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Iatroduction

This paper attempis to provide 20 adequate basis for foruel defini-
tlons of rhe measings of programs in ap;;rnpfmmly defined prograoming
igngusges, in such & wey that & rigorous standwed 1s esteblighed for
poefs about somputsr pregrams, including proofs of correctoess, equiva-
lence, @i tezmination, The basid of our approach is the sotion of ac
intezpretation of @ programs that is, an sssocistion of & proposition
with each connectlon in the flow of contwol through a progrem, where the
pEoposition is assgrted to hold vhenawver that comection is taken. To
preavéent an interpratation from baing chosen arbicraxily, & conditieon is
imposed on esech comund of the program. Tals condition gusrantees thst
whenever 8 comrand is resched by way of # copnection whose sssoeiabed
proposition is then true, 1t will be left {if at all) by & conpeciion
whose asavcisiad propositien will be trae ot that bime, Theo by loduction

on the number of ccmmands executed, one sess that if 8 progran Lo snre

-k 4

by & conneétion whose associated proposition is then txes, 1t wilil

{18 at all) by a connection whose assccisted proposition will be (o
that time, By this mesgns, ve way prove cartaln properties of progreus,
particulariy properties of the form "™If the initisl values of ihe nrop
vérisbles satisfy the reliation E‘l’ the {inal values on cowmpletion
safisfy the relation 3.2"*& Proofs of termination are deals with by o
that each atep »f a program decrefses some entity which caonct decress

=

indefinicely.

These modes of prouf of correctvess and terminstion sre not cElginal;
thay dare based on ideas of Perlis and Gorn, and may bave made their
earilest appearance io an s.snpubiished pager by Gorn, The establishoene
formal staudards for proofs sbout progreéms in langusges vhich edmit aseigo
mernés, transfer of control, ete., sod the proposal that the semanties of
pafvg;i:"&ming langusge wiey be defined independently of all procesuors ic
language, by establishicg stendards of rigor for proofs about progcoams
the language, appeat to be novel, ailthough MeCarthy 1.2 has done
ek for nrogremsing lemguages tased on evelusition of recursivs &

A zmeantic definition of 3 programving lsvgusge, Lo our appisw

foanded on a syntactic definition. 1t ot spacify which of rhe phs

i
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in & syatacticaily correct program rupresent comsands, and vhat condie
tions must be ilmposed oo ap lgterpietation in the neighborhood of sach
command .

We will demonstrate these notions, fivst on & flowehart langaage,

then on fragments of ALGOL,

Definitions

A flowchert will be lonsely defimed as a divected graph with &
command ab each vertex, compected by edges (arrows) xeprescating ihne
poasible passages of control between the commands. An edge is said co
be an entrance to {or an exit fvom} the command © 8L vertex v Lf its
destination (or origin} is v. An interpretation I of & flowchart in &
mapping of its edges to propositicns. Some, buat not necessarily ali, of
the free variables of these propositions may be variables wanipuiabted by
the program. Figuxe 1 gives an essmple of an lolerpretacion. oo asony
edge e, the &ssociated propositiom i{e) will be celled the tag of e. If
e 18 an antrence {(or a0 exit) of a command ¢, I{s) 13 said vo bs an

antecedent {or & conseguent) of <.
For apy command ¢ with k enizanses and /, enits, we will desigunte the

entrances o ¢ by By Bapoocs By and the azivs oy b“ '232,.5..,, iﬁg,;_ We w
degignate the tag of @, by '?i {is4zk), and thse of ?}L by Q{‘ {igi= )
Boldface lotierz wiill deslgnate vectors formsw! {n the natuval wayv irom U
eatities designated by the corvweponding noo-baldface letters: for axsuwple
¥ represencs {?19 Pysuces é’k}o

A verification of an intexpretation of & {iowchart {9 a proef thas
every command ¢ of the flowchart, {f conitrol should enter the commsod by
entrence & with “?& troe, then conZrol must leave the command, (f st all,
by sn emit b.‘i with Qj true, A semsnbic definition of 2 particular ses of
command £ypes, then, 1s a rule for constrocting, for soy commad o of oan o

these types, & verification gondition Ye (#3Q3) en the antecedonts sed conse

quents ¢f ¢, This verification condition mact ba so topstrutted that @

proof thet the verification condition is satiafied for the sniecedents an
copsequents of each command in @ flowchart &8 @ verifiestion of the (ntos
oreted flowchar:t, That is, 4if the werificatcior condition is satisficd, an
if the tapg of the entrance is £rus vhen the statewent is sogered, the Lag

the exit relected will be tree after oumscution of the stategent
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A sounterexample to a particular iuterpretation of & single cowmand
i3 an assigment of valuas {e.g., numbers, ip most progremuing languuges)
to the free variables of the ipterpretation, and & choice of entrance,
such that on entxy to the comnand, the tag of the gontrance is true, but
on exit, the tag of the exit {s fzlse for the (possibly altered) values of
the free variables. A semantic definition is congistent if there is no
counterexsmple to any ioterpretation of any commsnd which satisfies its
verification condition. A semantic definition is gomplete if there is a
counteyexample to sny interpretation of any commsnd which does pot saciasfy
its verification condition. A sementic definition cleariy must be consise
tent. Preferably, it should alsc be complete; this, however, is not
a&lways possible.

In vhat follows, we shall have in mind some particular deduciive systen
D, vhich includes the axioms and xules of inferense of the first-omder
predicate calculus, with equality. We shall write 8y, Bayenes ¥ l» % to
mean thae Y 4s a proposition deduclible from ﬁig @2,““, %. and the axioms ¢
D by the rules of inferenca of U, We ghall desiguate by

-4 & 5“’““’3;
s fl :3 f"- (8) or, more brisfly, §% (8),
17 Egreceafy =

the result of simultsseously substituting fj for asch cceurvence of =, in ¢,
after first systemptically changing bound variablas of & to avold conflict

with free varisbles of any ﬁi’
Connectives will be sssumed to distribute over the cumponents of veciorsg
for instance, IAY weans {(XAY, , I AT, seees X070 b0 2o Ze¥ umaug {2&} Fot

(K, A oo AR BX ).

Genexal axioms
In order for & semantic definition to be satisfactory, it must amat

seversl requlrementa, These will be presested &s axicms, slthough thay may
alze be deduced From the assumptions of completenzss and consistency, wbere
these hold,



‘m

I£V,_(2:0) and v _{27;0°), then:

Axtom 13 ¥, (rE'; 7g7 wod
Axiom 25 ¥ (B3 gv‘& dnd

e

Axiom 33V (Ex)(E) 3 Gx2(Q).

Axtom 4 1£ ¥ (25Q) sod Ri=P, Q[=8, thex V_ (B;5).
Corollary 13 IEV, (B3Q) sad = (=R}, b (GmS), thea V_ (R:S)

Aztost 1, for ememple, essentially a&sserts that Lf vhenever P 15 tyue
on evkeriog commacd €, Q {8 frus on exit, snd whenewss P" {3 Erun oo
eotry, QY {5 true om exit, thea whenevey both P sod P' are true on
entrance, beth Q and Q° are true on exit., Whas Azxtom )} shows thet iF
separake proety sxlst that a progran has certeis propertics, thesn these
proafs may be combined iuto ome by forming the conjunction of the seversl
tags for cack edge. Axiom Z I3 useful for combinfng the zesulrs of &
case analyvsis, for instsace, treating several ranges of {aitial welues of
coritain veriables. Axiom 3 szserts thab 18 knowing that bFhe value of the
variable X bas property P before executing & coumand assurces thet the
{poasibly altired) value will have property Q aftey emecuting the comssad,

then knowiug that 8 value exists haviag properiy P before egscutioe assures

chat & welw: exists having property § safter esecutiom, Axiom & asserts
that §f P md Q srve veriflable as antecedent and consaquent for 2 comnend,
then so &ve soy stronger antecedant aod weaksr copsequent,

To wdicate how these aziows are deducible from the hypotbeses of
completeness aond copsistenny for ?, » eonsider Axiom I 83 &n azmmpie.
Suppose ‘iia (#:2) and Vu: 27:2°%). Qmsiﬁéf aay sosigment of infitiel values

¥V o the free varisbles X of the interpretatioe such thst ﬁ?i i3 true

(chet is, o S% E?i}?i &od TPL’-‘ i3 true. Then, if the statemsnt L8 entered
by 1 the e&eﬁf chosen will be soms b_i such that Q? is true at thac ©les
(ekat is, F % {Q }‘, wvhere W is the wector of final values of § aftey
exceution of ©J, &m Qj_“ is sisc true, by the sssumption of eonsilstency.
Thus, thers esn be no combercysaple Lo the interpretation I{s) = (BAP"),
£8) = (QAG°), wnd by the assuption of comploteness, v, (PARTsONQ" ).

—1
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A Flowhart Lasgusge

To mske these potions more speciffe, consider & pasticalar flowhare
iaaguage with five siatenmnt types, represented pictorially as {o Figurs 2,
having the ususl interpretations as so assigoment operstion, 2 conditional
branrk, 4 join of contesl, & starting polat for the progrem, @od & heli for
the program.

Take specificelly the gesignment opsrator xef{x,y), where x ia &
vecinble sod £ s an erpression which may coatain oucurrences of x @od of
the vactor y of other progrsm vapisbles. Coasideviog the effeer of the
commwnd, 4f s glaarly desirable that 1€ P, in {:;s-z:x@ A HY, aod
Q,

i
v, (?1312.!}‘. Applying the axious. we shall establish 2 definléion of

is {xai(xu, §2 A R}, ehere 5 costaing no frss oceurvences of x, then

i’m £ (%, v which is complete and coasfstent 1% the underlyins deduntive
i il B A
evatem 19, and which is, in that sense, the mosl gonerel semmntic delinfrion

of the assignowot operator

¢ L S :
i&_, b, A4,
| 4 § ", s
. ‘,._M,\m? e %{ e g B
§ o IS vl i } w'a-
3 - —f.... P - : {}' !t’ 7 ot A ;
: . / Sk s £ VEA A, e "'-." E
! ks, PR ;
¥ : *\‘;’\";" S ¥
=
i+
ot { @
(START -
B _x’:“";”i'“'f:“..':?' .
i é} (rf A e §0 )
i ) P

7 lgare 4.



Beaigneniog the ooveand mef{xgES by o, we apply dxiown 3 o

' P, r'._’_"‘";t . tu obbain
& B

¥ o8 Yo &9x ¥R,
SR R T |

Berause §  fgztix-e A P{x)) & Ple), provided x does ool ovcud free
k4

in e, wo spply ‘ocdlery I, to get Vv Rz, v) 3 Tx {x=fix vy} r Kilx_.¥)'3,

Fiuslly, 4y Gorallary 1, we hsve

e Verification Condition for Assigameu! Gperators:

if ?j has the form Bix,y) and if &3@93€x;££x_SV‘ A R(n,w; o in

ihets ¥ _ o KB G 3, 19
o TaefCx,y) 1t ‘

Taking this as the semantic definitioc of x {x,v), acd assupiop the
«‘-"ﬁﬂ‘s}‘létﬂﬁﬁﬁﬁ g i}'ﬁﬁ&f_ﬂ!&ﬂﬁ}’ of the Jeduweriuve Sveles ;‘,, we aligw thet the
seagutic defipltion L5 complete snd comsistent

To show conslsfency, assume rhsat x, and y, &re iopivial values o
and y such thar & E{xlﬁ;iﬁa Then after execution of wfix, ¥}, the valuos

%, aod y, are such rhat x - x, o i(xlqyi 37 da v ¥y 3 thus

ol

X f{xitigﬁ A &{xlézgﬁ. oY ﬁgx@?(xg f{xqang A Rfﬁ_izgliﬂ Designat iog

ﬁﬁxﬁ){x = flx 313-% Rix Lgﬁ} R T@ (Rix,y3), we have shown that upon oxid

from ¢, si «§- (r_(RCx ﬁgﬁ‘; is true. Now since T (Rix,v)} i= Q, w fiud
aly  © e
- 5~ - {3}, by the assumption af the consistency of D, 80 that

aiz

rondistent.

Vv is

To ghow completeness, sssume io false that T (Rix,¥)) & G, Ihen,
¥ \, ;

by the completepces of D, there is a set of values x, aad vy, for = wnd 3

e

) K Y om pe - » AR 2
such that Sﬁ %' {rffﬂiﬁ95?3! la rrue, but hx ; (DY is felye, Thus

R i S " g p
e Mx, - Etx ,y.¥ & Bix 13, Llet . be 3 Gearticulsr waloe ot % Ior
o’ ntita’ R ot43’ L e .

which &, = f{aﬂéxn? A R{%i;gziﬁ Mow ws i #y ﬁqﬁ.gd g inftial valueey Fo
« and y, we mBY¥ geherste & counterexample i fhe interpretaiion
e, ) = Bix,y), 3103 = Q.

Thas we have shown thet V  is complete (consisrent) Lf D is compiels
{eonsistent ). Bv gonsideration of wacoous stelements futh 348 Kox, wo
coutd chaage esch “4f" to *if asnd oonly L{f". Thus, the semantic defluiilun

€13 we have given is the natuval generalizarion of the ordgingi seiiicle
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wlition Eor veyification; V. is both uecesssey and sulflcisng,

The other command types of Figure 7 are more ::ﬂ:‘iii.‘f; desit with, For

Al b Q). Fou the

&

the hranch cowmmend, ¥ {FI; -Cg_,_i 0.,) is (P A% mq
LS ) i

,-n-

joln command, ¥ (P, P : Q) i {Pi v ? o f} }. Fox che start command
L% i

(‘r
(o

1
he condition '1? f@,}, and for the halg wamud the condition “‘3 if:‘ 1 oars
identtcally i':..wc A1l of these semaotic defipitions aceord wi?,n L;.iu? IR

ndarsteading of the meauisgs of these communds, #nd in edch case V. i
complote 2ad congistent 1f D is.

log these semantlic definitions, it i not hard to show thet Figure |

is a verifiable icterpretation of {ts flovehart provided D conteins 3 suit-
abie gar of axioms for the real aumbers, sumsation, the integers, inequaiis
ties, and zo forth. Thus, if the flowchart is entered with n a positive
integer, the value of 1 on econpletion mﬁ..ii be o+l {assuming that the progrss
tarminates) and the valuve of 5 will be }2 ; Ao Presumably, the final valoe
of 1 is of oo {oteregt, but tha value of % i3 the desived resuls of the
progran, snd the verification provees that the program does {n foo! cospube
the decired reseir i1f it feywminates st all. Another sectios of this papoer
degls with proofa of termisation,
Becss of the given semantic definitions of the Flowchart comminds fakes

2

the form that V {P.8) Af and only if (T ';‘f"! A A A (Tel¥) == G,

whiere T, i3 of the o T B f.E‘. YV...¥v T, (PrAd. 1o particus
where ':i_“j ig of the forn 1 ?5,_ W T;Z. 3_3 W o ol 1k ‘?1@;\)‘(/' Lo pax i
larpe

€1} Pov an agsignment operetor xef, ‘12(0;3 i3

% 3*‘«!& i) ﬁfj A &'_ @' i}

ey
S
ot

for s jein comngod

L, (7, ,P,) 48 P, V B,; that Is,
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(4) For a start command, T; () is false.
Thus, Vc(Ql) is identically true.

{5) For a halt command, the set of *_rj'-‘s and Qj s is empty.

For any set of semantic definitions such that V_(B,Q) = (T,(®) 1= Q) Awooh
Ty (B) /= Q); in any verifiable interpretation, it is poasible to substi-
tute T i (p) for Qj as & tag for any particular exit of a command, without
loss of verifiability. It is obvious that this substitution satisfies the
semantic definition of the command whose exit is b It since | (T 3€P'}f7Q 33,,
by Axiom 5 the substitution satisfies the semantic definition of the
command whose entrance is b 3 and there are no other commapds whose veriii-
cation condition involves L(b j)e

It is, therefore, possible to extend a partially specified interpreta-
tion to a complete interpretation, without losg of verifiability, provided
that initially there is no closed loop in the flowchart all of whose edges
are not tagged, and that there is no entrance which is not tagged. This
fact offers the possibility of automatic verification of programs, the
programer merely tagging entrances and one edge in each inmermost loop; the
verifying program would extend the interpretation and verify it, if possible,
by mechanical theorem-proving techniques.

We shall vefer to T _ (P) as the strongest verifiable consequent of the
command ¢, given an antggedant 2. It se&m:sﬂlilcely that most semantic
definitions in programning languages cen be cast into the form
v (2,9) = (T (2) |- @), where T  hae several obvious properties:

(1) 1£2>2, T, (mf:r ()

{2} If upon entry by entrance & a, with initial values V, a command is
exaecuted and left by exit bj with final values W, then ‘xc(g) s Q, where
P is defined as false for ofi, 2 =« V for o = 1, and Qﬁ is defined as

falac £or B#j, X-W 1if B=j.

(3) 1£ P=B, A B :M’r) T, (I’)A'E (Ey)3

2’
1f 1’1?3 v ?2’

IfER = @x}(? ), s v:r) {ax)(? (2.3 .

T(?).ﬁr (P}VT (Pz),
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Thet 1s, the transformation ¥, distribute over conjunetion, disjunction,
and existential quantification., A semantic definition having theoe

propertias satisfiecs Axioms 1 through 4.

An ALCOL Sebset

To apply the same notions to & conventional programming language on
the ordar of ALGOL, one wight adopt @ formal syntax for the languspe, such
&8 the existing syntactic definition of ALGOL; designate certain phrase
types a8 semsntic units, such a5 the statements in ALGCL; and provide
semsntic dafinitions for these semantic units. lLet us say that each stats-
ment % in ac ALGOLic langusge is tagged with an antecedent and & ceasegueann
proposition (Pz and % respectively), asaid to hold whesever coatrol enters
and leaves the statement in the normal sequential mode of contkrel,

Now we may readily set up a verification condition for sach common
statemant Lype.

(1) I£ £ is an sssigmeent statement, x:=£, then
® b4 - X ;e
v, (B3 %) is @x ) csx“ c%) A X = sﬂam} L Q.

This assumes foxr simpliclty that £ is s true function of its free wvariables

snd has no side effects.

(2) I£Z is a conditionsl statement of the form if & thes I, else J,,

% (&, in’ szg Pﬂf ?z?" Q) ds B AT =B )A B A= =B n

1 & F
@ vy, o)

Observe that here the exits of £ 1 and 82 become entyances to L, wnd so on,

LAy st



Logelderation of ehe syuivalant flowehart (Flgees 3} ladicsles iy U

N o1 ¥

= o ; i . 4
ia 4 gooto stetemmwnt of the form go e 4, Swn V. (& 0
® = e L i (B :

(3} i %

e

i the identically trus conditton -*;_?{ﬂfl.ﬁe e 01, ), Mecause the Serventis!
ke WA DT " ‘-“. =
mEit i i vever fakan,
() I£ Y is & labeled sistemsant of the form 50,

'y O B G G %)

e = 1; = J:# E

P i

& iRV 3’*’{ e %,. ) A Q. fos Q-7, whare i} iy she dishunction of the
d rl .‘»-1 A
aatecedsnts of sl stetewsnts of the form go o 2

AT

{5) 1£% &3 » fowectatement of the form for mge & 8bwn b wutil

Le i

whigre ® 13 & variable and 4,5,¢ sxe expressions, fhe Wweificarion euls

wedt aakily seen by Jonstewrtiug the ecwiveisas Llowbaer: (Pigowe o).
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Figure 4.

The atrongest werifiable proposition P& on edge o L8

{,‘3 (S Cl?\.v) AX= s (a) ihe atrongest verifisble proposition F,

on edge B 13 &xﬁ) ﬁﬁx {Qa.\ IARe %, # {,ﬁ: (b)), which, 4f & contains
o 1 i

ok

or frae occcurrences of %, can be simplified to 8 b(q._ j N
= ‘"\i

the strongest verifisble propositiovs ?*Y o edge v is Pﬁ ¥ ;I?Eéa New the
eomdition of verification Lis

s La 3 By £ © &
(I'Y A {xe¢) x sign (b) »0 ; Qz} A (9? A (x<¢) x sige () x © = F‘E 3

More pRetisely, since the fiéfmir:f.m of ALGUL 60 stétes that x is
undefined after esvhauvation ¢f the for stabtement, the £irst half of the
verification condition shouid he {ix) (?“‘e’ A {meu) z sign (b)) 20) = *:,,ﬁ
In typical cases, these conwitlons may be grestly siwplified, since
aorweily a,b, and ¢ do not contaln x, El dpes wot alter ¥, sige (b) iz &
conztant, ete.

(%) Compound Statement:

A compound stetenmnt T (s of the form begin 21 end , vhexe L, i

it ﬁmﬁﬁmﬂt liﬁta %Qﬂ v; '? ¥ ; 3";’%‘3 a (F ‘r*' -E } A {“ ""“ {'é" -} w
E: l}j %:i %i - E -i f;l £a
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e

Alternstively, cns amight identify B, with ¥. and f% with QL s B
} E'L : 1

statement list © i3 either s statement, or is of the form L ; L, where
&

'z';‘i is a statement 1ist aad 32 is a statement. In the laiter case,

. (P, N T P : iz (&, = 1A K ke 2. YA L0, e 0),
e e S T ) R B P RGBT R R, B0 B, PR

Alternately, identify R, with B, , Q. with QL » foud i)g with Q..
._2 Lo

=3 1 2

£7) A null statement ¥ is represented by the emply string. ¥ “’i
is PE ke f}g Veritication conditions are verysimilar to relatlons ot
deducibility, asd in this cese the verification condition reduses o
precissly & relation of deducibility. Ooce wmight say fecetlously that ths
subject matter of formal logle is the study of the verifisble interprots-
tions of the program consistiog of the neil stalement.

Blockz {compound stastements with bound local variehles) causs nous

difficuities. If we trest occurrsaces of the same {dentifier within the § e
da®

scopes of distinet declarations as distimet, essentislly renaming identi- g

fiers soc that all variables have distinct names, the ocly effect of blosks
12 to cause their locsl veriables to become undefioed on exit. The effect
‘of the undefining of & variable can be achieved by existentisl guantitics.
tion of that varisble. For instance, if a stetement could have the forwm
"undefine x", and the astecedent were wex A 2y, the atrongest verlfiable
consequent would be (x)(waAxcy}, which is siwplified to wy.

One may then treat a block © as being of the form w’gﬁ;}ﬁgzlé L, end

-

where &, is & declaration list, where

ek

f declaration © of the form (say) resl x Is treated gs wndefining x when
F8h
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Cewscuted sk ebhe sod of the swscetion of & biock., Thus '%tL {1%__;; Q.) 1a
=B, = %o
4 deslaration 1ist ¥ {s eiiher & declarstion, or I of che fors

?:1;‘52 vhers &, is ¢ duclavacios list and ©, Ls & declsvation;

i

¥, (., Q. ., 8 ] Jie (B B YA (@ BB OIA K o).
p B G G iR B QI B R IAG FRIAG

2
The sbove L: @ poor spproxleetion to the actuel complexizies of ALGOL
block sipnetore; for exewple, 1t doas not wefleet the fact that Eravelisrs
out of @& block by go-to statements cause locsl varisbles of the block e
botone wdefined, It may serwe, however, to ludicate bow a complete tresl-
want sould be eerricd cut, Hote that it does not say that lecal variables
lose their values upon leaving & block, bul that preservetios »f thesy
values m3y not be Xeswed in proofs of progrems.

The ALGOL procedure statemsnt cffers even wors complexitias, with Lis
severel types of pagaseters, the dynaule-own feature, the pessiliiity of
groursive call, side effecta, etc, We wiil aob vonsider g?_".@%ﬁﬂézm‘ﬁ t@bes
ments dn detail, but will Allovtrare fae Lred.sest of side elfsets by
srxaivzing astended sssigmuent staken~nts allowluy embedded assigimwnls as
subexpressions, For example, consider the statemset @ 3= ¢ # {¢ = ekl & o,
sihiich has the effect of assigoing 3&0#12 to &, vhere €, is the {niths: valae
of o, and assigning e, 41 to 2, Sush & trestment requires se@wing the valw
of the lufbtmost ¢ before ewecubing the smbedded aseigoment., Iet us
reluctantly postulate a processor, with a pushdoun sceunulaior stack 5.
Larreducing appreprists stocking and wnstacking opsvators, we sey hab %
{(the hesd of 8) ia the contents of the top vell of 83 that S (the fall of )
is the vemainder of §, the walue 8 would have LE the sbeek w»Bx ppped;
and %:8 is the value 3 would heve LI 5 were stackad on 5. These thres

corTalors & récogaizeble as the CAR,CDE, and OONE gpevators of LISL.
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The axioms goveraing them ave (ng}h = £ and {xss} = 8. How we may say
that {f an assigoment statement has the form Ki=f, the processor sbhould
pexform begin STACK (£); UNSTACK (x) end. If £ is of the fomm gth, STACK
£} is begio STACK (g); STACK (k); AP eod, where ADD pops the two top
stack eells, adds thelr contents, and staeks the resulky ADD is

Sz-s(s 5') ) s {3 ) } If x is a rariable, STACK {(x} 12 8§ g= ms35.

1f £ 13 vf the form x 3= g, STAKK (£) 4s begin STACK (g); STORE (x)
end, whare STORE (x) 1is mﬁbg UNSTACE. (k) 1s begin % 8= Sh,
On this basals, any assigomeat statement is equivalant to & segqueade

8 3= 5 apd,
f; R

of singie sssigmments without side effeciz; for instance,
gi= ¢ % {& 1= e¥i) # ¢
L4 squivalent to

bagin SgwesS; Sgees8; Si=l38; 8ia((F };‘ % Sk) {{s } } H

ook o o § £ a ® Sognn Qe =:7_,$-f"' (.ﬁ_\'o"', ‘_':,o
(ﬂnashs S’n-«{{st‘)h "# $§}9£{St}£}g S@E-&Uss $a~{€dt}h ﬂ&' thok(gt}tm 3

a3 ash; 385’3& ekl

If the sotecedent of the originsl statement 13 Ple,e,5), the strongest
veriflable consequents of the suesgssive séaﬁmma in the equivalest Sompoarsd
st@atemant are:

(1) (Ssees$) 3 (@S°)(8-¢28" A P{a,c,8"}).

(23 (83=038) 5 IS IS NS08 A 87 =0s8” A Pla,e,87)), ox
8"y 5-cr (e38”) A ¥la,e,87)).

£3) (Ss=1:8) 3 @8 5{S-1cfes{e28 2y » Ple,e,87)).

() (S3=((s), + shams,_ggm

B8 Y8 Y (5= (8" &« 8% h {{s"""ﬂ;ij A 87=lites{e:87Y) A Pla,e, SN

which simplifies, ’t{g application of the eguation $ =i:{es{ess J). to
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B8 (5= fedddzfers’ ) A Pla,2,57)),
(53 {eve8 )a@e ms";{@msh A S=(e #1)se”:i3") A Bla,e",57)).
Noeing chat 3 = e #1, or &'« S,-1 = exl, this becomes
@8 yiBear{e-1s8 ) A Pla,ex1,873).
(6) (S:=((8)), + S ¢ ((St}t)}%
G5 352202138 A Plm,e-1,87)).
(7} (8ssw:8) @ @87 ){8=€3(R-138") A Pla,e-1,5"}).
(8) (s3={{8), * 5, re((8, )33z
M8 8Ve-128" & Pla,e-1,8")).
{3} (et )
s, s"'}(m-,-sh A S=3e=1:8" A Pla”,ex3,87)), or
(Ga’, 8 oS-l A 8=3c¢-1:5" A Pla”,ce1,87Y),
(10} i&@%t)‘z
{‘gs**“)x:zem"'mw"){sas; A &=36-1 A 87 =3e-1:8" A Pla”,e-1,5 }}, o
s )ES I(8=8" A wBe=1 A Pla,e=1,8")), or
Ga Y o=de-l A Fla,cw1,8)).

Fer this statemexnt, then, the condition of verification gz ({a,c,8):03
te (Ba")(asde~l A Pla ,c=1,8))) [ Q, which is axectly the verifisaticu
condition for either of

Begin e3=ctl; es<3e-l and  aod

Begiln agsdedd; cr-cdl end,

Thus, the three statements sre shown to be precisely aguivalent, et lesst

vader the asloms {of sxsct arivhmetic, ete.) used i(n the wroof.
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Proofs of Termination

if & varified ovonran is entered by a path whose tae is then true,

then at every subsequent time that a path in the program is traversed,
the corzesponding propcaition will be true, and in particular 1f the
proegram ever halts, the proposition on the path leading to the selected
exit will be true. Thea, we have s basls for proofs of relstions between
ioput aad owtput in & prograw. The attenvive reader, however, will have
obeerved that we have not proved that en exit will sver be weached; the
methods so far deseribed offer o security against aon-terminstiog lwops.
To some extent, this is intriosic; & progrem, such a5 & swchaniesl proof
procedure, designed to recogpize the elements of 8 recurzively enumersble
biat pot racursive sei, oan not be gusranceed o terminave withoat »
fundamental loss of power. Most correct programe, however, cen be pro aed
to terminate. The oost geseral sethod appesrs to use the properiies of
well-ordered seta. A well-ordered set W is an ordered set in whieh esch
non-eapty subeet has 8 least member:; equivaleantly, in which thers are no
infinite decressing sequences.

Suppose, for exampie, that sn Interpretation of a fiowchert is supple-
men:;ess by associating with cach a;lge in the flowchart an expression for @
funceion, which we shall call g Wefunction, of the free veviables of the
floterpratation, takiog itz values in 8 well-ordered set ¥, 1§ w cso show
that after cech execution of & cummend the current value of the W-function

associsted with the exit is less than the privr value of the Wefunctlon

essociated with the entrénce, the value of the function must steadily descrazos.

Because no lafinite decressing sequence 18 possible ip & welleorderad set.
the progrem sust sosaer of latey tewminste, Thus, we prove termicsetioc, o

Rlobal propesty of & flowchart, by local arguwesnts, jus? as we prove the
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coErectness of 20 algoxithm,

To set wove pre¢lisely the standard for preofs of tersiaetion, lef us
latroduce & naw varisble, ¢, not veed crherwise in sn loterpreted progras.
Leteing ¥ designate che well-ordered set in which the Wefusetisns are o
be shown decreasing, and letting K be the ordesing relstion f ¥, it is
oeceasesly B0 prove for & commind € ubose entrance 1o tagyed with proposition
¥ and Wefunction @, @nd whose exit is togged with proposition @ end
W-fuockion |, that

v, (Bobefl § Qux < 5. 22¥W).
Cariytag out this proof for esch ecumsnd in the propram, with obviows
generailzations for coumands heviang multiple eatrascse aod exiecs, suffices
not saly to verify the interpretwtion, but alse to shew that the propeam
wisst tarodoate, 1f estered with initiel values setisfylog the teag of the
antrance.,

The best-kuown well-ordered set Lis the set of positive integers, aad
the most ochvicus sppifeation of well-orderdngs to proofs of tereination (s
o use &3 the W-function on each edge s forswia for the nuaber of ~rogram
steps until termination, or some well-chosen upper bound eo this number,
Experience suggests, howewer, that it is sometimes wweh wove copveniene oo
uwse other well-orderings, aund it way even be secsssary in sowe cases.
Frequently, an appropriate welleordered set is the ¢t of n.-2wics of
pué.im.va {or non-negative) integers, for mome fixad o, ovdered by tos
sssomption that {i;,1500000 3 % {4y, 5g0000,3,0 L5, 0¥ some %,
ijﬁj'};iif-’z*“°ikw1%'jkm1*1k LS jk,lﬁhﬁnn The fiowshert of Figure 5 showvs
&a interpretation using this well-oederiog, for n:2, to prove terminarios
it iz sgsumed in the ilnterpratetion that the varisbles reage over the
tategers; that is, the deductive systewm used in varifying the interpretario

st laclude & set of anicms for the {ategers.
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