

Copy No. 1 4

© CPL WORKING PAPERS
" This volume contains various papers concerning CPL, The
principal one of these 15 an unfipished draft of the Reference
Manual., This is preceded by a copy of an elementary programming
manual ‘and brief notes on the history, present status and future
~ prospects of the language and its compilers, and is followed by
various appendices, : -

These documents are not intended for publication in their

present state. They are'being'given a limited private circulation:

" in this incomplete form for reasons discussed in the preface,

July 1966. .

E i e T

Preface

In October 1962 a joint research project was begun by the
University Mathematical Laborstory, Cambridge and the Institute
of Gomputer Science, London {then known as the University . of
London Computer Unit). The aim of this project: was to design
and implement a new programming language for use on the Atlas I
“and IT (Titan) computers in the two establishments,

The initial team 6onsloted of D.W, Barron, D, F Hartley
and C, Strachey from Cambridge and J.N, Buxton and B, Nixon from
London, ‘

-+ It was intended that the language should possess the
. advantages of the general siructure and precise description of
Algol 60 but should be of wider practical utility, Many of its
‘maln features were settled at an early stage and were described
(in 1963) in a paper in the Computer Journal (ref, 1).)

_ Since the publication of the initial description the 1anguage
. has been subjsct to extensive redesign and further research work
has been carried out on its semantics {see refs, 2, 3).

The design of the language, as opposed te its implementation,
has never been more than a part time occupation for any of the
authors, As the language gradually approached its present state,

* the authors' meetings became less frequent and those who were not
 actively engasged in an implementation found it more difficult to
keep in touch with the ldnguawe At the same time some of the
-people who were engaged in an implementation began making sabstantlal

" contributions to the language itself, During the period 1963 to

 '1966 D.W. Barron left the CPL language group and D, Park and
M, Richards from Cambridge and &.F. Goultwris from London joined it,

The proper description of 2 programming language 1s no easy
task, and GFL, which is very considerably larger and more
sophisticated than Algol, presents a formidable problem, None of
the authors have been able to spare the time to document the
- language adequately, and the fact that it has been evolv1ng continuously .

‘has not simplified the problenm, _

, An Flenmentary Programming manual cxists in several versious,

the latest of which is included in this volume, but this only
describes the simpler parts of the languaze, anoo chapters of an
Advenced Programming manual were written (by G.S8) but these, too, only
cover the easier parts of the language and by now need consterable

revigion,

‘In Spring 1965, therefore, the authors decided to prepare and
if possible publish & Reference Manual which should contain a complete
" description of CPL as it then stood, It was not intended that the
Reference Manual should be an introductery text and no particular
. pains were to be taken to make it easy to read by the uninitiated;
it was hoped, however, that the result would not be as difficult as
the Algol 60 Report.

The first draft was prepared by JNB after a series of long
meetings at which the authors discussed the points at issue,
The second draft was then prepared by JNB, DFH, MR, GFC, and DP,
eacl writing one or more sections, These were then revised,
edited and partly rewritten by C3 to produce the 1ncomplete draft
which forms the main body of this volume,

At 2 meeting in June 1566 the present authors (JNB, GFC, DFi,

EN, DP, MR and CS) decided that the present volume shoqu be made
. uvallable to a restricted audience as a research report, The chief
reason for this was that many of the authors by now had too many
other commitments to underteke any further work on the language,
At the same time it was generally appreciated that at least two
important additions to the language (Compound Data Structures and
- Begmentation) were essential if CPL were io be of wide application,
With the very limited effort available it was felt that an interim
publication of an unfinished document which cculd be carried out
with very little work was all that could be expected if the vital
- work of developing the language additions was not to be delayed too
long to be incorporated in a new implementation which MR hopes to
start at MIT in the autumn of 1966. The present volume 1s the
result, : -

Major developments of CPL. are to be expected in the future,
In particular a scheme for incorporating Compound Data Structures
in g very general way is under development, % 1s also intended
to consider the problems of segmentation and, more generally, of
the relationship of the language to ils compiler and operating
system, Other, less wholesale changes are under consideration
and a list of these is given welews ar 4m dopmdir.

If these developments prove successful we would hops to
extend and revise the current draft of the Reference Manual and,

in due course, tc publish i1t,

- References

KR Barron, D.W,, Buxton, J.N,, Hartley, D.F,, Nixon, E,, and

Strachey C. (1963) "The Main Features of CPL“. Computer

Journal é 134=143,

2, Strachey, 6, ‘“"Towards a Formal Semantics" in "Formrl Language
Description Languages" ed, T. Steel, (1966) MNorth-ilolland,

3., Burstall, R.M, “Some Aspects of CPL Serantics" (1965)
Experimental Programming Report No., 3. Experimental
Programming Unit, University of Edinburgh.

‘L4, - Barron, D,W, and Strachey, C. "Programming" Ch. 3 pp. L49-B82
’ in "Advances in Programming and Non-Numerical Computatlon

ed, L, Fox, Pergamon Press,

UNIVERSITY OF LONDON INSTITUTE OF COMPUTER SCIENCE
THE UNIVERSITY MATHEMATICAL LABORATORY, CAMBRIDGE

CPL ELEMENTARY PROGRAMMING MANUAL

Edition II (Cambridge)

" {including corrections and revisions)
. . S J&N. Buxton
Coru Exchange Street, J.C.Gray

Canmbridge. .D. Park

January 1966

177 wich to God that iicac eale-lawions had been executed by steam,'!

(Charles Babbage, to John Herschel; 1820)

1, INTRODUCTION.

CPL, (Combined Programming Language) has been developed as &

 Joint project between the University of London Institute of Computer
_‘Scieﬁce and the Cambridge University Mathematical Laboratory, In concept
:]it is an extended language intended to cope with all possible classes of
_.Jprog?anh whether maumerical, non-numerical, list-processing, heuristic
:,ﬂ_br clériéal.
| CPL is not jﬁst an extensioh of any previous language, {although it
‘»_contains meny features of ALGOL 60) bﬁt has a distinctive philosophy
and logical coherence of its own (see the Advanced Programming Manual
" end Reference Manusl for deteils). In particuler it is intended thst,
save for those exceptional cases in which an extremely efflcient
program iﬁ required, progremmers willl not have to escapé into machine
eode, |

The followlng Elementary Progremming Manual restricts'itself'to

_ the centrael part of the language., Peripheral matters such as
- input-output, ete,, depend on local conditioﬁs end will be deslt

with in locel users' manuals issued by the various establishments

- using CPL.

2. THE CPL ALPHASET AND BASIC SYMBOLS,
The following 1s a list of permitted CPL characters,

o which may occupy single ;print positions in & prin'bed CEL -

program-
ABCDEFGHIJKLMNOPQRSTUVWXYZ
'abcdefghiJklmnqurstuvwxyz
| 0123&56789'

 lABCDEFGﬂIJKLMNquggggzggzgf

‘_g..,_la,t_-+§! o |
=trtéczAh by o

B CPL prog,ra:ns are made up of these chara.cters a.lone.

Certain combinations of 'bhese chara.c'hers ha.ve a special significance,

and should be regarded as self-contained entities: e.z, certain

‘ underlined words, the assignment operator ":w' ete,
-~ These are called BASIC SYMBQOLS and are listed in Appendix 1. Underlined

- words may be written in upper or lower case, or a mixture of tne two,

' Bpaces in baslc symbols are ignored.

. Thus then may be written T h eN. The basic symbol if has nothing to do

~with the letters i and f, and has a completely separate meaning from the

*, combination 'if' appearing without underlining in e program. Beslc symoola
. are introduced as t.hey arise in subseqacnt sections,

2,

3. ITEMS, TYPES AND NAMES.

A CPL program specifies processes to be carried out on ITEMS

" of informetion, These items may be numerical (variables and constants)
- or non~numerical (e.g. bit-strings and. character strings), and if
-they are numerical they may be real or complex and may be stored to

- more or less than the standsrd precision. Every item must, therefore

 ere:

~have both s NAME and a 'I'YPE. (Constants are an exceptlon:; they have

a type but not a name.)
The most common type of number is the reml number. {(Note the

underlining: real is a basic symbol,) A 4ea.'l. veriable 1s held
in floatlng-point' (in Atlas this means that it has a range of

the order

_ 113 113
+10 to ~i0

- with a preclsion of about 12 decimal digits)., Other numerical types
are; : oo
double A floating point number with a precision

. about twice that of a real number,
(On A‘L.‘l.as, about ?J+ decimal digits).

complex . An ordered palr of real variebles.

‘double complex An ordered pair of double variables,

index An integer used In subscripting operations. '

A type 1nteger can also be used on Au.las, integer arithmetic is ca.rried out
in floating-point and the result rounded off when a value is assigned - :

- to an integer vaxiable.
Complex and double precision working are not further described

© &8 they will not initially be implemenued

Among the non-nunerical t.y:pes of :L'nem on which CPL operates

: Booleé.n a truth value which is true or false
logicel a string of binaryjdigits , of standerd length.

(On Atlas, 24 bits')

- long iogica.l . a strlng of b:.nar:,r d:l.gits, of twice the
w standard length ,

string " a tharacter stringL

A1) 1tems (except constants) appearing in a program are 1dentified by .
NALE.S, which are of two sortas, SMALL and LARGE. .

: A SMALL name consis s of a s:.ngle lower case lettier, optione.lly
. followed by one or more pr:.mes, e. g. a, b, y, y y” -

, A LARGE name consists of an upper case letter, optionally followed
- by a string of letters {upper and lower case) and/or diglits and decimal -
~ points, optionally terminated by primes, e.g. A, Xyz, ALPHA, Beta, Sq.hkt!,
- It may not ineclude spaces, as cpaces are terminators, .
Large names are entirely the programmer's affszir end he can
invent them to suit hie own taste: they may be short alphanunmeric
sequences, or they may he the actual names of the quantities which
they represent, or they mey be mnemonics, Some large names, however,
are reserved for standard functions, e.g, LShift, Mask, and if used
by the progremmer with another meaning the standard function will
temporarily be inaccessible, '
There is no restriction ca the number of characters in a name,
Sometimes a name can stand for different items in different
parts of a program, The important concept of the SCOPE of & name,
that is the region over which a name retains its meaning, is dlscussed
.- under ‘Block Structure’. ' - ‘

e e e A0 7S T AT 1 8 0 T 4 N R R BT S S L T AT

L, EXPRESSIONS AND ARTTHMETIC EXPRESSIONS.

4,1 References to items of information, which way be either
varisble names or written constants, can be combined

" together with operators and standard library function

‘names to form EXPRESSIONS. Each expression can be assigned

a type, which depends on the types of the component varlables

" and constants. For the moment we will consider simple arithmetic

expresgions, 1,e., expressions involving variables and constants
of mumerical types real, index, complex , etc.

L.,2 Arithmetic expressions are made up by combining numerical
varlables and constants with the erithmetic operators and RCUND
- brackets, Brackets may be used to any degree of complexlty.

© The arithmetic operators are

b - x /A

The use of the maltiplication sign is optlonel. It is usually
omitted, as multiplication is implied by Juxtaposition, unless
by including 1t the expression can bhe made easier to read.

In particular it is desirable to include it after a large name;
if It 1s not ineiuded the name MUST be terminated by a space.,
Solidus indicates floating-point division (rounded guotient

" and no remainder); the remainder is’obteined by a standard

function, Up-arrow (/) indicates exponentiation.
Wormally, sufficient brackets should be included 1n an expre551on _
to make its meaning unambiguous., However, if brackets are
- omitted the priority of deallng with arithmetic operators
is as follows:

" Pirst: multiplication, divislon and exponentiation
second: aedditlon and subtraction.

Maltiplication, division and exponentlation are of egual precedence -
- and associate to the right; that is to say, in the case of any
- ambiguity they behave as if brackets were inserted so that all the
closing brackets are grouped at the right.

Addition snd subtraction associate to the left; that is, brackets
are inserted so that opening brackets are grouped to the left,
Some examples will make these rules clear:

a +:b +c is equivalent to ((a+b)+c)

a/be ‘ AR (a/(bc

e/fo+c | e ((a4b +C)

8 + be + de/f ‘ tee -~ ((ar(ve))+(ale/1)))

Prefixed + and - are treated as (+1) and {-1) respectively,
80 that -afb is equivelent to (1) (edb), NUT (~a)fo.

h 3 Arithmetic constants are usually written ss decimal constants,
is used to indicate that & decimal exponent follows.

Binary exponents are not allowed,

Some examples ares

153, 10.47, 2.108"8, 27.0, 0,34*-8

L. L An erithmetic expression msy include calls to standard
library functions {or to the programmer's own defined functions)

in plece of veriables or constants, Some standard library functiona are:

Sart[x] the square root of x

Explx] the exponential functian

Loglx]

Sin[x]

Cos[x] _ .

Tan[x] : i

Arctan{x]

Mod[x] the modulus of x

Intpt{x] integer part of x; i.e. ‘the integer y such that 0K y<1
Rem[x,y] the remainder of xfy, i.e, x-yIntptlx/y]

Note that each function czll has the form of a function name
followed, in SQUARE brackets, by a list of arguments
separated by commas. The written arguments are themselves
arithmetic expressions, end may Include further function calls,

al

4,5 BSubscripted varisbles may alsoioccur in arithmetic expressions;
these have the same form as function calls, with the function name
replaced by an array name, Arrays will be discussed in section 1k,

4.6 :Other forms of arithmetic expression are: conditional
expressions (Section 11) and result expressions (Section 22),
These can also be used in arithmetic expressions in any position
where a variable might otherwlse occur. If used in this way, they
should be bracketed in such & manner as to avoid ambiguities.

5. DEFINITIONS AND COMMANDS.
" A CPL program is made up of DEFINITIONS and COMVANDS.

. The comuands specify the arithmetic and logical operations to be perfqmd, L

. by the computer: they alsc control the execution of the program, .

" The definitions provide the information that is necessary

for the computer to 'understand’ the comwands. For example, since
- the programmer can invent names for. va.r:.ables to sult himself,
' the program mst include definitions associating these names
with specific data items. These definitions mist also specify the

- types of varlables (there is no implicit association of certain

names with particular types). We shall return to the various forms of .

e " definition in section 7; for the remainder of this section we sha.l].

study the ASSIGNMENT COMMAND.

. "5,1 Assignment Commands,

~ In the previous section we have seen how to cons ..ruct expressiona, '
.. whose evaluation will produce some mamerica:l. value. The a.ssignment

- operator ':=' (read 'becomes') can lie used to change the value of
eome variable to the result of such en evaluation. Thus the coma,nd

X = X1

evaluates the current value of x, adds 1, end assigns this as the "'ﬁ_:

- -new value of x.

Typical examples of assignment commands are:
iz .

x:=a.x+by+c
POWER : VDI..'ISXAMPS

"‘N.B. We do not use the '=' sign, as this 1s reserved for L

. conditions {Boolean expressions) and definitions.

Asslgnments between variables of differing types a.fe .

. permitted, a transfer function being imvoked to transform

" the value of the right hand side to'the type of the left ha.nd
variable, This may result in a run-time error, if the right
hand side has a value which 1s out of range, or cannqt

be transformed in this way,

- 5.2 'Al_ simple assignment command has the form

- <variable> := <expressior> - 13 '
(<wariable > should be read as 'some particular ve.ria.ble')

: Usua.lly commands are written on sepera.te lines, and the

-end of the commsnd is implied by the end of the line,

However, commands mey be m-itten on the same line, sepera.ted
by semi-colons, thus:

X 3= y+x, x' i=y; x'' =0

- but this form 1s not recommended, since it is difficult to

- read.
If i1t is reguired to continue a eommand onto the next l;me,
~ the symbol ¢ may be used, elther immediately before, or

' 1mmedla.tely after, the newline.

5.3 -Multiple mesignments are allowed, for example

%nxL,x'Y o= oy, y,0

L The items on the left-hand side are names of variables, and' '
~those on the right-hand side can be variables, constgnts or -

L .expressions, The items in a multiple assignment need not all

. be of the same type., For example, if &,b,c¢ are resl variables,
. Bnd 4 18 a Boolea.n variable, the following command is valid:

-) a,b,c,d s= 0,0, a+b, true
: '.letiple agsignments are effectively carried cut in parallel, so'_' 't.ha.t.

X, ¥ i= ¥;X

' actually exchenges x snd v, i.e, it is NOT treated as

Xi= ¥y ¥ i= X

B -'which' would assign to both x and ¥ the prév"ious value of y;'__

B A mltiple assignment is considered es a single command, Ui o
however many items are involved. _ '

5w A COMPOUND COMMAND consists of a sequence of
L L commands enclosed in SECTION BRACICE'IB-§S-‘- oon-o.i.i"j’:

$ Y+ x
=0 §

A compound commend is considered as & single command,

% ¥
SV

B 5.5 Bection Brackets,

.. A feature of Pe.irs of section brackets, used in forming -
. compound commands and blocks, 18 that they may be tagged:

73 IO =N

thus mcreasing the eclarity of the written progran,
Moreover, section bracket pairs mey be nested inside other
- pairs, and the insertion of the elosing section braecket

.- is performed a.utoma.tica.].13r for each nested. § which lacks e *I

t.?go §2508Esnte.0nnulnhnll00

5211'11?009!0&40!.056&
§2oeacetaonuvsou-

LI I] &

. Closing section brackets $2.1 end §2.2 are inserted
- sutomaticelly before $2,
.. Any sequence of letters, digits and dots, optionally temna.t.ed
by Primes, may be used for a section bracket tag. :
A space must NOT appear between the section bracket and its 'bag.
It 18 recommended that &ll section ‘breckets, whether tagged or not.,
~ should be followed hy a epece, after the tag, if any.

6. PLOCK STRUCTURE,

A BLOCK in CPL is an extended form of compound eommand,

" It 1s defined ss a command sejuence, preceded by definitions,

. THE WHOLE ENCLOSED IN SECTION BRACKETS.

Wherever we could have a cohlpound command in CPL we can insert a bl nck
and thus a CPL program will usually include blocks nested inside other
.- blocks. The importance of this concept arises from the way in which

" blocks determine the SCOPES of variable names: the definitions at the

head of a block are valid withln ‘l;.hat block a.nd an hlociit encloses, o W

but not outside, Vasaeies declared @ At the heea Oy 6 blade o} Baat POk
~ The variables deflned at its head are said to be LOCAL to the

block; variables which are not local are seld to be GESEAZ to the ”"':;"' o;,?z‘;
inner block, The whole program is theoretically enclosed in a block . ‘
- contalning definitions of the standerd Tunctions Log, Exp, ete,
 (Lebels, however, are local to0 the smallest surrounding routine or

result expression; this is discussed more fully later).

It is important to note that, since it may be the subject of more
than one definltion, & particular name may not have the same meaning

. throughout a program,

o - A definition supersedes any previous definitions of the seme neme
within the block in which it dccurb. o

7. DEFINITIONS.
_The definitions in & CFL program must associmte with every

" heme introduced by the programmer a type, and possibly & value,

- The simplest form of definition is simply to define the type of an item, '
- leaving the value to be assigned later. All definitions must start

with the besic symbol let, thus:

let o be real

" simultaneous definitions are performed by the construction:

s -write-

let 8, b, ¢ be real, integer, complex

Alterna.tively, if several :h,ems are all of the same type, we maar

let a, b, ¢ ell be real

let x, y both be complex

- As w:lth assigmment commands, several definitions may a.ppeer on ‘bhe '
‘same line, sepa.ra.ted by semlcolons: e

l_et a, b, ¢ all be real, let x, ¥y both yg-compleic.

%

Ta1 Initislized Definitions,

when a nawe is defined by Lyps et the head of a block
this indiestes that we intend to use & varisble of the specified type

and name in the subsequent program, bult it does not assign any value to
the varisble, It is often convenient to assign initisl values at the ‘
same time as we define variebles, and this caen be done as part of the

v'.*definitions, for example:

u ;”j;-is assigned to it every time the block is entered.

Clets, t, m, x1, 0, 1

| lot PL = 22/7
NOTE particularly the use of '=! , NOT t3=! yhen setting initial vglﬁes;if
The type of the defined variable is deduced by the compller from L

the expression used to define it, It should be noted in this context

“that the compiler hae a 'preferred type' and if possible 1t will
represent items such ae decimal constants in the preferred type.

" For example, when the preferred type is set to real,
let a, b, m‘@g 56 - L -
définés two reel varisbles, B
A variable can be initislised in terus of verisbles defimed in SO
f_surrounding blocks, for exsimple: ‘ _
81 let & be real
B 5% sossncasoes

§2 iet v = 2alari)

P BQ3RETINSGH R

" “Vhen & varisble ie initielised in a blockhead, then the initisl value '

. .9‘

8. DEFINITIONS BY ‘and’ ARD 'where'.

The full definition system in CPL gives the programmer
considerable control over defining his terms. They may be
defined ‘msequentially' or 'simultaneously’, simply or recursively,
qualified by other definitions or not to an indefinite degree of

_complexlty.

e The simplest forms of definition have already been o
_1described _ ‘

let s, bberesl ; letc, d =1, 2

v A‘seQuence of definitions mey ke activated in parallel_and'treated g
- a3 one definition I1f they are jolned by and, as shown bhelow:

A Slleta=5
§2 let & = 10; let b =

BI §1}_.££&=5

: The &cope of variables defined in definitions {non-recursive) is
. the body of the block in whose head they occur, and the right-hand
" .gldes of any subsequent definitions in the block head, - In case
- A the initial value of fb' is 10, as the scope of the newly-
‘defined 'a' includes the definition of ‘b _
However, in case B, the initial value of 'b' is 5, since the definition '
- of ! is not within the scope of the second definition of 'a', - _

The where clause enables us to introduce definitions vhich apply
only to a particular expression, commend or definition.
-+ It is of particular use in quelifying initialised or function o
_ﬂefinitions (zee Section 18}, For example, N

p i= (8Xxx + bX + c/x) vhere X = 28 + b
- let p = £[3e+b]/r(3b+a] where £lx] = axx +bx +efx

| f}gﬁ p = F [2a + b] where F [x] = ¢ [x,b]

mmch'y _
A where cleauze q_uali;.les the largest wesodble preceding expression, -
command or definition., This 1s en important rule when it comes to
-qualifying & function de:f‘initioni. Thus, ,

let £{x] = (1 + yy)/y where y = glx]

wis probebly incorrect, since x in the where clause is not ta.ken as
~the formal peramster x of £, tut ds a g].obal var:.a'ble of the same
nawe. The correct version would be: . .

let £lx] = ({1 + yy)/y where vhere y = s[xn |

L in which the where c'l.a,use is in the body of £, and qualifies an. expression.‘
This interpreta.tion :La forced by the use of the parentheses. ' o

G, BCJDIEAN VARIABLES AND BAFREISIOND.

w9l Variables and expressions of type Boolean van take one of Just two
va.lues when evaluated; the constants tirue and false, '

It is convenient to regerd conditions es Boolean expressions. A condition
" . holds if end only i1f it hes the value true when evaluated as a Boolea.n
' expression. It fails if it has the velue ii felse, - .

The simplest form of condition is

<expression><relation><express lon>

' where <velation> denotes one of the following:

==I=5£>'g-<§<<>>

Y= 4t are equality, inequality signs, - - |
and are interpreted in the standard manner. wa n-pp o S 3““"’5 !i‘ﬁ f?"“
They are applicable to all types of expression. wemom o

51,157, 1<, <", have the obvious meanings,
and are appl:,cablg to expressions of types real,
double mnd index (not gemplex),

oo <<, ">, are applicable only to

. real, double expressions, a<<b is interpreted

. 88 b = b + 8, in floating point srithmetie. (On Atlas this implies tha,t
a is of order 10412 smaller than b, if &,b are real,) ,

In keeping with accepted pathematical nota.t.ion, conditions may be ex'bended,
thus
a<b=c<d -
is an acceptable condition, which holds if
- a<b . b=c ed .
all hold, end fails otherwise, s
" (Note that (a<b) = (c<d) is also acceptable, but holds under
‘completely different ‘circumstances, when ab, c¢<d have 'the sa.me _

: '_ truth values).

‘A condition cen be a.ss:u.@ed to & Boolean variable, _e.g.
let X, ¥ be real, let b be Boolean : _ ‘

ﬂ.'.".

'b *=;Dy L

‘l!!.iﬂ..

conditions combined with the operators: o

. infixed operators assoclete to the left.

9.2 The general form of Boolean expressioh conaists of Boolean variables and

P
R
o

{not)

(and)

(or)

{if and only if; equlvalent)
(exclusive or; not equivalent)

Fn < >0

The operatore are glven in descending order of precedence: the

1

The main use of Boolean variables 1s to record the result of a test for

7 later or repeated use, In & conditional expression or conditional commsnd
.- 'we can write the name of & Boolean variable in place of an expreasiont
- thus if b is a Boolezn variable,

- 1f b then do C

. ? is read as

"1f b has the value true then do C'

1061

10, LABELS, JUMPS AND CONDITIONAL COMMANDS.
Any command can be labelled; the label being written

B before the commsnd and separated from it by a colon. Any neme (large

or small) can be used ag a label, provided that it is not at the same
' time being used for mny other purpose, (Note that NUMERICAL LABELS
~ ARE NOT ALLOWED, and section bracket tags are NDT command labels)

Examples of labelled commands are! .
B Li: Xyz 2= P + Q
SQLVE: a := 2
'Loop: 8 i=b+ 5 | »
The basic form of transfer commend (or Jﬁmp) is EQ to <1abe1>, e8¢
£0 1o SOLVE | | ' o

 Alternative forms for £0 to are goto end go to. .

I3

. 'The scope of a lebel is defined es the smallest surrounding
" routine or result expression (section 22}, so. transfers way be
- written to labels wlthin blocks nested deeper than the position of the

- transfer commsnd; thus :

-Egg‘ Routine R be

2 G G e A

SR

. The execution of a transfer which leads into new blocks is
understood to cause the activation of all the definitions in the blocki"'

heads through which 1t leads.

10.2 It is often required that a jump be conditional on some
relation holding, or ceasing to hold; this facility of conditional

- commands, together with conditional expressions;, removes to scme
_extent the need for explicit labels in a program (and should be -

exp101ted)

a2

" unless & >> 1%.7 gete END

- - two alternatives; depending on gome condition. The basic form 1s:

' or is mccepted in place of or do,

10.3 The first form of condlitions) comend iss

if b then do C

b represents a Boolean condltion which may be true or false: _
if it hes the value trug the command C is obeyed, otherwise it is
omitted and the next comuand obeyed. . . :
‘An alterngtive form whose meaning 1s obviocus is:

unless b then gg &

In both cases then or 4o are accepted a8 synonyms for thén do.
Here are some examples of conditionsl commands:

EE.E<D then do a:=¢

R Y

Note thaet for a conditiconal jump we normaelly write

'if b goto L', not ‘if b then do goto L', (elthough the

 latter form would be T eorractly 1nterpreted by the compller)

88 ‘then do' may be omitted when followed iummediately by taoto!,

10.4 Aﬁother-form of conditional command enables us to choose oné of -

test b then do C1 or do_ €2

. If b has the value true command C1 is executed, otherwiseé commend €2
1s executed, .
For example,

test {a+b)${crd) then do X:=0 or do Yi=0

| Again, then or do are sccepted in place of then do;

10.5 We can construct mlti-level conditionsl commands,

for exsmple
test bi then do €1 or test b2 then do. €2 or C3

If bl 1is true the command Ci is obeyed, otherwise b2 is tested and command
- 02 or €3 is obeyed according as b2 is true or false.
- This may also be writteno _

test bi then &1

- or test b2’ then ca

as the comniler will infer in such cases that the end of the line
- does NGT imply the end of the command ‘

N 'E3s

10.6 Sometimes it may be desired to skip a whole section of program
if a certain condition holds: this is s situation in which & compound
command is useful, A compound command is considered a 91ngle command

50 we canr have constructions likes

if p»65 then do § a‘ﬁo
=c+d /e
fwg/kn $

11 CONDITIDNAL EXPRESSIONS.

~ We have, in conditional commands, a powerful mechanism for
" performing conditionsl operations. Conditional expressions offer

an alternative way.
The simplest form of & conditional expression is:-

= El , E2

- Here b is a Boolesn condition and Bl and E2 are expressions

- (which may, of course, be varisbles or constents). If condition b has the
- value true, the value of the expression is El, otherwlse it is E2..

A condltonal expression could be the entire right-hand pide of a

. command, for exemple;. : '

8= a<0—~+0, a8
This 1s eguivalent to
if a<0 then do & := 0

- However, we can include the conditional expression in a more complicated
right-hand side; in .this case it must be eneclosed in brackets, for

example,
a t= a+ (c30 = bje, @)
Similarly, we can use it as the argument of a function (section 18), thﬁa:
| a :=b+ FNla < bre = x{1], x(2]]
More elaborate possibilities are introduced by the fact that El andl

. ,Ea are themselves allowed to be conditional. This permits the writing
- of extremely complex conditional expressions; for example, '

bl =~ b2 = B, E2, b3 = E3, E4

If such an expression seems unclear, 1ts constituent sub-expressions
* should be bracketed, The completely bracketed expresslon whose
effect is identicsal to the example above is written

(bi =~ (b2 = E1, E2},(b3 = E3, E4})

- Conditionael expressions can be applied to expressions
of any type permitted in CPL, For example, with label expressions

g 0 (a<o0=ll, a=0"12 I3)

4 conditional expression cen also appear ort the LEFT of an assignment
command S.o

(x >0~a S, b) t=p4ag

Here, IT x> 0 = ig set equal to p + q, otherwise b 1s set equal
"to D+ g,

13 B LAEPLD{PRESQIQNS e
. Thé form of a 'i;faﬁsfer comrand ié |
£ to < .labél exi)ressipn >.
| '{rlf.jere. a label e;'{préssilon has as 1ts value a command label. In the SRR
simplest case it Is in fret just such & lebel, but it can be a label

:-_var:.e.blfa., Varisbles of type label hold ae their valucs commend labelsy
asgignments may be made to them in the usua.l nay. Aa an example of s

their use, consider the program

R. let o 'he Boolean and L be label

“In this instance, L 15 used as a link which may be set to hold different
comman-:l labels under d:..['ferent cond:l.tions and may leater be used in S

transf‘er comtands ,
. More complex linking meche.nisma cen be set up by defining
lebel arrays, snd using varisble subscripts to transfer to . -

: _--daiferent .la,be,ls dePnding on circmnatances. '

f3- - CYCLES AND REPETITIONS

13.1 Various facilities are provided in CPL to cope with cycles
and repetitions, If C is a command or comprund command, end b is
'8 Booleen condition, then the instruction _

" C repeat while b

__causes'c to be obeyed once, and to be repéated as long es
‘b 1is true. Alternatively we may write

while b do C

' In this case, if b is false initlally, C is ‘omitted,
and control is transferred to the next command in sequence.

Variants on these with obvioua meaninga are:

C repeat until b

until b do C

1]

" If severael commands are to be repeated, they
MUST be enclosed in section brackets.

:13.2 Modified repetition of a comrend, simple or compoﬁnd,
is done by using the for commend., One form of this is

for <variable> = Step El, E2, E3 do C

~ Here E1, E2, E3 are expressions or constants and C is a command.”__.

e ‘

4#emnn-—§§52-6—~e=47—4-4kr1?

C is executed n+1 times, where n is the value of (E3 - E1)/E2, rounded

'to the nearest integer; the controlled veariable takes the values -

El, E1 + E2, E1 + 2E2, etc., in turn. Note thaet the expressions E1, ¥2, E3,

- are evaluated once and for all before the cycle is started; it is not
possible for the cycle to change the increment or the end condition,

- Note also that it is not necessary to write repeat after a for command.
A for command has a similer structure to a BLOCK (see section 6).

The controlled veriable is local to the repeated command, and its TYPE
- is deduced by the compiler from the types of El1,E2,E3.

~ This means that when the repetiticn has finished the controlled oo
- variasble ceeses to exist and it is not possible to use the finael value
- direetly. If the programmer wishes an external variable to be used,
* . the for symbol ia fbllowed by ext, thus-

for ext Ri= gggg 1 2, 11 do

PR S
IR

= "-"16._ .

.- 1is that the controlled varieble Is set before each repetition

: 13.3 A frequent use of the s tep form is in epecify:lng unit Bteps,' '
3 thus. _ . .

for v = step E1,1, E2 &9 C

Th:ls may be replaced by the form Ei to E2, thus

¥

for v =11t 20 do C
 Similerly:

| for v =1, 2, vua, 2040 C

_ where the meening is self-explenatory, The commas are mﬂnﬁé.tory,

and st least two dots mist be used.

- 13.4 Another form for specifying repetition is the explic:lt
list of values, for exemple: _ _

for X = 0, 1.7, 2.51 do C

- - As many values as desired can be included in the 1ist: the connnand c -
" 18 obeyed with the controlled variable taking each velue In turn, '

e 13 5 With all forms of the for command, the strict definition SR

to the next value in the control seguence, which cannot be a.ltered
" from within the loop. .

13,6 Any of the forms of repeated command in this section may .

. be terminated either by & transfer to a label outside the comma.nd, :
or by obeylng the basic command break, which efrectively transfers control"' '
to the command fc«llcming the sme.‘l.lest. repeated commard containing the -

: break order.

-]h. ARRAYS AND INDICES.

In CPL we have arrays of any number of dimensionsg, that is to say, .
subscrigggd variables with any number of subscr¢pt§ though 1~ and 2«
dimensior nial arrays are probably the most likely, “Af erray is given a ngme
like any: other variable, and must be defined at the“head of a block
along w1th the other varlables used in the block L
The definftion muist specify the dimensionality QF the array, and the '

type of its elements, for example:

% o
1e£ 8, XYZ be real 1 arrey ,index 3 arngg%ﬁ

The symbols ector and matrix are synonymous with 1 array and
- 2 array respéctively, (Wote that 1 array is NOT hyphenated).

However, it does NOT follow that variables defined in this way obey
the rules of matrix algebra. With a few exceptions (detailed later)
. all array operations must be cerried out on the individual elements

. &8 in the example at the end of this section.

e It is aleo necessary to set the range of subscripts,. The way in
" which this is done is described in the next section. :

- An element of an array 1s referred to by writing the name, followed
Ty the subscripts in SQUARE brackeis, separated by commas, thus:

A [10} ;, xyz (1,3,k]

 The subscripts can be expressions if required, for example:

XYzli(1+1), 3(5+1), k(1)]

It is sufficlent to use real or integer variables in these expressions,

but index variables may always be used.
' :The use of index varlables in subscripts sometimes speeds up & program

As an example in the use of arrays, suppose we have three two-

"}dimen51onal square arrays A, B, C, whose subseripts go from i to n,

then the followlng program sets C equal to ‘the matrix product AB:
fori=1tondo o
§1,1 for j=1tondo
§1.2 leta=o0
for k=1 tondo
§1.3 a :=a + Al1,k] B[k, 3] $1.3

'CtiJJ] = e ¢1 1

the that the section brackets tagged Ts 3 are included for purposes of clarity
only, the variable a is local to the block with tag 1.2 ;

'v18;

- 15. ARRAY INITTALISATION.

) An erray must be initialised bhefore its elements csn be used
in any wey. Thie cen he dorie by an initimlised definition of 't.he

. _-. arraor, €. g'»

let A =B

with B already initimlised: or by defining the arrey by type, as
in section 1L above, end then assigning to it:

- let A be resl 1 arrey

A =3

' _'_,‘Before initielisation, an array does not possess any elements ,
The function Newerray can be used to obtain an array of the required;'._

type, d;menslonality end subscript range, as shown in the following :

examples:

let A = Newarray [rea.l (1, 10)]
let B = Newarray [1nteger, (-4, 4}, (-1, 5)]
let C = Newarray [real, 31, n), (1, n), (1, n)]}

|

A 1s & one-dimenaionel arrey of real elements, with subscripﬁs o

T running from 1 to 10.

x B is a 9 by 7 rectanguiar array of integer elements: the first
 subscript runs from -4 to +4 end the second from -1 to +5,

C is a dynamic arrsy, that is to say, itas d:n.mensions depend on some

- previously computed quantity, and mey be different on the seversl Occasiohs

- ~on which the relevant block is entered. As in any other initielised =
. definition, the array bounds may be expressions involving varia.'bles .
- global to the block, :

The elements of the arrsy produced by a call to Newarray are not
initiaelised in any way.

© . If it is required to specify the values of the elements when the |
. array is initlalised, the funciion Formarray can be used: e.g.
_1_9_13 M = Formarray[real, (1,2),(1,2)][8,10,12,-16]

This definition both defines M as a 2 by 2 array and also initialises
~the values from the second argument list; i.e. - '

M1,]
oM2,1] =

8 - M2} =10

12 Mlz,2] = <16

1.,

16, ARRAY EXPRESSICNS.

. Arrays are regarded as being variables in their own right; : :
the dimensionallty and the type of thelr elements is fixed on ™
defini tion, but the bounds may be changed by commands, o
They may be defined by type only, as in

let Work, Place be real 3 array, resal 7} array

B .. or they may be initialised thus
let Work = Newerrsy [real , (1, 10),(1,10),(1,10)]

- The right hand side of the initialised definition is an expression
of the relevant type; in this case, an array exmession, Such an-
Ll expression consists of elther an array name or a function call
S 'which produces an arvaey or space for an array.

Array assignment comands way be written thus

Place := Work : ‘
Work := Newarray [resl, (1,5), (1,5) (1, S)]

S By the use of such commands the bounds of an array may be cha.nged.

. during operation of the progream at any stage. When a command such

~ &s the first example above is obeyed, the value of the righi hand
~slde is taken, &p-bhie—cese-an-elementeby=ciemeni—eopy—of-the-arrey
T e lyeand-thie-new-copy-is—-aes: ed—ﬂto*‘bhe*arra ariaeble :
S LRlscat., i Thay Case dun W W«.H Kolrued {0
- “"",'_'j tw,,‘,_‘ Notz fthar ~afiler fal mgm-e-s nm sBrage area » rkmed MM;,‘
! - L I w
. _ NOTE the distinction between an erray expression whose P M g
~value 1s an array, and a reference to an array element whose L

) va.lue is a dava 1tem, for exa.mple, a real number. - :

u.am‘:) m bu:;"-f..au:oh alp‘:, TM'?ﬂew.oJL |
Wt

% b -(.opla M a‘”-a A M_ “"“ﬁ“‘ me ‘-'-07"3 u, B

il

17. FUNCTIONS AND ROUTINES,

The concepts of FUNGTIDN and ROUTTNR ave of central importance

;in CPL. Both are self-contained subsections of the program,
written in terms of dummy veriables {or FORMAL PARAMETERS); they

may therefore be celled at different places in the same progrem,
usually with different sets of values for their arguments.
A routine is essentislly a COMMAND {(which can of course be

' -eompound, and include assignment commpnds), which is obeyed.

A funetion on the other hand 15 an EXPRESSION, the evaluation

of whieh produces a RESULT. .
Both functions snd routines are treated as entities In their own

:right and have names. The type of a function includes the type of
its result (-.g. real function). '

A FUNCTION or ROUTINE CALL 1s written in the form of the function S
or routine name, followed in SQUARE BRACKETS by a list of expressions_;_j'

- separated by commas (ACTUAL PARAMETERS). |
" When & function cell is encountered as an expression to be evaluated,t]“'“-

the formsl parameters teke as their values the values of the

'corresponding actual parameters. The result of evaluating the

expression defining the function, with the formal parameters

e teking these values, is the value of the function call,

Similerly, when a routine call is encountered as & command to be . -

- obeyed, the command (usuelly compound) defining the routine is executed
with the formzl parameters taking the values of the corresponding o

" aectual parameters. (Routines may cell their parameters by referecnce, = = - .
~in which cese an ‘address’ is handed over: see section 20.2 T

- I% should be emphasised that each function call i3 an expression
~end 18 defined by an expression, whereas a routine call isa command

v“:ff-and is defined by & command,

It is posslble to define PARAMETERLESS functions and routines,
which have no formal parameters, Calls to such functions and routines

- are written using the function or routine nane, followed by & pair
_of sguare brackets, thus: : : :

& = Funetioni{]
Routinet (]

L The sguare brackets are mandatory for function calls, Ut may ’
':be omitted in routine calls.__- o . o

38, FUNCTIONS.

A function is a complicated rule for epecifying a value: let us
" teke a specific example., Suppose we wish to use the symbol F to
stand for the function defined by

F{x) = 3x?+ hx + 1

At the head of some sppropriate block, when we wish to define
it along with the other definitions, we write & FUNCTION DEFINITION

let Flx] = 3xd2 + bx + 1

x is a dummy veriable, called a FORMAL PARAMETER° when we wish to
evaluate the function, within the block in which it is deflned, we
write a FUNCTION CALL with the desired asrgument as an ACIUAL PARAMETER

If the srguments of a function are of eny other type than the preferred .

"type of the compiler then this must be indicated in the definitions: e, Y- A

1et Plmatrix Alpha, index n) = Alpha(n,n]

let Qf index i,3] = i(i#1) + J

'-'In_the second example, 1, sre both taken to be index.

- The type of the result is deduced from the definition by the compiler. .
If at the function call the actuzl parsmeters of a function do not :
correspond in type to the formal parameters, transfer functions are
‘inserted automatically . :

For example, if we have

§ let &, b be real;
1et k be index
let Q [index 1, j) = 4(1 + 1) + §

¢ EdPEDSOY

a i= Qlb, k]

Yacsbdueoneed

4
. then b will be converted to type index before the function g is evaluaﬁed.
The definition of a function is in terms of an expression.

By using a result expression (section 22) as the expression,
the function may be effectively defined in terms of a command sequence.'

, Note that function cally, being expressions, can occur anywhere
"~ that o simple expression might. Thus:

& := Functioni[Functionz(a,b],c]

F-Iia_a_legal-assignment command, provided that the rmber of erguments
. and types of the results of Function! and Function2 are correct.

22, L

1See pages B2, B3 at back of Manual'

! .
- ' 3
i
-

P

i

i

R (

19
a
]
¥

-2

20, ROUTINES

| 20,1 A function call is a notationel device for abbreviating

an expression, In the same way we need a notationsl device for

.. abbrevieting a compound command, For this we use a ROUTINE. :
- . Suppose we wish at various points in a program to solve the equations: .

ax + by = ¢
- a'x+ b'y = c!

with 2 Jump to a specified label if there 1s no solution.

.. Ve give the routine a neme, say LINEQ, and at the head of some block “'f
o we write the ROUTINE DEFINITION as follows: .

vatl
routine LINEQ [real =, b, c, a', b, c:gix, y,llabel L] bé
P am—" e
§ let DET = ab! - a'b '
:.f I Mod[DET] < 1#-6 go to L
% := (cb' - c'b) /DET
:-(ac' - a'e) /DET §

' This will solve the equations for verious values of g;b,¢,a',bt,c!

and assign the solution to x,y.

The first two lines sre the ROUTINE HEADING; the remainder is the
ROUTINE BADY, and consiste of & block with, in thle case, one

local varieble DET. The routine heading gives the name of the routine:
‘and the 1list of FORMAL PARAMETERS; when we wish to use the rouvine we

call it by writing the neme followed by the list of ACTUAL PARAMETERS -

 which are to be substituted for the formel parameters,

See page B1

Thus the command-

Liveq [1,2,3,k4,5,6,V, W, ERROR]

will solve the equations

v +_2W = 3
LY + 5W= 6

~assign the solution to V,W and send control to the label ERRCR
- 1f there is no solution, The formal parameters are dummies,
‘1like the formal peremeters in a functlon definition,

- 20.2 In this routine, x and-y differ from the other formal

paraneters in that asaignments are made to them. A variasble to which

~ @ velue is assigned corresponds to an eddress in the computer where

that value 1s stored; x and y are therefore distingnished in the
routine heading by-ﬁhe—&&newreﬁ-xry This means that they are called
by REFERENCE. It has the effect that for the duration of the routine
they will be regarded as 'address-like',

The other parsmeters are called by VALUE; that is, their actual values
will be handed over. (Parsmeters are assumed to be cslled by value
unless it is explicitly steted otherwise.).

If an assignwent is made in the routine body to a parameter called

- by value, the parameter is changed for the remainder of the routiue

application, but no assignment is made to the corresponding actual

. parameter.

Free varisbles of a routine are called hy reference, in exactly the

- Bame way 8s the free variables of a f=' function,

The end of & rcutine may be indicated by the end of the co
which ie its body, end after obeying the commend, comtrol = -

e e

“point: for this purpose there iz a built-in command return, which
_causes & return to the commend following the routine call, e.g. | -

-

convenient for the dynamic end of the routine not to be at this:

" 1f b then return

Sl eeE e

Note thet return is a coimmnd, so that we write ...
esethen go to returm. . . A

G 21,.1%}:[?1.‘5‘5 oF RDUTINESR bl . S e
o a) ‘routine Scalarproduct %ree&l‘ x,[ve;,ctor A, B, index n, label Ll be. .
SRR A

to n ggiac s= x'+ Al1] BIi]

' The routine call

Ft ’ o S Lo

Sealarproduct [X, CAT, DOG, 10, RrH] . :

oWl det X equal to the scaler product of two vectors CAT and -~
. DOG; each of which has ten elements subscripted from 1 to 10, .
. Tf the vectors are orthogonal control goes to the commend labelled
OWIH. LB R L
A of veb
‘P) ;@tine =Gwssqua¢' [xfee.ul'a,:,[b, (I, [function :E' 1 L:_g ._
'_ﬁetsa(b-a) b '
I s=8 (27778 fla + 11270s8]+
- JLbldy £la + ,500008)+ e R
27776 fla + .88730s1) ¢ L SRR

- This routing sets I = f . £(x) dx, using e Gsussian 3-point formmla,

. . -‘,i‘i_.:_" S

a6

22 RESULT EXPRESSIONS.,

Throughout CPL there is & sharp distinction between commends
and expressions, Value of is a construction which sllows us to obey _
several commands, which perform some calculation, and treat the result -
. @as an expression, to be incorporated in a larger expression.
.. This 1s particularly useful in function definitions; the form

" of a functlon definition reguires the body to be an expression
and it may well happen that it requires several commands to evaluate
the function. For example, suppose we wish to.define the function:

{x) —2& :c‘

~ Let us suppose 't.hat the coefficients are available as an array A
. with subscripts running from 0 to 10, Then given x, the serles is
-eveluated by the following block:

§}_§_Esum=0
for i = step 10, -1, 0 do
Sum ; xSum+A[iT‘I

We ha.ve here a block which sets the loca.]. variable Sum to the required .

- value, To convert this to an expresslon we precede 1t by value of -

~ end insert at the end of the commend result is Sum 'I'he function -
definit.lon thus becomes: ; 5

fix] = value of § let Sum = ¢

for 1 = Step £10, -1, 0% do

Sum := x Sum 4+ Ali]
result is Sum §

Although we have used a function definition as an example

value of can be used anywhere to convert a compound command _
. or block into an expression, which can then be used wherever any

othﬁr _expression could be used,
A result expression may include more then one instance

. of the command form result is, and the first such commend met - S
- during execution causes termination of the result expression, . .. °

.2?.'."

1See pages B2, B3 at back of Mamual'
| _. # . .

= RECURSION.

A recursive funetion or routihe is one which explieitly
eells itself, Thus

flx] = (x=0- 1, xf[x-1])

18 a recursive function, 1f *'f' on the right hand side is
Interpreted as the function under definition; it computes x! , . -
the factoriel function, Special facilities must be provided for
the definition of recursive functions, since apparently the rule
which determines the scope of 'f! would .be violated if
the necessary interpretation were made. (In non-recursive
function definitions, any funciions occurring on the right hand
side of the definition must have been previcusly defined),

‘If we wish to define a recursive function or routine, this must be
indiceted by preceding the definition with the symbol rec. As an

" exgmple of this technique, tske the Euclidean algorithm for

finding the HCF of two intagers:

‘let rec HCF [integer n, m] =

e

(m>n-= HCF [m, nl,
m= O =% n,
HOF (@, Rem[n, m}])

Recursion is only meaningful in the ceee of functions and routines,
For example: .
let rec flx] = (x < g~ x, flx - al}

let rec routine R [x,y] be
§ Toromn ——

RIx+1, a-~x]

s e T W T D o SR T e WY

Here, we have defined a rec‘ursive funetion gnd & recursive routine.
As another example;

let rec §1 routine R [x] e

§2 Tommnean R
Rla+x];sle -:ac]
__________________ o

and routine S [y] e
§2 Trmemrommoee-

NOTE the use of sectlon brackets in the last example to force
treatment of the two definitions as e 8ingle one in order to specify

mitually recursive routines.
If the symbol rec is omitted from the definition of a function,

the occurrences of that function name in its own definition
are taken as referring to a global varieble of tha.t name,
and not to the function belng defined.

29,

25, LOGICAL VARTABLES AND EXPRESSICNS.

< 28,1 A varieble of type loglcal is a string of bits, of
" - some stendard length (2L in Atlas]; each bit is processed

" independently. A varieble of type long logical is a string with
twice the standerd mumber of bits, also processed independently of

SR .each other,

‘In the remainder of this section we talk ebout logical
veriebles; everything that is said spplies to lorpg logical

' varlsbles, the only difference being that in general, operations on &

- lopical are fagter than the ¢orresponding operations on a long logical.,

';.'25 2 Operations on logical variables,

L Ing:l.ca.l variables provide the mesns whereby most non-numerica.l B
- work is carried out in CPL, and it is therefore necessary to have mgre

S - complicated operations than those so far described. For this purpose!
. there is provided = basic set of built-in functions, in terms of whiqh

~the more complex operations can be progremmed. It is necessary first

" to define a convention for the mumbering of the digits in a loglcal

varisble, which is done by numbering the digits upwards fram the

" right hand end starting from O.

- Unless otherwise stated, the functions described below operate _
on logical or long logical veriables, and produce e result of the same :

- type as the logical operand. We use logicel without underlining .

s variables .

- when we do not wish to distinguish between 1og¢cal and long logical

-. ;' 25 3 F‘tmctions for log:l.ca.l operations. - '
;.'_=_'(a.) Shifts, S
Lshitt [p, 4]

Rshift [p, J]

~ Rotate [p, Jl

p :ls B 1ogica.1 variable, and ,j is an index variable which defines
the mmber of places shifted, ILShift and RShift are logica.l left and

- right shifts; Rotete 1s a circular left shift. In ell cases If J is
negative t.he direction of the shi:rt is reversed, so that

LShift (p, 4]

T equivalent to

Rshift [p,-3]

With IShift and RSh:lft the bits moved in to fill the gaps are zeros.

(b)) Masking operstions,

tnes [J, kI

.f-Here, 5 end k are index variables. Gnes [.J , k] produces a mesk
"~ in vhich bits J to k inclusive are ones and all other bits are

- geros; the order in wh:lch Jsk are written is :lmma'berial, i.es o

'*_'Dnes[.j,k] = Dnes{k,.‘.l] R A S TR

| 30,

(¢} Other bit-manipuletions.
Fleld [p,J,k]

Bit [p,J]

-pla =& 1051ca1 verieble, J and k are index varisbles; as usual,
the order of k and j does not matter., The function Field [p,J,k]
masks off bits j to k Inclusive, and then right justifies the
‘group, so that if j > k, bit k of the argument becomes blt 0 of
- the result, and bit J becomes bit {j-k). For example, the effect
of Field [p,6,10] is shown in the diagram.
P | 3 | I
’ 166

Result | Zeros] |
1 0.

Bit [P,J] is equivalent to Field [p,J;j} it has the effect of specifying

" and right Justifying a single bit. The functions Bit and Field may be

“.7 " used on the left-hand side of assigoment commsnds; thelr results, therefore,
" are effectively the Taddresses' of the bit or eres specified.

25.4 foglcal Constents.

Logical constants cen be written in bipary or octal, being

. preceded by the symbols 2 or 8 respectively. (A3 7=11%1 1in binary,

an octel string is equivalent to a binary string grouped in threes,

:,_Thus, 2 010111011 = 8 273. } They are normelly assumed to be positioned

at the least slgnlficant end of & logicel varisble: thus 877

- is understood to mean § 0O00000T7. However, positioning at T the more significent :

end can be indieated bJ g har: in this case zeros at the less significant
end can be omltted, and 8 |273 is understood to mean 8 27300000
(assuming, in thils case, that 2k is the standard length).

~ Logleal varlables can be combined to form loglcal expressions . _
using the same operstors as for Boolean expresslons, viz. ~, A, V, fb'i"

-

(The basie loglcel cperations on blts sre ¢

AT=1 0 WIs1 o w1 =0
1mo=0 f_";i'=.qvo - 1 R ER
oo=0 V0 =0
121 =1 i#1 =0

1=0 = 0 1#0 = 1
00 =1 ofo = o

The specified operation 1s carried out on &ll bite independently.
‘Thus 1f a, b, ¢, are logical variables,

1= ¢ A BlT7
' maskes off the top £1x bits of ¢ and sets a equal to this, while
1= (chwb) V (bra)

g replaces the fleld in ¢ speeified by the ones in b, by the correspondlng
figld of &.) . _

4

' 26. STRING EXPRESSIONS.

A string varieble is a string of cherecters with possible local
‘1imits on maximum length. The characters mist be those of the CPL -

alphabet,
A string constant consists of the characters of the string

enclosed in STRING QUOTES, 'e......'; for example,

'this 1s & string’ *123/AB/6"

. with the exceptions that the characters

. have a special signlficance; also occurences of || (double vertical bar)

within string constents initiate comments (section 27), which are :le;')ored. o

. A speciel mechanism is required for specifyling as part of .
a string & character, other than a space, which does not print, or

B cannot be represented es a CPL charascter, For these the ASTERISK
w18 given & special significence., Wherever an asterisk occurs

in & string constant it is interpreted together with the folloﬁng

. character according to some local convention concerning such

" characters, the precise nature of which depends on the. machine"

' -: _ ~and output devices used,

For Atlas Flexowrlters, ‘these comrentions are that :

%t . gtands for *
#| stends for . |
o #4' - gtands for !

*N and "n stand for newline
*5 and *s stand for space
*T and *t stand for tab -
*B and *b stend for backspace .
*E and e stand for erase
*Z and %z stand for stopcode 1 1 -
#J and *u stand for upper cese = . . S
“L and *1 stand for'lower case . . ’

For example, the string consta.nt
'123*nl56% !

-, ia @ representation of

123

One infixed operator may be used in forming string expressioné, the _
-concetenating operator <=>, (ther operations on strings are carried out

= by a set of basic functions, vwhich are described in sectlon 26.2 below.

"~ - Relational expressions may be written using atrings a.nd the
- operators

5<=#>>

'-'.These have the same form as arithmetic relational eéxpressiona and they :

o _form a subset of Boolean expressions,

A longer string is | 'greater' in relational expresaions

L _tha.n a shorter string identical to its sterting che.ra.cters, thus -

- ATLAS' > ATV
' .ié true, The relations bét#een’ CPL characters which determine the
- precise lexicographic ordering on strings is subject to local ‘
- convention, end may be altered to sult individual programs.

' he result is the i-th chara.cter of a8,

26,2 String ‘manipulation functions.

In the following descriptions, s is a string constant end 1 is

an index parsmeter. Unless ot.herwise stated, the result 1s of type

.' j string.

o Length (s]
._'l‘he result is of type 1ndex and is the muuber of chera.cters in s.

First [s]

~ - Last [8] L TR
" The result 1s the f:l.rst or lest character of By e'spectivel‘y.- R

Character [i, s]

In:l.t.:l.a.ls f1,8] -

" Finsls [1,8] . | |
. The result la the first or last i cha.racters of s, respectively

.27, COMMENTS,

It is sometimes reguired to include in a program explana.tory

- notes which are intended for the human reader only, and which mst be , B

. ignored by the computer when reading the program. In CPL such :
‘comments are introduced by two vertical bars and continue to 'bhe end

o of 'l:.ha.t line; e.g.

|| x is the meen value

|| 1f p 1s zero this is dealt with in §1.2 -+ - =

28, COMPLETE FROGRAM LAYCUT.

. A complete CPL program conslsts, basically, of a sequence
of commands, It will ususlly begin with the progremmer's -
definitions; the program i1s to be thought of as embedded
 in & global system block which contains all built-in '
- definitions. e
" The baslc command F.'I.niEh may he used enywhere in the progra.m o
and terminates the execution of that progrem. It would normelly
" oceur as the finzl command in & program, and if it is not
: .present. the compiler will ingert it.. - - o

' More information on program la.ymt a.nd preparation :ls g:l.ven
~dn the’ loca.]. opera.t:l.ng manuals. ‘ Sl BT S

16, '~ ARRAY EXPRESSIONS.

L Arrays are regarded as being veriables in their own right; -~
- the dimensionality and the type of thelr elements is fixed on : '
definition, but the bounds may be changed by commands. :
They may be defined by type only, &s in ‘

let Work, Place be real 3 array, real 7} array
| or they may be initialised thus |
| | let Work = Newarrasy [real , (1, 10),'(1',1b),(1,1.o)17 |
| The right hand side of the initialised definition is an expression
~of the relevant type; in this case, an array exmessaion, Such a.n

. expression consists of either an array name or a function cal..
' which produces an arrsy or space for an array.

.7 arrey essignment commands wey be written thus

Place :=
- Work @

o By the use of such commands the bounds of an a.rraqr may be cha.nged

. during operation of the program at any stage. When a command such
a8 the first example sbove is obeyed, the value of the right hand
side is taken, m—bha:&—case-an—elemenﬂa—by—e}:emnﬁ-ewf—the-mmy

L :‘-‘. R te eV CUpY-La--8, ed-'bo—the-arr
L ersremadenereopiesesien YL
A.a-nd ‘whk.‘

aﬁ?&?m aftle el :w@u-me-.c_am slosage arta . swuﬂm
WOTE the distinction between an a.i'ray expression whose

PLM M Wo-k,
value is an array, snd a reference to an array elsment whose Co
va.lue is a data 1tem, for example, a rcu.l nuniber, - _

o s s o o R
ey e s g eﬂewf

_,3 - Lory . (A1

‘l;": “’"3 m, 4--1‘7 A_M M’S“M “""St"a

" .17. FUNCTIONS AND ROUTINES,

: The concepts of FUNCTION and ROUTTNA are of central importance
' in CPL. Both are self-contained subsections of the program,
. written in terms of dummy varisbles (or FORMAL PARAMETERS); they
. may therefore be called at different places in the same prograem,
usually with different sets of values for thelr arguments.
A Toutine is essentially a COMMAND (which can of course be
compound, and include assignment commends), which is obeyed.
- A function on the other hand is an EXPRESSION, the evaluation
>+ of which produces a RESULT. :
' Both functions znd routines are treated as entities in their own
- right and have names. The type of & funetion includes the type of
its result (=g, real function }.

. A FUNCTION or ROUTINE CALL is written in the form of the function - -
.or routine name, followed in SQUARE BRACKETS by & list of expressions = -
' separated by commas (ACTUAL PARAMETERS). o
When a function ¢sll is encountered as an expression to be evaluated,'*"'
the formal parameters take as their values the values of the o
v corresponding actuel paraweters. The result of evaluating the
- T expression defining the function, with the formal parameters
©- 2 teking these values, is the value of the function cell,’
‘ Similerly, when a routine cell is encountered as a command to be -
obeyed, the command {usually compound) defining the routine is executed
with the formel parameters taking the values of the corresponding o
actual parameters. (Routines mey call their parameters by reference,
~in which case an 'addreas' is handed over: see section 20.2 .
. It should be emphasised that emch function call is an expression
- and is defined by an expression, whereas a routine call is a command

. and is defined by e conmand, -

It is pOBElble to define PARAMETERLESS functions and routines,;:tffﬁ;azm
which have no formal parameters, Calls to such functions and routines -
are written using the function or routine name, followed by a peir ‘,r;

_of square brackets, thus:

1 Function1[]
Routinelf] -

R The square brackets are mendatory for function calls, but may
-]1be omitted in routine calls. R : .

18. FUNGTIONS.

N A function is & complicated rule for specifying a value: let us

.. take a specific example, Suppose we wish to use the Bymbol F to
stand for the function defined by

F(z) = 3x?+ bx + 1

. " At the head of some appropriate block, when we wish to define
it along with the other definitions, we write e FUNCTION DEFINTTION

let Flx] = 3:42 + bx + 1
x is e Qummy variable, called a FORMAL PARAMETER: when we wish to
7 evaluate the function, within the block in which it is defined, we
~write & FUNCTION CALI, with the desired argument es an ACTUAL EARAMETER'

If the arguments of a functlon are of any other type than the preférred

'3 _'type of the compiler them this mist be indicated in the definltions‘ .g.‘

let Plmatrix Alphs, index n] = Alpha(n,n]

let Q[index 1,3] = i(i+1) +

-7 In the second example, 1,j are both taken to be index.

. The type of the result is deduced from the definition by the compiler.
If at the function call the actusl psrameters of a function do not ‘
correspond in type to the formal parameters, transfer functions ere

inserted automatically . :

. For exsmple, if we have

§ let a, b be real;
let k be EEQE% . .
Tet @ [index 1, jl = 1(1 + 1) +

a 1= Qlb, k]
: PO wsO @Y {.F

_then b will be converted to type index before the function Q is evaluated.
. The definltion of a funection 1s In terms of an expression.
By using a result expression (section 22) as the expression,

the function me mey Dbe effectively deflned in terms of a command sequence,

Note that function calls, being expressions, can occur anywhere
that a simple expression might, Thus:

1= Functionl[Function2[a,b],c]

“is a legal asslgnment command, provided that the mnber of arguments -
“and types of the results of Function1 and Function2 are correct.

"ll'-.-.

| 20. ROUTINES

20.1 A functlon call is a notational device for abbreviating -
an expression, In the same way we need a notetional device for

. agbbreviating a compound commend. For this we use a ROUTINE.

Suppose we wish at various points in a program to solve the equations:

8x + by

= ¢
a'x + b'y = ¢!

with &8 jump to a specified label if there 1s no solution.

e give the routine a name, say LINEQ, and at the head of some block)
. we write the ROUTINE DEFINITION as follows:

V&L
routine LINEQ [real s, b, c, a', b', ¢ ‘x; y,xlahel L] be

Be Tty
§ let DET = ab' - a'b
if I Mod[DET] < 1%-6 go to L
X := (cb' - c¢'b)/DET
y :=(me' - a'c)/DET §

This will solve the equations for various velues of a,b,c,a’,b’,c!

‘and sssign the solution to x,y.

The first two lines are the ROUTINE HEADING; the remainder s the
ROUTINE BCDY, and consists of a block with, In this case, one .
local varieble DET. The routine heading gives the name of the routine :

‘end the 1ist of FORMAL PARAMBTERS; when we wish to use the routine we

- eall 1t by writing the neme followed by the list of ACTUAL PARAIVIE‘IEERS
- which are to be substituted for the formal parameters.

S‘ee- page Bi

Thus the command
LIveq [1,2,3,4,5,6,V,W,ERROR]

- will solve the equations

SV + éw = 3
W + 5W =6

assign the solutlon to V,W and send comtrol to the label ERROR

if there 1s no solution. The formel parameters are dummies,

 1ike the formal perameters in a function definition,

20.2 -In this routine, x and y differ from the other formal
parameters in that assignments are mzde to them, A veriable to which
a value 15 essigned correspords to an sddress 1n the computer where
that value is stored; x and y mre therefore distinguished in the

“routine heading by~bhe=itme—pef-—mwyy,This means that they are called

by REFERENCE. It has the effect that for the duration of the routine
they will be regarded as ‘'sddress-like',

The other parameters are called by VALUE; that is, their actusl values
will be handed over., (Parameters are assumed to be called by value '

‘unless it is explicitly stated otherwise,)

If an assignment 1s made in the routine body to a parameter called

by value, the parameter is changed for the remainder of the routine
“application, but no assignment is nede to the corresponding actual

parameter.

Free verisbles of a routine are called by reference, in exactly the

~ same way as the free variables of a '=' function,

25,

20.3- - 'The Tormal pérameters of a routine ma.y themselvés be irc_ﬁitipe'a:bz'-; o
functions. ' : - : L

. 'The end of a routine may be ind1cated by the end of the: comnd
vhich 1s its bvody, and after obeying the command, control _
returns to the command following the routine call. It may be .
convenient for the dynamic end of the routine not to be at this ..
po:Lnt' for this purpose there iz a built-in command return, which
causes g return to the comma.nd following the rcutine call, e.g. ¢

".Oﬂtld -

_ if b then re'turn

_then . return, NUI'

Note tha.t return is a conmm.n&, so 'bha.t we write
v __;,.then & to. retum. o :

21 EXAMPI.ES OF ROUTINES.

J.J

' a.) routine Sealsrproduct zreafl x,’{vgctor &, B, index n, 1abe;;l. I.]
: At f i

;-D—-n—n—-—w-q—n

:" § x:=0 1 i ' L ﬁ

. fori1=1tondox s= x" al1] Bl1) b
I x<<1 gL 4 .

J The routine call

Scals.rproduct [x, CA'I', DUG, 10, ORTH] i
Cwill det X equial to the scalar product of two vec‘corb CAT and
DCG; each of whilch has ten elements subseripted from 1 to 10.

If the vectors are orthogonal control goes to ‘cha comnand l&belléd.

_nm’H. _
B :._1'3) reutine Gaussq_uad [real a., b,AI (ction i‘] l_@ ___
- Slers s (- o) e |
: i X o= (27778 fla + 11270a] +] _ o R
S : LLhkhh r£la + .500008i4 0 . ' i
ST 27778 tla + .887305]0 I TP

o This roqting-‘_ gets I = f Fx) dx, using a Gaussian 3-point formula,

''.‘_26, S

2 RESULT EXPRESSIONS.

Throughout CPL there is a sharp distinction between commends
and expressions., Value of is a construction which allows us to obey
‘gseveral commands, which perform some calculation, and treat the result
as an expression, to be incorporated in a larger expression.
. This is particularly useful in function definitions; the form
of a function definition requires the body to be an expression
© and it may well happen that it requires seversl commands to evaluate

3 the function. For example, suppose we wish to define the function.

£{x) -§a !
n=0 ’ o _
.Let us suppose that the coefficients are available as an array A

if:: with subseripts running from 0 to 10, Then given x, the series is
_f-evaluated by the following block: :

§ let sum = 0
for 1 = step 10, -1, O do
Sum 1= x sum + Al1T ¢

We have here a block which sets the local variable Sﬁmftd the requiréd :

' value, To convert this to an expression we precede it by value of -

end insert at the end of the command result is Sum. The function gr
. definltion thus becomes:

%] = value of § let Sum = O

for i = gtep £10, -1, 0¥ do
Sum := x Sum + Al1)
result is Sum $

Although we have used a function definition as an example

- value of can be used anyvhere to convert e compound command

or block into an expression, which can then be used wherever any
,other expression could be used. :

A result expression may include more than one instance

" of the command form result is, and the first such command met

during executlion causes termination of the result expression,

2?.;'

: . 15ee pages B2, B3 at back of Manual' :
¥ ’ - B
. u EEF . E . E)

284

oh, RECURSION.

A recursive function or routine is one whieh explieitly
ealls itself, Thus

flx) = {(x=0— 1; xflx-11)

is a recursive function, if 'f' on the right hand side is
interpreted es the function under definition; it computes x! ,
the factorial function., Special facilities must be provided for
‘the definition of recursive functions, sgince apparently the rule
‘'which determines the scope of 'f' would .be violated if

the necessary interpretation were made. {In non-recursive
function definitions, any functions ocecurring on the right hand
gside of the definition must have been previously defined),

If we wish to define a recursive function or routine, this mmst be
indicated by preceding the definition with the symbol rec. As an
exsmple of this technique, take the Euclidemn slgorithm for
.finding the HCF of two intagers: _

let rec HCF [integer n, m] =
(m > n—* HCF [m, nl,
m= 0 = n,
HOF [m, Remln, ml})

Recursion is only meaningful in the case of functions and routinea.
For example: _

let rec flx] = (x < q = x, flx - a])

let rec routine R [x,y1 be
§ wmmome “———

Rlx+ 1, a- x]

Pl G T A T O T e R w0 o U

"HEre; we have defined a recursive function end & recursive routine,
As snother exemple: ~

let rec §1 routine R [x] be

82 cermmemmm———— -
Rla+ x]; 8 [a u?]
................... 2

and routine S (y] b
§2 Tmemomomoeae

NOTE the use of section brackets in the last example to force
treatment of the two definitions as = single one in order to specify

mitually recursive routines.
If the symbol rec is omitted from the definition of & function,

the occurrences of that function neme in its own definition
are tasken as referring to & global varisble of that heme ,
and not to the function being defined,

29.

" 25, LOGICAL VARIABLES AND EXERESSIONS,

25,1 A variable of tyﬁe logleal is a string of bits, of
some standard length (24 in Atias); each bit is processed

"J.independently. A variable of type long logical is a string with

twice the standard number of bits, also processed independently of

. emch other.

In the remainder of this section we talk about logical
variables; everything that is said spplies to lopg logical

o variables, the only difference being that in general, operations on &

- logleal are faster than the corresponding operations on a long 1ogical .

‘~;;, 25,2 'Uperations on logical variasbles,

Logical variebles provide the means whereby most non-numerical

© work is carried out in CPL, and it is therefore necessary to have m@re _

complicated operations than those so far described. For this purpose:i

" there is provided a basic set of built-in functions, in terms of whiqh

the more complex opermtions can be progremmed. It 1s necessary first

- to define & convention for the numbering of the digits in a logical

. verieble, which is done by numbering the digits upwards from the
right hand end starting from 0. :

.. Unless otherwise stated, the functions described below operate

‘-on logical or long logical veriables, end produce & result of the same
type as the logical operand. We use logicael without underlining

~+. when we do not wish to d.istinguish between logicsl end long lo g.; cal

f“variahles.

-l'25'3'1- Functions ror logical operations. ;

e .":-"(a) Shifts.

Lshift [p, J1
Rshift [p, .j] :

" Rotate {p, J]

o P is a logical variable, and is an index variable which defines

" the number of places shifted. ILShift and RShift are logical left and
- right shifts; Rotate 1s a clrcular left shift. In all cases if J is
; negative the direction of the shift 1s reversed, so that ; _

Lshift [p, J)
‘i?_iareinvalent to.

Rehift [p,-3)

g il with LShift and HShift the bits moved in to fill the gapa are zeros;r.

" (b) Masking operstions,
‘Ones [J, kI |

_J‘HEre, J and k are index variables. Unes [J, k] produces a mask

"‘in which bits j to k Inclusive are ones and ell other bits are

Jil.zeros, the order in which J,k are written is immaterial, l.es
= Dnea[d:k] = Gnes[k;d] B o I

- -30.'; :

_,7 P is a logical varieble, j and k are index variables; as usual,

- masks off bits J to k inclusive, and then right justifies the

" and right justifying & single bit. The functions Bit and Field may be

. -1s understood tc mean 8 00000077, However, positloning at T the more 51gnificant

(e} Other bit-manipulations.
Fleld [p,J,k]

Bit [p,J]

the order of k and j does not matter, ine function Field [p,J, k]

“group, so that if j > k, bit k of the argument becomes bit 0 of
- the result, and bit j becomes bit (j-k). For example, the effect
‘of Field [p,6,10] is shown in the diagram,

p | . |
' 0 4

 Result I Zeros | |
4 0.

Bit {p,j] is equivalent to Field [p,J,j); 1t has the effect of specifying

. ueed on the left-hand side of assignment commends; their results, therefore,
are effectively the 'eddresses’ of the bit or ares specified.

25.h iogical Constants,

- Logical constents can be written in bipary or octal, being
 preceded by the symbols 2 or 8 respectively. (As 7=111 in binary,

an octel string is eguivalent to a binary string grouped in threes.

‘Thus, 2 010111011 = 8 273.) They are normally assumed to be positioned
at the least 51gnificant end of a logicael varisble: thus 877

"end can be indicated by s ber: in this case zeros at the less significant
end can be omitted, and 8 |273 is understood to mean 8 27300000
(assuming, in this cese, that 24 is the standard length).

Logicel variablea can bhe combined to form logical expreasions

:' _using the same operstors as for Boolemn expressions, viz., ~; A, V; =, i*
(The basie logleal operations on bita‘are.: 7

M= Wis Ml =0

:.'_1A0=.0 o= B R
| mo =0 Vo =0 :
Lot=l o= 1#1 =0

'1:o.=0 13#0 = 1

0=0 = 1 - odo=o0

The specified operation is carried oubt on sl1 bite 1ndependently.
Thus if 8, b, ¢, sre logical veriables,

1= ¢ A.BIT?
maskes off the top six bite of ¢ and sets 2 equal to this, while
c 3= (cAmb) V (bAs)

 'rep1aces the field in e Specified by the ones in b, by the corresponding
j field of a.) . _ -

i A

' 26. STRING EXFRESSICNS.

A string varisble is a string of characters with possible local
©1imlts on maximum length., The characters must be those of the CPL

‘alphabet.
" A Btring constaent consists of the characters of the string

enClOBEd. in STRING QUGTES, 'o-o--oo') for emle:

'this is & string' 1123 /AB/6'

" with the exceptions that the characters

““'have & special significance; also occurences of]| (double vertical bar)

7" within string constents initiate comments (section 27), which are 1@1028& o

A speclal mechanism 1s requ:Lred for specifyling as part of

S a string & character, other then a space, which does not print, or B

.. cannot be represented as a CPL character, For these the ASTERISK

‘. is given a speciel significance. Wherever an asterisk occurs

in a string constant it is interpreted together with the following |
character according to some local convention concerning such
characters, the precise nature of which depends on the mchine

» -end output devices used,

For Atlas Flexowriters, these comrent.ims are that

<l stands for *
*| stands for . |
g .#' stands for !
tN and *n stand for newline
*5 and ¥8 stand for space
- %P and ¥t agtand for teb
- #*B and *b gtand for backspace
*E and e stand for ermse
#*Z and ¥z stand for stopcode : _
“U and *u stand for upper case = = o
*I, a.nd ¥l stand for lower case o '

]

For example, the string constant
T123*nk56 !
- 18 @& representation of
123
56w

One infixed operator mey be used in forming string e:cpnress_ioxis, t.he
concatenating operator <=>, Other operations on strings are carried out

by a set of basic functions, which are described in section 26.2 below. .

- Relational expressions mey be written using strings a.nd the

' operstors

< < =453

These have the same form as eritimetic relational ex;pressions and t.hey

. form & subset of Boolean expressions.

o A longer string is 'greater' in relational expressions :
" than a shorter string identical to its starting charamcters; thus '

'ATLAS' > 'AT*

_":l.s true. The relations between CFL cha.racters which determine the
' .preclse lexicographic ordering on strings is subject to local

convention, and may be altered to suit individuel programs.

' The result is the :I.-th character of 8. -

2T COMMENTS.

_of that line; e.g.

o definitions; the program is to be thought of as embedded

. 26.2 String manipulation functions.

. In the following descriptions, s is & string constant end i is SR
an index perameter. Uniess otherwise stated, the result is of type .

string.

"~ Length [s] o
The result is of t:ype index and is the rmmber of characters in 8,

 Firet [s]
Last [s] ‘ ' o
. The- result is the firet or last cha.recter of e, respectively. .

Cheracter [1, s]

Initials (1, a]

 Pinals [4,8] . |
. The result is the firat or laat 1 cha.ra.ctera of s, respectively

[

. It 1s sometimes required to include in a program explanatory S
notes which are intended for the human reader only, and which mst be =

. ignored by the computer when reading the program, In CPL such . N
comments ere introduced by two vertical bars and continue to the end

H x 1s the mean value ' _ o ', -
|| 1f p 1is zero this is dealt with in §1.2 ' L, -

28, COMPLETE FROGRAM LAYOUT,

. A complete CPL program conslists, basically, of a sequence
of commands, It will usually begin with the programmer's

in a global system block which contains ell built-

definitions.
The baslc command F:Lnish may be used anywhere :Ln the program

and terminates the executlon of that program., It would normwally -
oceur as the finaml command in a program, end if it is not
present the con;piler will Insert it.. _ .

e More information on prog'em layout and. prepare.tion 15 given o
--in the local opera.ting manua.ls.. SRR _ e

o Aindex

APPENDIX 1

A SHORT LIST OF CPL BASIC SYMBOLS
WITH THEIR SYNONYMS AND ABBREVIATIONS.

Basic symbols may be written in upper or lower case, or a8

mixture of the two, .
Spaces in basic symbols, whether underlined or not, are 1gnored. ‘

(e.g. go to may be written go to or goto.)

Basic symbols are listed under the sect:lon nunber in Hhich they
first appear. - : _ ‘ _ _ B

. Section 1
real }

double | not inltially implemented
- complex I L LI,
double complex _ . . N

A e, W)

" Bection 5

+Benf 0
o

Section 7

et

ellbe - . bothbe

" 8l] are - both are

% ext

He [0 > <2 AVIAY AV

R Section'Iii;ﬁ*- o ';; e "f{- H“

or . T iop de o else fﬁf?¥uf jfbfherwise-:;f" }";‘:'.“

" section 12 .{f}:¥; 3€.;;5. i;'“::5

1label

}i ‘Section 13.:: 35“7”'

repeat
. while

T until
ste

E

.'“i'e g. routine rt rt. rt.

'In the following sections, abbreviations followed by en: - .
- agterisk may be followed by & fullstop, possibly underlined,

- Section 18

function fn*)

‘= [definition by twobars]

[def:mition by threeba.rs]

. Bection 20-*_"' o

: routine T
‘reference - ref *
value o Toval ®
refurm T

3

. SBectlon 22 _
i :"'Z“"va.lue of : y_g}__g_{ ‘_':. _
© o result 1s '
Section 23 : _ '-j
o~ L initialisation by reference] |
- { init:a.lisation by value] |
Section 24 ;
recuraive _15'_9_9_* e
| | ;Sec'tibn 25
‘_Jgﬁica.l Do
,1ong 1ogica.1'_ et
: [[.justify a;ymbol] Lty

\' Section 26 : _
'string . ” “:€’
' [string quote]

. % [escape character]

. Section 28 |

II [comment]

: {_1LSect1on 29

_‘Iﬂniah

L

CPL REFERENCE MANUAL

The Editor regrats that due to difficulties in reproduction
the page.nunmersreferred.to in the follpwing corrections have
been removed from some.of the pages in the preceding section of
the manual. This may lead to some difficulty in correcting these

omissions.

- Insert after line 9t

'variables declered at the head .f a block are saild to be
the Bound Variables of that block, !
Lineﬂ
_ ! e.in the standa.rd menner when appl:l.ed to the simple types mentioned .
in section 3, (For equality between functions, routines, labels, etc,,
~see the Advenced Programming Manual,)! .
" P16, Delete lines 15 to -16
o PEO. -Replace lines .6 to -k by:
~ . 'e.o5ide 15 taken, in this case an indication of the s‘borage ares
. reserved for the array 'Work', Note that after the assignment, this »
| arrey storage orea is shared between 'Place’ and 'Work'; and assignments
o to a.rray elements of the one will assign to array elements of the :
© . other,' _
" Insert at bottom: '
~ " VIf a progremmer wishes to copy ean a;rray, this can ‘be done via. the
. _basic function Copy, Thus the effect of'$:
. B: Cr.'ipy[A] -
o is 'bo copy the array A and assign the copy to B.'
- Line -10 - _ :
AT ' for i = ‘steg'lo',-ho_gg_ !
" PA3, Delete lines 1 to 3
. Line 5 R .
S function o fn “fn, fn,
1 10 S . .
_ reference . ref ref, ~ ref,
“yalue . - val 0 val, . val,

' reeursive - ree - ree, . ree, - = -

s o

P25, ‘ :
o NOIrs: the form for a routine definition is now:
let rt Ri<formel parameter 1ist>] be §evesseseavast
and the formal parameter list now has the form

[ref real &, val index b) ‘with the following rules:

‘I'he TYPE of 8 formal pa.rameter is the nearest type apecified to the left.
-If ‘no type is specified it 1is preferred: type.

Similerly, " the MODE is the nea.rest mode specified to the left: if no mﬁs 1s
gpecified, it is val, .

 fThus ‘the routine LINEQ now looks liket "
: val

.Let I"b LINEQ{E-,b C,B- b ,C ,I'Ef x,y,zlﬂbel L] be §aw-toocno‘$

: NE]'I'E a.lao that ag forma.l parameters of functions can now be called ‘by
' reference, the parameter lists for functions end routines are now identica’.’l.f '

The following section replaces sections 19 and 23, ' !

-

INITTALISATION BY VALUE AND BY REFERENCE.

An Initialised definition, as in section 7.7, associates & name with

- an initial value, There are in fact two modes of initialisation, by VALUE

and by REFERENCE, These are written with a *=' sign and a '~' sign respectively,

An initialisstion by VALUE causes the variable concerned to be associated
‘with a fresh storege location, whose initial contents are given by the right :

- hand aide of the definition,

An initialisation by REFERENCE couses the varlable concerned to be associated
with & storege location which is spec:.fied in terms of the storags locationa

. already associated with other varisbles. "This atorage locatiom is specified
- by the expression on the right hand side of the definition, Some simple examples !

_of expressions vhich may be teken as apecifying storege locations are:

“define such functions himself: see the Advanced Programming Manual).
. -If the expresaion on the right hand side does neot specify a storage locaticn,
. the varisble concerned is asscciated with 2 cons tant, whose velue 13 taken as

'b! has the constent value 2, An assignment b $= 0 is then in error,

. A varisble initialised by reference shares its value with the variable or
expression on the right hand silde, and en assi@ment to either expression
- haa the effect of changing both, .

28
Ali]
{b—a, aAli]}

Some bagic functions which may be interpreted as producing storage locations
are given in Section 25.,3(c}. (It is also possible for the programmer to

the current value of the vright hand side of the definition, Fubure assignments

5 to that variable will be congtrued as errors,
For example, after:

§ let s =1
b b x84

[N NN

Consider: § let m = 1§

let b = o
let ¢ =a
i

b=z ¢

Finsl values of a, b, care 2, 2, 1. b and a share the new assig,nment; cig

. fixed at the old value of a, namely i, . o ;
‘I'he final velues bed the asslgnment been a 1= 3 would be 3,3,1.

| Similarly, consider:

§ let A be real vector and 1 be index
S | | “1_%.?_1=3§J_;e_1c_A[31a1o
f.:‘.:ﬁ_ : | | :) _ - Lt & = AL4]
| and b ~ Al1]
) | al3) =11 4
- yith subseripted verisbles, the pubscript is evaluated in both cases and

. © Tixed at 1 = 3: but the walue of the element in b ~ Ali] may chenge,
© .0 - After the asgignment, the values of s and b are 10 and 11 respectively,

BOUND VARTABLES; FREE VARIABLES and FORMAL PARAMETERS,

The names that occur on the right hend side of a function definition
may be classified as occurrences of the BOUND ‘VARLABLES,, FORMAL PARAMETERS,

and FREE VARIABLES of the functlon.

A BOUND VARIABLE is an occurrence of a name In o context in which it
is subjeet to a definition within the functlon body: thls can happen
elther in an expression guolified by a where close, or within a result
expression (see section 22).

A FORMAL PARAMETER is am occurrence on the yight hand sid.e.of the function
 definition of one of the names in the paramster list om the left hond slde
- of the definition, in o context in which it is not a bound varieble of the
- function (i.,e. not redefined vithin the function body.)

- A FREE VARIABLE occurrencs is any oceurrence of @ nome which does not fall

into either of the other two categories, Free variobles muist be meaningful
within the functicn definition: thot i3, elther the {funsction definition
mst be within the scope of zome definition of the free vardables concerned; or
. those names must be formal parametara of some enclosing function or routine :
~ definition or be nomes of librevy funchions,

’I'hus,im o
§ let a=2agnd b=3

let x = @a
let ely) = sxwvy §
gly] has three free variables, a, b, and x

We have geen that varisbles may be inltialised by value or by reference,
-Similarly, parameters in e functlion or rcutine mey be CALTED BY VALUE
- or CALLED BY REFERENCE, The mode im which the formal parameters are called
18 specified in the function or routine heading {see the Note for P25.)
- The mode in which the free variables of a function are called depends upon
whether 1t is a function defined by twobara (=) or by threebors (=).
There 1p a very close snalogy between the formal and sctual paroweters of
a function or routine, and the left and right hond sides of an initialised
gdefinition, For exumple, consider: ‘

let rt Rlx] be § z ¢= 1 §

let w=3
Rla])

[R]

The Pormal perameter, x, may be celled e:ithe:r- hy value or by reference,

3 . o o T

' If we have R[val x] then efter calling Rlal, & still has the wnlue 3 |

The analogy would bes
: 3

a

non

L a
let x

| x 3= 1 |
which obviocusly does not affect the value of a,

. If we had Rlref x] on the other haond, this would be analogous to: |

let a=3 |
clet X ~a

X =

- 'i;m'_as explained sbove the final value of & will be 1, shared wlth Xo

g
[
i

This moy be surmarised zs:

Aspigrments to formel perameters called by value do HOT result in aasigrmeﬁts

to the corresponding actual parameters,)
Asslgnments to formal parameters called by reference DO result in essignments

to the corresponding actusl psrameters.

Asslgnments to o parameter colled by velue in any function or routine
eveluatlon has the expected effect of changing the value of that parameter
Tor the rest of the evaluatlon. In the case of functions this can only be

done through the use of o result expression,

The free variables of a function mey be called in elther mode, depending
on whether the definition of the fimction wos by twobars or by threebars,
In a twobar (=) function the varisbles are called by VALUE: that 1s, the
current values of the free verlebles at DEFINITION time sre copied,
and during the evaluation of the function the free varlables are taken as
referring to these private coples and not to the globel varicbles of the same

-names, Assigmments msy HNUT be made to the free varlebles of a twobar function

from within the body of the function.
In a threebar (=) function the free varisbles are called by REFE‘.REI»ICE and

"ta.ke the current values of the variables with the same names at the time

of EVALUATTOH of the function, which moy well be different from the values
that they had at definition time. Assigoments to free variables called by
reference can be made from within the function evaluation, vie a result

‘expression,

The following exsmple illustrates me difference between the two modes of

: calling free varlables: ,

adl
§ let a_,b,c‘(};”g real

a,b,c 3= 2,9,4
o oth,
§ let Wg'aggreal
let flx] = axx +bx +c -
let glx) = axx +bx + o
cBgbye 3= 5;6,7
Li: w,z := flwl, glzl §§

 When'the conmand labelled Li is obeyed, w is set equel to (Smr + 6we)

-

z is set equal o (222 + 3z + «ie—)g

-p.10 Jine ~10 Replace "longest possible' by "longest immediately'.
line =5 Réplace s by "agh o

‘For an account of function definitions, see section 18.

The first example here illustrates a éommon misuse of where clauses.

.. -Note that y is to be initialised before the function f is defined, so
. that x in the definition of y nust have been defined at that time and

- . cannot depend on future values of the paramcter of f.

.-The first example would be acceptable if it occurred in a context within -

-_'the scope of some definition of %, e.p.

o § let let % = 1

let f[x] (1 + yy)/y where y =Eg[x]

e

f would then be defined as the function with the constant value“(1 + yy) /vy
for all parameter values, where y is obtained by evaluating g[1J. This
- may not be what the programmer intends.

" p.12 line =t "let routine R be" %
p;16 Note: *:=%, not '=%, iIn for ext x := step 1, 2, 11 do

oppe.19-20 It is important that an array should be thought of not as the
' totality of its clements but as an indication of where these
elements are to be found, i.e., as a 'pointer' to the relevant element
storage area, The effect of an array assignment or initialisation by -
- value is to assign a fpointer' and not to copy the array eclements; any
such copying is to be done by a call to the function ‘'Copy’.

" p.26 Examﬁle ta} should now start:

H:nisz_routine Scalarproduct [ref real x, val vector A,B, index n, 1abel'$] Eg
' g x:=0" etc, -

Example (b) should start:

"*;“ZEE routine Gaussquad [real a,b, ref I, val function f] be é@

| § let s=(b-a)" etc,
pe29 1lines -11) - |

-15) . Insert '"be" in all routine definitions.

-27) - S

B4 .l line -9 flete b,c a'l be real

| 1ine'-? § let w,z both be reul

':7__;3line'—3 L1 w,zis f[W]s 5[51 ﬁ $

CPL REFERENCE MAVUAL

d(intovﬂ?it"-ﬁ. .Df’u?""l—) _

-\T:\Ei i?éé

o~

Bditor's Apologia

The unfinished drait which follows shows imperfections
of several kinds:

1. Missing sections

Tadale, 1.3.5, 9.2.3, are missing merely because they have
not yet been writien, They presented some problems in exposition
and so were postponed. :

Tohy 945,71, 9.5.2 were postponed because the content was
stil1l under discussion,

Appendices 2 and 3 are still under discussion,

2, Tncorrect Sections

The whole of section 2 is an umrevised earlier draft and
may need major revision,

9.5 is now largely wrong as we have altered the rules. about
break, return and result is to allow a more general use, This is
too complicated to insert as a manuscript alteration,

3.2, 3.4.6 and 6.5 will need modification when the type
character is introduced,

4,6 and 8,3,5 will need modification when the scope of
where—-clauses is changed,

5 Errors, Misnrints and Infelicities

Some of these have been corrected in manuscript. I should
be very grateful for a note of any more which come to light,

La Defects of Stvle

The draft inevitably still shows signs of its original
multiple authorship in the varying styles oi' the different sections,
More serious, perhaps, is the vacillation between a conciss
definition~like style (such as used in the Algol 60 repors) and a
more relaxed expository style. I find myself tempermentally averse
from writing in English in a very formalised manner, so thiat the
longer the dral't has been under my care, the longer it has become,
The only cure I can see for this is the development of a precise
and symbollically expressed formal theory of semantics which still
eludes our grasp.

5, Defscts of Exposition

{O

These are probably frequent and are only partly inadvertent,’
'The Reference Manual i1s not intended to be an exposition or
explication of CFL, The definitions of the meaning or effect of
some operator or command in terms of other or simpler constructions
may be in error in prescribing undesirable actions in infregquent
cases, . As these are discovered they will be altered.

It is part of our general approach te CPL that logical coherence
and convenience in use are not to be sacrificed to brevity or
simplicity in explanation,

In the ordinary course of events I should have been most
unwilling to publish a report with so many defects. However, in
the circumstances, given the desirability of circulating more
information about GPL at once and the ecually great urgency of working
on Compound Data Structures together with the fact that nons of
the authors hes time to spare on the Reference Manual, there seeus
to be nothing else to do,

I hope it will be possible to publish a revised and corrected
version of the Reference Manual incorporating the treatment of
Compound Data Structures on which we are now working in the not
too distant future. It would be of great assistance to me if
readers who discover errors of any sort im this draft would ssnd me
a list of them, If a sufficiently large number appear, we snall
- try to circulate a correction sheet to everyone who has a copy of this

report. '

. Strachey

- Programming Research Group
Lh Banbury Road
Oxford

July 1966 : England,

CPL Reference Manuaji Introduction 19 Jan 66 PAGE 1

i NTRODUCTION

This report is intended to be a compliete description of
CPL as at present defined. The syntax of the language 1is

.given using a system based on that used for ALGOL 60 (sece

Section 1,2). Semantic descriptions are given in words and
by example (see Section 1.3). As a satisfactory formal
language for describing semantics has not vet emerged, this
document should not be regarded as completely rigorous; it
should be read with a modicum of common sense,

One of the principal aims in designing CPL was to make
it a practicail application of a logically coherent theory of

- programming languages., It Is not the purpose of this report

to expound the underlying theory., However, some parts of
this report, and in particuiar, the semantic descriptions,
have been much simpiified by making use of some of |its
concepts. As these may be unfamiliar, a brief general
discussion of some of the issues involved, particularly as
they appily to CPL, has been included In Section 1, Section
2 contains an Informal account of the relationship between
Publication CPL and the more formal Canonical CPL which

underlies the publication language.
Part 1} (Sections 3=11) contain the description of

Canonical CPL which is the main purpose of this report.

cPL Reference'Manuai Contents 18 March 66. PAGE 1

XK lissin .

Authors' Preface ‘ '
Introduction : - ' ﬁ Ma? vieed m.‘jb-l' wtyision

PART |

1 General Considerations '
2 .1,1 Algorithms, Programs and Programming Languages -
- 1.,1.1 Commands and Expressions . N

2 Equivaience of Algorithms

3 Equivalence of Programs |

4 Equlvalence of Expressions !
5 Rearrangement Rules C *é'
actic Probliems ‘ "

\ y .

. o
R

1 Publication and Canonacal CPL
2 Syntax Rules

3 Purposes and Limutataons of Syntax
ntic Problems ;

1 General Approach

2 Data ltems, Types. o

3 . Transfer and Representatson Functzons
b "R=values, L-values
5
t
1
2
3
"

ERPUA RN
.' * :

wHUR W

Load-Update Pairs

ion with the Environment
The Operating System
input and Output
Compilation

% 1.k

P 2 0 R R e) e) e e e

B e s 0 DT s &

FEEE e W W

‘ Errors .
The Transformation from Publication to Canonical CPL-
2.1 Features of Publication CPL .
2.1.1 General Principles
2 Terminators and Layout
3 Brackets
L Conditional Expressions
5 O0ther Features
gories Recognized During Transformation
1 Names :
2 Numbers
3 Strings
s for Transformation

* » Q) e » o a

[o]

-

[X
:dmmmommmm

2.3
PART i1 CANONICAL CPL
3 Preliminaries

3.1 Canonical Form
3.1.1 General

3.1.2 c¢cPL Pub?xcatlon Alphabet
3.1,3 Basic Symbols
3.1.4 Basic Categories
i 3.2 Types
3.2.1 General
3.2,2 Numerical Types
'3.2,3 Logical Types
§ ~3.2.4 Other Types

CPlL. Reference Manual Contents 18 March 66 PAGE

3.3 Transfer and Representation Functions
+ 3.3.1 Programmers Transfer Functions
3.3.2 Basic Transfer Functions
0 3.%.3 Automatic insertion of Transfer Funct:ons
3.3.4 Polymorphic Operators
%2.3.% Representation Functions
3.4 Constants
. 3.4.1 General
3.4,2 Syntax
- 3,4,3 Numericai Constants
3.4.4 Logical Constants
H 3.4.5 String Constants ,
3.4.8 Character Representation
3.8,7 Other Constant Expressions

" L Expressions
4.1 Syntax
4.2 Evaluaticon
L.3 Conditicnai-Expressions
4,3.1 Syntax
4,3,2 Semantics
L.t Biock=Expressions
L.t,1 Syntax
L, L,2 Semantics
L,5 Expression-Lists
'}l 4.6 Where-Clauses
5 Prefixed Operators and Expressnons
5.1 Monadic Operators
5.1.1 Svntax
5.1.2 Semantics
5.2 Prefixed=-0Operators
5.2,1 Syntax
5.2,2 Semantics
5.3 Prefixed=Expressions
5.3.1 Synptax
5.3.2 Semantics
_ 5.3.3 Array References
6 Infixed Operators and Expression
6.1 Syntax and Grouping

6.1.2 General '
il 6.1.3 Juxtaposition, Pos and Neg
6.1.4 Grouping :
6.2 Numerical Operators
6.2.1 Types

6.2.2 Semantics

6.3 Logical Operators
6.4 Relations
I 6.5 String QOperators
6,6 Polymorphism and Type Matching

CPL Reference Manual Contents 18 March 66 ' PAGE 3

7 Definitions
- 7.1 Syntax
7.2 Modes of Definition
7.2,1 Definition by Type
7.2.2 Definition by Value
7.2.3 Definition by Reference
7.3 Constant and Variable Deflnstions
7.4 Definitions and Types
: 7.4,.1 Preferred Type
7.hq2 Type Definftions '
Lo 7.4.3 Simple Initialized Def;nltiops
.~ 8 .Definition Structure and Sc0pe Rules o
S 8,1 Syntax . e o
‘8.2 Scope and Extent [
8.2,1 Scope
Sl noeeTr o g,2,2 Extent
. 843 Scope Rules for Defxnxt:ons
B 8.3.,1 Recursive S
"8.3.2 Composite Def|n|tions'-
8§.3.,5 . And '
U 8.3.4 n
] 8.3.5 Where
8.3.6 Let
_ 8.4 OQOther Scope Rules
9 Commands :
9,1 Syntax

‘9.2 Assignment- Commands
9.2.1 Syntax
x q.q_; ——ds2.2 Semantics :
9,3 Transfer-Commands and Labels.
9,.3,1 Svyntax
9.3,2 Semantics
y 9.3.3 Labels
9.4 Routine-Commands

I Svyntax
<2 Semantics
r Simple~Commands
1 Svyntax
2 Return
5 Break
4 Result is
itional-Commands
1 Syntax
2 if-Commands
3 Test~Commands
e~Commands
L Syntax
2 While~Commands
3 Repeat-Commands
4 For-Commands
5 Evaluation of For«Lists

CPL Reference Manual Contentis 18 March 66 PAGE

“ 9,8 Bilocks
S 9.8.1 Syntax
J 9.8.2 MHNotes
» 9,8,3 Declarations
¥ 9.8.4 Command-Sequences
A 9,8,5 Leaving Blocks

10 Functions and Routines
10.1 i{ntroduction. Function and Routine Calls
10.1.1 Syntax :
o 10.1.2 Semantics
10,2 Functions and Routines as Data Items
' 10.2.1 Syntax :
10.2.2 Types
. 10,2,3 Expressions and Assignments . _
_ 10.2.,4 Fquality between Functions, Routines
10,3 Function and Routine Definitions o
: 10.3.1 Syntax . . :
10.3.,2 Semantics. General
'10.3.3 Formatl! Parameters
10,.3.4 Free Variables
10,3.5 LH Functions
10.3.6 Determination of Result Types

11 Arrays ‘ _
11,1 ' Subscripted Expressions. Arrays as Data'ltems
- 11,1.1 Syntax :
11.1.2 Semantics
11.2 Basic Functions for Arrays
© 11.2.1 Array-creating Functions
11.2.2 Other Functions ‘

‘Bq(-)?énﬁim. i T ?’mﬁ}mwgw

i,

le

>< ﬂﬂbe-\rﬂ-ﬁt & ﬁ—ﬁ‘wu?‘a—o@“ LG ¢
% ﬂ'l’lf\’ndg:ﬁ. 3 éimnffﬁrsﬁ -mo

s __‘ﬁ_ ‘R&a!’a v B

CFL Reference Manual Seétion 1,0 12 July 66

1,

NOTE

Feneral Considerations

Te1

1.2

1.5

Tolr

Algorithms, Programs and Programming Languages

1.1.1 Commands and Expressions
1.1.2 Eguivalence of Algorithms
1.7.3 Equivalence of Firrograma
1.7.4 Equivalence of Expressions
1.1.5 HRearrangement Rules

Syntactic Problems

1.2.1 FPublication and Canoanical GFL
1e2.2 Syntax Rules
1.2.3 Purposes and Limitations of Syntax

Semantic Problems

1e3.1 General Approach

1.3.2 Data Items, Types

123%.3 Transfer and Representation Functiohs
143.4 Re=values, L-values

1,3,5 Load-Update Pairs

Relation with the Enviromment

1.4.1 The Operating Systenm

1.2 Input and Output
1elie3 Gompilation
1eliels Errors

Sections 1.3.4, 1.3.5 and the whole of 1,4 are not
yet written, .

Page 1

v -v:i‘:'

CPI, Reference janual Section 1.1 15 Jun§56§°m ~ Page 1

1.1.1. Commands and BExpressions
n

An ALGORITHI is a rule for computation, - using the
words in a wide and informal sense., A PROGRAM ds an algor-
ithm presented in a form in which it can be accepted and,
hopefully, executed by 2 computing machine. A4 PROGRAMMING
LANGUAGE is the formalism in which a program is expressed.

i Algorithms are built up in an hierarchical manner
(which is not uswally described formally) from comporents
which are imperative sentences. These sentences contain
verbs and nouns or descriptive phrases which take the place
of nouns. TFor example in the imperative sentence:

"Replace x by the product of x and y."

the phrase "the product of x and y" is a description which is
the second object of the verb '"replace". :

One of the ways in which the hierarchy is built up is

by using one algorithm as part of a descriptive phrase used in
another. The example just given might have been written

"Replace x by the result of multiplying x by ¥." Here
"multiply x by y" is & subsidiary imperative which has become
incorporated in the descriptive phrase "the result of....".

In this case, however, tThere is some ambiguity as it is not
entirely clear if the command "multiply x by y" means

"replace x by the result of multiplying x by y" or merely
"discover the result of multiplying x by y". Such ambiguities
cannot be tolerated in a program, and 1t is part of the
function of a programming language to make their elimination
simple and safe. :

The features discussed above make their appearance in
all progranming languages, though in some the ambiguity has
not been wholly eliminated. The terms used in CPL to describe
them are the following.

A COMMARD corresponds to an imperative sentence.
An EXPRESSION corresponds to a descriptive phrase.

A NAME corresponds to a noun and is a special case of
an expression.

The mechanism for incorporating the result of one
algorithm in a deseriptive phrase of another is completely
explicit (see Section 4.4).

PL Reference Manual Section 1.1 15 June 66 Page 2

1.1.2 Equivalence of Algorithms

There is no generally accepted rule for determlnlng ‘

‘the equivalence of two algorithms independently of their
context. There is, however, one situation when it is

quite clear what should be meant by such an equivalence. If
an algorithm, A, occurs as part of the deseriptive phrase

"~ ",.. the result of ..." as a component of a larger algorithm,

then-we are only interested in the "result" of ‘A and any

other algorithm, B, which produces exactly the same result

will be acceptable in its place. In these c1rcumstances we

' can say that A and B are locally equlvalent.

1.1.3 Equivalence of Programs

Two programs are said to be.eqnivalent if they pro~n

 duce indistinguishable effects whenever they are executed. -

This execution must be complete, not partial, so that,
for instance the intermediate effects of two equivalent -
programs may differ, and in particular all programs which do

~. not terminate may be regarded as equivalent. The question
.whether two given programs are equivalent or not in this

. gense 1is

SRR e undecloable, but in certain simple cases
it may be possible to prove equlvalence by one of the follow— '

» ing rules.

| 1. Certain commands are defined in this manuallto-bev t
equivalent to wmsik other, generally simpler, commands or :
sequences of these. T R

-

2. Two commands which differ only in their: component o
narts (whlch may be expressions or other commands) are equi«
valent if each of the. corresponding component parts of the two
commands are equivalent. : ,

These are not the only p0531b1e casges in Wthh commands

are equivalent. The whole question of equivalence of programs
"is a compllcated and not yet fully understood one and its T

1nvestigat10n lies out51de the’ sc0pe of this report.

(Note that equallty of voutines as deflned in sectlon :
10.2. 4 is a completely different and much stronger concept

~“than that of equlvalence between programs.)

CPL Reference Marual Section 1.1 15 June §6 Page 3

1.1.4 Eguivalence of Expressions

Two expressions are equivalent when they have the same
value. In the case of a block-expression the value of the
whole expression is the value of the expression following the
basic symbol result is sc that any "side effects" such as
assignments to non~liocal variables are ignored when determining

equivalence.

When determining the equivalence of expressions in-
! volving standard mathematical operators only the properties
E - of the ideal mathematical operators are relevant. Departures
$ from the ideal owing to the fact that only finite represent-
ations are used in a computer, are to be ignored. Thus, for
example, <the expressions x + ¥y ~ 2 and vy - z + X are to be
considered as equivalent irrespective of the precision or
range of the internal representations of numbers, and irres-
pective of the order of evaluation of the components.

1.1.% Rearrangement Rules

The general rule in CPL is permissive. Any program
or expression may be replaced by any other which is equivalent
to it in the sense of sections 1.1.3 and 1.1.4.

In order to allow a detailed control over sequencing

- and the deliberate use of side effects, it has been made
~possible to prevent any replacement or rearrangement of this
gort. This is done by using the note sic at the head of the
block. This has the effect of preventing the replacement or
rearrangement of thé commands 1n51de the block. (See Section

982)

CPL Reference Manual Section 1.2 20 Dec 65 PAGE 1

1.2 Svntactic Prob}ems

1.2,1 Publication and Caponical CPL

1

Pubiigcation CPL contains a number of convenient
programming: devices, These are described in the Elementary
Programming Manuals and a brief summary is given here in
Section 2.1, Some of these features are not easily
described in a formal system, and so publication CPL is
formally defined by describing a transformation which
changes a publication CPL document into canonical CPL. A
description of this transformation is given in words in
Section 2 and as a CPL program in Appendix 1. It should be
noted that the transformation from publication to canonical
CPL can be carried out by a number of processes and that the
one described in this manual {s by no means the only
possible one, :

Canonical CPL, which is introduced in this way as a
device to aid in description of the language, is more easily
subject to a formal description which occupies Part {1 of
this report. A program in canonical CFL is a context=free
character string with no dependence on layout or
representation,

The existence of canonical CPL aids the task of
specifying other hardware representations, such as those

using cards, quite substantially. Logically unimportant
changes, for example to the Identifier rules, may be
advisable in such cases, These alternatives are readily

defined by specifying their transforms into canonical CPL.

Any practical Iimplementation of CPL will probably
accept an input which differs to some extent from both
publication and canonical CPL. One possible way . of
constructing a compiler for such a system 1is to transform
the locally defined input stream Into a representation of
canonical CPL before further processing. The program given
in Appendix 1 wouid serve as such a PREPRDOCESSOR for a
system whose local input language was publication CPL. Its
inclusion may help to suggest a method for writing similar
preprocessors for other local representations of CPL.

Publication CPL with only minor changes 1in the
character set 1is5 used as the hardware representation at the
London and Cambridge establishments,

1.2,2 Syntax Rules

Syntax descriptions of canonical CPL are given in terms
of metalinguistic formulae., Sequences of letters enclosed
in brackets ¢ > represent syntactic categories; they are

CPL Reference Manual Section 1.2 20 Dec 65 PAGE 2

chosen to be words describing approximately the meaning of

the corresponding strings. The sign ::= separates the
category being defined on 1its left from ‘the defining
sequence on its right. The vertical bar | - is used to

separate alternative sequences. Any sign which 1{is npot a
category stands for itseif. Juxtaposition of ‘signs and/or
categories signifies juxtaposition of the sequences they
denote, ’

Metalinguistic brackets < > may be nested and thus used
to group together more than one constituent sequence (which
may contain alternatives). An integer subscript may be
attached to a metalinguistic bracket and used to specify
- repetition; if it is an integer n, then the sequence within
the bracket must be repeated at Tleast n times; if the
integer is followed by a - sign, then the sequence may be
repeated at most n times or it may be absent,

For example, the formula

<ab> ::= <ab><d>|<ab>,_(| [-

gives a recursive rule for the formation of values of the
-category <ab>; a legitimate value may be formed by some
other value followed by a value of <d>, or by a .(possibly
absent) value followed by (, or by [. [f the values of <d>
are the decimal digits, some values of <ab> are :

LCCCL(37¢
(12345¢
(¢

{6

" Grouping or association rules can be expressed in two
ways in the syntax, Unsubscripted recursive formulae or
groups of formulae imply a corresponding semantic grouping.
Subscripted formulae (which are generally not recursive)
imply no such grouping. Thus: -

<p> ¢:= <ari<pr<a>

impliies association to the left = j.,e.; a grouping of the
‘type ({{qqlqlq) and :

{ry s1:= {s>[<s><r>

“implies association to the right = {.e, (s(s{(ss))) while

it

x> = Lyr<Kzr<y>>,

and

i

<x> 3= LKyXKzo 2y

have the same meaning and imply no association among the

"components of x so that the only grouping is {yzyzyzy).
Syntax descriptions are given adjacent to those

sections of text which describe the corresponding semantics,

CPL Reference Manual Section 1,2 20 Dec b5 ‘ PAGE 3

and a compiete syntax is given in Appendix 5.
For clarity, the ¢ separators are not included 1in the
syntax formulae, »
In order te avold confusion, the canonical CPL symbols
< » << »> and | are replaced in syntactic formulae (where
they might be confused with the metasyntactic symbols < > |)

by the baslic symbols Jlessihan, greaterthan, mggh;gsstnan,

- muchgreaterthan, bar.

1.2.3 Purposes and Limitagiqnstgf Svntax

There is often some confusion about the precise
meanings of the words syntax and semantics and some doubt as
to where to draw the line between them. 1In this report we
do not attempt either to discuss this 1Jissue or to be
particularly nice in our distinction between the two;
roughly speaking we cail anything we express in the notation
described in the last section’ syntax, and everything else in
this manual semantics.

The purpose of our syntactical analysis is to allow a
CPL program to be divided into smaller segments, known as
syntactic categories, in a way which will make the
subsequent discussion of its effect (or meaning) simpler and
more precise. Any text which cannot be anatltysed in this way
will not be a correct CPL program, and this fact allows a
compiler to detect many of the slips and trivial errors In a
program at an early stage by a rather superficial
'syntactic' analysis. However, the converse is by no means
true, as a text which is syntactically correct in the sense
of this paragraph may be semantically meaningless.

The syntactic rules in this report are not even
sufficient to group a CPL text completely, In " some cases
(e.g., infixed~expressions) they leave the final grouping to
a later stage of the analysis which we have here included in
the semantics. in others, the syntactic categories
correspond not to groupings of the text but to semantically
related items (e,g., retations), :

CPL Reference Manuat Section 1.3 26 March 66 . ' PAGE 1

't

1.3 Semantic Problems

1.3.1 General Approagch

As no satisfactory and generally accepted method of
describing the semantics of a programming language has vyet
emerged, the method adepted in this report is a mixture of
informal description in English sometimes 1[llustrated by
examples in publication CPL with, in some cases, definitions
in terms of other CPL forms., Some of the concepts used 1in

"these descriptions are discussed in Sections 1,3.2 to 1.3.5.

When giving examples in publication CPL it s
convenient to be abie to use variablies whose values are
individual members of various syntactic categories, Upper
case Roman letters with numerical subscripts are used for
this purpose, The letter is chosan toc give some indication
of which syntatic category Is being represented, and - the
suffix is used identify the particular individual member of
this category, Thus, for example, when discussing the
assignment command which has the syntactic form

{assignment command> ::= <expression> := {expression list>
the example used is
Eﬁ s = El

which makes it possible for the subsequent discussion to
- refer to the components of the command as E, and E, .,

1.3.2 Data ltems, Tvpes “Thn sefiem meeds re-blTN?'t-' T riSiOn

A CPL program 1is concerned with operations on and
relations between certain objects known as DATA 11TEMS, (or
sometimes merely as ITEMS). These can be thought of In
several ways. At one level they may consist of patterns of
magnetization in a core store, at another they may be
thought of as bit patterns or binary words. At another
level they may be divided inte ‘'instructions' and ‘'data‘,
while at another they may be thought of as being numbers or
letters,

The point of view adopted by CPL is that ultimately all
data items are represented by bit patterns of various

- Tengths, However, these bit pattern represent other,
"generally abstract objects, such as numbers or functions and
their importance stems from this representation, This

attitude allows us to talk about the abstract objects in CPL
without being concerned with any particular representation

CPL Reference Manual Section 1,3 26 March 66 PAGE 2

as a bit-string {(which may well be implementation dependent)
but at the same time makes it possible’ to consider
explicitly questions which involve this representation.

The TYPE of a data item determines i{ts representation
and at the same time consirains the range of entities which
may be represented, Thus, for example, the type jinteger can
only be used to represent integers in a certain range, Both
the extent of this ~ range and the details of the

representation of integers within this range- are
implementation dependent. The existence of the type
integer, however, Iis & property of the language.

CPL provides for a fairly wide range of types which are
discussed in some detail! in Section 3.2

It is possibie for a single abstract entity to be
represented In more than cone way as a bit pattern. The
integer 3, for example, can be a data item of type freal or
one of type integer {(among other possibilities)., These two
items would be guite distant and their bit-patterns would,
in general, be different. There are a series of TRANSFER
FUNCTIONS available in CPL which have the effect of changing
from one form of representation to another without altering
the abstract entity belng represented, These are discussed
further in Section 3.3,

The various types in CPL provide representations for a
number of well=defined classes of abstract objects. it is
these abstract objects which constitute the data Items.

in some cases L(for example, the type real) the
representation of the abstract object is only approximate.
The usual situation Is that a range of entities all have the

same representation, In these circumstances it is Important
to be clear whether the CPL program is discussing the ideal
abstracts or their approximate representations. in other

cases, however, where the representation is exact there is
no significant difference In outcome whichever view is
taken, and it is considerably simpler 1in these cases to
regard CPL as manipulating the abstract entities directly
and to leave the questions of representation to the
implementation, it is partiy for this reason that the
rearrangement rules have been Included in CPL,

This implies that in normal operation CPL is to be
regarded as describing operations on abstract objects and
not on their representations. In theose cases where the
difference between the approximation of the representation
and the ideal abstract are of Importance, it is possible to
specify the exact sequence of elementary operations to be
performed on the representaticns by using the note si¢c at

‘the head of the block {see Sections A" 1.1,5).

in accordance with this view thare are certain specific
situations in which transfer funetions are inserted
automatically by the implementation in order o ensure that
a correct representation is used.

q.g.z/

CPL Reference Manual Section 1.3 26 March 66 PAGE 3

1.3.3 Transfer and Representation Functions

Certain functions are availablie in CPL which deal
explicitly with the representation of a data item. One
class of these, known as TRANSFER FUNCTIONS, have as their
aim the control of the type by which an item is represented.
Another, known as REPRESENTATION FUNCTIONS, allow acecess to
the actual bit patterns used in the representations; these,
of course, are strongly implementation dependent,

Transfer functions are, In general, polymorphic; they
take a single argument, which may be of any meaningful type,
and produce a single result which has the same value as its
argument (or-an approximation to it} and has a specified
type. These functions are listed in Section 3.3.1 and are
available for explicit use by thea programmer, They are also
inserted automaticaliy by the compiling system in certain
places to ensure that a suitable representation is used,

While the finer details of the tramsfer functions (and
in particular, their alarm conditions) are implementation
dependent, their general nature, and the situations in which
they are to be inserted automatically by the compiling
system are a part of the language, These are described in
detail in Section 3.3,

Representation functions are not concerned with the
abstract value of their arguments, merely with the bit
string which represents them in the current implementation.
(see Note at end of this sectlion.) They are not, in
geheral, Insertfed by the compiling system and their use by a
programmer serves as a warning that the program containing
them is probably impliementation dependent.

There is one exception to the statement that
representation functions are not inserted by the compiling
system. The abhllity to use table 1lookup as a method of

processing non-numeirical items (such as characters) is so
convenient and widely used that the fact that it involves
representation explicitly is often overlooked, in order to

preserve this facility, the representation functions which
take single character sirings, logicals and jndex into each
other may be invoked automatically by the compiling system.
The details of this, and of the other representation
funections are given In Sectlon 3.3, :

NOTE: In this section and elsewhere where bit strings and
items of type logical and lone jogical are discussed, it has
been tacitly assumed that the implementation will be on a
binary machine, For implementations on a decimal machine,
considerable revision of the functions and operations
dealing with these types would be necessary.

OFL Reference Manual Section 2,0 12 July 66 Co-

2

NOTE

The Transformation from Publication to Canonical CPL

2.1

2,2

: 2-5

Features of Publication GPL

2.1.,1 General Principles .
2.1.2 Terminators and Layout
2e1.3 Brackets

2.1.4 Conditional BExpressions
2.1.5 Other features

ategories Recognized During Transformation

1 Names

2 Lef't Section Bracket
3 ZRignt Section Bracket
.4 Strings

5 Dot string

6 Numbers

MNMNMNMN O
-

MNP MNMNN
L]

Rules for Transformaticn

Thigs section is taken from an earlisr version and has
not been edited, It may well need major revision and
is only included to give the reader some idea of the
chief features of publlcatlon CPL.

Page 1

 ngages

CPL Reference Manual Section 2,1 1 July 66 Page 1

2,1 Features 6f Publication CPL

2,1,1 General Principles

The general principle underlying publication CPL has been to relieve
the user, where possible, of the labour of including redundant information
in his program. To the user, a program is best regarded as a document
written in lines on sheets of paper and, as in studying the content of
other documents, its layout may well convey information in the most con-
venient form, The publication language, therefore, makes use of abbre-
viations, permits omissions where no ambiguity is possible, and makes use

of the layout to convey part of the meaning,

A programming language is more readlily described in a formal way if
programs are regarded as context~free strings of symbols., Canonical CPL
1s such a language, and the transformation from publication to canonical
is here described, The verbal descriptions in this section deseribe its
R main features in an informal way, A more rigorous definition of the trans-
formation is given as a program in publication CPL in Appendix 1,

2,1,2 Terminators and Layout

S s g et
RS S RN AN S o

A command or definition may be terminated in one of three ways:

£ ’ 1) Expliecitly, by use of a semicolon.

2) By its layout; an end of line is a terminator unless the end

of line occurs at a point in the program where the context indicates
that a command could not terminate at that point., Ends of lines
which cannot be accepted as terminators or which are adjacent to

the symbol c are ignored.

3) Implicitly; a terminator may be omitted 1f its presence is not
essential to avoid ambiguity.

The use of "'space’ in CPL is derived from its use in written language

Spaces may be inserted freely between words to improve the

in general,
and they must be used to separate

layout, They are not used within words,
words whose juxtaposition@® might cause ambiguity.

For example, consider the commands

test x = y then z i= z + Lgrz = 1 +
z {a + b); Total := Present Factor

' may be omitted, The end of line following

The semicolon before 'or’
A space is

"+" cannot terminate a command and 1s therefore ignored.
necessary only between ''Present” and "Factor” to avoid ambiguity (this is

a case of implicit multiplication).

CPL Reference Manual Section 2,1 1 July 66 Page 2

- 2,1.3 Brackets

@

It 1s often the case in writing programs that several nested sections
of program come to an end at the same point, where a string of closing
section brackets has to be inserted, This 15 an error-prone operation as
‘the number of closing brackets needed is easily miscounted,

Section brackets in CPL may therefore be distinguished from each

" other by attaching names or tags to them, A closing section bracket cor-
responds to the nearest opening bracket earlier in the program which bears
the same tag, It defines the end of the section thus specified, and it
implies the closure at this point of any contained sections of program
which have not yet been closed,

Examples of the use of tagged section brackets may be found in the
Introductory Manual and in Appendix 1,

2,1.4 Conditional Expressions

In publication CPL, the form of a conditional expression is
—
E1 EZ’ E3

Any occurrence of a comma used in a conditional expression is
"

replaced in the canonical form by the basic symbol "gomma'.

2.1.5 Other features

Monadic occurrences of + and -~ are allowed in publication CPL, .
In the canonical form, they are replaced by the basic symbols "pos"
ahd "E_e_g_"- Ferm——

A wide range of synonyms is available for the basic underlined words
in the canonical form, Many examples are found in the Introductory Manual
which contains a 1list of synonyms,

Comments may be inserted freely in publication CPL text. A comment
is intoduced by a double bar and continues up to the end of that line; the
whole of this text is 1gnored.

In some cases, symbols may be omitted in the publication form if no
cambiguity is caused; for example, '

if B then'goto L
may be written

if B goto L

CPL Reference Manual Section 2,2 1 July 66 Page 1

2.2 Categories recognised during Transformation

All instances of the following six categories are recognised during
the transformatlon process, Their descriptions, and the modifications
introduced during transformation, are described here, Note that strings
of characters or primes mentioned in this section may jwededesimaieians O¢

L null, e,

-Gy . -

2,2,1 « name >

A single lower case letter followed by any number of primes, or an
upper case letter followed by a tag,

A tag is a string of letters of either case, digits and dots, followed
by any number of primes,

In the canonical form, the symbol # 1s inserted before all occur-
rences of names, '

2,2,2 < left section bracket >

]'l&.r LRl [:l
The symbol 8 tfollowed by a tag, The canonical form Mnehaﬂg}ed-

2,2.3 << right section bracket >

hos o Ta
The symbol $ followed by a tag, The canonical form i-e—u-nehan;gd.

Note that two section brackets with identical tags are said to
1t 11
match ,

The closing brackets omitted in publication CPL as in 2, ,.gabove
are inserted by the transformation,

2,2,4 <« string constant >

A string of characters starting and ending with a prime, Within a
string constant the symbol 10 (subscript ten) is used as an escape character:

1010 stands for 10

f f
10

CPL Reference Manual Section 2,2 1 July 66 : - Page 2

and the meaning of any other character following a single 10 is imple~

mentation dependent,

In the canonical form, the symbol # is inserted before all instances,

of stivmg canslands,

2,2,5 < dot string>

2

A string of dots and spaces which must include at least,8 dots and
which is surrounded by commas, The canonical form is as follows:

980 0.y

2,2,.6 < number >

A string of any number of digits and dots which may ineclude spaces
and musiinclude at least one digit. The canonical form is preceded by

the sumbol 4,

CPL Reference Manual Section 2,3 1 July 66 Page 1

2.2 Rules for Transformation

These rules are intended as a brief verbal gulde to the operation of
the preprocessor program given in Appendix 1, They describe the operations
performed on a complete publication text in a series of four passes, the
end product being the corresponding canonical text. The operations des-
cribed under each pass are done together,

Pass 1

1, Remove all comment text,

Pass 2

2. Recognise all instances of the six categories described in 2,2
above, and transform where necessary as described in that section,

3, Insert matching closing section brackets where required.

Fos 4, Instances of commas used in conditional expressions are
gﬁ replaced by "comma',

i 5. Change all new lines to semicolons, replace consecutive semi-

i colons by a single semicolon, Consider the symbols adjacent to each

: semicolon, If either is ¢, remove the semicolon, Unless the preceding
symbol can legally precedg a semicolon and the succeeding symbol can
start a command, delete the semicolon,.

Pass 4
6, Remove all occurrences of the basic symbol c.

7.. Insert do between any pair of gymbels such that the first of
these cannot precede a command and the second must start a command.

8, Recognise monadic uses of + and - and replace them by pos and
neg respectively,

CPL Reference Manual Section 3,0 6 March 66 . . ' PAGE 1

-3 PRELIMIN

n

3.1 Canonical Form‘

3.1.1 General
3.1.2 CPL Publication Alphabet
3.1.3 Basic Symbols -
3.1.4 Basic Categories
3.2 Types .
3.2.1 General
‘ 3.2.2 Numerical Types
3.2,3 Logical Types
3.2,4 Other Types

3.3 Transfer and Representation Functions

3,.3.1 Programmers Transfer Functions

3.3.2 Basic Transfer Functions

3.3.3 Automatic insertion of Transfer Functions
3.3,4 Polymorphic Operators

3.3.5 Representation Functions

3.4 Constants

3.4,1 General

2 Syntax

3 Numerical Constants

L Logical Constants

5 String Constants

& Character Representation

7 Other Constant Expressions

i

fe Cha!‘q:’.-ﬂ"ﬂ" Cowtll .sz-».(a 7 Y “‘Qﬂﬁg ﬂ:.s

a.fre_r;z'? | wg .s‘Tr\-a'.; oD @asg‘ﬂ4} @isedf‘.m

w‘-u Mra,-}(S Smal

-C—-ahg&a-ﬁ, DTe. .S'h.‘l..re..s will \,‘omé‘u?_ alis exlend

_ - .
o i Tt T wleole comeepl B— a‘/{ae.\' so T
th 5 effm. P a haut * & | Ha‘ﬁyj,;“i <Ny ;,ﬁ;—:.f:;.’

M 25 théfp,

Aty e 4

CPL Reference Manual Section 3.1 22 Feb 66 Lo PAGE 1

3.1 Canonical Form“

A program in canonical CPL consists of a string of
items which are either BASIC SYMBOLS or members of a BASIC
CATEGORY, A basic symbol is a single character from the CPL
basic alphabet ahB defined in Sectijon 3.1.3., A member of a
basic category consists of a character from Jba identifying
the category followed by a word (string of characters) from
the possibly implementation dependent alphabet associated
with the category. The categories and their associated
alphabets are described in Section 3.1.,k.

Every implementation must have a method of representing
all the characters in aja;and the alphabets associated with
the basic categories by one or more characters from its
{MPLEMENTATION ALPHABET . These are the characters which
occupy one print position in the program together with
certain extra symbols representing the layout,

The implementation characters may in turn be
represented by one or more HARDWARE CHARACTERS from the
alphabet ¢by . These are the basic hardware units of input
and output such as a single row of punched tape, a single

- column of a punched card or a single keystroke on a directly

connected kevboard,

_ Thus, for example, in a hardware implementation which
uses a backspace to provide compound or overstruck
characters, the following three strings of length six each
produces the same printed result (The symbol 2 is wused
temporarily to denote the hardware character 'backspace'),.

i _fo
ifoa_._
Y

In each case the result produced should be the two character
string from the implementation alphabet i f., This 1in turn
represents the single character (basic symbol) if from the
alphabet th.

The transformation from a string of hardware characters
to a string of Iimplementation characters 1is largely
impltementation dependent, However, it should be arranged so
that hardware character strings which would produce the same
printed image will produce the same implementation character
string as illustrated by the example given above,

~The transformation from a string of implementation
characters to canonical CPL is done by a preprocessor of the
type described in Section 2 and Appendix 1.

CPL Reference Manual Section 3.1 22 Feb 66 PAGE 2

3.1,2 CPL Publication Alphabet

There is one 'implementation’ alphabet which is not
implementation dependent; this is the publication alphabet
ﬁa,which contains the following 162 printing characters:

ABCDEFGHI JKLMNOPQRSTUVWIXY?Z
abcdefghijkimnopagrstuvwixyz
01234567879

- ABCDEEGHLJKLMNOQPOQRSIUVUYHRHXYLZ
abcdefghilklnnoeparLslyyWwxyz
01234587838 \

+ =X /4

>r=fE LD ¢

~ 2D

A Y o= £

()1 186

N [S |

10
and the two non-printing characters ‘space' and 'newline'.

These characters are used In the rest of the manual
except that the three svmbols & 3 = may be tvyped so as to
occupy two print positions each.

3.1.3 Basic Symbols

The CPL Basic Alphabet Jﬁ& contains the 109 symbols
listed below., The symbols are given in the representation
used in the syntax tables and also, if necessary, the form
or forms by which they can be represented in the publication
language., It is a general rule of the publication 1language
that when representing a basic symbol by an UNDERLINED WORD
{including words of one Jletter) no distinction 1Is made
between upper and lower case letters and spaces, whether
underlined or not, are ignored. Thus the two strings

GO0 _TO £o fo

in the publication language both represent the same basic
symbol which is represented in the table below as gotaqg.

(a) The following 25 symbols from g%? also represent uniqgue
basic symbols from .
AIT L= FE2AvEE v

s (IT188 >,

CPL Reference Manual Section 3.1 22 Feb 66 PAGE 3

(b) the following five basic symbols are represented in the
syntax tables by underliined words and in the publication
language by single symbols, (see Section 1,2,2)

Syntax Form o Publication Symbol

bar
greaterthan
lessthan
muchgreaterthan

- muehlessthan

PV o R
FaSh Vo

(¢c) The following 54 basic symbols are represented in the
syntax tables and in the publication by the same underlined

word.
and Eeneral n test
array g0f0 note , ’Lg’
: true
Boolean X prefer type
" break if
in i uniess
CPX index real until
integer repeat : update
d repeatuntil
dcpx L repeatwhile v or
double - label resultis
doub] Jet retuirn where
load : while
false ‘ logical sic
finish longlogical step X
fix '
fixed matrix 2
for A k3
free

(d) The following 14 basic symbols can be represented 1iIn
the publication language by any one of a number of synonyms.
In the table below, the first form 1is that used in the
syntax tables, .

s

allbe bothare bothbe are
be is

constant const ‘

do . then thendo
forexternal forext '

function <« fn

or . ordo

r rsive . rec

CPL Reference Manual Section 3,1 .22 Feb 66 PAGE 4

reference ref

referenceof refof

routine rL P 4% Tl:m ! -}zﬁh« A
valu Vel T e - ﬁ
valueof valof

variable var

*{e) The following six basic symbols are represented by only

three symbols in the publication language. The preprocessor

decldes - from the context which 1is the appropriate basic

symbol to use.

Syntax form Publication Symbol

Comma
BOS

+

neg

P+

(f) The remaining five basic symbols are the following:

presentation of at least _¥dots, possibly
interspersed with spaces and surrounded hy
commas, The foilowing are three examples
of dotstrings in the publication language:

f@u_oa‘? A a e r F e eeay

dotstring which has the: publiecation language re-
=/

which are used to indicate the basic cate-
gories name, number and string=-constant re-
spectively.

T O m TS

which is sometimes used when writing can-
onical. CPL strings to separate the basic
symbols where there might otherwise be con-
fusion. it has no other significance,

CPL Reference Manual Section 3.1 22 Feb 66 PAGE 5

3.1.4 Basic Categories

The precise definition of the basic categories s
implementation dependent, The definitions given in this
section apply to the publication language. The basic
categories are recognised by the preprocessor.

(a) Names

A member of the basic category <name> in canonical CPL
consists of a name-word from the alphabet oty preceded by
the basic symbhol # and followed by the basic symbol ¢ (both.
from the alphabet Jig).

For publication CPL the alphabet J#N contains the
. following 64 symbols: ' ,

ABCDEFGHI JKLMNOPQRSTUVWIXYZ
abcdefghijklImnopgrst¢tuvwxyz
01234567389,

A name-word consists of a single Jlower case Tletter
followed by any number of primes, cr an upper case Tletter
followed by a tag. _ '

A tag consists of a string of letters (of either case),
digits or dots of any length followed by any number of
primes. A tag may not include spaces - indeed a space 1Is
not a symbol in the alphabet J&y. | ,

The alphabet Jb, Is a sub-alphabet of Ap and its
symbals are represented in the publication language’ by the
same symbols from of;, .

{(b) Numbers

A member of the basic category <number> 1in canonical
CPL consists of a number-word from the alphabet ofy, preceded
by the basic symbol 4 and followed by the basic symbol ¢
(both from the alphabet p).

For publication CPL the . alphabet Jfp contains the
following 11 symbols:

01234567889,

A number-word consists of any string of these symbols
containing at least one digit.

The alphabet oy is a sub-alphabet of Ap and its
symbols are represented in the publication language by the

same symbols from ;.
{

(c) String~Constants

A member.of the basic category <string constant> in
canonical CPL consists of a string=word from the QUOTABLE
ALPHABET ota preceded by the basic symbol § and followed by

CPL Reference Manual Section 3.1 22 Feb 66 PAGE 6

the basic symbol ¢ (both from the alphabet vig).

For publication CPL the alphabet ug contains the 162
printing characters from the publication alphabet Jip (see
Section 3.1.2) together with the three non-printing

characters:

‘space’ ‘'backspace' 'newline’

A string=word censists of any number of these symbols
(including zero). ’

In publication CPL a string~constant 1Is distinguished
from other parts of the text by belng enciosed by primes.
This fact, together with the rules for dealing with comments
in the preprocessor mean that although the characters of g
and %@ are very similar, some of the characters from Q

cannot be stralightforwardly repraesented by the same

character from 4p. The precise rule is the following:
The following five characters from 5ﬁn&have a special
representation in characters from g%? as shown:

Character from iy Representation in Jﬁp
backspace b
newline °n
bl 9%
8 ‘§i
i 2
The remaining 160 characters in J%m are represented by
the same character from X, In addition, the non=printing

character 'space' In Jig may also be represented by the
characters s from Jfp.

Note that string-constants are defined above by the way
in which the characters from :ﬁ@Lare represented, and not in
the way in which an arbitrary string of characters from Jip
can be interpreted,, This implies that not all possible
strings enclosed in string-guotes {(primes) are acceptable.
In particular, the ESCAPE CHARACTER ! 1is only defined if
followed by one of the six characters b n ' ! if or s.

Publication CPL has the additional rule {(implemented by
the preprocessor) that new lines and trailing spaces (at the
right end of a line) are ignored in string~constants,

{d) Section-Brackets

In publication CPL the basic symbols ;é and %» may be
followed by a tag taken from the alphabet A, (see (a)
above). These are used by the preprocessor to insert extra
closing section brackets (ﬁi) where necessary so that 1in a
canonical CPL program all section brackets nest and match
correctly. This means that the tags associated with them in
the publication language are no longer necessary so that
they do not form a part of the canonical CPL program,

Thus section brackets do not form a baslic category in
the strict sense, They must, however, be treated as such in

CPL Reference Manual Section 3.1 22 Feb 66 _ PAGE 7

the preprocessor and many implementations will find it
desirable to continue to associate a tag with each section
bracket even when It is no 1longer logically necessary in
order to give some assistance in locating errors 1in the

programe.

CPL Reference Manual Section 3,2 10 Jan 65 PAGE 1

3.2 Jvpes

3.2,1 General

The following sections list all the types of data Item
currently included in CPL and give a brief description of
them. The detaiis are impiementation dependent,.

Further types may be added from time to time, and it Is
possibhle that the incorporation of a more comprehensive
treatment of compound data structures may force a
considerable revision or extension of the concepts of this
section,

The rules concerning transfer functions are collected
In Section 3.3 for convenience, They are discussed in more
general terms in Sections 1.3.2 and 1.,3.3. i

3,22 HQ.E.QI_IQ@_L.I_EQQ_S.

[:eal

A real number, whose range and precision are
implementation dependent.
Jnteger

An integer, whose range is implementation dependent.

index

An integer, whose range is probably less than that of
integer and whose use may improve object program effic;ency,
for example, in subscripts. _ :

complex
A palr of real numbers taken In order as the real and

imaginary parts of a complex number.

double

A real number with approximately double the precision

of type real.
Adoublecomplex

A pair of real numbers taken in order as the real and
imaginary parts of a complex number, The components have
approximately doubie the precision of the components of a

complex data item.

CPL Reference Manual Section 3.2 10 Jan 65 g PAGE 2

3.2,3 lecal T s
Boolean
A truth value; its value is either true or false
ogical _
A bit string of a fixed and Iimplementation dependent
length.

onglogical
A bit string of a fixed and Iimplementation dependent

length probably greater than that of logical.
The intention of Jogical and longlogical is that it

should be possible to transform reasonably large sections of
type index Tnto logical and of type real into longlogical
without l1oss of information.

In an implementation based on a binary word oriented
computer where reals occupied one word and jndex a shorter,
possibly address=length, segment, logicals would probably be
the length of an index register and Jonglogicals a whole

. computer word.

3.2,4 Other Tvpes

string
A string of characters of any Jlength including null
(See Sections 3.1.4, 3.4.5 and 3.4.6),

label

A location in the program and a - description of an
environment of that area of program (See Section 9.3).

function
A representation of a function (See Section L&7. la.L‘lk//
routine
A representation of a routine (See Section 10).
array '
A representation of an array (See Section/}&fﬁ 3"l'L)//
type

A data item whose value Is a data item type.

'Y

general ‘
(A1

A data item whose type may vary dynamica]1y; ﬁrvn:;
a ‘)EATA—T -E)l , Sfee u—T}gﬂL o Y-u-aﬂ?ﬁh-%rg T ﬂcrr
S.\wak -‘T;i pe LT (See SeTiow 7. ,)'

a

CPL Reference Manual Section 3.3 15 Jan 66i PAGE 1

3.3.1 Programmers Transfer Functions

; The following transfer functions are available to the
programmer :
DoubleComplex de
Complex ' c
Doubie d
Real r
Integer ' n
index x
LonglLogical i
Logical 1
String S
Boolean b

1

Each takes a single argument which may be of any
meaningful type and produces as its single result an item of
the type indicated by its name. Each function exists in two
forms, according to the mode of the context in which it s
usad.

a) The R-mode Transfer Functions "

These take a singlie R-mode argument and produce a
single Re-mode result. The details are Iimplementation
dependent, but the results can be described with the aid of
the following table which uses the abbreviations indicated

above for types,

CPL Reference Manual Section 3,3 15 Jan 66 PAGE 2

Target Type

X n i d ¢ de 1 11 5
X - n n n n n 1 (1) 5 (b)
n X - r r. r r (x) (x) (x) (x)
r n n - d ¢ c (m n) (n) (n)
_ d r r r - r ~de (r) (r) (r) (r)

Original -
c ro r rooor - de (r) (r)} (r) (r)
Type _

‘ de | ¢ c c d c - (c) () (c) (c¢)
1 X (x) (x) (x) (x) (x) ~ 1 5 (x)
11 (1y vy (1) (1) (1) (1) 1 _ (1) (1)

s x - (x) (x) (x) (x) (x) 1 (1) -

b (x) (x) (xY (x) (x) (x) (x) (x) -

Table of Initial Transfer Functions

The entry corresponding to a pair of types 1in this
table indicates the first type to which the data {tem is to
be transformed in a transfer from the first type to the

second, Thus the transfer from string to doublecomplex

would pass through the sequence.

stripng-sindex~»integer +real-+complex <sdoublecomplex

Further details of the BASIC TRANSFER FUNCTIOMS which
make up chains of this sort are given in Section 3.3.2.

The transfers indicated by entries enclosed in
parenthesis can only be initiated by an explicitly written
transfer function., The others may, in suitable

circumstances, be invoked automatically by the compiling
system (see Section 3.3.3).

There are direct transfer functions from every type
(including those not mentioned in the table) to tvpe general
which make no change in the representation. Transfers from
general] to other types can only take place in circumstances
when a transfer from the dynamically current type associated
with the general would be permitted,

b) The L~mode Transfer Funct:ons
These are - wad-p% and can be defined In terms

of the R~mode functzonsa . Thus, for example;, the L=-mode

Lﬁ-fhnrj:'ny

CPL Reference Manual Section 3.3 15 Jan 66 " PAGE 3

transfer function which takes real into om X is
equivalent to the following.

Fupctlion RealtoComplex [ref real xJ be
" load §result is Complex [x] &
update & x := Real [rhs j‘%

c) Mode Forcing Functions
The functions

RValue [x 1

LValue [x 1 , :
which can take an argument of any tvype, force the evaluation
of their argument in the mode indicated, They are not true
transfer functions., but may invoke the mode transfers
described in Section 4.2, These functions may be of use
when it is desirable to specify the mode of evaluation in
circumstances where the context would not otherwise do this

N B I W B & L e R o o W u

d) Other Types
There are no transfer functions except those mentioned

above. Representation functions are discussed in Section
3.3.5. .

3.3.2 Basic Transfer Functlions

a) index to integer
integer to real
real to douhbhle
real to complex
double to double complex

complex to double gomplex
These are standard numerical transfers with changes of

representation but normaliy no loss of information, With
the possible exception of Jjnteger to freal no alarm
conditions should be necessary.

b) integer to lindex
double to real

double complex to gcomplex
These involve a decrease in preclision (and possibly of

range) without a change of the nature of the number. They
will normaliy involve a rounding or truncating operation and
should give an alarm if the range is exceeded.

c) real to Integer

complex to real

double complex to double

These involve a change in the nature of the number
probably without alteration of the precision or range, The

CPL Reference Manual Section 3.3 15 Jan 66 { PAGE &

two complex tc real transformations should show an alarm if
the imaginary part of the complex number is not negligible
in an implementation dependent sense compared with the real
part. The real te integer transfer 1Is intended to allow
operations on integers to be carried out using reals even {f
the representation of reals does not allow exact integer
“arithmetic to be performed, The transformation should
therefore show an alarm whenever the divergence of the real
from an Integral value is more than a certain implementation
dependent amount. It is open to the impiementation to make
this quantity anything between 0 and 0.5 so that programs
which require the nearest integer to a real whose exact
value should not be Integral should use the baslie function

Round (see Appendix 31}. N
An alarm should also be given iIf the result is out of

range.

d) lorical to longieogical

Q ogical to logical

The Jogical is taken to be the right hand (least
significant) end of a longlogical whose remaining bits are
all zeros, As these transfer functions -may be Inserted
automatically, there should be an alarm on an attempt to
- transform a longlogical whose extra bits were not all zeros,
The basic function Mask (see Appendix 3) may be used to

ensure this If required,

e) Jogical to Index
index to logical
string to Index
Index to string

logical to string
stripns to logical

Boolean to index

index to Booleap
These transfers are made by considering all the types

concerned to be integers. For Jlogicals this is done by

treating them as unsigned (positive) binary integers. For
strinegs the functions are only defined for strings of length

1 (single characters}; for thesa, the corrasponding integer
is that given in the collating table (see Section 3.4.6).
If several characters have the same number in this table,
one of these should be nominated for use by the transfer
functions, For Booleans the correspondence is True <+ 1 and

false <* 0,
An alarm should be given |If the result is out of range
or, in the case of transfers to ring, if no sultable

character exists,

CPL Reference Manual Section 3.3 31 Jan 66 PAGE 5

3.3.3 Automatic insertion of Transfer Functions

The transfer functions corresponding to the
unparenthesised entries in the table of Section 3.3.1, those
to and from type general, and the mode transfer functions
{see Section 4.,2) and no others, will be inserted by the
compiling system as necessary In the following situations.

(a) When the type and/or mode of an expression is
constrained by Its context, This arises in the following
cases.

The

(i) The right hand side of an assignment statement.

mode is R~mode and the type must be that of the L-value
it is to update {(see Section 9.2).

(i1) An argument of a function or routine call 1in the
special case where the written operator is the name of a
function or routine data item with the attribute
constant, and whose formal parameter types and modes are
explicitly (or by default) stated in the definition (see
Sections 5.3.2 and 10,1.,2).

(iii) An argument of a polymorphic function, routine or
operator after the particular version of the function,
routine or operator has been determined by the rules
given in Section 3,3.4, Appendix 3 or elsewhere,

(Note that programmers’ functions and routines come under
case (i) and basic and library functions under case (ii) or
(ifidx.) :

In these situations the compiler will insert the
necessary transfer functions to match the mode and type of
the expression to its context, If the necessary transfer
functlions either do not exist or are not allowed to be
inserted automatically, the outcome Is undeflined.

(b) When the value of an expression may be that of one of a
number of - expressions, The choice being determined
dynamically. This arises in the followling cases:

(i) The arms of a conditiognal-expression.

(ii) When a block=-expression contains two or more

resultis commands.
In these situations each of the alternative expressions
is transformed to the type which is the least upper bound of
thelr indlvidual types. This is defined in an obvious way

from the diagram on the next page.

CPL Reference Manual Section 3.3 31 Jan 66 PAGE 6

general
-

double complex ' - (a11 other types)

. Hierarchy of Types

If the required transfer functions do not exist or
cannot be inserted automatically, the least upper bound s

taken as general.
Mode transfers are not required in these situations.

3.3.4 morphic Operator

Polymorphic operators are operators which exist in
several versions, all known by the same name. The choice
between these versions is dependent on the types of their
arguments. There are two classes of polymorphic operators,
those for which a unique version exists for each allowabie
cet of argument types, and those for which only a limited
set of versions exist and transfer functions are used to
extend the permissdble set of argument types. Transfer
representation functions are in the first class, most basic

~

CPL Reference Manual Section 3,3 31 Jan 66 PAGE 7

functions: and infixed operators are% in: the second.
Poiymorphic operators are a part of the Ianggage and no
mechanism exists at present to allow a programmer to define
his own polymorphic functions or routines, ¥

The selection of the correct version/of a polymorphic
operator of:- the second class is governed by one of the
following rules; the particular ruie to be used being
determined by the name (or in “the: case of an
infixed~operator, the symbol)} of the operator’

if any of the operands are of type general then this
rule must be applied dynamically (i.e. at the time at which
the operator is to be applied to its operands); the current
types of the geperal] arguments must be used to select the
correct version of the operator as described below. {f the
type of the result depends on the version of the operator
used in any way, the result must be converted back to type
general. If all versions of the operator produce the same
type (as occurs, for example, with relations where the
result is always Boolean), then this is also the type of the
result.

in cases where none of the operands are general, the
rule selected can be applied by the compiling system and any
transfer functions required may be inserted statically
(provided this is allowed under the rules given in Section

3.3.3),
Rule A

The version of the operator selected is the least upper
bound (in the sense of Section 3.3.3) of the types of all

the operands and of the lowest available operator type. i f
no version of the operator of this type exists, or if the
least upper bound is genera]l , the effect is undefined. If

a suitable operator exists, its type will define the tvpes
required of the operands all of which must be transformed to
this type before the operator is applied. The tvpe of the
result is also determined by the version of the operator; in
general it s either the same as that of the operands, or

restricted to a single type such as Boolean,

Rule B

The operator requires all its parameters except one to
be of a unique specified type, so that polymorphism occurs
for only one of its arguents. The version of the operator
is determined from the actual type of i{ts only polymorphic

argument as follows: .
i) {f a version of the operator exists which accepts

an argument of exactly this tvpe, this 1Is the version

chosen.

ii} If no such version exists, then the operator 1is

taken to be a single specified version,

In the first case transfer functions may be Iinserted
automatically for those arguments for which the cperators is
not polymorphic; in the second case they may be inserted for

all arguments,

CPL Reference Manual Section 3,3 31 Jan 66 - PAGE(B

3.3.5 PRepresentation Fupnctions

The following representation functions are available to
the programmer. :

1. Bitpattern[x]

This is a polymorphic function of the firsg class (see
Section 3.3.4) which has the following versiong:

Argument Tvpe Result Type
real lonzlogical
integer longlogical
index logical
gharacter Jogical

Other implementation dependent versions may also exist,

The effect is to treat the actual (implementation
dependent) representation of its argument as a bit pattern
of the corresponding type, any spare bits in the result type
being filled with zeros. No transfer functlons are inserted
automatically for this function,

2. Formreal [11]
Forminteger [11]
Formindex [11
Formcharacter [1]

These functions, which are not polymorphic, together
form the inverse of Bitpattern x . They take a lopglogical
or legical argument as indicated and treat it as if it were
the internal representation of the type suggested by the
name of the function,

Other representation functions forming the Inverse of
further versions of Bitpattern may also exist.

CPL Reference Manual Section 3.3 31 Jan 66 . PAGE 8

ntation Functions

The following representation functions are available to
the programmer. '

1. Bitpattern [x]

This is a polymorphic function of the firs? class (see

Section 3.3.4%) which has the foilowing versiong:

Argument Type Result Type
real - | longlogical
interer longlegical
character logical

Other implementation dependent versions may also exist,

The effect s to treat the actual (implementation
dependent) representation of its argument as a bIt pattern
of the corresponding type, any spare bits in the result type
being filled with zeros. No transfer functions are inserted
automatically for this function.

2. Formreal [11]
Forminteger [11]
Formindex [1]
Formcharacter [1]

These functions, which are not polymorphic, together
form the inverse of Bitpattern x . They take a Jonglogical
or logical argument as indicated and treat it as if it were
the internal representation of the type suggested by the
name of the function.,

Other representation functiocns forming the inverse of
further versions of Bitpattern may also exist,

CPL Reference Manual Section 3.k 20 Feb 66 PAGE 1

3.4 Constants
3.4.1 Geperal

Written constants have an R~value which 1is invariant

and independent of any definitions or assignments made in
the program. Their natural mode of evaluation (see Section
L,2) is R-mode so that they behave as if they had no
L-value.
, There are two forms of written constants: ATOMIC
CONSTANTS which are usually basic symbols such as Jrue or a
single digit, and which have the property that their R-value
depends only on their complete written form and cannot be
‘deduced from the R-values of any of its components (if it
can be decomposed at all); and COMPOUND CONSTANTS whose
R=-value can be deduced from the R-values of Its components.
A number such as 231 1s a compound constant and its value
can be deduced from the values of its component digits 2, 3
and 1,.

Compound constants are a form of constant expression
but the rules governing their evaluation are not those
governing the other expressions in CPL. -

As constants have an R-=value which s Iimmediately
determinable from their written form, the concepts of scope
and extent (see Section 8.2) are not applicable to them. 1in
this respect they differ from named data items which have
been gefined with the attribute constant (see Section 7.3
and 10,3,2), '

3,4.2 Syntax

{basic numerical constant> ::= <number><<,0|‘o+ i‘o— ><{number>>,.
{constant prefix> 2:= x t nlt i d | cpx | dcpx

<{numerical constant> ::= {constant prefix>ia
{basic numerical constant>| I

{logical prefix> ::=2 | 8 | 2L | 8L |} LZ | L8

{logical constant> ::= <jogical prefix><{number’|
{logical prefix><number> bhar |
{logical prefix> bar <number>|
bar <logical prefix><{number>

(Boolean constant> ::= true | falise

CPL Reference Manual Section 3.4 20 Feb 066 PAGE 2

{constant> ::= <{numerical constant>|<logical constant>]
{string constant>]|<Boolean constant>]
{single type> '

5.4.3 Numerjcal Constants

A basic-numerical=~constant of the form

Ny 1o Ny

where Ny and N5 are members of the basic category number, Is
only defined if N; contains at most one dot and N, contains
no dots. The dot in Ny, If present, is taken as a decimal
point; iIf N, contains no dot it 1|Is taken as a decimal
fnteger. The ;o denotes that the Na following it is to be
interpreted as a decimal exponent. {f there is a + or a -
between the ;0 and Ny, this is taken as the sign of the
exponent; If there is no sign, the exponent 1is considered
positive.

Two unprefixed basic~numerical-constants which have the
same numerical values will always be represented in the same
way. Thus the constants

1, +1, 1,0, +0,1,,+1

are interchangeable and only differ in the way In which they
are written on the paper.

The type of a numerical-constant prefixed by x, n, <=.
d, cpx, or depx is jindex, lnteger, real, double, compiex, or
doublecomplex, respectively,

The type of an unprefixed numerical-constant 1Is the
least upper bound (in the sense of Section 3.3.3) of its
PRESUMPTIVE TYPE and its MINIMUM TYPE,

The presumptive type is determined by context: 1If the
numerical constant stands alone on the right hand side of a
definition, the presumptive type is the preferred type if
this is numerical. In all other cases and contexts the
presumptive type is jndex.

The minimum type of a numerical=-constant is determined
by its value, |If this is integral and within the Jindex

range, then the minimum type is index. If the wvalue s
integral and outside the lndex range but within the Jpnteger
range, then the minimum type is integer. In all other cases

the minimum type is real.
The basic symbol 1 represents a numerical constant of

tvpe complex whose value is a complex number with zero real
sart and uwnit imaginery part. Note that with this exception
caere are no unprefixed numerical-constants of type double,

complex, or doublecomplex, but that an expression such as

CPL Refarence Manual Section 3.4 20 Feb 66 PAGE 3

2 + 3j

will be of type complex by virtue of the rules governing the
types of infixed-expressions (see Section 6).

3.4.4 logical Constants

The occurrence of 1 or L in a logical prefix indlcates
that the constant 1is to be. represented in the type

longlogical. Otherwise it 1is logical. if the prefix

contains 2, the constant is a binary pattern and may only

.contain digits 0 and 1. |{f the prefix contains §, it is an

octal pattern and may only contain digits 0 to 7, Logical
constants are assumed right justified unless bar is present,
in which case justification takes place towards the side on

whlch bar appears.

3.4.5 String-Constants

A string~constant is a member of a basic category and,
as such, its syntax is not a . part of <canonical CPL (see

Section 3.1.4),
in Publication CPL in particular a strang~constant is

identified by being preceded and followed by a ’prime.
Iinside these string quotes the character ! is used as a

single-character-quote or escape indicator. If it 1is
immediately followed by one of the characters
b n s ' !

the pair is taken as the single string character (i.e., the
single character from Jﬁq)

backspace newline space ! I
respectively.

Thus, for example, a string~constant in Publication CPL
which was written as

'sih/Lifltolb/!
has a length of 10 string characters
s backspace / ' 1L £ ' o backspace’/

and when ' printed would produce

CPL Reference Manual Section 3.4 20 Feb b6 ... PAGE &

8'1f's
3.4,6 Character Representation

The internal representation of strings is by characters

from the internal! alphabet J%x° The number of characters in
the alphabet is implementation dependent and the characters

have a fixed association with (small) integers which is that

used by the transfer functions between strings of length one
(characters) and the types jndex and,%%ﬁégggn

The characters of the alphabets ’) Jéh, Jﬁv and
ota may all be represented in ohe . The details of the
representation are implementation dependent; 1in particular
it is not necessary for the various alphabets to be
represented by disjoint sections of Ay nor is it necessary
for single characters to be represented by singlie characters
although this is very desirahle at least for the quotable

alphabet g . ,
Tables showing the representation of ~%h and Jﬁg which

 are relevant to publication CPL are given in Appendix 2,

3.4.7 QOther Constant Expressions

a) Boolean Constants
The basic symbols true and false are constants of type

Boolean.

| b) Type Constants

Any expression which falls into the syntactic category
{single type> (see Section 7.1) is a constant of type ftvpe.

¢) Other Types - :
There are no constants of type label, function.,

rodtine, array or general except those introduced explicitly
by a definition with the attribute gonstant.

el /

CPL Reference Manual Section 4.1 20Dectb PAGE 1

L EXPRESSIONS

L.1 Syntax
L.2 Evaluation
4,3 Conditional=~Expressions

L.3.,1 Syntax
4L.3,2 Semantics
4,4 Block=Expressions
‘ b,4, 1 Syntax
L.,4,2 Semantics
Expression-Lists
Where~Ciauses

==
L] L]
R

4,1 Syntax

{prefixed operator> ::= {name>}<{prefixed expressnon)i rhs |
- (<{expression>)

{prefixed expression> ::= {(prefixed operator>{<expression>..]

- Cindividual)> ::= <constanty>|<name’>|<{prefixed expression>i
' ~<{jindividual>{<block expression»| rhs |
pos | neg | (<expression>)

{relation> ::= gpuchlessthan | lessthan | < | = | # | 2 1|
greaterthan | muchzreaterthan

{infixed operator> ::=+ | = | x | /7 1 % |
& | <raiation>

21 Al v

|

{infixed expression> ::= <(individua!>(infixed operator>->g
{individuail>

{conditional expression)> ::= infixed expression>=>
{basic expression> gomna <basic¢c expression>

<{block expression> ::= yalueof <block>] referenceof <block>

{basic expression> ::= {infixed expression>]
{conditional expression>

<éxpression list> ::= <(basic expression>{,<basic expression>>,

{expression> ::= <expression 1ist>]
{expression> where <in definition>

CPL Reference Manual Section 4.2 20 Dec 65 PAGE 1
4,2 Ev u

An expression basicallvy consists of a name, a constant,

or an operator with its operands; both the operator and the
operands are themselves expressions. More generally an
expression may be a sequence of such forms separated by
commas. :
An expression is a rule for the evaluation of a
sequence of one or more quantities or values. Evaluation
may in general be performed in either of two modes: L-mode
and R-mode. The result of an expression evaluated in L-mode
s a sequence of one or more L=values, and the result of an
expression evaluated in R-mode is a sequence of one or maore
R=values {see Section 4.5). The number of members of such a
sequence is normally restricted by the context of the
expression. In particular, an expression which occurs as
the operand of a monadic or infixed-operator {(see Sections 5
and 6) must vield a single value.

The mode of evailuation of a particular expression s
determined by context, although certain operators may have a
natural mode of evaluation. For example, all monadic and
infixed-operators require R-values as operands and produce
single R~values as resuits, whereas prefixed-operators may
take R-value or L-value operands and produce R-value or
L-value results according to context. The natural mode of
evaluation of a name is L-mode, and of a constant, R-mode,
In both cases, the result is a single value,

in circumstances where the mode required by context
conflicts with the natural mode, transfers are automatically
effected as follows,

a) L-Value to R=-VYalue

The data specified by the L=value is extracted to give
an R-value. ' :

b) R=Value to L-Value

A new {disjoint) L=-value Is created and the R=value
becomes associated with it; the new L=value 1is given the
attribute constant (see Section 7.3). :

~

-CPL Reference Manual Section 4.2 20 Dec 65 -PAGE 2

The following rules apply to the evaluation of

operators and operands in expressions.

1.

Except where otherwise stated, an operator and its
operands (including their component parts) may be
evaluated in any order or in parallel., An operator may
be applied to its operands at any time after each of -
them has been evaluated. ‘ '

Expressions may be transformed and re-ordered in any way
that would give identical resulits if all evaluations
were penformed exactiy. '

4.3.1 Syntax

‘or is to be qualified

CPL Reference Manual Section 4.3 20 Dec 65 ~PAGE . 1

4.3 Conditional=-Expressions

<conditiona1 expression> ::= {infixed expression>—>
' <basic expression> gcomma <basic expression>

in the conditional=-expression

]

E,~ E,, Eg

the syntax rules permit E, to be an infixed-expression and
each of E, and E3 to be a basic-expression, This implies

that if either E. or E+ is to represent an expression-list
g} a where~clause, then this must be

enclosed in parentheses; similarly, E, must be bracketed |if
it is itself a conditional-expression or is qualified by a

- where=clause,

4.3.2 Semantics

The conditional-expression
E,>E., E3
has the same value as the expression
cefgceagg,gﬁ § test €, then result jis E, or result s E, %

(see Sections 4.4 and 9.6) Note that on evaluating this
conditional=expression E, is evaluated in R~-mode and that
one only of E, or E5 Is evaluated Iin L-mode, Thus the
natural mode of evaluation (section 4.2) is L-mode. '

CPL Reference Manual Section 4.,k 20 Dec 65 PAGE 1

L,4 Block~Fxpressions

L. 4,1 Svntax

{block expression> ::= valueof <block>| referenceof <block>

A block=-expression enabies the computation of one or
more results to be written in the form of a command, or
block. There are two forms depending on the required mode

of evaluation,

value of <hlock> which produces one or more R-values
reference of <biock> which produces one or more L-values

In either case, the block must contain one or more result 1s
commands (for syntax see Section 9.5.4)., The type of each
result of a block—-expression is defined to be the least
upper bound (as defined in Section 6.6.2) of the types of
the corresponding members of the constituent expressions in
all result is commands which appear in the block, but
excluding any which appear in further block-expressions

within the block.

Iy

4. 4,2 Semantics

A block~expression is evaluated as follows, The
commands {and declarations, if any) are executed in sequence
until one of the result is commands is encountered, The
constituent expression of this command is then evaluated in
the mode determined by the prefix value of or reference of,
and the results transformed if necessary to the appropriate
types as defined in the previous paragraph. These results
form the value of the block-expression and the execution of
the block is then terminated,

Commands in a block=expression may include assignments
which update L~values which are non-local to the block (i.e.
which are not lost when the execution of the block is
terminated). 1In such cases the block=expression is said to
have SIDE EFFECTS, and particular care must be taken to
ensure that the results of the program are not dependent on
the order of evaluations or the rules given in Section 4,2
may imply that the resuits are unpredictable,

Y

CPL Reference Manual Section 4.5 20 Dec 65 PAGE 1

4.5 Expression-lists

An expression may generally produce a sequence of
results; where there are two or more of these, the syntactic
class expression~list enables the members to be written
explicitly separated by commas., This form is naturally only
meaningful in contexts where several values are meaningful:
for example, in assignment=-commands where several
simuitaneous assignments are being made (see Section 9.2},
and in actual parameter 1lists where several values are being
handed over as the operands of a function or routine call
(see Section 10,1).

Note that whenever an expression produces a sequence of
two or more values, these values are never considered
together as being a single value; and thus such an
expression does not have a single type, but a sequence of

types. _
Several or all of the members of an expression-list may

"be bracketed: for example, in order to delimit the scope of

a where-clause, Otherwise, bracketing in an expression=-list
has no significance.

CPL Reference Manua? Section 4,6 20 Dec 65 PAGE 1

L.6 Wh =Claus

The general form of an expression qualified by a
where=clause is

E,whgre D,

where the syntax rules permit E, to be any expression
(possibly qualified by a where-clause itself) and D, to be an
in-definition (see Section 8.1), However, since commands
and definitions may also be qualified by where-clauses, it
is usually necessary for the above form to be enclosed in
parentheses, For this reason, the syntactic rules for
certain commands and declarations use the forms
expression=1ist or basic-expression to indicate that, if the
expression only Is to be qualified by a where-clause, they

must be enclosed in parentheses.
The semantics of an expression qualified by a

where-clause are conveniently defined by the following
equivalent form :

ref of & let D, result is €, §
(See Sections 4.4 and 8.3).

'Tlle @M('E_J ﬁjvw,\? -i'ze .Sc.g-ﬁ)e_ % k&m—-ai.&“;g
. ci\ané,li F omele ke, Saapler and

M“\&

e l‘?f‘";b

cai10?;ﬁ_

CPL Reference Manual

Secticon 5.0

5 PREFIXED OPERATORS AND EXPRESSIONS

5.1

5.2

Monadic Operators

5.1.1
5.,1.2

Syntax
Semantics
Prefixed=Operators

5.2,1
5.2,2

Svyntax
Semantics

Prefixed=Expressions
Syntax

5.3,1
5.3.2 Semantics
5.3.3 Array Referances

23 Nov 65

PAGE 1

s

CPL Reference Manual Section 5.1 23 Nov 65 PAGE 1

5.1 Monadic Operators | .

5.1.1 Syntax

{individual> ::= <constant>|<name>|{<prefixed expression>|
: ~<{individual>|<block expressson)[rhs |

bos | peg | (<eXpreSSaon>)

5.1.2 Semantics

(a) The operator“§:

This is written Immediately before its operand, and s
less binding than any prefixed-operator, but more binding
than any infixed~operator (see Section 6.1). it takes an
R-value as an operand (which must be of the type logical,
longlogical or Boolean) and produces an R-value of the same

type as its result. .

if the operand is of type logigal or Jlo ogi , the
nth bit of the result is determined by the nth bit of the
operand according to the following table:

Operand 0 1
Result

if the operand is of tvype Boplean the resuit is
defined by the following table.

Operand false Lrue
Result true false
(b) Operators + =

+ and -~ may be used as monadic operators in publiication

CPL. However, the transformation to canonical CPL replaces
them by the symbols pgs and peg respectively, In the
precedence and grouping rules for determining

infixed-operators (see Section 6.1), these symbols are
formally treated as equivalent to the symbol sequences (+1)

" and (=1) respectively. Thus the meaning of prefixed + and =~

is defined to be the same as that of multiplication by the
system constants (+1) and (-1) which have the values 0+1 and

0-1 respectively.

/o

U5,2.1 Syntax

CPL Reference Manual Section 5.2 22 Nov 65 PAGE 1

_5.2 -PrefixedeDerators §

{prefixed operatory ::= <name>! rhs l<prefixed expression’]
({expression>)

5.2,2 Semantics

A prefixed-operator can be a name, a general expression
enclosed in parentheses, or a prefixed-expression. If the
prefixed~cperator is a name, {t must he either a BASIC
FUNCTION (see Section 10.1.2) or a PROGRAMMER'S FUNCTION
(see Section 10.3) or an ARRAY (see Section 11). If the
prefixed—=operator is an expression, it must be possible to
evaiuate It In R-mode to produce a function or array.

CPL Reference Manual Section 5.3 22 Nov 65 " PAGE 1

5.3 Prefixed-Expressions

{prefixed expression> ::= {prefixed operator)[(expression)h}

A prefixed=expression consists of a prefixed-operator
followed by its ARGUMENT LIST which is enclosed in SQUARE
brackets. The brackets must be present even if the argument
list is empty (i.e. if the operator requires no operands).

5.3.2 Semantics

A prefixed-expression is used to indicate the
APPLICATION of a prefixed=operator to its operands. (Note
that the EVALUATION of an operator and its APPLICATION are
two completely distinct processes,) The evaluation of a
prefixed-expression in either L-mode or R-mode is performed

in two stages:

(a) The prefixed=operator is evaluated in R=mode to
produce a function or array, and the operand (which is
the expression enciosed in brackets foilowing 1it) is
evaluated in the appropriate mode to form the argument
list. These two evaluations may be performed in any
order.

(b} The resulting function or array is applied to its
argument in the manner described 1in Section 10.1 to
produce the value of the prefixed-expression. The
application of a function to its arguments is known as
a FUNCTION CALL.

In general, the oparand is evaluated in L-mode and the
resulting argument list of I-values, without changes of
type, is used in the function call. However, in the special
case where the written operator is the name of a function
data item with the attribute c¢onstant, and whose formal
- parameter types and modes are expiicitly (or by default)
stated in the definition, the components of the argument
list in a function call are further transformed (if
possible) so that they match the corresponding formal
parameters in mode and type. (Note that this special case
will probahly be the most common form of function call.) ‘

A function may only he called with an argument Tlist
with the correct number of arguments. (Some basic functions
may be called with any number of arguments - see Appendix 3.
No programmer's functions can have this property,)

CPL Reference Manual Section 5.3 22 Nov 65 - PAGE 2

The type of a prefixed-expression is determined by
==f 1ts prefixed-operator (see Section 10.2.2,).

5.3.3 Arrav References

An array-type data item may be used as a
prefix-operator to refer to an element of an array. In this
form, the operator takes a single operand of type Jindex 1iIn
R=mode (called a subscript), which is used - to select the
required element according to the definition of the array
(see Section 11), The natural mode of evaluation of an
array reference is L-mode, giving the L-value of an element
of the array. The result could itself be an array, which
may be applied to a further .subscript to obtain a
sub-element, and so on.

For example, if A represents a three dimensional array
~of real elements (i.e. of type real 3 arravl), and i, Jj, Kk
represent jpdex values

ALi] gives an L~value of type real 2 zrray
ATIIEj] gives an L~value of type real 1 array

ALTIEj1Ik] gives an L-value of type real

An alternative syntactic form permits an array
reference to be written with two or more subscripts to
specify directly sub=elements of muitidimenslional arrays.
For example:

Ati,j] is equivalent to ALiJLj]
Ali,j,k] is equivalent to ALil{j1Lk]

The result of an array reference is only defined if the
value of the subscript 1ies within the bounds of the array.

CPL Reference Manual Section 6.0 1 Feb 66 PAGE 1

6 - JNFIXED OPERATORS AND EXPRESSIONS

6.1

Syntax and Grouping

6.1,1 Syntax

6.1.2 General

6.1,3 Juxtaposition, Pos and Neg
6.1.4 Grouping

6.2 Numerical Operators
6.2,1 Types
6.2.2 Semantics
6.3 Logical Operators

6.4 Relations

6.5 String Operators

6.6 Polymorphism and Type Matching

CPL Reference Manual Section 6.1 1 Jan 66) PAGE 1

6.1 Svnt d u
6.1.1 Syptax
{relation> ::= muchlessthan | Jlessthan | £ | =1 # | > |

+ =t x 1/ 1P z1E1alvi
<> |<relation>.

{infixed expression> ::;= < individual><infixed operator>;->p
{individual}

6.1.2 QGeneral

infixed=operators require two operands; they may
require operands of a particular type or be polymorphic (see
Section 6.2 and 6.6). With the possible exception of the
operators = and #, their operands are evaluated in R-mode
and the result they produce is always an R-value.
In the written form of expressions, an infixed~operator
is placed bhetween its operands and together these may form
an operand of a further operator. Thus, an expression may

‘appear as a sequence of alternate operands (i.e., items of

the syntactic class individual) and infixed-operators; and
therefore rules exist to determine the grouping of operators
with operands in any such sequence. These rules may be
overridden explicitly by enclosure -of an operand in

" parentheses.

6.1.3 Juxtaposition, Pos and Neg

The symbols pos and neg rank as members of the
syntactic class individual, Semantically, they are treated
as constant data items with the wvalues +1 and -1
respectively, their type being that numerical type with the
lowest precision (i.e. normally Jjndex).

The juxtaposition of two individuals in an
infixed=-expression is taken as Implving mulitiplication and
the operator is therefore inserted before any further
analysis takes place. : -

-—n\h m«? _ hui SOsme mo(ﬁ :f-rf'i‘??'o'h

CPL Reference Manual Section 6.1 1 Jan 66 PAGE 2

6:1.1} G[QUQE“&

Operator T X 7/ - + < {relation> A v = £
PL 10 9 9 6 6 5 i 3 2 1
PR 8 9 8 7 6 5 4 3 2 1

Table of Precedences

Grouping rules are determined by assigning two
PRECEDENCES to each infixed=operator (a left precedence PL
and a right precedence PR), and by specifying a procedure of
analysis on an operand-operator sequence of the general form

At)xi Ai x.a. e X“A_n

where Ag, Ay, ... A, are individuals and x,, X,, ... X, are
infixed-operators. The operator-operand sequence s
preceded by a dummy operator xg (for which PR = 0) and

foilowed by a dummy operator Xa,; (for which PL = 0); thus:

XoPo Xy Ay Xg o e X A X
The grouping procedure is the following. The sequence
is searched for any subsequence Aj{ X;,, .. X; Ai such that

1<
PRIx;] < PLIxy,,]
PREX; 1 > PL[Xj4,]

and, for all s = i+1, .,. J=~1
PRIx,] = PLIxgpd # 0

A subsequence of this form is termed a PRIME PHRASE, Any
prime phrase found is enclosed in parentheses and thus
becomes an individual; the operator-operand sequence is then
renumbered to take account of this. The process Is repeated
until no further prime phrases can be found,

This procedure will not group an Infixed-expression
completely into pairs of operands separated by an operator.
in particular, the operators which are associative (viz x +

A V¥V = and £) may occur in groups with any number of
members, These may, in the cases of &% and +, be followed by
a single occurence of / or =« respectively, Thus an

infixed-expression such as:

a+b+c¢c=d
p Xql/r
X2y itz

CPL Reference Manual Section 6.1 1 Jan 66 PAGE 3

are treated as individuals and not grouped any further.
This, however, is in accordance with their normal
mathematical meaning which implies that the ordering (or
grouping) of the operations inside such a group has no
effect on its value,

The relations are also combined into a single group. A
COMPOUND RELATION, as such a group is called, has the
Boolean value True if and only if each of 1its component
relations has the value True. Thus the compound relation

E: R:.Ez.RaEEB" * E'n-l RnEﬂ

has the VaIue True if and only if al] the relations
' | CE R Eq
E2R3 Ej

* e 8 00

Epn-i RuEy

‘bas’the_Value I;gg.- _ : 'hmvi//

CPL Reference Manual Section 6.2 1 Jan.66 | PAGE 1
6.2 Numerical Oggga;gts

6.2,1 Jypes

infixed-operators are in general POLYMORPHIC; that is
they may take operands of various types, and may produce
results whose type depends wupon that of the operands.
However, in all cases, the operator takes two operands of
the same type. (Two operands of differing types are
permitted in certain circumstances, but these are always
converted to a single common type before app]scatuon of the
operator: - See Section 6,.6,)

In thlS and foilow;ng sections, a table is given for
each operator {(or group of operators}) specifying the type of
the result as a function of the type of the operands.

Operators + - X

Operand Type

Index lndex
integer integer
real real
oub double
complex compliex
double complex double complex
zeneral general
Operators / %

Operand Type

Result Type

Result Type

real real
double double
QOI]E!EK caom X
double complex double complex

CPL Reference Manual Section 6,2 1 Jan 66 PAGE 2

6.2,2 Sempantics

The meaning of the numerical infixed-operators s
intended to be the same as their normal mathematical
meaning. [n many cases, however, the correspondence is only
approximate due to the presence of rounding and similar
errors,. Such divergences from the mathematical Iideal are
implementation dependent,

Infixed division (/) produces a minimum type of real.
There 1s thus no infixed-operator producing the integer type
of division with a remainder. These results can be obtained
by using the basic functions Quot{x,y] and Rem[x,y] (see
Appendix 3), The division symbol 4 is not a part of CPL.

infixed exponentiation () 1is somewhat irregular.
Like division its minimum type is real, but its result type
is required to be the same as its operand type and for
operands of types real or double this imposes a restriction
on the values of the operands.

More precisely, the value of the eXpression EiTEL is
one of the values of exp(EjlogE;} with the following
restrictions:

1) If E, and E, are of type [real or double, the
expression is undefined unless at Jleast one of the
values of exp(E,logE;) is not complex.

2 If E;, and E, are of type real or double and
exp(E logE,) has two real values, the value of EfE, is
the positive one of these,

3) if E, and E,_ are of type complex or double complex
and exp(E, logE;) has more than one value, the choice

between them is implementation dependent.

CPL Reference Manual Section ©,3 1 Jan 66 PAGE 1

6.3 Logical Operators

~

‘ Operators AV = £
.Operand Type Result Type
logigal logigal
long logmical Jong logical
Boolean Boolean

general — general

Where these operators produce logical or Jlong logical
results, they are defined to be bit-by-bit manipulations on
the individual bits of the operands. Thus, the nth bit of
the result is determined by the nth bit of each operand

according to the following table,

l1st cperand 0 0 1 1

2nd operand 0 1 .0 1

A 0 0 0 1
V.o 0 1 1 1
= 1 0 0 1
Fid 6 1 1 0

When the operators produce Boglean results, their
values may be determined from the same table by replacing 0

by false and 1 by true.

CPL Reference Manual Section 6.4 3 Jan 66 PAGE 1

6.4 Relations

Operators = #

Operand Type Result Type

any | Boolean

If the operands are one of the numerical types, then

: EI = EL
t is true if (E,-E,) is a representation of zero. Thus, as
5 with subtraction, equality of numerical values is

. implementation dependent.
T For all other types, E;= E, is Ztrue 1if the operands
' yield identical R-values (but see Section 10,2.84).

The expression

E,FE,
is always equivalent to

~(E, =E,)

s Note that, if the operands are of different types,
4 transfer functions may be invoked under the rules of Section
6.6. For equality between operands of type uncti or
routine see Section 10.2,4, and between operands of type

array see Section 11.1.2.

Operators < £ 2> >

»g _Oberand Type Resuit Type
index ‘Beoolean
Integer Booleap

real l ﬂgoiga“ ’

double Boolean
string Boolean

If the operands E,, Ey are of one of the permitted
numerical types (which are all non-complex) the value of the
relation is determined from the value of E,~E; . Transfer
functions may be invoked (see Section 6,.6) to make this

CPL Reference Manual Section 6.4 3 Jan 66 PAGE 2

possible,

if the operands are of tvpe strling, comparison 1Is
effected by repeatedly comparing the numerical eqguivalent
(see Section 3.3.5) of successive characters of each string
value (beginning with the first or most significant
character) until the required attribute is estabiished. If
the characters of one of the operands are exhausted before
the other in this process, it is assumed to continue with
sufficient dummy characters whose numerical equivalents are

less than any other character,

Operators << >

Operand Type Result Type
Index Boolean
integer Boolean
real Roolean
double Boolean

These operators formally give the result true if the
value of one is negligible compared with the value of the

other. This normally means that

E, << E, is equivalent to (E,+E;) = Ey
E, > E, is equivalent to (E,+E;) =

The precise definition however is implementation dependent,
and in some floating point implementations of the types real
and double the decision may be made in the basis of the
value of the exponent alone, so that E; << E, may sometimes

be stronger than £, +E, = E, and sometimes be weaker.
if E, is of type Jlndex or integer and does not have the

value zero, 0 << E; Is always true. The value of 0 << 0 s
implementation dependent but should normally be false. '

O

CPL Reference Manual Section 6.4 3 Jan 66 PAGE 2

possible,

If the operands are of type Sstring, comparison 1is
effected by repeatedly comparing the numerical equivalent
(see Section 3.3.,5) of successive characters of each string
value (beginning with the first or most significant
character) until the required attribute is established. If
the characters of one of the operands are exhausted before
the other in this process, it is assumed to <continue with
sufficient dummy characters whose numerical equivalents are

less than any other character,

Operators << »>

Operand Type Result Type
index Boolean
integer Bool=an
real Boolean
doublie Boolean

These operators formally give the result true 1if the
value of one is negligibie compared with the value of the

other. This normally means that

Ea

E, <K E; is equivalent to (E,+E;)
E,

E, >> E, is eguivalent to (E +E,)

The precise definition however is implementation dependent,
and in some floating point implementations of the types real
and double the decision may be made 1in the basis of the
value of the exponent alone, so that E; << F, may sometimes
be stronger than E,+E, = E, and sometimes be weaker. '
If E 1s of type index or integer and does not have the
value zero, 0 <K E; is always true. The value of 0 << 0 is
implementation dependent but should normally be false.

CPL Reference Manual Section 6.5 3 Jan 66 PAGE 1

6.5 Stripng Operators
Operator <&
‘ Dperand Type Result Type
string string

This operator concatenates two strings. That 1Is, the
result is a string consisting of the characters of the first
operand, followed by the characters of the second operand.

‘-?2\@ 3-"}—1"0 (.@.u&?'_f fin c}‘ T\ . Tﬁ{ C'L\&NLTU‘ t"‘"}

—
T.\.pbivt ’ -a”mi‘i-h&s - 7‘7 I:; J‘e.g;‘ﬂ\

CPL Reference Manual Section 6.6 22 Jan 66 PAGE 1

6.6 Polvmorphism and Tvpe Matching

The infixed~operators described in Sections 6.2, 6,3
and b.4 are all polymorphic. The general rules for choosing
the correct version of a polymorphic operator and inserting
any necessary transfer functions are given in Sections 3,3,3
and 3.3.4, The choice for all these operators js made using
Ruie A of Section 3.3.4 g

CPL Reference Manual Section 7.0 22 Jan 66 PAGE 1

7 DEFINITIONS

7.1. Syntax

7,2 Modes of Definition :
7.2,1 Definition by Type
7.2,2 Definition by Vailue
7.2,3 PDefinition by Reference

. 7.3 Constant and Variable Definitions |

7.4 Definitions and Types
' 7.4.1 Preferred Type
.2 Type Definitions
.3 Simple Initialized Definitions

CPL Reference Manual Section 7.1 22 Jan 66 PAGE 1

7.1 Svntax

{data type> ::= real | integer | complex | double | lozgical |
index | longiogical | doublecomplex | type |
Boolean | label | routine | string | zeneral

{array type> ::= <single type>;.{number> array |
{single type>;.< yvector | matrix >

(function type> ::= <{single type’>, function

{single type> ::= <{data typed>i{<array type>|<function type>|
({<single type 1ist>)

{single type list> ::= <{(single type>{,<{single type>>,
{name Tist> ::= <{name><,<named>y

{formal parameter> ::= <single type>< yalue | reference ><name>|
< value | peference >P,<single type>,,
: {name> .

- {formal parameter 1list> ::= {formal parameter>

. << formal parameter)é

{type definition> ::= <name 1ist>< be | allbe ><{single type list>

{simple definition> ::='< varjable | constant >;- <name 1ist>
: C= |} all = all 2>
‘{expression list>

{LH function body> ::= < fix <{definition>>;.
ioad <block> update <block>

{function definition> ::= < recursive >;.< variable | constant >,.
. <name>[<{formai parameter iist)>i.d
< = | = >expression list>]
{ recursive »>;-< variable | constant >;~
< fixed | free >,.<functionp<name>
L<¢formal parameter 1istY:-] be
{<{LH function body>| o
§<LH function body>$ >

{routine definition> ::= < pecursive >y.< yariable | constant >,.
 fixed | free > ;<{routineyniname>
<[<formal parameter 1list>;.]>, -

be <block>

{basic definition> :1:= <{tvype definition>{<simple definition>|
{function definition>]|
{routine definition>]

{ recursive >, §><definiti’on>§%

CPL Reference Manual Section 7.2 22 dan'66 . PAGE 1

7.2 Modes of Definition

One of the functions of a definition is to introduce a
name which refers to a data item, and which 1is then
identified with all other occurrences of the same name in
the scope of the definition, The scope rules are given in
Section 8. Other characteristics depend on whether the
definition is by value or reference.

7.2.1 Definition by Tvpe

Type-definitions have the defining operator be or

allbe. They create a new L=-vaiue (i,e. one which s
disjoint from all other existing at the moment of
definition) and associate this with the defined name. The
R-value associated with this new L-value is undefined.

7.2.2 Definition bv Value

A definition by value creates a new L-value and
associates this with the defined name; it also associates an
initial R-value with the L~value. Definitions by the
defining operators = , g1l = and the special forms of
function and routine definitions all define by value.

: 7.2.3 Definition by Reference

A definition by reference is primarily intended to
associate an already existing L-value with the name defined.
The L=value is the one obtained by evaluating the defining
expression in L=-mode, In the exceptional case where the

- natural mode of evaluation of + the defining expression 1is
R-mode, a new L-value of the appropriate +type 1Iis created,
its R-value 1is the result obtained by evaluating the
defining expression in R-mode. This L-value s f@§wy4
associated with the defined name. \

ﬁ:a a‘m‘iﬂ-\aﬂ (..m.i-}inr a,.\e(

CPL Reference Manual Section 7.3 22 Jan b0 PAGE 1

7.3 Constant and Variable Definitions

"An L=value in CPL has either the property cg¢onstant or
variable, depending solely on how the L-value was created,.
I{f an L-value has the property constant, it means that its
R-value cannot be changed by assignment, It is meaningful
to inciude the word varlable or constant only in definitions
by value, if it is omitted from a definition, a constancy
attribute is assumed, A function or routine definition 1is
assumed to have the attribute constant unless explicitly
specified as variable, whereas a type or simple .definition
is taken as yvariable, unless otherwise specified.

CPL Reference Manual Section 7.4 22 Jan 66 : PAGE 1

7.4 Definitions and Tvpes

Data items of any tvype may be defined; however the
actual type in most cases need not bhe explicitly stated.
The rules for determining the type depend on the kind of
definition, and on the current PREFERRED TYPE. '

7.,1 Preferred Tvpe

There are many occasions when [t 1|Is necessary to
determine the type of a data item in CPL. In most cases
this can be deduced from known or ascertainable types of its

~component parts, but there are a few situations where this

is not possible, The most important of these are: in the
formal parameter lists of function and routine definitions
{(see Section 10), and in written numerical constants. in

these situations it is always possible to specify the type
required expiicitiy. :

It is possible for the programmer to select a preferred
type which will be used in certain circumstances, where the
type of a data item is otherwise unknown,

Initially the preferred type is real; it will be
altered only if the programmer writes a directive 1in the
form -

prefer <single type>
where the {(single type> specifies the new preferred type.

This directive mayvy he written in the declaration sequence of
a block; its scope consists of any succeeding declarations,

- together with the command sequence of the block,

If the programmer has specified the type of an array,
matrix, vector or function without specifying the
single~type which determines the type of its components or
result, this is assumed to be the preferred type. This does
not apply to functions defined by one of the special forms
of definition described in Section 10.3 whose result types
are discussed in Section 10,3,0.

7.4.2 Type Definitions

(a) The defining operator be
The syntax of the simplest form of type definition is

<néme 1ist> be <single type list>

CPL Reference Manual Section 7.4 22 Jan 66 PAGE 2

It Is only meaningful if the name~iist and single-type-list
have the same number of members, in which case the names on

the left of the operator be are associated with data items
whose types are the corresponding single-types of the

single-type=list. Initial values for the data items are not
defined,
(b) The defining operator all be

This operator may be used when it is necessary to

define by type a number of data items all of the same type.
For example, the following two definitions have the same

meaning.

X, V¥, 2 be real, real, real
X, Y, 2 2ll be real

7.%.3 Simple Initialized Definitions

(a) The defining opervator = ,
The type ot each of the data items on the left 1is the

type of the corresponding expression on the right. . There
must be the same number of defining expressions on the right
as names in the name-list on the left. I¥ any of the

defining expressions is a single numerical constant and the

preferred type is numerical then the type of this constant

is determined by the rules given in Section 3.2.2, This
form of definition defines by value (see Section 7.2.2),

{(b) The defining operator 2¥
As in (a) the type of each of the data items on the

left is the type of the corresponding expression on the
right, and there must be the same npumber of defining
expressions as names defined. For each name defined the
corresponding defining expression is evaluated in L=mode,
and the L-value obtained is associated with the name. (See
Section 7.2,3.3 .

(c) The defining operators all = and all &~

The effects of these operators are best described in
terms of the operators described above,
For example, the following two definitions are

sSYynonymous:

a, b, ¢ all = E,

a, b, ¢ = (X, X, x where x = E,)
~imilarly the following two are also synonymous:

all =k

a, b, ¢ all
a, b, ¢ = (x, x, x where x & E,)

e

L

CPL Reference Manual SeCtidn 8.0 30 Jan 66

8 DEFINITION STRUCTURE AND SCOPE RULES

8.1 Syntax

8.2 Scope and Extent

8.2,1 Scope
8.2.2 Extent

8;3 ‘Scope Rules for Definitions

Recursive

Composite Definitions
And

in

Where

Let

CoCo CO GO G o
s s 8 b
WAL AN WN RN W
e @ & @
TN 3= W o

8.4 Other Scope Rules

PAGE 1

| CPL Reference Manual Section 8,1 30 Jan 66 ' PAGE 1

8.1 Syntax

<and definition> ::= <basic definition>
: : < and <basic definition>>,

<in definition> ::= <and definition>]
{and definition> Jn <in definition>

{definitiond ::= <in definitiond>| ' “H
{definition> where <in definition>

{declaration> ::= Jet <definition>

m\.& -S'Co\fl (}- &U‘t | P\r.) z”l . cfv-.n}eo{

CPL Reference Manual Section 8.2 30.dan 66 PAGE 1

8.2 Sco and Fx t

8.2,1 Scope

The SCOPE of a definition is a syntactic concept; It is
that area of the written program in which the data items
defined in definitions may be referred to using the names
with which the definitions associate them. _

i1f a definition (the 'inner! definition) occurs within
the scope of another definition of the same name (the
'‘outer! definition), the inner definition supersedes the
outer one., The outer definition is said to be ‘'shielded’
from the scope of the inner one, and to have a 'hole' in its

S5cope.

8.2,2 Extent

The EXTENT of a data item is a dynamic concept; it 1Is
that part of the dynamic execution of a program through
which a named data item maintains & continous existance.

in CPL the extent of a named data item is controlled by
the scope of its definition. It continues as 1long as the
command currentiy being executed 1ies within the scope
(including any holes there may be in it); it terminates as
soon as the current command lies outside the scope of the
definition. -

For this purpose the whole of the execution of a
routine call is considered to lie In the extent containing
the call, irrespective of the scope which contains the body
of the routine. :

L

CPL Reference Manual Section 8.3 30 Jan 66 PAGE 1

8.3 Scope Rules for Definitions

The scope of a definition is controlled by its position
in a program, and by use of the words recursive, and, in and

where.

8.3,1 Recursjive

The scope of a definition does not normally include its
own definiens (i.e. the right hand side of 1its own
definition). However, by preceeding the definition by the
word yecursive, it can be made to do so. This may only be
used if all the data items defined by the definition are
either functions or routines, The effect of recursjve on
other definitions is undefined,

8.3,2 Composite Definitions

Composite definitions made up of definitions joined by
and, in or where together with uses of frecursive may be
tormed into a single basic definition by enclosing them in
section brackets. The resulting definition may also be
qualified by preceeding it by the word recursive provided it
satisfies the conditions of Section §,3,1,

8.3.3 And

This word is used to combine two o+ more definitions
into one. Unless this combined definition is ursive,
none of the component definitions is Iin the scope of any
other component definition. The order of activation of the
definitions is undefined; it is intended that they be
considered as activated in parallei, Thus, for example, the
effect of the definitions. ‘

N; = E,
2 ¢ N)_ = E:_
and N. = E,

is the same as the effect of the definition

Ni’Nl’...’N"-— Ea’El'..I’Ef-

CPL Reference Manual Section 8.3 30 Jan 66 PAGE 2

The effect is undefined uniess the names N,,Nl,...,Nf
are all different. : :

8,3.4 In

, When this word separates a number of definitions there
; is an implied association rule to the right. For example,

‘the definition
D, in D, in D3
i
is synonymous with

. . &
D, J_D‘,§Da.J.ﬂ;D3$‘

It is therefore only necessary to consider the simple
composite form :

D, io Dy

The scope of D, is D, alone, and the scope of D, is the

f; same as that of the whole definition, if the composite
P definition is recursive then its scope includes 1its
5 definiens; that is the scope of Dy now includes D; and D,,
but the scope of D, is still oniy D,.
8 5.5 u W3 The tuks e adinae 7:3:. Feapl S}.
3.5 MWhere TP w} o el o{
As with the word ipn, the word where separates a number
of definitions but in this case there 1is an implied

association rule to the left, For example
D; where D, where D,
is synonymous with

§D,. where D, g where Dj

[t is therefore only necessary to consider the simplie form

D; whgrg Dg,

The above definition is exactly equivalent in meaning to

Dllﬂ Dl

This form is described in Section 8.3.4 above. f

CPL Reference Manual Section 8.3 30 Jan 66 PAGE 3

The word where may also be used to introduce a

where-clause qualifying an expression or command., The
general ruie i5 that a where-clause qualifies the longest
command, definition or expression (in that order of

preference) immediately preceding it; the scope of its
component definition is the qualified command, definition or

expression.. As commands and definitions frequently
terminate in expressions, it 1Is generally necessary to
enclose expressions quaiified by where~clauses in

parentheses., (See Sections 4.6 and 9.8.)

8.3.6 Let

A declaration is a definition preceded by the word let.
A deciaration or a sequence of declarations may only occur
at the head of a block. The scope of a deciaration is the
set of immediately following declarations and the command
sequence of the biock. 1If the definition in the declaration
is recursive then its scope includes its definiens as well,

CPL Reference Manual Section 8.4 30 Jan 66 = PAGE 1

8.4 QOther Scope Rujes

The concept of scope also applies in ‘situations where
names are introduced other than by definition.. There are
two cases, as follows. ”Q,

{a) Formal Parameters
The scope of a formal parameter in a function or

routine definition is the defining expression .or command,
(see Section 10,)

(b) Labeis
The scope of labels declared by colon as in the command

L : a := bx+c

is the smalilest enclosing routine body or block expression
(see Section 9.8).

L

CPL Reference Manuai

9 COMMANDS

9.1 Syntax

Section 9,0

9.2 Assignment=Commands

9,2.1
9,2,2
X LI s |

9.3 Transfer-Commands and Labels

9.3.1
9.3.2
9.3.3

Syntax
Semantics

Syntax
Semantics
Labels

9.4 Routine=Commands

9.4.1
S.h.2

9.5 O0ther

- » » a
(S G RN,
L] . & L)
FEN VT N

O wiww

Syntax
Semantics

Simple=-Commands

Syntax
Returp
Break
Result is

9.6 Conditionai-Commands

5.6.1
9.6,2
9.6.3
9.7 Cycle-
9.7.1
9,7.2
9,7.53
9.7.4

!I 9.7\.5
% 9,8 Bilocks
% 9.8,1

9.8.2

¥ 9,8.3

R 9,84

X 9.8.5

Syntax
tf-Commands
Test=-Commands

Commands

Syntax
While-Commands
Repeat=-Commands
For~Commands

17 Feb 66 ‘

PAGE 1

o g
K Secliem w9/ u.lr-'%n

ﬁ nbl l'lt‘.eﬁé Majw— (24 v-‘.f-'m

Evaluation of For=-Lists

Syntax

Notes
Deciarations
Command=Sequences
Leaving Biocks

=

CPL Reference Manual Section 9.1 L Jan GG PAGE 1

9&1 S‘i“zéx g

{assignment command> ::= <{expression> := <expression list>|
(expression> all := <basic expression>

{transfer command> 11 = goto <basic expression>

{routine command> :}# <name)|<{prefixed expression>

‘<simple command) ::= <assignment command)|<transfer command>|

“{routine command>] resultis <expression>|
‘break | return [<block>

{if command> ::= < Jf | uniess ><expression?> do <basic command>

. Ltest command> ::= test <expression> do <command> or

{basic command>

{conditional command?> ::= {if command>|<{taest command>

<while éommand> sv= < while | unti] ><expression> do
’ ' {basic command>

{repeat command> ::= {command>{ repeatwhile | repeatuntil >
' <basic expression>|

{command?> repeat

"{for element> ::i= <bhasic expression>|
£

step <basic expression>,<basic expression>,
{basic expression>i

<basic expression> tgo <basic expression>|
{basic expression>,<basic expression>
.dotstring <basi¢ expression>

{for list> ::= {for element><{,<for element>>,}
e ey a e e o a IE = 3 Col AL B W

{for command> ::= for <name> = <for 1ist> do <basic command>|

orexternal <individual>< = | 1= ><for list> do

<{basic command>

- {cycle command> ::= {while command>|<repeat command?> |

{for command>

<{basic command> si= {<name> ; J>p<<conditional command>|
{simple command>|<cycle command>>

_ {command> ::= <basic command>]|<{command> where <in definition>

 <note> 117 prefer <single type>] sic | note <string constant>

<block> :1:= §'<<note>i<dec]arati0n>oi(declaration);1<command>>
' ' {;(command)%,§

CPL Reference Manual Section 9.2 - 27 Nov 65 PAGE 1

9.2 Assignment-Commands

9.2.1 Svntax

{assignment command> ::= {expression> := {expression list>]
{expression? all := <basic expression>

9.2,2 Semantics

(a) The effect of the command
E, = E_

~ is as follows, The expression £; is evaluated in L-mode to
‘produce a sequence of L-values of any type, say L;,La...L,;
the expression E, is aiso evaluated in R-mode to produce a
sequence of R=values of anvy type, say R,,R....Rn; these
evaluations may be performed in any order, but must be
complete before the next phase starts. In order for the
command to be weli=formed, it is necessary that m=n. Each
rmember of the sequence L;,Ll;,¢..,Lm is then UPDATED by the
corresponding member of the sequence R;,R ,...,Ra.

To update the L-value Lj with the R=value Ry, Ry is
first transformed to be of the same type as Ly if the
appropriate transfer function exists (if it does not, the
effect of the command is undefined). Let the transformed
R-value be Rj. The R=-value associated with Lg is now
altered to be R} so that future evaluations of E; in R-mode
will produce the R-value R} (unless modified by further
assignment~-commands),

Note that the L-value L, is not altered by updating
it, and that the R-value of any expression which has the
L-value L, is altered by updating L. [f two L-values are
not disjoint - i.e, if they share a part or the whoie of
their associated R-values = then updating either will effect
the R-value associated with both at least as far as their
shared part is concerned.

The order in which the sequence L;,Lls,....L4 is updated
is unspecified (¢¥. Section 4.2), This =means that. in _
general the L-values in the seguence L;,Las...sLlm should be
disjoint or the effect of the assignment-command may be
undefined.

(b) The effect of the command

E, all = E,

CPL Reference Manual Section 8.2 27 Nov 65 PAGE 2

Is as foilows. The expression E, and E, are gva]uated as

described above to yield the sequences L;,Ly,...,Lm and
RisRa,esssRp. In this case the sequence of R~values must

have only one member (i.e. n=1), o
The command is completed by updating every ‘member of

the sequence L,,L,,....L, with the R-va]ue Ry.

9.2,3 Updating

If L; }s an L~value and R, is an R-value of the same
type, there is an operation known as updating L, with R, .
This operation depends on the way in which L, originally
arose,

Thn 5@:7;.;,, D %cah.ap IeTe

CPL Reference Manual Section 9.3 5 July &6 Page 1

9.3 Transfer—Commands and Iahels

9.3.1 Syntax

<‘transfer command) ::= goto {basic expression>

{basic command :i:= (< namey Y o { < conditional command P
<simp1e comme,nd>§ <cycle co_rmnand>>

9.3.2 Semantics

: In a transfer-command, the basic symbol gfoto 1is
followed by a2 basic-expression which is to be evaluated to
produce an B - value of type label.

- The process of executing a command is known as an ke
Yactivation® of that command. At any moment in the activetion
of a command, a number of further activations may be current,
since one activation may call for a succession of further
activations to be completed before it can be completed ivself.
‘Thus activation of a routine-command calls for an activation
of the routine body which may call for activation of some sub-
block of the body, and so on, each activation being “called
~Tor" by the most recent nrevious activation of the seguence
- whicn is not yet complete. If a function or routine is called
recursively, the same command may have more than one activ-
ation current at the same moment.

An activation may be terminated either normally, 2as
described elsewhere, or by a jump; & Jump has an R - value
of type label associated with it. This value specifies the
destination of the jump, providing the following information:

(&) =2 point in some configuration of commands at
waich some activation is to be continued.

(b) a rule for determining which activation is to
be continued at the point specified; this is
in the form of a rule for determining whether
or not an activation is "live" to the
destination.

The effect of a transfer-command is then specified by

- the following rule, which is to be applied iteratively:
cactivation of a trinsfer-command is immediately Terminated by

2 Jump whose destination is specified by the value of the
exrression assocliated with the command. If an activation calls
for an activation which is terminated by a Jjump to a destination
to which it is not itself live, then it also is terminated by
the jumbe

CPL Reference Manual Section 9.3 5 July 66 Page 2

(FPor rules governing the termination of blocks and cycle-
commands, see 9.8.5.)

This process is continued until an activation is found which is
1live to the destination.

The effect of a jump is undefined if there is no current
activation to which it 1is live.

The following trivial example illustrates the way in
which ambiguities may arise when recursive routines and functions
are involved, and how this rule resolves them. If R is defined

by

let recursive routine R linteger n, label I, M] e

§ i a>0 do B [n—l, M, N]

_ ¢
N ¢ goto L $

the effect of executing R |10, Zven, 0dd] , say, is o jump to
the destination "Even", whereas R {9, Even, 04dd] Jjumps to the
destination "04d!. Note that each call of R ultimately has its
two label parameters specifying the same point N in:two different
acvivations of R.

Once the correct activaticon has been discovered, the
point at which it is to be reswied may still lie within blocks,
cenditional-commands or cycle-commands which are not yet act-
ivated. (The rules of 9.3.3, will imply that these are the
only wossibilities; in parfticular, note that the effect of
sttempting to jump into an expression is undefined.) These
activations are achieved by successively "jumping into" the
commands, starting with the largest command which is not yet
activated and working inwards.

The effect of Jjumping into the command
if B, then C1

is identical with the effect of jumping into the result of
‘replacing this conditional command, until terminated, by Cl‘

The effect of jumping into the command
| forN1=F1£1_201
is to execute the command as written, with the exception that
on the first cycle, 1if any, C, 1is entered by continuing the
jump inte it, after setting the initial wvalue of Nl'
On jumping into a block, any initialisations are ner-

formed as if entering the block normally, Dbefore continuing
tre Jjumn further into the body of the block,

CPI Reference Manual Sectioun 9.3 1 July 1966 Page 3

If, while evaluating the expressions occurring in a
block or eycle command head for this purpose, a ftransfer-
comand is executed which terminates the block or cycle-
comnand, this junp supersedes the former one, which is not

pursued further.

The effect of attempting to jump from the head of a
block or cycle-command into its body is implementation
dependent.

The effects of jumping into other Torms of compound=~
command may be deduced from the rules for expressing such
commands in terms of commands of the above form.

The effect of a transfer-command which according to
the above rules would terminate a call to the load or update
part of a load—update pair, is implementation dependent, and
may be undefined. (See Sec.1C.3.5.

9.3.3 labels

An iﬁentifier of tyve label may be introduced in one of

two different waivs by a definition using one of the hasic
symbols let, and, in and where, as specified in Sections 7
~and 8; or by ii 1ts occurrence as a “command label", in whiech

case it occurs in the text followed by a colon, and preceding
some command (or some further command label for a command).

A command label has the status of a definition of type
label for the identifier which is used, in that a new data itenm
is associated with that identifier whenever the scope of the
command label 1s entered. The scope 1s that which a definition
by let would have if placed at the head of the smallest routine
body or block- expression body in which the command label occurs.
The effect when two command label occurrences use the same
igentifier and have the sume scone is undefined (see also Note

1.)

The data item associated with the command label identifier
has an R - vzlue which specifies a destiration for jumps,
- providing the information for (a), (b) of 9.3.2 as followss

(a) the point indicated is the point of the command
label. occurrsence.

(b) the activation of the routine or block-expression
body which is being initiated is live vo the
destination; an activation of a block, conditional-
command or cyele-command will be live to the
destination if its text contains the command iabel
occurrence, and if called for by.a command which is
also live to the destination.

_ The data item associated with a command label is a con-
sy at, and may not be updated., But its R - value may bLe

o -

CPL Reference Manual Section 9.3 5 July566 Page 4

assigned to variables of type label {declared at the head of
a block, say).

Excepting possibly for an implementation dependent set
of library labels, ‘everv R - value of tvpe label originates
as the value associated with a command label in the ahove
way. ZTYor the sake 'of the boolean relations =, :& applled to
labels, two such R - values are equal if tney arise from
{possibly different) labels for the same command at the same
activation. Rules for equaliliv between llbrary labels are
implementation dependent. :

NOTE

1. For convenlence in implementing labels, the

interpretation is left 1mp1ementatlon dependent 1in two ultuatlens

‘of no great significance.

(a2) when, according to the above rules, a
command label occurrence does not lie
within its own scope.

(e.c.

let routine R be 86let L be real § L t - % ."g&bifz.

()} when the scope is a routine body, and
the command label identifier is also
used as a formal parameter for the routiae.

3

CPL Reference Manual Section 9.4 29 Nov 65 PAGE 1

8.4 Routine-Commands

9.4.1 Svntax

{routine command> ::= <{name>|<{prefixed expression>

{prefixed ‘expression) ::= <prefixed operator>[<expression>,_ 1

9.4.2 Semantics

{a) If N, is a name the command

N,

has the same effect as the command

n,Ed

(b) if a command is a prefixed-expression, the operator
and operand are evaluated in the manner described in Section
5.3.2. The evaluation of the prefixed~operator, in this
case, however, must produce a routine. The rules about

"evaluating the operand and transforming the resulting

arguments to the appropriate mode and type are those given

in Sectlion 5.3.2. | .
The application of a routine to its arguments is a form

.of command; its effect is described in Section 10.1,

Temporary Heading. Line length 60 Page length 66, PAGE 1
Secl tone G801 b 952 nol 74’7 wt i e

9.5.3 Break

The basic symbol break is a command which may only
appear within the controlled command of/cycle~command, it
may not appear in the sedy—sfpg—iogtinazdertnibion—oriothe
block following the basic¢ symbol - update unless the
cycle=command immediately enclosing 1t textually does so
also (see Section 10.3).

It has the same effect as a transfer=command to a label
immediately following the smallest c¢ycle~command enclosing
it textually, -

9,5,4 Result-is

The command

result Is E

may appear in the block following one of the basic symbols
value of, reference of or load. It may not appear in -the
body of—ppetib-b-presgdafdiiib b en—omli-tre block following the
basic symbol update unless the basic symbhoi with which it is
associated does so aiso (see Section 10.3).

The effect of the command is described in Sections & b
and 10,3.5. .

~ -
J”\est $€e)ifng M“? ‘f\ﬂ‘_ej ng-ﬂ’ Vg

.<iF command>

CPL Reference Manual. Section 9.6 29 Nov 65 PAGE 1

9.6 Conditional-Commands | / o
9,6,1 Syntax

i}

< if | unless ><expression> do <basic command>

:= test <expression? do <command> or
<basic command>

we

<test command?>

9.6.2 1f Commands

The command sequence

if Ey do Cy
c
p =

has the following effect:

The expressicn E,; is evaluated in R~mode to produce a
result of type Bgoolean. |If the value of E; 1Is false, the
command C; is skipped and the execution continues with the
command Cy; if the wvalue of E: 1iIs true, the execution

continues with the command C;. If the R~value of E, is not
transformable to tvpe Boolean, the effect is undefined.
The command |
unless E, do C;

has the sama effect as the command

if ~(E,) do C,

The command

test E do C, or C,

has the same effect as the command

& if B, do C, -
unless Ba do C, % where B, = E,

provided the name B, used for the value of the Boolean
expression E, is chosen to be distinct from all other names
sceuring in the command.

" {cycle command> ::= <while command>|<repeat command’|

CPL Reference Manual Section 9.7 29 Nov (65 PAGE 1

3

9.7 - Command

{while command) ::= < while ! until ><expression’> dg
<{basic command>

<répeat command? ::= <command>< repeatwhile | repeatuntil >
{basic expression>|

{command> repeat

. <for element> ::= <basic expression>]

step <basic expression’>,<basic expression>,
<basic expression’|
<hasic expression> itg <baslc expression>]
<hbasic expression>,<basic expression>
dgtgtring<baslc expression>

{for list> ::= <{for element><,<{for element>>, |

4@&#“+T9%%mﬂﬂ@£§_$$&mééﬁﬁ%FPHH%*

{for command> ::= for <name> = <{for 1ist> do <basic command>| ﬁ
forexternal <individual>< = | := ><forlist?> do

{basic command>

{for command>

@ i o = -M.,.% b wsed a p.‘E@,— ym-,n ?. fwucammw-i

9,7.2 While~Commands o

(a) The command

while E, do C,
has the same effect as the command

L,: Iif E, do 5 ¢C,
g0 to L,

(b) The command

until E,do C,
has the same effect as the command

while ~ (E;) do C,

CPL Reference Manual

Section 9.7

29 Nov 65
9.7.3 Repeat-Commands

(aj

The command
C, repeat
has the same effect as the command
while true do C,

(b) 'The command
. C, repeat while E,
i} o has the same effect as the command

: 5 ‘.

upless E, do break repeat

(e) The command

C, repeal until E,
has the same effect as the command
' C, repeat while ~(E;)

9.7.4 For=Commands

(a)

The commands

for external 1, := F; dg C,and
for external I, = F, do C,
have the same effect as the command

do C

é’lﬁ& N; = E, |
for N, = F; do & N, := Ny
¢, § &
...r
provided N; and N, are names which
other names occuring
(b)

are distinct from any
in the command,
The command

PAGE 2

CPL Reference Manual Section 9.7 29 MNov B5 PAGE 3

is interpreted as follows. The for-list F; is evaluated in
R-mode as described in Section 9,7.5 to specify a sequence
of R-values. The name N, is taken as the name of a new
CONTROL variable whose type is the 1least upper bound of the
types of the elements in this sequence and whose .scope is

the controlied command C;.
if the sequence of R-values obtained by evaluating F,

is void, the for~command has no effect, Otherwise, If the
sequence of R~values obtained is V,, Vi,...Vy {(n > 1) the
effect of the for-command is the same as the effect of the
command : ,

&

$ Blet No= Vi C, §
$let N, = V. ; 01$

L

Slet TSN E S

Note that the values V,, V3,...V, are determined once
and for all before the cvcle is entered, so that they cannot
be altered by assignments within the controlled command, and
that the control variable N, is redefinéd with- the next
value of the sequence at the start of each «cycle, so that
assignments to N, are effective only until the end of the
cycle in which they are made,
_ A jump out of the controlled command elther by a
transfer-command to a labeil external to it or by a break
command, has the effect of jumping out of a block so that
the control variable N 1is lost,
_ A jump into the controlled command Is treated 1like a
Jump into a block (see Section 9.8) and the evaluation of
the for=1ist is treated as part of the declarations at the
head of the block. More precisely, the effect of the
commands :

£0o to L,
for N, = F do
? t‘,,_;.....g"

Cytecenes Lys
Is the same as that of the commands

Zo to L
LZ.§‘.LE_L True
for Fy do ,
6L 1f B, do §3 1= False
£0 Lo L, ?3

Chloonnui L‘: CL,..... §i

provided the new names introduced are distinct from all
others. Note that this equivalence, unlike many given
elsewhere in this section, is only true dynamically. There
is no simple textually equivalent sequence of commands as
the interpretation of L, as a label 1In a transfer-command

By
N,

Bﬂ:’s Fel ar
deaf

[ela s a] c«ﬂ

wfmgumi

din

L

CPL Reference Manual Section 9.7 29 Nov 65 PAGE &4

depends on its context, i.e. on whether the traqéfer-command
is inside or outside the for-statement which contains L,.-

B

9.7.5 Evaluation of Fer-Lists

The sequence of values specified by a for-1list 1is the
sequence of R~values of its component for-elements taken in
order from 1left to right, A for-element which 1is a
basic=expression specifies a single value; the other forms
specify an arithmetic progression (which may have no
members) determined as follows:

(a) The for=-element
step E,. EL, E%

where Ey, Ej and Ez are numerical expressions _specifies_a
sequence with n+l values where n=lpLeg®&f[Realpt[(E3-€,)/E]]
if n 2 0 and an empty sequence if n < 0, Here the function
Realpt gives the real part of 1its argument for compiex
numbers, and the function Integer gives the nearest integer
to its argument (see Appendix 3). if n 2 0 the sequence of
values specified is given by E, +r&, for r = 0,1,...,n. The
type of each element of a sequence which is not void is the
type of the expression E, +E..

“(b) The for-element

E, to Eq
specifies the same sequence as the for-element
| step E,, 1, Ej
(c) The for-element
A SRR -
specifies the same sequence as the for-element

step £,, E,-E,, Ej

e -t W P W RS R S B R v A——trirera=ctatS e rire
scope or~the_definition is the for-list only. g in the
command : S

for extefnal E, := F, where-D.do C,
S G aof I Sleh D el et b @ g L oment seeof f-" byt _,.:.

Mrotude pither E. or 0
3 $

-~y

CPL Reference Manual Section 10,0 12 Feb ©6 PAGE 1

10 EUNCTIONS AND ROUTINES

10.1 1ntroduction. Function and Routine Calls

10,1.1 Syntax
10.1,2 Semantics

10,2 Functions and Routines as Data | tems

13.2.1 Syntax

10.2.2 Types

10.2.3 Expressions and Assignments

10.2.4 ‘Equality between Functions, Routines

+

_10.3 Function and Routine Definitions

s

10.3.1 Syntax
h 10.3.2 Semantics. General
Seo - 106.3.3 Formal Parameters
10.3.4 Free Variables
10,3.5 LH Functions
- 10,3.,6 Determination of Result Types

' CPL Reference Manual Sectlon 10,1 30 Jan 66 PAGE 1
10,1 ptroduction., Function and Routine Calls

:'10.1;1 Syntax

- <prefixed operator> ::='<néme>l (<expression>) | rhs |
' : {prefixed expression>

<prefixed expression> ::= <{prefixed operator>[<expression>,.]

" {routine command? ::= <{name>|<{prefixed expression>

10,1,2 gSemaptics

A function is a representation of a rule for evaluating.
function calls, which are forms of expression (see Section
-5.3). A routine is a representation of a rule for obeying

“routine calls, which are forms of command (see Section 9.%4).
' Functions and routines fall into the following

categories:

(a) Programmers’' functions and routines: functions

and routines introduced by an activation of one of

- the special forms for definition to be described
L in Section 10,3,

{(b) Basic fupnctions and routines: any - of the

R functions and routines described in Appendix 3 to

this manual, Introduced into the program by use of

the corresponding name, in a context where 1t 1is’

- not subject to any definition of that name,.

(¢} Library functions and routines: an implementation
dependent function or routine, Introduced by an
undefined occurrence of a name which does not
correspond to any basic function or routine name.
It is assumed that any published program will be
accompanied by an adequate, possibly informal
account of these functions and routines, In
particular, it must be possible to ascertain the
data type of any expression involving a reference
to such a function or routine.

A1l functions and routines are vregarded directly as
"da.a items, of one of the function types (see Section

1u,.2,2) or of type routine.
A function call is any prefixed-expression In which the

- prafixed-operator is an expression of one of the function

t.2as. A routine <call 1is a routine command consisting

eicher of a single name of type routine, or of a
prefixed=expression in which the prefixed-operator 1fis an

CPL Reference Manual Sectjon 10.1 30 Jan 66 " PAGE 2

expression of type routine. The single name routine call is

interpreted as a call without parameters to 'the routine
‘which is the value of the name. Other function and routine
. calls indicate an "actual parameter 1ist', which 1is the
- possibly empty 1list of expressions which? follows the
~prefixed~operator, enclosed in square brackets,

To evaluate a function call, or to obey a’routine call,
‘the R-value of the function or routine is obtained, by
evaluating the prefixed-operator of the prefixed-expresion

(or the single identifier, in the parameterless routine

- call), The ruie represented by this R~-value is then invoked
using the ordered sequence of data items obtained by
evaluating the actual parameter expressions for the call (in

‘171L—mode or in R-mode, depending on the mode of call of each

-parameter, see Section 10.3.3)., In the case of a routine,
- this rule determines a seguence of commands to be obeyed,
- In the case of a function, the rule determines an evaluation

. - process, from which a list of results is obtained. There
are two forms of this rule; one determines how the

evaluation is to be carried out in L-mode, and> the other in
+ R=mode. The choice between these forms is determined by the
 mode}of‘gva]uatjbﬁ"of the function call as an expression.

g e

‘'CPL Reference Manual Section 10.2 30 Jan 66 . PAGE 1

©10.2,1 Syntax

~Lfunction type> ::= (single type> function

. {single type> ::= <{data type>|<array type>| ‘)
{function type>| ({single type list>)

{single type Tist) ::= <{single type>¢{,<{single type)ib

10,2,2 Ivpes

There is just one type of routine, the type routine.
o There are an infinite number of types of function, ..two .
. functions having the same data type if and only if they
~produce the same type of result, or produce results which
‘match in number and in types, if they produce more than one
result each. ‘ ‘ e
.. As data ltems, those basic and library funétions which
are polymorphic as to their results (whose result types
depend on the types of their parameters), are considered as

':‘-functions of result type general, or (gzeneral, generail), or

(zgneral, general, general) etc. depending on the number of

results. Polymorphic functions with varying numbers of

results are not considered as data items, and may only occur

“in the position of single name prefixed-~operators.

. Programmers' functions and routines may not be

- polymorphic, The numbers and types of results and
parameters are specified in the special forms for function

and routine definition (see Section 10.3),.

The data type of a function is symbolised by preceding
the basic symbol function by the result types in order,
‘surrounded by parentheses and separated by commas if there
“is more than one result, Functions specified as type
function, without any specification of result types, are
assumed to have one result each, of the preferred type, Any
of the data types in the result type list may itself be a
- functional type. For example, the following is an

" acceptable declaration: _

“let f be (real, Index function, function) function

" Values of f within the scope of this definition must be

... functions producing three results each; in order, a real,
. and jndex-valued function, and a ' function with a single
value of the preferred type,

10.2.3

CPL Reference Manual Section 10,2 30 Jan 66 PAGE 2

Transfer functions may be defined between those
function types for which there are transfer functions
between result and parameter types. None of these .1Is
Implicitly invoked in cases of mismatching, e.g., if a
function is assighed to a function variable of a different

 resu1t type.

Note that the type of a function or routine does NOT

depend on the number, types, or modes of calling . of

parameters, . nor on whether the function or routine is fixed

or free (see Section 10,3.,4),

The R-value of an expression of a function or routine

~ type is a function or vroutine which may be applied,
. assigned, or used as parameter in a function or routine

call. At any point in a computation, any function or

routine R=value which may arise must have orlginated in one

of the following ways:

-{a) as the R-value of a basic or library function or
rout ine. _

“{b} as an R~value obtained from a call to a basie or

library function whose result type involves a

‘ function or routine type. ,

{c) as the initial R-value of a function or routine

identified defined previously using one of the

special forms of function routine definition to be

described in Section 10,3,

Such an R-value may be assigned to any function or routine
variable for future assignment or application. -

- The rules for applying R=values of types <(a) and (b)
are to be obtained from the specifications of the basic or.

-~ library functions or routines invoived. The rules for
“applying R-values of type {(c)} are described in Section 10.,3.

in a function or routine assignment, what i{s assigned
Is a representation of a computational rule; the ruie itself
remains unaltered. Thus, if f, g are function identifiers

'of the same result type, any Ssequence

f :=g ;b = g[a]

in a program can be replaced without altering the

interpretation of the program, by the sequence

f :=g ; b = f[a]

CPL Reference Manual Section 10,2 30 Jan 66 PAGE 3

160.2.4 Eguality between Functions, Routipnes (see Note 1}

The only infixed relational operators between function
expressions or between routine expressions are the operators

= ¢

Before defining a notion of equality between function
or routine R-values, it will be necessary to define a notion
of EQUIVALENCE between two L-values of the same data type.

"This notion, and the notion of equality between function or

routine R-values, will be seen to be interdependent.
~ Firstly, it should be noted that the only ways in which

~L=values may arise are the following:

(aa) as constant L-values, i.e., as the L=values of

constant unalterable R-values. =
(bb) as the L-values allotted to local variables, or

- to parameters called by value,for to a data |tem
(without an L-value (see Secftion 4,2).
(cc) &5 Fesultis o O LH functions.
(dd) as results of calls to basic or library
functions. : '

There are four corresponding rules to define the
equivalence of two L-values, Two L-values are equivalent if

“and only if they are of the same data type and satisfy one

of the following conditions:
© (aa') they are both constant L-values, whose R-values
are equal,
(bb') they are both the same L-value, i.e,, the
L-value allotted at the same activation to a local

s

variable or parameter called by value, ef——iFre—atr
B a: m? L ¥ - S N N VECW NER-SE 5= § o [T R T

(cc') they both result from calls to LH functions, and
are compounded from load functions and update
routines which are equal in the sense of this
section,

(dd') one L-value results from a call to a basic or
library function, whose specifications, together
with the rules of this section, imply that it 1is
identical with the other L=-value.

To define equality between two function or routine
R=values, it is necessary, in the same way, to refer to the
origins of the two R-values, as analyzed in Section 10.2.3,
Two functlion or routine R-values are equal if and only if
one of the following conditions hold:

(a') they are both R-values of the same basic or

library function or routine.

(b'} both R~values originate from the same special
function or routine definition, possibly at
different activations, and the L-values of
corresponding free variables are equivalent., (see

Note 2)

CPL Reference Manual Section 10,2 30 Jan 66 PAGE &

(c') one of the R-values results from a! call to a
basic or library function, whose specifications,
together with the ruies of this segtion, imply
equality with the other R-value. P

NOTES

1. This specification s given in its present form,with an
eye to compatibility with any extension of CPL Iwhich might
deal with more compiicated forms of data structure than are
at present incorporated. These may possibly be viewed as
- types of free function, in which c¢ase the definition of
equal ity between such functions 1s of importance. Until
that time, the feature is of small significance, and deviant
interpretations of this equality notion might not be
disasterous. |In particular (b*) might be amended to:

(b") both R-values originate from the same activation
of the same special function or routine
definitlion.

“without the roof caving in.

2. in particular, if the two R-values are fixed, they are
equal if and only if the R-values of all free variables were

equal at defintion time.

"CPL Reference Manual Section 10,3 5 Feb 66 PAGE 1

10,3 Egng;ign and Routine Definpitions

'10.3.1 Syntax

<LH function body> ::= < fix <definitiond>>-
' Joad <block> update <biock>

- {function definition> ::= < recursive >;-< variable | constant h_
: ' <{name>L<{formal parameter list>,..] &
< =] = >Cexpression list>| -

¢ recursive >,-< variable | copstant >,.

{ fixed | free >;.<functi gg><name>

E<formal parameter list>,.] be

{{LH function body>| .

§ (LH function body>$§>

~ <Kroutine definition> :t:= < recursive >. < vgcfgb}g | const Y-
- ‘ fixed | free >;- uti $name>
; _ {[<{formal parameter list>,.]> .

be <block>

10.3.2 Semantigs. General

Functions and routines may be defined by type, or by

- value or by reference, in any of the standard ways described

" in Section 7. These forms of definition, however, can only
create a new function or routine R-value by a call for one

- of the basic or 1library functions; in this case the

computational rule specified by the R-value will be
determined by the specification of the basic or 1library
function which produces it. Definitions of the special
forms of function and routine definitions whose syntax is
given in Section 10,3.1 can also produce new function or
routine R=-values, Each instance of such a definition
characterizes a computational rule, and, when activated,

| "sets up a function or routine R-value which represents that

rule.
‘Function and routine definitions have the following

" features:

{a) an identifier, the name which is the subject of
the definition. :
(b)) a list of identifiers and basic symbols, following
' (a), enclosed in square brackets, and possibly
empty; this is the FORMAL PARAMETER LIST for the
function or routine definition,

T

CPL Reference Manual Section 10,3 5 Feb 66 PAGE 2

(c) a BODY; that part of the definition following an
occurence of one of the basic symbols:

be = =

The remaining parts of function and routnpe definitions

have the fo]lowing significances: i
{4
yariable signifies that the function or rputine is a
variable data item which may subsequently be updated.
Otherwise the data item is assumed to be constant, with
an unalterable R-value. The latter is also signified
by using the basic symbol gonstant in the definition.

fghsjign...gg are used in LH function definitions (see
Sectijon 10,3.5).

- routine...be are used in routine definitions.

fixed sighifies that the LH function or routine is fixed

(see Section 10,.3.4),

- free signifies that the LH function or routine is free (see

Section 10.3.4).

If neither fixed nor free occur in a LH function or

‘routine definition, it is assumed to be free if it has any

free variables, and fixed if it has none,
= signifies an ordinary definition of a fixed function.
3 signifies an ordinary definition of a free function.

For ordinary function definitions, the body of the

- definition is an expression list:; for routine definitions,

the body is a command (in the form of a block). in these
cases the rule for application of the corresponding function

or routine is that the body of its definition is,
" respectively, evaluated or obeved, special provision being

made for the evaluation of any identifiers which are not
defined within the body {(which have FREE occurrences in the
body, not in the scope of any definition of the identifier
concerned within the body). These Jidentifiers are either
FORMAL PARAMETERS {.e., those identifiers whose names appear
in the forma} parameter list of the definition, or FREE

- VARIABLES i.e,, any other identifiers having free
- oceurrences within the body.

 'CPL Reference Manual Section 10.3 5 Feb 656 . PAGE 3

13.3.3 Formal Parameters

The lidentifiers in the formal parameter 1ist are
alloted a data type and mode of calling, by use of the basic
symbols value and reference, and the data type specifiers
described in Section 7.1. The type and mode of calling of
any identifier are given by the nearest preceding type
specifier and mode specifier (yalue or reference) in this
list, V¥alue signifies that the parameter 1is CALLED BY

VALUE; reference signifies that it is CALLED BY REFERENCE.
If there is no preceding type specifier in the 1ist, the
-type of a parameter is taken to be the preferred type. I f

there is no preceding mode specifier, the mode is by value.
_ Before applying a function or routine definition, the
formal parameters are provided with L-values, which bear the
following relation to the corresponding actual parameters.
If the parameter is called by value, its L-value is taken as
-a fresh L=value, with an 1initial R=-value given by the
. R=value of the corresponding actual parameter expression,
- If the parameter }s called by reference, it 1is given the
L-value of the corresponding actual parameter expression in
the call. (Note the similarity between parameters called by
value and local variables defined using =, and between

: jparameters called by reference and local variabies defined

by & .) _
: Unless the prefix operator in the function or routine

call is a name standing by itself, and occurs as the subject
of .a special function or routine definition with the
attribute gopnstant, the type of each actual parameter
. exression must be the same as that specified for the

corresponding formal parameter in the formal parameter list.
"in the exceptional case, transfer functions are Implicitly

~ . invoked where necessary (see Section 5.3.2),

Function and routine calls must result in the same
_number of actual parameter values as there are formal
‘parameters in the formal parameter list,

©10.3.4 Free Variables

The treatment of free variables depends on whether the
function or routine is fixed or free. If it is free, the
L-values of the free variables are taken to be precisely the
L=values of these identifiers at the moment of activation of
the definition. |If the function or routine 1is fixed, the
- free variables are provided, at definition time, with
"L=values, whose R«values are constant, and are the R~values
. of those identifiers at definition time. if any free
variable in the body of a fixed function or routine 1is a
free array, the constant R-value is taken to be that of a
- fixed copy of the array, the elements of which are

CPL Reference Manual Sectjon 10.3 5 Feb 66 PAGE 4

unalterablei (see Section 11.1,2)., Fixed functions and

routines may not have free variables which are . either free
functions or free routines or labels. Within the bodies of

fixed functions and routines, no assignments mgy be made to-

free variables, or to elements of free variablgfarrays.,

LY

10.3.5 i F ions

In the normal course of events, L-values are disjoint;
that is to say, any assignment to one L-value does not
affect the R=~value associated with any other L-«value, This
is because L~values are ordinarily created either by
activating a3 definition by type, or definition by =, or at a
function or routine call, as - the L=-value of a parameter
called by value, in which case the new L~value 1is always
chosen to be disjoint from all previously created L-values.

In general, however, it is not adequate that any two
L-values ae either identical, or disjoint; it is desirable
to have ways of creating new L-values, which may SHARE with
previously created L-values in arbitrarily complex ways.
" These are provided by calls to LH functions, and by the
special forms for definition provided by LH function
definitions. '

An L-value may be compounded from two data items of the

following sorts:

(a) a parameterless function, of type T, function, for
some data type specifier T,; this produces an
associated R-value, of data type Ty, when
evaluated in R-~mode; this 1is called the LOAD
FUNCTION, .

(b) a routine with one parameter called by value, of
type Ty, this is known as the UPDATE ROUTINE, and,
when called, it has the effect of changing the
associated R~value to be the R-value of its actual
parameter expression.

The result of a call to an LH function 1{is an L=value
~compounded in this wa¥ from a function, defined by the block
following the basic symbol lgad, and a routine defined by

the block following the basic symbol update.
To be more precise, where the LH function definition

reads:
.»eod0ad C, update Cy

’C1, Cz, standing for blocks, the L-value produced by a cali
to that LH function is compounded from the function f which
would be defined by: :

Y

CPL Reference Manual = Section 10.3 5 Feb 66 . " PAGE 5

let fLJ = value of C,
and the routine R, which would be defined by:

let routine RET, x] be C3

in place of that part: of the body of the LH function

definition,’ Ca here is obtained by substituting x for the
basic symbol rhs at all its occurrences in C, (outside any
nested LH function definition), and T, is the result type of

"f. -

The definition following the basic symbol fix, if it
occurs, . is actlvated when the LH function call is evaluated,
and has as its scope the remainder of the body. [ts purpose
is to make it possible to ensure that the L-value concerned
-{but not, of course, its associated R-value) is not altered
by the side effects of other assignment statements between
fts evaluation at the application of the LH function and its
possibly subsequent use to find the R-value or to update the
L-value. _ . '

LH funétions may only be single-valued; 1i.e., the
result type of f as defined above must be a single data
. type, and not a data type list.

The result of evaluating a call to a LH function in
"R=mode is otained by evaluating the call in L-mode, and then
calling the load function to obtain the current associated
-R=value.

'10.3.6 Determination of Result Types

The data types of functions introduced by sbecial
function definitions is determined from the definitions 1In
- the following ways:

(a) Non-recursive ordinary functions : :
The result type 1ist for a non-recursive ordinary

function definition 1is the ordered 1list of types of

‘constituents of the expression list on the right hand side
of the = or = sign.. The same rules apply for the types of
numerical constants as in simple definitions using = (see
. Section 7.4.3),

“{b) Non~recursive LH functions

Each result type list consists of a single type. When
the body of the LH function definition reads:

++» load C; undate C, ...

with C,, C, blocks, the type of the LH function is identical
with that of the function defined by:

CPL Reference Manual Section 10.3 5 Feb 66 PAGE 6

let f[1 = value of €,

The type of [hs in Cy is'taken as the result type of the
function as determined in the above manner,

(c) Recursive functions

The result type list for a recursive function, or set
of mutually recursive functions cannot necessarily be
determined directly from (a) or (b) above, since the type of
a defining expression may depend on one of the types to be
determined. 1In this case, the result types are defined as
follows: ;

Given any recursive set of definitions, an assignment
of data types to the definitions is CONSISTENT if, assuming
those data types on the right-hand side of definitions 1in
the set, the data types for the definitions obtained by
following (a), (b) above and the rule of Section 4 are
transferable without loss of information to the assumed
types. That is to say, corresponding data types that are
not functional are directly transferable according to the
rules of Section 3.3, and result type lists for functional
. data types have corresponding components that are also
transferable without loss of information in this sense., |IT,
. for each definition of the set, there exists a data type

which is transferable without loss of information to each
data type corresponding to that definition in any consistent
assignment of data types to the set, then that is taken as

" the data type for that definition, provided that in this

 manner a consistent assignment of data type is obtained. |If
‘no unique consistent assignment can be obtained in this way,
the data types are implementation dependent,

CPL Reference Manual Section 11,0 22 Feb 66 : PAGE 1

11 ARRAYS

11,1

11,2

Subscripted Expressions., Arrays as Data | tems

11.1,1 Syntax

. 11.1.2 Semantics

Basic Functions for Arrays

11,2,1 Array=-creating Functions
11,2,2 Other Functions

CPL Reference Manual Section 11,1 12 Feb 66 -PAGE 1

11,1 Subscripted Expressions. Arravs as Data ltems

1l.1.1 Syntax

- Kprefixed operator)> t:= <name> | (<expression>) |
: : {prefixed expression>

- {prefixed expression> ::= {prefixed operator)[(expresSion)h]

{array type> o= {single type).-(number>‘gxggx }
{single type>;. yector |
{single type>,. matrix

11.1,2 Semantics

An array is a particular sort of function, of one jndex
parameter (by value) defined on just one closed segment of
possible parameters. The free variables of an array are in
- one~to-~one correspondence with the set of possible parameter

~vaiues, and have mutually disjoint L-values; the result of
evaluating a call to an array is that free variable which
"corresponds to the value of the parameter.

Arrays may be either free or fixed,.

An R-value of one of the array-types {s a
representation of an array. The different possible
array-types correspond to the different result types of the
array, considered as a function, in the following manner:

If T, is a single~type, an R-value of type T, 1 array
or T, vectgr represents an array of result type T,. If T
is omitted, the result type is taken as the preferred type.
The remaining resuit types may be deduced from the following
synonymies: _

matrix, 2 agrray are synonymous with 1 array 1 array
3 array is synonymous with 1 arrav 1 arrav 1 array

- and so on., For example, a real % artray R-value represents
an array with result type real 1 arravy 1 grray 1 arrayv,
‘i.e., with result type real 3 arraVv.

A subscripted expression is any prefixed-expression in
" which the prefixed-operator expression is of an array-type.
~if Ay is an expression of some array-type, and EyseeerEy, are
expressions, then ' ' ' '

A[E By, eensEQ]

is synonymous with

CPL Reference Manual Section 11.1 12 Feb 66 PAGE 2

ALEILE . veuE L]

The expressions separated by commas are the subscripts Aof__

the subscripted expression, A subscripted expression with
just one subscript is evaluated In the same way as a
function call (see Section 10). |If there is more than one
subscript, the expression is evaluated 1In accordance with

- the reduction to the one subscript case given above,

1f the subscript value 1is outside the range of
permitted values, the result is undefined. ;

The semantics of array expressions, assignments, - etc.,
may be obtained by reference to the corresponding properties-
for functions (see Section 10,2.3, 10,2,4), '

In particular, note the following points:

(a) No automatic copying of arrays is done on assignment.

For example, after obeying :
Ay :=8y; B, [1] :=8,[i]+1

“A,L[i] wit1 have been altered.

(b) Note particularly that equality between arrays is
defined in a very strong sense, which, for numerical vectors
and matrices, does not coincide with ordinary mathematical
usage., Two free arrays are equal only Iif their free

~variabhles have the same L-values; that is to say, only |if

both have been obtained by sequences of assignments of the
same array (only if both are the same array, in every

-sense)., For equality in the mathematical sense between free

arrays, the Boolean function Equal must be used (see
Appendix 3), Note that two fixed arrays are equal if they

are equal in the weak mathematical sense.

There are no specié] forms available for the definition
of arrays, nor are there transfer functions from function
tvpes to array types. The only ways in which arrays may be

-created are as the results of calls to certain basic

functions (see Section 11.2.1),

N.B. (a) and (b) above will be seen to be intuitively more
acceptable if an_ array 1s conceived of, not as the
configuration of its elements, but as a POINTER to this
configuration., Assignment and equality apply to these
pointers rather than to the totalities of elements,

- CPL Reference Manual Section 11,2 12 Feb 66 PAGE 1

_11.2 Basic Functions for Arrays.
- 11,2.1 Arrav-Creating Functions : N

" (a) Newarray

A call has the form
Newarray[_T,,E,]

~where E, is an expression 1list, and T, is a data~type
specifier, The function is VARIADIC; that 1is, it may be
calied with varying numbers of parameters, On evaluation E,
produces 2n R~values, A,B,,...,A,,B, of type index. The
value of the call is then a new array of type

T[n array

the L-values in which are disjoint from existing L=values,
- The values A,,B,,...,A,,B, determine subscript bounds; after
. the assignment :

N, := Newarray [T,,E,]
the éxpression
Nl[E:’Ez‘.'nu.'E'ﬁ]

i5 a subscripted expression all of .whose subscripts are
within bounds if and only if

Ar £ X, £ B

4
b= Ty - "4

for 1 £ 71 &n

- where each X; Is the R-value of E!.

(N.B. Arrays need not be rectangular, although arrays
directly produced by Newarray are.)

{b) Formarray:
' A call has the form

Formarray['ﬂ ,E,]

with T, ,E, as in (a). WEth the notation of (a), the value
of the call is a function of type

" T.n._a.tmmn.c_tig_n

taking:TT (By =Ay + 1) arguments of type T;, which, at each
‘2

call forms a new array; the R-values of actual parameters

for the call wili be the R-values of elements of the

CPL Reference Manual Section 11,2 12 Feb 606 PAGE 2

resulting array arranged in lexicographic order with respect
to subscripts., For example, after obeying

N, := Formarray [real,(1,2),(1,2),(1,2)ILC(CE 414, E 1a),
(EH.‘IIEILL))I((ELHrEle.)i(E-‘_,_loE-._u)))J

each N,[i,j,k] has the R~value of E-*h, for i,j,k =1 or 2,

(Note the use of cosmetic parenthesns in the above example;
these could be omitted without altering the effect of the

command.)

(c) Copy _

The value of Copy[f], with E; an eXxpression of some
array-type, 15 a new Free array of the same type, the same
spectrum of legitimate subscript sequences, and the same
R=values for corresponding elements as the value of E;.
Elements which are arrays are copied. :

(d) Fix .

' The value of Fix[E,] is a fixed array of the same type
as k4, the same spectrum of subscripts, and the same
R-values for corresponding elements, E, may be an

expression of any array type, except for label n array, (any
n}. The effect of Fix applied to an array contalning a free
function or routine is undefined.

11,2,2 QOther Functions

(a) Bounds

_ A function of type (index, index) function; taking one
parameter of any array-type. The two values are, in order,

the lower and upper bounds for single subscripts of the

array (considered as a vector of subarrays).

(b) Equal .

A function of type boolean function; taking two
parameters of array-types, The value is true if and only if
the two arrays are of the same type, have the same spectra
of subscript sequences, and equal R-values in corresponding

elements.

(N,B, Equal [hh,Copy [N,]]'always has the value true, but
Ny = Copy LN,] always has the value false, unless N, is a
null array.,)

Ths ‘J.—.,yir hes w7 beem 7‘"'/7 cL.caq,J

CPL Reference Manual (Draft) Appendix 1 -

X

Appendix 1 The Preprocessor

Part 1 General Description

b

This is intended to be both a description of the transformation
from an implementation alphabet to canonical CPL and a general example
of a CPL progran. The transformation is written in CPL and appears
in Part 2; Part 3 then describes the functions and routines which are
- used but not declared in Part 2.

The routine Preprocessor uses recursion to model the bracketing
structure of the source test; each level of recursion corresponds to
a level of brackets. Its actual parameters are the Bracket type
(e.g. & ([-), the section bracket tag if the bracket type is §
and a label to return to if a closing section bracket is found with
a tag which does not match with the current section. It is thus easy
to write the preprocessor rule concerned with the insertion of closing
section brackets.

The removal of comment is done by the input routine NextChar and
gince comment is introduced by the pair of symbols || this routine
requires a single character buffer which is called InputBuffer. The
end of the source stream is recognised by a special end of gtream
character.

Most of the preprocessor rules are performed by the output routine
Output. This routine makes use of the boolean variables TerminatorPending
and TerminatorSuppressed to control the insertion or deletion of the
command separator ';' . TerminatorSuppressed is true if the most recent
symbol processed other than ';' and ‘Newline' was the symbol ¢ .
TerminatorPending is true if a Newline or ';' has been read since the
last canonical CPL symbol was output. The rule for insertion of
terminators can most clearly be expressed as follows: a terminator is
ingerted between two canonical CPL symbols if a terminator is pending
and not suppressed by ¢ and if the first symbol can end a command and
the second can start a command, It should bhe noted that all symbols
~ which may end a declaration may also end a command. The last canonical
CPL symbol output is always held in the string variable LastCutput. The
rules for the insertion of do and the recognition of pos and neg are
also incorporated in Outpute

The working variable ¢, is used by Preprocessor and always contains
the latest character produced by NextChar. Preprocessor iz always
called with ¢ set to the next character. The routines ReadTag
ReadlUnderlinedWord and ReadSpaces all leave ¢ correctly set.

CPL Reference Manual (Draft) Appendix 1 ‘ Page 2

v

Part 2 The Preprocessor Program

let ¢, s, 8' all be string

h——

let LastOutput, InputBuffer both = '' || i.e. the empty string

let TerminatorPending, TerminatorSuppressed = false, ftrue

- let rt NextChar [string ref c] be
- . — s= S (sMidar]
ghch o @InputBuffer P m_‘lm‘.!)

Readchar [CPL.Source , InputBuffer]

If ¢ = '|* = InputBuffer do
until ¢ = '*n' do Readchar [CPL.Source,c]

Readchar [CPL.Source, InputBuffer] %N.ch

let rt Output [string x] be

§0.p if x = ‘¢! do § Termi:qatorSupp;ressed t = true
return %

if TerminatorPending A ~ TerminatorSuppressed A
CanEndCommand [IastOutput] ACanStartCommand [x] de
8 write ['; £']
LastOutput g o=ty
TerminatorPending, TerminatorSuppressed oth : = false
X : = MonadicTransformation [LastOutput; xJ

if MustStartCommand [x] A CannotProceedGommand (LastOutput]
' do & Write ['do #']
LastOutput ! = 'do’ %

Write [x <=> gt]
LastCutput : = x %O.p

_Jf_i_:. rt ReadTag [string ref s] be
%R.T 5 : =M

§ NextChar [c]
unless ILetter.Digit.Dot [c] break

B :=8<D>c¢ *rep_eat

wtil ¢ £ '*''do § s :=8<=Dc ,
- NextChar [c] %R T.

B T

. §P.P Switch : Jump on ¢ into Sae nrre..d:.\!

CPL Reference Manual (Draft) Appendix- 1 : Page 3

let rt ReadUnderlinedWord [string ref s] be
o gTi.U.W B:=¢
while UnderlinedLetter [c¢] do
& 5 : = & &+ 8 <=> Small, UnderlinedLetter(c]

NextChar [c] R.U.VW,

‘let rt ReadSpaces [string ref c] be

8R.5. & NextChar [c] S
If ¢ # '*s' return % repeat %R.S

let rec rt Preprocessor [string BracketType, BracketTag,
' label MiematchReturn] be

§ cas '§' : ReadTag [s] A"{""’:Hw‘ \} Suilch~ comoms

Output ['§*]
Proprocessor ['§', s, Mismatch]
goto Switch

case '%' : ReadTag [as]
if BracketType ¥ '&' do Report [1]
Mismatch ¢ Output [' §*]
if BracketTag £ B goto MismatchReturn
return

case ;. case '*n' :
TerminatorPending : = true
NextChar [c]
goto Switch

case '(t : case '[! : case "' :
Output [e] ; B8 : =¢
NextChar [c]

Preprocessor [s, '*', Error]
Error : goto Switch

case ')’ unless BracketType = '(' do Report [2]
Output [c] ; NextChar [e]
return

-

unless BracketType = '[! do Report [3]
Output [e] ; NextChar [c¢]
return

case ']

cage !,

if BracketType = "' do
§ Output ['gomma'] ; NextChar [c]

Rtﬁ&!‘a /
ReadSpaces [c] -
unless ¢ = '.' do & Output [','] ; NextChar [cl]

goto Switch %

- CPL Reference Manual (Draft) Appendix 1 Page h F

‘case

case

case

Te)

B T3

if Digit [c] do

NextChar [c]
§Dgt Output [*, ']

B ! = I L]
while Digit [cl]do 8§ 58 :=8<>c
NextChar [c] §
Output ['ar <=> s]
soto Switch %Dgt
if & = '*s' do ReadSpaces [c]
if ¢ £ '.' do Report [4]
while ¢ = '." do ReadSpaces [c]
unless ¢ = ',' do Report [5]
Output ['dot string'] ; NextChar [c]
goto Switch

BE 3 = L]
NextChar [cl
until ¢ = '2' do
81 test EscapeCharacter [c]
T thendo & NextCha.r Lel
- : =$<=> SpecialChar [c] $
ordos:=s<=>c
NextChar [c] 81
Output ['& ' <=> 8] ; NextChar [c]
goto Switch

NextChar [c]

if ¢ = '<' do & Output ['<<'] ; NextChar [c]
soto Switch % ‘
:|.f cm '=* do

8 NextChaI' (el
if ¢ = '>' do & Output ['< = >'] ; NextChar(c]

. goto Switch
Report [6] % %
Output ['<']
goto Switch

NextChar [c]
if ¢ = ™' do 8 Output [*>>'] ; NextChar [c]-
- goto Hext % Su.TLL /
Output [>1]
goto Switch
NextChar [c¢]

" if ¢ = '=' do § Output [':='] ; NextChar [c]

goto awitch %
Output [':']
goto Switch

CPL Reference Manual (Draft) Appendix 1 : Page 5

case '*s' : cage ' ' : NextChar [c]
goto Switch

the rest : if Bigletter [c] do
: 7 5 I = C
ReadTag [s']
Output ['a€? <=> 5 <=> &']
oto Switch
if Smallletter Lel do
8 s:i=c¢c

NextChar [c]
while c = '*1' do § B :=8<>c

NextChar [cl
Output ['» ' <=> s8]
gote Switch @

if Digit.Dot [c] do
_é§s.=w|—"
while Digit.Dot [e]l do § 5 : =85 <> &
NextChar [c] %
Output [+ <=> 5]

goto Switch §

1f Underlinedletter [c] do
81 ReadUnderlinedvWord [s]
s : = Standard [s]
while Combinable [s] do
82 if ¢ = '*5' do ReadSpaces [c]
unless Underiinedletter [c] do
& output [s]

oto Sw1tch g
ReadlnderlinedWord [g
&' : = Standard [s5']

test Standardizable [s <=> 8]
thendo & : = standard [s <=>s’.
ordo & Output [8]

8 3 = @m! %éa

Output [a]
goto Switch %1

if ¢ = Endof StreamChar do
§ unless BracketType = 'StreamStart’ do.
 Report [7]
: return -%
Cutput [c]
NextChar [c]
goto Switch $ P.P

CPL Reference Manual (Draft) Appendix 1 Page @ix

i1 Main program

lastOutput, InputBuffer both : = '

NextChar [c] ; NextChar [cJ

Preprocessor ['StreamStart!, '', Error] ; Error : finish

Part 3 Additional definitions.

: A number of identifiers in Part 2 were left undeflned; thesé
are defined informally in this section.

. a) The boolean function CanEndCommend [string LaBtOutput]
is true if LastQutput is any of the fo lowlng.

Number, Name, StringConstant %]) :

repeat break return rhs finish

index integer? real etc.

b} The boolean function CanStartCommand [string xI]
‘de true if x is any of the following
Bumber, Name, StringConstant
- pos, neg, + = (§
if unless while until test for forext
break finish return presultis valof refof goto

c) CannotPreeeedCommand [string LastOutput] is true if

LastOutput is any of the following:-
: 5 do : or

' d) MustStartCommand [string x] is true if x is any of the
-follQWing -

1f unless while until test
for_ forext return break finish

resultis goto

e) The string function MonadicTransformation [strin ingLastOutput, x]
is used to recognise when + and - are monadici if x is not + or - then
- the result is x, if LastOutput is not any of the following:-
' number, name, J , .)
and x is + or - then the result is pos or neg respectively.

£f) Standard [string x) is a string function whose result

is allbe if x is are or bothbe
' be is

const : constant
do then thendo dodo
forext forexternal
go goto
or ordeo else otherwise
rec recursive
EEE reference
refof referenceof

resultis resultbe

' CPL Reference Manual (Draft) Appendix 1 : Page seven

rt routine
to thru
val value
valof value of

otherwise the result is x

g) Combinable [string x] is true if x is
all 4 do double for

52 1025 or ref
result repeat " val

E h) Standardizable [string x] is true if
the result of Standsrd [x] is an underlined word in the basic
symbol set of canonical CPL.

: i) Letter.Digit.Dot [string c] is true 1f c is a f,’
letter or a dlgit or a dot. _

i) Diglt.Dot [string c¢] is true if c is either a
- digit or a dot,

k) Digit (string c] is true if c is a digit. B 74
1) EscapeCharacter [string c¢] is true ig ¢ is f}/

-the escapecharacter for strings.

: m) SpecialChar [string c] transforms the special
character which occcurs after the escape character in strings

- . to the atring character it represents,

e.g. the result is the character 'Newline!' if ¢ is n
'Backspace' b

'Erase! e

) i

etec.

ﬂi’f“‘_’h‘“ ! P

The switoh-gommand

Syntax

<ewitch command> ::= gwitch on <expression> into
. <block> %!
<label> ::= <identifier> : | case <constant> 3 | default :

The synonyms for switch on are :-
cageswitch and Jumpon
and for default are :=-
the rest and others

Semantics

The switch-command is a convenient way of controlling a multiway
decision in CPL; it is designed as an extension to the test-command
which switches to one of two altermatives depending on the value of a
boolean expression.

The type of the switch is the type of its controlling expression
and this may be string or any of the numerical or logical types. A
case~label is said to belong to the smallest enclosing lexicographic
switch-command and its constant is transformed to the type of this

sw1tch-command.

To execute a switch-command first the controlling expression is
- evaluated in R mode and then execution is resumed at the case-label
which belongs to the switch-command and whose constant equals this
‘value, or if no matching case exists execution continues at the command
~ "labelled default: The constants of two case-labels belonglng to the
same swltch-command may not be egqual. ‘

e -Iuiﬂ;“ - C.dwﬂa-ﬁtﬂ
;n.(_ﬂ'{ e&ni e - Tz:t HST 7?- TC ﬂf-{)‘(wc.(
I™ n Whaded B delade T M

ﬁ:. ‘ﬁ.?(wn}t N

has ‘h.'T ﬁ_(qb een

H'\nuﬂ‘ .

APPENDIX 3.

List of Changes Foreseen in GFL

A, Alterations

1, Bcope of where-clauses

This is somewhat confusing and unsatisfactory at present,
“We shall probably distinguish between an "expression-where"” and
a "command-where" (which probably includes a "definition-where")
by some syntactic device similar to that which picks out the
conditional commas and replaceg them at the preprocessor stage
by comma,

2, result is, return and break

"Detached" uses of these will be allowed with a scope which
is lexicographically determined, These correspond, inter alia, to-
Landin's "program points", ' -
3 finish

. This exists only in the Elementafy Manual., Its use will be
extended and generalised,

B. Additions

1e Character

We hope to introduce a type character into the ianguage.

2. Switch~commands

_ The switch-command described on p,8 of Appendix 1 will be
added,

3. Table look=up

Gommands for Table look-up seem to be desirable, These may
prove to be part of the operations on sets (see next section),

Ce Extensions

1, Compound Data Structures

The entire area of Compound Data Structures and related
concepts neesds to be added to CFL, This will involve a considerable
extension of the concept of type, An outline scheme is already
under consideration, but much more work is needed before it can be
regarded as good enough for incorporation in the language,

2e Segmentation

Methods for segmenting large programs, compiling and testing
the segments separately and finally combining them into a larger
“program are essential to the practical utility of any programming
language, We hope to be able to include these facilities in CFL

by a natural extension of the language rather than an ad hoc device,

. 3i_ Sets

It may be possible and desirable to introduce the concept
~of a set {an unordered collection of identifiable objects) and to
- provide certain operations on them. (For example a table look-up

"is very close to a function whose domain is the menber of a_set).

	SMonmouth1607211044015
	SMonmouth1607201336014
	SMonmouth1607201336013
	SMonmouth1607201336012
	SMonmouth1607201336011
	SMonmouth1607201336010
	SMonmouth160720133609
	SMonmouth160720133608
	SMonmouth160720133607
	SMonmouth160720133606
	SMonmouth160720133605
	SMonmouth160720133604
	SMonmouth160720133603
	SMonmouth160720133602
	SMonmouth160720133601
	SMonmouth160721104400

