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ABSTRACT 

The Semantics Implementation System, SIS, provides the 
following facilities: 

a parser-generator, producing parsing tables from 
grammars written in GRAM (an extension of BNF); 

a encoder-generator, producing "encodersfl (code­
generators) from semantic descriptions written in DSL (a 
variant of the Scott-Strachey notation for denotational 
semantics); and 

an interpreter, evaluating expressions in LAMB (a version 
of lambda-notation). 

This document explains the general structure of SIS, and 
describes the notations GRAM, DSL and LAMB. 

lt is assumed that the reader is familiar with the method of 
denotational semantics, at least to the level of Tennent's tutorial 
paper [Comm.ACM, 19:8]. 

SIS has been implemented in BCPL on a PDP-10. A hard copy of 
the implementation - which is reasonably portable - can be 
obtained by writing to the author. 
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1. SIS 

SIS is basically a compiler~generating system. The part of it concerned with 
parsing is fairly conventional: it takes a context-free grammar, specified in an 
extension (called GRAM I of BNF, and produces a parsing table. This table can 
then be used to produce parse-trees (the parse-trees are more ~abstract syntax 
treesH than derivation-trees) from programs in the specified language, as the 
first step towards compiling them. The parsing is usually split into two passes 
- lexical and syntax analysis - and use is made of the SLRI11 algorithm 
[Andersen,Eve&Horning73]. 

The rest of the system is less conventional. In contrast to other 
compiler-generating systems [Feldman&Gries68], the "encoder 
(code-generator) part of a compiler is produced from an independently-useful 
formal semantics for the programming language. The type of formal semantics 
used by the system is so-called "denotational semantics" [Tennent76, Stoyn]. 
However, the original - rather exotic - notation of Scott and Strachey (used 
by Tennent and Stay) is not very convenient for computer processing; so a 
variant of the notation, called DSL, has been devised land formally defined, see 
Chapter 4). it is easy to translate Scott-Strachey notation into DSL, and vice . 

versa. 

The encoder, produced from the semantic description, takes the parse-tree of a 
program and gives what is basically an expression in lambda-notation 
[e.g.Stoy77]. The expression denotes the semantics of the program, usually a 
function from (a list of) inputs to (a list of) outputs. The particular version of 
lambda-notation used in SIS is called LAMB. 

To run the code of a program with a particular input, the lambda-expression 
produced by the encoder is formally applied to a lambda-expression 
corresponding to the input; this application is then evaluated, i.e. reduced to 
"normal form", giving the output of the program. The reduction algorithm uses 
a "call-by-need" strategy [Vuillemin73]idue also to Chris Wadsworthl. 

The system is not closely tied to the use of the particular notations GRAM and 
DSL, which are described below. The user may define new notations, using 
the standard versions of GRAM and DSL. 



2 SIS 

The main components of SIS, which enable the above operations to be carried 
out, are as follows: 

(P) The parser. lt takes a source text and a parsing-table, and parses the 
text to produce a parse-tree. 

(G) The parser-generator. lt takes the parse-tree of a grammar written in 
GRAM, and produces a parsing-table. (Standard parsing-tables are 
provided for LAMB, GRAM and DSL.I 

(0) The encoder-generator. lt takes the parse-tree of a semantic description 
written in DSL, and produces a LAMB-expression denoting the specified 
semantic function. When this LAMB-expression is applied to the 
parse-tree of a program, it produces a LAMB-expression denoting the 
semantics of the program (usually an "input-outpu( function). 

(R) The LAMB-reducer. lt is used to evaluate applications of semantic 
functions to parse-trees of programs, and also applications of 
input-output functions to inputs. lt can also be used for reducing 
arbitrary LAMB-expressions to "normal form". 

The diagrams below illustrate the use of the main components of SIS. Let PL 
be some programming language. 

Compiler Generation: 

PL-grammmar } P, G 
}------------------> PL-parser 

GRAM-parser } 

PL-semantics } P, D 
}------------------> PL-encoder 

DSL-parser } 

I 
! 

I 

I 
I 
I 
~> 
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Compilation: 

PL-program } P 
}------------------> PL-program tree 

PL-parser } 

PL-program tree } R 
}------------------> PL-program code 

PL-encoder } 

Execution: 

PL-program code } R 
}------------------> output 

input } 

See [Mosses75, 76] for more explanation of (and motivation for) the structure of 

SIS. 

The following Chapters describe LAMB, GRAM and DSL in detail (albeit rather 
informally), and a final Chapter gives some practical advice on techniques 
which will enable the user to get the best out of SIS. 
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2. LAMB 

This Chapter introduces LAMB. on which DSL and (to a lesser extent) GRAM 
are based. lt is assumed that the reader is familiar with the lambda- notation 
used in denotational semantics (see [Tennent76, Stoy77]). 

LAMB is a particular version of lambda-notation, formally based on Scott's 
LAMBDA [Mosses75, Scott76]. As such, it is a suitable notation, or "code", for 
representing abstract mathematical functions, such as semantic functions, or 
input-output functions. A concrete syntax for LAMB is given in Appendix A. 
The formal definition of the semantics of LAMB (by translation into LAMBDA! 
is not very illuminating, and therefore will not be given here; it is hoped that the 
informal description below will suffice for the general user of SIS. 

LAMB-expressions satisfy certain "laws", which can be used as reduction rules 
for simplifying expressions. Note that, in contrast to the lambda-calculus, 
these laws are not 'a priori' axioms, but theorems provable from the semantics 
of LAMB. The reduction rules are given in Appendix E. 

The LAMB-reducer in SIS is an algorithm for applying the reduction rules in a 
particular order. Thus LAMB-reduction of an expression produces a new 
expression denoting exactly the same value. For example, if a 
LAMB-expression f denoting a function is applied to another expression e, the 
LAMB-reducer can be used to "evaluate" the application f(e}, giving some 
(hopefully simpler!) expression e'. The important point is that e' denotes 
exactly the same value as f(e)l In fact, it is only because of our limited ability to 
grasp the meaning of complex expressions, that LAMB-reduction is needed at 
all. 

The reduction algorithm used in SIS is described in Appendix F. lt uses a 
"call-by-need" strategy for applying the reduction rules. 

The remaining sections of this Chapter give an informal description of the 
semantics of LAMB. 
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2.1. Domains 

Let a "domain" be a complete partial order with a miliimal element "bottom". 
For the use that is made of LAMB in SIS, it is unimportant whether a domain is 
taken to be a complete lattice, a chain-complete partial order, or whatever - all 
that is required is that solutions of domain equations and least fixed points of 
functions exist and are well-defined {up to isomorphism). Power domains are 
not provided in the current version of LAMB. 

The meanings of LAMB-expressions belong to a domain E satisfying the 
following equation (up to isomorphism): 

E= N+G+T+E•+P+F+? 
where + 

N = 

Q= 
T= 

is the coalesced sum, and 
non-negative integers (flat, i.e. no ordering between the proper 
elements) 

so-called "quotations" (flat, countable) 
truth-values (flat) 

E* finite tuples with components in E 
P = "parse-trees" with node-labels in Q and components in E 
F = E -> E, the continuous functions from E to E 
? = the domain with just one proper element (which is also denoted by 

'?') 

Note: E* = ? + E + E x E + ; .. , so the size of a tuple can be tested. This is 
in contrast to tuples in LAMBDA [Scott76], which are simply abbreviations for 
functions: they have no size, and cannot be concatenated. 

In the following, the small letters n, q, t, p, f and e (possibly subscripted) will 
stand for arbitrary LAMB-expressions with meanings in the corresponding 
domains. A small letter followed by an asterisk'*' will represent an expression 
denoting a tuple with components in the indicated domain. Finally, the letter 
'x' will stand for an arbitrary identifier of LAMB. 

LAMB-expressions may be built up from constants, identifiers and operators, in 
accordance with the concrete syntax given in Appendix A. All 
syntactically-valid LAMB-expressions denote elements of E: the 
semantically-" nonsensical" expressions simply denote'?'. 
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2.2. Constants 

The constants of LAMB consist of: 

the decimal numerals 0, 1, ... , 9, 10, ... 
denoting elements of N; 

quoted sequences of characters, e.g. "I am a quotation", T, "" 
denoting elements of Q; 

TT and FF 
denoting elements ofT; 

and? 
denoting the proper element of the domain ? . 

2.3. Identifiers 

LAMB identifiers are basically sequences of small letters. However, the first 
letter may be a capital, and dashes '-' may be used. An identifier may be 
"decorated" with a subscript (a sequence of digits), or with one or more primes 
('). (Also, the character'#' is used in LAMB-identifiers generated by SIS.) 

2.4. Operators 

Operators may be used as follows, to build up LAMB-expressions denoting 
more complex elements of E: 

<e1, e2, ... , en> 
denotes a tuple in E*, whose components are the values of e1,e2, ... ,en. 
The tuple may be empty, i.e. n = 0. ITuples with different numbers of 
elements are always distinct.) 

SIZE e• 
denotes the number of components of the tuple e*. 

e* EL n 
denotes the nth component of the tuple e*, provided that 1.::;;; n.::;;; SIZE e*. 
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e1• CATe2• 
denotes the concatenation of the tuples e1* and e2*. 

e1• AUG e2 
augments the tuple e1• with the value e21equivalently e1• CAT<e2>). 

e1 PRE e2• 
prefixes the value e1 to the tuple e2• (equivalently <e1>CAT e2•). 

CONC e•• 
concatenates the tuple components of the tuple B** 

(equivalently le** El1) CAT ... CAT le** El SIZE e**) ). 

q NODE e• 
denotes a "parsEHree" in P, whose label is q, and whose immediate 
branches are the components of the tuple e*. 

LAM x. e 
binds the identifier x in the expression e, and denotes the function in 
E -> E which takes the values of e as x varies over E. (See also 
Section 2.6.) 

t -> e1, e2 
is the conditional expression, equivalent to (i.e. denoting the same value 
as) e1 if t denotes true, equivalent to e2 if t denotes false. 

Note that (all) the usual arithmetic and Boolean operators are verbalised in 
LAMB, to avoid confusion with the other uses of the symbols+,-,*,<,>. 

n1 PLUS n2 
n1 MINUS n2 
n1 MULT n2 
n1 DIV n2 
n1 REM n2 

(when n1;>n2) 

(when n2>0l 
(when n2>0) 

all denote the obvious integer values. 

n1 LS n2 "less" 
n1 GR n2 "greater" 
n1 LE n2 "less or equal" 
n1 GE n2 "greater or equal" 

are equivalent to TT if n1 is in the specified relation to n2 
- otherwise equivalent to FF. 
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NOT t 
t1 AND t2 
t1 OR t2 

all denote the obvious truth-values. 

e1 EQ e2 
is generally equivalent to TT if e1 and e2 denote the same value, and 
otherwise equivalent to FF. However: 
- testing fun~tional values always yields FF; 
- testing 'bottom' always yields 'bottom'. 

e1 NE e2 
is the negation of e1 EQ e2. 

The following operators can be used to construct "atomic" values (numbers, 
quotations, truths) from their character representations: 

NUMBER q• 
denotes the number whose decimal digits are the components of q*, 
provided that q* has at least one component. 

QUOTE q• 
denotes the quotation whose characters are the characters of the 
components of q*, provided that all these components denote 
single-character quotations. Note that QUOTE<> is equivalent to "". 
(Tuples of multi-character quotations may also be QUOTEd - distinct 
operand values yield distinct quotations.) 

TRUTH q• 

cc q 

is equivalent to TT if Q* is equivalent to <"T', "T">, and to FF if Q* is 
equivalent to <"F" ;F">. 

denotes the quotation of a "special" character: 
if q = 'Q" then the quote-mark ('); 
if q = "C" then the carriage-return character; 
if q = "L" then the line-feed (or new-line) character; 
if q = 'T' then (horizontal) tab; 
if q = 'p' then page-throw (form-feed); and 
if q = "E" then end-of-file. 
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Function application is denoted by simple juxtaposition - but note that a 
space, or parentheses, may need to be inserted to separate the two operands 
(see Appendix Al. 

f e 

denotes the value of the function fat the value e. 

2.5. Enquiry 

The "enquiry" operator 
e1 IS e2 

has a rather different nature from the operators described in the previous 
Sections. Its basic purpose in life is to tell whether the arbitrary value denoted 
by el is of the particular "form" described by e2 ~ e.g., whether el denotes a 
number, or a tuple, etc. More generally, it can be used to investigate structure 
to any depth, and resembles a "pattern·matching" operator (but without 
"back-tracking"). Constructor-operators for the particular forms are used in the 
"pattern~ ~expression e2, and '?' is used to match any value. 

For example, the pattern to match any 3-tuple is<?, ?, ?>, hence: 

e1 IS<?, ?, ?>is equivalent to 
TT, if e1 denotes a 3-tuple; 
FF, if e1 denotes some other tuple; also 

FF, if e1 denotes a non-tuple - even if it is the special value '?' (but 
bottom, of course, if e1 denotes bottom). 

There are pattern operators for matching each of the sub-domains of E (except 
for ?, which can however be tested for by the use of e1 EQ ?), and pattern 
expressions can be nested to any depth, in general. 

The following operators may be used to build up pattern-expressions: 

<e1, e2, ... , en> 
matches tuples with n components. 

e * (a pattern-expression followed by a star) 
matches tuples with any number of components. 

e + 
matches tuples with at least one component. 
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e1 NODE e2 
matches nodes. 

LAM?. ? 
matches functions (note that this is only a 1-level pattern). 

NUMBER e 
matches numbers. 

QUOTEe 
matches quotations. 

TRUTH e 
matches truth-values. 

CC e 
matches special characters (newline, etc.). 

Note that NUMBER, QUOTE, TRUTH and CC are the atom-constructor 
operators mentioned earlier. Hence one may specify the form of their 

operands. E.g., 
e1 IS QUOTE<?> 

can be used to test whether e1 is the quotation of a single character. (Actually, 
this would also match, e.g., QUOTE<" ab"> -single character quotations care 
exactly characterised by QUOTE<c> EO c being equivalent to TT.) 

Constants may be used in patterns, and (with the exception of '?') they simply 

match themselves. 

For technico-pragmatic reasons, identifiers are permitted in pattern-expressions. 
However, in this context, they are completely equivalent to '?', matching any 
value. Therefore it is not possible to bind pattern-expressions to identifiers, and 
then use the identifiers in a pattern context. For example, LAM x.(e IS x) is 
absofutely equivalent to LAM x. TT . 

To summarise the use of pattern-expressions with the operator 'IS': 
e1 IS e2 is equivalent to: 

TT, if the value denoted by e 1 can be "constructed" by the pattern e2; 
FF, if it cannot possibly be so constructed. 

Pattern-expressions look basically the same as ordinary LAMB-expressions, but 
only "constructive operators (NODE, NUMBER, etc.) may be used. 



In effect, the notation 'e1 IS e2' is a generalisation of the "enquiry" notation 
used in [Tennent76, Stoy77] for separated sums, applied to the domain of 
values 

E = N + Q + T + E• + P + F + ? . 

2.6. Binding 

If one has tested that a value is of a particular form, using e1 IS e2, it might 
then be desired to extract the (so-far untested) components of the value -
perhaps for further testing. For example, if e1 IS<?*)*> is true, then one 
might wish to extract the first and second components of e1, in order to test 
whether they are of the same size. LAMB follows ordinary lambda-notation in 
allowing tuples of identifiers in lambda-abstractions, to acheive this extraction. 
Thus xl and x2 will be bound to the first and second components of e1 

ILAM<x1,x2>. elle11. 

However, LAMB goes on to generalise this idea (after [Burstall69]1: it allows 
not only tu pies of identifiers, but also n pattern" ~expressions (described in the 
previous Section) to occur in lambda-abstractions. If e' is any 
pattern-expression, then LAM e'. e is called a pattern-abstraction. Suppose e1 
IS e' is equivalent to TT; then ILAM e'. O")(e11 denotes the value of e with the 
identifiers (if any) occurring in e' associated with the "corresponding" 
components of e1. E.g., if e1 IS QUOTE<?,?> is equivalent to TT, then 
I LAM QUOTE<x1,x2>. x1lle1) denotes the first of the two characters of the 
quotation denoted by e1. 

When a pattern-abstraction LAMe'. e is applied to a value e1 such that e1 IS e' 
is equivalent to FF, then the value denoted by the application is simply '?'. 
Hence, if e' is any pattern-expression, then LAM e'. e' denotes the function 
which is identity on the sub-domain of E corresponding to e', but which maps 
all other values to '?'. 

The reader may have noticed that operators for selecting the labels and 
branches of nodes have not been introduced. This is because one can simply 
use the application 

ILAMix1 NOOE x2). e1lle21 
to select and bind the label (x11 and the tuple of branches lx2J of a node e2. 
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In a similar way, LAMB allows the tuple~prefixing operator 'PRE' to be used in 
pattern~expressions. This enables tuples to be regarded as lists, since the 
"head" and the "tail" of a tuple can be selected (and bound) by 

(LAM(x1 PRE x2). e)(e') . 
The nil-list is simply the empty tuple <>. 

For symmetry, 'AUG' is also allowed in pattern~expressions. Note that 'CAT' is 
not allowed - it would introduce an unwelcome non~determinism into LAMB's 
semantics. 

There are two forms of pattern-expression which do not always have an 
obvious meaning in a binding context (i.e. after 'LAM'). These are e *and e + 
(matching tuples of arbitrary and non-zero lengths). What identifier(s) should 
be bound in an application of LAM X*. e, for example? One could imagine 
some sophisticated scheme in which (LAM X*. e)(e1) would cause the creation 
and binding of "new" identifiers x~ 1, x-2, ... , x~n, where n would be the length 
of the tuple denoted by e1. LAMB steers clear of such a dynamic sort of 
binding, and takes a simple-minded view of LAM X*. e: X* is treated as a single 
identifier, and occurrences of X* in e refer to the whole (tuple) value bound to 
X* when the abstraction is applied. The same goes for x + (for non-empty 
tuples), and for any identifier x followed by a sequence of * and/ or + signs. 

Pattern-expressions e *, e +, where e contains both identifiers and operators, 
can be used in binding contexts - they do NOT contribute to the binding, but 
do affect the pattern-matching. E.g., 

(LAM(QUOTE x)•. e)(e1) 
is equivalent either toe or to?, depending on the form of e1. (lt would be 
"nice( to use the equivalent 

(LAM(QUOTE ?)•. eHe1) .) 

Finally, pattern~expressions may include the monadic operator V AL. This 
corresponds closely to "call-by-value in Algol60 - semantically, it makes the 
enclosing operator ('LAM' or 'IS') "strict" (mapping bottom to bottom) in the 
qualified component. For example, LAM VAL x. e denotes a strict function, 
and <e1,e2> IS <?,VAL ?>will denote bottom if e2 denotes bottom. The main 
use of VAL in SIS is in achieving the desired termination semantics for 
programming languages. 

(Note: Because it is possible for a LAMB-expression to have a non-bottom 
meaning, but not have a normal form, VAL-abstractions are ~ over~strict" in the 
present implementation. See Appendices E, F.) 
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There is one other binding operator in LAMB: the fixed~point operator, 
'FIXLAM'. FIXLAM x. e is basically equivalent to y(LAM x. e), where y is the 
usual expression for the fixed-point operator: 

LAM x1. (LAM x2. x1(x2(x211 )(LAM x2. x1(x2(x2111. 
As in LAM~abstractions, LAMB allows a pattern-expression in place of the 
bound identifier x. However, in FIXLAM e'. e, there is a minor restriction, in 
that e IS e' must be Nmanifestly" true. E.g. if e' is a tuple of identifiers, then e 
must also be a tuple-expression with the same number of components - it 
could not be of the form e1 CAT e2, even if e1 and e2 were tuple expressions 
with the correct (total) number of components. 

2.7. Miscellaneous 

The operators described above were mostly concerned with tuples and atoms, 
and with function abstraction. There are also operators providing function 
compositions commonly used in denotations! semantics: 

11 ; e 
11 CIRC 12 
11 STAR 12. 

These operators can be explained simply in terms of LAM~abstraction and 
application: 

11 ; e = 11(el 

11 CIRC 12 = LAM VAL x. (LAM VAL x1. 12(x1))(11(xll 

11 STAR 12 = 
LAM VAL x. (LAM VAL<x1,x2>. 12(x1)(x2))(11(x)). 

The semicolon operator ';' is useful, simply because it has a different 
precedence from the usual application operator (juxtaposition) - and it 
associates the opposite way, i.e. to the right (as do 'CIRC' and 'STAR', in 
contrast to all the other diadic operators). Thus 

11 (12(e)) 
can be written as 

11; 12; e 
which facilitates the reading of large LAMB~expressions corresponding to 
continuation semantics for programs. 
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Note the order of composition for 'CIRC' and 'STAR', it is the (often more 
convenient) reverse of that for the usual circle and star operators. Note also 
that 'CIRC' and 'STAR' have been made "strict", anticipating their use in 
representing sequencing in DSL descriptions. 

There are two remaining operations in LAMB: 

SEG q 
denotes the LAMB-expression residing on the "file" identified by q, thus 
facilitating the combination of independently-produced 
LAMB-expressions; and 

ACTIVATE p 
transforms the parse-tree of a LAMB-expression into the actual ("active") 
expression it denotes. 

See the Pragmatics Chapter for further details. 

So much for the meaning of the various constructs of LAMB. Of course, it is 
not claimed that the preceding informal description constitutes a complete 
definition of LAMB - though hopefully it is reasonably ambiguous. (One of 
the main points of incompleteness concerns the behaviour of the operators on 
'?'- and 'bottom'- operands: not all of them are strict.) 

The Chapter concludes with a small example in LAMB. Further examples will 
be given in Chapter 5. (See also Appendix G for a larger example!) 
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Table 2.1 

(i,MI t. 
flXLAH mdp•f, ! applies f to all elerrents of n* 
LA:~ n*. 

51Zl n* ~V 0 ~> <>, 
(LAH(nl PR~ 11l*l. f(nll PBE ~ap•f(nl*l J(ntl 

(.FlXLArl tot, 
LAH n. gives 0 + 1 t ••• t n 

ni::QO~>o, 

n PLUS tot (n !HNU.S ll 

<U,l ,2, 3, 4,5 ,6, 7, 8,9> 

LA~ill "t·lap•tot" 

< o, 1, ), b, 10, 15, 21, 28, J6, 45> 

END 
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3. GRAM 

This Chapter presents GRAM, a notation for specifying syntax. GRAM has 
been designed to provide a transparent interface between concrete syntax 
(used for parsing) and abstract syntax (used in semantic descriptions). lt is 
assumed that the reader is familiar with BNF [Naur63], and with the general 
concepts of context-free parsing. 

3.1. General 

GRAM is a formal notation, similar to BNF, for describing the context-free 
syntax of programming languages. SIS can take a syntactic· description of a 
language, written in GRAM, and produce a parsing decision-table from it. The 
parsing algorithm of SIS can then interpret this table to parse programs in the 
described language, producing parse-trees conforming to a convenient abstract 
syntax. However, the grammar has to satisfy some constraints, corresponding 
roughly to the the SLR(l) condition [DeRemer71] these constraints are 
described in Section 3.3. 

Usually, a description in GRAM consists of two parts: LEXIS and SYNTAX. 
This corresponds to parsing taking place in two successive passes. LEXIS 
describes the lexical analysis pass, which takes the source text (considered as a 
LAMB-tuple of single-character quotations) and recognises a sequence of 
"basic symbols", such as "reserved words", identifiers, numerals, strings, etc. 
The output of the lexical pass is a tuple formed from the recognised symbols, 
which are represented by LAMB-quotations (in general). This tuple is then 
input to the syntax analysis pass, described by SYNTAX, which parses the 
sequence of basic symbols to yield a parse-tree - composed of LAMB 
NODE-values. 

lt is possible to specify extra passes, to occur before or and after lexical 
analysis. Such a pass is called a TRANSFORM: it could, e.g., remove all 
layout characters, as for Algol60; or insert semicolons ·between certain 
combinations of basic symbols, for BCPL. (A TRANSFORM has the same 
structure as a LEXIS, and it will not be described further here.) 
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The same notation is used in GRAM for describing both lexical and syntactical 
analysis. The notation is basically BNF, but it allows explicit indication of the 
value to be yielded when an instance of an production is recognised. The 
LEXIS and SYNTAX parts differ in form only in that the values specified in 
LEXIS productions are generally quotations (or tuples of them), whereas those 
specified in SYNTAX productions are NODEs - and leaves - of parse~ trees. 

Apart for this explicit indication of values to be yielded, the main extensions of 
BNF in GRAM are "iterators" and "ranges". lterators correspond to the 
Kleene~star, and ranges are a convenient way of specifying particular sets of 
terminal symbols. 

For the concrete syntax of GRAM (in GRAM I see Appendix B. GRAM will now 
be described informally, with the help of the following example. 

3.2. Notes on Example 

Consider the example GRAM specification given in Table 3.1. The language 
described is a simple extension of LOOP (see [Tennent76]). The various 
features of GRAM will be explained with reference to the example, using '!n' to 
refer to the corresponding line. ('!' is used to introduce an "end~of-line" 

comment in GRAM descriptions.) 

A GRAM specification starts with the symbol 'GRAM', followed by a string 
which is taken as the title ! 1. The SYNTAX !2 and LEX IS !25 are more or less 
of the same form: a sequence of "productions~, each terminated by a 
semicolon ';'. The non~ terminals are formed from lower-case letters and dashes 
('exp', 'exp~a') whereas the terminal symbols of the grammar are quoted 
("READ", H;")- the LAMB-notation for representing "control characters" is also 
allowed (CC"C"" !39). 

A production has a non-terminal to the left of ':: = ', and a list of "alternatives", 
separated by '/', to the right. 
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Table 3.1 

GHAM ~LUOP-Parser" 

S¥NTAX 

prog ··- read-cmd ~." cmd-seq ~;" write-cmd 

read·cmd : := ''RC.:AD" var*·", " ["READ~ var*l 

write-emu : := "WRITE" exp-t-•", " ["WfliT~" exptl 

cmd•seq ::= cmd•seq ~;" omd (cmd•seq ";'' cmdl 
omd ,., 

omd ::= ,., ":=~ '" ~TO" oxp "00" omd 
"(" cmd•seq ~}" cmd•seq 

OXP : := e>p add•op exp•a I 
exp-a exp•a 

add•op .,. H.,.ol 

exp-a ::= exp•a mult•op exp-b I 
exp•b exp·b 

mult•op "*" J "I" 

exp•b : := '"' """ 
'"' : := "VAR" q q 

""· ::= "NUM" n n 

DOMAINS 

cmd-seq, cmd Cmd; 

exp, exp-a, exp•b Exp 

add•op, mult•op Op 
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os 

06 
07 

os 
09 
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L!::XlS 

o-rogram : := 

word :: = 

letter ::=:: 

uum : := 

dhJit 

comment : := 

'"' nu m 
comment 
layout+ 

GRAM 

Table 3.1 (cont.) 

CDNC word+ 

<OUT"VAF", var> 
<OU1 "NUH", nu m> 
0 I 
0 

letter letter~digit* 

: QUOTECletter PRE letter•digit*) 

"d",,, "Z" 

digit+ : NUMBER digitt 

"0" ••• "9" 

"C" "M" "T" comment-cha.r* 

comment-char =\= "·" 

layout === CC"C" I CC"L" cc~t" 

EN!.l 
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An alternative specifies a "phrase", consisting of a possibly-empty sequence of 
so~called "elements", which are usually simple "items", i.e. terminals or 
non-terminals. However, it is also possible for elements to be "iterators" !4 !5 
!26 of the form: 

item* 
allowing zero or more occurrences of item; 

item+ 
allowing one or more ... 

item1 *- item2 
allowing zero or more occurrences of item1, separated by occurrences 
of item2 (which is restricted to be a terminal); or 

item 1 + - item2 
allowing one or more ... 

lterators allow the convenient expression of commonly-occurring constructs !4, 
and avoid the introduction of extra non-terminals. Of course, recursion (left !6, 
or right) may be used instead, if preferred. (Actually, the current 
implementation of iterators gives the same effect as using right·recursion, as 
regards the language accepted.) 

For each alternative, the value to be produced when the phrase is recognised 
may be specified by a (restricted) LAMB-expression, following a colon':' !4 !5 
!6 !7. Identifiers (non·terminals) occurring in the expression refer to the values 
yielded by the recognition of the elements of the phrase. Tu pie-identifiers, e.g. 
var* !4, exp + !5, refer to the values yielded by the recognition of iterators -
naturally enough, these values are always tuples. However, note that with a 
"separator" element, such as var*-"," !4, the tuple value has components 
corresponding only to the main item, here 'var'; furthermore, the separator '-",n' 

is NOT used in the non-terminal referring to the tuple in the value expression. 

Often, the identifiers occurring in the value-expression will be in the same order 
as the corresponding elements in the phrase which precedes it. (GRAM is 
designed for specifying simple-minded parsing, not for general syntactic 
translation.) However, there is no ambiguity when the same non-terminal 
occurs more than once in a phrase, e.g. 

real::= digit+ "." digit+ : QUOTE<digit+, digit+>; 
- the successive value-identifiers refer to the successive- occurrences of 
non-terminals in the phrase, and subscripts on identifiers are neither needed nor 
allowed. 
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Value expressions may contain literal LAMB constants, i.e. numerals, strings, 
truths and '?'. 

The only LAMB operators allowed in value-expressions are 'CAT', 'AUG' and 
'PRE' !diadic) and 'NUMBER', 'QUOTE', 'CC' and 'CONC' lmonadicl. Tuples 
may be specified explicitly with the '<e1, ... ,en>'-notation. For specifying 
nodes of parse-trees, the DSL notation '[e1 ... en]' should be used !4 !5 !6. A 
full description of this notation is given in Chapter 4, the main idea is simply 
that '[e1 ... en]' specifies a node of a parse-tree, with a branch for each identifier 
'ei'. The label of the node is formed partly from any literal strings occurring in 
the expression, partly from the identifiers occurring - more precisely, form 
their corresponding domain identifiers specified in the DOMAINS section of the 
grammar !21. For example, '[cmd-seq ";" cmd]' specifies a node with two 
branches identified by 'cmd-seq' and 'cmd', and with a label formed from 
"Cmd", ';"and "Cmd" (see !221. (The label is NOT simply the concatenation of 
the component strings - see Section 4.6 for details - so the direct use of the 
LAMB NODE operator is not recommended in GRAM.) For iterators, note that 
'["READ" var* ]' !4 specifies a node with just one branch: the tuple identified by 
'var*'. 

In fact, it is seldom necessary to use the '[e1 ... en]' construction in GRAM 
descriptions. This is because there is a default convention in the SYNTAX part: 
if no value is specified explicitly, the "obvious" node is produced. Thus the 
value specifications in !4 !5 !6 - but not in !7 - are actually superfluous, and 
correspond to the implicit default values. 

All this machinery enables one to obtain the desired "abstract syntax" with the 
minimum of effort. By using the DOMAINS to associate one domain-identifier 
with several non-terminals 122 123 !24, one can cause the precedence 
information, present in the concrete syntax, to disappear from the abstract 
syntax. The reader should compare the abstract syntax in Table 4.1 with the 
concrete syntax in Table 3.1. Note that SYNTAX alternatives without explicit 
value specifications yield nodes with the same label On the same abstract syntax 
domain) if and only if their phrases become identical on replacing non-terminals 
by their corresponding domain identifiers, and removing separators such as 
'-","' !4 !5. Note also that if there is no domain-identifier specified for a 
non-terminal, then one is provided automatically by putting the first letter of the 
identifier into upper case. E.g. 

var: Var ; 
is implicit in the example in Table 3. 1. 
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Thanks to the above conventions, explicit value specifications can generally be 
omitted in SYNTAX. However, they are useful for inhibiting "chain-reduction" 
nodes, when alternatives have no significance for the abstract syntax. For 
example, the specification of the value 'cmd' in !7 (instead of the default 
'[cmd]'l means that no node will be constructed when that alternative is 
recognised: the value yielded by the recognition of 'cmd' is simply passed 
along. 

On the other hand, there is no default convention for value specifications in 
LEXIS. A glance at the variety of value specifications in the example (which is 
not atypical) will show why not. 

Ranges were mentioned at the beginning of this Section. They are especially 
simple productions, capable of recognising only single terminal symbols !13 !J6. 
The value yielded is always the symbol recognised, i.e. a quotation. Ranges are 
distinguished from productions by the use of '= = =' or '= \ =' instead of 
'::=', after the non-terminal. Thus the range identified by 'add-op' !13 is 
equivalent to the production 

add-op ::="+":"+"I·-·:·-·· 
(where the explicit specification of values is necessary, to avoid the default 
convention yielding the nodes '[" + "]', '["-"]'). Apart from being a single 
terminal symbol, an alternative of a range can also be an interval 134 !36, 
consisting of two single-character quotations separated by three dots. In 
principle, the only meaningful intervals are "a" ... "z", 'A' .. ."£, "0" .. ."9" and 
sub-intervals of these. Observe that the range identified by digit in the example 
!35 is exactly equivalent to 

digit = = = ·o· rn·z !"3" !"4" ro rer n· ra· /"9"; . 

When the sign '= \ =' is used instead of '= = =' in a range, only terminals 
NOT in the specified intervals will be recognised. Again, the value yielded is 
the recognised symbol itself. Such ranges are particularly useful for describing 
the lexical analysis of strings and comments. 

Finally, the special intervals 'QUOTE ?' and 'NUMBER ?' may be used (only) in 
ranges, to match arbitrary quotations and numbers. The range-identifiers 'q' 
and 'n' are pre-defined in GRAM, equivalent to specifying 

q ===QUOTE?; 
n = = = NUMBER ? ; 

See !19 !20 (and 127 !281 for examples of the use of 'q' and 'n'. 
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Perhaps the reader has noticed that the LEXIS of the example (Table 3.1) is 
rather small - it doesn't explicitly specify the reco9nition of the "ordinar{ 
symbols, such as "READ", "WRITE", ";", which are used in SYNTAX. In fact, 
GRAM sees to this automatically: any literal string which occurs in a SYNTAX 
phrase, but which is not yielded by some LEXIS alternative, causes the addition 
of a suitable alternative to LEXIS. For example, the occurrence of "READ" in 
SYNTAX causes the automatic generation of an alternative 

"R" "E" "A" "D" : "READ" I 
in LEXIS. 

Unfortunately, it is rather difficult to decide whether a quotation could be the 
result of an arbitrary value-expression, so the GRAM-user has to indicate 
explicitly just which literal strings are yielded by LEXIS. This done by preceding 
them with the "pseudo-operator" 'OUT', when they occur in value specifications 
in LEXIS !27 !28. 'OUT has no other effect on values, it does NOT cause their 
"outputting"! In effect, 'OUT' prevents the generation of an extra alternative for 
the symbol it precedes - the symbol may then be safely used for ~private 
communication" between the lexical and syntactical analysis, and does not get 
added to the language being described. In the example, the symbols 

"·" "READ" "WRITE" . - "TO" "DO" 

"(" ")" + - "... "/" 
will be recognised by LEXIS, but not the symbols 

"VAR" "NUM" 
(which are not part of the language LOOP, and are used only as "markers" in 
the output of the lexical analysis pass). 

Apart from this influence just described, the LEXIS and SYNTAX parts should 
be considered as specifying completely independent parsers, communicating 
only by the tuple of symbols produced by the lexical analysis. In particular, 
there is no interference between the names used for non~terminals in LEXIS and 
SYNTAX. Thus, in the example, the use of 'var' in both LEXIS and SYNTAX is 
purely coincidental, and does not contribute to the parsing process. 

Appendix B gives the circular description of the concrete syntax of GRAM, an~ 
can serve as an additional example of the use of the various features of GRAM, 
as well as making precise some of the above informal comments about the form 
of the various constructs of LAMB. 
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3.3. Parsing 

Finally, the problem of ambiguity should be faced. Completely unambiguous 
grammars are not very suitable for lexical anlysis: it happens quite often that 
some basics symbols are simply composed from others. A classic example is 
':', '=' and ':=' in Algol60 - or identifiers 'a', 'b' and 'ab'. A suitable 
"disambiguating rule", adopted by GRAM, is that the longest possible symbol is 
always recognised - symbols continue until "stopped". 

But consider the following example. Suppose a language has symbols 
'REPEAT, 'REPEATUNTIL' and 'UNLESS' (BCPLl. What should be the effect 
when the sequence of characters 'REPEATUNLESS' is met? Should it be an 
error, or should it be recognised as two symbols? This is not entirely a matter 
of esthetics, or "style" in language design: it affects the "powe( of the parsing 
algorithm needed. 

The parsing algorithm used in SIS is basically the SLR(1) algorithm described in 
[Andersen,Eve&Horning73], and thus has a one-symbol look-ahead but no 
"back~tracking" capability. lt has been extended with the disambiguating rule 
mentioned above, and the net effect is that symbols such as 'REPEATUNLESS' 
will be treated as errors (although 'REPEAT UNLESS' would be OK). 

No attempt will be made here to formalise the details of the semantics of 
GRAM in this (or, for that matter, in any other) respect. lt is hoped that the 
meaning of GRAM is clear enough to enable the user to get a grammar 
"working" quickly - although it must be admitted that the required adherence 
to the SLR(l) condition can be tiresome at times. For some practical hints on 
writing SLR(1) grammars, see Chapter 5. 



27 

4. DSL 

This Chapter describes DSL - Denotational Semantics Language - which is 
the semantic notation used with SIS. The reader is assumed to be familiar with 

LAMB (Chapter 2). 

4.1. General 

OSL is an extension of LAMB, in the direction of the so~called "Scott-Strachey 
notation" (SSN). lt would have been nice to use SSN itself in SIS, so that the 
reader could be spared the details of yet another new notation; however, 
certain features of SSN make it rather unsuitable for computer processing. 
Among these features are: the lack of a formal definition of the notation; the 
many informally-described conventions, in particular those connected with 
"separated sums"; the use of the ellipsis I ... ) notation, which is very difficult to 
formalise; and the almost mandatory use of symbols and alphabets unavailable 
on (most) present hardware. 

DSL is admittedly not as elegant or compact as SSN. However, it is hoped 
that it comes sufficiently close to the essence of SSN to make translation 
between the two notations quite easy. Programmers may even find comfort in 
using DSL, which has unashamedly "borrowed" features from such languages 
as Lisp, Gedanken and ISWIM. However, it should be stressed that DSL is a 
completely mathematical, non-imperative notation - there is no hidden 
dynamic state underlying its meaning. 

LAMB is a sub-language of DSL, and was described in detail in Chapter 2. The 
remaining features of DSL are: the use of domain definitions, the form of 
function definitions, the 'CASE' construct, and the '[ ... ]' notation for nodes 
(used also in GRAM, see Chapter 31. 
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Domain defintions in DSL have two purposes: they correspond to domain 
definitions in SSN, and they will aid the "type-checkirig" of DSL descriptions. 
Every identifier in a DSL description must have a domain-expression associated 
with it, either implicitly or explicitly. it is required that the domain information 
be sufficient to determine that all operations (including application) have 
type-compatible operands. This type-checking will catch most of the simple 
"bugs" in OSL descriptions. 

A domain can be associated with an identifier when the latter is abstracted 
(defined), or, as in SSN, a domain can be "globally" associated with a whole 
family of identifiers, by means of the domain definition itself. For exa~ple, if 
'n: N' occurs in the domain definitions, then this associates N with n, arid also 
with any "decorated" version of n, such as n', n1, etc. -it also associates N* 
with the tuple identifiers n*, n'*, n1*, etc. 

Function definitions in DSL are very similar to those in SSN. The parameters 
may be "Curried" in the usual way. Identifiers may also be defined to denote 
values other than functions, e.g. tuples and ~atoms". Definitions may be 
combined either recursively, "simultaneously" or sequentially, to allow some 
control of scopes (lacking in SSN). 

Recall that in SSN, a semantic function is generally defined by a group of 
"semantic equations". DSL does not try to make a sPecial distinction between 
the defintions of semantic functions and other functions, and so it provides an 
explicit 'CASE'-selection construct: this can be used as the body of a function 
definition, and also in other contexts. A 'CASE' "works" in just the same way 
as the semantic equations do (insofar as the latter has ever been formalised 
[Scott76]1. 

An important feature of SSN is the use of the "syntactic brackets" {or 
quasi-quotes)'[ ... ]'. Together with an abstract syntax specification, it allows a 
compact - and readable - description of functions defined on syntactic 
objects (e.g. semantic functions defined on programs) and avoids the need for 
verbose selector functions and predicates [McCarthy63]. DSL has more-or-less 
taken this feature directly from SSN. The notation in DSL is'[ ... ]', where the 
items between T and T may be either identifiers or quoted strings (other literal 
LAMB constants are also allowed). Note, however, that'[ ... ]' is an operator­
it yields a LAMB node - whereas '[ ... ]' is generally considered to be just a 
means for "insulating" the abstract syntax notation from the rest of SSN. 

To avoid confusion with the '[ ... ]' notation, DSL uses 'f\e1<-e2' instead of 
the SSN 'f[e2/e1]', for "perturbing" functions (usually representing 
environments and stores). Note the reversal of e1 and e2. 
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The formal definition of DSL consists of a concrete syntax (Appendix C) and a 
function giving a translation of DSL parseMtrees into LAMB. A description of 
this function, written circularly in DSL, is given in Appendix D. However, this 
circular description is not put forward as the canonical definition of DSL. The 
canonical definition is a LAMBMexpression corresponding to Appendix D. lt is 
not included in this document, because, firstly, it is not easily comprehensible 
by itself; secondly, the user of SIS can produce it easily from the DSL version. 

The remainder of this Chapter gives an example in DSL, explains the form of 
DSL desriptions with reference to the example, and gives an informal 
description of the semantics of the main features of DSL. 

4.2. Notes on Example 

The general form of DSL descriptions will now be described, with reference to 
the example in Table 4.1 (which matches the grammar in Table 3.1 ). '!n' will be 
used to refer to a particular line of the example. As in GRAM, 'l' introduces an 
"endMofMiine" comment. 

A DSL description starts with the symbol 'DSL', followed by a string which is 
taken as the title of the description ! 1. The description finishes with the symbol 
'END' !83. Usually, the body of the description will consist of some 
domainMdefinitions !6-!31, followed by a sequence of definitions of functions (or 
other values). The meaning of the whole description is given by a final 
expression !82, which is in the scope of all the preceding definitions. 

In the domain definitions, there is a uniform treatment of syntactic (abstract 
syntax) domains and semantic domains. Domain identifiers begin with a capital 
letter ('Prog', 'S') whereas ordinary value-identifiers (sometimes referred to as 
"variables") begin with a small letter ('prog', 's'). Note that, to avoid confusion 
with the reserved words of DSL ('DSL', 'IN', etc.) capitals may not occur in the 
middle of identifiers. However, dashes '-' may be used, to aid readability 
('Read-cmd'). Identifiers may be "decoratedn with a subscript (to be a sequence 
of digits) or with a sequence of primes (') - or both. 
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Table 4.1 

!.>.SL "LUUP~.Semantics" 01 

'ft.e "direct" style of semantics ls used, tc enable comparison 02 
·,l'ith Tennent's semantics tor LCOP [CAO~ 19:6J. 03 

Expressions cannot !1ave slde~effects in LOCP. As there are no ! 04 
declarations in LOOP, environments are not used in the semantics l 05 

DU~1AIN.S 

SYNTACTIC: 

prog Prog 

reao•cmd: 

write•cmd Write•cmd 

lRead•cmd ";" Cmd 

["REA!::" var*l 

{"WRITE" Exp+] 

06 

07 

OB 

09 

10 

cmd Cmd (Cmd ";" Crrdl I (Var ":=" ExpJ 11 
{"TU" EXP "DO" Cmdl I ("(" Cmd ")"] ;! 12 

Exp (Exp c~ Expl .I [Var J I [Numl 

nom 

' n 
q 

VP ;: 

cc := 

Var 

Num 

SEMANTIC~ 

S Var ~> N 
N 
Q 

FUNCTIONS: 

Prog -> N* ~> N+ 

Cmd m> S -> S 

ee-list := 

ee := Exp ·> s -> N 

Q 

N 

repeat := N -> (S ·> SJ ·> s 

States 
Numbers 
Quotations 

update-list := <Var*,N*> -> s -> S 

initial-s := s 

update := <Var,N> -> s ~> s 

"I" 

13 

14 

15 

16 

17 

18 
19 
20 

21 

22 

23 

24 

25 

" 
27-

28 

29 

30 
I 
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Table 4.1 (cont.) 

OJl>lredJwcmd ";" cmd ";" write-cmdl(nt-): Nt 

LU' 
AL:.iO 
Lt:T 
LET 
w 

t"REALl" Vdr*J = react-cmd 
["~RITE" exp+l = write-crrd 
s1 = update-list(v<>r*,n*l (lnitldl•s) 
s2 = cc(crr,J}(s1) 
ee•li~t(exp+Jis2J 

cclcmdO)(s): S 

CASE cmdO 

/lcmdl "•" crod2l ·> 

/[var ":=" expl -> 

cclcrod2JC cc(crrdl)(S) 

LET n = ee(exp)lsl 
IN u~date(var,nl(s) 

/l"TO" exv "lJO" cmdl ·>LET n = ee(exp)(S) 
IN repeatln}( cc(cmdl )(S) 

/["(" cwd "l"l -> cc(cmd)(s) 

Wl'l.'H ee-list(expOtJ(sJ: Nt = 

CASt: expO+ 

l<exp> ·> <ee(expJ(sJ> 

/exp PRE expt -> eetexp)(s) PRE ee·llst(exp+)(S) 

ESAC 

W!TH ee(expOJ (s): N = 
CASE expO 

/[expl op eXp2] -> LET nl = eecexp1Hsl 
ALSO n2 = ee(exp2)(S) 
IN ocCop) (nl ,n2l 

/[vdrl -> content(Var){Sl 

/[numl -> nom ' N 

!!:SAC 
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1-H'fll 

CA<it: op 

vd'l'H 

WITH 

WlTH 

WITH 

WITH 

Ill 

DSL 

Table 4.1 (cont.) 

OO(O..,)(nl,n2): N 

I'' t" 
_, 

/"~" 
_, 

/""' ,, _, 
1"1" _, 

nl PLU.S n2 
nl 1\INUS n2 
nl MUL'l n2 
nl DIY n2 

repeat(n)(c;(S w) S))(s): S 

nf:Q?->?, 
n !::IJ 0 -> s, 
repeat(ll MINUS l)(C)( c(S) ) 

update-list(varO*,nO*)(s): S 

ViHO* EQ 0 w) s, 

gives 

91 ves 

if n2 greater than nl 

it n2 is zero 

SlZE 
Lt:T 
ALSO 
lN 

var PRE var* = varO* 
n PRE n* = nO* 
update-list(var*,n*J( update(var,nJ(s) ) 

in1 t1al-s : s = 
LM var. ? 

update(var,nJ(s): s 

s\var<-n 

content(var)(s): N 

S ( Vil.r) 
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As in SSN, a domain definition can accomplish three things. Firstly, it can 
introduce a new domain~identifier. Secondly, it can specify, recursively with 
other domain definitions, the domain to be denoted by the identifier. Finally, it 
can associate the domain~identifier with a family of variables. In DSL - as in 
the DOMAINS part of GRAM - the specification of the family of variables 
comes first, and is followed by a colon ':'. (The variables should not be 
decorated here.) The specification of the domain is preceded by '=' - even 
when the domain is a "syntacticy one- and is terminated by a semicolon';'. 
DSL provides standard domain~ identifiers 'N', 'Q' and 'T' denoting the 
non-negative integers, the domain of LAMB-quotations, and the usual 
truth-values respectively !19 !20. Compound domains are formed with the aid 
of separated sums '/' 111-!14, products '< ... >' !26 !28 !30 (also '+' and '•'), 
nodes'[ ... ]' 18-113 and functions'->' 118 122 .... To allow the customary list 
of the types of the semantic functions, domain-identifiers may be omitted 
between the ':' and '~' 122-131. 

OSL is intended to be portable, and thus uses only a restricted character set. 
This rather restricts the choice of identifiers; compared to that in SSN 
[Milne&Strachey77]. Those who enjoy using Greek, Italic and Script alphabets 
{not mentioning Bold, Sans-serif and Gothic) are likely to feel frustrated in DSL. 
it is up to the reader to judge whether or not the rather strict conventions used 
in the example, such as double letters for semantic functions ('pp', 'ee-list'), 
and the close correspondence between the names of variables and their 
domains, are appropriate. -The conventions are not mandatory, and may be 
varied {within the limits mentioned above) to suit personal tastes. 

Moving on to the start of the function definitions !32, the usual form is a 
sequence of mutually recursive definitions, introduced by 'DEF' and separated 
by 'WITH'. The scope of the definitions is the expression following the 
matching 'IN' 182. The symbol 'IN' may in fact be omitted if the expression 
starts with more defintions. Note that 

DEF d1 DEF d2 IN e 
is not "as recursive~ as 

DEF d1 WITH d2 IN e 
in that the scope of the definition d2 includes d1 in the latter form. 
Non-recursive definitions are introduced by 'LET' and separated by 'ALSO' 133 
134. 

Each function definition specifies the domain of its result explicitly (after':' !32 
!38 etc.). The domains of the "Curried· parameters may be either implicit ~ 
using an association set up by a domain definition- or explicit, after':' !67. In 
general in DSL, the domain of an expression or variable may be made explicit 
using ':' !58 !82. Although theoretically superfluous, such "assertions" of 
domains can do much to increase the comprehensibilty of complex semantic 
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descriptions On this author's opinion). 

Consider now the definition of 'cc' !39. This corresponds to a set of p semantic 
equations" in SSN, one for each of the alternatives !40 !41 !43 !45 9f the 
'CASE' -construct !39, which is terminated by 'ESAC' !46. The "test value" 
follows the symbol 'CASE' - it is usually one of the parameters of the function 
being defined. Each alternative starts with the symbol 'I', and the following 
expression - terminated by '->' - gives the form of value which that 
alternative matches, in the same way that "pattern expressions" are used with 
the operator 'IS' in LAMB. The exact mechanism of the 'CASE'-construct will 
be explained later; the basic idea is that the first alternative whose pattern 
expression matches the test value ls selected, the identifiers in the pattern 
expression are bound to the corresponding components of the test value, and 
the expression following the symbol '->' gives the value of the whole 
'CASE' -construct. If no alternative matches the test value, the result is simply 
'?'. 

There are two points to note about the ~bodies" (following '->') of the 
alternatives. The first is that any DSL constructs may be used in them, e.g. 
nested 'CASE's, function definitions - in contrast to SSN. Secondly, the 
reader may have noticed that ordinary round parentheses'(',')' have been used 
around the syntactic parameters in the example, e.g. cc(cmd1 )(s) !40; whereas 
in SSN, the brackets'[',']' would have been used. Aficionados of this feature 
of SSN - which can be helpful in a sea of round parentheses! - may be 
comforted to know that they may continue to ~wrap up" syntax in square 
brackets '[',']', provided that they are consistent. The definition of 'cc' could 
have just as well been written as 

WITH cc[cmdO](s) :S = ! N.B. [ ... ] 
CASE cmdO ! Not: CASE [cmdO] 
I [cmd1 ";" cmd2] -> cc[cmd2]( cc[cmd1j(s) ) 

etc. - but note that the type of 'cc' is now 
cc : = [Cmd] -> S -> S ; 

where the domain-expression '[Cmdj' denotes the domain of parse-trees with 
the label "Cmd" and with a single branch in the domain identified by 'Cmd'. 
Putting it another way, everything will be OK if'[ ... ]' in DSL is treated with just 
as much care as '< ... >' (tupling) - for one does not expect '<e>' to be 
equivalent to 'e'. 



Notes on Example 35 

The definition of 'pp' !32 is perhaps rather atypical - although it does resemble 
a semantic equation rather closely. The parameter of 'pp' is expected to be in 
the domain 'Prog', which means that it is a node with three branches, in the 
domains 'Read~cmd', 'Cmd' and 'Write~cmd'. This has been taken advantage 
of in the definition, by using the pattern expression 

'(read-cmd ";" cmd ";" write-cmd]' 
as a formal parameter. (Hopefully this no more mysterious than defining a 
function 'f(a,b)' expecting to be applied to a 2*tuple.) Such pattern expressions 
can also be used as left~hand~sides of ordinary (non~function) definitions !33 
!34. 

Moving on to the definition of 'ee-list' !47, the Lisp-programmer should start 
feeling more at home. Recall from the description of LAMB that 'e1 PRE e2*' 
prefixes the value e1 to the tuple e2*. When used in a "binding context~, the 
operation is inverted, splitting a non-empty tuple into its "head" and "tail''. 
{Note that the alternatives !49 !50 are mutually exclusive, thanks to the use of 
'exp+' instead of 'exp*' in !50.) 

The definition of 'update-list' !71 could also have been written like 'ee-list', 
using a 'CASE' instead of a conditional. Note that the value '?' will be given if 
the list of inputs 'nO*' is shorter than the list of variables 'varO*'. 

The final three definitions !76 !78 180 are those of the "primitive" auxiliary 
functions for handling states. Note that in the rest of the description, 
knowledge of the structure of the domain 'S' has not been used. lt would have 
been possible - and in the author's opinion, preferable - to abstract away 
these definitions into a separate "segment", in attempt to introduce a smidgin of 
modularity into the semantic description. Details of how to do this will be given 
in Chapter 5, Pragmatics. 

Before delving into the finer details of DSL, it should perhaps be mentioned 
that the aim with DSL has been to get as close to SSN as possible, so far as 
compatible with keeping DSL implementable. To a large extent, the 
development of DSL has been simply the formalisation of notations and 
conventions used by various authors in SSN - especially Tennent - with the 
help of some ideas of Burstall. The aim has not been to innovate (that is the 
next phase of the project, producing a version of DSL allowing high modularity 
in semantic descriptions). Thus it ought to be quite easy to transl(iter)ate SSN 
into OSL, and vice versa. 
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The only feature of SSN which may cause some difficulty, is the use of the 
ellipsis' ... ' convention, e.g. 

ee[E1, ... ,En]lr)(k) = 
ee[E1]r{)-e1 .... ee[En]r{)-en. k<e1, ... ,en>} ... } 

this must be completely reformulated in DSL, using a recursive 
list-evaluating semantic function Hike 'ee-list' !47}. DSL has been forced to 
diverge from SSN here, simply because it seems unlikely that a reasonable 
formal definition of the ' .. .' convention can be given - in spite of its frequent 
use in mathematics. (The author would welcome suggestions!) 

Now for a more detailed description of the constructs of DSL. 

4.3. Cases 

The 'CASE'-construct is perhaps the easiest feature of DSL to explain in detail 
- assuming that the reader understands the use of "pattern expressions" 
(consistently represented by primed meta-variables below, e.g. e1') and the 
operators 'IS' and 'LAM' in LAMB. 

Consider an arbitrary CASE-expression in DSL: 
CASE e I e1' -> e1 

I e2' -> e2 

I en' ->en ESAC 
where the ei' are pattern expressions, as in LAMB (but generalised to include 
the DSL NODE-constructor '[ ... ]') and e, e1, ... , en are ordinary 
value-expressions. This entire construct is exactly equivalent to the following 
LAMB-expression: 

le IS e1') -> 
le IS e2') -> 

le IS en') -> 

ILAM e1'. e1)(e), 
ILAM e2'. e2)1e), 

ILAM en'. en)le),?. 
Note that if any pattern is simply '?' (or a simple identifier x) then e IS ei' will 
always be true. Therefore the alternative 

I? ->en 

acts as a "catch-all" (default) alternative - obviously it is only sensible to use it 
as the last alternative in a case, as any alternatives following it could never be 
selected. 
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4.4. Definitions 

Definitions are also quite simple to explain in detail. First of all, function 
definitions may be "desugared" into simple value-definitions by making the 
LAM-abstractions of the formal parameters explicit. A definition of the form 

x(e1') ... (en'l :d = e 
- where x is an identifier, the ei' are pattern expressions, d is a domain 
expression and e is a value expression - becomes 

x :(d1 -> ... -> dn ->d) = LAM e1' .... LAM en'. e 
where the domain expressions di are given (implicitly or explicitly) by the formal 
parameters ei'. For example, 

content(var)(s) :N = s(varl 
becomes 

content :(Var -> S -> NI = LAM var. LAM s. s(varl 
(The domain expressions in definitions will be omitted in the rest of this section, 
as they are only of interest in relation to type-checking- see Section 4.7.) 

In fact, non-function definitions (and de-sugared function definitions) in DSL 
are of the general form 

e' = e 
where e' may be any pattern expression. The nice thing about this form is that 
combinations of definitions can now be "collapsed": 

e1' = e1 WITH WITH en' = en and 
e1' = e1 ALSO ... ALSO en' = en 

can be rewritten as 
<e1', ... ,en'> = <el, ... , en>. 

Because tuples of pattern expressions are perfectly good pattern expressions, 
this produces a valid definition. 

Now the only thing left to do to explain definitions, is to de-sugar 
LET e' = e IN eO 
DEF e' = e IN eO 

into LAMB. This is simple: 
LET e' = e IN eO becomes (LAM e'. eO He) 

whereas 
DEF e' = e IN eO becomes (LAMe'. eOHFIXLAM e'. e) . 

Domain definitions contribute only indirectly to the meaning of DSL, via the 
'[ ... ]' notation (see the next Section). They do not have direct counterparts in 
LAMB. For a description of their effect on type-checking in DSL, see Section 

4.7. 
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4.5. Nodes 

The '[ ... ]' notation will now be explained. The reader is warned that the 
"mechanism" may seem overly complicated at first sight; however it is difficult 
to find a simpler method of formalising something pragmatically close the the 
SSN usage of "abstract syntax". 

Consider the expression 
[e1 ... en] 

where e1, ... , en are either identifiers, strings or other literal constants. The 
expression is exactly equivalent to 

q NODE <e1', ... , em'> 
where e1', ... , em' are the non-strings occurring in e1, ... , en (if any), and 
where q is defined as follows: 
q ~ QUOTE <q1, ... , qn> where, fori ~ 1, ... , n, 

if ei is an identifier, then 
qi is the (string formed from the) associated domain identifier; 

if ei is a string, then 
qi is the same string; or 

if ei is some other literal constant, then 
qi is the corresponding domain name ("Nff, "T" or"?"). 

E.g. [cmd1 ";" cmd2] ~ 
QUOTE<"Cmd",";","Cmd"> NODE <cmd1,cmd2> 

[var] ~ QUOTE<"Var"> NODE <var> 
[" + "] ~ QUOTE<"+"> NODE<> ( ~ "+" NODE<> ) 
[27] ~ QUOTE<"N"> NODE <27> ( ~ "N" NODE <27> ) 

Tuple identifiers, e.g. var*, exp+, may also be used - domain names are 
constructed accordingly. For example, 

["READ" var• J ~ 
QUOTE<"READ", QUOTE<"Var","*'>> NODE <var•>. 

A useful rule·of·thumb is that the labels on '[ ... ]' nodes will be the same, if and 
only if they look the same (up to layout) when the non~strings in the expressio':1 
are replaced by the associated domain identifiers. 

Warning for SIS users: when LAMB-NODEs are printed by the system, no 
distinction is made between 1~1evel~ and multi~levei~QUOTEs, i.e. 
QUOTE<"Cmd",";","Cmd"> will be printed the same as "Cmd;Cmd". 

The'[ ... ]' notation may be used wherever the LAMB NOOE·operator is allowed, 
l.e. in value expressions, in patterns, and in domain expressions - which brings 
us to the final feature of DSL to be described here. 



Domains 39 

4.6. Domains 

Recall that in SSN, domains are specified using separated sums, Cartesian 
products and functions. DSL allows all these, and in addition introduces 
notation for domains of nodes. 

Let the meta-variables d, d1, ... stand for arbitrary domain expressions. Then 
the following are all domain expressions: 

<d1, ... , dn> - n-tuples 
d * - any-tuples 
d + - non-empties 
[ d1 ... dn] - nodes 

(where the di are identifiers or literal constants) 
d1 -> d2 - functions 
d1 I ... I dn - union. 

Domain identifiers may also be used. Literal constants (numerals, strings, 'TT', 
'FF' and'?') all denote domains whose only "proper" element is that constant. 
See also the concrete syntax in Appendix D. 

However, in DSL it is also possible to consider separated sums to be "ordinary 
unions". The aim of this is to help the user who thinks in terms of manipulating 
individual values, and who wants to forget about the isomorphisms, injections 
and projections connected with separated sums and the solution of recursive 
domain equations. 

DSL achieves this conceptual flexibility by not providing any notation for 
injections, projections and a enquiries" - it is also necessary to forbid "circular" 
sums such as D = A I D. Injections and projections may be considered to be 
inserted automatically, where necessary. (This is commonly assumed in SSN 
as a "convention" it is formalised in the semantics of DSL.) 

As for enquiries, i.e. tests for which (summand) domain a value is in, one has to 
"implement" them oneself! When the components of two summands are 
structurally distinguishable, one can use the CASE-construct (or the 
IS-operator): either to define a particular enquiry funtion, e.g. 

DOMAINS ... 
d: D = F I <A,B> ; 
f: F = D -> D; 

LET is-f(d):T = 
CASEd 

ESAC 

I I LAM?.?) ->TT 
I ? -> FF 
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or else to combine enquiry with (projection and) selection of components: 
CASEd I <a,b> -> ... a ... b ... ESAC . 

When the summands are not structurally distinguishable (e.g. different function 
domains) or when it is too tedious to list all the cases, then the DSL 
'[ ... ]'-notation can be used to "label" the summands differently, thus making 
them distinguishable. E.g. 

DOMAINS ... 
d: D ~ [L] I [V] ; 
1: L ~ N; 
v: V~ NIT; 

LET is·vldi:T ~ 
CASEd I [1] -> FF 

I [v] ->TT 
ESAC 

or,combining with projection, 
CASEd I [v] -> ... v ... ESAC . 

"Injection" of a value v in V into D must now be done explicitly, either by 
LET d ~ [v] IN ... d ... 

or by 
LET v·in·dlvi:D ~ [v]IN ... v·in·dlv') .... 

The advantage of the second form is that it can be used with values which are 
in subdomains of (here) V: v-in-d(n) gives the expected value in D, whereas 
using [n] would give a value with the label "N" rather than 'V". (This is a 
consequence of the implicitness of the label in the '[ ... ]' notation - the 
problem does not arise if the LAMB NODE-operator is used explicitly.) 

Note that the use of nodes as components of sums is exactly what is wanted 
for the syntactic domains. There, the summands will be distinguishable by 
virtue of their different labels, e.g. 

DOMAINS ... 
cmd: Cmd ~ [Dec ";" Cmd] I [Cmd ";" Cmd]l ... ; 

CASEcmd 
I [dec ";" cmd] -> .. . 
I [cmd1 ";" cmd2] -> .. . 

ESAC 
Apart from being a useful aide-de-memoire, the domain definitions have an 
important use in DSL: they enable SIS to do "type-checking" on DSL 
descriptions, as described in the following Section. 
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4.7. Type-checking 

This facility is not implemented in the current version of SIS, so it will not be 
described in detail here. As in SSN, all operators in DSL (including application) 
must be given operands of the correct type, and definitions may only bind 
identifiers to values of the associated type. The type of an operand will be 
considered correct, if it is possible to arrive at the desired domain by a series of 
injections and projections between sums and summands. 

Although LAMB is basically type-free, the reducer does catch and warn about 
such things as mismatches between actual parameters and formal patterns. 
Thus SIS does provide some protection against type-errors in DSL, albeit 
dynamically. 

Note that the operator'@' in DSL is entirely concerned with the type-checking 
of SO·Called npolymorphicn functions. Basically, '@' is used to abstract a 
domain as parameter of a function definition, and then a domain is supplied 
eaCh time the function is used. For example, 

map-list@ Z (f: (Z ->Z)) (z•: Z•) : Z• = ... 
defines a gene-ral-purpose list·processing function, which can be used on a 
particular domain as follows: 

LET n• = map-list@N(LAM n. n PLUS 1)<1,2,3.4> 

So that is (the present version of) DSL. Suggestions for improvements are very 
welcome! 
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5. PRAGMATICS 

This Chapter attempts to point out some of the known inadequacies of SIS and 
gives some hints on how to get the best out of SIS. lt is based mainly on the 
experiences of the author and the students at Aarhus. Hopefully, a reading of 
this Chapter, supplemented by a careful study of tested examples [Mosses79b], 
will help the new user of SIS to avoid some of the potential pitfalls! See also 
the Operating Notes [Mosses79a]. 

5.1, LAMB 

Termination 
A LAMB-expression without a normal form does not always correspond to the 
value "bottom" (in the domain of meanings of LAMB-expressions). 1t is to be 
expected that one will encounter n sensible" expressions without normal forms, 
their reductions consequently not terminating. Of course it is impossible for 
SIS to predict such non-terminations in general, so it is up to the user to 
diagnose the situation. 

One aid for diagnosing the cause of non~termination of a reduction is to limit 
the number of reduction cycles and inspect the approximate normal forms 
produced. Often, the approximate normal forms will expand in a regular way 
when the number of cycles is increased. Note, however, that "direct 
recursions" give rise to constant approximate normal forms, e.g. 

(FIXLAM f. LAM n. n EQ 0 -> 1, n MULT f(n PLUS 11)(11 
has - eventually - the constant approximate normal form '?'. (If one is lucky, 
the replacement of unreduced sub~expressions by '?' when the cycles limit is 
reached may trigger a warning from the reducer, showing what it was in the 
process of reducing at that moment.) 

FIXLAM 
Fortunately, the presence of the FIXLAM operator in LAMB does allow 
recursively~defined LAMB functions and lists to have normal forms. E.g. 
(•I FIXLAM f. LAM n. n EQ 0 -> 1, n MULT f(n PLUS 11 
and 

FIXLAM t. <O,t> 



44 PRAGMATICS 

are both in normal form. This is in contrast to the pure lambda-calculus, where 
the expression corresponding to(*) above has no normal form, because of the 
explicit use of the lambda-expression for the fixed-point operator. 

However, note that it is quite possible for FIXLAM x. e to be in normal form, 
but for the reduction of 

LAM x'. (FIXLAM x. e)(x'l 
to not terminate! Roughly speaking, the reducer leaves a F!XLAM expression 
unexpanded until one tries to use it in some way - here, by applying it to a 
"dummy" argument. Then it is as it the_ FIXLAM "explodes" into an infinite 
expression! 

The reduction algorithm is technically inadequate {unsafe) here, in that the 
above expression might have a normal form if the FIXLAM were to be 
expanded only once. Usually, this seems to be not the case, as recursions are 
generally "genuine", with the variable 'x' being used {e.g. applied) i_n the body of 
the FIXLAM. The current reduction algorithm is rather more efficient {on 
expressions with normal forms) than the safe version would be. 

LAM VAL 
If one wants to model the evaluation of strict functions, then one should use 
LAM VAL x. e instead of LAM x. e . This will cause non~termination when 
applying the abstraction to an expression with no normal form. Note, however, 
that this gives rather "over-stric( functions, unless one ensures that all 
arguments of abstractions have the value bottom whenever they have no 
normal form. (This is true of expressions denoting values in flat domains.) 

Subscripts 
Don't be surprised if "subscripts" of the form '#n' get appended to identifiers by 
the reducer. lt is to guard against the capture of free variables during the 
simulated substitution in beta-reduction. 

Identifiers of the from '##n' are generated by SIS, mostly during the 
translation of DSL into LAMB. 

SEG 
Although without interest from the point of view of reduction, SEG is 
pragmatically rather useful. it allows the easy "linking" of 
independently¥produced LAMB-expressions {e.g. corresponding to separate 
DSL descriptions). 

For a simple example, suppose one wishes to test a LAMB-expression by 
applying it to several other expressions. If "fun" refers to the file containing (the 
LAMB-code of) the main expression, then one can avoid editing and parsing it 
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for each test by using the expression 
ISEG "fun")( ... ) . 
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SEG q is not substituted for by the parser, this is done dynamically during 
reduction. 

Some of the SIS commands involving combination and reduction (Apply, 
Compile, Execute, Interpret) could be implemented by simply using Reduce on 
small files containing SEG-expressions. (Warning: on the current DEC-10 
implementation, one cannot refer directly to files produced by the parser -
only to "code" files. Also, the form of the quotation given as operand to SEG is 
implementation-dependent.) 

ACTIVATE 
This operator is in LAMB (and DSL) only to allow the circular semantics of DSL 
to be expressed. In effect, it represents the semantic function for LAMB, 
taking trees representing LAMB~expressions and producing the expressions 
themselves. For cognoscenti only ! 

5.2. GRAM 

SLRII! 
The author was originally persuaded by [Andersen,Eve&Horning73] that it was 
reasonable to impose the SLR(1) condition on grammars: "Amending a 
grammar to enable the use of the more restrictive [than LRI1)] SLR(1) algorithm 
... is at worst a small additional burden which can be treated in conjunction 
with the problem of eliminating genuine ambiguities." Experience with SIS has 
indicated that the SLR(1) restriction is actually rather annoying- for example 
the grammar for DSL is not SLR(1), and it would probably take substantial 
distortion to make it satisfy the condition. 

Ambiguities 
Luckily GRAM has some features which help to minimise the annoyance of the 
SLR(1) restriction. The most important of these is the automatic resolution of 
most ambiguities ("genuine" or not). If there is a choice between recognising 
one alternative and continuing to scan another alternative, then latter action is 
taken. This gives the effect of recognising the (locally) longest instances 
possible, e.g. the "dangling 'else'" ambiguity is resolved as usual, giving 

[IF exp THEN [IF exp THEN cmd1 ELSE cmd2]] 
rather than 

[IF exp THEN [IF exp THEN cmd1] ELSE cmd2] . 
This automatic resolution of ambiguities is also invaluable in lexical analysis. 
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lt is also possible for ambiguities between recognising two different alternatives 
to occur. The alternative which comes first in the grammar text is preferred. 

If one is in doubt about the choices which are made to resolve ambiguities, then 
one can get SIS to write out the resulting parsing-table. The non-SLR(1) states 
are distinguished by comments in the table. 

Watch out for alternatives which become "masked" by the resolution of 
ambiguities - SIS unfortunately gives no warning about this. 

Note that using left-recursion instead of right-recursion can help to make a 
grammar SLR( 1). See the definition of 'cmd·seq' in Loop, Table 3.1. 

TRANSFORM 
One can use a TRANSFORM pass before the LEXIS pass (i.e. last in the GRAM 
description) to do character conversion and removal of layout, for example. A 
TRANSFORM pass between LEXIS and SYNTAX could be used to handle 
things like BCPL's convention for insertion of semicolon and other symbols. 

Abstract Syntax 
The abstract syntax trees produced by the parser can be adjusted by a judicious 
use of the DOMAINS section and of the value-fields in the alternatives. The 
former allows syntactic categories to be combined, thus removing (typically) 
precedence information from the tree; ·the latter allows the elimination of 
redundant "chain-reduction" nodes. lt is advisable to have a close look at some 
trees produced by the parser, to see whether they conform to expectations. 
Note that there is no automatic check that the sytactic domains specified in a 
DSL description match the trees produced by the corresponding GRAM 
grammar. 

The abstract syntax should be chosen to make the definition of the semantics 
as natural as possible. The choices made in the examples (such as Loop) are 
not necessarily the best! 
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5.3. DSL 

Typechecking 
In the absence of the implementation of typechecking, careful hand-checking of 
the domains of operands in DSL descriptions is essential. The use of 
conventions linking value-identifiers to domain-identifiers - as used in the Loop 
description, Table 4.1 - helps by factoring the checking into two phases: first 
to check that the right-hand-sides of all definitions yield values in the domain 
associated with the identifier being defined; then to check all the uses of 
identifiers in expressions. 

Experience has shown that some caution is necessary with the '[ ... ]' notation. 
If using it to separate the summands of semantic domains, remember that the 
node labels depend entirely on the domain names associated with the variables 
used between '[' and ']': there are no automatic coercions between domains in 
this context. 

A useful way of tracking down missing (or wrong) alternatives CASE-constructs 
is to use something like 

I ? -> rsuitable messageN 
as the last alternative. If this alternative is selected during reduction, the 
warning from the reducer will include the quotation. 

Segmentation 
lt is advisable to keep the size of DSL descriptions small by splitting larger ones 
into segments (of, say, 5 pages or less). Often, it is quite natural to factor a 
denotational semantics into parts such as static semantics (typechecking, 
normalisation). dynamic semantics {the main semantic functions) and the 
auxiliary functions {the storage model, etc.). These parts can then be 
combined using the various SIS-commands, or with the aid of the 
SEG-operator - see the description of this under LAMB above. Not only does 
this facilitate editing and parsing, it also allows a more systematic testing of the 
semantics: one can inspect the value produced by the static semantics before 
beginning to test the dynamic semantics, etc. Because of the abstraction of 
the auxiliary functions, it is much easier to read the "code" produced by the 
"compiler". 

By the way, one should not have any free variables in DSL segments - so a 
warning from the reducer about free variables should be taken seriously, it 
usually indicates a spelling mistake in an identifier, or a missing definition 
(hereunder the mistaken use of 'LET' instead of 'DEF'I. 
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Termination 
Unfortunately it is quite possible for the semantics of a particular program (i.e. 
some LAMB~expression denoting an input-output function) to have no normal 
form - even for a program that will always terminate when executed. 

In this case one is unable to inspect the code of the program, all one can do is 
to provide the data for the program n at compile-time"' thus getting the output 
of the program instead of its code. This clearly corresponds to interpreting the 
program rather than compiling it. Incidentally, this is the reason that SIS is 
called a Semantics Implementation System rather than a compiler-generating 
system -:- apart from the niceness of the acronym, that is! 

One can guard against the lack of a normal form for the semantics of a program 
in some cases. Basically, the trick is to make sure that recursively-defined 
functions do not get applied until they can "evaluate out". Consider the Loop 
semantics, Table 4.1. There the (recursive) function 'repeat' is applied to 'n', 
which is the result of evaluating an expression, and not in general known at 
"compile-time". This makes it unsuitable for use as a "compile(: it should be 
used as an "interpreter" instead. The easiest way to enable it to be used as a 
compiler is to abstract 'repeat' (and maybe the other auxiliary functions) into a 
separate segment. The body of the main semantics segment would then start 
with 

LAM prog'. 
LAM <repeat:IN ->IS ->SI-> S ->SI, ... >. 

and finish with 
IN pplprog'l : IN• -> N• I . 

Using the Compile command, this segment could now be applied to a program 
tree, and the resulting code inspected. The code would start with 

LAM <repeat, ... >. LAM n•. 
and should be applied both to the segment defining <repeat, ... > and to the 
data using the Execute command, to obtain the output. 

lt would also be possible to reformulate the Loop semantics using CIRC and 
STAR, so that compiled code would always have a normal form. Similarly, 
with a continuation semantics the use of the operator ';' instead of application 
can help in avoiding the premature application of (FIXLAM expsressions and) 
recursively-defined functions. However, one should not let this feature of SIS 
influence the way one writes denotational semantics: the technique of 
abstraction is better, and has the beneficial side-effect of introducing some 
modularity into DSL. 

For advice on localising the cause of the non-termination of a reduction, see the 
comments on LAMB above, under Termination. lt may be useful to inspect the 
LAMB-expressions produced by SIS from DSL descriptions. 

I 

I 

I 
I. 

I 
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General 
At least to start with, it should be easier to sketch a semantics in (one's 
favourite flavour of) SSN, and then translate it into DSL - rather than trying to 
formulate the description in DSL straight away. 

lt pays to take some care in designing a Ncomplete" set of test~programs, to 
explore all the corners of the semantic description. Also, when a semantics is 
split into segments, it is as well to test the first segment before even typing in 
the others: thus getting feedback on one's understanding of the abstract 

syntax - and of DSL! 

That is all the advice that I can give at present on using SIS: the rest is up to 
you! Please send me any comments you may have about this Reference 
Manual and User Guide. Corrections can be published in the SIS Newsletter, 
and incorporated in any future reprinting of this document. Happy SISsing ~ 

and Good Luck! 
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A. LA!W Syntax 

GRAM "LA~1B~Porser" 

SYI1TAX 

segment : := 

title ; := 

exp : := 

exp~<l : := 

ex~-b : := 

ex p-c ::= 

exp•d :: := 

exp ... ide ::= 

atom : := 

number :::: 

string ;:= 

seq•op === 
di•op === 

mon·op === 

"LAMB" title exp "ENO" 

string strinq 

"LAM" exp•a •xp I 
"flXLAM" exp•a up I 
exp·a "•>" up " " up I 
eXP'"'il seq-op up I 
exp-a exp•a 

exp-a d1-op exp-b I 
exp•a "NODE:" exp•b I 
exp-a "lS" exp·b I 
exp•b exp•b 

mon-op exp-b I 
ex p-c exp•c 

ex p-c exp•d 
exp•d exp-d 

" (" up ")" up I 
"<" exp*•",~ ">" I 
exp•d rep•op I 
exp•ide exp·lde I 
atom atom 

"ll.l" q I 
"ID" q " ... number 

number number I 
string string I 
"TT" 1T I 
"Ff" FF I 
"?" ' 
"NM" " " 
"ST'' q q 

";'' I "CIRC" I "S!AR" 

"AND" I "OR" I "E\<" I "NE" I 
"LS" I "GR" I "LE" I "GE" I 
"PLUS" I "MINUS" I "MULT" I "DIV" "REM" 
"CAT" I "AUG" I "P!<E" I "EL" 

"IWT" I "NUM!l£R" I "QUCTE" I "TRUTH" I "CONC" 
"CC" I "SIZE" I "VAL" I "SEG" I "ACTIVATE'' .,. ''+" 
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UOMAl~iS 

seyment, exp, 
exp•ide 
se<.J•ov 
number 
string 

Lf.XIS 

segment ::= 

word ::= 

exp-a, exp-b, 
Id• 
DJ.·op 
N 
d 

word+ 

bold•ident 
ident 
ident decor 
numeral 
string 
layout+ 
"!" comment* 

Appendix A 

CONC word+ 

<OUT "ID", bold•ident> I 
<OUT "ID", ident> I 
<OUT "ID~, QUOIE<1Cent,decor>> I 
<OUT "NM", numeral> I 
<OUT "ST", strin11> I 
<> I 

<> 

bold•ident : := upper lower•dash* QUOTE(upper PFE lower·daSh*l 

QUOTE(lower PRE lower-dash*) ident ::= 

decor ::= 

numeral : := 

string : := 

upo.>er === 

lower === 

lower-dash 

digit === 

prime 

lower lower•dash* 

digit+ )!rime* 
prime+ diglt* 

di;Jit+ 

CC"Q~ strin9•ch* 

"AK ••• ''Z" 

"a" •• ,"z" 

"0" ••• "9" 

CC''\<" 

QUGTE(digit+ CAT prime*) 
QUGT£(pri~e+ CAT digit*) 

NUIIBEF digit+ 

QUCTE strJ.ng•ch* 

strJ.ug•ch =\= CC"Q" I CC"C" I CC"L" I CC"P" I CC"T" 

layout === CC"P" I CC"T" 

comment =\= 



GRAM "GRAM" 

SYNTAX 

title ::= 

pass : := 

~GRAM" title passt "END~ 

string string 

pass "DOMAINS" domain-dect .I 
mode prod-ranget 

domain-dec ::= idet-~," ":" ide ";" 

mode === "SYNTAX" I nLEXIS" "tRANSFOJ<!I'" 

prod-range ::= prod 
range 

prod ;:;= 

altern ::= 

elem ::::: 

item : := 

rep•op === 

exp : := 

elem• ":" exp I 
elem• 

item sep•op item 
item rep-op I 
item · 

ide I 
string I 
control-char 

"*" I "+" 

exp di-op exp-a 1 
exp "NODE" exp•a 1 
exp-a 

prod .I 
range 

item 

exp-a 

"CAT" I "AUG" I "PFlE~ 

exp-a ::= mon-op exp•a I 
"OUT" string I 
exp-o ext'-b 

"NUMBEI<" I "QUOTE" I "CONC" I "CC" 



Appendix B 

exp-~ : := 

exv-c : :• 

tup·J.de ::= 

range : := 

quality === 

spec : := 

id• : := 

numeral : := 

string : := 

control-char 

DUMAlNS 

" (" exp "l" 
"<" exp•-"," ">" 
"[" exp·c• "l" I 
tup-ide 
string 
numeral 
"TT" 
"1-'f" 
"?" 

exp•b 
tup•ide 
string 

tup-ide 1 

lde rep·op I 
id• 

"===" I "=\=" 

string 
stri_nq 
control•ch.u 

"ID" Q 

~tlM" " 
"S'I''' Q 

::="CC" "ST" q 

string I 

exp, exp-a, exp-b, exp•c: Exp 

tup-ide, lde: Ide 

string, control-char: Term 

exp I 

tup-ide 1 
String I 
nurreral I 
1! I 
FF I 

tup•ide 
strinQ 

Q 

q 

(CC q) 



LlXIS 

wor1 : :;; 

layout-char ;;;;;; 

word+ 

layout~char+ 

identifier 
nl.lmeral 
string 
"!" comment~char* 

I CC"C" 

GRAM Synt<lx 

(CCJlC ~'<ord+) 

" <OUT ~ID", identifier> I 
<OUT ~NM", numeral> I 
<OUT "ST", string> I 

" 

identifier ::= letter low•letter•dash* 
(QUOTE (letter PRE low•letter•dash*)) 

letter ;;;;;; 

low•letter·dash ==="a" ••• "z" I 

numeral ::= digit+ (NUMBEP digit+) 

diYit ;;;;;; "0" ••• "9" 

string ; := CC''Q" string•char* cc~Q" 
(QUOTE string•char*J 

string•char ;;\: CC"QH I CC"C" I CC"L" CC"P" CC"!" 

comment-char =\=CC"C" I CC"L" I CC"P" 

END 
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c. DSL s;rntax 

SYNTAX 

segment : := "OSL" title exp "ENC~ 

title ; := string string 

"' : := detn•list"" "IN" "' I 
"LAM" exp•a . " "' I 
"f'IXLAM" exp•a " . '" I 
exp·a "->~ "' . . " "' I 
exp-a .,. "' ~<-" "' I 
exp•a seq .. op "' I 
exp•a exp•a 

exp-a : := exp•a di•op exp-b I 
exp•a "%" exp•ide exp·b I 
exp-a "NODE" exp-b I 
exp•a "IS" exp-b I 
exp-a "." dotn•b I 
exp-b exp•b 

exp•b : := mon-op exp-b I .,. exp•ide exp-b I 
exp-c exp•c 

exp•c : := exp-c exp-d I 
exp-c "@" d01!1'"'b I 
exp-d exp-d 

exp-d : := "CASE" exp·a al tern+ "ESAC" I . (" exp*-"•" ")" I 
"<" exp*-"•" ">" I . (. exp-e* • J. I 
exp-d re p-op I 
exp•ide exp-ide I 
atom atom 

exp-e : := exp-f exp-f 
atom atom 

exp-t ::= exp-f rep-op I 
exp•ide exp•ide 

exp•ide : := "10" q I 
"ID-DECOR" q q 

do m : := dom-a+-"1" 

dorn•a : := dom•b "->" dom•a I 
dom·b dom•b 



dom•b : := 

Uom•c ::= 

Uom·d :;::: 

dom•icte ::= 

altern ::= 

defn•list : := 

defn ::= 

p<~.r : :-= 

dom•defn ::-= 

atom : := 

number ::= 

string ::-= 

seq•op 

di•op === 

mon·op 

Appendix c 

''(" dom•·"," ")" 
"<" dom••"," ">" 1 
"[" dom•c .. "1" I 
<lom•b rep-op I 
dom•ide dom•ide I 
atom atom 

dom•d 
atom 

dom•d rep-op I 
dom•ide dom·ide 

"DEF'' defn+·"11ITil" 
"LET" defn+•ftAL.SO" 
"DOMAINS~ dom•defn-t 

exp•a "=" '" exp•ide par"+ 

"@" dorn•d 1 
"•" exp•d I 
exp•d 

"'" 

I 
I 

don: "•" 

exp•ide+-"," 
exp•idet•"," 
exp•lde+·"," 
dom-ide "=" 

":" dom•ide 

number 
string 
"TT" 
"ff" 
"?" 

"NM" n 

"ST" q 

":" dom•1de 
":" "=" doo 
dorn ";" 

number I 
string I 
TT I 
ff I 

n 

"P 

"=" 
";" 
";" 

do m ";" 
I 

"AND" I 
"LS" I 
"PLUS" I 
"CAT" I 

"OR" I "EQ" I "NE" I 
"GR" I "LE" I "GE" I 

"MINUS" I "MULT" I "DIV" 
"AUG" I "PFE" I "EL" 

I "RE!1" I 

"NOT" I "NUMBER" I "QUCTE" I "TRUTH" I "CONC" I 
"CC" I "SIZE" I "VAL" I "SEG" I "ACTIVATE" 



DSL Synt<>X 

DOMAINS 

seyment, 
exp, exp-a, exp-b, exp•c, exp-d, exp-e, exp•t, 
dom, dom-a, dom•b, dom-e, dom·d Exp 

exp-ide, dom-ide Ide 

number N 

string Q 

Lf.:XIS 

segment : := 

word : := 

bold-ident ; •= 
ident : := 

decor ::= 

numeral : := 
string ::= 

upper 

lower === 
lower-dash === 
cUgi t === 
l>time === 

layout === 
comment =\= 

END 

wordt 

bold•ident 
ldent 
ident decor 
numeral 
string 
layoutt 
"!" comment* 

CONC wordt 

<OUT ~EOLD•ID", bold•ident> I 
<OUT "ID~, ident> 
<OUT "ID-DECOR", ident, decor> I 
<OUT "NM", numeral> 1 
<OUT "ST", string> I 
<> I 

upper lo'ller -dash* QUGTE(upper PNE lower-dash*) 

lower lower-dash* 

digitt prime* 
prime+ digit* 

digiti-

CC"Q" strin<J-ch* 

"A" ••• "Z" 

"aH, •• "z" 

"a" ••• "Z" I ·-· 
"0" ••• "9" 

CC"Q" 

QUGTE(lower PRE lower-dash*) 

QUOTE(dlgiti- CAT prime*) 
QUOTE(prime+ CAT digit*) 

NUP'BER digit+ 

QUOTE string-eh* 
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D, OSL Sewantics 

OSU "DSL•Semantics" 

DOMAINS l Syntactic: 

segrnent:Segrnent 

title: Title 

exp: 

ide: Id• 

atom: Atom 

detn: Defn 

par: 

dom~defn :Dom~defn 

altern: Altern 

["DSL" Title EXP "END") 

Q 

[Oefn•liSt+ "IN" EXp) I 
["LAM" Exp "·" Expl I 
[ "f'lXLAM" Exp "•" Expl I 
[Exp ~->" Exp "•" Expl I 
(Exp "\" Exp "<·" EXp] I 
(Exp Di•op Expl I 
[Exp "l" Ide ExpJ I 
(Exp "NODP Expl I 
CExp "IS" Exp) I 
(Exp ":" Expl I 
(Mon•op ExpJ I 
[~%" lde EXp] I 
[Exp Expl I 
[E;xp ".@" Expl I 
["CASE" Exp Altern+ "ESAC") I 
["(" Exp* "}"l I 
("<" EXP* ">"] I 
["[" EXP* "]"] I 
[Exp Rep·opl 1 
IExp+l I 
[Exp "·>" Exp} I 
!de .I A torn 

["ID" QJ I 
["ID•DECOR" Q Cl 
("BOLD•ID" Ql I 
["ID" Q "~" Nl 

N I Q I T I 

("DEf" Defn+l I 
["LET" Defn"tJ I 
["DOMAINS" Dom•defntl 

[Exp "=" Expl I 
Lide Par+ ":" Exp "=" Expl 

[".@" ExpJ I 
[";" Exp] I 
(ExpJ 

[lde+ ":" Ide "=" Exp ";"l 
[!de+ H:'' Ide ";"l I 
(Ide+ ":" "=" Exp ";"l I 
[!de ""'" Exp ";"l 

£"1" Expt "·>" ExpJ 

LAMB only 



di ~op: ";" I 
"t:Q" I 
"PLUS" 
"CAT" 

Apt;endh D 

"CIRC" I "STAI<" I "AND" I "01<" 
"NE" I ~LS" I "GR" I "LE" I 

I "MINUS" I "MULT" I "DIV" 
I "AUC" I "PFIE" I ".EL" 

"GE" 
"Rt:M" 

"NOT" I "NUMEEil" I "QUCTE" I "TRUTH" I 
"CONC" I "CC" I "SEG" I "ACTIVATE" "VAL" 

DOMAINS 

n 
< 
r 

DOMAINS 

ee := 

ee-s : = 

N 
Q 
R 

ee•qs : = 

map := 

dd•l := 

dd•r := 

pp•s := 

dd•doms := 

dd•dorn := 

lay-ides := 

aa•s := 

aa•es := 

private•ide := 

"*" ./ "t" 

Semantic: 

Q ·> Q 

numbers 
quotations 
environments 

Functions: 

t:xp -> R _, 
'" 

I::XP* -> R _, i::J<P* 

El<p* _, R _, ,, 
Exp* -> R _, I::XP* 

Defn•Ust* -> Exp -> R _, 
'" 

(Defn ·>R ·>Exp) _, Defn'l- -> R 

(Defn ->R ·>Exp) -> Defn* -> R 

Detn _, R _, t:xp 

Detn _, 
R _, Exp 

Par* _, Exp -> R _, 
'" 

Dom•defn* -> R -> R 

Dom•defn -> R -> R 

R -> I de* -> I dO ·>R 

Id• _, 
Q 

Altern* -> R ·> Exp _, ,,, 
EXP* _, 

'" -> R 
_, 

'" 
_, Exp 

l::xp 

meaning of description := Exp -> Exp 

Hote; LAM!:; 1s a sub•dornain ot Exp. 

_, Exp 

-> Exp* 

_, 
Exp 

To tu~lP the reader, identifiers denoting LAMB-expressions 
(exp) are decorated w1th primes {')below. 

I 
I 



DSL Semantics 

DEF ee(exp)r 

CA.::>E exp 

/t"DSL" title expl "ENDnl •>LET ex~1· = ee(expl)r IN 
(~LAME" title eXPl' "END"] 

/!defn•list-t "IN" expl) -> dd•lists(defn•Hstt)(expl)r 

/["LAM" expl "•" exp2l -> LET (eXpl',exp2') = ee•s(expt,exp2)r IN 
("LAM" expl' "•" exp2'J 

/["FIXLMI" expl "•" exp2) •>LET (expl',exp2') = ee•s(expl,exp2)r IN 
["FIXLAMn expl' "•" exp2'l 

/[eXPl "->" exp2 "•" expJ)•>LET (expl',exp2',expJ') = 
ee•s(expt,exp2,expJ)r 

IN texpl' "->" exp2' "•" expJ'l 

/[expl "\" exp2 "<·" expJJ•>LET (expl' ,exp2_' ,expJ'l = 

/[expl dl•op exp2J -> 

I rexpl "%" lde exp2l -> 

/[expl "NODE" exp2l -> 

/(expt "IS" exp2l -> 

/[expt h:" exp2l .. > 

/tmon-op explJ •> 

/[expt exp21 -> 

/[expl "i" exp2l •> 

LET 
LET 

ee•s{expt,exp2,expJ)r 
explO' = private•ide 
exp20' = 
LE1 exp21' LET di•op : "EQ" Il\1 

[explO' di•op exp2'J 
ALSO EXP22' exp3' 
ALSO exp23' [expl' explO'J IN 
(exp21' "·>" exp22' "•" exp23'l 

IN ("LAMh explO' "·" exp20'l 

LET (expl',exp2') = ee•s(expt,exp2Jr IN 
[expl' di-op exp2'l 

LET explO' = ee(idelr 
ALSO exp20'• = ee•s(expt,exp2)r 
LET exp20' : ["<" exp20'f ">"l IN 
{exptO' exp20'l 

LET (expl',exp2') = ee•s(exp1,exp2lr IN 
!expl' "NODE" exp2'l 

LET (exp1' 1 exp2'} = ee-s(expt,exp2)r lN 
(expl' "IS" exp2'l 

ee(expUr 

LET expl' = ee(exp1)r IN 
lmon .. op exp1'l 

LET •xp10' = ee(ide)r 
ALSO exp20' = ee(eXPl}r IN 
texplO' exp20'l 

LET (expl',exp2') = ee-s{expt,exp2)r IN 
[expt' exp2') 

ee(expl)r 
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Appendix o 

I["CAZE" expl alternt "ESAC"l ·> 

ESAC 

WITH 

CASE 

f.: SAC 

WlTH 

CA:iE 

I NUMBER ? 
I QUOTE 
I TRUTH ? ~> 

I ? ·> 

ee•scexpt)r 

expt 

I <> -> 

I expt PRE expt* 

ee•qs(expt)r 

exp* 

I <> -> 

I expl PRE eXPl* 

ESAC 

-> 

-> 

Exp* 

<> 

LET ex~l' = eeCexpl)r 
LET ex~ll' = prlvate·lde 
LET ex~2· = aa•s(altern+)r exp11' 
LET explO' = ("LAM" expll' ".~ exp2'1 lN 
texplO' expt'J 

LET ex~·• = ee•s(exp*)r IN 
SIZE exp'* EQ 1 •> exp'* EL 1, 
t"<H exp'* ">"l 

LET exp'* = ee•s(exp*)r IN 
t"<" exp'* ~>"l 

LET qt = ee-qsCeXP*)r 
ALSO exp'* = ee·bs(exp*Jr 
LET expl' =QUOTE q* 
ALSO exp2' = rncn exp't ">"] IN 
texpl' "NODE~ exp2'l 

LET exfl' = eecex~l)r IN 
texpt' rep•opl 

["ID" qll 

LET q': QUOTE Cql,q2> IN 

["10" q '] 

eeCexpl)r PRE ee-s(explt)r 

o• 

<> 

ee-q(explJr PRE ee-qsCexptt)r 



WITH 

CASE 

I 

I 

I 

ESAC 

WITH 

WITH ee•q(exp)r 

CASE exp 

I {expl rep•op) -> 

/t~ID" "' I (" ID•DECOR" q) "' 
I NUMBER ·> 

I QUOTE ·> 

I TRUTH ' •> 

I 1 •> 

.ESAC 

ee-bs(exp*lt Exp* 

exp* 

<> -> <> 

QUOTE PRE expl* ·> 

expl PRE exp 1* •> 

DSL .semantics 

•> LE1 q• = r(qi) IN 
q' EQ 1 •> "?", q• 

"N • 

"T" .,. 

ee·bs(expl*lr 

ee(expl)r PRE ee-bs(exP1*lr 

dd·lists(defn•list•lCexpJr EXp = 

CASE defn•list* 

ESAC 

1 <> -> ee(exp)r 

/["DEF" defn+l PRE 
defn-listl* ·> LET exp1' = round•map(dd•l){defn+lr 

ALSO exp2' = round•map{dd·t)(defn+lr 
ALSO exp• = dd•lists(defn-listl*l<expJr 
LET explO' = ["LA!~!" expl' "•" exp'J 
ALSO exP20' = [ "FIXLAM" exp 1' "•" exp2 • J 
IN tex:p10' exp20'l 

/["LET" defn+l PRE 
defn·llstl* -> LET expl' = round•map(dd•l)(defn+lr 

ALSO exp2' = round·map(dd-rl(defn+Jr 
ALSO exp• = dd·lists(defn•llstl*l(exp)r 
LET exp10' = ["LAM" expl' "•" exp'l 
IN texp10' exp2'l 

/["DOMAINS" dom•defn+l PRE 
defn·llstl* -> LET r' = dd•do~s(dom•defn+lr 

IN dd•lists(defn•listl*l<exp)r' 

" 



WITH 

Appendix D 

round•roap(f :(Cefn •>R •>E.xp)J(defr:+>r 

SIZE defn+ ~Q 1 •> f(defn+ EL llr, 
L~T exp'* = map(f)(defn+Jr IN 
["<" exp'* ">"l 

W1TH map(f :(Detn •>R ->Exp)J(detn*)r Exp* 

CASE defn* 
I <> •> <> 
I defnl PRE defnl* -> f(defnllr PRE map(fl(defnl*)r 

ESAC 

WITH E>p 

CASE defn 

ee(ide)r 

ESAC 

WlTH I::Xp :; 

CASE defn 

l[expl "=" exp2] ·> 

expl 

ESAC 

WITH pp•s(par*JCexpJr 

CASE par* 

I["@~ expll PRE parl* ·> 

I[";" expll PRE parl* 
l[eXPll PRE parl* •> 

£SAC 

ee(exp2)r 

exp2J •> pp•s(par+)(exp2Jr 

pp•s(parl*lCexpJr 

LET expl' = ee(exp1Jr 
ALSO exp' = pp-s{parl*lCexpJr 
IN ["LAM" expl' "·" exp'J 



PSL Sem<31ltics 

CAS~ dom•defn* 

ESAC 

WITH 

I <> -> 

I Jom-defnl PRE dom•detnl* ·> 
LET r• = dd-don:(dorr·detnllr IN 
dd-doms(doll!•defnl*lr' 

dd-domtdom•detnlr R 

CASE dom-detn 

ESAC 

/(ide+ • ide "=" exp ";~J 
/tide+ ":~ ide ~;"J -> lay-ides(r){ide+)(ide) 

/(ide+ ~:" "~" exp "J"l 
I (ide "=" expJ -> ' 

WITH lay•idesCrlCide*)Cide} R 

CASE ide* 

I <> ·> ' 
I idel PRE idel* •> LEt r• = r \ ii•q(idel) <- ii•q(ide) 

IN lay•ides(r')(idel*l(ide) 

ESAC 

WITH ii•q(ide) Q • 
CASE !de 

I ["ID~ ql) 
/["ID-DECOR" ql q2l 
/["SOLD-ID" q1] ·> qi 

ESAC 



Appendix D 

WITH dd·~l•ltern*llrllexp') Exp :: 

CA.SE altern* 

WITH 

IN 

/["/" exp+ "·>" ex!Jl PRE a.lternl* ·> 

WITH 

LJ::T exp" = a.a.•s(alternl*HrlCexp') IN 
aa·e~Cexpt){ex~)Crlexp'exp'' 

I <> ~> exp'' 

I expl PRE eXpl* -> 

ESAC 

LET ~ = "#" IN 
("ID" q] 

LET cexp1',exp2'J:: ee•s(expl,exp2Jr 
LET exp3' = a.a·es(expl*Jiexp2J(r)exp'exp'' 
LET explO' = [exp1' "IS" exp'l 
ALSO exp20' = 

LE'I exp21' = ["LAM" expl' "•" exp2'l 
IN Cexp21' exp 'l 

IN [explO' "•>" exp20' "•" expJ'l 

E>P 

LAM exp, ACTIVATE { ee{exp)(LA~ q, ?J ) 

END ! of "DSL•Semantic~" 
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E, LAMB Reduction Rules 

The reduction rules for LAt4B are basically the beta-rule of the lambda-calculus 
together with rules for operators acting on tuples, nodes and constants, The 
rules concerned wlth pattern-expressions may be regarded as "eXplaininq awayN 
this feature of LAMB ln terms of the otner features. 

As in Chapter 2, the small letters n, q, t, p', e and (possibly subscripted) 
will stand tor LAMB-expressions with meanings in the corresponding domains, a 
suffixed '*' indicating a tuple. The letter •x• will stand for an arbitrary 
identifier. Howev'er, in descrlbin~ the reduction rules, it is more appropriate 
to consider the syntactic form of an expression, rather than just its meaning, 
Therefore n, q and t below will be restricted to denote literal constants 
(numerals, strings and 'TT', 'ff'l; and p, f and e* will denote 
expressions of the form e NODE e', LA~ e. e' and <e, ••• > respectively, The 
letter 'a' wlll stand for a constant tn,q,t) or '1'. 

An occurrence of the left-hand-side of a reduction rule is called a "redex", An 
expressl-on is said to be "in normal fonr" when it contains no redexes, (This 
definition is actuallY recursive, as some of the reduction rules impose the 
condition that particular components of the redex be already in normal form,) 
The predicate 'is-norm(e)' is to be true for exactly those expressions e which 
are in normal form. 

N.B. The following reduction rules do NOT attempt to define LAMB: they are 
merely consistent with the semantics of LAMB. 
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TT 
_, 

"' '' ., el, 

tl AND t2 
tl OR t2 

a! EQ a2 

e2 "' e2 "' 
"' "' 
"' 

Appendix E 

el ,, 
conjunction of .tl and t2 
disjunction of tl and t2 

TT when al identical to a2 
(leading zeros ignored) 

FF otherwise 

(q1 NODE el*l EQ (q2 NODE e2*) => 

(LAM et'. ell EQ (LAM e2', e2) => 

(ql J::Q q2) AND (e1* EQ e2*l 

" 
<el,.,.em> EQ <el', ••• en'> 

' EQ p "' p EQ • • EQ f "' f EQ • • EQ " "' " EQ 
p EQ f "' f EQ p 
p EQ ,, "' " EQ 
f EQ ,, "' " EQ 

el NE " 
nl LS n2 

nl GP n2 

nl LE n2 

nl GE n2 

nl PLUS n2 

nl MINU.S n2 

nl MULT n2 

nl DIV n2 

nl REM n2 

<el, •• ,,em> CAT <el", ••• ,en'> 

<et, ••• ,em> AUG e' 

e' PRE <et, •• ,,em> 

eel, ••• ,em> EL n 

• 
p 
f 

(el EQ el'l ANO,,,(em EQ en'l when m=n 
FF otherwise 

"' " "' " "' " "' " "' '' "' " 
=> NOT (el EQ e2) 

=> TT when nl less than n2 
=> FF otherwise 
=> TT when nl greater than n2 
=> FF otherwise 
=> TT when nl less than or equal to n2 
=> Ff otherwise 
=> TT when nl greater than or equal to n2 
=> FF otherwise 

=> nl plus n2 

=> nl minus n2 
when nl 9reater than or equal to n2 

=> ?,otherwise 

=> nl times n2 

=> nl divlded by n2 (with truncation) 
when n2 greater than 0 

=> 1 otherwise 

"' => 

=> 

nl modulo n2 When n2 greater than 0 
1 otherwise 

<el, ••• ,err,el', ••• ,en'> 

<el, ••• ,ef!l,e'> 

<e',el, ••• ,em> 

en when 0 less than n 
anc n less than or equal to m 

? otherwise 



NOT t 

NUMBER <ql,,,,,qn> 

QUOTE <qt, ••• ,qn> 

TRUTH <"T", nT"> 
TRUTH <;"F", "F"> 

CONC <el•, ••• ,em*> 

cc "0" 
cc •c• 
cc "L" 
cc .,. 
cc "P" 
cc "En 

SIZE <et, •• ,,en> 

SEG q 

ACTIVATE e 

e IS ? 
e IS X 
e IS a 

(q NODE '" IS (el NODE e2) 

(LAM e'. e) IS (LAM ?. 1) 

<et, ••• ,em:> IS <:el', ••• ,en'> 

<et,. o o ,em:> IS .. • <> IS e' • 
<el, •• o ,em> IS .. + 
<> IS e' + 

<el, ••• ,em> IS Cel' .,, e2' l 

<el, o o o ,em> IS (el' AUG e2'l 

n .. {NUMI3ER e) 
q IS (QUOTE e) 
t IS (TRUTH e) 
q IS (CC q) 

• IS (VAL .. , 
e IS •• 

LAMB Reduction Bules 

negation of 

the nurreral formed from the characters 
Of ql, ••• ,qn when they are all diglts 
? otherwise 

the quotation formed from ql, ••• ,qn 

., 
=> 

=> 

TT 
ff 

el* CA'I ••• em• 

=> quote n:ark: " 
=> carriage-return 
=> line-feed 
=> horizontal tab 
=> page-throw 
=> end~of•file 

=> n 

=> expression in the file identified by q 

=> expression represented bY tree e 
when is-norm{e) 

TT 
TT 
e EQ a when a is not '?' 

=> (q IS el) AND (e* IS e2) 

=> TT 

=> Cel IS el') ANO ... Cem IS en') when m=n 
=> FF otherwise 

=> {el IS e') ANO,,,(em IS e') 
=> T'I 

=> Cel IS e') AND, •• Cem IS e'J when m>O 
=> Ff 

=> (el IS el') AND {<e2,o •• ,em> IS e2') 
when m>O 

=> (<el, ••• ,en-1> IS el'J AND (em IS e2'J 

=> 
=> 
=> 
=> 

=> 

•• •• •• •• 
e 

when m>O 

IS • when NUMBER q• => n 
IS e when QUOTE q* => q 
IS e when TRUTH q• => t 
IS e when cc q' => Q 

IS e' when is•norm(e) 

=> FF in all other cases 
{e.g., n IS (LAM ?. ?) => ff' ) 

13 
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(LAr1 x. eJ(e'J 

(l.AM ?. e){e'l •> 

(LAM a. e)(e'l •> 

(LAM(el NOD£ e2). e)[q NUDE e*l => 

Appendix £ 

e 'liitll e' substituted for x 
(beta-reduction, avoiding "captures") 

' 
Ce' IS a) •> e, ? 

(LAM e1, LAM e2, e)(ql(e*) 

(LAMCLA!H.?J, e)(LAM el', e2') => e 

(LAM<el,,.,,em>. el<el,,,,,en'> => 

CLAM " .. e){e') •> 

CLAM ,, .. e)(e' l ., 

CLA!Hel PRE e21. eJ<et',,,,,em'>=> 

(LAM(el AUG e2J. eJ<el',,,.,em'>=> 

(LAM(NUMBER el). e) (n) 
CLAMCQUOTE ell. e)(q) 
(LAM(TRUTH etJ, e)(t) 
CLAMCCC el), eJ(q) 

(LAM(VAL el). e)(e') 

(e1; e2J(e') 

(el CIRC e2)(e'l 

(el STAR e2)(e'l 

fiXLAM X. e 

fiXLAM et, e2 

=> 

=> 

CLAM et ••• LAM em, eHel'J,,,(en'l 
when rn=n ,, . 

" " 
., •> 

' W1th '. subst, tor ,, •• ,,. 
" el ., •> 

e with '. subst, tor ., •• 
CLAM "· LAM ''· e)(el'l<e2',,,.,em'> 

when m>O 
CLAM ''· LAM ''· e)<el' 1 ,, , ,em•l'>Cem' J 

when m>O 

CLAM ''· e) Cq'-) when NUMBEF! q'- => n 
CLAM ''· eJ Cq'-J 
CLAM "· e l (q'-) 
CLAM ''· el (q' l 

(LAM ''· e)(e' l 

(el{e2))(e') 

CLAM VAL x. 
(LAM VAL Xl, 

when QUOTE q'- => 
when TRUTH q'- => 
when cc q' => q 

when 1s~norm(e 'l 

e2Cx1) )(el(x)) ) (e') 

CLAM VAL x. 
CLAM VAL<X:t,x2>. 

q 
t 

e2CxllCx2l lCe1CxJJ l Ce'J 

(LAM x. e) CFIXLAM x. e) 
only in the follow1nq contexts []: 

[] ~> el, e2 
tJ d1-op tl 
[J NODE (] 
() IS e' 
mon-op () 
tl Ce •) 

CLM4 et. e2)( 
CLAM x', e')(FIXLAM et. e2) l 

where e' is such that 
CLAM et. et)(e'J => e' 

and CLAM x. e')(e2) => e2 
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f, LAME Eval~ator 

srs evaluates LAM~·expressions by applyin9 the reduction rules ot Appendix E in 
a particuldt order. The algorithm used, called 'red', is based on the "call•bye 
need" or "lazy evaluator" strategy [Vuillemin73l (due also to Chris Wadsworthl, 
As with a "call•by•name" (normal order) strategy, the leftmost outermost redex 
is reduced at each step; so in general it is a "safe" strategy, not embarKing on 
the reduction of a sub-expression whiCh may later oe "thrown away". (Actually, 
it is slightly unsafe on FIXLAM x. e, wen X is not used in e .... see Chapter 5,) 
The inefficiencY usuallY associated with call•by-name is avoided by ensuring 
that redexes are Kept linked together, so that parameters of abstractions are 
not reduced more than once. E.g. 

(LAM x. x PLUS Xl(l PLUS 2) =>• 6 
in 3 steps cas in a "call•by-value" or "aPPlicative order" 
to the 4 steps taken with call~by•name. Unfortunately 
oPtimal, as redexes can be Rhiddenn from being Kept 
abstractions: 

{LAM f. f(i) 
takes a steps, with 
not a real source of 

PLUS f(2))(LAM x. X PLUS (3 PLUS 4)) 
(3 PLUS 4) being reduced to 7 twice. 
inefficiency in practice. 

strategy) as opposed 
red is not completely 
linked together by 

=>* 17 
It seems that this is 

Rather than iteratively searching for and reducing redexes, red uses recursion 
to Keep tracK of wnat to reduce next. Substitution is simulated by the use of 
environments, associating identifiers ~ith "closures" (pairs of expressions and 
environments). The call-by-need strategy is effected bY updating the 
environment after reducing the closure associated ~ith an identifier. 

The following description corresponds 
in the current version of SIS (1.1), 
are omitted, as the main purpose is 
redexes. 

quite closely to the actual implementation 
bUt the details of the auxiliary functions 
to specifY the order of reduction of 
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! N.B. This description has not been tested. 

OUNAINS 

! LAMB syntax: 

segment 
title 
"P 

ide 

mon~op 

rep•op 

! Environments 

'"' 
! States 
state 
mom 
cell 
files 

Continuations 

' k 

' y 
a 

.Standard 
n 
q 
t 

Main functions 
m 
<Od 
red-list 
match 
match-list 

Segment 
Title 
<>p 

I do 

Dl•op 

Mon-op 

'"' 
State 
Mom 
Cell 
Files 

c 
K 
X 
y 
A 

N 
Q 
T 

M 
:= 
:= 
::: 
:= 

(•LAMB" Title Ex~ fl£ND~J 
Q 
[HLAM" Exp " " Exp] 

I ("FIXLAM" Ex~ " " ExpJ 
I tExp "·>~ Ex~ " " ExpJ 
I [Exp Di-oP Exp] 
I [Exp "NODE" Exp] 
I [Exp "IS" Expl 
I [Mon•op Expl 
I !Exp Exp] 
I ["<" EXP* ">"] 
I [Exp Rep~opl 
I Ide 
I N I Q I T I 
I <Exp,Env> ; l created by red - not in LAMB 

["ID" Ql 
I {"Io• Q "t" Nl ; 
= ";" I •crRc• I •sTAR" I •AND" I •OR" 
I •EQ" I "NE• I "LS" I "GR• I "LE• I "GE" 
I "PLUS" I "MINUS" I "~ULl" I "DIV" I "REM" 
I "CATR I "AUG" I "PRE" I "EL• 
= "NOT" I "NUMBER" I flQUOTE" I "TRUTH" 
I "CONC" I •cc~ I "SEG" I "ACTIVATE" I "VAL" 

"*" I "+" ; 

<Env,Exp,Cell> I ? 

<Mem,Cell,N,Flles> 
::: Cell -> Exp 
::: N i 

Q -> Exp 

= State -> Exp 
Exp •> c 
Env -> c 

= <A,EXP> •> C 
T I ? ; 

Natural numbers 
Quotations 
Truth values 

= "norm" 1 "part~ ; 
M •> Exp -) K •> C 
M -> Exp -) K ·> C ; 
Exp -> Exp ·> Y ·> C 
Exp -> Exp -> Y ·> C 

Mode of reduction for red 



LAMB EvalUator 

Identifier Handling 

Fresh identifiers are supplied by n;odlfy•Ides , which uses the N•component 
of Stdte to remember the highest subscript so far. 

LE:T modity•ides(exp);k : C:: ? l (omitted expressions are represented bY '?'.) 
1 gives a result of the same shaPe as exp , but with all Identifiers 
1 having fresh subscripts. Modifies the N•component of State • 

Environments 

71 

To achieve the call·by•need/lazy evaluator effect, environments are directly 
updatable, as well as extensible. !he ~em-component of State remembers the 
currents contents of cells, and the Cell-comPonent points to a fresh cell. 

LJ::T void : Env :: 1 1 (Here '?' Is actually the value 
1 EQ will be used to test whether an env is void 
1 which is the reason that Env is not just Exp 

LET bind(enV)(exp,exp");x : c :: ? 

wanted!) 
or not, 

-> Cell. 

1 exp should be an identifier .... perhaps with subscript and rep•ops .... 
! or else an expression with the same shape as exp'. env gets extended 
I bY binding all identifiers in exp to the corresponding components of 
! exp•, and the resulting environment is passed to the continuation x. 

LET find{enV)(expJ;y :.C::? 
! If the identifier exp is not bound in env, then the continuation y 
! is applied to the pair <rF,?> t:<A,Exp>l; otherWise, y is applied to 
1 <TT, the current contents of the cell associated with exp in env>. 

LET rebind<env)(exp,exp");c : C = ? 
1 updates the cell associated with (identifier) exp in env to be exp•. 

LET tix<env,env•l;c : C = 1 
1 env must be an extension of env•, by cells containing pure 

expressions onlY. All the extra associations in env• are updated 
! to contain closures termed from the original expressions and env•. 

suspensions 

These are (in general) compound closures, i.e. expressions with environments 
attached to sub~expressions. (The domain of suspensions could have been made 
distinct from that of pure expressions, but the "[ ••• l' notation would then 
insist on a lot of renamings to get the labels right!) 

LET sus-exp(exp) ; Exp = 
CASE exp 
l<exp•,env> ~> exp• 
I 1 -> exp 
ESAC 

LET sus-env(expl : Env :: 
CASE exp 
l<exp•,env> -> env 
I ? -> void 
ESAC 
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Control 

Initialisation, finalisation, result•passing 

LET set•up(expJCcHtiles) : Exp = ? 
! applies c to initial state made from exp and files. 

LST stop(expJ(state) : Exp = exp 

LST res(exp);k : C kCexpJ 

LET res•a(a);y ; C y(a) 
It would be "nicern to maKe res Polymorphic: 
LET res@ZCz:Z)(f:(Z ·>C)) : C = f(Z) 
but then one has to specify a dorrain every time, e,.:,t. res@I::Xp(exp);k, 
"Overloading" is what is wanted, but it is not in DSL (yet), 

! Abbreviations 

LET is·ideCexpJ : T = 
CASE exp 
/["ID" q] I {"ID" q "~n nl •> TT 
/[expl rep-opJ ·> is-ide(exp1J 
I ? •> fF 
ESAC 

LET is•basic(eXp) T = 
CASE exp 
/<exp',env> •> is•basic(exp') 
/["LAM" eXpl ~." exp2] 
I [€XP1 "NODE" exP2l 
/{"<~ exp* ''>"l 
I NUMBER ? I QUOTE ? J TRUTH ? -> TT 
I ? ·> Cexp EQ 1 ·> TT,FFJ 
ESAC 

LET is•normCexp) : T = ? 
! true when no redexes in exp. ACtually in;plemented by "tagging" 
! expressions with a bit indicating whether they have been reduced. 

L!::T lam-query-query ' Exp ? tree of 'LAM ?. 1' 
LET number-query ' Exp = 1 tree Of 'NUMBEfl ,. 
LET quote-query ' Exp = tree of 'QUOTE 1' 
LET truth-query ' Exp = tree of 'TflUTH 1' 
LET query•star Exp = ? tree of . , , . 
LET query•star-star ' Exp = ? tree of • ? ' .. LET quote-query-star Exp = tree of '(QUOTE ?l ,. 
LET cl re Exp = 1 tree of 'LAM tU. LAM 1#2. LAM 80. U2CU1CU3})' 

LET star E>P 1 tree of 'LAM Ut. LAM U2. LAM UJ. 
(LAM<f14,115>.##2(JJ4)(##5))(~11(1#3)}' 



! Monadic operators 

! -----------------
LE'r mon•op•arq(mon·op) 

CASE mon·op 
I "NOTn 
I "NUMBER~ 
I "QUOTEH 
I "TRUTH" 
I "CONC" 
I "CC" I "SEG" 
ESAC 

LAMB Evaluator 

: Exp = 
·> truth-query 

•> quote-query-star 
·> query·star•star 
-> quote·query 

LET mon•op•fn[mon·op expJ : Exp = ? 
! the result of applying the mon•op to exp 

L~T mon•op·inv(mon·op,exp} : Exp = ? 
1 the result ot inverting the n-on-op on exp 

1 Uiadic operators 

! ----------------
LET di·op-arg(di-op,n) : Exp ! n is 1 or 2 

CASE di•op 
1 "AND" 1 ~oR" ·> truth-query 
I "LS" I "GR" I "LE" .I "GE~ •> number-query 
I "PLUS" I "MINUS" I "MULT" 
1 "DIV" 1 "REM" •> number-query 
1 "CAT" .. > query-star 
1 "AUG" •> n EQ 1 -> query-star, 
1 "PRE" •> n EQ 2 ·> query-star, 
1 "EL" •> n EQ 1 ·> query-star, number-query 
ESAC 

LET di•op-fn{expl di•op 
CASE di"'OP 
I ";" 
I "CIRC" 
I "STAR" 
I 1 
ESAC 

exp2J : Exp = 
-> [exp1 exp2l 
-> ? ! tree of 'circ(expll(exp2)' 
•> 1 tree of 'star(expl)(exp2)' 
-> ? the result of applying the di•op to expl, exp2 
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LET di•op•invCdi•op,n,exp} : Exp = ? ! n is 1 or 2 
1 the result of inverting the di•op on exp and taking the nth component 

1 IS•operator 
! ..................... .. 

LET is•fn[exp1 "IS" eXp2J : Exp = ? 
! see the reduction rules 

! Application 

! -----------

LET a~p-fn[exp1 exp2l : Exp = ? 
: see the reduction rules 
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Reducer 

red(mJ(expOJ;k reduces the expression (suspensionJ expO either to 
normal torm, or to a basic form ~~ abstraction, tuple, node or atom, 
The parameter m specifies whicn ("norm" or "part"). It m is "part" 
but no basic form is found, the normal form is given as result. 

DLF red(mJ (expO) ;k. : C 

LL1' (exp, envl (sus~exp(expO), sus~env(expOJl IN 

is•norm(exp) AND (env EQ void) ·> res(expJ; k., 

CASE exp 

/<exp' ,env'> ·> 
env EQ void·> red(mJ<exp',env'>; k., 
env' EQ void ·> red(m)<exp',env>; k, 

/{"LAMB~ title expl nENDH] •> 
red(ml<expl,env>; k 

I ("LAM" expl "." exp2J -> 
m NE "norm" ·> res<exp,env>; k, 
modify•ides(exp1); LAM expl', 
bindCenV)(expl,exPl'l; LAM env•, 
red"norm~<exp2,env'>; LAM exp2'. 
rest"LAM~ expl' n,H exp2'l; k 

lt"fiXLAM" expl ".~ exp2J ·> 
m NE "norm" ·> 

bind(env)(expt,exp2); LAM env•, 
fix(env,env'); 
red(m)<exp2,env'>; k, 

modity·ides{expl}; LAM expl'. 
bind(env)(expl,eXpl'); LAM env•. 
red"norm"<exp2,env'>; LAM exp2', 
tes["FIXLAM~ expl' ~." exp2'l; k 

l(ex~l "·>'' exp2 "•" expJJ ·> 
match(truth•query)<expl,env>; LAM<a,expl'>. 
CASE a 
I TT •> CASE expl' 

1 TT ·> red(mJ<exp2,env>; k 
I Ff •> red(ml<expJ,env>; k 
ESAC 

I ff ·> resC?l; K 
I ? ·> red"norm"<exp2,env>; LAM exp2'. 

red"norm"<expJ,env>; LAM expJ'. 
res(expl' "•>" exp2' "•" expJ'J; K 

ESAC 



l[expl di•op exp2l ·> 
CASE di-op 

LAMB Evaluator 

I ";" I "CIRC" I nsTAR" •> 
LET (expl', exp2') = (<expl,env>, <exp2,env>) IN 
m NE "norm"-> red(ml(di·o~·fn(expl' di•op exp2'JJ; K, 
red"normHexpl'; LA!>( expl' •. 
red"norm"exp2'; LAM exp2'', 
res(expl'' di•op exp2''l; k 

I "EO" I "NE" •> 
red"part~<expl,env>; LAM expl'. 
red"part"<exp2,env>; LAM exp2'. 
1s•baS1c(expl') ANC 1S•basic{exp2'J •> 

redtmHdi•op•fntexPl' di•op exp2'l); k, 
red"norm"expt'; LAM expl'', 

I 1 ·> 

red"norm"exp2'; LAM exp2'', 
res[ext:1'' di•op exp2''l; k 

match(dl•op•arg<d1•op,l))<expl,env>; 
match(di•op•arg{di•op,2))<exp2,env>; 

LAM<al,expl'>, 
LAM<a2,exp2'>, 

CASE (a1,a2l 
I(TT,TT) •> 
I(Ff,1 ) 
1(1, Ff) •> 
I<?, 1 ) -> 

red(m)(d1•op-fntexpl' dl-op exp2'l); K 

ESAC 
ESAC 

l[expl "NODE" exp2J -> 

rest?); k 
red"norm"expl'; LAM exp1''. 
red"norm"exp2'; LAM exp2'', 
restexpl'' dl•op exp2''l; k 

match{quote•quetY)<expt,env>; LAM<at,expl'>, 
match(query•star)<exp2,env>; LAM<a2,exp2'>. 
CASE (a1,a2,11l) 
I(TT,TT,"part"l -> res[expl' "NODE" exp2'l; K 
I{Ff, ?, 1 ) 
10, FF, ? ) ·> res(?); K 
1(?, ?, ? ) ·> red"norm"expl'; LAM expl''• 

red"norm"exp2'; LAM exp2 • •. 
res (exp 1 • • "NODEn exp2 • 'l; K 

ESAC 

/(expt "IS" exp2J ... > 
match(eXP2)<expl,env>; LAM<a,expl'>, 
CASE a 
1 TT-> red(m){is-fn[expl' "IS" exp2JJ; k 
I FF •> res(FF); k 
I 1 -> res(expl' "IS" exp2J; K 
£SAC 
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ltmon•op expll ·> 
CASE rnon•op 
I "ACTIVATE" •> 

I ·> 

m NE "norm" •> resC?J; k, 
red"norm"exp1; LA~ exp1', 
res(rnon·op·fntrron•op exp1'JJ; k 

match(mon•op•arg(mon•opJJ<exp1,env>; 
CASE a1 
I TT •> 
I ff •> 
I ? •> 
E.SAC 

LAM<al,eXpl'>. 

ESAC 

red(m)(rnon•op•fntmon•op 
res(?); k 
res(mon·op exp1'l; k 

exp 1 'l); k 



LAMB Evaluator 

/texpl exp2l ~> 
match{larn~querr~queryl<expl,env>; LAM<al,expl'>. 
CASE al 
I TT •> 

I Ff -> 

ESAC 

LET ("LAM" exp11 "•" exp12J = sus~exp(expl'l 
LET envl = sus•envcexpt') IN 
rnatch(exP11)<exp2,env>; LAM<a2,exp2'>, 
CASE a2 
I TT ~> is·ide(explll -> 

bind{env1J<expt1,exp2'>; LAM env•. 
red{m)<expl2,env'>i K, 

red(m)(app~fn(expl' exp2'l); k 
1 Ff •> res(?); k 
I ? -> red"norm"expt'; LAM expl' '; 

res[expt'' exp2'J; K 
ESAC 

red"normh<exp2,env>; LAM exp2'. 
res[expl' exp2'l; k 

I("<" eXP* ">h) •> 
LET eXp'* = rnap·list{LAM exp',<exp',env>J(exp*J 
LET exp' = ("<" exp'* ">"1 IN 
m NE "norm" -> res{exp'); k, 
red-list"norm"{exp'J; k 

l(expt rep-opl 
/[''ID" q} 
/["!Du q "J" n] -> 

f1nd<envJ(exp); 
CASE a 
I TT -> 

I FF ·> 
ESAC 

LAM<a,exp'>. 

red(m)(exp'J; LAM exp''• 
rebind(envJ(exp,exp''J; 
res(exp''); k. 
res(expJ; K 
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I NUMaER ? 
I \.lUt.JTE 
I TRUTH ? ·> 

res(exp); k 

' -> 

Appendix f 

exp EQ ? "> rest?); k, 1 

ESAC 

WITH map•l!st(f;(Exp •> Exp)J(exp*J : EXP* = 
CASE exp* 
I <> ·> <> 
I expl PRE expl* ·> f(expl) PRE map•l!st(f)(expl*l 
ESAC 

WITH red•llst(mJ[~<" exp* ">"l; 
CASE eXP* 
I <> •> 
I exp1 PRE expl* ·> 

ESAC 

Matcher 

k • c = 
<> 
red(m)(expl); LAM expl'. 
red•list(m)("<" expl* ~>"l;LAM["<" expl'* ">"l. 
LET exp'* = expl' PRE expl'* IN 
res("<~ exp'* ">"J; k 

match(expO)(~xp);y tries to make exp match the shape of expO, by reducing 
(as little as possible) and by inverting operators. It is basically l•level, 
although (exp rep•op] does not count in this respect. The A-comPonent of the 
value passed to the continuation y is 

TT lf the match was successful 
Ff if the match failed (i.e. was lwpossible) 

if the normal form of exp is not a basic expression, thus containing 
potential redexes and free variables. 

WITH match(expO)(expJ; y : C 

(expO EQ ?J OR (expO IS ["ID" ql) OR (eXpO IS ["ID'' q "t" nl) •> 
res•a<TT,exp>; y, 

red"part"exp; LAM exp'. 
NOT is•basicteXp'J .. > 

res-a<?,exp'>; y, 

CASE expO 

/["LAM" expt "•" exp2) -> 
CASE exp• 
I <("LAM" expl' ''•" exp2'l, env> ~> 

res~a<TT,exp'>; y 

res-a<fF, ?>; y 
ESAC 



LAMB- Evaluator 

/(exp1 di~op exp2l •> 
CAS£ (di~op,exp') 
/(~AUC", ["<" exp'* ">"ll 
/("PRE", ["<" exp'* ">")) •> 

I 1 •> 

ESAC 

SIZE exP1'* EO 0 •> res•a<FF,?>I y, 
L~T expl' = d1•op•1nv{d1•op,1,exp'} 
LET exp2' = d1•op•invtd1•op,2,exp'} IN 
ru•a<TT, texp1' di•op exp2'J>; y 

res•a<FF', ?>1 y 

/[UPl "NODE" exp2) w) 

CASE exp' 
I texp1' "NODE" exp2 'l -> 

res•a<TT,exp'>; y 
I ? •> 

res•a<FF, ?>; y 
ESAC 

/[mon•op expll •> 
CASE {mon•op,exp'} 
/("NUMBER", NUMBER ?l 
/("QUOTE", QUOTE ? ) 
I ("TRUTH", TRUTH 1 ) 
/("CC", CC ? l •> 

ESAC 

LET expl' = mon·op·invcmon•op,exp') IN 
res•a<TT, [mon•op expl'l>; y 

/("<" exp* ">"~ •> 
CASE exp' 
/["<" exp'* ">"l •> 

I ? ·> 

ESAC 

SIZE eXP* NE SIZE exp'* "> 
res•a<FF',?>; y, 

res<TT,exp'>; y 

res-a<FF,?>; y 

/[expl rep•opl •> 
CASE (rep-op,exp') 
/("*"• ("<" exp'* ">"1) .. , 

match-l1stcexp1l£"<" exp'* ">"l; y 
/{"+", {"<" exp'* ">"ll -> 

SIZE exp'* EQ 0 -> res•a<FF,?>; y, 
match·l1St(exp1)["<" exp'* ">"l; y 

I NUMBER ? 
I QUOTE ? 
I TRUTH 1 ·> 

ESAC 

expO EO exp• •> res•a<TT,exp'>; y, 
reswa<FF', 1>: y 

" 



So 

IN 

END 

Appendix f 

CASE exp* 

res-a<IT, rnc~ eXP* u>"J>; y 
I exp1 PRE expl* ·> 

ESAC 

match(expO)(expl); LAM<a,exp1'>. 
rnatch•list(expO)[nc~ exPl* u>"J; LAM<a',exp'>, 
CASE ca,a',exp') 
/(T!,TT,["<" exp1'* ">"]) ·> 

LET exp'* = expl' PRE expl'* IN 
res-a<'IT, ("<" exp'* ">"l>; y 

/(ff,;' ,?) 
/(?, ff,?) -> 

res•a<FF,?>; y 
/C?, ?, ("<" exp1'* ">"ll -> 

red"norm"expl'; LAM exp1'', 

ESAC 

red"norm"("<" expl'* ">"J; LAM("<" expl''* ">"J, 
LET exp''* = expl'' PRE exPl''* IN 
res•a<?, ["<" expl''* ">"l>; y 

(LAM exp, set•up(exp); red"norn"exp; stop) (files ·> Exp •> Exp) 



G, LOOP Semantics (in LAMS) 

LAMB M~OOP•Semantics" 

(LAM <pp, cc, ee•Ust, ee, oo, repeat, update-list, initial·s, 
update, content>. pp}( 

FlXLAM 
<pp, cc, ee•list, ee, oo, repeat, update•list, initial•s, 

update, content>. 
< (LAM "Read•cmd;Crnd;Write-cmd"NODE<read-cmd, crrd, write•cmd>, 

LAM n*. 
(LAM <"READVar*"NODE<var*>, "WRITEEXp+QNODE<exp+>>, 

CLAM s1, 
(LAM s2, ee•l1st(eXP+)(S2))( 

cc<cmdJCs1ll)( 
update•listC<var•, n*>J(initial-s)J)( 

< read•cmd, write-cmd>)), { 
LAM cmdO. 

LAM s, 
CLAM HO, 

HO IS ( "Cmd;Cmd''NODE<cmdt, cmd2>} ·> 
(LAM "Cmd;Cmd"NODE<crrdl, cmd2>, 
ccCcmd2)(cc{cmdl)(S)})(ffOJ, 

ffO IS ("Var:=Exp"NODE<var, exp>) •> 
(LAM "Var:=Exp"NOOE<var, exp>, 

CLAM n. update<<var, n>J(s))( 
ee<expJ(s)))(ftOl, 

UO IS ( "TOExpOOCmd"NOOE<exp, cmd>) •> 
{LAM "TOExpOOCmd"NOOE<exp, cmd>. 

{LAM n. repeat(n){cc(cmd)l(s)){ 
ee<exp){s)))(IIO), 

110 IS c~ccmctJ"NODE<cmo>> •> 
{LAM ~(Cmd}"NODE<Cmd>. CC(Cmd)(S))(ffO), 

?HcmdO)), ( 
LAM l!xpO+. 

LAM s. 
(LAM UO. 

UO IS <exp> ·> 
(LAM <exp>. <ee(exp)(sJ>l(tfO), 

110 IS {exp PRE exp+) •> 
(LAM exp PRE exp+. 
ee(eXp)(s) PRE ee-liSt{exp+}(S))(IIO), 

?J(exPO+)J, < 

" 
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END 

Apyendix G 

LAM expO. 
LAM s, 

CLAM UO, 
uo IS c~ExpOpExpnrwDE<expi, op, exp2>) ·> 

CLAM "ExpOpExp~NODE<expl, op, e>:p2>. 
(LAM <n1, n2>, 
oo(op){<nl, n2>ll( 
< ee(expl)Cs), ee(exp2){s)>))(•tOl, 

UO IS ("Var"NODE<var>) •> 
(LAM "Var"NODE<var>, contentCvarlCsllCU:O), 

-~0 IS C"Num"NODE<num>l •> 
CLAM "Num"NODE<num>. nutn)(##O), 

?HexpO)l, C 
LAM op, 

LAM <nl, n2>, 
CLAM UO, 

f#O IS M+" -> 
CLAM"+". nl PLUS n2)(f#O}, 

UO IS "·'' ·> 
CLAM "•", nl MINUS n2)(#10l, 

UO IS "*" -> 
CLAM "*"• nl MULT n2)(UO), 

1#0 IS "/" ·> 
(LAM"/", nl DIV n2)(f.Ol, 

?)(op)J, 
LAM n, 

LAM c. 
LAM s, 
n EQ 1 -> ?, 
n EQ 0 -> s, 
repeatCn MINUS l)(c)(c(s))), 

LAM <vatO*, nO*>, 
LAM s, 

SIZE varO* EQ 0 ·> s, 
CLAM <var PRE var*, n PBE n*>, 
update•listC<var•, n*>lCupdate(<var, n>)(S)))( 

< varo•, nO*>ll, (LAM var. ?), ( 
LAM <var, n>. 

LAM s. 
LAM UO. 

UO EO var -> n, 
5(1#0)), (LAM var. LAMs. S(Var))>) 
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