# UNIVERSITY OF LONDON INSTITUTE OF COMPUTER SCIENCE and <br> THE MATHEMATICAL LABORATORY, CAMBRIDGE 

TECHNICAL REPORT
CPL WORKING PAPERS

JULY 1966

## CPL WORKING PAPERS

This volume contains various papers concerning CPL. The principal one of these is an unfinished draft of the Reference Manual. This is preceded by a copy of an elementary programming manual and brief notes on the history, present status and future prospects of the language and its compilers, and is followed by various appendices.

These documents are not intended for publication in their present state. They are being given a limited private circulation in this incomplete form for reasons discussed in the preface.

July 1966.

In October 1962 a joint research project was begun by the University Mathematical Laborstory, Cambridge and the Institute of Computer Science, London (then known as the University of London Computer Unit). The aim of this project was to design and implement a new progranming language for use on the Atlas I and II (Titan) computers in the two establishments.

The initial team consisted of D.W. Barron, D.F. Hartley and C. Strachey from Cambridge and J.N. Buxton and E. Nixon from London.

It was intended that the language should possess the advantages of the general structure and precise description of Algol 60 but should be of wider practical utility. Many of its main features were settled at an early stage and were described (in 1963) in a paper in the Computer Journal (ref. 1).

Since the publication of the initial description the language has been subject to extensive redesign and further research work has been carried out on its semantics (see refs. 2, 3).

The desjign of the language, as opposed to its implementation, has never been more than a part time occupation for any of the authors. As the language gradually approached its present state, the authors' meetings became less frequent and those wio were not actively engaged in an implementation found it more difficult to keep in touch with the languare. At the same time some of the people who were engaged in an implementation began making substantial. contributions to the language itself. During the period 1963 to 1966 D.W. Barron Jef't the CPL language group and D. Park and M. Richards from Cambridge and G.F. Coulduris from London joined it.

The proper description of a programing language is no easy task, and CFL, which is very considerably larger and more sophisticated than Algol, presents a formidable problem, None of the authors have been able to spare the time to document the language adequately, and the fact that it has been evolving continuously has not simplified the problem.

An Elementary Programming manual oxists in several versions, the latest of which is included in this volume, but this only describes the simpler parts of the language. Three ohapters of an Advanced Programming manual were written (by C.S) but these, too, only cover the easier parts of the language and by now need considerable revision.

In Spring 1965, therefore, the authors deoided to prepare and if possible publish a Reference hanual which should contain a complete description of CPL as it then stood. It was not intended that the Reference Manual should be an introductory text and no particular pains were to be taken to make it easy to read by the uninitiated; it was hoped, however, that the result would not be as difficult as the Algol 60 Report.

The first draft was prepared by JNB after a series of long meetings at which the authors discussed the points at issue. The second draft was then prepared by JNB, DFH, MR, GFC, and DP, each writing one or more sections. These were then revised, edited and partly rewritten by CS to produce the incomplete draft which forms the main body of this volume.

At a meeting in June 1966 the present authors (JNB, GFC, DFH, EN, DP, MR and CS) decided that the present volume should be made available to a restricted audience as a reşearch report. The chief reason for this was that many of the authors by now had too many other comaitments to undertake any further work on the language. At the same time it was generally appreciated that at least two important additions to the language (Compound Data Structures and Segmentation) were essential ir CPL were to be of wide application. With the very limited effort available it was felt that an interim publication of an unfinished document which could be carried out with very little work was all that could be expected if the vital work of developing the language addj.tions was not to be delayed too long to be incorporated in a new implementation which MR hopes to start at MIT in the autum of 1966. The present volume is the result.

Major developments of CPL are to be expected in the future. In partjcular a scheme for incorporating Compound Data Structures in a very general way is under developnent. It is also intended to consider the problems of segmentation and, more generally, of the relationship of the language to its compiler and operating system. Other, less wholesale changes are under consideration and a list of these is given leelath ar an Apmoic.

If these developments prove successful we would hope to extend and revise the current draf't of the Reference Manual and, in due course, to publish it.

## References

1. Barron, D.W., Buxton, J.N., Hartley, D.P., Nixon, D., and Strachey, C. (1963) "The Main Features of CPL". Computer Journal 6 134-143.
2. Strachey, C. "Towards a Fomal Semantios" in "Formal Language Description Languages" ed. T. Steel. (1966) Morth-ifolland.
3. Burstall, R.M. "Some Aspects of CPL Semantics" (1965) Experimental Programming Report No. 3. Experimental Progranming Unit, University of Edinburgh.
4. Barron, D.W. and Strachey, C. "Programming" Ch. 3 pr. 49-82 in "Advances in Frogramming and Non-Numerical Computation" ed. L. Fox, Pergamon Press.

CPL ELEMRNTARY PROGRAMMING MANUAL

## Eaition II (Cambridge)

(including corrections and revisions)

```
Corn Exchange Street, Cambridge.
"I wish to God that incsc eiclewions had been executed by steam."
(Charles Babbage, to John Herschel; 1820)

\section*{1. INTRCDUCTION.}

CPL, (Combined Programing Language) has been developed as a joint project between the University of London Institute of Computer Science and the Cambridge University Mathematical Laboratory. In concept it is an extended language intended to cope with all possible classes of program, whether numerical, non-numerical, list-processing, heuristic or clerical.

CPL is not just an extension of any previous language, (although it contains many features of ALGOL © 0 ) but has a distinciive philosophy and logical coherence of its own (see the Advanced Programming Manual and Reference Manuel for details). In particular it is intended that, save for those exceptional ceses in which an extremely efficient program is required, programers will not have to escape into machine code.

The following Elementary Programming Manual restricts itself to the central part of the language. Peripheral matters such as input-output, etc., depend on local conditions and will be dealt with in locel users' manuals issued by the various establishments using CPL.

\section*{2. THE CPL ALPHABET AND BASIC SYMBOLS.}

The following is a list of permitted CPL characters, which may occupy single print positions in a printed CPL program:

ABCDEFGHIJKIMNOPQRSTUVWXYZ
abcdefghijkImgopqrstuvwxy
0123456789
ABCDEFGHISKIMNQPQRSTUVWXYZ

온 246182
\(+-x /=\langle \rangle\)
() [] \(] \wedge \sim\)
'; : . \(\because \rightarrow\). \(1_{-}\)
\(\simeq\) Е中 \(\neq \pm \nexists \leq \geq \uparrow\) 本
CPL programs are made up of these characters alone.
Certain combinations of these characters have a special similificance, and should be regarded as self-contained entities: e.g, certain underlined words, the assignment operator ':p' etc. These are called BASIC SYMBOLS and are listed in Appendix 1. Underlined words may be written in upper or lower case, or a mixture of the two. Spaces in basic symbols are ignored.

Thus then may be written Th eN. The basic symbol if has nothing to do with the letters i and \(f\), and has a completely separate meaning from the combination 'if' appearing without underlining in a program. Basic symiools are introduced as they arise in subsequent sections.

\section*{3. ITIEMS, TYYES AND NAMES.}

A C.FL program specifies processes to be carried out on IXEMS of information. These items may be numerical (variables and constants) or non-numerical (e.g. bit-strings and character strings), and if they are mumerical they may be real or complex and may be stored to more or less than the standard precision. Every item must, thereiore have both a NAME and a TYPE. (Constants are an exception: they have a type but not a name.)
The most common type of number is the real number. (Note the underlining: real is a basic symbol.) A real variable is held In floating-point: (in Atlas this means that it has a range of the order
\[
+10^{113} \text { to }-10^{113}
\]
with a precision of about 12 decimal digts). Other numerical types are:
double A floating point number with a precision about twice that of a real number. (On Atlas, about 24 decimal digits).
complex . An ordered pair of real variables.
double complex An ordered pair of double variables.
Index An integer used in subscripting operations.
A type integer can also be used; on Aclas, integer arithmetic is carried out in floating-point and the result rounded of \(f\) when a value is assigned to an integer variable.

Complex and double precision working are not further described as they will not initially be implemented.

Among the non-numerical types of item on which CPL operates are:
Boolean a truth value which is true or false
logical a string of binary digits, of standerd length. (On Atlas, 24 bits.)
long logical a string of binary digits, of twice the standard length.
string a character string.
All Items (except constents) appearing in a program are identipied by NAMES, which are of two sorts, SMALI and LARGE.

A SMALL name consisis of a single lower case letter, optionally followed by one or more primes, e.g. a; \(b, y, y^{\prime}, y^{\prime \prime}\).

A LARGE name consists of an upper case letter, optionally followed by a string of letters (upper and lower case) and/or digits and decimal points, optionally terminated by primes, e.g. A, Xyz, ALPHA, Beta, Sq.4'. It may not include spaces, as spaces are terminators.

Large names are entirely the programner's affair and he can invent them to suit his own taste: they may be short alphanumeric sequences, or they may be the actual names of the quantities which they represent, or they may be mnemonics. Some lerge names, however, are reserved for standard functions, e.g. LShift, Mask, and if used by the programer with another meaning the standard function will temporarily be inaccessible.

There is no restriction on the number of characters in a name.
Sometimes a name can stand for difierent items in different parts of a program. The important concept of the SCDPE or a name, that is the region over which a name retains its meaning, is discussed under 'Block Structure'.
4. EXPRESSIONS AND ARITHMETIO EXPRESSIONS.
4.1 References to items of information, which ray be either variable names or written constants, can be combined together with operators and standard library function names to form EXPRESSIONS. Each expression can be assigned a type, which depends on the types of the component varlables and constants. For the moment we will consider simple arithmetic expressions, i.e. expressions involving variables and constants of numerical types real, index, complex, etc.
4.2 Arithmetic expressions are made up by combining numerical varlables and constants with the arithmetic operators and RCUND brackets. Brackets may be used to any degree of complexity. The arithmetic operators are
\[
+-x / \lambda
\]

The use of the multiplication sign is optional. It is usually omitted, as multiplication is implied by juxtaposition, unless by including it the expression can be made easier to read. In particular it is desirable to include it after a large name; if it is not inciuded the name MUST be terminated by a space. Solidus indicates floating-point division (rounded quotient and no remainder); the remainder is obtained by a standard function. Up-arrow ( 1 ) indicates exponentiation.

Normally, sufficient brackets should be included in an expression to make its meaning unambiguous. However, if brackets are omitted the priority of dealing with arithmetic operators is as follows:
first: multiplication, division and exponentiation
second: addition and subtraction.
Multiplication, division and exponentiation are of equal precedence and associate to the right; that is to say, in the case of any ambiguity they behave as if brackets were inserted so that all the closing brackets are grouped at the right.

Addition and subtraction associate to the left; that is, brackets are inserted so that opening brackets are grouped to the left. Some examples will make these ruiles clear:
\begin{tabular}{lcl}
\(a+b+c\) & is equivalent to & \(((a+b)+c)\) \\
\(a / b c\) & \((a /(b c))\) \\
\(a / b+c\) & \(11:\) & \((a / b)+c)\) \\
\(a+b c+d e / f\) & \(i:\) & \((a+(b c))+(d(e / f)))\)
\end{tabular}

Prefixed + and - are treated as (+1) and (-1) respectively, so that \(-a / \mathrm{b}\) is equivelent to \((-1)(a / b)\), NOT \((-a) / \mathrm{b}\).
4.3 Arithmetic constants are usually written as aecimal constants. \% is used to indicate that a decimal exponent follows. Binary exponents are not aillowed.

Some examples are:
153, \(10.47,2.108 \% 8,27.0,0.34 *-8\)
4.4 An arithrnetic expression may include calls to standard library functions (or to the programmer's own defined functions)
in place of variables or constants. Some standard library functions are:
\begin{tabular}{ll}
\(\operatorname{Sqrt}[x]\) & the square root of \(x\) \\
\(\operatorname{Exp}[x]\) & the exponemtial function \\
\(\log [x]\) & \\
\(\operatorname{Sin}[x]\) & \\
\(\operatorname{Cos}[x]\) & \\
\(\operatorname{Tan}[x]\) & \\
\(\operatorname{Arctan}[x]\) & the modulus of \(x\) \\
\(\operatorname{Mod}[x]\) & integer part of \(x ;\) i.e. the integer \(y\) such thet \(0 \leq x-y<1\) \\
\(\operatorname{Rem}[x, y]\) & the remainder of \(x / y ; i, e, x-y \operatorname{Intpt}[x / y]\)
\end{tabular}

Note that each function call has the form of a function name followed, in SQUARE brackets, by a list of arguments separated by commes. The written arguments are themselves arithmetic expressions, and may include further function calls.
4.5 Subscripted variebles may also:occur in arithmetic expressions; these have the same form as function calls, with the function name replaced by an array name. Arrays will be discussed in section 14.
4.6 Other forms of arithmetic expression axe: conditional expressions (Section 11) and result expressions (Section 22). These can also be used in arithmetic expressions in any position where a variable might otherwise occur. If used in this way, they should be bracketed in such a manner as to avoid ambiguities.

\section*{5. DEFINITIQNS AND COMMARDS.}

A CPL program is made up of DEFINITIONS and COMMANDS. The commands specify the arithmetic and logical operations to be performed by the computer: they also control the execution of the program. The definitions provide the information that is necessary for the computer to 'understand' the comcands. For example, since the programmer can invent names for variables to suit himself, the program must include definitions associating these names with specific data items. These definitions mast also specify the types of variables (there is no implicit association of certain names with particular types). We shall return to the various forms of definition in section 7; for the remainder of this section we shall study the ASSIGNMENT COMMAND.

\subsection*{5.1 Assignment Commands.}

In the previous section we have seen how to construct expressions, whose evaluation will produce some numerical value. The assigrment operator ':=' (read 'becomes') can be used to change the value of some variable to the result of such en evaluation. Thus the command
\[
x:=x+1
\]
evaluates the current value of \(x\), adds 1 , and assigns this as the new value of \(x\).

Typical examples of assignment coumands are:
```

x := ax + by +c
PONER := VOLIS X AMPS

```
N.B. We do not use the \('=\) ' sign, as this is reserved for conditions (Boolean expressions) and definitions.

Assignments between variables of differing types are permitted, a transfer function being invoked to transform the value of the right hand side to the type of the left hand variable. This may result in a run-time error, if the right hand side has a value which is out of renge, or cannot be transformed in this way.

\subsection*{5.2 A simple assignment command hes the form}
<variable> := <expression>

\section*{I}
( <variable > should be read as 'some particular variable')
Usually comands are written on separate lines, and the end of the command is implied by the end of the line.

However, comands may be written on the same line, separated by semi-colons, thus:
\[
x:=y+x ; x^{\prime}:=y ; \quad x^{\prime \prime}:=0
\]
but this form is not recommended, since it is difficult to read.

If it is required to continue a command onto the next line, the symbol c may be used, either inmediately before, or immediately after, the newline.
5.3 Multiple assicnnents are allowed, for example
\[
x, x^{y}, x^{8}:=y+x, y, 0
\]

The items on the left hand side are names of variables, and those on the rightwhend side can be variables, constants or expressions. The items in a xoultiple assignment need not all be of the same type. For example, if \(a, b, c\) are real variables, and \(d\) is a Boolean variable, the following command is valld:
\[
a, b, c, a:=0,0, a+b, \text { true }
\]

Multiple assignments are effectively carried out in parallel, so that
\[
x, y:=y, x
\]
actually exchanges \(x\) and \(y\), i.e. it is NOT treated as
\[
x:=y ; y:=x
\]
which would assign to both \(x\) and \(y\) the previous value of \(y\).
A multiple assignment is considered as a single command, however many items are involved.
5.4 A COMPCUND COMMAND consists of a sequence of commands enclosed in SECTION BRACKETS S....................
§ \(\quad x:=y+x\)
\(x^{1}:=y\)
\(x^{\prime 1}:=0 \quad\) 宩
A compound command ia considered as a single cormand.

\subsection*{5.5 Section Brackets.}

A feature of pairs of section brackets, used in forming compound conmands and blocks, is that they may be tagged:
§2.1...................\$2.1
thus increasing the clarity of the written program.
Moreover, section bracket pairs may be nested Inside other pairs, and the insertion of the closing section bracket is periormed automatically for each nested § which lacks a \(\$\). e.g.
```

\$2000.0.0.0.0.0.0.0.0.0
\$2.1.0.0.0.0........
\$2.2
*........0...* \$

```

Closing section brackets \(\$ 2.1\) and \(\$ 2.2\) are inserted automatically before

Any sequence of letters, digits and dots, optionally terminated by primes, may be used for a section bracket tag.

A space must NOT appear between the section bracket and its tag.
It is recommended that all section brackets, whether tagged or not, should be followed by a space, after the teg, if any.

\section*{6. BLOCK STRUCTURE.}

A BLOCK in CPL is an extended form of corapound sommand. It is defined as a command sequence, preceded by definitions, THE WHOLE ENCLOSED IN SECTION BRACKETS.

Wherever we could have a compound command in CPL we can insert a block, and thus a CPL program will usually include blocks nested inside other blocks. The importance of this concept arises from the way in which blocks determine the SCOPES of variable names: the definitions at the head of a block are valid within that block and any block it encloses,


The variables defined at its head are said to be LCCAL to the block; variables which are not local are seid to be the inner block. The whole program is theoretically enclosed in a block containing definitions of the standard functions Log, Exp, etc. (Labels, however, are local to the smallest surrounding routine or result expression; this is discussed more fully later).

It is important to note that, since it may be the aubject of more than one definition, a particular name may not have the same meaning throughout a program.

A definition supersedes any previous definitions of the same name within the block in which it dceurs.

\section*{7. DEFINITIGNS.}

The definitions in a CPL program must associate with every name introduced by the programor a type, and possibly a value. The simplest form of definition is simply to define the type of an item, leaving the value to be assigned later. All definitions must start with the besic symbol let, thus:
let a be real
Simultaneous defiaitions are performed by the construction:
let \(a, b, c\) be real, integer, complex
Alternatively, if severel icems are all of the same type, we may write:
let \(a, b, c\) all be real
let \(x, y\) both be complex
As with essignment commands, several definitions may appear on the same line, separated by aemicolons:
let \(a, b, c\) all be real; let \(x, y\) both be complex

\subsection*{7.1 Initialisea Defintions.}

When a name is defined by the at the basi of a block this indicates that we intend to use a variable of the specified type and name in the suoseguext program, but it does not assign any value to the variable. It \(1 s\) often convenfent to assign inftial values at the same time as we deflne vaxiables, and thia can be done as part of the definitions, for example:
\[
\begin{aligned}
& \text { Let } s, \text { to } n, 1,0,1 \\
& \text { Let } P i=22 / 7
\end{aligned}
\]

NOIE particularly the use of \({ }^{\prime s}{ }^{8}\), NOT \({ }^{\circ}:={ }^{\prime}\) when setting initial values.
The type of the defined variable is deduced by the compller from the expression used to define it. It should be noted in this context that the compilex hes a porefexsed type" and if possible it will represent items such as decinal constants in the preferred type. For erample, when the preferxed type is set to real,
\[
\text { Iet } a, b, \text { z } 1,50
\]
defines two real varitules.
A variable can be initialised in terins of variables defined in surrounding blocks for exenple:
\[
\begin{aligned}
& \text { §1 let abereal } \\
& \text { \$2 let b }=2 e(a+1)
\end{aligned}
\]

When a variable is initielised in a blockhead, then the initial value is assigned to it eyery thme the block is entered.
8. DEFINITIONS BX 'and' ARD 'where'.

The full definition bystem in CPL gives the programer considerable control over defining his terms. They may be defined 'sequentialiy' or 'simultaneously', simply or recursively, qualified by other definitions or not to an indefinite degree of complexity.

The simplest forms of definition have already been described;
let \(a, b\) be real ; let \(c, d=1 ; 2\)
A sequence of definitions may be activated in parallel and treated as one definition if they are joined by and, as shown below:
A.

S1 let \(a=5\)
§2 let \(a=10 ;\) let \(b=a\)
12
B. \(\quad \$ 1\) let \(a=5\)
\(\$ 2\) let \(a=10\) and \(b=a\)
The scope of variables defined in definitions (non-recursive) is the body of the block in whose head they occur, and the right-hand sides of any subsequent definitions in the block head. In case A the initial value of " \(b\) " is 10 , as the scope of the newlydefined ' \(a\) ' incluaes the definition of ' \(b\) '

However, in case \(B\), the initial value of ' \(b\) ' is 5 , since the definition of ' \(b\) ' is not within the scope of the second definition of 'a'.

The where clause enables us to introduce definitions which apply only to a particular expression, command or definition. It is of particular use in qualifying initialised or function definitions (see Section 18). For example,
\[
p:=(a x x+b x+c / x) \text { where } x=2 a+b
\]

Iet \(p=f[3 \omega+b] / f[3 b+a]\) where \(f[x]=a x 0 x+b x+c / x\)
Iet \(p=F[2 a+b]\) where \(F[x]=G[x, b]\)

\section*{immediately}

A where clause qualifies the lergest peetible preceding expression, command or definition. This is an important rule when it comes to qualifying a function definition. Thus,
\[
\text { let } p[x]=(1+y y) / y \text { where } y=g[x]
\]
is probebly incorrect, since \(x\) in the where clause la not taken as the formal parameter \(x\) of \(f\), but ds a global variable of the same name. The correct version would be:

\section*{let \(f[x]=((1+y y) / y\) where \(y=g[x])\)}

In which the where clause is in the boay of \(f\), and qualifies an expression. This interpretation is forced by the use of the perentheses.

\section*{9. BOOLFAN VARIABLES AND EXLTREGGIONפ.}
9.1 Variables and expressions of type Boolean van take one of just two values when evaluated; the constants true and false.

It is convenient to regerd conditions as Boolean expressions. A condition holds if and only if it has the value true when evaluated as a Boolean expression. It fails if it has the value false.

The simplest form of condition is
<expression><relation>expression>
where <relation> denotes one of the following:
\(=\neq \neq>\geq \lll \ggg\)
\({ }^{\prime}={ }^{\prime},{ }^{\prime} \neq\), are equality, inequality aigns,
and are interpreted in the standard manner, when applied to the sinple, Fyios They are applicable to all types of expression.
```

    \({ }^{\prime}>^{\prime},{ }^{\prime} \geq\) ', ' \(<\) ', ' \(\leq\) ', have the obvious meanings,
    and are applicable to expressions of types real,
double ma zndes (not nomplez).

```
    '《<', '>>', are applicable only to
real, double expressions. \(a \ll b\) is interpreted
\(\overline{a s} \bar{b}=\bar{b}+a\), in floating point arithmetic. (On Atlas this fmplies that
\(a\) is of order \(10 / 12\) smaller than \(b\), if \(a, b\) are real.)

In keeping with accepted mathematical notation, conditions may be extended; thus
is an acceptable condition, which holds if
\(a<b \quad b=c \quad c<d\)
ali hold, and fails otherwise.
(Note that \((a<b)=(c<d)\) is also acceptable, but holds under completely different circumstances, when \(a \leq b ; c<d\) have the same truth values).

A condition can be assigned to a Boolean variable, e. E . let \(x, y\) be real; let b be Boolean
\(b:=x y\)
9.2 The general form of Boolean expression consists of Boolean variables and conditions combined with the operators:
\(\sim\) (not)
\(\wedge\) (and)
\(\checkmark\) (or)
\(\equiv\) (if and only if; equivalent)
1 (exclusive or; not equivalent)
The operators are given in descending order of precedence: the infixed operators associate to the left.

The main use of Boolean variables is to record the result of a teat for later or repeated use. In a conditional expression or conditional command we can write the name of a Boolean variable in place of an expression: thus if b is a Boolean variable,
if b then do C
is read as
'If b has the value true then do C '.
10. LABELS, JUMPS AND CONDITIONAL COMMANDS.
10.1 Any command can be labelled, the label being written before the command and separated from it by a colon. Any name (large or small) can be used as a label, provided that it is not at the same time being used for any other purpose. (Note that NUMERICAL LABEUS ARE NOT ALIOWED, and" section bracket tags are NOM command labels).

Examples of labelled commands are:
L1: Xyz \(:=P+Q\)
SOLVE: a \(:=2\)
Loop: a: \(a=b+5\)
The basic form of transfer comand (or jump) is go to clabel>, e.g.
go to SOLVE
Alternative forms for go to are goto and go to.

The scope of a label is defined as the smallest surrounding routine or result expression (section 22), so. transfers may be written to labels within blocks nested deeper than the position of the transfer command; thus

\section*{Let Routine \(R\) be}

go to LB
§2 let a be real

IB: --mamenon-
The execution of a transfer which leads into new blocks is understood to cause the activation of all the definitions in the block heads through which it leads.
10.2 It is often required that a jump be conditionel on some relation holding, or ceasing to hold; this facility of conditional commands, together with conditionel expressions; removes to some extent the need for explicit labels in a program (and should be exploited).

\subsection*{10.3 The first form of conditional conmend is:}
if b then do C
b represents a Boolean condition which may be true or false: if it has the value true the comand \(C\) is obeyed, otherwise it is omitted and the next command obeyed. An alternative form whose meaning is obvious is:

\section*{unless \(b\) then do ©}

In both cases then or do are accepted as synonyms for then do.
Here are some examples of conditionel commands:
if \(a<0\) then do \(3:=0\)
\[
\text { If }(a+b) \geq(c+\bar{a}) \text { then do } X:=X
\]
unless \(a>y \because-7\) goto END
Note that for a conditional jump we normally wite
"if \(b\) goto L ", not "if b then do goto I ", (although the letter form would be corxectly interpxeted by the compilex)
as 'then do' may be omitted when followed imnediately by 'goto'.
10.4 Another form of conditional command enebles us to choose one of two alternetives, depending on eome condition. The basic form is:
test \(b\) then do dy ox do C 2
If \(b\) has the value true command \(C 1\) la executed, otherwise command \(C 2\) is executed.

For example,
\[
\text { test }(a+b)+(c+d) \text { then do } x:=0 \text { ox do } x:=0
\]

Again, then or do are accepted in place of then do; or is accepted in place of or do.
10.5 We can construct mutivievel conditional commands, for example
test bl then do C1 or test b2 then do C2 or C3
If b1 is true the command Cl is obeyed, otherwise b2 is tested and commend C2 or 03 is obeyed eccording as be is true or false. This may also be written:

\section*{test bl then Cl}
or test b2 then \(\mathrm{C} P\)
or C3
as the compiler will infer in such cases that the end of the line does NOI imply the end of the conmand.
10.6 Sometimes it may be desired to skip a whole section of program If a certain condition holds: this is a situation in which a compound command is useful. A compound command is considered a single command, so we car have constructions like:

1 11 p>65 then do \(\$ \mathrm{a}:=0\)
\(b:=c+d / e\)
\(\mathrm{f}:=\mathrm{gh} \quad \$\)

\section*{11} CONDITIONAI EXPRESSIONS.

We have, in conditional commends, a powerful mechanism for performing conditional operations. Conditional expressions offer en alternative wey.

The simplest form of a conditional expression is:-
\[
\mathrm{b} \rightarrow \mathrm{El}, \mathrm{E} 2
\]

Here \(b\) is a Boolean condition and E1 and E2 are expressions (which may, of course, be variables or constants). If condition \(b\) has the value true, the value of the expression is E1, otherwise it is E2.

A conditonal expression could be the entire right-hand side of a command, for example:w
\(a:=a<0 \rightarrow 0, a\)
This is equivalent to
\[
\text { it } a<0 \text { then do } a:=0
\]

However, we can include the conditional expression in a more complicated right-hand side; in this case it must be enclosed in brackets, for example,
\[
a:=a+(c \neq 0 \rightarrow b / c, a)
\]

Similarly, we can use it as the axgument of a function (section 18), thus:
\[
a:=b+F N[a<b+c \rightarrow X[1], X[2]]
\]

More elaborate possibilities are introduced by the fact that El and E2 are themselves allowed to be conditional. This permits the writing of extremely complex conditional expressions; for example,
\[
\mathrm{b} 1 \Rightarrow \mathrm{~b} 2 \rightarrow \mathrm{E} 1, \mathrm{E} 2, \mathrm{~b} 3 \rightarrow \mathrm{E} 3, \mathrm{E} 4
\]

If such as expression seems unclear, its constituent sub-expressions should be bracketed. The completely bracketed expression whose effect is identicell, to the example above is written
\[
(\mathrm{b} 1 \rightarrow(\mathrm{~b} 2 \rightarrow \mathrm{E} 1, \mathrm{E} 2),(\mathrm{b} 3 \rightarrow \mathrm{E}, \mathrm{E}, \mathrm{H}))
\]

Conditional expressions can be applied to expressions of any type permitted in CPL. For exanple, with label expressions
\[
\text { go to }(a<0 \rightarrow L 1, a=0 \rightarrow L 2, L 3)
\]

A conditional expression can also appear on the reFT of an assignment command, e.g.
\[
(x>0 \rightarrow a ; b): p+q
\]

Here, if \(x>0\) a is set equal to \(p+q\), otherwise \(b\) is set equal
to \(p+q\).

The form of a transfer comand is
go to < label expression \(>\)
where a label empression has as its value a command label. In the simplest cese it is in fact just such a label, but it can be a label variable, Variables of type label hold es their valuos command labels; asajgments may be made to them in the usual way. As an example of their use, constder the program

\section*{S let b be goolean and \(L\) be label}

```

L2:
L:=(b)I!, L2)
O to I

```

In this instance, 1 is used as a link which may be set to hold different command labels under different conditions and may later be used in transfer commends.

More conplex Ilning mechenisms can be set up by defining label arxays, and using variable subscripts to transfer to different labela, depending on circumstances.
13.1 Various facilities are provided in CPL to cope with cycles and repetitions. If \(C\) is a commend or compmand command, and \(b\) is a Boolean condition, then the instruction
\(C\) repeat while \(b\)
causes \(C\) to be obeyed once, and to be repeated as long as \(b\) is true. Alternatively we may write
\[
\text { While } b \text { do } C
\]

In this case, if \(b\) is false initially, \(C\) is omitted, and control is transferred to the next command in sequence.

Variants on these with obvious meanings are:
\(C\) repeat until \(b\)
until \(b\) do \(C\)
If several commands are to be repeated, they MUST be enclosed in section brackets.
13.2 Modified repetition of a command, simple or compound, is done by using the for command. One form of this is
\[
\text { for <variable> }=\text { Step E1, E2; E3 do C }
\]

Here E1, E2, E3 are expressions or constants and C is a command. -rexamempley

\section*{}
\(C\) is executed \(n+1\) times, where \(n\) is the value of (E3-E1)/E2, rounded to the nearest integer; the controlled variable takes the values \(\mathrm{E} 1, \mathrm{E} 1+\mathrm{E} 2, \mathrm{E} 1+2 \mathrm{E} 2, \mathrm{etc}\). , in turn. Note thet the expressions E1, E2, E3, are evaluated once and for all before the cycle is started; it is not possible for the cycle to change the increment or the end condition.

Note also that it is not necessary to write repeat after a for comand. A for command has a similar structure to a BLOCK (see section 6). The controlled variable is local to the repeated command, and its IYPE is deduced by the compiler from the types of E1, \(\mathrm{E} 2, \mathrm{E} 3\).

This means that when the repetiticn has finished the controlled variable ceases to exist and it is not possible to use the final value directly. If the programmer wishes an external variable to be used, the for symbol is followed by ext, thus:
for ext \(x:=\operatorname{step} 1,2,11\) do
13.3 A frequent use of the step form is in spocifyine unit steps, thus:
\[
\text { for } v=\text { step } E 1,1, E 2 \text { do } C
\]

This may be replaced by the form E1 to E2, thus:
\[
\text { for } \mathrm{v}=1 \text { to } 20 \text { do } \mathrm{c}
\]

Similerly:
\[
\text { for } v=1,2, \ldots, 20 \text { do } c
\]
where the meaning is self-explanatory. The commas are mandatory, and at least two dots must be used.
13.4 Another form for specifying repetition is the explicit list of values, for example:
\[
\text { for } x=0,1.7,2.51 \text { do } C
\]

As many values as desired can be included in the list: the command C is obeyed with the controlled variable taking each value in turn.
13.5 With all forms of the for command, the strict definition is that the controlled variable is set before each repetition to the next value in the control sequence, which cannot be aitered from within the loop.
13.6 Any of the forms of repeated command in this section may be terminated either by a transfer to a label outside the command, or by obeying the basic command break, which effectively transfers control to the command following the smallest repeated command containing the break order.
14. ARRAYS AND INDICES.

In CPL we have arrays of any number of dimensions, that is to say, subscripted variables with any number of subscripts, though 1-and 2dimensional arrays are probably the most likely. An array is given a name like anyother variable, and mast be defined at the head of a block along with the other variables used in the block
The definition must specify the dimensionality of the array, and the type of its elements, for example:
\[
\text { let, } \mathrm{A}, \mathrm{XYZ} \text { be real } 1 \text { array, index } 3 \text { arro, }
\]

The symbols yector and matrix are synonymous with 1 array and 2 array respectively. (Mote that 1 array is NOT hyphenated). However, it does NOT follow that variables defined in this way obey the rules of matrix algebra. With a few exceptions (detailed later) all array operations must be carried out on the individual elements as in the example at the end of this section.

It is also necessary to set the range of subscripts. The way in which this is done is described in the next section.

An element of an array is referred to by writing the name, followed hy the subscripts in SQUARE brackets, separated by commas, thus:
\[
A[10], \operatorname{XYZ}[1, j, k]
\]

The subscripts can be expressions if required, for example:
\[
X Y Z[i(i+1), j(j+1), k(k+1)]
\]

It is sufficient to use real or integer variables in these expressions, but index variables may always be used.
The use of index variables in subscripts sometimes speeds up a program.
As an example in the use of arrays, suppose we have three twodimensional square arrays \(A, B, C\), whose subscripts go from 1 to \(n\), then the following program sets \(C\) equal to the matrix product \(A B\) :
\[
\begin{aligned}
& \text { for } 1=1 \text { to } n \text { do } \\
& \text { §1.1 for } j=1 \text { to } n \text { do } \\
& \S 1.2 \quad \text { Iet } a=0 \\
& \quad \begin{array}{l}
\text { for } k=1 \text { to } n \text { do } \\
\S 1.3 \quad a:=a+A[1, k] B[k, j] \text { | } 1.3 \\
C[i, j]:=a
\end{array}
\end{aligned}
\]

Note that the section brackets tagged 1.3 are included for purposes of clarity only; the variable a is local to the block with tag 1.2 .
15. ARRAY INITTJALISATION.

An array must be initialised before its elements can be used in any way. This can be done by an initialised definition of the erray, e.g.
\[
\text { Let } A=B
\]

With \(B\) already initialised: or by defining the array by type, as in section 14 above, and then assigning to it:

Iet A be real 1 array
\[
A:=B
\]

Before inftialisation, an array does not possess any elements.
The function Newarray can be used to obtain an array of the required type, dimensionality and subscript range, as shown in the following examples:
\[
\begin{aligned}
& \text { let } A=\operatorname{Newarray~}[\text { real, }(1,10)] \\
& \text { let } B=\text { Newarray }[\text { Integer, }(-4,4),(-1,5)] \\
& \text { let } C=\operatorname{Newarray}[\text { real, }(1, n) ;(1, n),(1, n)]
\end{aligned}
\]

A is a one-dimensional array of real elenents, with subscripts running from 1 to 10 .
\(B\) is a 9 by 7 rectanguiar array of integer elements: the first subscript runs from -4 to +4 and the second from -1 to +5 .

C is a dynamic array, that is to say, its dimensions depend on some previously computed quantity, and may be different on the several occasions on which the relevant block is entered. As in any other initialised definition, the array bounds may be expressions involving variables global to the block.

The elements of the array produced by a cail to Newarray are not initialised in any way.

If it is required to specify the values of the elements when the array is inftialised, the function Formarray can be used: e.g.
\[
\text { let } M=\text { Formarray }[\text { real, }(1,2),(1,2)][8,10,12,-16]
\]

This definition both defines M as a 2 by 2 array and also initialises the values from the sacond argument list; i.e.
\[
\begin{array}{ll}
M[1,1]=8 & M[1,2]=10 \\
M[2,1]=12 & M[2,2]=-16
\end{array}
\]
16. ARRAY EXPRESSIONS.

Arrays are regarded as being variables in their own right; the dimensionality and the type of their elements is fixed on definition, but the bounds may be changed by commands. They may be defined by type only, as in
let Work, Place be real 3 array, real 3 array
or they may be initialised thus
let Work \(=\) Newarray [real \(,(1,10),(1,10),(1,10)]\)
The right hand side of the initialised definition is an expression of the relevant type; in this case, an array expression. Such an expression consists of et other an array name or a function call which produces an array or space for an array.

Array assignment commands may be written thus
```

Place := Work
Work := Newerray [real, (1,5),(1,5),(1,5)]

```

By the use of such commands the bounds of an array may be changed during operation of the program at any stage. When a command such as the first example above is obeyed, the value of the right hand side is taken, in-thit-case-an-olement-bywelement-copy-or-the-oxuey 'Work' place. in this case an maicañon of she storage area reserved for the
array 'work'. Note shat after the assignment, this storage area is shared, weturean,' phone and works',
NOTE the distinction between an array expression whose value is an array, and a reference to an array element whose value is a data item, for example, a real number.


\section*{17. FUNCTIONS AND RDUMINES.}

The concepts of FUNCTION and ROUTTNF are of central importance in CPL. Both are selfecontained subsections of the program, written in terms of dumny variables (or FORMAL PARAMETERS); they may therefore be ceiled at different places in the same program, usually with different sets of values for their arguments. A routine is essentially a COMMAND (which can of course be compound, and include assienment commands), which is obeyed.

A function on the other hand is an EXPRESSION, the evaluation of which produces a RESULT.

Both functions and routines are treated as entities in their own right and have names. The type of a function includes the type of its result (\%g. real function ).

A FUNCTION or ROUTINE CALI is written in the form of the function or routine name, followed in SQUARE BRACKETS by a list of expressions separated by commas (ACTUAL PARAMETERS).
When a function call is encountered as an expression to be evaluated, the formal parameters take as their values the values of the corresponding actual parameters. The result of evaluating the expression defining the function, with the formal parameters taking these values, is the value of the function call.

Similarly, when a routine call is encountered as a command to be obeyed, the command (usually compound) defining the routine is executed with the formal parameters taking the values of the corresponding actual parameters. (Routines may cell their parameters by refercnce, in which case an 'address' is handed over: see section 20.2) It should be emphasised that each function call is an expression and is defined by on expression, whereas a routine call is a command and is defined by a cormand.

It is possible to define PARAMETERLESS functions and routines, which have no formal parameters. Calls to such functions and routines are written using the function or routine name, followed by a pair of square brackets, thus:
```

a:= Function1[]
Routine1[]

```

The square brackets are mandatory for function calls, but may be omitted in routine calls.
18. FUNCTIONS.

A function is a complicated rule for specifying a value: let us take a specific example. Suppose we wish to use the symbol \(F\) to stand for the function defined by
\[
F(x)=3 x^{2}+4 x+1
\]

At the head of some appropriate block, when we wish to define it along with the other definitions, we write a FUNCIION DEFINITION
\[
\text { let } F[x]=3 x 12+4 x+1
\]
\(x\) is a dummy variable, called a FORMAL PARAMEIER: when we wish to evaluate the function, within the block in which it is defined, we write a FUNCIION CALI with the desired argument as an ACIUAI PARAMETER.

If the arguments of a function are of any other type than the preferred type of the compiler then this must be indicated in the definitions: e.g.
```

let $P[$ matrix $A l p h a$, index $n]=A l p h a[n, n]$
let $Q[$ index $i, j]=i(i+1)+j$

```

In the second example, \(1, j\) are both taken to be index.
The type of the result is deduced from the definition by the compiler. If at the function call the actual parameters of a function do not correspond in type to the formal parameters, transfer functions are inserted automatically.

For example, if we have
```

§ let a, b be real;
let $k$ be index
1et $Q[$ index $i, j]=i(i+1)+j$
*...............
$a:=Q[b, k]$
-.......... $\$$

```
then b will be converted to type index before the function \(Q\) is evaluated.
The definition of a function is in terms of an expression. By using a result expression (section 22) as the expression, the function may be effectively defined in terms of a command sequence.

Note that function calls, being expressions, can occur anywhere that a simple expression might. Thus:
\(\mathrm{a}:=\) Function [ [ Functiona[ \(\mathrm{a}, \mathrm{b}\) ], c ]
is a legal assignment conmand, provided that the ramber of arguments and types of the results of Function and Function2 are correct.
'See pages B2, B3 at back of Manual'

-23-
\(-24-\)
20.1 A function call is a notational device for abbreviating an expression. In the same way we need a notational device for abbreviating a compound command. For this we use a ROUIINE. Suppose we wish at various points in a program to solve the equations:
\[
\begin{aligned}
& a x+b y=c \\
& a^{\prime} x+b^{\prime} y=c^{\prime}
\end{aligned}
\]
with a jump to a specified label if there is no solution. We give the routine a name, say LINER, and at the head of some block we write the ROUTINE DEFINITION as follows:
\[
\text { § let DET }=a b^{\prime}-a^{\prime} b
\]
\[
\begin{aligned}
& \text { if } \operatorname{Mod}[D E T]<1^{1+-6} \text { go to } L \\
& \left.c^{\prime}-c^{\prime} b\right) / D E T
\end{aligned}
\]
\[
\bar{x}:=\left(c b^{\prime}-c^{\prime} b\right) / D E T
\]
\[
y:=\left(a c^{\prime}-a^{\prime} c\right) / D E T
\]

This will solve the equations for various values of \(a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\) and assign the solution to \(x, y\).

The first two lines are the ROUTINE HEADING; the remainder is the ROUTINE BCDY, and consists of a block with, in this case, one local variable DET. The routine heading gives the name of the routine and the list of FORMAL PARAMEIERS; when we wish to use the routine we call it by writing the name followed by the list of ACTUAL PARAMETERS which are to be substituted for the formal parameters. Thus the command
\[
\text { LINEQ }[1,2,3,4,5,6, V, W, \text { ERROR }]
\]
will solve the equations
\[
\begin{array}{r}
v+2 w=3 \\
4 v+5 w=6
\end{array}
\]
assign the solution to \(\mathrm{V}, \mathrm{W}\) and send control to the label ERROR if there is no solution. The formal parameters are dummies, like the formal parameters in a function definition.
20.2 In this routine, \(x\) and \(y\) differ from the other formal parameters in that assignments are made to them. A variable to which a value is assigned corresponds to an address in the computer where that value is stored; \(x\) and \(y\) are therefore distinguished in the routine heading . This means that they are called by REFERENCE. It has the effect that for the duration of the routine they will be regarded as 'address-like'.

The other parameters are called by VALUE; that is, their actual values will be handed over. (Parameters are assumed to be called by value unless it is explicitly stated otherwise.)

If an assignment is made in the routine body to a parameter called by value, the parameter is changed for the remainder of the routine application, but no assignment is made to the corresponding actual parameter.

Free variables of a routine are called by reference, in exactly the same way as the free variables of a ' \(=\) ' function.
\[
\begin{aligned}
& \text { routine LINEQ [real } a, b, c, a^{\prime}, b^{\prime}, c^{r!/ j} / x, y,\langle\text { label L] be } \\
& \text { yel-xisy-y }
\end{aligned}
\]
20.3 The formel parameters of a routine may themselves be routines or functions．

The end of a routine may be indicated by the end of the command which is its body，and after obeying the command，control returns to the command following the routine call．It may be convenient for the dynamic end of the routine not to be at this point：for this purpose there is a built－in command return，which causes a return to the command following the routine call，e．g．

If \(b\) then return

Note that return is a commend，so that we write ．．．．then return，NOI ．．．．then go to return．

21． 1 EXAMPLES OF RUUTINES．
a）routine Scalarproduct（peel \(x\) ，（vector \(A, B\) ，index \(n\) ，label \(L\) ］be \(\frac{5}{8} x=0\)
\[
\begin{aligned}
& \begin{array}{l}
x:=0 \\
\text { for } i=1 \text { to } n \text { do } x^{y}:=x^{n i}+A[1] B[i]
\end{array} \\
& \text { II } x \ll 1 \text { 県 to } \bar{L}
\end{aligned}
\]

The routine call
Scalarproduct［ \(\left.\mathrm{X}, \mathrm{CAT}, \mathrm{DOG},{ }_{\mathrm{g}} 10, \mathrm{ORTH}\right]\)
will set \(X\) equal to the scelar product of two vectors cat and DOG，each of which has ten elements subscripted from 1 to 10. If the vectors are orthogonal control goes to the comand labelled חITIH．

\section*{ng val}
b）reutine Geussquad［ real \(a, b, h^{I}\), frunction \(f\) ］be F権 \(B=(b-a)\)
\[
\begin{array}{r}
I:=s(.27778 \mathrm{f}[a+.11270 \mathrm{~s}]+ \\
.44444 \mathrm{f}[\mathrm{a}+.50000 \mathrm{~s}]+ \\
.27778 \mathrm{f}[\mathrm{~s}+.88730 \mathrm{~s}])
\end{array}
\]

This routine sets \(I=\int_{a}^{b} f(x)\) dx，using a Gaussian 3－point formula．

Throughout CPL there is a sharp distinction between commands and expressions. Value of is a construction which allows us to obey several commands, which perform some calculation, and treat the result as an expression, to be incorporated in a larger expression. This is particularly useful in function definitions; the form of a function definition requires the body to be an expression and it may well happen that it requires several commands to evaluate the function. For example, suppose we wish to define the function:
\[
f(x)=\sum_{n=0}^{10} a_{n} x^{n}
\]

Let us suppose that the coefficients are available as an array A with subscripts running from 0 to 10. Then given \(x\), the series is eveluated by the following block:
\(\oint\) let Sum \(=0\)
\[
\underline{\text { for }} i=\frac{\operatorname{step}}{} 10,-1,0 \text { do }
\]

We have here a block which sets the locel variable sum to the required value. To convert this to an expression we precede it by value of and insert at the end of the command result is Sum. The function definition thus becomes:
\[
\begin{aligned}
& f[x]=\text { value of } \S \text { let Sum }=0 \\
& \text { for } 1=\text { Step } 10,-1, \text { oま do } \\
& \text { Sum }:=x \text { Sum }+A[1] \\
& \text { result is Sum } \$
\end{aligned}
\]

Although we have used a function definition as an example value of can be used anywhere to convert a compound commend or block into an expression, which can then be used wherever any other expression could be used.

A result expression may include more than one instance of the command form result is, and the first such command met during execution causes termination of the result expression.
```

'See pages B2, B3 at back of Manual'

```
24. RECURSION.

A recursive function or routine is one which explicitiy cells itself. Thus
\[
f[x]=(x=0 \rightarrow 1, x f[x-1])
\]

Is a recursive function, if ' \(f\) ' on the right hand side is Interpreted as the function under definition; it computes \(x\) : , the factorial function. Special facilities must be provided for the definition of recursive functions, since apparently the rule which determines the scope of ' \(f\) ' would be violated if the necessary interpretation were made. (In non-recursive function definitions, any functions occurring on the right hand side of the deifinition must have been previously defined).

If we wish to define a recursive function or routine, this must be Indicated by preceding the definition with the symbol rec. As an example of this technique, take the Euclidean algorithm for finding the HCF of two integers:
let rec HCF [integer \(n, m\) ] \(=\)
\[
\begin{aligned}
& (m>n \rightarrow \operatorname{HCF}[m, n], \\
& m=0 \rightarrow n, \\
& H C F[m, \operatorname{Rem}[n, m]])
\end{aligned}
\]

Recursion is only meaningful in the case of functions and routines, For example:
let \(\operatorname{rec} f[x] \equiv(x<q \rightarrow x, f[x-a])\)
let rec routine \(R[x, y]\)
\[
\frac{R[x+1, a-x]}{}
\]

Here, we have defined a recursive function and a recursive routine. As another example:


NOTE the use of section brackets in the last example to force treatment of the two definitions as a single one in order to specify mutually recursive routines.

If the symbol rec is omitted from the definition of a function, the occurrences of that function name in its own definition are taken as referring to a global variable of that name, and not to the function being defined.
25.1 A variable of type logical is a string of bits, of some standard length ( 24 in Atlas); each bit is processed independently. A variable of type long logical is a string with twice the standard number of bits, also processed independentiy of each other.

In the remainder of this section we talk about logical variables; everything that is said applies to long logical variables, the only difference being that in general, operations on a logical are faster than the corresponding operations on a long logical.
25.2 Operations on logical variables.

Logical variables provide the means whereby most non-numerical work is carried out in CPL, and it is therefore necessary to have more complicated operations than those so far described. For this purposes there is provided a basic set of built-in functions, in terms of which the more complex operations can be progranmed. It is necessary first to define a convention for the mumering of the digits in a logical variable, which is done by numbering the digits upwards from the right hand end starting from 0.

Uniess otherwise stated, the functions described below operate on logical or long logical variables, and produce a result of the same type as the logical operand, We use logical without underlining when we do not wish to distinguish between logical and long logical variables.

\subsection*{25.3 Functions for logical operations.}
(a) Shifts.
\(\operatorname{LShift}[p, j]\)
RShift \([p, j]\)
Rotate \([p, j]\)
\(p\) is a logical variable, and \(f\) is an index variable which defines the number of places shifted. LShift añ RShift are logical left and right shifts; Rotete is a circular left shift. In all cases if J is negative the direction of the shift is reversed, so that

LShift \([p, j]\)
is equivalent to
Rshift [ \(p,-j\) ]
With LShift and RShift the bits moved in to fill the gaps are zeros.
(b) Masking operations.

Ones [j, k]
Here, \(j\) and \(k\) are index variables. Cnes [ \(j, k\) ] produces a mask In which bits \(j\) to \(k\) inclusive are ones and all other bits are zeros; the order in which J, \(k\) are written is Immateriel, i.e. Ones \([j, k]=\) Ones \([k, j]\) 。
(c) Dther bit-manipulations.

Field [p,j,k]
Bit [p,j]
\(p\) is a logical variable, \(j\) and \(k\) are index variables; as usual, the order oIk and \(j\) does not matter. The function Field [ \(p, j, k\) ] masks off bits \(j\) to \(k\) inclusive, and then right justifies the group, so that if \(j>k\), bit \(k\) of the argument becomes bit 0 of the result, and bit \(j\) becomes bit ( \(j-k\) ). For example, the effect of Field \([p, 6,10\) ] is shown in the diagram.
\(\mathbf{p}\)

Result


Bit \([p, j]\) is equivalent to Field \([p, j, j]\); it has the effect of specifying and right justifying a single bit. The functions bit and Field may be used on the left,-hand side of assignment coxmands; their results, therefore, are effectively the 'addresses' of the bit or area specified.

\subsection*{25.4 Logical Constants.}

Logical constarts can be written in binary or octal, being preceded by the symbols 2 or 8 respectively. (As \(7=111\) in binary, an octal string is equivalent to a binary string grouped in threes. Thus, \(2010111011=8273\).) They are normally assumed to be positioned at the least signifleant end of a logical variable: thus 877 is understood to mean 800000077 . However, positioning at the more significant end can be indicated by a bar: in this case zeros at the less significant end can be omitted, and \(8 \mid 273\) is understood to mean 827300000 (assuming, in this case, that 24 is the standard length).

Logical variables can be combined to form logical expressions using the same operators as for Boolean expressions, viz, \(n, \lambda_{1} V, \equiv, \neq 1\).
(The basic logicel operations on bita are:
\begin{tabular}{lll}
\(1 \wedge 1=1\) & \(N 1=1\) & \(\sim 1=0\) \\
\(1 \wedge 0=0\) & \(N O=1\) & \(\sim 0=1\) \\
\(0 M O\) & \(O V 0=0\) & \\
\(1=1=1\) & \(1 \neq 1=0\) & \\
\(1=0=0\) & \(1 \neq 0=1\) & \\
\(0=0=1\) & \(O \neq 0=0\) &
\end{tabular}

The specified operation is carried out on all bits independently. Thus if \(a, b\), \(c\), are logical variables,
\[
\mathrm{a}:=c \wedge \underline{8} \mid 77
\]
maskes off the top six bits of \(c\) and sets a equal to this, while
\[
c:=(c \wedge b) \vee(b \wedge a)
\]
replaces the fleld in \(c\) specifled by the ones in \(b\), by the corresponding field of \(a_{0}\) )
26. STRING EXPRESSIONS.

A string variable is a string of characters with possible local ifmits on maximum length. The characters mast be those of the CPL alphabet.

A string constant consists of the characters of the string enclosed in STRING QUCTES, '........'; for example,
\[
\text { 'this is a string' } \quad 123 / \mathrm{AB} / 6^{\prime}
\]
with the exceptions that the characters
have a special significance; also occurences of || (double vertical bar) within string constants initiate comments (section 27), which are 1emored.
A special mechanism is required for specifying as part of a string a character, other than a space, which does not print, or cannot be represented as a CPL character. For these the ASTERISK is given a special significance. Wherever an asterisk occurs In a string constant it is interpreted together with the following character according to some local convention concerning such characters, the precise nature of which depends on the machine and output devices used.

For Atlas Flexowriters, these conventions are that
\begin{tabular}{|c|c|c|}
\hline &  & stands for stands for stands for \\
\hline \({ }^{4} \mathrm{~N}\) and & & stand for newline \\
\hline *S and & \({ }^{\text {s }}\) & stand for space \\
\hline *T and & \% & stand for tab \\
\hline *B and & " & stand for backspace \\
\hline \(\because \mathrm{E}\) and & e & stand for erase \\
\hline * 2 and & \({ }^{8}\) & stand for stopcode \\
\hline & * & stand for upper cese \\
\hline L & & stand for lower cas \\
\hline
\end{tabular}

For example, the string constant
'123*n456**'
is a representation of
123
456*
One infixed operator may be used in forming string expressions, the concatenating operator \(\Leftrightarrow\). Other operations on strings are carried out by a set of basic functions, which are described in section 26.2 below.

Relational expressions may be written using strings and the operators
\[
\leq<=\neq>\geq
\]

These have the same form as arithmetic relational expressions and they form a subset of Boolean expressions.

A longer string is 'greater' in relational expressions than a shorter string identical to its starting characters; this
'ATLAS' > 'AT'

Is true. The relations between CFL characters which determine the precise lexicographic ordering on strings is subject to local convention, and may be altered to suit individual programs.
26.2 String manipulation functions.

In the following descriptions, \(s\) is a string constant and 1 is an Index parameter. Unless otherwise stated, the result is of type string.

Length [s]
The result is of type index and is the number of characters in s.
First [s]
Last [a]
The result is the first or last character of is, respectively.
Character [ \(i, s\) ]
The result is the 1-th character of \(s\).
Initials [ \(1, s\) ]
Finals [ \(1, s\) ]
The result is the first or lest 1 characters of \(s\), respectively.
27. COMMENIS.

It is sometimes required to include in a program explanatory notes which are intended for the human reader only, and which must be ignored by the computer when reading the program. In CPL such comments are introduced by two vertical bars and continue to the end of that line; e.g.
| \(x\) is the mean value
if \(p\) is zero this is dealt with in \(\$ 1.2\)
28. COMPLETE PROGRAM LAYOUT.

A complete CPL program consists, besically, of a sequence of commands. It will usually begin with the programer's definitions; the program is to be thought of as embedded in a global system block which contains all built-in definitions.

The basic command Finish may be used anywhere in the program and terminates the execution of that program. It would normaily occur as the finel command in a program, and if it is not present the compiler will insert it.

More information on program layout and preparation is given In the local operating manuals.

\section*{16. ARRAY EXYRESSIONS.}

Arrays are regarded as being variables in their own right; the dimensionality and the type of their elements is fixed on definition, but the bounds may be changed by commands. They may be defined by type only, as in
let Work, Place be real 3 array, real 3 array
or they may be initialised thus
let Work \(=\) Newarray [real \(,(1,10),(1,10),(1,10)]\)
The right hand side of the initialised definition is an expression of the relevant type; in this case, an array expression. Such an expression consists of either an array name or a function call which produces an array or space for an array.

Array assignment commands may be written thus
```

Place := Work
Work :=Newarray [real, (1,5),(1,5),(1,5)]

```

By the use of such commands the bounds of an array may be changed during operation of the program at any stage. When a command such as the first example above is obeyed, the value of the right hand side is taken, in-thit-case-an-element-bywelement-eopy-or-the-axray


NOIE the distinction between an array expression whose value is an array, and a reference to an array element whose value is a data item, for example, a real number.
\[
\begin{aligned}
& \text { If a programmer wishes to copy an array, he con do so } \\
& \text { using the basie function copy. The effect of } \\
& B:=\text { Copy }[A] \\
& \text { is to copy the array } A \text { and assign me copy to } B \text {. }
\end{aligned}
\]

The concepts of FUNOCIION and RCUTTNF are of central importance in CPL. Both are selfocontained subsections of the program, written in terms of dumny variables (or FORMAL PARAMETERS); they may therefore be called at different places in the same program, usually with different sets of values for their arguments. A routine is essentially a COMMAND (which can of course be compound, and include assignment commends), which is obeyed.

A function on the other hand is an EXPRESSION, the evaluation of which produces a RESULT.

Both functions and routines are treated as entities in their own right and have names. The type of a function includes the type of its result ( ra , real function).

A FUNCITON or ROUTINE CALL is written in the form of the function or routine name, followed in SQUARE BRACKETS by a list of expressions separated by commas (ACTUAL PARAMETERS).
When a function call is encountered as an expression to be eveluated, the formal parameters take as their values the values of the corresponding actual parameters. The result of evaluating the expression defining the function, with the formal parameters taking these values, is the value of the function call.

Similarly, when a routine call is encountered as a command to be obeyed, the command (usually compound) defining the routine is executed with the formal parameters taking the values of the corresponding actual parameters. (Routines may call their parameters by reference, in which case an 'address' is handed over: see section 20.2) It should be emphasised that each function call is an expression and is defined by an expression, whereas a routine call is a conmand and is defined by a command.

It is possible to define PARAMETERLESS functions and routines, which have no formal parameters. Calls to such functions and routines are written using the function or routine name, followed by a pair of square brackets, thus:
```

$a:=$ Function 1[]
Routinel[]

```

The square brackets are mandatory for function calls, but may be omitted in routine cells.
18. FUNCTITONS.

A function is a complicated rule for specifying a value: let us take a specific example. Suppose we wish to use the symbol \(F\) to stand for the function defined by
\[
F(x)=3 x^{2}+4 x+1
\]

At the head of some appropriate block, when we wish to define it along with the other definitions, we write a FUNCIION DEFINITION
\[
\text { let } F[x]=3 x 12+4 x+1
\]
\(x\) is a dumm variable, called a FORMAL PARAMEIER: when we wish to evaluate the function, within the block in which it is defined, we write a FUNCTION CALI with the desired argument as an ACIUAL PARAMETER.

If the arguments of a function are of any other type than the preferred type of the compiler then this must be indicated in the definitions: e.g.
\[
\begin{aligned}
& \text { let } P[\text { matrix Alpha, index } n]=\text { Alpha }[n, n] \\
& \text { let } Q[\text { index } 1, j]=i(i+1)+j
\end{aligned}
\]

In the second example, \(1, j\) are both taken to be index.
The type of the result is deduced from the definition by the compiler. If at the function call the actual parameters of a function do not correspond in type to the formal parameters, transfer functions are inserted automatically .

For example, if we have
```

\$ let a, b be real;
let k be index
let Q [index i, j] = i(i+i)+j
.0.0.0.0.0
a :=Q[b,k]
.......... \$

```
then b will be converted to type index before the function \(Q\) is evaluated.
The definition of a function is in terms of an expression. By using a result expression (section 22) as the expression, the function may be effectively defined in terms of a comman sequence.

Note that function calls, being expressions, can occur anywhere that a simple expression might. Thus:
\[
a:=\text { Function }[\text { Function }[a, b], c]
\]
is a legal assignment command, provided that the number of arguments and types of the resuits of Function and Functiond are correct.
'See pages B2, B3 at back of Manual'

-23-
\(-24-\)
20.1 A function call is a notational device for abbreviating an expression. In the same way we need a notational device for abbreviating a compound commend. For this we use a RCUTINE.
Suppose we wish at various points in a program to solve the equations:
\[
\begin{aligned}
& a x+b y=c \\
& a^{\prime} x+b^{\prime} y=c^{\prime}
\end{aligned}
\]
with a jump to a specified label \(i f\) there is no solution. We give the routine a name, say IINEQ, and at the head of some block we write the ROUTINE DEFINITION as follows:
```

routine IINEQ [real $a, b, c, a, b^{\prime}, c^{r y} /\{x, y, k$ label $L]$ be
seffany y
§ Iet $D E T=a b^{\prime}-a^{\prime} b$
if $\operatorname{Mod}[D E T]<1{ }^{1 K}-6$ go to $L$
$\bar{x}:=\left(\mathrm{cb}^{\prime}-\mathrm{c}^{\prime} \mathrm{b}\right) / \mathrm{DET}$
$y:=\left(a c^{\prime}-a^{\prime} c\right) / D E T$

```

This will solve the equations for various values of \(a, b, c, a^{\prime}, b^{\prime}, c^{\prime}\) and assign the solution to \(\mathrm{x}, \mathrm{y}\).

The first two lines are the ROUTINE HEADING; the remainder is the ROUTINE BODY, and consists of a block wi,th, in this case, one local variable DET. The routine heading gives the name of the routine and the list of FORMAL PARAMETERS; when we wish to use the routine we call it by writing the name followed by the list of ACTUAL PARAMETERS which are to be substituted for the formal parameters. Thus the command
\[
\text { LINEQ [ } 1,2,3,4,5,6, V, W, \text { ERROR }]
\]
will solve the equations
\[
\begin{array}{r}
V+2 W=3 \\
4 V+5 W=6
\end{array}
\]
assign the solution to \(V, W\) and send control to the label ERROR if there is no solution. The formal parameters are dummes, like the formal parameters in a function definition.
20.2 In this routine, \(x\) and \(y\) differ from the other formal parameters in that assignments are made to them. A variable to which a value is assigned corresponds to an address in the computer where that value is stored; \(x\) and \(y\) are therefore distinguished in the routine heading onemernerme This means that they are called by REFERENCE. It has the effect that for the duration of the routine they will be regarded as 'address-like'.

The other parameters are called by VALUE; that is, their actual values will be handed over. (Parameters are assumed to be called by value unless it is explicitly stated otherwise.)

If an assignment is made in the routine body to a parameter called by value, the parameter is changed for the remainder of the routine application, but no assignment is made to the corresponding actual parameter.

Free variables of a routine axe called by reference, in exactly the same way as the free variables of \(a\) ' \(=\) 'function.
20.3 The formal parameters of a routine may themselves be routines or functions.

The end of a routine may be indicated by the end of the command which is its body, and after obeying the command, control returns to the command following the routine call. It may be convenient for the dynamic end of the routine not to be at this point: for this purpose there is a builtin command return, which causes a return to the command following the routine call, e.g.
```

if b then return

```

Note that return is a commend, so that we write ..... then return, NOI ... then go to return 3.
21. 2 EXAMPLES OF ROUTINES.
ref val
a) routine Scalauproduct \([\) (pean \(x\), Vector \(A, B\), Index n, label L] be ; \(\delta x:=0\)
\[
\begin{aligned}
& \text { for } 1=1 \text { to } n \text { do } x:=x^{n}+A[1] B[i] \\
& \text { If } x<1 \text { 祭 } I
\end{aligned}
\]

The routine call
Scalarproduct [ X, CAT, DOG, \(10, \mathrm{ORTH}\) ]
will set \(X\) equal to the scaler product of two vectors cat and DCG, each of which has ten elements subscripted from 1 to 10 . If the vectors are orthogonal control goes to the command labelled חाएIT.
b) routine Geussquad ref val -per\(F\) Let \(\mathrm{s}=(\mathrm{b}-\mathrm{a})\)
\(I:=s(.27778 \mathrm{f}[a+.11270 s]+\) \(.44444 \mathrm{f}[a+.50000 s]+\) \(.27778 \mathrm{f}[\mathrm{a}+.88730 \mathrm{~s}]\) )

This routine sets \(I=\int_{a}^{b} f(x)\) dx, using a Gaussian 3-point formula.

Throughout CPL there is a sharp distinction between commands and expressions. Value of is a construction which allows us to obey several comands, which perform some calculation, and treat the result as an expression, to be incorporated in a larger expression. This is particulaxly useful in function definitions; the form of a function definition requires the body to be an expression and it may well happen that it requires several comands to evaluate the function. For example, suppose we wish to define the function:
\[
f(x)=\sum_{n=0}^{10} a_{n} x^{n}
\]

Let us suppose that the coefficients are available as an array \(A\) with subscripts running from 0 to 10. Then given \(x\), the series is eveluated by the following block:
§ let sum \(=0\)
for \(i=\) step \(10,-1\), 0 do
Sum \(:=x\) Sum \(+A[1]\) \$
We have here a block which sets the l'ocal variable sum to the required value. To convert this to an expression we precede it by value of and insert at the end of the command result is sum. The function definition thus becomes:
\[
\begin{aligned}
f[x]=\text { value of } & S \text { let } \operatorname{Sum}=0 \\
\text { for } 1 & =\text { Step } 10,-1, \text { of do } \\
\text { Sum }:= & x \text { Sum }+\dot{A}[1]
\end{aligned}
\]

\section*{result is Sum \(\$\)}

Although we have used a function definition as an example value of can be used anywhere to convert a compound command or block into an expression, which can then be used wherever any other expression could be used.

A result expression may include more than one instance of the command form result is, and the first such command met during execution ceuses termination of the result expression.
'See pages B2; B3 at back of Manual'
24. RECURSION.

A recuralve function or routine is one which expilcitiy cealls itself. Thus
\[
f[x]=(x=0 \rightarrow 1, x f[x-1])
\]
is a recursive function, if ' \(f\) ' on the right hand side is interpreted as the function under definition; it computes \(x\) ! , the factorial function. Special facilities must be provided for the definition of recursive functions, since apparently the rule which determines the scope of ' \(f\) ' would be violated if the necessary interpretation were made. (In non-recursive function definitions, any functions occurring on the right hand side of the definition must have been previously defined).

If we wish to define a recursive function or routine, this yust be indicated by preceding the definition with the symbol rec. As an example of this technique, take the Euclidean algorithm for finding the HCF of two integers:

Let rec HCF [integer \(n, m\) ] \(=\)
\[
\begin{aligned}
& (m>n \rightarrow \operatorname{HCF}[m, n], \\
& m=0 \rightarrow n, \\
& H C F[m, \operatorname{Rem}[n, m]])
\end{aligned}
\]

Recursion is only meaningful in the case of functions and routines. For example:
let rec \(f[x] \equiv(x<q \rightarrow x, f[x-a j)\)
Let rec routine \(R[x, y]\) be
\(R[x+1, a-x]\)
---…..................
Here, we have defined a recursive function and a recursive routine. As another example:


NOTE the use of section brackets in the last exmmple to force treatment of the two definitions as a single one in order to specify mutuelly recursive routines.

If the symbol rec is omitted from the definition of a function, the occurrences of that function name in its own definition are taken as referring to a global variable of that name, and not to the function being defined.
25.1 A variable of type logical is a string of bits, of some standard length ( 24 in Atias); each bit is processed Independently. A variable of type long logical is a string with twice the standard number of bits, also processed independently of each other.

In the remainder of this section we talk about logical variables; everything that is sald applies to long logical variables, the only difference being that in general, operations on a logical are faster than the corresponding operations on a long logical.

\subsection*{25.2 Operations on logical variables.}

Logical variables provide the means whereby most non-numerical work is carried out in CPL, and it is therefore necessary to have mere complicated operations than those so far described. For this purpose there is provided a basic set of built-in functions, in terms of which the more complex operations can be prograrmed. It is necessary first to define a convention for the mumbering of the digits in a logical variable, which is done by numbering the digits upwards from the right hand end starting from 0 .

Unless otherwise stated, the functions described below operate on logical or long logical variables, and produce a result of the same type as the logical operand. We use logical without underlining when we do not wish to distinguish between logical and long logical variables.
25.3 Functions for logtcal operations.
(a) Shifts.

LShift [p, j]
RShift [p, j]
Rotate [ \(p, j\) ]
p is a logical variable, and \(j\) is an index variable which defines the number of places shifted. LShift and RShift are logical left and right shifts; Rotate is a circular left shift. In all cases if J is negative the direction of the shift is reversed, so that

LShift [ \(p, j]\)
is equivalent to
Rshift \([p,-j]\)
With LShift and FShift the bits moved in to fill the gaps are zeros.
(b) Masking operations.
\[
\text { Ones }[\mathrm{j}, \mathrm{k}]
\]

Here, \(j\) and \(k\) are index variables. Ones [ \(j, k\) ] produces a mask In which bits \(j\) to \(k\) inclusive are ones and all other bits are zeros; the order in which \(J, k\) are written is immaterial, i.e. Ones \([j, k]=\) Ones \([k, j]\) 。
(c) Other bit-manipulations.

Field [ \(p, j, k]\)
Bit [p,j]
\(p\) is a logical variable, \(j\) and \(k\) are index variables; as usual, the order of \(k\) and \(j\) does not matter. The function Field [ \(p, j, k\) ] masks off bits \(j\) to \(k\) inclusive, and then right justifies the group, so that if \(j>k\), bit \(k\) of the argument becomes bit 0 of the result, and bit \(j\) becomes bit ( \(j-k\) ). For example, the effect of field \([p, 6,10\) ] is shown in the diagram.
p


Result


Bit \([p, j]\) is equivalent to Field \([p, j, j]\); it has the effect of specifying and right justifying a single bit. The functions Bit and Field may be used on the left,mand side of assignment commands; their results, therefore, are effectively the 'addresses' of the bit or area specified.

\subsection*{25.4 Logical Constants.}

Logical constants can be written in bipary or octal, being preceded by the symbois 2 or 8 respectively. (As \(7=111\) in binary, an octal string is equivalent to a binary string grouped in threes. Thus, \(2010111011=8273\).) They are normally assumed to be positioned at the least significant end of a logical variable: thus 877
is understood to mean 800000077 . However, positioning at the more significant end can be indicated by a bar: In this case zeros at the less significant end can be oritted, and \(8 \mid 273\) is understood to mean 827300000 (essuming, in this case, that 24 is the standard length).
Logical variables can be combined to form logical expressions using the same operators as for Boolean expressions, viz. \(\sim, \lambda, V, E, \neq\).
(The basic logical operations on bita are :
\begin{tabular}{llr}
\(1 \wedge 1=1\) & \(N 1=1\) & \(\sim 1=0\) \\
\(1 \wedge 0=0\) & \(N O=1\) & \(\sim 0=1\) \\
\(0 \sim 0=0\) & \(O V O=0\) & \\
\(1=1=1\) & \(1 \neq 1=0\) & \\
\(1=0=0\) & \(1 \neq 0=1\) & \\
\(0 \equiv 0=1\) & \(O \neq 0=0\) &
\end{tabular}

The specified operation lis carried out on aill bits independently. Thus if \(a, b, c\), are logical variables,
\(a:=c \wedge \underline{8} \mid 77\)
maskes off the top six bits of \(c\) and sets a equal to this, while
\(c:=(c \wedge \sim b) \vee(b \wedge a)\)
repiaces the field in \(c\) specified by the ones in \(b\), by the corresponding field of a.)
26. STRING EXPRESSIONS.

A string variable is a string of characters with posaible local limits on maximum length. The characters mast be those of the CPL alphabet.

A string constant consists of the characters of the string enclosed in STRING QUCTES, '........'; for example,
\[
\text { 'this is a string' } \quad 123 / \mathrm{AB} / 6^{\prime}
\]
with the exceptions that the characters
have a special significance; aiso occurences of || (double vertical bar) within string constants initiate comments (section 27), which are ignored. A special mechanism is required for specifying as part of a string a character, other than a space, which does not print, or cannot be represented as a CPL character. For these the ASTERISK is given a special significance. Wherever an asterisk occurs in a string constant it is interpreted together with the following character according to some local convention concerning such characters, the precise nature of which depends on the machine and output devices used.

For Atlas Flexowriters, these conventions are that
\begin{tabular}{|c|c|c|}
\hline & \[
{ }_{4}^{*}
\] & stands for stands for stands for \\
\hline \(\because N\) and & \% & stand for newl \\
\hline *S and * & * & stand for space \\
\hline *T and & \% & stand for tab \\
\hline *B and & "b & stand for backspace \\
\hline *E and & e & stand for erase \\
\hline * & z & stand for stopcode \\
\hline 促 & & stand for upper case \\
\hline & & stand for lower ca \\
\hline
\end{tabular}

For example, the string constant
'123*n456**'
is a representation of
123
456*
One infixed operator may be used in forming string expressions, the concatenating operator \(\Leftrightarrow\). Other operations on strings are carried out by a set of basic functions, which are described in section 26.2 below.

Relational expressions may be written uoing strings and the operators
\[
\leq<=\neq>\geq
\]

These have the same form as arithmetic relational expressions and they form a subset of Boolean expressions.

A longer string is 'greater' in relational expressions than a shorter string identical to its starting characters; thus
'ATLAS' > 'AT'
is true. The relations between CPL characters which determine the precise lexicographic ordering on strings is subject to local convention, and may be altered to suit individual programs.
26.2 String manipulation functions.

In the following descriptions, \(s\) is a string constant and is an index parameter. Uniess otherwise stated, the result is of type string.

Length [s]
The result is of type index and is the number of characters in s.
First [s]
Last [s]
The result is the first or last character of is, respectively.
Character [ \(1, s\) ]
The result is the i-th character of \(s\).
Initials [ \(1, \mathrm{~s}\) ]
Finals [ \(1, \mathrm{~s}\) ]
The result is the first or last i characters of s, respectively.

\section*{27. COMMENIS.}

It is sometimes required to include in a program explanatory notes which are intended for the human reader only, and which mast be ignored by the computer when reading the program. In CPL such comments are introduced by two vertical bars and continue to the end of that line; e.g.
\(\mid x\) is the mean value
If \(p\) is zero this is dealt with in \(\$ 1.2\)
28. COMPLETE PRGGRAM LAYOUT.

A complete CRL program consists, basically, of a sequence of commands. It will usually begin with the programmer's definitions; the program is to be thought of as embedded in a global system block which contains all built-in definitions.

The basic command Finish may be used anywhere in the program and terminates the execution of that program. It would normally occur as the finel command in a program, and if it is not present the compiler will insert it.

More information on program layout and preparation la given In the local operating manuals.

\section*{A SHIRT LIST OF CPL BASIC SYMBOLS}

WITH THEIR SYNONYMS AND ABBREVIATIONS.
Besic symbols may be written in upper or lower case, or a mixture of the two.
Spaces in basic symbols, whether underlined or not, are ignored. (e.g. go to may be written go to or goto.)

Basic symbols are listed under the section number in which they first appear.
Section 1
real
Index
integer
\begin{tabular}{|c|c|}
\hline double & not Initially 1 mplemented \\
\hline complex & \\
\hline double complex & 11 \\
\hline \(\underline{1}\) & 1 \\
\hline
\end{tabular}
Section 4
\begin{tabular}{l}
+ \\
\(\times\) \\
1 \\
1 \\
3 \\
\hline
\end{tabular}

Section 5
\(\begin{array}{ll}\dot{c}= \\ \frac{c}{8} & \\ & \%\end{array}\)

Section 7
let
\(\frac{b e}{\text { all be }}\)
both be

Section 8
and
where
are
all are both are
```

Section
9
要年位ean

```
Section 11


\section*{Section 12}
label

Section 13
\(\frac{\text { repeat }}{\text { while }}\)
\(\begin{aligned} & \text { until } \\ & \text { Btep } \\ & \text { ext } \\ & \text { for } \\ & \text { break }\end{aligned}\)

Section 14
\(\frac{\frac{\text { array }}{\text { vector }}}{\frac{\text { matrix }}{1}}\)

In the following sections, abbreviations followed by an esterisk may be followed by a fullstop, possibl.y underlined. e.g. routine rt rt. rt.

Section 18
function \(f_{n}^{*}\)
\(=\) [ definition by twobars]
\(=\) [ definition by threebars ]

Section 20
\(\frac{\text { routine }}{\frac{\text { reference }}{\text { value }}}\)\begin{tabular}{l} 
return \\
vel \(*\)
\end{tabular}

Section 22
\(\frac{\text { value of }}{\text { result 1s }} \quad\) val of

Section 23
\(\simeq\) [ initialisation by reference]
\(=[\) initialisation by value ]

Section 24
recursive rec*

\section*{Section 25}
logical
long logicel
2
8
[Justify symbol]

\section*{Section 26}

\section*{string}
- [ string quote ]
* [ escape character]
\(\Leftrightarrow\)

Section 28
\(1 \mid\) [ coument ]

Section 29
finish

CPL REFERENCE MANUAL

The Editor regrets that due to difficulties in reproduction the page numbers referred to in the following corrections have been removed from some of the pages in the preceding section of the manual. This may lead to some difficulty in correcting these omissions.

P8. Insert after line 9:
'Variables declared at the head if a block are said to be the Bound Variables of that block.'

P11. Linel1
. .. In the standard manner when applied to the simple types mentioned in section 3. (For equality between functions, routines, labels, etc., see the Advanced Erogramming Manual.)'

P16. Delete lines -15 to -16

P2O. Replace lines -6 to -4 by:
...side is taken, in this case an indication of the storage area reserved for the array 'Work'. Note that after the assignment; this array storage area is shered between 'Place' and 'Work'; and assignments to array elements of the one will assign to array elements of the other. \({ }^{\prime}\)

Insert at bottom:
'If a programmer wishes to copy an array, this can be done vie the basic function copy. Thus the effect of:
\[
B:=\operatorname{Copy}[A]
\]
is to copy the erray \(A\) and essign the copy to \(B\)."
P27 Line \(=10\)
for \(1=\operatorname{step} 10,-1,0\) do
PA3. Delete lines 1 to 3
Line 5
19 function \(\quad\) rn \(\quad\) fn.
1) 10
reference ref ref. ref.
1211
value val val val.
1119
recursive rec rec rec.

P25.
NOIE: the form for a routine definition is now:
let rt \(\mathrm{R}[<\) formal parameter list>] be §...............
and the formal parameter list now has the form
[ref real \(a\), val index b] with the following rules:
The TYPE of a formal parameter is the nearest type apecified to the left. If no type is apecified it is preferred type.

Similarly, the MODE is the nearest mode specified to the left: if no mode is specified, it is val.

Thus the routine LINEQ now looks like:
Let rt LINEQ[a,b,c, \(a^{\prime}, b^{t}, c^{\prime}\),ref \(x, y\), Jabel I] be §..........
NOIE also that, as formal parameters of functions can now be called by reference, the parameter lists for functions and routines are now identical.

The following section replaces sections 19 and 23.

\section*{INITIALISATTON BY VALUE AND BY REFERENCE.}

An Initialised definition, as in section 7.1, associates a name with an initial value. There are in fact two modes of initialisation, by VALUE and by REFERENCE, These are written \(W i t h a^{\prime}={ }^{8}\) sign and a \({ }^{t} \simeq^{\prime}\) sign respectively.

An initialisation by VALIE causes the vardable concerned to be associated with a fresh storgge location, whose indtial contents are given by the right hand side of the definition.

An initialisation by REFERENCE causes the variable concerned to be associated with a storage location which is specified in terms of the storace locations already associated with other variables. This storage location is spectfied by the expression on the right hand side of the definition. Some simple examples of expressions which may be taken as specifying storage locations are:
\[
\begin{aligned}
& a \\
& A[i] \\
& (b \rightarrow a, A[i])
\end{aligned}
\]

Some basic functions which may be interpreted as producing storage locations are given in section 25.3 (c). (It is also posstble for the programmer to define such functions himself: see the Advanced Programming Manual). If the expression on the right hand side does not specify a storage location, the variable concerned is associated with a constant, whose value is taken as the current value of the right hand side of the definition. Future assignments to that vardable will be construed as exrors.
For example, after:
\[
\begin{aligned}
& \S \frac{\text { let } a=1}{1 e t b=a+1}
\end{aligned}
\]
' \(b\) ' has the constant value 2 . An assigment \(b:=0\) is then in error.
A variable initialised by reference shares its value with the variable or expression on the right hand side, and an assignment to either expression has the effect of changing both.
\[
\text { Consider: } \begin{aligned}
\text { § Iet } a & =1 \\
\text { let } b & \approx a \\
\text { let } c & =a \\
b: & =2
\end{aligned}
\]

Final values of \(a, b, c\) are \(2,2,10 b\) and \(a\) share the new assignment: \(c\) is fixed at the old value of \(a\), namely \(\%\) The final values had the assignment been \(a:=3\) woula be \(3,3,1\).

Similarly, consider:
§ let A be real yector and i be index
```

let $:=3$; let $A[3]=10$
Let $a=A[i]$
and $b \simeq A[1]$
$A[3]:=11 \quad d$

```

With subscripted variables, the subscript is evaluated in both cases and fized at \(i=3\) : but the walue of the element in \(t \approx A[i]\) may change. After the assignment, the values of a and b are 10 and 11 respectively.

BOUID VARTADLES, FPEE VARTABTES and FORMAL PARAMETERS.
The names that occur on the xight hand side of a function definition may be classified as occurrences of the BOUND VARIABLES, FURMAL PARAMETERS; and FREE VARIABLES of the function.

A BONID VARIABLE is an occurrence of a name in a context in which it is subject to a definition within the function body: this can happen either in an expresston qualified by a where clause, or within a result expression (see section 22).

A FORMAL PARAMEIER is an occuxrence on the right hand side of the function definftion of one of the names in the parameter list on the left innd alde of the definition, in a context in which it \(i\) ds not a bound variable of the function (i.e. not redefined within the function body.)

A FREE VARIABLE occurxence is any occurrence of a name which does not fall into either of the other two categories. Free variables must be meaningifu within the function definitwons that \(1 s_{9}\) efther the funstion definition must be whthin the scope of some derinition of the free varlables concerned, or those names nust be formal paranetexg of nome enclobing function or routine definition or be names of Ifbrery functione.

g[y] has three free variables, \(a, b y\) and \(x\)
We have aeen that variables may be indtialised by value or by reference. Similarly, parametexs in a function or routine may be CALTJD BX VALUE or CALLED EX REFEREIVCR. The mode in which the formal parameters are called Is specified in the function or routine heading (see the Note for pe5o) The mode in which the free vaxiables of a function are celled clepends upon whether it is a function defined by twobexs ( \(m\) ) or by threebare ( \(=\) )

There is a very close analogy between the formal and ectual parameters of a function ox routine, ard the left ard wight hand aldes of an initialised definition. For exumple, consider:
let \(x[x]\) be \(S x:=1 \%\)
Let \(a=3\)
R[a]
0000000000
The formal pacameter, \(x\), my be called elther by value or by reference.

If we have R[vel \(x]\) then after cajling \(R[a]\), a still has the value 3 . The anallogy would be:
\[
\begin{aligned}
\text { Iet } \quad a & =3 \\
x & =a \\
x & =1
\end{aligned}
\]
which obviously does not affect the velue of \(a_{\text {. }}\) If we had Rlref \(x\) ] on the other hand, this would be analogous to:
\[
\begin{aligned}
& \text { let } a=3 \\
& \text { let } x \simeq a
\end{aligned}
\]
\[
x:=1
\]
nd as explained above the fynal value of \(a\) will be 1 , shared wilth \(x_{0}\)

This may be summarised as:
Assignments to formal parameters called by value do JOT result in assignments to the corresponding actual parameters.
Assignments to formal parameters called by reference DO result in assignments to the corresponding actual parameters.

Assignments to a parameter called by value in any function or routine evaluation has the expected effect of changing the value of that parameter for the rest of the evaluation. In the case of functions this cen only be done through the use of a result expression.

The free variables of a function may be called in either mode, depending on whether the definition of the function was by twobars or by threebars. In a twobar ( \(=\) ) function the variables are called by VALUE: that is, the current values of the free variables at DEFIIITIOD time are copied, and during the evaluation of the function the free variables are taken as referring to these private copies and not to the global variables of the same names. Assignments may NOT be made to the free variables of a twobar function from within the body of the function.

In a threebar ( \(\equiv\) ) function the free variables axe called by REFERENCE, and take the current values of the variables with the same names at the time of EVALUATTOK of the function, which may well be different from the values that they had at definition time. Assignments to free variables called by reference can be made from within the function evaluation, via a result expression.

The following example illustrates the difference between the two modes of calling free variables:
\[
\begin{aligned}
& \text { § let } a, b, c \text { all be real } \\
& a, b, c:=2,3,4
\end{aligned}
\]
\[
\begin{aligned}
& \text { let } f[x]=a x 0 x+b x+c \\
& \text { Let } g[x]=a x x+b x+c \\
& \text { arb, } c:=5,6,7 \\
& \text { L!: } W_{s} z:=f[W], g[z]
\end{aligned}
\]

When the command labelled il is obeyed, w is set equal to ( \(5 \mathrm{ww}+6 \mathrm{w}+7\) )
\[
z \text { is set equal to }(2 z z+3 z+4)
\]
p． 10 line－10 Replace＂longest possible＂by＂longest immediately＂． line－5 Replace＂is＂by＂as＂

For an account of function definitions，see section 18.
The first example here illustrates a common misuse of where clauses．
Note that y is to be initialised before the function f is defined，so that \(x\) in the definition of \(y\) must have been defined at that time and cannot depend on future values of the parameter of \(f\) ．

The first example would be acceptable if it occurred in a context within the scope of some definition of \(x\) ，e．E．
§ let \(x=1\)
\[
\text { let } f[x]=(1+y y) / y \text { where } y=g[x]
\]
\(f\) would then be defined as the function with the constant value（ \(1+\mathrm{yy}\) ）／y for all paraneter values，where \(y\) is obtained by evaluating g［1］．This may not be what the progranmer intends．
p． 12 line -14 ＂let routine \(R\) be＂
p． 16 Note：＇：\(=\)＇，not \({ }^{\prime}=\)＇，in for ext \(x:=\) step 1，2， 11 do
pp．19－20 It is important that an array should be thought of not as the totality of its elements but as an indication of where these elements are to be found，i。e．as a＇pointer＇to the relevant element storage area．The effect of an array assignment or initialisation by value is to assign a＇pointer＇and not to copy the orray elements；any such copying is to be done by a call to the function＇Copy＇．
p． 26 Example（a）should now start：
＂let routine Scalarproduct［ref real \(x\) ，val vector \(A, B\) ，index \(n\), Iabel it］be § \(x:=0^{\prime \prime}\) etc。

Example（b）should start：
＂let routine Gaussquad［real \(a, b\) ，ref \(I\) ，val function \(f\) ］bo
\[
\S \text { let } \theta=(b-a)^{\prime \prime} \text { etc. }
\]
p． 29 lines－11）
－15）Insert＂be＂in all routine definitions．
－21）
B4 line－9 \(\quad\) I let \(a, b, c\) arl be real
Iine－7 S let \(w, z\) both be real
line \(-3 \quad L 1: w, z:=f[w], g[z]\) 串

CPL REFERENCE MANUAL
(Incomplete Draft)

July 1966

The unfinished drait which follows shows imperfections of several kinds:

\section*{1. Missing sections}
1.3.4. 1.3.5, 9.2.3, are missing merely because they have not yet been written. They presented some problems in exposition and so were postponed.
1.4.9 9.5.1, 9.5.2 were postponed because the content was still under discussion.

Appendices 2 and 3 are still under discussion.

\section*{2. Incorrect Sections}

The whole of section 2 is an unevised earlier draf't and may need major revision.
9.5 is now largely wrong as we have altered the rules about break, return and result is to allow a more general use. this is too complicated to insert as a manuscript alteration.
3.2, 3.4 .6 and 6.5 will need modification when the type character is introduced.
4.6 and 8.3 .5 will need modification when the scope of where-clauses is changed.

\section*{3. Errors Misprints and Infelicities}

Some of these have been corrected in manuscript. I should be very grateful for a note of any more which come to light.

\section*{4. Defects of Style}

The draft inevitably still shows signs of its original multiple authorship in the varying styles of the different sections. More serious, perhaps, is the vacillation between a concise definition-like style (such as used in the Algol 60 repont) and a more relaxed expository style. I find myself tempernentally averse from writing in English in a very formalised manner, so thet the longer the draft has been under my care, the longer it has becone. The only cure \(I\) can see for this is the development of a precise anä symbollically expressed fomal theory of semantics which still eludes our grasp.

\section*{5. Defects of Exposition}

These are probably frequent and are only partly inadvertent. The Reference Manual is not intended to be an exposition or explication of CFI. The definitions of the meaning or effect of some operator or comnand in terms of other or simpler constructions may be in error in prescribing undesirable actions in infrequent cases. As these are discovered they will be altered.

It is part of our general approach to CPL that logical coherence and convenience in use are not to be sacrificed to brevity or simplicity in explanation.

In the ordinary course of events I should have been most unwilling to publish a report with so many defects. However, in the circumstances, given the desirability of circulating more information about CPL at once and the equally great urgency of working on Compound Data Structures together with the fact that none of the authors has time to spare on the Reference Manual, there seeras to be nothing else to do.

I hope it will be possible to publish a revised and corrected version of the Reference Manual incorporating the treatment of Compound Data Structures on which we are now working in the not too distant future. It would be of great assistance to me if readers who discover errors of any sort in this draft would send me a list of them. If a sufficiently large number appear, we siall try to circulate a correction sheet to everyone who has a copy of this report.

> C. Strachey
> Programing Research Group
> 45 Banbury Road Oxford England.

\section*{INTRODUCTION}

This report is intended to be a complete description of CPL as at present defined. The syntax of the language is given using a system based on that used for ALGOL 60 (see Section 1.2). Semantic descriptions are given in words and by example (see Section 1.3). As a satisfactory formal language for describing semantics has not yet emerged, this document should not be regarded as completely rigorous; it should be read with a modicum of common sense.

One of the principal aims in designing CPL was to make it a practical appilcation of a logically coherent theory of programming languages. it is not the purpose of this report to expound the underlying theory. However, some parts of this report, and in particular, the semantic descriptions, have been much simplified by making use of some of its concepts. As these may be unfamiliar, a brief general discussion of some of the issues involved, particularly as they apply to CPL, has been included in Section 1. Section 2 contains an informal account of the relationship between Publication CPL and the more formal Canonical CPL which underlies the publication language.

Part 11 (Sections 3-11) contain the description of Canonical CPL which is the main purpose of this report.
```

Authors' Preface
Introduction

```


PART 1
1 General Considerations
1.1 Algorithms, Programs and Programming Languages
1.1.1 Commands and Expressions
1.1.2 Equivalence of Algorithms
1.1.3 Equivalence of Programs
1.1.4 Equivalence of Expressions
1.1.5 Rearrangement Rules
1.2 Syntactic Problems
1.2.1 Publication and Canonical CPL
1.2.2 Syntax Rules
1.2.3 Purposes and Limitations of Syntax
1.3 Semantic Problems
1.3.1 General Approach
1.3.2 Data 1 tems, Types.
1.3.3. Transfer and Representation Functions

X1.3.4 Revalues, \(L\)-values
*1.3.5 Load-Update Pairs
\(\mathbf{x} 1.4\) Relation with the Environment
\(\times 1.4 .1\) The Operating System
X1.4.2 Input and Output
\(\times 1.4 .3\) Compilation
\(\times 1.4 .4\) Errors
2' The Transformation from Publication to Canonical CPL
2.1 Features of Publication CPL
2.1.1 General Principles
2.1.2 Terminators and Layout
2.1.3 Brackets
2.1.4 Conditional Expressions
2.1.5 Other Features
2.2 Categories Recognized During Transformation
2.2.1 Names
2.2.2 Numbers
2.2.3 Strings
2.3 Rules for Transformation

PART Il CANONICAL CPL
3. Preliminaries
3.1 Canonical Form
3.1.1 General
3.1.2 CPL Publication Alphabet
3.1.3 Basic Symbols
3.1.4 Basic Categories
3.2 Types
3.2.1 General
3.2.2 Numerical Types
3.2.3 Logical Types
3.2.4 Other Types
3.3 Transfer and Representation Functions
3.3.1 Programmers Transfer Functions
3.3.2 Basic Transfer Functions
3.3.3 Automatic insertion of Transfer Functions 3.3.4 Polymorphic Operators
3.3.5 Representation Functions
3.4 Constants
3.4.1 General
3.4.2 Syntax
3.4.3 Numerical Constants
3.4.4 Logical Constants

Il 3.4.5 String Constants
3.4.6 Character Representation
3.4.7 Other Constant Expressions

4 Expressions
4.1 Syntax
4.2 Evaluation
4.3 Condicional-Expressions
4.3.1 Syntax
4.3.2 Semantics
4.4 Block-Expressions
4.4.1 Syntax
4.4.2 Semantics
4.5 Expression-Lists
|1 4.6 Where-ciauses
5 Prefixed Operators and Expressions
5.1 Monadic Operators
5.1.1 Syntax
5.1.2 Semantics
5.2 Prefixedmoperators
5.2.1 Syntax
5.2.2 Semantics
5.3 Prefixed-Expressions
5.3.1 Syntax
5.3.2 Semantics
5.3.3 Array References

6 Infixed Operators and Expression
6.1 Syntax and Grouping
6.1.1 Syntax
6.1.2 General

Il 6.1.3 Juxtaposition, Pos and Neg
6.1.4 Grouping
6. 2 Numerical Operators
6.2.1 Types
6.2.2 Semantics
6.3 Logical Operators
6.4 Relations

II 6.5 String Operators
6.6 Polymorphism and Type Matching
```

    7 Definitions
    7.1 Syntax
    7.2 Modes of Definition
                                    7.2.1 Definition by Type
                                    7.2.2 Definition by Value
                                    7.2.3 Definition by Reference
    7.3 Constant and Variable Definitions
    7.4 Definitions and Types
    7.4.1 Preferred Type
    7.4.2 Type Definitions
    7.4.3 Simple Initialized Definitions
    8 Definition Structure and Scope Rules
        8.1 Syntax
    8.2 Scope and Extent
                8.2.1 Scope
                8.2.2 Extent
            8.3 Scope Rules for Definitions
                8.3.1 Recurslve
                8.3.2 Composite Definitions
                8.3.3 And
                8.3.4 In
            II 8.3.5 Where
            8.3.6 Let
            8.4 Other Scope Rules
    9 Commands
9.1 Syntax
9.2. Assignment-Commands
9.2.1 Syntax
X 9.2.3 9.2.2 Semantics
9.3 Transfer-Commands and Labels
9.3.1 Syntax
9.3.2 Semantics
9.3.3 Labeis
9.4 Routine-Commands
9.4.1 Syntax
9.4.2 Semantics
9.5 Other Simple-Commands
7> 9.5.1 Syntax
9.5.3 Break
9.5.4 Result is
9.6 Conditional-Commands
9.6.1 Syntax
9.6.2 If-Commands
9.6.3 Test-Commands
9.7. Cycle-Commands
9.7.1 Syntax
9.7.2 While-Commands
9.7.3 Repeat-Commands
9.7.4 FormCommands
|| 9.7.5 Evaluation of For-Lists

```
9.8 Blocks
\(X\) 9.8.1 Syntax
\(x\) 9.8.2 Notes
\(\times 9.8 .3\) Declarations
\(\times\) 9.8.4 Command-Sequences
\(X\) 9.8.5 Leaving Blocks
10 Functions and Routines
10.1 Introduction. Function and Routine Calls 10.1.1 Syntax
10.1.2 Semantics
10.2 Functions and Routines as Data Items 10.2.1 Syntax
10.2.2 Types
10.2.3 Expressions and Assignments
10.2.4 Equality between Functions, Routines
10.3 Function and Routine Definitions
10.3.1 Syntax .
10.3.2 Semantics. General
10.3.3 Formal Parameters
10.3.4 Free Variables
10.3.5 LH Functions
10.3.6 Determination of Result Types

11 Arrays
11.1 Subscripted Expressions. Arrays as Data 1 tams 11.1.1 Syntax 11.1.2 Semantics
11.2 Basic Functions for Arrays 11.2.1 Array-creating Functions 11.2.2 Other Functions

Appendix.
The Preprocessed
X Appendix 2
Character Sets the
\(X\) Appendix 3 STandard Functions and RouTine e
1. General Considerations
1.1 Algorithms, Programs and Programming Languages
1.1.1 Commands and Expressions
1.1.2 Equivalence of Algorithms
1.1.3 Equivalence of Programs
1.1.4 Equivalence of Expressions
1.1.5 Rearrangement Rules
1.2 Syntactic Problems
1.2.1 Publication and Ganonical GPL
1.2.2 Syntax Rules
1.2.3 Purposes and Iimitations of Syntax
1.3 Semantic Problems
1.3.1 General Approach
1.3.2 Data Items, Types
1.3.3 Transier and Representation Punctions
1.3.4 R-values, L-values
1.3.5 Load-Update Pairs
1.4 Relation with the Environment
1.4.1 The Operating System
1.4.2 Input and Output
1.4.3 Gompilation
1.4.4 Errors

NOTE Sections 1.3.4, 1.3.5 and the whole of 1.4 are not yet written.
1.1.1. Commands and Expressions

An ALGORIMHR is a rule for computation, using the words in a wide and informal sense. A PROGRAM is an algorithm presented in a form in which it can be accepted and, hopefully, executed by a computing machine. A PROGRAMMING LANGUAGE is the formalism in which a program is expressed.

Algorithms are built up in an hierarchical manner (which is not usually described formally) from components which are imperative sentences. These sentences contain verbs and nouns or descriptive phrases which take the place of nouns. For example in the imperative sentence:
"Replace \(x\) by the product of \(x\) and \(y . "\)
the phrase "the product of \(x\) and \(y\) " is a description which is the second object of the verb "replace".

One of the ways in which the hierarchy is built up is by using one algorithm as part of a descriptive phrase used in another. The example just given might have been written "Replace \(x\) by the result of multiplying \(x\) by \(y . "\) Here "multiply \(x\) by \(y\) " is a subsidiary imperative which has become incorporated in the descriptive phrase "the result of....". In this case, however, there is some ambiguity as it is not entirely clear if the command "multiply \(x\) by \(y\) " means "replace \(x\) by the result of multiplying \(x\) by \(y\) " or merely "discover the result of multiplying \(x\) by \(y\) ". Such ambiguities cannot be tolerated in a program, and it is part of the function of a programming language to make their elimination simple and safe.

The features discussed above make their appearance in all programing languages, though in some the ambiguity has not been wholly eliminated. The terms used in CPL to describe them are the following.

A COMMAND corresponds to an imperative sentence.
An EXPRESSION corresponds to a descriptive phrase.
A NAME corresponds to a noun and is a special case of an expression.

The mechanism for incorporating the result of one algorithm in a descriptive phrase of another is completely explicit (see Section 4.4).

\subsection*{1.1.2 Equivalence of Algorithms}

There is no generally accepted rule for determining the equivalence of two algorithms independently of their context. There is, however, one situation when it is quite clear what should be meant by such an equivalence. If an algorithm, A, occurs as part of the descriptive phrase "... the result of ..." as a component of a larger aigorithm, then we are only interested in the "result" of A and any other algorithm, B, which produces exactly the same result will be acceptable in its place. In these circumstances we can say that \(A\) and \(B\) are locally equivalent.

\subsection*{1.1.3 Equivalence of Programs}

Two programs are said to be equivalent if they produce indistinguishable effects whenever they are executed. This execution must be complete, not partial, so that, for instance the intermediate effects of two equivalent programs may differ, and in particular all programs which do not terminate may be regarded as equivalent. The question whether two given programs are equivalent or not in this sense is undecidable, but in certain simple cases it may be possible to prove equivalence by one of the following rules.
1. Certain commands are defined in this manual to be equivalent to other, generally simpler, commands or sequences of these.
2. Two commands which differ only in their component parts (which may be expressions or other commands) are equivalent if each of the corresponding component parts of the two commands are equivalent.

These are not the only possible cases in which commands are equivalent. The whole question of equivalence of programs is a complicated and not yet fully understood one and its investigation lies outside the scope of this report.
(Note that equality of routines as defined in section 10.2.4 is a completely different and much stronger concept than that of equivalence between programs.)

\subsection*{1.1.4 Equivalence of Expressions}

Two expressions are equivalent when they have the same value. In the case of a block-expression the value of the whole expression is the value of the expression following the basic symbol result is so that any "side effects" such as assignments to non-local variables are ignored when determining equivalence.

When deternining the equivalence of expressions involving standard mathematical operators only the properties of the ideal mathematical operators are relevant. Departures from the ideal owing to the fact that only finite representations are used in a computer, are to be ignored. Thus, for example, the expressions \(x+y-z\) and \(y-z+x\) are to be considered as equivalent irrespective of the precision or range of the internal representations of numbers, and irrespective of the order of evaluation of the components.

\subsection*{1.1.5 Rearrangement Rules}

The general rule in CPL is permissive. Any program or expression may be replaced by any other which is equivalent to it in the sense of sections 1.1.3 and l.1.4.

In order to allow a detailed control over sequencing and the deliberate use of side effects, it has been made possible to prevent any replacement or rearrangement of this sort. This is done by using the note sic at the head of the block. This has the effect of preventing the replacement or rearrangement of the commands inside the block. (See Section 9.8.2)

\subsection*{1.2 Syntactic Problems}

\subsection*{1.2.1 Publication and Cononical CPL}

Publication CPL contains a number of convenient programming devices. These are described in the Elementary Programming Manuals and a brief summary is given here in Section 2.1. Some of these features are not easily described in a formal system, and so publication CPL is formally defined by describing a transformation which changes a publication CPL document into canonical CPL. A description of this transformation is given in words in Section 2 and as a CPL program in Appendix 1 . It should be noted that the transformation from publication to canonical CPL can be carried out by a number of processes and that the one described in this manual is by no means the only possible one.

Canonical CPL, which is introduced in this way as a device to aid in description of the language, is more easily subject to a formal description which occupies Part \(\|\) of this report. A program in canonical CPL is a context-free character string with no dependence on layout or representation.

The existence of canonical CPL aids the task of specifying other hardware representations, such as those using cards, quite substantially. Logically unimportant changes, for example to the identifier rules, may be advisable in such cases. These alternatives are readily defined by specifying their transforms into canonical CPL.

Any practical implementation of CPL will probably accept an input which differs to some extent from both pubilcation and canonical CPL. One possible way of constructing a compiler for such a system is to transform the locally defined input stream into a representation of canonical CPL before further processing. The program given in Appendix 1 would serve as such a PREPROCESSOR for a system whose local input language was publication CPL. its inclusion may help to suggest a method for writing similar preprocessors for other local representations of CPL.

Publication CPL with only minor changes in the character set is used as the hardware representation at the London and Cambridge establishments.

\subsection*{1.2.2 Syntax Rules}

Syntax descriptions of canonical CPL are given in terms of metalinguistic formulae. Sequences of letters enclosed in brackets \(\rangle\) represent syntactic categories; they are
chosen to be words describing approximately the meaning of the corresponding strings．The sign ：i＝separates the category being defined on its left from the defining sequence on its right．The vertical bar \(\mid\) is used to separate alternative sequences．Any sign which is not a category stands for itself．Juxtaposition of signs and／or categories signifies juxtaposition of the sequences they denote．

Metalinguistic brackets＜＞may be nested and thus used to group together more than one constituent sequence（which may contain alternatives）．An integer subscript may be attached to a metalinguistic bracket and used to specify repetition；if it is an integer \(n\) ，then the sequence within the bracket must be repeated at least \(n\) times；if the integer is followed by a－sign，then the sequence may be repeated at most \(n\) times or it may be absent．

For example，the formula
\[
\langle a b\rangle::=\langle a b\rangle\langle d\rangle \mid\langle a b\rangle_{,-}(\mid[
\]
gives a recursive rule for the formation of values of the category 〈ab〉；a legitimate value may be formed by some other value followed by a value of \(\langle d\rangle\) ，or by a（possibly absent）value followed by（，or by［．If the values of 〈d〉 are the decimal digits，some values of 〈ab〉 are
\([(1) 1(37 C\)
\((12345)\)
\(1(6\)
16

Grouping or association rules can be expressed in two ways in the syntax．Unsubscripted recursive formulae or groups of formulae imply a corresponding semantic grouping． Subscripted formulae（which are generally not recursive） imply no such grouping．Thus：
\[
\langle p\rangle::=\langle q\rangle \mid\langle p\rangle\langle q\rangle
\]
implies assoclation to the left i．e．．a grouping of the type（（（qq）q）q）and
\[
\langle r\rangle::=\langle s\rangle \mid\langle s\rangle\langle r\rangle
\]
implies association to the right－i．e．（s（s（ss）））while
\[
\langle x\rangle::=\langle y\rangle\langle\langle z\rangle\langle y\rangle\rangle_{0}
\]
and
\[
\langle x\rangle::=\langle\langle y\rangle\langle z\rangle\rangle_{0}\langle y\rangle
\]
have the same meaning and imply no association among the components of \(x\) so that the only grouping is（yzyzyzy）．

Syntax descriptions are given adjacent to those sections of text which describe the corresponding semantics，
and a complete syntax is given in Appendix 5.
For clarity, the \(\phi\) separators are not included in the syntax formulae.

In order to avoid confusion, the canonical CPL symbols < > << >> and | are replaced in syntactic formulae (where they might be confused with the metasyntactic symbols < > 1) by the basic symbols lessthan, greaterthan, muchlessthan, muchgreaterthan bar.

\subsection*{1.2.3 Purposes and Limitations of Syntax}

There is often some confusion about the precise meanings of the words syntax and semantics and some doubt as to where to draw the line between them. In this report we do not attempt either to discuss this issue or to be particularly nice in our distinction between the two: roughly speaking we call anything we express in the notation described in the last section syntax, and everything else in this manual semantics.

The purpose of our syntactical analysis is to allow a CPL program to be divided into smaller segments, known as syntactic categories, in a way which will make the subsequent discussion of its effect (or meaning) simpler and more precise. Any text which cannot be analysed in this way will not be a correct CPL program, and this fact allows a compiler to detect many of the slips and trivial errors in a program at an early stage by a rather superficial 'syntactic' analysis. However, the converse is by no means true, as a text which is syntactically correct in the sense of this paragraph may be semantically meaningless.

The syntactic rules in this report are not even sufficient to group a CPL text completely. In" some cases (e.g., infixed-expressions) they leave the final grouping to a later stage of the analysis which we have here included in the semantics. In others, the syntactic categories correspond not to groupings of the text but to semantically related items (e.g., relations).

\section*{1．3 Semantic Problems}

\section*{1．3．1 General Appraach}

As no satisfactory and generally accepted method of describing the semantics of a programming language has yet emerged，the method adopted in this report is a mixture of informal description in English sometimes illustrated by examples in publication CPL with，in some cases，definitions in terms of other CPL forms．Some of the concepts used in these descriptions are discussed in Sections 1．3．2 to 1．3．5．

When giving examples in publication CPL it is convenient to be able to use variables whose values are individual members of various syntactic categories．Upper case Roman letters with numerical subscripts are used for this purpose．The letter is chosen to give some indication of which syntatic category is being represented，and the suffix is used identify the particular individual member of this eategory．Thus，for example，when discussing the assignment command which has the syntactic form

〈assignment command〉 \(::=\) 〈expression〉 \(:=\langle\) expression jist〉
the example used is
\[
E_{0}:=E_{2}
\]
which makes it possible for the subsequent discussion to refer to the components of the command as \(\mathrm{E}_{1}\) and \(\mathrm{E}_{\mathrm{L}}\) 。

\section*{1．3．2 Data items．Types This section meds editarial revision}

A CPL program is concerned with operations on and relations between certain objects known as DATA ITEMS，（or sometimes merely as ITEMS）．These can be thought of in several ways．At one level they may consist of patterns of magnetization in a core store，at another they may be thought of as bit patterns or binary words．At another level they may be divided into＇instructions＇and＇data＇， while at another they may be thought of as being numbers or letters．

The point of view adopted by CPL is that ultimately all data items are represented by bit patterns of various lengths．However．these bit pattern represent other， generally abstract objects，such as numbers or functions and their importance stems from this representation．This attitude allows us to talk about the abstract objects in CPL without being concerned with any particular representation
as a bit-string (which may well be implementation dependent) but at the same time makes it possible to consider explicitly questions which involve this representation.

The TYPE of a data item determines its representation and at the same time constrains the range of entities which may be represented. Thus, for example, the type integer can only be used to represent integers in a certain range. Both the extent of this range and the details of the representation of integers within this range are implementation dependent. The existence of the type integer, however, is a property of the language.

CPL provides for a fairly wide range of types which are discussed in some detail in Section 3.2

It is possible for a single abstract entity to be represented in more than one way as a bit pattern. The Integer 3, for example, can be a data t em of type real or one of type integer (among other possibilities). These two items would be quite distant and their bit-patterns would, in general, be different. There are a series of TRANSFER FUNCTIONS available in CPL which have the effect of changing from one form of representation to another without altering the abstract entity being represented. These are discussed further in Section 3.3.

The various types in CPL provide representations for a number of well-defined classes of abstract objects. it is these abstract objects which constitute the data items.

In some cases (for example the type real) the representation of the abstract object is only approximate. The usual situation is that a range of entities all have the same representation. In these circumstances it is important to be clear whether the CPL program is discussing the ideal abstracts or their approximate representations. In other cases, however, where the representation is exact there is no significant difference in outcome whichever view is taken, and it is considerably simpler in these cases to regard CPL as manipulating the abstract entities directly and to leave the questions of representation to the implementation, it is partly for this reason that the rearrangement rules have been included in CPL .

This implies that in normal operation CPL is to be regarded as describing operations on abstract objects and not on their representations. In those cases where the difference between the approximation of the representation and the ideal abstract are of importance, it is possible to specify the exact sequence of elementary operations to be performed on the representations by using the note sic at the head of the block (see Sections oof 1.1.5).

In accordance with this view there are certain specific situations in which transfer functions are inserted automatically by the implementation in order to ensure that a correct representation is used.

\subsection*{1.3.3 Iransfer and Representation Functions}

Certain functions are available in CPL which deal explicitly with the representation of a data item. One class of these, known as TRANSFER FUNCTIONS, have as their aim the control of the type by which an item is represented. Another, known as REPRESENTATION FUNCTIONS, allow access to the actual bit patterns used in the representations; these, of course, are strongly implementation dependent.

Transfer functions are, in general, polymorphic; they take a single argument, which may be of any meaningful type, and produce a single result which has the same value as its argument (or an approximation to it) and has a specified type. These functions are lisced in Section 3.3.1 and are avallable for explicit use by the programmer. They are also inserted automatically by the compliing system in certain places to ensure that a sultable representation is used.

While the finer detalls of the transfer functions (and in particular, their alarm conditions) are implementation dependent, their general nature, and the situations in which they are to be inserted automatically by the compiling system are a part of the language. These are described in detail in Section 3.3.

Representation functions are not concerned with the abstract value of their arguments, merely with the bit string which represents them in the current implementation. (see Note at end of this section.) They are not in general, inserted by the compiling system and their use by a programmer serves as a warning that the program containing them is probably implementation dependent.

There is one exception to the statement that representation functions are not inserted by the compiling system. The ability to use table lookup as a method of processing non-numerical items (such as characters) is so convenient and widely used that the fact that it involves representation explicitly is often overlooked. In order to preserve this facility, the representation functions which take singie character strings logicals and index into each other may be invoked automatically by the compiling system. The details of this and of the other representation functions are given in Section 3.3.

NOTE: In this section and elsewhere where bit strings and items of type logical and long logical are discussed, it has been tacitly assumed that the implementation will be on a binary machine. For implementations on a decimal machine. considerable revision of the functions and operations dealing with these types would be necessary.
2. The Transformation from Publication to Canonical GPL
2.1 Features of Publication CPL
2.1.1 General Princíples
2.1.2 Terminators and Layout
2.1.3 Brackets
2.1.4 Conditional Expressions
2.1.5 0ther features
2.2 Categories Recognized During Transformation
2.2.1 Names
2.2.2 Left Section Bracket
2.2.3 Right Section Bracket 2.2.4 Strings
2.2.5 Dot string
2.2.6 Numbers
2.3 Rules for Transformation

NOTE This section is taken from an earlier version and has not been edited. It may well need major revision and is only included to give the reader some idea of the chief features of publication CPL.

\subsection*{2.1 Features of Publication CPL}

\subsection*{2.1.1 General Principles}

The general principle underlying publication CPL has been to relieve the user, where possible, of the labour of including redundant information in his program. To the user, a program is best regarded as a document written in lines on sheets of paper and, as in studying the content of other documents, its layout may well convey information in the most convenient form. The publication language, therefore, makes use of abbreviations, permits omissions where no ambiguity is possible, and makes use of the layout to convey part of the meaning.

A programming language is more readily described in a formal way if programs are regarded as context-free strings of symbols. Canonical CPL is such a language, and the transformation from publication to canonical is here described. The verbal descriptions in this section describe its main features in an informal way. A more rigorous definition of the transformation is given as a program in publication CPL in Appendix 1.

\subsection*{2.1.2 Terminators and Layout}

A command or definition may be terminated in one of three ways:
1) Explicitly, by use of a semicolon.
2) By its layout; an end of line is a terminator unless the end of line occurs at a point in the program where the context indicates that a command could not terminate at that point. Ends of lines which cannot be accepted as terminators or which are adjacent to the symbol c are ignored.
3) Implicitly; a terminator may be omitted if its presence is not essential to avoid ambiguity.

The use of "space" in CPL is derived from its use in written language in general. Spaces may be inserted freely between words to improve the layout. They are not used within words, and they must be used to separate words whose juxtapositionse might cause ambiguity.

For example, consider the commands
\[
\begin{aligned}
& \text { test } x=y \text { then } z:=z+\frac{1}{2} \mathrm{gr} z:=1+ \\
& z(a+b) ; \text { Total }:=\text { Present Factor }
\end{aligned}
\]

The semicolon before "or" may be omitted. The end of line following " + " cannot terminate a command and is therefore ignored. A space is necessary only between "Present" and "Factor" to avoid ambiguity (this is a case of implicit multiplication).

\subsection*{2.1.3 Brackets}

It is often the case in writing programs that several nested sections of program come to an end at the same point, where a string of closing section brackets has to be inserted. This is an error-prone operation as the number of closing brackets needed is easily miscounted.

Section brackets in CPL may therefore be distinguished from each other by attaching names or tags to them. A closing section bracket corresponds to the nearest opening bracket earlier in the progran which bears the same tag. It defines the end of the section thus specified, and it implies the closure at this point of any contained sections of program which have not yet been closed.

Examples of the use of tagged section brackets may be found in the Introductory Manual and in Appendix 1.

\subsection*{2.1.4 Conditional Expressions}

In publication CPL, the form of a conditional expression is
\[
E_{1} \rightarrow E_{2}, E_{3}
\]

Any occurrence of a comma used in a conditional expression is replaced in the canonical form by the basic symbol "comma".

\subsection*{2.1.5 Other features}

Monadic occurrences of + and - are allowed in publication CPL. In the canonical form, they are replaced by the basic symbols "pos" and "neg".

A wide range of synonyms is available for the basic underlined words In the canonical form. Many examples are found in the Introductory Manual which contains a list of synonyms.

Comments may be inserted freely in publication CPL text. A comment is intoduced by a double bar and continues up to the end of that line; the whole of this text is ignored.

In some cases, symbols may be omitted in the publication form if no ambiguity is caused; for example,
if \(B\) then goto \(L\)
may be written
\[
\text { if } B \text { goto } L
\]
2.2 Categories recognised during Transformation

All instances of the following six categories are recognised during the transformation process. Their descriptions, and the modifications introduced during transformation, are described here. Note that strings of characters or primes mentioned in this section may 4 null. mombares

\subsection*{2.2.1 < name>}

A single lower case letter followed by any number of primes, or an upper case letter followed by a tag.

A tag is a string of letters of either case, digits and dots, followed by any number of primes.

In the canonical form, the symbol \(\not \subset\) is inserted before all occurrences of names.

\subsection*{2.2.2 < left section bracket>}

The symbol \(\$\) followed by a tag. The canonical form has ns haq.

\subsection*{2.2.3 <right section bracket>}

The symbol \(\phi\) followed by a tag. The canonical form has no Tag
Note that two section brackets with identical tags are said to "match".

The closing brackets omitted in publication CPL as in 2. 1. 3 above are inserted by the transformation.

\section*{\(2.2 .4<\) string constant>}

A string of characters starting and ending with a prime. Within a string constant the symbol 10 (subscript ten) is used as an escape character:
1010 stands for 10
\(10^{1}\) stands for
and the meaning of any other character following a single 10 is implementation dependent.

In the canonical form, the symbol \(g\) is inserted before all instances of stiving consterus.
2.2.5 <dot string>

A string of dots and spaces which must include at least \({ }_{2}^{2}\) dots and which is surrounded by commas. The canonical form is as follows:

\subsection*{2.2.6 < number>}

A string of any number of digits and dots which may include spaces and mustinclude at least one digit. The canonical form is preceded by the sumbol \(d\).
```

CPL Reference Manual
Section 2.3
1 July 66
Page 1

```

\subsection*{2.3 Rules for Transformation}

These rules are intended as a brief verbal guide to the operation of the preprocessor program given in Appendix 1. They describe the operations performed on a complete publication text in a series of four passes, the end product being the corresponding canonical text. The operations described under each pass are done together.

\section*{Pass 1}
1. Remove all comment text.

\section*{Pass 2}
2. Recognise all instances of the six categories described in 2.2 above, and transform where necessary as described in that section.

\section*{Pass 3}
3. Insert matching closing section brackets where required.
4. Instances of commas used in conditional expressions are replaced by "comma".
5. Change all new lines to semicolons, replace consecutive semicolons by a single semicolon. Consider the symbols adjacent to each semicolon. If either is c, remove the semicolon. Unless the preceding symbol can legally precede a semicolon and the succeeding symbol can start a command, delete the semicolon.

\section*{Pass 4}
6. Remove all occurrences of the basic symbol \(c\).
7. Insert do between any pair of symbols such that the first of these cannot precede a command and the second must start a command.
8. Recognise monadic uses of + and - and replace them by pos and neg respectively.

3 PRELIMINARIES
3.1 Canonical Form
3.1.1 General
3.1.2 CPL Publication Alphabet
3.1.3 Basic Symbols
3.1.4 Basic Categories
3.2

Types
3.2.1 General
3.2.2 Numerical Types
3.2.3 Logical Types
3.2.4 Other Types
3.3 Transfer and Representation Functions
3.3.1 Programmers Transfer Functions
3.3.2 Basic Transfer Functions
3.3.3 Automatic Insertion of Transfer functions
3.3.4 Polymorphic Operators
3.3.5 Representation Functions
3.4 Constants
3.4.1 General
3.4.2 Syntax
3.4.3 Numerical Constants
3.4.4 Logical Constants
|| 3.4.5 String Constants
3.4.6 Character Representation
3.4.7 Other Constant Expressions

Note The Type character will probably be added. This will involve some alteration \(\sigma\) STrings a) possibly elsewhere. Compound Data SinuTures
and alter The Sole concept
This section may have \(i\) will poobslly also extend That or : esiteuded.

\subsection*{3.1 Canonical Form}

\subsection*{3.1.1 General}

A program in canonical CPL consists of a string of items which are either BASIC SYMBOLS or members of a BASIC CATEGORY. A basic symbol is a single character from the CPL basic alphabet \(\boldsymbol{\alpha}_{\mathcal{B}}\) defined in Section 3.1.3. A member of a basic category consists of a character from \(A_{3}\) identifying the category followed by a word (string of characters) from the possibly implementation dependent alphabet associated with the category. The categories and their associated alphabets are described in Section 3.1.4.

Every implementation must have a method of representing all the characters in \(\AA_{\mathcal{A}}\) and the alphabets associated with the basic categories by one or more characters from its IMPLEMENTATION ALPHABET \(t_{x}\). These are the characters which occupy one print position in the program together with certain extra symbols representing the layout.

The implementation characters may in turn be represented by one or more HARDWARE CHARACTERS from the alphabet \(\boldsymbol{t}_{H}\). These are the basic hardware units of input and output such as a single row of punched tape, a single column of a punched card or a single keystroke on a directly connected keyboard.

Thus, for example, in a hardware implementation which uses a backspace to provide compound or overstruck characters, the following three strings of length six each produces the same printed result (The symbol p is used temporarily to denote the hardware character 'backspace').


In each case the result produced should be the two character string from the implementation alphabet \(i \underline{f}\). This in turn, represents the single character (basic symbol) if from the alphabet of

The transformation from a string of hardware characters to a string of implementation characters is largely implementation dependent. However, it should be arranged so that hardware character strings which would produce the same printed image will produce the same implementation character string as illustrated by the example given above.

The transformation from a string of implementation characters to canonical CPL is done by a preprocessor of the type described in Section 2 and Appendix 1.

\section*{3．1．2 CPL Publication Alphabet}

There is one＇implementation＇alphabet which is not implementation dependent：this is the publication alphabet \(\psi_{p}\) which contains the following 162 printing characters：

and the two non－printing characters＇space＇and＇newline＇．
These characters are used in the rest of the manual except that the three symbols \(\lll<\) may be typed so as to occupy two print positions each．

\section*{3．1．3 Basic Symbols}

The CPL Basic Alphabet contains the 109 symbois listed below．The symbols are given in the representation used in the syntax tables and also，if necessary，the form or forms by which they can be represented in the publication language．it is a general rule of the publication language that when representing a basic symbol by an UNDERLINED WORD （including words of one letter）no distinction is made between upper and lower case letters and spaces，whether underlined or not，are ignored．Thus the two strings
GO TO go to
in the pubilcation language both represent the same basic symbol which is represented in the table below as goto．
（a）The following 25 symbols from \(f_{p}\) also represent unique basic symbols from
\[
\begin{aligned}
& \text { メ/个 } \\
& \text {; : : ( ) []§事 } \rightarrow \text { ( }{ }_{10}
\end{aligned}
\]
(b) the following five basic symbols are represented in the syntax tables by underlined words and in the publication language by single symbols. (see Section 1.2.2)
\begin{tabular}{lc} 
Syntax Form & Publication Symbol \\
bar & 1 \\
greaterthan & \(>\) \\
lessthan & \(<>\) \\
muchgreaterthan & \(><\)
\end{tabular}
(c) The following 54 basic symbols are represented in the syntax tables and in the publication by the same underlined word.
\begin{tabular}{|c|c|c|c|}
\hline and & general & n & test \\
\hline array & goto & note & ter \\
\hline & & & true \\
\hline Boolean & 1 & prefer & type \\
\hline break & \(\frac{17}{\text { in }}\) & \(\underline{5}\) & unless \\
\hline \multirow[t]{2}{*}{cpx} & Index & real & until \\
\hline & integer & repeat & update \\
\hline d & & repeatuntil & \\
\hline dcpx & 1 & repeatwhile & vector \\
\hline double & Iabel & resultis & \\
\hline \multirow[t]{2}{*}{doublecomplex} & let & return & where \\
\hline & load & & while \\
\hline false & logical & sic & \\
\hline finish & longlogical & Step & \(\underline{x}\) \\
\hline \multicolumn{4}{|l|}{fix} \\
\hline fixed & matrix & & \(\underline{2}\) \\
\hline for & & & 8 \\
\hline free & & & \\
\hline
\end{tabular}
(d) The following 14 basic symbols can be represented in the publication language by any one of a number of synonyms. In the table below, the first form is that used in the syntax tables.


(e) The following six basic symbols are represented by only three symbols in the publication language. The preprocessor decides from the context which is the appropriate basic symbol to use.

(f) The remaining five basic symbols are the following:
dotstring which has the publication language representation of at least \(z\) dots, possibly interspersed with spaces and surrounded by commas. The following are three examples of dotstrings in the publication language:
which are used to indicate the basic categories name, number and string-constant respectively.
which is sometimes used when writing canonical CPL strings to separate the basic symbols where there might otherwise be confusion. it has no other significance.

\subsection*{3.1.4 Basic Categories}

The precise definition of the basic categories is implementation dependent. The definitions given in this section apply to the publication language. The basic categories are recognised by the preprocessor.
(a) Names

A member of the basic category <name> in canonical CPL consists of a name-word from the alphabet \(A_{N}\) preceded by the basic symbol \(n\) and followed by the basic symbol \(\phi\) (both from the alphabet Th \(_{3}\) ).

For publication \(C P L\) the alphabet \(\mathcal{N}_{N}\) contains the following 64 symbols:

ABCDEFGHYJKLMNOPQRSTUVWXYZ
abcdefghijkimnopqretuvwxyz
\(\begin{array}{llllllllll}0 & 1 & 2 & 4 & 6 & 7 & 8\end{array}\)
A name-word consists of a single lower case letter followed by any number of primes, or an upper case letter followed by a tag.

A tag consists of a string of letters (of either case), digits or dots of any length followed by any number of primes. A tag may not include, spaces - indeed a space is not a symbol in the alphabet \(f_{N}\).

The alphabet \(\mathscr{H}_{N}\) is a sub-alphabet of \(\begin{aligned} & \text { isp } \\ & \text { and }\end{aligned}\) symbols are represented in the publication language by the same symbols from \(\boldsymbol{s}_{\mathrm{p}}\).
(b) Numbers

A member of the basic category <number> in canonical CPL consists of a number-word from the alphabet ofsp preceded by the basic symbol \(\notin\) and followed by the basic symbol \(\varnothing\) (both from the alphabet for).

For publication \(C P L\) the alphabet \(\mathscr{S}_{D}\) contains the following 11 symbols:
\[
0123456789 .
\]

A number-word consists of any string of these symbols containing at least one digit.

The alphabet is a sub-alphabet of \(\AA_{p}\) and its symbols are represented in the publication language by the same symbols from \(\boldsymbol{x}_{\mathrm{p}}\).
(c) String-Constants

A member of the basic category <string constant> in canonical CPL consists of a string-word from the QUOTABLE ALPHABET \(\AA_{Q}\) preceded by the basic symbol \(\nsubseteq\) and followed by
the basic symbol \(\phi\) (both from the alphabet \(\delta, 8\) ).
For publication CPL the alphabet \(\mathbb{N}_{\text {a }}\) contains the 162 printing characters from the publication alphabet to (see Section 3.1.2) together with the three non-printing characters:

> 'space' 'backspace' 'newline'

A string-word consists of any number of these symbols (including zero).

In publication CPL a string-constant is distinguished from other parts of the text by being enclosed by primes. This fact, together with the rules for dealing with comments in the preprocessor mean that although the characters of ota and \(f_{p}\) are very similar, some of the characters from \(\mathcal{S}_{Q}\) cannot be straightforwardly represented by the same character from th. The precise rule is the following:

The following five characters from thave a special representation in characters from dip as shown:

Representation in \(\mathscr{F}_{p}\)
\(\vdots b\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)
\(\vdots\)

The remaining 160 characters in \(\mathcal{T}_{Q}\) are represented by the same character from \(\mathcal{D}_{\mathrm{p}}\). In addition, the non-printing character space' in thay also be represented by the characters !s from 地.

Note that string-constants are defined above by the way in which the characters from ta are represented, and not in the way in which an arbitrary string of characters from \(t_{p}\) can be interpreted. This implies that not all possible strings enclosed in string-quotes (primes) are acceptable. In particular, the ESCAPE CHARACTER! is only defined if followed by one of the six characters \(b \mathrm{n}\) ! \(\|\) or s .

Publication CPL has the additional rule (implemented by the preprocessor) that new lines and trailing spaces (at the right end of a line) are ignored in stringmonstants.
(d) Section-Brackets

In pubilication CPL the basic symbols 6 and \(\$\) may be followed by a tag taken from the alphabet \(\mathcal{A}_{\mathrm{N}}\) (see (a) above). These are used by the preprocessor to insert extra closing section brackets ( \(\$_{i}\) ) where necessary so that in a canonical CPL program all section brackets nest and match correctly. This means that the tags associated with them in the publication language are no longer necessary so that they do not form a part of the canonical CPL program.

Thus section brackets do not form a basic category in the strict sense. They must, however, be treated as such in
the preprocessor and many implementations will find it desirable to continue to associate a tag with each section bracket even when it is no longer logically necessary in order to give some assistance in locating errors in the program.

\subsection*{3.2 Iypes}

\subsection*{3.2.1 General}

The following sections list all the types of data item currently included in CPL and give a brief description of them. The details are implementation dependent.

Further types may be added from time to time, and it is possible that the incorporation of a more comprehensive treatment of compound data structures may force a considerable revision or extension of the concepts of this section.

The rules concerning transfer functions are collected in Section 3.3 for convenience. They are discussed in more general terms in Sections 1.3.2 and 1.3.3.

\subsection*{3.2.2 Numerical Types}
real
A real number, whose range and precision are implementation dependent.
integer
An integer, whose range is implementation dependent.
index
An integer, whose range is probably less than that of integer and whose use may improve object program efficiency, for example, in subscripts.
complex
A pair of real numbers taken in order as the real and imaginary parts of a complex number.
double
A real number with approximately double the precision of type real.
doublecomplex
A pair of real numbers taken in order as the real and imaginary parts of a complex number. The components have approximately double the precision of the components of a complex data item.

\subsection*{3.2.3 Logical Types}

\section*{Boolean}

A truth value; its value is either true or false
logical
A bit string of a fixed and implementation dependent length.

\section*{longlogical}

A bit string of a fixed and implementation dependent length probably greater than that of logical.

The intention of logical and longlogical is that it should be possible to transform reasonably large sections of type index into logical and of type real into longlogical without loss of information.

In an implementation based on a binary word oriented computer where reals occupied one word and index a shorter, possibly address-length, segment, logicals would probably be the length of an index register and longlogicals a whole computer word.

\subsection*{3.2.4 Other Types}

\section*{string}

A string of characters of any length including null (See Sections 3.1.4. 3.4.5 and 3.4.6).
label
A location in the program and a description of an environment of that area of program (See Section 9.3).
function
A representation of a function (See Section 105. routine
type
A data item whose value is a data item type.
general
A data item whose type may vary dynamically; iT may b
 single-Type-list (Sase Section 7.1).

\subsection*{3.3 Iransfer and Representation Functions}

\subsection*{3.3.1 Programmers Transfer Functions.}

The following transfer functions are available to the programmer:
\begin{tabular}{ll} 
DoubleComplex & dc \\
Complex & \(c\) \\
Double & \(d\) \\
Real & \(r\) \\
Integer & \(n\) \\
Index & \(x\) \\
LongLogical & 11 \\
Logical & 1 \\
String & \(s\) \\
Boolean & \(b\)
\end{tabular}

Each takes a single argument which may be of any meaningful type and produces as its single result an item of the type indicated by its name. Each function exists in two forms, according to the mode of the context in which it is used.
a) The R-mode Transfer Functions

These take a single R mode argument and produce a single R -mode result. The details are implementation dependent, but the results can be described with the aid of the following table which uses the abbreviations indicated above for types.

PAGE 2


Table of Initial Transfer Functions

The entry corresponding to a pair of types in this table indicates the first type to which the data item is to be transformed in a transfer from the first type to the second. Thus the transfer from string to doublecomplex would pass through the sequence.

\section*{string \(\rightarrow\) index \(\rightarrow\) integer \(\rightarrow\) real \(\rightarrow\) complex \(\rightarrow\) doublecomplex}

Further details of the BASIC TRANSFER FUNCTIONS which make up chains of this sort are given in Section 3.3.2.

The transfers indicated by entries enclosed in parenthesis can only be initiated by an explicitly written transfer function. The others may, in suitable circumstances, be invoked automatically by the compiling system (see Section 3.3.3).

There are direct transfer functions from every type (including those not mentioned in the table) to type general which make no change in the representation. Transfers from general to other types can only take place in circumstances when a transfer from the dynamically current type associated with the general would be permitted.
b) The L-mode Transfer Functions

These are badmedpertemerins and can be defined in terms of the \(R\)-mode functions. Thus, for example, the L-mode
transfer function which takes real into complex is equivalent to the following.

Eunction Real tocomplex[ref real \(x\) ] be
load \(\S\) result is complex \([x] \$\)
update \(\delta x:=\) Real [rhs] \(\oint\)
c) Mode Forcing Functions

The functions
RValue \([x]\)
LValue \([x]\)
which can take an argument of any type, force the evaluation of their argument in the mode indicated. They are not true transfer functions, but may invoke the mode transfers described in Section 4.2. These functions may be of use when it is desirable to specify the mode of evaluation in circumstances where the context would not otherwise do this
 formal functioms)
d) Other Types

There are no iransfer functions except those mentioned above. Representation functions are discussed in Section 3.3.5.

\subsection*{3.3.2 Basic Transfer Functions}
a) index to integer
integer to real
real to double
real to complex
double to double complex
complex to double complex
These are standard numerical transfers with changes of representation but normally no loss of information. With the possible exception of integer to real no alarm conditions should be necessary.
b) integer to index
double to real
double complex to complex
These involve a decrease in precision (and possibly of range) without a change of the nature of the number. They will normally involve a rounding or truncating operation and should give an alarm if the range is exceeded.
c) real to integer
complex to real
double complex to double
These invoive a change in the nature of the number probably without alteration of the precision or range. The
two complex to real transformations should show an alarm if the imaginary part of the complex number is not negligible in an implementation dependent sense compared with the real part. The real to integer transfer is intended to allow operations on integers to be carried out using reals even if the representation of reals does not allow exact integer arithmetic to be performed. The transformation should therefore show an alarm whenever the divergence of the real from an integral value is more than a certain implementation dependent amount. it is open to the implementation to make this quantity anything between 0 and 0.5 so that programs which require the nearest integer to a real whose exact value should not be integral should use the basic function Round (see Appendix 3).

An alarm should also be given if the result is out of range.
d) logical to longlogical
longlogical to logical
The logical is taken to be the right hand (least significant) end of a longlogisal whose remaining bits are all zeros. As these transfer functions may be inserted automatically, there should be an alarm on an attempt to transform a longlogical whose extra bits were not all zeros. The basic function Mask (see Appendix 3) may be used to ensure this if required.
e) logical to index
index to logical
string to index
index to string
logical to string
string to lorical
Boolean to index
index to Boolean
These transfers are made by considering all the types concerned to be integers. For logicals this is done by treating them as unsigned (positive) binary integers. For strings the functions are only defined for strings of length l (single characters): for these, the corresponding integer is that given in the collating table (see Section 3.4.6). If several characters have the same number in this table, one of these should be nominated for use by the transfer functions. For Booleans the correspondence is Irue 1 and false \(\leftrightarrow 0\) 。

An alarm should be given if the result is out of range or, in the case of transfers to string, if no suitable character exists.

\subsection*{3.3.3 Automatic Insertion of Transfer Functions}

The transfer functions corresponding to the unparenthesised entries in the table of Section 3.3.1, those to and from type general, and the mode transfer functions (see Section 4.2) and no others, will be inserted by the compiling system as necessary in the following situations.
(a) When the type and/or mode of an expression is constrained by its context. This arises in the following cases.
(i) The right hand side of an assignment statement. The mode is R-mode and the type must be that of the L-value it is to update (see Section 9.2).
(ii) An argument of a function or routine call in the special case where the written operator is the name of a function or routine data item with the attribute constant, and whose formal parameter types and modes are explicitly (or by default) stated in the definition (see Sections 5.3.2 and 10.1.2).
(iii) An argument of a polymorphic function, routine or operator after the particular version of the function, routine or operator has been determined by the rules given in Section 3.3.4. Appendix 3 or elsewhere.
(Note that programmers' functions and routines come under case (i) and basic and library functions under case (ii) or (ili).)

In these situations the compiler will insert the necessary transfer functions to match the mode and type of the expression to its context. If the necessary transfer functions either do not exist or are not allowed to be inserted automatically, the outcome is undefined.
(b) When the value of an expression may be that of one of a number of expressions. The choice being determined dynamically. This arises in the following cases:
(i) The arms of a conditional-expression.
(ii) When a block-expression contains two or more resultis commands.

In these situations each of the alternative expressions is transformed to the type which is the least upper bound of their individual types. This is defined in an obvious way from the diagram on the next page.


Hierarchy of Types

If the required transfer functions do not exist or cannot be inserted automatically, the least upper bound is taken as general.

Mode transfers are not required in these situations.

\subsection*{3.3.4 Polymorphic Operators}

Polymorphic operators are operators which exist in several versions, all known by the same name. The choice between these versions is dependent on the types of their arguments. There are two classes of polymorphic operators, those for which a unique version exists for each allowable set of argument types, and those for which only a limited set of versions exist and transfer functions are used to extend the permissible set of argument types. Transfer representation functions are in the first class, most basic
functions and infixed operators are in the second. Polymorphic operators are a part of the language and no mechanism exists at present to allow a programner to define his own polymorphic functions or routines.

The selection of the correct version of a polymorphic operator of the second class is governed by one of the following rules; the particular rule to be used being determined by the name (or in the case of an infixed-operator, the symbol) of the operator.

If any of the operands are of type general then this rule must be applied dynamically (i.e. at the time at which the operator is to be applied to its operands); the current types of the general arguments must be used to select the correct version of the operator as described below. If the type of the result depends on the version of the operator used in any way, the result must be converted back to type general. If all versions of the operator produce the same type (as occurs, for example, with relations where the result is always Boolean), then this is also the type of the result.

In cases where none of the operands are general, the rule selected can be applied by the compiling system and any transfer functions required may be inserted statically (provided this is allowed under the rules given in Section 3.3.3).

Rule \(A\)
The version of the operator selected is the least upper bound (in the sense of Section 3.3.3) of the types of all the operands and of the lowest available operator type. if no version of the operator of this type exists, or if the least upper bound is general, the effect is undefined. if a suitable operator exists, its type will define the types required of the operands all of which must be transformed to this type before the operator is applied. The type of the result is also determined by the version of the operator; in general it is either the same as that of the operands, or restricted to a single type such as Boolean.

\section*{Rule \(B\)}

The operator requires all its parameters except one to be of a unique specified type, so that polymorphism occurs for only one of its arguents. The version of the operator is determined from the actual type of its only polymorphic argument as follows:
i) If a version of the operator exists which accepts an argument of exactly this type, this is the version chosen.
ii) If no such version exists, then the operator is taken to be a single specified version.

In the first case transfer functions may be inserted automatically for those arguments for which the operators is not polymorphic; in the second case they may be inserted for all arguments.

\subsection*{3.3.5 Representation Functions}

The following pepresentation functions are available to the programmer.
1. Bitpattern [x]

This is a polymorphic function of the first class (see Section 3.3.4) which has the following versions:
\begin{tabular}{lr} 
Argument Type & Result Type \\
\begin{tabular}{lr} 
real & \(\frac{\text { longlogical }}{\text { integer }}\) \\
\(\frac{\text { Index }}{\text { character }}\) & \(\frac{\text { logical }}{\text { logical }}\)
\end{tabular}
\end{tabular}

Other implementation dependent versions may also exist. The effect is to treat the actual (implementation dependent) representation of its argument as a bit pattern of the corresponding type, any spare bits in the result type being filled with zeros. No transfer functions are inserted automatically for this function.
2. Formreal [11]

Forminteger [11]
Formindex [1]
Formcharacter [1]
These functions, which are not polymorphic, together form the inverse of Bitpattern \(x\). They take a longlogical or logical argument as indicated and treat it as if it were the internal representation of the type suggested by the name of the function.

Other representation functions forming the inverse of further versions of Bitpattern may also exist.

\subsection*{3.3.5 Representation Functions}

The following representation functions are available to the programmer.
1. Bitpattern \([x]\)

This is a polymorphic function of the first class (see Section 3.3.4) which has the following versions:
\begin{tabular}{lr} 
Argument Type & Result Type \\
\begin{tabular}{ll} 
real \\
\(\frac{\text { integer }}{\text { Index }}\) & \(\frac{\text { longlogical }}{\text { longlogical }}\) \\
character
\end{tabular} & \(\frac{\text { logical }}{\text { logical }}\)
\end{tabular}

Other implementation dependent versions may also exist.
The effect is to treat the actual (implementation dependent) representation of its argument as a bit pattern of the corresponding type, any spare bits in the result type being filled with zeros. No transfer functions are inserted automatically for this function.
2. Formreal [11]

Forminteger [11]
Formindex [1]
Formcharacter [1]
These functions, which are not polymorphic, together form the inverse of Bitpattern \(x\). They take a longlogical or logical argument as indicated and treat it as if it were the internal representation of the type suggested by the name of the function.

Other representation functions forming the inverse of further versions of Bitpattern may also exist.

\subsection*{3.4 Constants}

\subsection*{3.4.1 General}

Written constants have an R-value which is invariant and independent of any definitions or assignments made in the program. Their natural mode of evaluation (see Section 4.2) is R-mode so that they behave as if they had no L-value.

There are two forms of written constants: ATOMIC CONSTANTS which are usually basic symbols such as True or a single digit, and which have the property that their R-value depends only on their complete written form and cannot be deduced from the R-values of any of its components (if it can be decomposed at all); and COMPOUND CONSTANTS whose \(R\)-value can be deduced from the R-values of its components. A number such as 231 is a compound constant and its value can be deduced from the values of its component digits 2,3 and 1 .

Compound constants are a form of constant expression but the rules governing their evaluation are not those governing the other expressions in CPL.

As constants have an R-value which is immediately determinable from their written form, the concepts of scope and extent (see Section 8.2) are not applicable to them. In this respect they differ from named data items which have been defined with the attribute constant (see Section 7.3 and 10.3.2).

\subsection*{3.4.2 Syntax}
```

<basic numerical constant\rangle ::= <number><<< }10\mp@subsup{|}{10}{}+\mp@subsup{|}{10}{-
<constant prefix> ::= x | | | 工 | d | cpx | dcpx
<numerical constant> ::= <constant prefix>(.
<basic numerical constant>| i
<logical prefix>::= 2 | ́ | 2L | \&L | L2 | LB
<logical constant> ::= \langlelogical prefix\rangle<number>|
<logical prefix><number> bar |
<logical prefix> bar <number>>
bar <logical prefix><number>
<Boolean constant> ::= true | false

```
```

<constant> ::= <numerical constant>|\logical constant>|
<string constant>|<Boolean constant>|
<single type>

```

\subsection*{3.4.3 Numerical Constants}

A basic-numerical-constant of the form
\[
N_{1} 10 N_{2}
\]
where \(N_{1}\) and \(N_{2}\) are members of the basic category number, is only defined if \(N_{3}\) contains at most one dot and \(N_{2}\) contains no dots. The dot in \(N_{1}\). if present, is taken as a decimal point; if \(N\), contains no dot it is taken as a decimal integer. The 10 denotes that the \(N_{2}\) following it is to be interpreted as a decimal exponent. If there is a + or a between the 10 and \(N_{2}\), this is taken as the sign of the exponent; if there is no sign; the exponent is considered positive.

Two unprefixed basic-numerical-constants which have the same numerical values will always be represented in the same way. Thus the constants
\[
1,+1,1,0,+0.1_{10}+1
\]
are interchangeable and only differ in the way in which they are written on the paper.

The type of a numerical-constant prefixed by \(\underline{x}\), \(n\),, d, cpx, or dcpx is index, integer, real, double, complex, or doublecomplex, respectively.

The type of an unprefixed numerical-constant is the least upper bound (in the sense of Section 3.3.3) of its PRESUMPTIVE TYPE and its MINIMUM TYPE.

The presumptive type is determined by context: if the numerical constant stands alone on the right hand side of a definition, the presumptive type is the preferred type if this is numerical. In all other cases and contexts the presumptive type is index.

The minimum type of a numerical-constant is determined by its value. If this is integral and within the index range, then the minimum type is index. If the value is integral and outside the index range but within the integer range, then the minimum type is integer. In all other cases the minimum type is real.

The basic symbol i represents a numerical constant of type complex whose value is a complex number with zero real part and unit imaginery part. Note that with this exception zaere are no unprefixed numerical-constants of type double, somplex, or doublecomplex, but that an expression such as
will be of type complex by virtue of the rules governing the types of infixed-expressions (see Section 6).

\subsection*{3.4.4 Logical Constants}

The occurrence of \(\perp\) or \(L\) in a logical prefix indicates that the constant is to be represented in the type longlogical. Otherwise it is logical. If the prefix contains 2, the constant is a binary pattern and may only contain digits 0 and 1 . If the prefix contains \(\underline{8}\), it is an octal pattern and may only contain digits 0 to 7. Logical constants are assumed right justified unless bar is present, in which case justification takes place towards the side on which bar appears.

\subsection*{3.4.5 String-Constants}

A string-constant is a member of a basic category and, as such, its syntax is not a part of canonical CPL (see Section 3.1.4).

In Publication CPL in particular a string-constant is identified by being preceded and followed by a prime. Inside these string quotes the character ! is used as a single-character-quote or escape indicator. if it is immediately followed by one of the characters
\[
b \quad n \quad s \quad 1 \quad!\quad \|
\]
the pair is taken as the single string character (i.e., the single character from \(\stackrel{T}{Q}^{( }\))
backspace newline space ' ! |l
respectively.
Thus, for example, a string-constant in Publication CPL which was written as
's!b/!'if!'o!b/'
has a length of 10 string characters
\[
\text { s backspace / ' } 1 f \text { ' o backspace'/ }
\]
and when printed would produce
\[
\phi^{\prime} \text { if' } \phi
\]

\subsection*{3.4.6 Character Representation}

The internal representation of strings is by characters from the internal alphabet fo. The number of characters in the alphabet is implementation dependent and the characters have a fixed association with (small) integers which is that used by the transfer functions between strings of length one (characters) and the types index and Bonier.

The characters of the alphabets \(\mathscr{F}_{3}, \mathscr{F}_{I}, \mathcal{A}_{H}, \mathscr{F}_{N}\) and of may all be represented in of x . The detail's of the representation are implementation dependent; in particular it is not necessary for the various alphabets to be represented by disjoint sections of \(\hat{f}_{x}\) nor is it necessary for single characters to be represented by single characters although this is very desirable at least for the quotable alphabet \(0_{0}\).

Tables showing the representation of \(\mathscr{F}_{p}\) and \(t_{Q}\) which are relevant to publication CPL are given in Appendix 2.

\subsection*{3.4.7 Other Constant Expressions}
a) Boolean Constants

The basic symbols true and false are constants of type Boolean.
b) Type Constants

Any expression which falls into the syntactic category <single type (see Section 7.1) is a constant of type type.
c) Other Types

There are no constants of type label, function. routine, array or general except those introduced explicitly by a definition with the attribute constant.

4 EXPRESSIONS
4．1 Syntax
4．2 Evaluation
4．3 Conditional－Expressions
4．3．1 Syntax
4.3 .2 Semantics
4.4 Block－Expressions
4.4 .1 Syntax
4.4 .2 Semantics
4．5 Expression－Lists
4．6 Where－Clauses

\subsection*{4.1 Syntax}
```

<prefixed operator> ::= <name>|<prefixed expression>| rhs | （＜expression〉）

```

〈prefixed expression〉：\(:=\left\langle p r e f i x e d\right.\) operator〉［〈expression＞\(\left.{ }_{\text {in }}\right]\)
〈individual＞\(:=\)＜constant＞｜＜name＞｜＜prefixed expression＞｜ \(\sim\langle i n d i v i d u a l>|<b l o c k\) expression＞｜rhs \(\mid\) pos \(\mid\) neg \(\mid\)（＜expression＞）
\(\langle r e l a t i o n\rangle::=\frac{\text { muchlessthan }}{\text { greaterthan }}\left|\frac{\text { muchsreaterthan }}{}\right|=1 \neq 1 \geq 1\)

〈infixed expression〉: := 〈〈individual〉〈infixed operator〉; \(\begin{gathered}\text { 〈individual〉 }\end{gathered}\)
\(\langle\) conditional expression〉: :=〈infixed expression〉 \(\rightarrow\)
    〈basic expression> comma 〈basic expression>
〈block expression〉: = valueof 〈block>| referenceof 〈block〉
\(\langle b a s i c\) expression〉 \(::=\) 〈infixed expression〉|
                                    <conditional expression>
\(\langle e x p r e s s i o n ~ l i s t\rangle::=\langle b a s i c\) expression〉<, 〈basic expression〉>
\(\langle e x p r e s s i o n\rangle::=\langle e x p r e s s i o n ~ l i s t\rangle \mid\)
    〈expression> where 〈in definition>

\subsection*{4.2 Evaluation}

An expression basically consists of a name, a constant, or an operator with its operands; both the operator and the operands are themselves expressions. More generally an expression may be a sequence of such forms separated by commas.

An expression is a rule for the evaluation of a sequence of one or more quantities or values. Evaluation may in general be performed in either of two modes: L-mode and R-mode. The result of an expression evaluated in L-mode is a sequence of one or more L-values, and the result of an expression evaluated in \(R\)-mode is a sequence of one or more R-values (see Section 4.5). The number of members of such a sequence is normally restricted by the context of the expression. In particular, an expression which occurs as the operand of a monadic or infixed-operator (see Sections 5 and 6) must yield a single value.

The mode of evaluation of a particular expression is determined by context, although certain operators may have a natural mode of evaluation. For example, all monadic and infixed-operators require \(R\)-values as operands and produce single R-values as results, whereas prefixed-operators may take R-value or L-value operands and produce R-value or L-value results according to context. The natural mode of evaluation of a name is L-mode, and of a constant, R-mode. In both cases, the result is a single value.

In circumstances where the mode required by context conflicts with the natural mode, transfers are automatically effected as follows.
a) L-value to \(R\)-value

The data specified by the L-value is extracted to give an R-value.

\section*{b) R-value to L-value}

A new (disjoint) L-value is created and the R-value becomes associated with it; the new L-value is given the attribute constant (see Section 7.3).

The following rules apply to the evaluation of operators and operands in expressions.
1. Except where otherwise stated, an operator and its operands (including their component parts) may be evaluated in any order or in parallel. An operator may be applied to its operands at any time after each of them has been evaluated.
2. Expressions may be transformed and re-ordered in any way that would give identical results if all evaluations were performed exactiy.

\section*{4．3 Conditional－Expressions}

4．3．1 Syntax

〈conditional expression〉 ：：＝〈infixed expression〉 \(\rightarrow\)
〈basic expression＞comma 〈basic expression＞
In the conditional－expression
\[
E_{1} \rightarrow E_{2}, E_{3}
\]
the syntax rules permit \(E_{i}\) to be an infixed－expression and each of \(E_{2}\) and \(E_{3}\) to be a basic－expression．This implies that if either \(E_{2}\) or \(E_{3}\) is to represent an expression－list or is to be qualified by a where－clause，then this must be enclosed in parentheses：similarly，\(E_{i}\) must be bracketed if it is itself a conditional－expression or is qualified by a where－clause．

\section*{4．3．2 Semantics}

The conditional－expression
\[
E_{1} \rightarrow E_{2}, E_{3}
\]
has the same value as the expression
reference of \(\mathcal{F}\) test \(E_{1}\) then result is \(E_{2}\) or result is \(E_{3} \$\) （see Sections 4.4 and 9．6）Note that on evaluating this conditional－expression \(E_{8}\) is evaluated in \(R\)－mode and that one only of \(E_{2}\) or \(E_{3}\) is evaluated in L－mode．Thus the natural mode of evaluation（section 4．2）is L－mode．

4．4 Block－Expressions

\section*{4．4．1 Syntax}

〈block expression＞：：＝valueof 〈block＞｜referenceof 〈block＞
A block－expression enables the computation of one or more results to be written in the form of a command，or block．There are two forms depending on the required mode of evaluation．
value of 〈block＞which produces one or more R－values reference of 〈block＞which produces one or more L－values

In either case，the block must contain one or more result is commands（for syntax see Section 9．5．4）．The type of each result of a block－expression is defined to be the least upper bound（as defined in Section 6．6．2）of the types of the corresponding members of the constituent expressions in all result is commands which appear in the block，but excluding any which appear in further block－expressions within the block．

\section*{4．4．2 Semantics}

A block－expression is evaluated as follows．The commands（and declarations，if any）are executed in sequence until one of the result is commands is encountered．The constituent expression of this command is then evaluated in the mode determined by the prefix value of or reference of and the results transformed if necessary to the appropriate types as defined in the previous paragraph．These results form the value of the block－expression and the execution of the block is then terminated．

Commands in a block－expression may include assignments which update L－values which are non－local to the block（i．e． which are not lost when the execution of the block is terminated）．In such cases the block－expression is sald to have SIDE EFFECTS，and particular care must be taken to ensure that the results of the program are not dependent on the order of evaluations or the rules given in Section 4．2 may imply that the results are unpredictable．

\subsection*{4.5 Expression-Lists}

An expression may generally produce a sequence of results; where there are two or more of these, the syntactic class expression-list enables the members to be written explicitly separated by commas. This form is naturally only meaningful in contexts where several values are meaningful: for example, in assigmment-commands where several simultaneous assignments are being made (see Section 9.2), and in actual parameter lists where several values are being handed over as the operands of a function or routine call (see Section 10.1).

Note that whenever an expression produces a sequence of two or more values, these values are never considered together as being a single value; and thus such an expression does not have a single type, but a sequence of types.

Several or all of the members of an expression-list may be bracketed: for example, in order to delimit the scope of a where-clause. Otherwise, bracketing in an expression-list has no significance.

CPL Reference Manual Section 4.6 20 Dec 65 PAGE I
4.6 Where-clauses

The general form of an expression qualified by a where-clause is
\[
E_{1} \text { where } D_{1}
\]
where the syntax rules permit \(E_{1}\) to be any expression (possibly qualified by a where-clause itself) and \(D_{i}\) to be an in-definition (see Section 8.1). However, since commands and definitions may also be qualified by where-clauses, it is usually necessary for the above form to be enclosed in parentheses. For this reason, the syntactic rules for certain commands and declarations use the forms expression-list or basic-expression to indicate that, if the expression only is to be qualified by a where-clause, they must be enclosed in parentheses.

The semantics of an expression qualified by a where-clause are conveniently defined by the following equivalent form
ref of \(S\) let \(D_{i}:\) result is \(E, \oint\)
(See Sections 4.4 and 8.3).
The rules governing \(T_{\mathrm{e}}\) scope of Wher-clauses may be changed \(T\) move them simpler and more logically whereat

5 PREFIXED OPERATORS AND EXPRESSIONS
5.1 Monadic Operators
5.1.1 Syntax
5.1.2 Semantics
5.2 Prefixed-Operators
5.2.1 Syntax
5.2.2 Semantics
5.3 Prefixed-Expressions
5.3.1 Syntax
5.3.2 Semantics
5.3.3 Array References

\subsection*{5.1 Monadic Operators}

\subsection*{5.1.1 Syntax}
```

<individual>::= <constant\rangle|<name>|<prefixed expression\rangle|
pos | neg | (<expression>)

```

\subsection*{5.1.2 Semantics}
(a) The operator ~

This is written immediately before its operand, and is less binding than any prefixed-operator, but more binding than any infixed-operator (see Section 6.1). It takes an R-value as an operand (which must be of the type logical, longlogical or Boolean) and produces an R-value of the same type as its result.

If the operand is of type logical or longlogical, the nth bit of the result is determined by the nth bit of the operand according to the following table:


If the operand is of type Boolean the result is defined by the following table.
Operand false \begin{tabular}{l} 
true \\
Result
\end{tabular}\(\quad\)\begin{tabular}{l} 
true \\
false
\end{tabular}
(b) Operators + -
+ and - may be used as monadic operators in publication CPL. However, the transformation to canonical CPL replaces them by the symbols pos and neg respectively. In the precedence and grouping rules for determining infixed-operators (see Section 6.1), these symbols are formally treated as equivalent to the symbol sequences ( +1 ) and (-1) respectively. Thus the meaning of prefixed + and is defined to be the same as that of multiplication by the system constants ( +1 ) and ( -1 ) which have the values \(0+1\) and 0-1 respectively.
CPL Reference Manual Section 5.2 22 Nov 65PAGE 1
5.2 Prefixed-Operators
5.2.1 Syntax
Sprefixed operator〉: \(:=\langle n a m e\rangle\) ths |〈ppefixed expression>| (<expression>)

\subsection*{5.2.2 Semantics}
A prefixedwoperator can be a name, a general expression enclosed in parentheses, or a prefixedeexpression. If the prefixedmoperator is a name, it must be either a BASIC FUNCTION (see Section 10.1 .2 ) or a PROGRAMMER \({ }^{\text {B }}\) S FUNCTION (see Section 10.3 ) or an ARRAY (see Section ll). If the prefixed-operator is an expression, it must be possible to evaluate it in Remode to produce a function or array.

\section*{5．3 Prefixed－Expressions}

\section*{5．3．1 Syntax}

〈prefixed expression〉：\(:=\left\langle p r e f i x e d\right.\) operator〉［〈expression＞\({ }_{i n}\) ］
A prefixed－expression consists of a prefixed－operator followed by its ARGUMENT LIST which is enclosed in SQUARE brackets．The brackets must be present even if the argument list is empty（i．e．if the operator requires no operands）．

\section*{5．3．2 Semantics}

A prefixed－expression is used to indicate the APPLICATION of a prefixed－operator to its operands．（Note that the EVALUATION of an operator and its APPLICATION are two completely distinct processes．）The evaluation of a prefixed－expression in either lmmode or \(\mathrm{R}-\mathrm{mode}\) is performed in two stages：
（a）The prefixedmoperator is evaluated in R－mode to produce a function or array，and the operand（which is the expression enclosed in brackets following it）is evaluated in the appropriate mode to form the argument list．These two evaluations may be performed in any order．
（b）The resulting function or array is applied to its argument in the manner described in Section 10.1 to produce the value of the prefixed－expression．The application of a function to its arguments is known as a FUNCTION CALL．

In general，the operand is evaluated in \(L\)－mode and the resulting argument list of l－values，without changes of type，is used in the function call．However，in the special case where the written operator is the name of a function data item with the attribute constant，and whose formal parameter types and modes are explicitly（or by default） stated in the definition，the components of the argument list in a function call are further transformed（if possibie）so that they match the corresponding formal parameters in mode and type．（Note that this special case will probably be the most common form of function call．）

A function may only be called with an argument list with the correct number of arguments．（Some basic functions may be called with any number of arguments－see Appendix 3. No programmer＇s functions can have this property．）

The type of a prefixed-expression is determined by its prefixed-operator (see Section 10.2.2.).

\subsection*{5.3.3 Array References}

An array-type data item may be used as a prefix-operator to refer to an element of an array. in this form, the operator takes a single operand of type index in R-mode (called a subscript), which is used to select the required element according to the definition of the array (see Section 11). The natural mode of evaluation of an array reference is L-mode, giving the L-value of an element of the array. The result could itself be an array, which may be applied to a further subscript to obtain a sub-element, and so on.

For example, if A represents a three dimensional array of real elements (i.e. of type real 3 array), and \(i, j, k\) represent index values
\begin{tabular}{ll} 
A[i] & gives an L-value of type real 2 array \\
A[ijLj] & gives an L-value of type real 1 array \\
A[i][j][k] gives an L-value of type real
\end{tabular}

An alternative syntactic form permits an array reference to be written with two or more subscripts to specify directly sub-elements of multidimensional arrays. For example:
```

A[i,j]

```

The result of an array reference is only defined if the value of the subscript lies within the bounds of the array.

\section*{6 LNFIXED OPERATORS AND EXPRESSIONS}
6.1 Syntax and Grouping
6.1.1 Syntax
6.1.2 General
6.1.3 Juxtaposition, Pos and Neg 6.1 .4 Grouping
6.2 Numerical Operators
6.2.1 Types
6.2.2 Semantics
6.3 Logical Operators
6.4 Relations
6.5 String Operators
6. 6 Polymorphism and Type Matching

\subsection*{6.1 Syntax and Grouping}
```

6.1.1 Syntax
\langlerelation>::= \frac{muchlessthan}{greaterthan}}|\frac{\mathrm{ muchsthan }}{\mathrm{ muteaterthan }
<infixed operator> ::= + | - |x | | | P| \#| | | ^ | v |
| |relation>
\langleinfixed expression\rangle ::= \langle\langleindividual\rangle\langleinfixed operator>;->>
<individual>

```

\subsection*{6.1.2 General}

Infixed-operators require two operands; they may require operands of a particular type or be polymorphic (see Section 6.2 and 6.6). With the possible exception of the operators \(=\) and \(\neq\), their operands are evaluated in R-mode and the result they produce is always an Revalue.

In the written form of expressions, an infixed-operator is placed between its operands and together these may form an operand of a further operator. Thus, an expression may appear as a sequence of alternate operands (i.e. items of the syntactic class individual) and infixed-operators; and therefore rules exist to determine the grouping of operators with operands in any such sequence. These rules may be overridden explicitly by enclosure of an operand in parentheses.

\subsection*{6.1.3 Juxtaposition, Pos and Neg}

The symbols pos and neg rank as members of the syntactic class individual. Semantically, they are treated as constant data items with the values +1 and -1 respectively, their type being that numerical type with the lowest precision (i.e. normally index).

The juxtaposition of two individuals in an infixed-expression is taken as implying multiplication and the operator is therefore inserted before any further analysis takes place.
This may need some modification

\subsection*{6.1.4 Grouping}


\section*{Table of Precedences}

Grouping rules are determined by assigning two PRECEDENCES to each infixed-operator (a left precedence PL and a right precedence \(P R\) ), and by specifying a procedure of analysis on an operandmoperator sequence of the general form
\[
A_{0} x_{1} A_{1} x_{2} \ldots x_{n} A_{n}
\]
where \(A_{0}, A_{1}, \ldots A_{n}\) are individuals and \(x_{1}, x_{2}, \ldots x_{n}\) are infixed-operators. The operator-operand sequence is preceded by a dummy operator \(x_{0}\) (for which \(P R=0\) ) and followed by a dummy operator \(x_{n+1}\) (for which PL \(=0\) ); thus:
\[
x_{0} A_{0} x_{1} A_{1} x_{2} \ldots x_{n} A_{n} x_{n+1}
\]

The grouping procedure is the following. The sequence is searched for any subsequence \(A_{i} x_{i+1} \ldots x_{j} A_{j}\) such that
\[
\begin{aligned}
& i<j \\
& \operatorname{PR}\left[x_{i}\right]<\operatorname{PL}\left[x_{i+1}\right] \\
& \operatorname{PR}\left[x_{j}\right]>\operatorname{PL}\left[x_{j+1}\right]
\end{aligned}
\]

A subsequence of this form is termed a PRIME PHRASE. Any prime phrase found is enclosed in parentheses and thus becomes an individual; the operator-operand sequence is then renumbered to take account of this. The process is repeated until no further prime phrases can be found.

This procedure will not group an infixed-expression completely into pairs of operands separated by an operator. In particular, the operators which are associative (viz \(x+\) \(\wedge \quad v \equiv\) and \(\nexists\) ) may occur in groups with any number of members. These may, in the cases of \(x\) and + , be followed by a single occurence of / or - respectively. Thus an infixed-expression such as:
\[
\begin{aligned}
& a+b+c-d \\
& p \times q / r \\
& x \equiv y \neq z
\end{aligned}
\]
are treated as individuals and not grouped any further. This, however, is in accordance with their normal mathematical meaning which implies that the ordering (or grouping) of the operations inside such a group has no effect on its value.

The relations are also combined into a single group. A COMPOUND RELATION, as such a group is called, has the Boolean value True if and only if each of its component relations has the value True. Thus the compound relation
\[
E_{1} R_{2} E_{2} R_{3} E_{3} \ldots E_{n-1} R_{n} E_{n}
\]
has the value True if and only if all the relations
\[
\begin{aligned}
& E_{1} R_{2} E_{2} \\
& E_{2} R_{3} E_{3} \\
& \ddot{E}_{n-1} R_{n} E_{n}
\end{aligned}
\]
has the value True.

\subsection*{6.2 Numerical Operators}

\subsection*{6.2.1 Types}

Infixed-operators are in general POLYMORPHIC; that is they may take operands of various types, and may produce results whose type depends upon that of the operands. However, in all cases, the operator takes two operands of the same type. (Two operands of differing types are permitted in certain circumstances, but these are always converted to a single common type before application of the operator: See Section 6.6.)

In this and following sections, a table is given for each operator (or group of operators) specifying the type of the result as a function of the type of the operands.


\subsection*{6.2.2 Semantics}

The meaning of the numerical infixed-operators is intended to be the same as their normal mathematical meaning. In many cases, however, the correspondence is only approximate due to the presence of rounding and similar errors. Such divergences from the mathematical ideal are implementation dependent.

Infixed division (/) produces a minimum type of real. There is thus no infixed-operator producing the integer type of division with a remainder. These results can be obtained by using the basic functions Quot[ \(x, y]\) and \(\operatorname{Rem}[x, y]\) (see Appendix 3). The division symbol \(\div\) is not a part of CPL.

Infixed exponentiation ( \(\uparrow\) ) is somewhat irregular. Like division its minimum type is real, but its result type is required to be the same as its operand type and for operands of types real or double this imposes a restriction on the values of the operands.

More precisely, the value of the expression \(E_{1} \uparrow E_{2}\) is one of the values of \(\exp \left(E_{2} \log E_{1}\right)\) with the following restrictions:
1) If \(E_{1}\) and \(E_{2}\) are of type real or double, the expression is undefined unless at least one of the values of \(\exp \left(E_{2} \log E_{1}\right)\) is not complex.
2) If \(E_{1}\) and \(E_{2}\) are of type real or double and \(\exp \left(E_{2} \log E_{1}\right)\) has two real values, the value of \(E_{1} T E_{2}\) is the positive one of these.
3) If \(E_{1}\) and \(E_{2}\) are of type complex or double complex and \(\exp \left(E_{2} \log E_{1}\right)\) has more than one value, the choice between them is implementation dependent.

\subsection*{6.3 Logical Operators}
\begin{tabular}{rl} 
Operators & \(\wedge v \equiv \not \equiv\) \\
Operand Type & Result Type \\
logical & logical \\
Boolean & Boolean \\
general & general
\end{tabular}

Where these operators produce logical or long logical results, they are defined to be bit-by-bit manipulations on the individual bits of the operands. Thus, the nth bit of the result is determined by the nth bit of each operand according to the following table.
\begin{tabular}{ccccc} 
1st operand & 0 & 0 & 1 & 1 \\
2nd operand & 0 & 1 & 0 & 1 \\
\(\wedge\) & 0 & 0 & 0 & 1 \\
\(v\) & 0 & 1 & 1 & 1 \\
\(\equiv\) & 1 & 0 & 0 & 1 \\
\(\underline{E}\) & 0 & 1 & 1 & 0
\end{tabular}

When the operators produce Boolean results, their values may be determined from the same table by replacing 0 by false and 1 by true.

CPL Reference Manual Section 6.43 Jan 66
PAGE 1

\subsection*{6.4 Relations}
\begin{tabular}{cc} 
Operators \(=\neq\) \\
Operand Type & Result Type \\
any & Boolean
\end{tabular}

If the operands are one of the numerical types, then
\[
E_{1}=E_{2}
\]
is true if \(\left(E_{1}-E_{2}\right)\) is a representation of zero. Thus, as with subtraction, equality of numerical values is implementation dependent.

For all other types, \(E_{1}=E_{2}\) is true if the operands yield identical R-values (but see Section 10.2.4).

The expression
\[
E_{1} \neq E_{2}
\]
is always equivalent to
\[
\sim\left(E_{1}=E_{z}\right)
\]

Note that, if the operands are of different types, transfer functions may be invoked under the rules of Section 6.6. For equality between operands of type function or routine see Section 10.2.4, and between operands of type array see Section 11.1.2.
\begin{tabular}{cc} 
Operators & \(\langle\leq \geq\) \\
Operand Type & Result Type \\
Index & Boolean \\
integer & Boolean \\
real Boolean \\
double & Boolean \\
string & Boolean
\end{tabular}

If the operands \(E_{1}, E_{2}\) are of one of the permitted numerical types (which are all non-complex) the value of the relation is determined from the value of \(E_{1}-E_{2}\). Transfer functions may be invoked (see Section 6.6) to make this
possible.
If the operands are of type string, comparison is effected by repeatedly comparing the numerical equivalent (see Section 3.3.5) of successive characters of each string value (beginning with the first or most significant character) until the required attribute is estabiished. If the characters of one of the operands are exhausted before the other in this process, it is assumed to continue with sufficient dummy characters whose numerical equivalents are less than any other character.
\begin{tabular}{cc} 
Operators \(\langle<\rangle\) \\
Operand Type & Result Type \\
index & Boolean \\
Integer & Boolean \\
double & Boolean \\
Boolean
\end{tabular}

These operators formally give the result true if the value of one is negligible compared with the, value of the other. This normally means that
\[
\begin{aligned}
& E_{i}\left\langle<E_{2} \text { is equivalent to }\left(E_{1}+E_{2}\right)=E_{2}\right. \\
& E_{1}>E_{2} \text { is equivalent to }\left(E_{1}+E_{2}\right)=E_{1}
\end{aligned}
\]

The precise definition however is implementation dependent, and in some floating point implementations of the types real and double the decision may be made in the basis of the value of the exponent alone, so that \(E_{1} \ll E_{2}\) may sometimes be stronger than \(E_{1}+E_{2}=E_{2}\) and sometimes be weaker.

If \(E_{1}\) is of type index or integer and does not have the value zero, \(0 \ll E_{i}\) is always true. The value of \(0 \ll 0\) is implementation dependent but should normally be false.
possible.
If the operands are of type string, comparison is effected by repeatedly comparing the numerical equivalent (see Section 3.3.5) of successive characters of each string value (beginning with the first or most significant character) until the required attribute is established. If the characters of one of the operands are exhausted before the other in this process, it is assumed to continue with sufficient dummy characters whose numerical equivalents are less than any other character.
\begin{tabular}{cc} 
Operators \(\langle\rangle\rangle\) \\
Operand Type & Result Type \\
\begin{tabular}{cc} 
index \\
integer & Boolean \\
Roal & Boolean
\end{tabular} & Boolean
\end{tabular}

These operators formally give the result true if the value of one is negligible compared with the value of the other. This normally means that
\[
\begin{aligned}
& E_{1} \ll E_{2} \text { is equivalent to }\left(E_{1}+E_{2}\right)=E_{2} \\
& E_{1}>E_{2} \text { is equivalent to }\left(E_{1}+E_{2}\right)=E_{1}
\end{aligned}
\]

The precise definition however is implementation dependent, and in some floating point implementations of the types real and double the decision may be made in the basis of the value of the exponent alone, so that \(E_{1} \ll E_{2}\) may sometimes be stronger than \(E_{1}+E_{2}=E_{2}\) and sometimes be weaker.

If \(E_{1}\) is of type index or integer and does not have the value zero, \(0 \ll E_{i}\) is always true. The value of \(0 \ll 0\) is implementation dependent but should normally be false.
6.5 String Operators
\[
\begin{aligned}
& \text { Operator } \Leftrightarrow \\
& \text { Operand Type } \text { Result Type } \\
& \text { string } \text { string }
\end{aligned}
\]

This operator concatenates two strings. That is, the result is a string consisting of the characters of the first operand, followed by the characters of the second operand.

The introduction of E. Type character my involve alterations To ing sefirom

\subsection*{6.6 Polymorphism and Type Matching}

The infixed-operators described in Sections 6.2, 6.3 and 6.4 are all polymorphic. The general rules for choosing the correct version of a polymorphic operator and inserting any necessary transfer functions are given in Sections 3.3.3 and 3.3.4. The choice for all these operators is made using Rule \(A\) of Section 3.3.4

7 DEFINITIONS
\[
\begin{array}{ll}
7.1 & \text { Syntax } \\
7.2 \text { Modes of Definition } \\
& 7.2 .1 \text { Definition by Type } \\
& 7.2 .2 \text { Definition by Value } \\
& 7.2 .3 \text { Definition by Reference } \\
7.3 & \text { Constant and Variable Definitions } \\
7.4 & \text { Definitions and Types } \\
& \text { 7.4.1 Preferred Type } \\
& \text { 7.4.2 Type Definitions } \\
& 7.4 .3 \text { Simple Initialized Definitions }
\end{array}
\]
```

CPL Reference Manual Section 7.1 22 Jan 66
PAGE 1
7.1 Syntax
<data type> ::= real | integer | complex | double | logical
index | longlogical I doublecomplex | type |
Boolean | label | routine | string | general
<array type> ::= <single type>.m-<number> array |
<single type>, - vector | matrix >
<function type\rangle ::= <single type> |. function
<single type> ::= <data type>|<array type>|{function type>|
(<single type list>)
<single type list>::=\langlesingle type><,\langlesingle type>>
<name list> ::= <name><,\langlename>>
<formal parameter> ::= <single type>< value | reference ><name>|
<value | reference > >, <single type> (-
<name>.
<formal parameter list> ::= <formal parameter>
<,<formal parameter>>
<type definition> ::= <name list>< be | allbe ><single type list>
<simple definition>: := < variable | constant > >- <name list>
variable }|\frac{constant}{< > >- <name
<expression list>
<LH function body> ::= < fix <definition>>,-
load <block> update <block>
<function definition> : := < recursive > >- < variable | constant > >
<name>[<formal parameter list>i-]
< = | 三><expression list>|
recursive > >-< variable | constant > > |-
< fixed| free >, <function><name>
[<formal parameter |ist\rangle,-] be
<<LH function body>l
\S<LH function body>\$>
<routine definition> ::= < recursive >>- < variable | constant > >,
< fixed | free >:-<routine\rangle\langle{name\rangle
\langle[<formal parameter list>i-]>>-
be 〈block>

```
```

<basic definition> ::= <type definition>|<simple definition>|

```
<basic definition> ::= <type definition>|<simple definition>|
    <function definition>l
    <function definition>l
    <routine definition>l
    <routine definition>l
    < recursive >
```

    < recursive >
    ```

\subsection*{7.2 Modes of Definition}

One of the functions of a definition is to introduce a name which refers to a data item, and which is then identified with all other occurrences of the same name in the scope of the definition. The scope rules are given in Section 8. Other characteristics depend on whether the definition is by value or reference.

\subsection*{7.2.1 Definition by Type}

Type-definitions have the defining operator be or allie. They create a new L-value (i.e. one which is disjoint from all other existing at the moment of definition) and associate this with the defined name. The R-value associated with this new L-value is undefined.

\subsection*{7.2.2 Definition by Value}

A definition by value creates a new L-value and associates this with the defined name; it also associates an initial Revalue with the L-value. Definitions by the defining operators \(=\), all \(=\) and the special forms of function and routine definitions all define by value.

\subsection*{7.2.3 Definition by Reference}

A definition by reference is primarily intended to associate an already existing L-value with the name defined. The L-value is the one obtained by evaluating the defining expression in L-mode. In the exceptional case where the natural mode of evaluation of the defining expression is R-mode, a new L-value of the appropriate type is created, its Revalue is the result obtained by evaluating the defining expression in \(R\)-mode. This L-value is associated with the defined name.


\subsection*{7.3 Constant and Variable Definitions}

An L-value in CPL has either the property constant or yariable, depending solely on how the L-value was created. If an L-value has the property constant, it means that its R-value cannot be changed by assignment. It is meaningful to include the word variable or constant only in definitions by value, if it is omitted from a definition, a constancy attribute is assumed. A function or routine definition is assumed to have the attribute constant unless explicitly specified as variable, whereas a type or simple definition is taken as variable, unless otherwise specified.

\subsection*{7.4 Definitions and Types}

Data iterns of any type nay be defined; however the actual type in most cases need not be explicitiy stated. The rules for determining the type depend on the kind of definition, and on the current PREFERRED TYPE.

\subsection*{7.4.1 Preferred Type}

There are many occasions when it is necessary to determine the type of a data item in CPL. In most cases this can be deduced from known or ascertainable types of its component parts, but there are a few situations where this is not possible. The most important of these are: in the formal parameter lists of function and routine definitions (see Section 10), and in written numerical constants. In these situations it is always possible to specify the type required explicitly.

It is possible for the programmer to select a preferred type which will be used in certain circumstances, where the type of a data item is otherwise unknown.

Initially the preferred type is real; it will be altered only if the programer writes a directive in the form

\section*{prefer <single type>}
where the <single type〉 specifies the new preferred type. This directive may be written in the declaration sequence of a block; its scope consists of any succeeding declarations, together with the command sequence of the block.

If the programmer has specified the type of an array, matrix, vector or function without specifying the single-type which determines the type of its components or result, this is assumed to be the preferred type. This does not apply to functions defined by one of the special forms of definition described in Section 10.3 whose result types are discussed in Section 10.3.6.

\subsection*{7.4.2 Iype Definitions}
(a) The defining operator be

The syntax of the simplest form of type definition is
<name list> be 〈single type list>

It is only meaningful if the name-list and single-type-list have the same number of members, in which case the names on the left of the operator be are associated with data items whose types are the corresponding single-types of the single-type-list. Initial values for the data items are not defined.
(b) The defining operator all be

This operator may be used when it is necessary to define by type a number of data items all of the same type. For example, the following two definitions have the same meaning.
\[
\begin{aligned}
& x, y, z \text { be real, real, real } \\
& x, y, z \text { all be real }
\end{aligned}
\]

\subsection*{7.4.3 Simple Initialized Definitions}
(a) The defining operator \(=\)

The type of each of the data items on the left is the type of the corresponding expression on the right. There must be the same number of defining expressions on the right as names in the name-list on the left. If any of the defining expressions is a single numerical constant and the preferred type is numerical then the type of this constant is determined by the rules given in Section 3.2.2. This form of definition defines by value (see Section 7.2.2).
(b) The defining operator \(\simeq\)

As in (a) the type of each of the data items on the left is the type of the corresponding expression on the right, and there must be the same number of defining expressions as names defined. For each name defined the corresponding defining expression is evaluated in L-mode, and the L-value obtained is associated with the name. (See Section 7.2.3.)
(c) The defining operators all \(=\) and all \(\simeq\)

The effects of these operators are best described in terms of the operators described above.

For example, the following two definitions are synonymous:
\[
\begin{aligned}
& a, b, c \frac{a l l}{=}=E_{1} \\
& \left.a, b, c, x \text { where } x=E_{i}\right)
\end{aligned}
\]

Whilarly the following two are also synonymous:
\[
\begin{aligned}
& a, b, c \underset{\sim}{a} \simeq E_{1} \\
& a, b, c\left(x, x, x \text { where } x \simeq E_{1}\right)
\end{aligned}
\]

\section*{8 DEFINITION STRUCTURE AND SCOPE RULES}
8.1 Syntax
8. 2 Scope and Extent
8.2.1 Scope 8.2.2 Extent
8.3 Scope Rules for Definitions
8.3.1 Recursive
8.3.2 Composite Definitions
8.3.3 And
8.3 .4 In
8.3.5 Where
8.3.6 Let
8.4 Other Scope Rules

8．1 Syntax

〈and definition 〉 ：：＝〈basic definition 〉
＜and 〈basic definition＞＞
\(\langle i n\) definition 〉 \(:=\)＜and definition＞｜
＜and definition＞in 〈in definition＞
\(\langle d e f i n i t i o n\rangle:=\langle i n d e f i n i t i o n\rangle \mid\)
＜definition＞where＜in definition＞
\(\langle d e c l a r a t i o n\rangle::=\) let 〈definition＞

The scope of where mg be changed

\subsection*{8.2 Scope and Extent}

\subsection*{8.2.1 Scope}

The SCOPE of a definition is a syntactic concept; it is that area of the written program in which the data items defined in definitions may be referred to using the names with which the definitions associate them.

If a definition (the 'inner' definition) occurs within the scope of another definition of the same name (the 'outer' definition), the inner definition supersedes the outer one. The outer definition is said to be 'shielded \({ }^{\text {i }}\) from the scope of the inner one, and to have a 'hole' in its scope.

\subsection*{3.2.2 Extent}

The EXTENT of a data item is a dynamic concept; it is that part of the dynamic execution of a program through which a named data item maintains a continous existance.

In CPL the extent of a named data item is controlled by the scope of its definition. It continues as long as the command currently being executed lies within the scope (including any holes there may be in it); it terminates as soon as the current command lies outside the scope of the definition.

For this purpose the whole of the execution of a routine call is considered to lie in the extent containing the call. irrespective of the scope which contains the body of the routine.

\subsection*{8.3 Scope Rules for Definitions}

The scope of a definition is controlled by its position in a program, and by use of the words recursive, and, in and where.

\subsection*{8.3.1 Recursive}

The scope of a definition does not normally include its own definiens (i.e. the right hand side of its own definition). However, by preceeding the definition by the word recursive, it can be made to do so. This may only be used if all the data items defined by the definition are either functions or routines. The effect of recursive on other definitions is undefined.

\subsection*{3.3.2 Composite Definitions}

Composite definitions made up of definitions joined by and, in or where together with uses of recursive may be formed into a single basic definition by enclosing them in section brackets. The resulting definition may also be qualified by preceeding it by the word recursive provided it satisfies the conditions of Section 8.3.1.

\subsection*{8.3.3 And}

This word is used to combine two or more definitions into one. Unless this combined definition is recursive, none of the component definitions is in the scope of any other component definition. The order of activation of the definitions is undefined; it is intended that they be considered as activated in parallel. Thus, for example, the effect of the definitions.
\[
\begin{aligned}
N_{1} & =E_{1} \\
\text { and } N_{2} & =E_{2} \\
\text { and } \stackrel{N}{F} & =E_{r}
\end{aligned}
\]
is the same as the effect of the definition
\[
N_{1}, N_{2}, \ldots, N_{r}=E_{1}, E_{2}, \ldots, E_{r}
\]

The effect is undefined unless the names: \(N_{1}, N_{2}, \ldots, N_{r}\) are all different.

\section*{8.3 .4 In}

When this word separates a number of definitions there is an implied association rule to the right. For example, the definition
\[
D_{1} \text { in } D_{2} \text { in } D_{3}
\]
is synonymous with
\[
D_{1} \text { in } 9 D_{2} \text { in } D_{3} \text { 東 }
\]

It is therefore only necessary to consider the simple composite form
\[
D_{1} \text { in } D_{2}
\]

The scope of \(D_{1}\) is \(D_{2}\) alone, and the scope of \(D_{2}\) is the same as that of the whole definition. If the composite definition is recursive then its scope includes its definiens; that is the scope of \(D_{2}\) now includes \(D_{1}\) and \(D_{2}\), but the scope of \(D_{1}\) is still only \(D_{2}\).
8.3.5 Where \(\frac{\text { NBS The rates governing } M_{i} \text { scope of of clans may in changed. }}{\text { Where }}\)

As with the word in, the word where separates a number of definitions but in this case there is an implied association rule to the left. For example
\(D_{i}\) where \(D_{i}\) where \(D_{3}\)
is synonymous with
\(\oint D_{i}\) where \(D_{2} \$\) where \(D_{3}\)
It is therefore only necessary to consider the simple form \(D_{1}\) where \(D_{2}\)

The above definition is exactly equivalent in meaning to
\[
D_{2} \text { in } D_{1}
\]

This form is described in Section 8.3 .4 above.

The word where may also be used to: introduce a where-clause qualifying an expression or command. The general rule is that a where-clause qualifies the longest command, definition or expression (in that order of preference) immediately preceding it; the scope of its component definition is the qualified command, definition or expression. As commands and definitions frequently terminate in expressions, it is generally necessary to enclose expressions qualified by where-clauses in parentheses. (See Sections 4.6 and 9.8.)

\subsection*{8.3.6 Let}

A declaration is a definition preceded by the word let. A declaration or a sequence of declarations may only occur at the head of a block. The scope of a deciaration is the set of immediately following declarations and the command sequence of the block. If the definition in the declaration is recursive then its scope includes its definiens as weil.

\subsection*{3.4 Other Scope Bules}

The concept of scope also applies in situations where names are introduced other than by definition. There are two cases, as follows.
(a) Formal Parameters

The scope of a formal parameter in a function or routine definition is the defining expression or command. (see Section 10.)
(b) Labels

The scope of labels declared by colon as in the command \(L: a:=b x+c\)
is the smallest enclosing routine body or block expression (see Section 9.8).

9 COMMANDS
9.1 Syntax
9.2 Assignment-Commands
9.2.1 Syntax
9.2.2 Semantics \(\times 9.2 .3\)
9.3 Transfer-Commands and Labels
9.3.1 Syntax
9.3.2 Semantics
9.3.3 Labels
9.4 Routine-Commands
9.4.1 Syntax
9.4.2 Semantics
9.5 Other Simple-Commands
\(\times\) 9.5.1 Syntax
> 9.5.2 Return
9.5.3 Break
9.5.4 Result is
9.6 Conditional-Commands
9.6.1 Syntax
9.6.2 if-Commands
9.6.3 Test-Commands
9.7 Cycle-Comnands
9.7.1 Syntax
9.7.2 While-Commands
9.7.3 Repeat-Commands
9.7.4 For-Commands
\| 9.7.5 Evaluation of For-Lists
\(\times 9.8\) Blocks
\begin{tabular}{lll}
\(\Varangle\) & 9.8 .1 & Syntax \\
\(y\) & 9.8 .2 & Notes \\
\(Y\) & 9.8 .3 & Declarations \\
\(x\) & 9.8 .4 & Command-Sequences \\
\(x\) & 9.8 .5 & Leaving Blocks
\end{tabular}

CPL Referen
9.1 Syntax
\begin{tabular}{rl}
\(\langle a s s i g n m e n t ~ c o m m a n d\rangle ~\) & \(:=\) \\
& 〈expression〉 \(:=\langle\) expression list＞1 \\
& 〈expression〉 all \(:=\) 〈basic expression〉
\end{tabular}
〈transfer command> : : = goto 〈basic expression>
〈routine command〉 :: = 〈name>|<prefixed expression〉
\(\langle\) simple command〉 ::= 〈assignment command〉|〈transfer command>|
    <routine command>| resultis <expression>|
    break | return |〈biock〉
\(\langle i f\) command> \(:=\) < if \(|\) unless 〉〈expression〉 do 〈basic command>
〈test command> ::= test <expression> do <command> or
                                    <basic command>
〈conditional command> \(::=\langle i f\) command〉|<test command〉
〈while command> \(::=\) <while \(\mid\) until ><expression〉 do
                                    <basic command>

〈for element〉 ::= 〈basic expression>|
    step 〈basic expression〉, 〈basic expression〉,
                                    <basic expression>|
        <basic expression> to 〈basic expression>1
        〈basic expression>, <basic expression>
                                    dotstring <basic expression>
〈for list> ::= <for element><,<for element>>ol

\(\langle\) for command〉 \(::=\) for \(\langle\) name〉 \(=\langle\) for \(l i s t\rangle\) do \(\langle b a s i c\) command〉|
        forexternal <individual>< \(=|:=\rangle\langle\) for \(1 i s t\rangle\) do
                            <basic command>
\(\langle c y c l e\) command〉 ：：＝〈while command〉｜〈repeat command〉｜
                                    <for command>
\(\left\langle\right.\) basic command〉 \(::=\langle\langle n a m e\rangle:\rangle_{0}\langle\langle c o n d i t i o n a l\) command>|
                                    <simple command〉|<cycle command〉>
〈command> ::= 〈basic command>|<command> where <in definition>
<note> ::= prefer <single type>| sic \(\mid\) note <string constant>
\(\langle b l o c k\rangle:=\$\left\langle\langle\text { note }\rangle_{i}\langle d e c l a r a t i o n\rangle_{0}\right|\langle d e c l a r a t i o n\rangle_{i}|\langle c o m m a n d\rangle\rangle\)

\subsection*{9.2 Assisnment-Commands}

\subsection*{9.2.1 Syntax}
```

〈assignment command> ::= <expression> := <expression list>|
<expression> all := <basic expression>

```

\subsection*{9.2.2 Semantics}
(a) The effect of the command
\[
E_{1}:=E_{2}
\]
is as follows. The expression \(E_{i}\) is evaluated in L-mode to produce a sequence of \(L\)-values of any type, say \(L_{1}, L_{2} \ldots L_{m}\); the expression \(E_{2}\) is also evaluated in \(R\)-mode to produce a sequence of R-values of any type, say \(R_{1}, R_{2} \ldots R_{n}\); these evaluations may be performed in any order, but must be complete before the next phase starts. In order for the command to be well-formed, it is necessary that \(m=n\). Each member of the sequence \(L_{i}, L_{2}, \ldots, L_{m}\) is then UPDATED by the corresponding member of the sequence \(R_{1}, R_{2}, \ldots, R_{n}\).

To update the L-value \(L_{k}\) with the \(R\)-value \(R_{k} R_{q}\) is first transformed to be of the same type as \(\mathrm{L}_{\mathrm{k}}\) if the appropriate transfer function exists (if it does not, the effect of the command is undefined). Let the transformed R-value be \(R_{k}^{p}\). The R-value associated with \(L k\) is now altered to be Rk so that future evaluations of \(E_{G}\) in \(R\)-mode will produce the R-value \(R\) 员 (unless modified by further assignment-commands).

Note that the L-value \(L_{h}\) is not altered by updating it, and that the R-value of any expression which has the L-value \(L_{k}\) is altered by updating \(L_{k}\). If two L-values are not disjoint - i.e, if they share a part or the whole of their associated R-values - then updating either will effect the R-value associated with both at least as far as their shared part is concerned.

The order in which the sequence \(L_{1}, L_{2}, \ldots, L_{m}\) is updated is unspecified (cf. Section 4.2). This means that in general the L-values in the sequence \(L_{i}, L_{2}, \ldots . L_{m}\) should be disjoint or the effect of the assignment-command may be undefined.
(b) The effect of the command
\[
E_{1} \text { all }:=E_{2}
\]
is as follows. The expression \(E_{1}\) and \(E_{2}\) are evaluated as described above to yield the sequences \(L_{1}, L_{2}, \ldots, L_{m}\) and \(R_{1}, R_{2}, \ldots, R_{n}\). In this case the sequence of Revalues must have only one member (i.e. \(n=1\) ).

The command is completed by updating every member of the sequence \(L_{i}, L_{2}, \ldots, L_{m}\) with the Revalue \(R_{1}\).
9.2.3 Updating

If \(L_{i}\) is an L-value and \(R_{i}\) is an \(R\)-value of the same type, there is an operation known as updating \(L_{1}\) with \(R\), . This operation depends on the way in which \(L\), originally arose.
This section is inesmpipte

\subsection*{9.3 Transfer-Cormands and Labels}

\subsection*{9.3.1 Syntax}
\(\langle t r a n s f e r\) command>: \(:=\) soto 〈basic expression 〉
\(\langle\) basic command \(\rangle::=\langle\langle\) name \(\rangle:\rangle 0\langle\langle\) conditional command \(\rangle|\) \(\langle\) simple command \(\rangle \mid\langle\) cycle command \(\rangle\rangle\)

\subsection*{9.3.2 Semantics}

In a transfer-command, the basic symbol goo is followed by a basic-expression which is to be evaluated to produce an \(R\) - value of type label.

The process of executing a command is known as an antis "activation" of that command. At any moment in the actirretion of a command, a number of further activations may be current, since one activation may call for a succession of further activations to be completed before it can be completed itself. Thus activation of a routine-command calls for an activation of the routine body which may call for activation of sone subblock of the body, and so on, each activation being "called for" by the most recent previous activation of the sequence which is not yet complete. If a function or routine is called recursively, the same command may have more than one activeation current ait the same moment.

An activation may be terminated either normally, as described elsewhere, or by a jump; a jump has an \(R\) - value of type label associated with it. This value specifies the destination of the jump, providing the following information:
(a) a point in some configuration of commands at which some activation is to be continued.
(b) a rule for determining which activation is to be continued at the point specified; this is in the form of a rule for determining whether or not an activation is "live" to the destination.

The effect of a transfer-command is then specified by the following rule, which is to be applied iteratively: activation of a trinsfer-command is immediately terminated by a jump whose destination is specified by the value of the expression associated with the command. If an activation calls for an activation which is terminated by a jump to a destination to which it is not itself live, then it also is temmated by the jump.

CPI, Reference Manual Section 9.3 5 July 66 Page 2
(For rules governing the termination of blocks and cyclecommands, see 9.8.5.)

This process is continued until an activation is found which is live to the destination.

The effect of a jump is undefined if there is no current activation to which it is live.

The following trivial example illustrates the way in which ambiguities may arise when recursive routines and functions are involved, and how this rule resolves them. If \(R\) is defined by
let recursive routine \(R\) [integer \(n\), label \(L, M]\) be
\[
\begin{aligned}
& \oint \quad i x^{0} n>0 \text { do } R[n-1, M, N] \\
& N: \text { goto } \mathrm{I}
\end{aligned}
\]
the effect of executing \(R[10\), Even, Odd \(]\), say, is to jumn to the destination "Even", whereas \(R[9\), Even, Odd] jumps to the destination "Odd". Note that each call of \(R\) ultimately has its two label parameters specifying the same point \(N\) in:two different activations of R .

Once the correct activation has been discovered, the point at which it is to be resumed may still lie within blocks, conditional-comrnands or cycle-commands which are not yet activated. (The mules of 9.3.3. will imnly that these are the only possibilities; in particular, note that the effect of attempting to jump into an expression is undefined.) These activations are achieved by successively "jumping into" the commands, starting with the largest command which is not yet activated and working inwards.

The effect of jumping into the command
\[
\text { if } E_{1} \text { then } C_{1}
\]
is identical with the effect of jumping into the result of replacing this conditional command, until terminated, by \(C_{1}\).

The effect of jumping into the command
\[
\text { for } N_{1}=F_{1} \text { do } C_{1}
\]
is to execute the command as written, with the exception that on the first cycle, if any, \(C_{1}\) is entered by continuing the jump into it, after setting the initial value of \(N_{1}\).

On jumping into a block, any initialisations are performed as if entering the block normally, before continuing tre jumn further into the body of the block.

If, while evaluating the expressions occurring in a block or cycle comand head for this purpose, a transfercommand is executed which terminates the block or cyclecomnand, this jump supersedes the former one, which is not pursued further.

The effect of atternting to jump from the head of a block or cycle-command into its body is implementation dependent.

The effects of jumping into other forms of compoundcomand may be deduced from the rules for expressing such commands in terms of commands of the above form.

The effect of a transfer-momand which according to the above rules would terminate a call to the load or update part of a load-update pair, is implementation dependent, and may be undefined. (See Sec.10.3.5.)

\subsection*{9.3.3 Labels}

An identifier of type label may be introduced in one of two different wiys: by a definition using one of the basje symbols let, and, in and where, as specified in Sections 7 and 8; or by its occurrence as a "command label", in which case it occurs in the text followed by a colon, and preceding some command (or some further command label for a command.).

A command label has the status of a definition of type label for the identifier which is used, in that a new data item is associated with that identifier whenever the scope of the cominand label is entered. The scope is that which a definition by let would have if placed at the head of the smallest routine body or block-expression body in which the command label occurs. The effect when two command label occurrences use the same identifier and have the sune scone is undefined (see also Note 1.)

The data item associated with the command label identifier has an \(R\) - vilue which specifies a destination for jumps, providing the information for (a), (b) of 9.3 .2 as follows:
(a) the point indicated is the point of the command label occurcence.
(b) the activation of the routine or block-expression body which is being initiated is live to the destination; an activation of a block, conditionalcommand or cycle-command will be live to the destination if its text contains the command label occurxence, and is called for by a command which is also live to the destination.

The data item associated with a command label is a consu"at, and may not be updated. But its \(R\) - value may be

CPL Reference Manual Section \(9.3 \quad 5\) July \(66 \quad\) Page 4
assigned to variables of type label (declared at the head of a block, say).

Excepting possibly for an implementation dependent set of library labels, every \(R\) - value of type label originates as the value associated with a command label in the above way. For the sake of the boolean relations \(=\), 7 applied to labels, two such \(R\) - values are equal if they arise from (possibly different) labels for the same command at the same activation. Rules for equality between library labels are implementation dependent.

\section*{NOTE}
l. For convenience in implementing labels, the interpretation is left implementation dependent in two situations of no great significance.
(a) when, according to the above rules, a command label occurrence does not lie within its own scope.
(egg.

(b) when the scope is a routine body, and the command label identifier is also used as a formal parameter for the routine.

9．4 Routine－Commands

9．4．1 Syntax

〈routine command＞：：＝＜name＞｜＜prefixed expression＞
\(\langle p r e f i x e d\) expression〉 ：：＝〈prefixed operator〉［〈expression＞，．］

\section*{9．4．2 Semantics}
（a）If \(N_{i}\) is a name the command
\[
N_{8}
\]
has the same effect as the command
\(N_{i}[]\)
（b）If a command is a prefixed－expression，the operator and operand are evaluated in the manner described in Section 5．3．2．The evaluation of the prefixed－operator，in this case，however，must produce a routine．The rules about evaluating the operand and transforming the resulting arguments to the appropriate mode and type are those given in Section 5．3．2．

The application of a routine to its arguments is a form of command；its effect is described in Section 10．1．

Temporary Heading. Line length 60 Page length 66. PAGE 1 Sections 9.5 .1 and 9.5 .2 not yet wetter

\subsection*{9.5.3 Break}

The basic symbol break is a command which may only appear within the controlled command of cycle-command. It may not appear in the body of armbinemefintitor of in the block following the basic symbol update unless the cycle-command immediately enclosing it textually does so also (see Section 10.3).

It has the same effect as a transfer-command to a label immediately following the smallest cyclemcommand enclosing it textually.

\subsection*{9.5.4 Result-is}

The command

\section*{result is E}
may appear in the block following one of the basic symbols value of, reference of or load. It may not appear in the body of in in the block following the basic symbol update unless the basic symbol with which it is associated does so also (see Section 10.3).

The effect of the command is described in Sections 4.4 and 10.3.5.
These sections man need agio revision.

9．6 Conditional－Commands

\section*{9．6．1 Syntax}
```

<if command> ::= < if | unless ><expression> do <basic command>

```
\(\langle\) test command〉 ::= test 〈expression〉 do 〈command〉 or
                                    〈basic command>

\section*{9．6．2 Lf Commands}

The command sequence
\[
\frac{\text { if }}{C_{2}} E_{1} \text { do } C_{b}
\]
has the following effect：
The expression \(E_{i}\) is evaluated in \(R\)－mode to produce a result of type Boolean．If the value of \(E_{i}\) is false，the command \(C_{1}\) is skipped and the execution continues with the command \(C_{2}\) ；if the value of \(E_{1}\) is true the execution continues with the command \(C_{i}\) ．if the R－value of \(E_{i}\) is not transformable to type Boolean，the effect is undefined．

The command
unless \(E_{B}\) do \(C_{6}\)
has the same effect as the command
\[
\text { if } \sim\left(E_{1}\right) \text { do } C_{1}
\]

\section*{9．6．3 The Test－Command}

The command
test \(E_{1}\) do \(C_{1}\) or \(C_{2}\)
has the same effect as the command
\(\oint\) if \(B\) ，do \(C\) i
unless \(B_{1}\) do \(C_{2} \$\) where \(B_{1}=E_{1}\)
provided the name \(B\) ，used for the value of the Boolean expression \(E_{1}\) is chosen to be distinct from all other names occuring in the command．

\section*{9．7 Cycle－Commands}

\section*{9．7．1 Syntax}

〈while command〉 \(::=\langle\underline{\text { while }}\) until 〉＜expression〉 do \(\underset{\text { 〈basic }}{\text { command〉 }}\)
〈repeat command〉：\(:=\)＜command〉〈 repeatwhile｜repeatuntil＞〈basic expression＞1 ＜command＞repeat

〈for element〉：：＝＜basic expression＞｜ step 〈basic expression＞，〈basic expression〉， ＜basic expression＞1 ＜basic expression＞to＜basic expression＞1 ＜basic expression＞，〈basic expression＞
dotstring＜basic expression＞
〈for list＞：：＝＜for element＞＜，〈for element＞＞
世finist
〈for command〉：：＝for 〈name〉＝〈for list〉 do 〈basic command＞｜ forexternal．〈individual＞＜\(=|:=\rangle\langle\) forlist〉 do ＜basic command＞
\(\langle\) cycle command〉：：＝〈while command〉｜〈repeat command〉｜
＜for command＞
Either \(:=\) or \(=\) may be used in pither form of formosomand

\section*{9．7．2 While－Commands}
（a）The command
while \(E_{1}\) do \(C_{2}\)
has the same effect as the command
\[
L_{1}: \text { if } E_{1} \text { do } \Im_{\text {go to }} L_{i} \$
\]
（b）The command
until \(E_{i}\) do \(C_{i}\)
has the same effect as the command
while \(\sim\left(E_{i}\right)\) do \(C_{i}\)

\subsection*{9.7.3 Repeat-Commands}
(a) The command
C) repeat
has the same effect as the command
while true do \(C_{1}\)
(b) The command
\(C_{i}\) repeat while \(E_{\text {, }}\)
has the same effect as the command
§ C
unless \(E_{1}\) do break \(\$\) repeat
(c) The command
\(C_{1}\) repeat until \(E_{1}\)
has the same effect as the command
\(C_{i}\) repeat while \(\sim\left(E_{1}\right)\)

\subsection*{9.7.4 For-Commands}
(a) The commands
\[
\text { for external },:=F_{i} \text { do } C_{8} \text { and }
\]
for external \(1_{1}=F_{i}\) do \(C_{i}\)
have the same effect as the command
\(\zeta\) let \(N: \simeq E_{1}\)

provided \(N_{1}\) and \(N_{2}\) are names which are distinct from any other names occuring in the command.
(b) The command
\[
\text { for } N_{1}=F_{1} \text { so } C_{1}
\]
is interpreted as follows. The for-list \(F_{i}\) is evaluated in R-mode as described in Section 9.7 .5 to specify a sequence of R-values. The name \(N_{1}\) is taken as the name of a new CONTROL variable whose type is the least upper bound of the types of the elements in this sequence and whose scope is the controlled command \(\mathrm{C}_{\mathrm{i}}\).

If the sequence of \(R\)-values obtained by evaluating \(F_{i}\) is void, the for-command has no effect. Otherwise, if the sequence of R-values obtained is \(V_{1}, V_{2} \ldots V_{n}(n \geq 1)\) the effect of the for-command is the same as the effect of the command


Note that the values \(V_{1}, V_{2} \ldots . . V_{n}\) are determined once and for all before the cycle is entered, so that they cannot be altered by assignments within the controlled command, and that the control variable \(N_{i}\) is redefined with the next value of the sequence at the start of each cycle, so that assignments to \(N\), are effective only until the end of the cycle in which they are made.

A jump out of the controlled command either by a transfer-command to a label external to it or by a break command, has the effect of jumping out of a block so that the control variable \(N\) is lost.

A jump into the controlled command is treated like a jump into a block (see Section 9.8) and the evaluation of the for-list is treated as part of the declarations at the head of the block. More precisely, the effect of the commands
go to \(L_{1}\)
for \(N_{3}=F_{1}\) do
\(S_{S}=F_{1}: \ldots . L_{1}: C_{2} ; \ldots . . \oint\)
is the same as that of the commands

\section*{go to \(L_{2}\)}
\[
\begin{aligned}
& L_{2}: \oint_{i} \frac{\text { let }}{\text { for }} N_{1}=\frac{\text { True }}{F_{1}} \text { do } \\
& S_{2} \text { if } B_{1} \text { do } \oint^{3} B_{i}:=\text { Ealse }
\end{aligned}
\]
provided the new names introduced are distinct from all others. Note that this equivalence, unlike many given elsewhere in this section, is only true dynamically. There is no simple textually equivalent sequence of commands as the interpretation of \(L_{1}\) as a label in a transfer-command
depends on its context, \(i . e\). on whether the transfer-command is inside or outside the for*statement which contains \(L_{1}\).

\subsection*{9.7.5 Evaluation of For-Lists}

The sequence of values specified by a for-list is the sequence of Revalues of its component for-elements taken in order from left to right. A for-element which is a basic-expression specifies a single value; the other forms specify an arithmetic progression (which may have no members) determined as follows:
(a) The formelement
\[
\text { step } E_{1}, E_{2}, E_{3}
\]
where \(E_{1}, E_{2}\) and \(E_{3}\) are numerical expressions specifies a sequence with \(n+1\) values where \(n=1 n t e g e r\left[R e a l p t\left[\left(E_{3}-E_{1}\right) / E_{2}\right]\right]\) if \(n \geq 0\) and an empty sequence if \(n<0\). Here the function Realpt gives the real part of its argument for complex numbers, and the function Integer gives the nearest integer to its argument (see Appendix 3). if \(n \geq 0\) the sequence of values specified is given by \(E_{i}+r E_{-}\)for \(r=0,1, \ldots . . n\). The type of each element of a sequence which is not void is the type of the expression \(E_{1}+E_{z}\).
(b) The for-element
\[
E_{1} \text { to } E_{2}
\]
specifies the same sequence as the for-element
\[
\text { step } E_{1}, 1, E_{2}
\]
(c) The for-element
\[
E_{1}, E_{2} \ldots, E_{3}
\]
specifies the same sequence as the for-element
\[
\text { step } E_{1}, E_{2}-E_{1}, E_{3}
\]
 scope of the definition is the for-list only. Thus in the command
for external \(E_{i}:=F_{i}\) where \(D_{\text {, de }} C_{l}\)

include either \(\mathrm{F}_{\text {, }}^{\text {in }}\)

CPL Reference Manual Section \(10.0 \quad 12\) Feb 66 PAGE 1

10 EUNCTIONS AND ROUTINES
10.1 Introduction. Function and Routine Calls
10.1.1 Syntax
10.1.2 Semantics
10.2 Functions and Routines as Data Items
10.2.1 Syntax
10.2.2 Types
10.2.3 Expressions and Assignments
10.2.4 Equality between Functions, Routines
10.3 Function and Routine Definitions
10.3.1 Syntax
10.3.2 Semantics. General
10.3.3 Formal Parameters
10.3.4 Free Variables
10.3.5 LH Functions
10.3.6 Determination of Result Types

\subsection*{10.1 Introduction．Function and Routine Calls}

\section*{10．1．1 Syntax}

〈prefixed operator〉 ：：＝〈name＞｜（＜expression＞）｜rhs｜ ＜prefixed expression＞

〈prefixed expression〉 ：：＝〈prefixed operator〉［＜expression＞，．］
〈routine command＞：：＝〈name＞｜＜prefixed expression〉

\section*{10．1．2 Semantics}

A function is a representation of a rule for evaluating function calls，which are forms of expression（see Section 5．3）．A routine is a representation of a rule for obeying routine calls，which are forms of command（see Section 3．4）．

Functions and routines fall into the following categories：
（a）Programers＇functions and routines：functions and routines introduced by an activation of one of the special forms for definition to be described in Section 10．3．
（b）Basic functions and routines：any of the functions and routines described in Appendix 3 to this manual，introduced into the program by use of the corresponding name，in a context where it is not subject to any definition of that name．
（c）Library functions and routines：an implementation dependent function or routine，introduced by an undefined occurrence of a name which does not correspond to any basic function or routine name． It is assumed that any published program will be accompanied by an adequate，possibly informal account of these functions and routines．In particular，it must be possible to ascertain the data type of any expression involving a reference to such a function or routine．

All functions and routines are regarded directly as deia items，of one of the function types（see Section 1u．2．2）or of type routine．

A function call is any prefixed－expression in which the plefixed－operator is an expression of one of the function t．es．A routine call is a routine command consisting e；cher of a single name of type routine or of a piefixed－expression in which the prefixed－operator is an
expression of type routine. The single name routine call is interpreted as a call without parameters to the routine which is the value of the name. Other function and routine calis indicate an 'actual parameter list', which is the possibly empty list of expressions which follows the prefixed-operator, enclosed in square brackets.

To evaluate a function call, or to obey a, routine call, the R-value of the function or routine is obtained, by evaluating the prefixed-operator of the prefixed-expresion Cor the single identifier, in the parameterless routine call). The rule represented by this R-value is then invoked using the ordered sequence of data items obtained by evaluating the actual parameter expressions for the call (in L-mode or in R-mode, depending on the mode of call of each parameter, see Section 10.3.3). In the case of a routine, this rule determines a sequence of commands to be obeyed. In the case of a function, the rule determines an evaluation process, from which a list of results is obtained. There are two forms of this rule; one determines how the evaluation is to be carried out in L-mode, and the other in R-mode. The choice between these forms is determined by the mode of evaluation of the function call as an expression.

\subsection*{10.2 Functions and Routines as Data Items}
```

10.2.1 Syntax
<function type> ::= \langlesingle type> _- function
<single type> ::= <data type>|<array type>|
<function type>| (<single type list>)
<single type list> ::= \langlesingle type><,\langlesingle type>>

```

\subsection*{10.2.2 Types}

There is just one type of routine, the type routine.
There are an infinite number of types of function, two functions having the same data type if and only if they produce the same type of result, or produce results which match in number and in types, if they produce more than one result each.

As data items, those basic and library functions which are polymorphic as to their results (whose result types depend on the types of their parameters), are considered as functions of result type general, or (general, general). or (general, general, general) etc. depending on the number of results. Polymorphic functions with varying numbers of results are not considered as data items, and may only occur in the position of single name prefixed-operators.

Programmers' functions and routines may not be polymorphic. The numbers and types of results and parameters are specified in the special forms for function and routine definition (see Section 10.3).

The data type of a function is symbolised by preceding the basic symbol function by the result types in order, surrounded by parentheses and separated by commas if there is more than one result. Functions specified as type function, without any specification of result types, are assumed to have one result each, of the preferred type. Any of the data types in the result type list may itself be a functional type. For example, the following is an acceptable declaration:
let \(f\) be (real, index function, function) function
Values of \(f\) within the scope of this definition must be functions producing three results each; in order, a real, and index-valued function, and a function with a single value of the preferred type.

Transfer functions may be defined between those function types for which there are transfer functions between result and parameter types. None of these is implicitly invoked in cases of mismatching, e.g.. if a function is assigned to a function variable of a different result type.

Note that the type of a function or routine does NOT depend on the number, types, or modes of calling of parameters, nor on whether the function or routine is fixed or free (see Section 10.3.4).

\subsection*{10.2.3 Expressions and Assignments}

The R-value of an expression of a function or routine type is a function or routine which may be applied, assigned, or used as parameter in a function or routine call. At any point in a computation, any function or routine R-value which may arise must have originated in one of the following ways:
(a) as the R-value of a basic or library function or routine.
(b) as an R-value obtained from a call to a basic or library function whose result type involves a function or routine type.
(c) as the initial R-value of a function or routine identified defined previously using one of the special forms of function routine definition to be described in Section 10.3.

Such an R-value may be assigned to any function or routine variable for future assignment or application.

The rules for applying \(R\)-values of types (a) and (b) are to be obtained from the specifications of the basic or library functions or routines involved. The rules for applying R-values of type ( \(c\) ) are described in Section 10.3.

In a function or routine assignment, what is assigned is a representation of a computational rule; the rule itself remains unaltered. Thus, if f, g are function identifiers of the same result type, any sequence
\[
f:=g ; b:=g[a]
\]
in a program can be replaced without altering the interpretation of the program, by the sequence
\[
f:=g ; b:=f[a]
\]

\subsection*{10.2.4 Equality between Functions, Routines (see Note 1)}

The only infixed relational operators between function expressions or between routine expressions are the operators
\[
=\neq
\]

Before defining a notion of equallty between function or routine R-values, it will be necessary to define a notion of EQUIVALENCE between two L-values of the same data type. This notion, and the notion of equality between function or routine R-values, will be seen to be interdependent.

Firstly, it should be noted that the only ways in which L-values may arise are the following:
(a) as constant L-values, i.e., as the L-values of constant unalterable R-values.
(bb) as the L-values allotted to local variables, or to parameters called by value, for to a data item Without an L-value (see Section 4.2).
(cc) as results of catis to LH functions. (dd) as results of calls to basic or library functions.
There are four corresponding rules to define the equivalence of two L-values. Two L-values are equivalent if and only if they are of the same data type and satisfy one of the following conditions:
(aa') they are both constant L-values, whose R-values are equal.
(bb') they are both the same L-value, i.e., the L-value allotted at the same activation to a local variable or parameter called by value, or-in-ant Rwatue to katue transfer.
( \(c c^{\prime}\) ) they both result from calis to LH functions, and are compounded from load functions and update routines which are equal in the sense of this section.
(d') one L-value results from a call to a basic or library function, whose specifications, together with the rules of this section, imply that it is identical with the other L-value.
To define equality between two function or routine R-values, it is necessary, in the same way, to refer to the origins of the two R-values, as analyzed in Section 10.2.3. Two function or routine R-values are equal if and only if one of the following conditions hold:
( \(a^{\prime}\) ) they are both R-values of the same basic or library function or routine.
(b') both R-values originate from the same special function or routine definition, possibly at different activations, and the L-values of corresponding free variables are equivalent. (see Note 2)
( \(c^{\prime}\) ) one of the R-values results from \(a_{i}^{( }\)call to \(a\) basic or library function, whose specifications, together with the rules of this section, imply equality with the other R-value.

\section*{NOTES}
1. This specification is given in its present form with an eye to compatibility with any extension of CPL which might deal with more complicated forms of data structure than are at present incorporated. These may possibly be viewed as types of free function, in which case the definition of equality between such functions is of importance. Until that time, the feature is of small significance, and deviant interpretations of this equality notion might not be disasterous. In particular (b') might be amended to:
(b") both R-values originate from the same activation of the same special function or routine definition.
without the roof caving in.
2. In particular, if the two R-values are fixed, they are equal if and only if the \(R\)-values of all free variables were equal at defintion time.

\title{
10．3 Eunction and Routine Definitions
}

10．3．1 Syntax
＜LH function body＞：：＝＜fix＜definition＞＞\({ }_{1-}\)
load 〈block＞update 〈block＞
\(\langle\text { function definition＞：：＝＜recursive }\rangle_{1-}\langle\underline{\text { variable }}|\) constant \(\rangle_{1}\) \(\left.\langle\text { name〉［〈formal parameter } 1 \text { ist }\rangle_{1-}\right]\)
\(\langle=1\) 三＞＜expression list＞｜
\(\langle\text { recursive }\rangle_{1-}\langle\) variable \(|\) constant \(\rangle_{1}\) ．〈 fixed \(\mid\) free \(\rangle_{i}-\langle\) function S Sname〉
［＜formal parameter list＞1－］be
＜＜LH function body＞1
\(\$\langle L H\) function body＞\＄＞
\(\left\langle r o u t i n e ~ d e f i n i t i o n>::=\right.\) recursive \(>_{1-}\)＜variable \(|\) constant \(\rangle_{1-}\) ＜fixed｜free＞－＜routine〉sname＞ ［ \(\langle\text { formal parameter list〉，}]_{1,}\) be 〈block〉

\section*{10．3．2 Semantics．General}

Functions and routines may be defined by type，or by value or by reference，in any of the standard ways described in Section 7．These forms of definition，however，can only create a new function or routine R－value by a call for one of the basic or library functions；in this case the computational rule specified by the R－value will be determined by the specification of the basic or library function which produces it．Definitions of the special forms of function and routine definitions whose syntax is given in Section 10.3 .1 can also produce new function or routine R－values．Each instance of such a definition characterizes a computational rule，and，when activated， sets up a function or routine R－value which represents that rule．

Function and routine definitions have the following features：
（a）an identifier，the name which is the subject of the definition．
（b）a list of identifiers and basic symbols，following （a），enclosed in square brackets，and possibly empty；this is the FORMAL PARAMETER LIST for the function or routine definition．
(c) a BODY; that part of the definition following an occurence of one of the basic symbols
\[
\underline{\text { be }}=\text { 三 }
\]

The remaining parts of function and routine definitions have the following significances:
variable signifies that the function or routine is a variable data item which may subsequently be updated. Otherwise the data item is assumed to be constant, with an unalterable R-value. The latter is also signified by using the basic symbol constant in the definition.
function...be are used in LH function definitions (see Section 10.3.5).
routine...be are used in routine definitions.
fixed signifies that the \(L H\) function or routine is fixed (see Section 10.3.4).
free signifies that the LH function or routine is free (see Section 10.3.4).

If neither fixed nor free occur in a LH function or routine definition, it is assumed to be free if it has any free variables, and fixed if it has none.
= signifies an ordinary definition of a fixed function.
E signifies an ordinary definition of a free function.
For ordinary function definitions, the body of the definition is an expression list; for routine definitions, the body is a command (in the form of a block). In these cases the rule for application of the corresponding function or routine is that the body of its definition is, respectively, evaluated or obeyed, special provision being made for the evaluation of any identifiers which are not defined within the body (which have FREE occurrences in the body, not in the scope of any definition of the identifier concerned within the body). These identifiers are either FORMAL PARAMETERS i.e., those identifiers whose names appear in the formal parameter list of the definition, or FREE VARIABLES i.e., any other identifiers having free occurrences within the body.

\subsection*{10.3.3 Formal Parameters}

The identifiers in the formal parameter list are alloted a data type and mode of calling, by use of the basic symbols value and reference, and the data type specifiers described in Section 7.1. The type and mode of calling of any identifier are given by the nearest preceding type specifier and mode specifier (value or reference) in this list. Value signifies that the parameter is CALLED BY VALUE; reference signifies that it is CALLED BY REFERENCE. If there is no preceding type specifier in the list, the type of a parameter is taken to be the preferred type. If there is no preceding mode specifier, the mode is by value.

Before applying a function or routine definition, the formal parameters are provided with L-values, which bear the following relation to the corresponding actual parameters. If the parameter is called by value, its L-value is taken as a fresh L-value, with an initial R-value given by the R-value of the corresponding actual parameter expression. If the parameter is called by reference, it is given the L-value of the corresponding actual parameter expression in the call. (Note the similarity between parameters called by value and local variables defined using \(=\), and between parameters called by reference and local variables defined by \(\simeq\).)

Unless the prefix operator in the function or routine call is a name standing by itself, and occurs as the subject of a special function or routine definition with the attribute constant, the type of each actual parameter exression must be the same as that specified for the corresponding formal parameter in the formal parameter list. In the exceptional case, transfer functions are implicitiy invoked where necessary (see Section 5.3.2).

Function and routine calls must result in the same number of actual parameter values as there are formal parameters in the formal parameter list.

\subsection*{10.3.4 Eree Variables}

The treatment of free variables depends on whether the function or routine is fixed or free. If it is free, the L-values of the free variables are taken to be precisely the L-values of these identifiers at the moment of activation of the definition. If the function or routine is fixed, the free variables are provided, at definition time, with L-values, whose R-values are constant, and are the R-values of those identifiers at definition time. If any free variable in the body of a fixed function or routine is a free array, the constant \(R\)-value is taken to be that of a fixed copy of the array, the elements of which are
unalterable (see Section 11.1.2). Fixed functions and routines may not have free variables which are either free functions or free routines or labels. Within the bodies of fixed functions and routines, no assignments mask be made to free variables, or to elements of free variablocarays.

\subsection*{10.3.5 LH Functions}

In the normal course of events, L-values are disjoint; that is to say, any assignment to one L-value does not affect the R-value associated with any other L-value. This is because L-values are ordinarily created either by activating a definition by type, or definition by \(=\) or at a function or routine call, as the L-value of a parameter called by value, in which case the new L-value is always chosen to be disjoint from all previously created L-values.

In general, however, it is not adequate that any two L-values ae either identical, or disjoint; it is desirable to have ways of creating new L-values, which may SHARE with previously created L-values in arbitrarily complex ways. These are provided by calls to LH functions, and by the special forms for definition provided by \(L H\) function definitions.

An L-value may be compounded from two data items of the following sorts:
(a) a parameterless function, of type \(T_{1}\) function, for some data type specifier \(T_{1}\); this produces an associated R-value, of data type \(T_{1}\), when evaluated in R-mode; this is called the LOAD FUNCTION.
(b) a routine with one parameter called by value, of type \(T_{1}\), this is known as the UPDATE ROUTINE, and, when called, it has the effect of changing the associated \(R\)-value to be the R-value of its actual parameter expression.

The result of a call to an \(L H\) function is an L-value compounded in this way from a function, defined by the block following the basic symbol load, and a routine defined by the block following the basic symbol update.

To be more precise, where the \(L H\) function definition reads:
....load \(C_{1}\) update \(C_{2} \ldots\)
\(C_{1}, C_{2}\), standing for blocks, the L-value produced by a call to that LH function is compounded from the function \(f\) which would be defined by:

\section*{let \(f[] \equiv\) value of \(C_{1}\)}
and the routine \(R\), which would be defined by:
let routine \(R\left[T_{1} x\right]\) be \(C_{3}\)
in place of that part of the body of the LH function definition. \(C_{3}\) here is obtained by substituting \(x\) for the basic symbol rhs at all its occurrences in \(C_{z}\) (outside any nested \(L H\) function definition), and \(T_{1}\) is the result type of f.

The definition following the basic symbol fix, if it occurs, is activated when the LH function call is evaluated, and has as its scope the remainder of the body. Its purpose is to make it possible to ensure that the L-value concerned (but not, of course, its associated R-value) is not altered by the side effects of other assignment statements between its evaluation at the application of the LH function and its possibly subsequent use to find the R -value or to update the L-value.

LH functions may only be single-valued; i.e.., the result type of \(f\) as defined above must be a single data type, and not a data type list.

The result of evaluating a call to a LH function in R-mode is otained by evaluating the call in L-mode, and then calling the load function to obtain the current associated R-value.

\subsection*{10.3.6 Determination of Result Types}

The data types of functions introduced by special function definitions is determined from the definitions in the following ways:
(a) Non-recursive ordinary functions

The result type list for a non-recursive ordinary function definition is the ordered list of types of constituents of the expression list on the right hand side of the \(=\) or \(\equiv\) sign. The same rules apply for the types of numerical constants as in simple definitions using = (see Section 7.4.3).
(b) Non-recursive LH functions

Each result type list consists of a single type. When the body of the \(L H\) function definition reads:
... load \(C_{1}\) update \(C_{2} \ldots\)
with \(C_{1}, C_{2}\) blocks, the type of the LH function is identical with that of the function defined by:
let \(f[]=\) value of \(C_{1}\)
The type of rhs in \(C_{2}\) is taken as the result type of the function as determined in the above manner.
(c) Recursive functions

The result type list for a recursive function, or set of mutually recursive functions cannot necessarily be determined directly from (a) or (b) above, since the type of a defining expression may depend on one of the types to be determined. In this case, the result types are defined as follows:

Given any recursive set of definitions, an assignment of data types to the definitions is CONSISTENT if, assuming those data types on the right-hand side of definitions in the set, the data types for the definitions obtained by following (a), (b) above and the rule of Section 4 are transferable without loss of information to the assumed types. That is to say, corresponding data types that are not functional are directly transferable according to the rules of Section 3.3, and result type lists for functional data types have corresponding components that are also transferable without loss of information in this sense. If, for each definition of the set, there exists a data type which is transferable without loss of information to each data type corresponding to that definition in any consistent assignment of data types to the set, then that is taken as the data type for that definition, provided that in this manner a consistent assignment of data type is obtained. If no unique consistent assignment can be obtained in this way, the data types are implementation dependent.

11 ARBAYS

> 11.1 Subscripted Expressions. Arrays as Data Items  \(\quad 11.1 .1\) Syntax  11.1 .2 Semantics 11.2 Basic Functions for Arrays    11.2 .1 Array-creating Functions 11.2 .2 Other Functions

\section*{11．1 Subscripted Expressions．Arrays as Data Items}

\section*{11.1 .1 Syntax}
```

<prefixed operator> ::= <name> | (<expression>) |
<prefixed expression>

```
〈prefixed expression〉 ::=〈prefixed operator〉[<expression〉,_]
```

<array type> ::= <single type>,_<number> array |
<single type>;. vector |
<single type>,_ matrix

```

\section*{11.1 .2 Semantics}

An array is a particular sort of function，of one index parameter（by value）defined on just one closed segment of possible parameters．The free variables of an array are in one－to－one correspondence with the set of possible parameter values，and have mutually disjoint L－values；the result of evaluating a call to an array is that free variable which corresponds to the value of the parameter．

Arrays may be either free or fixed．
An R－value of one of the array－types is a representation of an array．The different possible array－types correspond to the different result types of the array，considered as a function，in the following manner：

If \(T_{\text {，}}\) is a single－type，an R－value of type \(T_{1} 1\) array or \(T_{1}\) vector represents an array of result type \(T_{1}\) ．If \(T_{1}\) is omitted，the result type is taken as the preferred type． The remaining result types may be deduced from the following synonymies：
matrix， 2 array are synonymous with 1 array 1 array
3 array is synonymous with 1 array 1 array 1 array
and so on．For example，a real 4 array \(R\)－value represents an array with result type real l array 1 array 1 array， i．e．，with result type real 3 array．

A subscripted expression is any prefixed－expression in which the prefixed－operator expression is of an array－type． If \(A_{1}\) is an expression of some array－type，and \(E_{1} \ldots \ldots E_{n}\) are expressions，then
\[
A,\left[E_{1}, E_{2}, \ldots, E_{n}\right]
\]
is synonymous with
\[
A_{1}\left[E E_{1}\right]\left[E_{2}, \ldots, E_{n}\right]
\]

The expressions separated by commas are the subscripts of the subscripted expression. A subscripted expression with just one subscript is evaluated in the same way as a function call (see Section 10). If there is more than one subscript, the expression is evaluated in accordance with the reduction to the one subscript case given above.

If the subscript value is outside the range of permitted values, the result is undefined.

The semantics of array expressions, assignments, etc.,
may be obtained by reference to the corresponding properties for functions (see Section 10.2.3, 10.2.4).

In particular, note the following points:
(a) No automatic copying of arrays is done on assignment. For example, after obeying \(A_{1}:=B_{1} ; B_{1}[i]:=B_{1}[i]+1\)
\(A_{1}[i]\) will have been altered.
(b) Note particularly that equality between arrays is defined in a very strong sense, which, for numerical vectors and matrices, does not coincide with ordinary mathematical usage. Two free arrays are equal only if their free variables have the same L-values; that is to say, only if both have been obtained by sequences of assignments of the same array (only if both are the same array, in every sense). For equality in the mathematical sense between foree arrays, the Boolean function Equal must be used (see Appendix 3). Note that two fixed arrays are equal if they are equal in the weak mathematical sense.

There are no special forms available for the definition of arrays, nor are there transfer functions from function types to array types. The only ways in which arrays may be created are as the results of calls to certain basic functions (see Section 11.2.1).
N.B. (a) and (b) above will be seen to be intuitively more acceptable if an array is conceived of, not as the configuration of its elements, but as a POINTER to this configuration. Assignment and equality apply to these pointers rather than to the totalities of elements.

\subsection*{11.2 Basic Functions for Arrays.}

\subsection*{11.2.1 Arrav-Creating Functions}
(a) Newarray

A call has the form
\[
\text { Newarray }\left[T_{1}, E_{1}\right]
\]
where \(E_{\text {, }}\) is an expression list, and \(T_{1}\) is a data-type specifier. The function is VARIADIC; that is, it may be called with varying numbers of parameters. On evaluation \(E_{1}\) produces \(2 n\)-values, \(A_{1}, B_{1}, \ldots, A_{n}, B_{n}\) of type index. The value of the call is then a new array of type
\[
T_{1}, n \text { array }
\]
the L-values in which are disjoint from existing L-values. The values \(A_{1}, B_{1}, \ldots ., A_{n}, B_{n}\) determine subscript bounds; after the assignment
\[
N_{1}:=\operatorname{Newarray}\left[T_{1}, E_{1}\right]
\]
the expression
\[
N_{1}\left[E_{1}^{\prime}, E_{2}^{\prime}, \ldots, E_{n}^{\prime}\right]
\]
is a subscripted expression all of whose subscripts are within bounds if and only if
\[
A_{i} \leq x_{i} \leq B_{i} \text { for } 1 \leq i \leq n
\]
where each \(X_{i}\) is the \(R\)-value of \(E!\).
(N.B. Arrays need not be rectangular, although arrays directly produced by Newarray are.)
(b) Formarray:

A call has the form
Formarray \(\left[T_{1}, E_{1}\right]\)
with \(T_{1}, E_{1}\) as in (a). With the notation of (a), the value of the call is a function of type
taking \(\prod_{i=1}^{n}\left(B_{i}-A_{i}+1\right)\) arguments of type \(T_{1}\), which, at each call forms a new array; the R-values of actual parameters for the call will be the R-values of elements of the
resulting array arranged in lexicographic order with respect to subscripts. For example, after obeying
\[
N_{1}:=\operatorname{Formarray}\left[\frac{\text { real }}{\left.\left.\left.\left(E_{121}, E_{122}\right)\right),\left(\left(E_{211}, E_{212}\right),\left(E_{221}, E_{222}\right)\right)\right)\right]}\right.
\]
each \(N_{1}[i, j, k]\) has the \(R\)-value of \(E_{i j k, ~ f o r ~}^{i, j, k}=1\) or 2 .
(Note the use of cosmetic parenthesis in the above example; these could be omitted without altering the effect of the command.)
(c) Copy

The value of \(\operatorname{Copy}\left[E_{1}\right]\), with \(E_{1}\) an expression of some array-type, is a new free array of the same type, the same spectrum of legitimate subscript sequences, and the same \(R\)-values for corresponding elements as the value of \(E_{1}\). Elements which are arrays are copied.
(d) Fix

The value of \(F i x\left[E_{1}\right]\) is a fixed array of the same type as \(E_{i}\), the same spectrum of subscripts, and the same R-values for corresponding elements. \(E_{1}\) may be an expression of any array type, except for label \(n\) array. (any n). The effect of Fix applied to an array containing a free function or routine is undefined.

\subsection*{11.2.2 Other Functions}
(a) Bounds

A function of type (index, index) function; taking one parameter of any array-type. The two values are, in order, the lower and upper bounds for single subscripts of the array (considered as a vector of subarrays).

\section*{(b) Equal}

A function of type boolean function; taking two parameters of array-types. The value is true if and only if the two arrays are of the same type, have the same spectra of subscript sequences, and equal R-values in corresponding elements.
(N.B. Equal \(\left[N_{1}, \operatorname{Copy}\left[N_{1}\right]\right]\) always has the value true, but \(N_{1}=\) Copy \(\left[N_{i}\right]\) always has the value false, unless \(N_{1}\) is a null array.)

\title{
This draft has not been fully checked
}

CPI Reference Manual (Draft) Appendix 1

Appendix 1 The Preprocessor

Part 1 General Description

This is intended to be both a description of the transformation from an implementation alphabet to canonical CPL and a general example of a CPL program. The transformation is written in CPL and appears in Part 2; Part 3 then describes the functions and routines which are used but not declared in Part 2.

The routine Preprocessor uses recursion to model the bracketing structure of the source test; each level of recursion corresponds to a level of brackets. Its actual parameters are the Bracket type (e.g. § ( \([\rightarrow\) ), the section bracket tag if the bracket type is \(\S\) and a label to return to if a closing section bracket is found with a tag which does not match with the current section. It is thus easy to write the preprocessor rule concerned with the insertion of closing section brackets.

The removal of comment is done by the input routine NextChar and since comment is introduced by the pair of symbols || this routine requires a single character buffer which is called InputBuffer. The end of the source stream is recognised by a special end of stream character.

Most of the preprocessor rules are performed by the output routine Output. This routine makes use of the boolean variables TerminatorPending and TerminatorSuppressed to control the insertion or deletion of the command separator ';' . TerminatorSuppressed is true if the most recent symbol processed other than ';' and 'Newline' was the symbol c. Terminator Pending is true if a Newline or ';' has been read since the last canonical CPL symbol was output. The rule for insertion of terminators can most clearly be expressed as follows: a terminator is inserted between two canonical CPL symbols if a terminator is pending and not suppressed by c and if the first symbol can end a command and the second can start a command. It should be noted that all symbols which may end a declaration may also end a command. The last canonical CPL symbol output is always held in the string variable lastoutput. The rules for the insertion of do and the recognition of pos and neg are also incorporated in Output.

The working variable c, is used by Preprocessor and always contains the latest character produced by NextChar. Preprocessor is always called with c set to the next character. The routines ReadTag ReadUnderlinedWord and ReadSpaces all leave c correctly set.

\section*{Part 2 The Preprocessor Program}
let \(c, s, s^{\prime}\) all be string
let LastOutput, InputBuffer both \(=\) " || i.e. the empty string
Iet TerminatorPending, TerminatorSuppressed \(=\) false, true
Iet rt NextChar [string ref c] be
\[
\begin{aligned}
& \text { §N.ch } c:=\text { InputBuffer } \\
& \text { Readchar [ CPL.Source, InputBuffer] } \\
& \text { If } c=1 \mid=\text { InputBuffer do } \\
& \begin{array}{l}
\text { § until } c=\text { ' } n \text { ' do Readchar [CPL. Source, } c \text { ] } \\
\text { Readchar [CPL. Source, InputBuffer] } \% \mathrm{~N} . \mathrm{ch}
\end{array} \\
& \begin{array}{l}
\text { § until } c=\text { ' } n^{\prime} \text { ' do Readchar [CPL.Source, } c \text { ] } \\
\text { Readchar [CPL. Source, InputBuffer] } \$ \mathrm{~N} . \mathrm{ch}
\end{array}
\end{aligned}
\]
let rt Output [string \(x\) ] be
\[
\text { §o.p if } x=\text { 'c' do } \$ \begin{aligned}
& \text { TerminatorSuppressed }:=\text { true } \\
& \text { return }
\end{aligned}
\]
if TerminatorPending \(\wedge \sim\) TerminatorSuppressed \(\wedge\) CanEndCommand [Lastoutput] ACanStartCommand [x] do \(\S\) Write [ '; \(\left.\phi^{\prime}\right]\) Lastoutput : = ';'
TerminatorPending, TerminatorSuppressed both : = false \(\mathbf{x}:=\) MonadicTransformation [LastOutput, \(x\) ]
if MuetStartCommand [x] CannotProceedCommand [LastOutput] do \(\$\) Write [ do \(\phi^{\prime}\) ]

LastOutput: = 'do' 方
Write \([x \Leftrightarrow ' \phi\) ']
LastOutput : \(=x\)
\[
\$ 0 . p
\]

Iet rt ReadTag [string ref s] be
\[
\}_{R, T} \quad E:=1
\]
§ NextChar [c]
unless Letter.Digit.Dot [c] break \(\mathrm{s}:=\mathrm{s} \Leftrightarrow \mathrm{c}\) \& repeat
until \(c \neq i * i\) do \(\$ \quad \begin{aligned} & s:=s \ll c \\ & \text { NextCher [c] }\end{aligned} \quad \begin{aligned} & \text { \&R.T. }\end{aligned}\)
let rt ReadUnderlinedWord [string ref s] be

\section*{§R.U.W \(\quad \mathrm{B}:=\mathrm{c}\)}
\[
\begin{aligned}
& \text { while Underlinedietter [c] do }
\end{aligned}
\]
NextChar [c] \$R.U.W.
let rt ReadSpaces [string ref c] be

\section*{§R.S, § NextChar [c] If \(c \not{ }^{\prime}{ }^{\prime} s^{\prime}\) return \(\$\) repeat \(\$ \mathrm{R} . \mathrm{S}\)}

Iet rec rt Preprocessor [string BracketType, BracketTag, label MismatchReturn] be
```

§P.P Switch : Jump on c into See Appendix Ipp.8 for
§ case ' }\S\mathrm{ ': ReadTag [s]
Output [ '\&']
Proprocessor [ '§', s, Mismatch]
goto Switch
case ' $\$$ ': ReadTag [b]
if Bracketlype $\neq$ ' $\S$ ' do Report [1]
Mismatch : Output [ ${ }^{(1)]}$
if BracketTag $\neq$ s goto MismatchReturn
return
case ';': case ' ${ }^{\prime n}$ ':
TerminatorPending : = true
NextChar [c]
goto Switch
case '(': case ' $[1]$ case ${ }^{\prime \rightarrow} \rightarrow$ :

NextChar [c]
Preprocessor [s, '', Error]
Error : goto Switch
case ')' unless BracketType $=$ ' ( 1 do Report [2]
Output [c] ; NextChar [c]
return
case ']': unless BracketType = '[' do Report [3]
Output [c] ; NextChar [c]
return


ReadSpaces [c]
Reprocessor [s, ,
ReTun /
unless $c=1 . '$ do $\S$ Output [ 1,1 ] ; NextChar [c]
goto Switch

```
NextChar [c]
if Digit [c] do
    $Dgt Output [',']
        s:= '.'
        while Digit [c] do § s : =s s
        Output [1双! <<s]
        goto Switch $Dgt
        if c= '*'s' do ReadSpaces [c]
        if c }\not=\mathrm{ '.' 的 Report [4]
        while c = '.' do ReadSpaces [c]
        unless c = ',' do Report [5]
        Output ['dot string'] ; NextChar [c]
        goto Switch
case '*'': s : = "'
    NextChar [c]
    until c= '*'' do
        $1 test EscapeCharacter [c]
                                thendo § NextChar [c]
                                s : =5< => SpecialChar [c]
                                or do s: =s s c
            NextChar [c] $1
    Output ['S'@ s] ; NextChar [c]
    goto Switch
case '<' : NextChar [c]
    If c= '<' do § Output [!<<']; NextChar [c]
    if c= '=' do do chex [c]
        if c = '>' do § Output ['< = >']; NextChar[c]
            Report [6]
    Output ['<']
    goto Switch
case '>> : NextChar [c]
    if c='>' do
    \xi Output ['>>'] ; NextChar [c]
    Output [1>1]
                                    goto Nent 变 SwiTch/
    goto Switch
case ':' : NextChar [c]
    if c = '=' do
    Output [':']
    § Output [':='] ; NextCher [c]
                                goto switch
    goto Switch
```

case '"B': case '-': $\begin{aligned} & \text { NextChar [c] } \\ & \text { goto Switch }\end{aligned}$
the rest : if BigLetter [c] do § $\quad s: c$ ReadTag [s']
Output $\left[x^{\prime} x^{\prime} \Leftrightarrow B \Leftrightarrow S^{\prime}\right]$ goto Switch \$
if Smalluetter [c] do

$\xi \quad \mathrm{B}:=\mathrm{c}$ NextChar [c] while $c=1 * 1$ do $\S \quad s:=s \Leftrightarrow c$ | Output $\left[1 x^{\prime} \Leftrightarrow 8\right.$ B] |
| :--- |
| goto Switch |

if Digit. Dot [c] do
§ $\mathrm{s}:=1$ '
while Digit. Dot [c] do § $s:=s \Leftrightarrow$.
Output [ © d' $^{\prime} \Leftrightarrow$ B] goto Switch
if UnderlinedLetter [c] do
§1 ReadUnderlined̄Word [s]
$\mathrm{B}:=$ Standard [s]
while Combinable [s] do $\S_{2}$ if $c={ }^{\prime} *_{s}{ }^{\prime}$ do ReadSpaces [c] unless UnderlinedLetter [c] do

S Output [s] goto Switch 备 ReadUnderlinedWord [s'] $A^{\prime}:=$ Standard [s'] test Standardizable [s $\Leftrightarrow$ s' $\left.^{\prime}\right]$ thendo $s:=$ standard $\left[s \Leftrightarrow s^{\prime}\right.$. ordo $\$$ Output [s] B: = $\mathrm{s}^{\prime}$
Output [8]
goto Switch
$\$ 1$
if $\mathrm{c}=$ Endof StreamChar do
$\xi$ unless BracketIype $={ }^{\prime}$ StreamStart' ${ }^{\prime}$ do
return
Output [c]
Report [7]

NextChar [c] goto Switch
$\$ P . P$
it Main program
IastOutput, InputBuffer both : = ''
NextChar [c] ; NextChar [c]
Preprocessor ['StreamStart', '', Error] ; Frror : finish

Part 3 Additional definitions.
A number of identifiers in Part 2 were left undefined; these are defined informally in this section.
a) The boolean function CanFndComand [string LastOutput]
is true if LastOutput is any of the following:-
Number, Name, StringConstant of ):
repeat break return rhs finish
index integer real etc.
b) The boolean function CanStartCommand [string $x$ ]
is true if $x$ is any of the following
Number, Name, StringConstant
pos, neद, + - ( $\$$
if unless while until test for forext
break finish return resultis valof refof goto
c) CannotPreeeedCommand [string LastOutput] is true if LastOutput is any of the following:; § do : or
d) MustStartCommand [string $x$ ] is true if $x$ is any of the following:-
if unless while until test
for forext return break finish
resultis goto
e) The string function MonadicTransformation [stringLastOutput, x] is used to recognise when + and - are monadic; if $x$ is not + or - then the result is $x$, if LastOutput is not any of the following:-
number, name, $]$, $\$$ )
and $x$ is + or - then the result is pos or neg respectively.
f) Standard [string $x$ ) is a string function whose result


| $\frac{r t}{\text { to }}$ | $\frac{\text { routine }}{\text { thru }}$ |
| :--- | :--- |
| val | $\frac{\text { value }}{\text { valof }}$ |
| value of |  |

otherwise the result is $x$
g) Combinable [string $x$ ] is true if $x$ is
all a do double for
go long or ref result repeat val
h) Standardizable [string $x$ ] is true if
the result of Standard $[x]$ is an underlined word in the basic symbol set of canonical CPL.

1) Letter.Digit.Dot [string c] is true if c is a
a digit or a dot. letter or a digit or a dot.
j) Digit. Dot [string c] is true if $c$ is either a digit or a dot.
k) Digit (string c] is true i\& c is a digit.
2) EscapeCharacter [string $c$ ] is true it $c$ is the escapecharacter for strings.
m) SpecialChar [string c] transforms the special character which occurs after the escape character in strings to the string character it represents.
e.g. the result is the character 'Newline' if c is
'Backspace'
'Erase' b
1
etc.

$$
\text { Appendix } 1
$$

The switoh-qommand

## Syntax

```
    <ewitch command> ::= 变witch on <expression> into
    <label> ::= <identifier> : | case <constant> | default :
The synonyms for switch on are :-
        caseswitch and jumpon
and for default are :-
        the rest and others
```


## Semantics

The switch-command is a convenient way of controlling a multiway decision in CPL; it is designed as an extension to the test-command which switches to one of two alternatives depending on the value of a boolean expression.

The type of the switch $i$ is the type of its controlling expression and this may be string or any of the numerical or logical types. A case-label is said to belong to the smallest enclosing lexicographic switch-command and its constant is transformed to the type of this switch-command.

To execute a switch-command first the controlling expression is evaluated in $R$ mode and then execution is resumed at the case-label which belongs to the switch-command and whose constant equals this value, or if no matching case exists execution continues at the command labelled default: . The constants of two case-labels belonging to the same switch-command may not be equal.


## APPENDIX \& 4

## List of Changes Foreseen in CPI

## A. Alterations

1. Scope of where-clauses

This is somewhat confusing and unsatisfactory at present. We shall probably distinguish between an "expression-where" and a "command-where" (which probably includes a "definition-where") by some syntactic device similar to that which picks out the conditional comas and replaces them at the preprocessor stage by comma.
2. result is, return and break
"Detached" uses of these will be allowed with a scope which is lexicographically determined. These correspond, inter alia, to Landin's "program points".

## 3. finish

This exists only in the Elementary Manual. Its use will be extended and generalised.

## B. Additions

## 1. Character

We hope to introduce a type character into the language.

## 2. Switch-commands

The switch-command described on p. 8 of Appendix 1 will be added.

## 3. Table look-up

Commands for Table look-up seem to be desirable. These may prove to be part of the operations on sets (see next section).

## C. Extensions

## 1. Compound Data Structures

The entire area of Compound Data Structures and related concepts needs to be added to CPL. This will involve a considerable extension of the concept of type. An outline schene is already under consideration, but much more work is needed before it can be regarded as good enough for incorporation in the language.

## 2. Segmentation

Methods for segmenting large programs, compiling and testing the segments separately and finally combining them into a larger program are essential to the practical utility of any programming language. We hope to be able to include these facilities in CFL by a natural extension of the language rather than an ad hoc device.

## 3. Sets

It may be possible and desirable to introduce the concept of a set (an unordered collection of identifiable objects) and to provide certain operations on them. (For example a table look-up is very close to a function whose domain is the member of a set).

