0

{LAM ei., e)(q*} when NUMBER g* => n
{LAM el. €)(q*) when QUATE g% => q
{LAM et. e)i(q*) when TRUTH q* => t
{LAM ei. e)(q9") when CC q" => q

{LAM et. e)(g') when ls~-norm{e’)
{el(e2))(e"}

(LAM VAL x.
{LAM VAL x%.
e2(x1) ¥lei{x}}) (e”)

(LAM VAL x.
(LAM YAL<X1,x2»,
. eZ{x11(x2) J{et(x))) (e*}

{LAM X, e)(FIXLAM X, e}
only in the feollowing contexts ():
{1 =-> el, e2
L1 di=op (]
[l NODE £
{} I e*
men=op [}
tl1(e"}

©(LAM el, e2){(
(LAM x", e’){FIXLAM el, e2})}
where e’ £s such that
(LAM el. el}(e”) z=> e’
and - (LAM x, e"){e2) => e2

715

F. LAME Evajuator

518 evajuates LAMB-expressions by applying the reduction rules of Appendix E in
a particular ordey, The algorithm used, cailed ‘red’, is based on the "caijl-by-
need" or "lazy evaluator" strategy f{Vuillemin73] (due alse to Chris Wadsworth).
As with a *"call=by=name™ (normal arder) sStrategy, the leftmost outermost redex
15 reduced at each step; 50 in geperal jt is a "safe" strategy, not embarking on
the reductfon of a sub=expression which may later te "thrown away®. (Actually,
it is slightly unsafe on FIXLAM X. e, wen x f5 not used in e ~= see Chapter 5,?
The inefficlency usualiy assoclated with calleby-pame is aveided by ensuring
that redexes are kept linked together, so that parameters of abstractions are
not reduced more than once. E.g.
. {LAM X, x PLUS x)(l PLUS 2} =¥ 6
in 3 steps (as in a "call~by=value" or "applicative order" strateqy) as opposed
te the 4 steps taken with cail=by=name. Unfortunately red is not completely
optimal, as redexes can be Fhidden® from being kept linked together by
akstractiens:

(LAM £. £(1) PLUS £(22){LAM x. X PLUS (3 PLUS 43} Erd 17
takes 8 steps, with (3 FLUS 4) being reduced to 7 twice., It seems that this is
not a real source of inefficlency in practice.

Rather than ilterativejy searching for and reducing redexes, red uses recursion
to keep track of wnat to reduce next, Substitution f£s simulated by the use of
environments, associating ldentiflers with “"closures” (pairs of expresslons and
envyirenments), The call=py=need straregy 1is effected by updating the
environment atter reducing the closure assoclated with an ifdentifier.

The following description corresponds quite closely to the actual implementation
in the current version of 515 (1.i}, but the details of the auxiliary functions
ate omltted, as the maln purpose 15 to specify the erder of teductlon of

redexes,

b Appendix F

LSL “"LAMB~Reducer"
{ N.B, This description has not peen tested.
DUMALNS

! LAMB syntax:

seyment 3 Segment & {("LAMB" Titie Exp YEND®*} ;
title H Title =0Q
exp H EXp = ["LAM" Exp "." Expl
/ ["FIXLAW® Exgp "," Expl
/ LEXp "=>" EXp "," Expil
/ [EXp Di-op Expl
/ [Exp "HODE" Expl
/ [Exp "I5" Expl
/ {Mon=op Expl
/ {EXE Exp]
/ ("g" Exp¥ ">"]
/ [Exp Rep=opl :
/ Ide :
IR QST SR ;
/ <Exp,Env> 3 ! created by red ~ not in LAMB :
ide : Ide = ("Ip" ¢ !
/4 LPID™ Q "§" N}
di-op H Di=op R "CIRC" / "8TAR"™ / "“AND"“ / "“OR" H
/ “EQ® s WNE® s YLSn s WGRY / “LE“ 7 WGE®) i
4 "PLUS" / "MINUS® / "MULTI™ / *DEIV" / "RENM® :
/ "CAT® / "ARUG" / "PRE"™ / "EL" ; }
mon-op @ Mon=op = "NOT" / "NUMBER" s #QUOTE" / "TRUTH" i
/ PCONC® / "CC* / “"SEG" / "ACTIVATE™ / "VAL" ; I
reprop i Rep~=op = "#¥% ; M3¥ . §
! Environments . H
eny H Env = <Env,Exp,Cell> / ? ;)
|
! States i
state & State = <Mem,Cell,N,Files> ;
mem : Mem = Cell => Exp ; !
cell H Cell = N7
tiles : Files = Q => Exp ;
! Continuations
< H C = State =>» Exp ;
K H K = Exp => C ;
X H X = Eny =>» € ;
¥ H T = <A,Exp> => C ;
q H A =T /73 H
! Standard
n H N ; ! Naturai numbers
q H Q; i Quotations |
4 : T ; I Trutn values !
! Main functlons H
m H M = "nerm* / "part” ; ! Mode of reduction for red)
red = M => Exp => K => C ;
red=list = M => Exp => K => C ;
match i= Exp => Exp => ¥ => C }
match=-list = Exp => Exp =» ¥ «> C ; H

LAMB Evalvatar T

identifier Handling

Fresh identifiers are supplied by modify~ides , which uses the N=component
of State to lemember the hignest subscript so far.

P

LET modify=-ides(exp)ik ¢ C = ? ! (omitted eaxpressions are represented by L
’ 1 gives a result of the same shape as exp , but wlth all ildentiflers
| having fresh subscripts. Modifies the N-component of State .

Environments

To achieve the cail=by=need/lazy evaluatcr effect, environments are direccly
updatabie, as weli as extensibie. 1Ihe Mem~component of State remembers the
currents contents ¢f cells, and the Celiw~component points to a fresh cell.

- -

LET void ¢ Envy = 7 ! [Here *?* is actually the value wanted})
| EQ witl be used to test whether an epv is vold or not,
| which is the reason that Env is not just Exp => Cell.
LET bind(env}(exp,exp’)jx § C = 7
exp should be an ldentifier == pernaps with subscript and repwops ==
or else an expression with the same shape as exp’. env gets extended
by binding ali ldentiffers in exp to the corresponding components of
exp’, and the resulting envircnment is passed to the continuation Xx.

LET find(env)(expl;y 1 C = ?
| If the identifler exp 1s not bound in env, then the continuation y

t is applied te the palr <FF,7> (3<A,Exp»); otherwise, y is applied to
I <TT, the current contents of the cell associated with exp in env>.

LET rebind{env}{exp,exp’ljc t C = ?
| updates the ceil asscciated with {identifler} exp in env to ke exp’.

LET fix(env,env')jc : C = 7
! eny must be an extenslon of env”, by cells containing pure
! expresslons only. All the extra associatlons in env’ are updated
! to conktain closures formed from the orlglnal expressions and eny’,

Suspensions

These are {in general} compound closures, l.e. expresslons with environments
attached to sub-~expressions., ¢The domain of suspensions could have been made
distinct from that of pure expressions, but the “[...}" notation weuld then
insist on a lot of renamings to get the labels right!)

Bt e

LET sus-expfexp)} i Exp =
CASE exp
/<exp’,env> -> exp”
/E => exp -
ESAC

LET sus-env{exapl) : Envy =
CASE exp
/<exp’,env> => env
/2 =>» void
ESAC

78 Appendix F

Control

t
} emmmama
'

Initjalisation, f£inalisation, result=passing

LET set=up(exp)(cl}{files) : Exp = ?
i applies ¢ to injtjal state made from exp and files.

LET stop(expl{state) : Exp = exp
LET res{exp)ik i C = k{exp)

LET res=a{a);y : C = y(a)
1 It would be "nieer™ to make res poiymorphic:
! LET res@Z(ziZ)(£:(Z => C}} ¢ C = £(z)
i but then one has to specify a domain every time, e.g. TesBEXplexp) ik,
i "Overloading” is what is wanted, but it {s not in DSL (yet).

Abbreviations

-

LET isw=ide(exp) : T =
CASE exp
AEUID" g} /4 (M"ID" g "4 p) => TT .
/iexpl rep-opl =~>» jis=jdelexpi)
72 => FF
ESAC

LET is=basic{exp} : T =
CASE exp
/<exp’,env> => fs=basjic{exp”)
ZI"LAM" expl *.% exp?]
flexpi "NODE" exp?]
FENCT gxpk "an}

/ NUMBER ? / QUCTE ? ./ TRUTH ? > TT
/2 => (exg EQ 7 => TI,FF)
EsAC .

LET Is-norm{exp} ¢ T = ? .
! true when na redexes in exp. ACtually fmplemented by "tagging*
! expresslons with a bit indicating whether they have been reduced.

LET lam=query=query i Exp = ? | tree of ‘LAM 7. 2°

LET number-query i Exp = ? 1 tree of 'NUMBER 7

LET quote~guery : Exp = ? 1 tree of ‘QUOTE ?°

LET truth=-query : Exp = ¥ ! tree of 'TRUTH ?*

LET query=-star : Exp = 7 1l tree of *7 **

LET query~star-star i Exp = 7 1 tree of ‘7 ¥ ¥° -
LET quote~gquery=star ; Exp = 2 1 tree of *{QUQTE ?) #*°*

LET circ : Exp = ? L tree of "LRW FR1, LRAW §#2. LAM X§d. $420R81(e83)3°

I tree of "LAM $81. LAM ##2. LAM 243,
H CLAMCERA, RS> HH2TIR43 (A45)) (Re1CaR3)) "

LET star ¢ Exp = 7

LAMB Evajuator 19

! Monadic cperators
1

o ko e

LET mon+op=arg{mon-op} : Exp =
CASE mon=op

/ “NOT" => truth=query

/ “NUMBER"

/ "“QUOTE"

/ "TRUTH® =» quote-~query=star
/ “CONCH =>» guery=star=star
£ “CC® / "SEG" ~=>» quote=-query

ESAC

LET mon=op=£nimon=cp expl : Exp = 1
! the result of applying the mon=op tg exp

LET men«op=inv(ron=cp,exp} : Exp = 7 -
i the result of inverting the mon~ap on ex

biadic operators

¥
H
| mmavssnsssmemenm

LET di=op=argf{di«ecp,n) 3 Exp = ! n is } ov 2
CASE di~op
/ "AND* / "OR"® => truth=query
/ WLS"™ / "GR" / "LE®" / "GE" => number=query
/ "pPLUS® / "MINULS* / *MULT*
£ "DIV* / YREMW® «>» number~query
/ “CAT" «> query=star
¢ "hUGH =» n E¢ 1 => query=star, 7
/ YPRE" «> n EQ 2 => query~star, ?
/ "EL" ~> n EQ { => query=-star, number=query
ESAC
LET di~op~fn{expi di-op exp2]l : Exp =
CASE di-op
PR A => [expl exp2]
/ PCIRC® T =3 2) tree of *clrc{expi){exp2)’
/ "STAR" “» 7 ! tree of ‘star(expi)lexp2}”
/7 => 2 | the resvit of appiving the di=op to expl, exp2
ESAC

LET diwop~inv(di=op,n,exp} : EXxp = 7 I n is 1 or 2
! the result of inverting the di-op on eip and taking the nth component

! IS=operator
i

e 4 A

LET is~fniexpl *IS" exp2] : Exp = 7
! see Lhe reduction rules

Application

LET app~fn{expi sxp2] ¢ Exp = ?
i see the reduction rules

80 Appendix F

Heducer

red{m)(expd)}K redoces the expression {suspension) expl either to
normal form, or to a basic form ~-- abstraction, tuple, node or atom.
The parameter n specifies which ("norm® or "“part*}., If m is "“part"
byt no basic ferm is found, the normal form is given as result.

DEF red(m}(expdl;k ¢ € =
LET (exp, env) = (suS-exp(expd), sus~env{expd)) IN
is=norm{exp} AND (env EQ veoid) => Tes(exp}} X,

CASE eXp

/<expt,epv’> «>
envy EQ void => red{m)<exp’,env’>; k,
eny’ EQ vaoid =-> redim)<exp’,env>; %, 7

/I"LAMB™ title expl "END®] «>
red(ml<expl,env>; Kk

/("LAMY expi "," exp2] ~=>
m NE "norm®* «>» res<exp,env>; k,
modify«ides(expi}: LAM expi’.
bind{env) (expt,expl”)}; LAM env",
red"norm"<expz,env‘>; LAN exp2”.
res["LAM™ expl” "."™ exp2°]; Kk

FIYFIXLAMY expl *." expi] =>
m NE "porm" «>
bind{(env)(expt,exp2); LAM env”.
fixCenv,env};
red({m}<expZ,env’>; K,
modify-ides{expll); LAM expi’.
bind{envi{expl,expti’); LAM env'.
red"nerm®<exp2,env*>; LAM exp2”’,
res ["FIXLAM® expl’ *."* exp2'j; k

fiexpl ®->" expld "," expil ~-» .
matchitruth~=queryl<expl,env>; LAM<a,expl’>».
CASE a

/ TT «» CASE expl”’
/¢ IT => red{mli<exp2,env>; Kk
/ FF => Ted{mj<expi,en¥>; k
ESAC

/ FF =» res(2); K

/ 7 =» red"norm"<exp2,env>; LAM exp2’.
red"norm"<expi,env>; LAM exp3i‘.
resfexpl® "=>" exp2’ "," exp3d'l; k

ESAC

LAMB Evaluator 81

/lexpl di-op expi] «>

CASE diwop

/ M"Y /4 YCIRCM / "STAR® «>»
LET (expl’, exp2*') = (Lexpi,env>, <exp2,env>) IN
m NE "norm" =~> red(m){di~op~fniexpi’ di=-op exp2'}); Kk,
red"norm®expl‘; LAK expil”’.
red"norm"expl’; LAM exp2”*,
res{expl*’® di-op exp2’’); k

/ PEQ" / PNE"™ =>
red"part®<expi,env>; LAY eapi’.
red"part”"<exp2,env>; LAM exp2”.
js=basictexpl’) AND is=basic({eap2”) =>

red(m){di+op~fnfexpl’ di=op exp271}; Kk,

red"normexpl’; LAN expl®’’.,
red"norm"exp2'; LAM exp2’’,
res(expli®® di-cp exp2”'*); Kk

/7 o=
match{divop~arg(dfi=op,1})<expl,env>; LAM<al,expl’>.
match(di~op~arg{di-op,2)i<expd,env>; LAM<aZ,expl’>.
CASE f{al,a2}
{TT,TT) => red{m){di~op=£fnfexpl* dlwop expi’l); K
/(FF,7)
0, FF) =>» res(?); k
(2, 2) = red"normexpl’; LAM expi’’.
red"normexp2’; LAM exp2’’,
resiexpt’’ di-op expl’'3; kK
ESAC
ESAC

/{expl "NODE" exipl] =>
match{quote=query}<expirenv»; LAM<aji,expl’>.
match{qguery-starj<exp2,env>; LAM<a2,exp2’>.
CASE {al,ai.m)

FC(TT,TT, part®) => resfexpt’ "NODE" exp2’]; k
F(FF, 2, ? b

/(% FF, 2]~ res{?); k

(2, 3, ? 3 =2 red"norm®expl®; LAM exapi’”.

red”norm®exp2’; LAM exp2'’.
resfexpi®” “NODE™ exp2”’l; Kk
ESAC

slexpi "IS" expl} =>
match{exp2}<expl,envy>; LAM<a,expf’>.

CASE a

¢ TT => red(m){is=fnlexpl’ "I5" eap2l); k
s FF => res{FF}; k

P] res{exapl’ "IS"™ exp2l; K

ESAC

62 Appendix F

/lmon=ap expll ->
CASE mon=op
/ "ACTIVATE® =>
m NE "norm® => res{?); k,
red"nerm"expli; LAM expi’.
res(mon=op~fn(ron=cp expi‘li; k

/D o=
match{man=gp=arg{mon=~pp}}<expl,env>; LAM<al,expt’>.
CASE aj
/TIT =» red(m){mon=ap=fnimon=op expi’l); k
F FF => res(?}); x
/T e res(mon«op expi’'l: k

ESAC

ESAC

LAMB Evaluatol 83

/iexpl expll =»
matchi{iam=query-quUeryl<expi,env>; LAM<al,expi’>.

CASE at
/ TT =»>
LET ["LAM" expil "." expl2] @ sus-exp(eipl”)
LET envl = sus-env(expi’} IN
match{expli)<exp2,env>; LAM<al,exp2’>.
CASE a2
4 TT => is=lde{expll) =>
bind(envl}<expll,exp2z*>; LAM env’,
Ted{m)<enpl2,env’>; k,
red(m){app=fniexpl” exp2'l); K
/ FF => res{i); k
/s % => red"normtexpl”; LAK expl’’;
resfexpt’’ expl’l: k
ESAC
! FF =>»
red'normv<exp2,env>; LAM eip2”.
reslexpl’ =xp2°'1; K
ESAC

JENCH exp¥ MO"] =>»
LET exp‘* = map~list{LAM exp”.<exp’,env>){exp*)
LET exp*® = ["<" exp’¥ "»°] IN
m NE "norm* => res{expg’); k,
red=1l1st™norm®{exp”); X

/iexpl rep~opl
ZEniD® q}
J{PID" g "&" n] =->
findlenvi{exp}; LAM<a,exp’>.
CASE a
/7 TT =>» redimifexp”); LAM exp’‘.
rebindlenvi{exp,exp*’);
res{eip”*l; %
/ FF =>» rTes{exapl; X
ESAC

B4

Wl

WI

B e e b re e g A

Wl

Appendix F

/ HUMBER 7

/ QuUUTE ?

/ TRUTH 7 =>
Tes(expli X

P B
exp EQ 7 =» res(?}; k, 7

ESAC

TH map=1ist{£:(Exp => Exp)i(exp*) § EXp¥ =
CASE expt
/&> = <>
/ expj PRE expl¥ => flexpl} PRE map=iist(f)(expl®)
ESAC

TH red=iist(m)["<" eXp* ">"]; K ¢ C =
CASE exp*
/K> =D <
/ @xpi PRE expl¥ => red(m}{expl); LAM expl‘.
red=list{m){"<" expi* *>"];LAMI"<" expl®* 430},
LET exp’"* = expl’ FRE expl’'* IN
res{"<" exp"* ">%}; k
ESAC
Matcher

match{expQ){exp};y tries to make exp match the shape of expG, by reducing
{as little as possible) and by inverting operators. It is basically l-level,
aithough [exp rep=op)] does not count in this respect.- The A=component of the
value passed to the continuation y is

TI if the match was successful

FF 1f the match faiied (i.e., was iwmpossible}
? 1f the normal form of exp is not a kasic expression, thus containing

potential redexes and free varlables.

TH match(exp0ji(expl; y 1 C =

(exp0 EQ 7) OR {exp0 ES ["ID" ql) GR {expC E5 ["ID" g "#" nl) =>
res=a<TT,exp>; ¥,

red"part"exp; LAMW exp”’. -
ROT is=basicEexp®) =>
res-a<?,exp’>; ¥,

CASE exp0

/I9LAM" expl "." exp2) ->
CASE exp” ’
/7 <L"LAM"™ expi’ "." exp2'l, env> «>
res=a<IT,exp’>; ¥
£ 2 o=
res~a<rF,7>; y

ESAC

LAME- Evaluatar

/laxpi di~op expi] =>

CASE {di=op,exp’)

ZLMAUGY, [M<* exp® Myniy

Z(MPREY, [W«™ exp'® PHl} =»
SIZE expi’¥ EC 0 => reg=a<FF,2>» ¥,
LET expi’ = di-ocp=inv{di=op,l,exp’}
LET exp2’ = di~op=inv{di~op,2,exp”*) IN
res«a<Il, {expl’ dieop exp2®l>; vy

/1 o=
res~a<FF, ?>»; ¥

ESAC

/lexpl "NODE" exp2) =>
CASE exp”’
/lexpl’ "NODE" exp2‘l =>
res-a<IT,exp’>; ¥
/T -
res=a<FF,?>; ¥y
ESAC

/imonwop eapil =>

CASE {(mon=op,exp’?

/("NUMBER", NUMBER 7)

/(“QUODTE", QUOTE 7)

/("TRUTH", TRUTH 1)

s{ece, cc ?]
LET expl® = mon=-op=-inv(mon-op,exp’} IN
res~a<IT, [(mon-cop expi'i»; y

ESAC

AL exp¥ "p"] =>

CASE axp’

A" exp’y "H0] w=>»
SIZE exp*¥ NE SIZE exp*¥ =>

res=a<FF,7>; vy,

res<IT,exp’>; ¥

/7T =
res=a<FF,?>; ¥y

ESAC

/{expi rep~opl «>
CASE (rep~op,exp”)
ZEER, (UM gXpT® "HPL)} =>
mateh=LIst(expl)i%<> exp** ">»"l; ¥
/{n+u’ [n(n Exp" ﬂ)»]] -3
SI1ZE exp'* EQ Q0 => res~a<ff,?>; vy,
match=list{expil (<" exp’* "™"*); y

/ NUMBER ?

/ QUQTE ?

¢/ TRUTH 7 =>
exp0 EQ exp® => res~adlTT,exp*>; ¥,
res=a<FF,?>; ¥

ESAC

85

EY

Appendix F

WITH matcheljist{expd) (<" exp* ">"}; y 1 C =

IN

END

CASE exp¥

FAR S Y}

res=a<IT, I{"<" exp* "2%]1>; ¥

/ expl FRE expl¥* =>
match{expdl{expl}
match«list{expQ}(
CASE (a,a’,exp’)
A{TT,TT,["<" expi

LET exp’*
res=a<T7,
JIFF,2 7}
/{2s FF,2) >
res+a<rF,
L3, 2, ("<" expi

; LAM<a,expi’>.
ek expl¥ ">"]; LAMK

fx oNRNTY) W
= expl’ PRE expl’'¥
{P¢" exp'¥ *x'iy; y

XIS

‘¥ AaN]) =

red"norm"expl®; LAM expi’‘,
red"norm"{*<" expl®* ">"}; LAM {"<" expi*’¥ ">v],
LET exp”"* = expl”’ PRE expi’

res~a<?,
ESAC

ESAC

[<" axpl’'® ">"iy;

(LAM exp. set=up{exp); red"nork™exp; stop} i

a‘,exp’>,

IN

% IN
¥

{Fiies => Exp «>» Exp}

G, Loop Semantics (in LAMB)

LAMB YLOOP~Semantics"®

(LAM <pp, cc, ee=ljst, ee, oo, repeat, update-list, initial-s,
update, content>. ppl{
F1XLAM
< pp, cc, ee=list, ee, oo, repeat, update~}list, initiales,
update, canktenpt>,
< (LAM "Read=cmd;Cmd;Write-cmd"NODE<read=cmd, crd, write«cmd>,
LAM n+,
(LAM <"READVar*"NODE«<var¥*>, "WRITEEXp+"NODE<eXp+>>.
{LAM 51, .
(LAM 52, ee«list{exp+}{s82})(
ce{amdl{si)3)(
update~iist{«<var*, n*>){initial-s))i(
< readwcmd, write-cmd>}],
LAM cmd0.
LAM 5.
(LAM #¥40.
¥#0 IS5 {"Cmd;Cmd"NODE<crdi, cmd2>) =>
(LAM "Cmdi;Cmd"NODE<cmdl, cmd2>,
co{cmd2) (cclcmdl) {52}) {803,
£#0 IS {"Var:sEXp"NODE<var, exp>} =>
(LAM "Var:=EXp"NODE<var, exp>.
{LAM n. update{<var, n>){s)}(
ee{expl{s})I(#§0),
#§0 IS {"TOEXpDOCEmI*™NODE<exp, cmd>} =>
{LAM "TOExpDOCmd"NODE<exp, cmd>.
{LAM n, repeat(n){ccicmd}i{s3)(
eefexpl(s)))(¥¥9),
#40 IS ("(CmA}TNQDE<cmd>) «> N
{LAM "{Cmd)"NODE<cmd>. cc(cmd)(s))(ltolr
23¢cmd0)y, ¢
LAM éxp0+.
LAN s.
(LAM ##0.
$30 IS <exp>» =>»
(LRM <exp». <ee{expl}(s)>}(##0},
§30 IS (exp PRE exp+t) =>
(LAM exp PRE exp¥.
ee(exp)}(s) PRE ee=1ist{expsl(5)IC¥¥0),
13(expo+)), «

133 Appendix G

LAM expQ.
LAM 5.
{LAM #40.
#80 15 ("ExpUpEXp"HODE<exXpl, of, exp2>) ->
(LAM "ExpOpExp"NODE<expl, op, exp2>.
(LAM <ni, n2>,
oo(ep){<nl, n2>)3(
< ee(expl)(s), eelexp2)(5)>)){410),
440 IS (“Var“NODE<var>) =>»
{LAM "Var"NODE<var>, content{var)(s)i{(#40),
A80 IS ("Num“NODE<num>) =>
(LAM "Num"NODE<pum>. num){#kG),
?Cexp0)d,
LaM op.
LAM <ni, n2>,
(LAM #30.
##0 E3 4N =
{LAM "+". nl PLUS n2)(#*#0},
40 IS Vet =>
{LAM "=", nt MINUS n2){k#0d,
#80 I35 "k" ->
(LAM “*%, pl MULT n2)(#%0),
80 IS "/" =-»
(LAM */%, nl DIV n23{$¥0),
22¢ep)), ¢
LAM ni.
LAM c.
LAM s.
nEQ ? => 2,
n EQ 0 =» s,
repeat{n MINUS 1)(c)(c{s))), {
LAM <varQ*, nd¥*>,
LAM 5.
SIZE var0¥* EQ 9 =>» s,
(LAM <var PRE var¥, n FRE n#¥>,
update=iist{<var*, n¥>){(update(<var, n>»)(s)))¢
< varQ¥, n0*>)), (LAM var. 2}, {
LAM <var, n>».
LAM 5.
LAM §40.
450 EQ var => n,
s(#40)), {LAM var. LAM s, s(var})»)

END

5

	SMonmouth160721104403
	SMonmouth160720133602
	SMonmouth160720133601
	SMonmouth160720133600

