
UNIVERSITY OF LONDON INSTITUTE OF COMPUTER SCIENCE

and

THE MATH:EMATICAL LABORATORY, C.Ll'1BRIDGE

TIDHNICAL REPORT

CPL WORKING PAPERS

JULY 1966

. '"·

·.

Copy No. 14

CPL WORKING PAPERS

This volume contains various papers concerning CPL. The
principal one of these is an unfinished draft of the Reference
Manual. This is preceded by a copy of an elementary programming
manual and brief notes on the history, present status and future
prospects of the language and its compilers, and is followed by
various appendices.

These documents are not intended for publication in their
present state. They are being given a limited private circulation
in th:ls incomplete form for rea11ons discussed in the preface.

July 1966.

:.;,,

f.·,*.·'-·

Pre.face

In October 1962 a joint research project was begun by the
University Mathematical Laborato!"J, Cambridge and the Institute
of Computer Science, London (then known as the University of
London Computer Unit), The aim of this project was to design
and implement a new progranuning language for use on .the Atlas I
and II (Titan) computers in the two establishments,

The initial team consisted of D,W, Barren, D.F, Hartley
and C, Strachey from Cambridge and J .N. Buxton and E, Nixon from
London,

It was intended that the language should possess the
advantages of the general structure and precise description of'
Algol 60 but should be of wider practical utility. Many of its
main features were settled at an early stage and were described
(in 1963) in a paper in the Computer Journal (ref,·1). ·

Since the publication of the initial description the language
has been subject to extensive redesign and further research work
has been carried out on its semantics (see ref.'s, 2, 3).

The design of the language, as opposed to its implementation,
has never been more than a part time occupation for any of the
authors. As the language gradually approached its present state,
the authors' meetings became less frequent and those Vlho were not
actively engaged in an implementation .found it more difficult to
keep in touch with the language, At the same time some of the
people who were engaged in an j.mplementation began rnaking substantia],
contributions to the language itseJ.f. During the period 1963 to
1966 D. VI. Barren left the CPL language group and D, Park ;J.nd
M, Richards from Cambridge and G,F, Coul41tris from London joined it,

The proper description of a progranuning lane;uage is no easy
ta.sk, and CPL, which is very corsiderably lart;er and more
sophisticated than Algol, presents a formidable problem, None of
the authors have been able to spare the time to document the
language adequately, and the fact that it has been evolving continuously
has not simplified the problem,

An Eleinentary Programmine manual cx::i.sts in severA.l versions,
the latest of which is included in this volume, but this only
de::1cribes the si>'1tpler parts of the ln.nc;uaf~e. Three chn.pte!'s of an
Advanced Programming manual were written (by C,S) but these, too, on],);·
cover the easier parts of the language and by now need considerable
revision.

In Spring 1965, therefore, the authors decided. to prepare and
if possible publish a Reference 1:eanuaJ. which should cont,1.in a complete
description of CPL as it then stoocl, It was not intend.ecl tllat the
Reference Manual should be an introducto!"J text and no particular
pains were. to be taken to make it easy to read by the uninitiated;
it was hoped, however, that the result would not be as difficult as
the Algol 60 Report,

az.,)_,;. .. , . . c:; .. ,:.,-;;.;.; A t..::m -\, .(._._

'
'

!'.·
"-"

r
··.·. ..
'

<"

1

,.
'·

-\

f
I

The first draft was prepared by JNB after a series of long
meetings at which the authors discussed tile points at issue,
The second draft was then prepared by Jl\lB, DFH, MR, GFG, and DP,
each writing one or more sections. The ne were then revised,
edited and partly rewritten by CS to produce the incomplete draft
which forms the main body of this volume,

At a meeting in June 1966 the present authors (JNB, GFC, DFH,
EN, DP, MR and CS) decided that the present volune should be made
available to a restricted audience as a re~earch report, The chief
reason for this was that many of the authors by now had t;oo many
_other cmmnitments to undertake any further work on Lhe language.
At the same time it was generally ap:preciated that at least two
important additions to the language (.Compound Data Structures and
Segmentation) were essential if CPL were to be of wide application,
With the very limited effort available :i.t was felt that an interim
publication of an unfinished document which could. bo carried out
with very little work was all that could be expected if the vital
work of tleveloping the language additions was not to be delayed too
long to be incQrporated in a new implementation which MR hopes .to
start at MIT in the autumn of 1966. The present volume is the
result,

Major developments of CPL arE? to be expected in the futuro,
In particular a scheme for incorporating Compound Data Structure·o
in a very general way is under development. It is also intended
to consider the problems of segmentation and, Joore ~;enerally, of
the relationship of the language to its compiler ru1d operating
system, ·other, less wholesale changes are under consi<leration
and a list of these is given,;!._ 111 .M! Ap;»J1/}bt.

If these developments prove successful we would hope to
extend and revise the current draft of the Reference Manual and,
in due course, to publish it.

References

1. Barron, D.W., Buxton, J.N., Hartley, D.F., Nixon, J~., and
Strachey, C, (1963) "The Main Features of CPL". Computer

2.

3.

4.

Journal.§ 134-143.

Strachey, C.
Description

"Towards a Formal Semantics" in nFormal Language
Languages" ed, T. Steel, (1966) I'!orth-llolland,

Burstall, R.M. "Some Aspects of CPI, Semantics" (1965)
Experimental Programming Report No, 3. Experimental
Programming Unit, University of Edinburgh,

Barren, D,W, and Strachey, C.
in "Advances in Programming
ed. L. Fox, Pergamon Press.

"F-rogra.mming" Ch. 3 PP• 49-82
and Non-Numerical Computation"

1
· .. '. : ..

r

. .

UNIVERSITY OF LONDON INSTITUTE OF COMPUTER SCIENCE

THE UNIVERSITY 11ATHEI'J<TICAL LABORATORY, CAMBRIDGE

CPL ELEilENTARY PROGRAMMING MANUAL

mdition II (Cambridge)

(including col•rections and revisions)

Corn Exchange St~eet,
Cambridge.

J.N.Buxton
J.C.Gray
D. Park

January 1966

> '

r.·.· ...
~·

I; •

r-·.

1 1 I uioh to God tha.t 'chcsc c<-l.cc 'la·•. ions had been executed by steam. 11

(Charles Babbage, to John Herschel; 1820)

1 , IN'.fRQDUCTION.

CPL, (£ombined .J::rogra:mming 1angua.ge) has been developed as a

joint project between the University of London Institute of Computer

Science and the Cambridge University Mathematical Laboratory. In concept

it is an extended language intended to cope with all possible classes of

program, whether numerical, non-numerical, list-processing, heuristic

or clerical.

CPL is not just an extension of any previous language, (although it

contains many features of ALGOL 6o) but has a distinctive philosophy

and logical coherence of its own (see the Advanced Progra:mming Meilual

and Reference Manual for details). In particular it is intended that,

save for those exceptional cases in which an extremely efficient

program is required; progre:mmers will not· have to escape into machine

code.

The following Elementary Programming Manual restricts itself to

the central part of the language. Peripheral matters such as

input-output, etc., depend on local conditions and will be dealt

with in local users 1 manuals issued by the various establishments

using CPL.

1.

f.

l.

~
,.··._.· . . .
:, .
.

2. T".tlE CPL ALPHABET AI'/P BASIC SYMBOLS.

. The following is a. l:j.st of :permitted CPL chara.c'\;ers,
which ma;y occupy single pr:l,nt posi t:I,OZU! :l.p a Winte(l, CPL
:program:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

a.bcdefghijklmno:pqrstuvw~yz

0 1 2 3 4 5 6 7 8 9

!!QH!!Q~!!!1M!9!i!!!YX!II!

!~£a!!~h!~l!en221r~l!!!!Z!

Q.lg~!U . .€1Q2.

+·X/=<>

()[)VA-

••• {!-_..§,
I • I • -

:::+r.it:<S~4 *~
CPL :programs are made u:p of thesE! c;hs.l:a.cters alone.

Cert$in combi~tions of these cha.racters ~ve a. special si{!)lificance,
and should be re&a.rded a.s self-conte.j,ned ~tit;l.es: e.g. certain
underl.ined words, the assignment opex-e.tor ':'!"' et.c.
',t'hese are called BASIC sYMBOLS and are listed in APPendix 1 • Underlined
words ma.y be written il1 upper or lowez: case, or a. rr.ixtu,re of the two.
Spaces in basic symbols are ignored. · ·

Thus then ma:y be written T h eN. The basic symbol if ha.s nothing to do
with the letters i and f, and ha.s a. cOIIlPleteJ.y separate meaning from the
combilla.tion 'if' appearing without underlining in a. :p;rogre.m. Basic symbols
are introduced as tl:leY arise in subsequ~t sec'loions.

·; '

t

v',

1
..
.

3, ITEMS, TYPES AND NAMES.

A C.PL program specifies processes to be carried out on ITEMS
of information. These items may be numerical (variables and constants)
or non-numerical. (e.g. bit-strings and character strings), and if
they are numerical they may be real or complex and may be stored to
more or less than the standard precision. Every item must, therefore
have both a NM~E and a TYPE. (Constants are an exception: they have
a type but not a name.)

The most common t~~e of number is the real number. (Note the
underlining: real· is a basic symbol.) A-real variable is held
in floating-poult: (in Atlas this means tiiil1: it has a range of
the order

113 113
+10 to -10

,n_ th a pz·ecision of about 12 decimal· digits) • o·~her numerical types
a.+e:

double A floating point number with a precision
· about twice that of a re;ll number.

(On Atlas, about 24 decimal digits).

An ordered pair of real variables.

double complex An ordered pair of double variables.

index An integer used in subscripting operations.

A type integer can also be used; an A'i:.las, integer arithmetic is carried out
in floatin:g::point and the result rounded off when a value is as.signed
to an integer vw:•ia.ble.

Complex and double precision working are not further described
as they will not initially be implemen'ced.

Among the non-numerical types of item on which CPL operates
are:

Boo lean

logical

long logical

string

a truth value which is ~ or false

a string of binary digits, of standard length.
(On AUas, 24 bits,)

a string of binary. digits, of twice the
standard length.

a character string~

AlJ. items (except constants) appearing in a program are identified by
NAME:S, which are of two sorts, SMALL and LARGE. · ··

A SMALL name consists of a single lower case letter, qptionally
followed by one or more primes, e.g. a; b, y, y', y' '.

i
I

• .. · I
··,I

I
' ! ·; I
'···f .. ,

~ .· l
'•'!

i

/

A LARGE name consists of an upper case letter, optionally follo~red
by a string of letters (upper and lower case) andjor digits and decimal. ·
points, optionP~ly terminated by primes, e.g. A, Xyz, ALPHA, Beta, Sq,4'',
It may not include sp:,ces, as spaces are terminators.

l.Rrge names are entlrely the programmer's affair and he can
invent them to suit his own taste: they may be short alphru1umeric
sequences, or they may be tbe actual names of the quantities which
they repres<>.nt, or they may be mnemonics. Some lar!'ie names, however,
are reserved for standard functions, e.g. LShift, Hask, and if used
by the programmer with another meaning the standard. function will
temporarily be inaccessible.

There is no restriction on the number of characters in a 1wme.
Some·times a name can stall<l for different items in different

parts of a program. The important concept of the scopg of a name,
that is the region over which a name retains its meaning, is discusse<i
under 'Block Structure•.

'!

i{

<

.,

' 2-.
{;

4. EXPRESSIONS AND ARITHMETIC EXPRESSIONS.

4,1 References to items of information, which may be either
variable names or written constants, can be combined
together with operators and standard library fullction
names to form EXPRESSIONS. Each e:x;pression can be assigned
a type, which depends on the types of the component variables
and constants. For the moment we will consider simple arithmetic
expressions, i,e. expressions involving variables and constants
of numerical types real, index, comJ?lex , etc.

4.2 Arithmetic expressions are made up by combining numerical
variables and constantl! with the arHhmetic operators and ROUJilD
brackets. Brackets may be used to any degree of complexity.
The arithmetic operators are

The use of the multiplication sign is optional. It is usually
omitted, as multiplication is implied by juxtaposition, unless
by including it the expression can be made easier to read.
In particular it is desirable to include it after a large name;
if it is not included the name MUST be terminated by a space.
Solidus indicates floating-point division (rounded quotient
and no remainder); the rell'.ainder is' obtained by a standard
function. Up-arrow (4) indicates e~onentiation.

Normally, sufficient brackets should be included in an expression
to make its meaning unambiguous. However, if brackets are
omitted the priority of dealing with arithmetic operators
is as follows:

· first: multiplication, division and e:x;ponentiation
second: addition and subtraction.

MUltiplication, division and exponentiation are of equal precedence
and associate to the right; that is to say, in the case of any
ambiguity they behave as if brackets were inserted so that ell the
closing brackets are grouped at the right.

Addition and subtraction associate to the left; that is, brackets
are inserted so that opening brackets are grouped to the left.
Some: e~les will make these rules clear:

a+ b + c
a f. be
al!-b+c
a+ be+ dejf

is equivalent to
11 I

11 t

I I I

' ((a+b)+c)
. (aj(bc))
((al!-b)+c)

. ((a+(bc))+(d(e/f)))

Prefixed+ and- are treated as (+1) and (··1) respectively,
so that -&}b is equivalent to (-l)(&}b), NOT (-a)/j-b,

f.· .. •

r

4.3 Arithmetic constants are usuaJ.ly written as dec:!.me.l constants.
'·' is used to indicate that a decime.l ex;ponent follows.
Binary ex;ponents are not allowed,

Some exatlQ?les are:

4.4 An arithmetic ex;pression rosy include calls to standard
library functions (or to the programmer's own defined functions)
in place of variables or constants. Some standard library functions are:

Sqrt[x}
Exp[x]
Log(x]
Sin[x]
Cos[x]
Tan[x]
Arccan(x]
Mod[x}
Intpt[x]
F.em[x,y]

the square root of x
the e:x;ponential function

the modulus of x
integer part of x; i.e. the integer y such that o<X-y<1
the remainde~ of x,'y,; i.e •. x-y!ntpt(xjy] -

Note that each function call has the form of a function name
followed, in SQUARE brackets, by a list of a1·guments
separated by commas. The written arguments are themselves
arithmetic expressions, and may include further function calls.

4.5 Subscripted variables may also::occur in arit!o.metic expressions;
these have the same form as function calls, with the function name
replaced by an array name. Arrays will be discussed in section 14.

4.6 ·Other forms of arithmetic expression are: conditional
expressions (Section 11) and result expressions (Section 22).
These can also be used in arithmetic expressions in any position
where a variable might otherwise occur. If used in this way, they
should be bracketed in such a manner as to avoid ambiguities.

~:

,·.\·

. 5. DEFINITIONS AND COMMANDS.

A CPL program is made up of DEFINITIONS and COMMMlDS,
The co~ds specify the arithmetic and logical operations to be per:f'~rmed
by the computer: they also control the execution of the pr9gr~. . '
The definitions provide the information that is necessary
for the computer to 'understand' the commands. For example, since
the programmer can invent names for yariables to suit himself,
the program must include definitions associating ~~ese names ,
with specific data items. These definitions must also specify the
types of variables (there is no implicit association of certain
names with particular types) • \ie shall return to the various :f'ol'IQS ot
definition in section 7; for the remainder of this section we shall. ·
atudy the ASSIGNMENT Cffi.ft.!AN.D. .

5 .1 Aasignment Commands.

In the previouS section we have seen how to construct expresstons,
. . ' whose evaluation will produce some numerical value. The assisn~J~ent. .

operator ':=' (read 'becomes') can lie used to change the vaJ,11e o:f'
some variable to the result of such :an evaluation. Thua the c~ll4

X := X+l

evaluates the current value of x, adds 1 , and assigns this as the
new value of x. ..

TYPical examples of assignment commands ere:
r:

x := ax + by + c •:
POlo/ER :"' VOL'IS X AMPS

N.B. We do not use the '=' sign, as this is reserved for
conditions (Boolean expressions) and definitions.

Assignments between variables of differing types are
permitted, a transfer function being invoked to trl!llS:f'Ql'lll
the value of the right hand Side to' the type of the left han4.
variable. This may result in• a run-:time error, ;l,:f' the right
hand side has a value which is out rof range, or cannot
be transformed in this way, , ·

5.2 A s~le assignment command has the :form

<variable> : = <expression> . n
(<variable > should be read as 1 some particular varial:!le')

"
Usually commands are written on separate lines, and the

end.of the command is ~lied by the end of the line.
However, commands may be written on the same line, separated

by semi-colons, thus:

x := Y+x; x' := y; x' • ::r=: o

but this form is not recommended, since it is difficult to
read.

If it is required to continue a command onto the next l.i,ne,
the symbol £may be used, either immediately before, or
immediately after, the newline,

~:.

':·

r
'

:,,

~·. .

5·3 MUltiple assignments are allowed, for example

x,x' ,x' 1 := Y+x,y,O

The items on the left-hand side are n.smes of variaq;t.es, and
those on the right-hand side can be variables, constEj!ltS or
expressions. The items in a multiple assignment need not all

·be of the same type, For example, if a,b,e are real variables,
and d is a Boolean variable, the following cOIIlllland is valid:

a,b,c,d := o,o, a+b, ~

MUltiple assignments are effectively carried out in parallel, so that

x,y := y,X

actually exchanges x and y, i.e. it is NOT treated as

X := y; Y := Xo

Which would assign to both x. and y the previous value of y.

A multiple assignment is considered as a single command,
however many items are involved.

5.4 A COMPOUND COMMAND consists of a sequence of
commands enclosed in SECTION BRACKET.S §, •••••••••••• i:

§ X := y +X
x' := Y
x11 := 0 :$

A co~nd command is considered as a single command,

5·5 Section Brackets.

A feature of pairs o:f' section brackets, used in forming
COII\POUnd commands and blocks, is that they may be tagged:

thus increasing the clarity o:f' the written program,
Moreover, section bracket pairs may be nested inside other

pairs, and the insertion o:f' the closing section bracket
is performed automatically for each nested § which lacks a $.

§2eee~a•••••~se4••••••o
~2. 1 • 0 • " ~ .. ., $ fl •••• lit • Ill

Closing section brackets 42.1 and 1·2.2 are inserted
automatically before ~2.

Any sequence of letters, digits and dots, optionally te:rmina.'tEld
by primes, may be used for a section bracl~et tag.

A space must NOT appear between the section bracket and its tag,
It is recoill!l:lended that all section brackets, ~1hether tagged or not,

should be followed by a space, after the tag, if any, ·

6. BLOCK STRUCTURE.

A :BLOCK in CPL is an extended form of co't'1P=nt'l '"'"''"'and,
It is defined as a command sequence, preceded by definitions,
THE ~/HOLE ENCLOSED IN SECTION BRACKETS,

Wherever we could have a colnpound command in CPL we can inserc a h1.ock1

and thus a CPL program will usually include blocks nested inside oth~r
blocks. The importance of this concept arises from the way in which
blocks determine the SCOPES of variable names: the definitions at the
head of a block are valid within yhat block and aJ:!Y bl,?,<~k it enclof!es, ..,. •~

,, • 1e; a,zw...u - M: t~<~ ~ ~ a. <.~.. ~ s~ ...,. -but not outside, va......, ~ '&D~ \l~les of lkA.t "k>"'-·
The variables defined at its head are said to be LOCAL to the ·

blockj variables which are not local are said to be atoeu. to the ttcttt.;._t.t>lJ:i;;
inner block, The whole program is theoretically enclosed in a block
containing definitions of the standard ·functions Log, Exp~ etc,
(Labels, however, are local to the smallest surrounding routine or
result expression; this is discussed more fully later),

It is important to note that, since it may be the subject of more
than one definition, a particular name may not have the same meaning
throughout a program.

A definition supersedes any previous definitions of the same name
within the block in which it occurs,

7• DEFINITIONS,

The definitions in a CPL program must associate with every
name introduced by the programmer e. type, and possibly a value.
The simplest form of definition is simply to define the type of an item,
leaving the value to be assigned later, All definitions must start
with the basic symbol let, thus:

1 et e. be real ---
Simultaneous definitions are performed by the construction:

let a, b1 c be real, integer, complex

Alternatively, if several hems are all of the same type, we me.y
write:

let a, b, c all be real ----
~ x, y ~ ~ complex

As with assignment commands, several definitions may appear on the
same line, separated by semicolons:

~ a, b, c !:Y:, ~ real; ~ x, y ~ !?! complex

7.1 Ini tiali.sed Definitions"

1-lhen a name is defined by· type ot the h<>art o:f a. block
this ;lndi<>f'te~> the:t we int,end to use a variable of the specified type
and· name in the subsequent. program, but it does not assign any vel.ue to
the variable, It is oft.en convenient to assign initial vel.ues at the
same time as we define va.:ds:bles, and this can be done as ;part of the
d~Sinitions, for exwmple:

let Pi " 22/7

NOl'E particularly the use of '"'' , NOT ':=' when setting initial values,

The type of the defined. variable is deduced by the conq:>iler from
the expression used to define it, It should be noted in this context
that the compiler has a 'preferred type' and if possible it will
represent items stteh as decilllal constants in the preferred type.
For eX!I!l!Ple, when the preferred type is set to ~~

A variable cru1 be initialised in tel'l!JS of variables defined in
surrounding blocks, for exaJIWle:

§1 ~a~ real
e.:: t!06<!>0!'<<!1@tHP'3

§2 ~ b " 2a(a+'l)

When e. variable is initialised in a blockhead, then the initial. value ·
is assigned to it ever-y tj.me the block is entered.

--· ··~----·-----···-··-----· ----"------ --

8. DEFINITIONS BY 1 and' AND 'where 1
, - '

The· full definition system in CPL gives the programmer
considerable control over defining his terms. They may be
defined 'sequentially' or 'simultaneously', simply or recursively,
qualified by other definitions or not to an indefinite degree of
complexity,

The simplest forms of definition have already been
described;

let a., b ~ ~; ~ c, d = 1, 2

A sequence of definitions may be activated in parallel and treated
a.s one definition if they are Joined by and, as shown below:

A. § 1 1:!;!: a. = 5

~2 ~ a ~ 10; 1:!;!: b = a

---------------------- $2
B. §1 ~a.= 5

§2 ~ a = 10 ~ b = a
42

The scope of variables defined in definitions (non-recursive) is
the body of the block in whose head they occur, and the right-hand
sides of any subsequent definitions in the block head. In case
'A the initial value of 1b 1 is 10, as the scope of the newly­
defined 'a' includes the definition of 1b' •

However, in case B, the initial value of 'b 1 is 5, since the definition
of 'b' is not within the scope of the second definition of 'a'.

The where clause enables us to introduce definitions which apply
only to a. particular expression, command or definition.
It is of particular use in qualifying initialised or function

.definitions (see Section 18). For e~le,

p := (axx + bx + c/x) where x = 2a + b

~ p = f[3a+b]jf[3b+a) where f[x] = axx +bx + cfx

~ p = F [2a + b] where F [x] = G [x,b]

-.-

------~---------·--· -·--~·-·----"'~~--·-------~-------
-----~----···----------

i.mmek.teb'
A wl1ere clause qualifies the largest ~ preceding expression,

command or definition. This is an important rule when it comes to
qualifying a function definition. Thus,

~ f[x) = (1 + yy)jy where y = g[x]

is probably incorrect, since x in the where clause is not taken as
the i'o:nnaJ. parameter x of f, but d,-s a glob& variable of the same
name. The correct version would be:

~ f[x] "' ((1 + yy) /Y where y = g(xJ)

in which the where clause is in the body of f, and qualifies an expression.
This interpretation is forced by the use of the paraltheses.

_[-.. -

. '

9• BOOLEAN VARIABLES AND E~99XOND.

9. 1 Variables and expressions of ty:pe Boolean co.n to.ke one of just two
v!Uues when evaluated; the constants ~ and false,

It is convenient to regard conditions as Boolean expressions. A condition
holds if and only if it has the value true when evaluated e.s e. Boolean
expression, It fails if it has the value-false,

The simplest form of condition is

<expression><relation><expressian>

where <relation> denotes one of the following:

=+'!>;:::<::;«»

'=','+',are equalitlf, inequality signs, , , .
and are interpreted 1n the standard manner. wh.er.o. i>fPkU- 10 &1'.4., ...,~lb~"
They are applicable to all ty:pes of expression, ~..:Wi..u "" ·

'>',';:::1 ,'<','::;', have the obvious meanings,
a.nd o.re e.ppUc1:1.ble to !llQ?re!!1s:l.ons of type111 real,
double and :!.l'lde:w. (not c2ffiPl.ex) • · -

'<<1 , '>>', are applicable only to
~~ double expressions. a<<b is interpreted
as b = b + a, in floating point arithmetic. (On Atlas this implies that
a is of order 1o112 smaller than b, if a,b are real.)

In keeping with accepted mathematical notation, conditions may be e~ended;
thus

a<b=c<d
is an acceptable condition, which holds if
a<b b=c c<d

all hold, and fails otherwise.
(Note that (a<b) = (c<d) is also acceptable, but holds under
completely different circumstances, when a<b, c<d have the same
truth values}. -

A condition· can be assigned to a Boolean variable, e.g.
let x, y be real; let b be Boolean -- ----o••••••

. b I= X>y

••••••••••
-·······-~---~ ·-·----;------~-~·----~-------.. ··• -· .

.... ·····---------------X·

'•

9.2 The general form of Boolean expression consis~s of Boolean variables and
conditions combined With the operators: 0t

/1.
V
=
I

(not)
(and)
(or)
(if and only if; equivalent)
(exclusive or; not equivalentY

The operators are given in descending order of precedence: the
infixed operators associate to the left.

The main use of Boolean variables is to record the result of a test for
later or repeated use. In a conditional expression or conditional command
we can write the name of a Boolean 'variable in place of an expression:
thus if b is s. Boolean variable,

is read s.s

'if b has the value ~then do C'.

-: ..

10. LABELS, JUMPS AND CONDITIONAL COMMANDS,

10.1 Any coilllll!llld can be labelled, the label being written
before the coilllll!llld and separated from it by a colon. Any name (large
or small) can be used as a label, provided that it is not at the same
time being used for any other purpose. (Note that ~~ICAL LABELS
ARE NOT ALLOWED, and· section bracket tags are NOl' collllllalld labels),

Examples of labelled commands are:

Ll: Xyz := P + Q

SOLVE: a := 2

Loop: a ~= b + 5

The basic form of transfer collillland (or jump) is .s2 ~ <label>, e.g,

f2_ ,!!?. SOLVE

Alternative forms for f2_ ,1:2 are goto and go to.

The scope of a label is defined as the smallest surrounding
routine or result expression (section 22) 1 so. transfers may be
-written to labels 1vithin blocks nested deeper than the position of the
transfer col'll!llWld; thus ·

Routine R l:le -
§1 -·-----------

f!E_ to LB

§2 ~a be~

LB : ----------- 11
The execution of a transfer which leads into new blocks is

understood to cause the activation of all the definitions in the block
heads through which it leads.

10.2 It is often required that a jump be conditional on some
relation holding, or ceasing to hold; this facility of conditional
commands, together with conditional e~ressions, removes to some
extent the need for explicit labels in a program (and should be
exploited) •

12.

10.3 The ±'irst form of condiUonaJ. colllllle.nd is:

if b then do C -· --
b represents a Boolean condition which may be t~ or false: .
if it has ·the value true the command C is obeyed, otherwise it is
omitted and the next~mmand obeyed.
An alternative form whose meaning is obvious is:

unless b ~ £!:?. C

In both cases~":!: or £!2 are accepted as synonyms for ~ ~·

Here are some examples of conditional commands:

unJ.ess a>> F-7 g;oto END

Note that for a conditional ,jump we normally write
'.!! b goto L', no·t '1! b ~ .£1£ goto L', (although the
latter form w~1ld be correctly interpreted by the compiler)
as '~ 2£,' may be omi t;ted when followed ilnmediately by 1 goto t •

10.4 Another form of' conditional cO!lllllllXld enables us to choose one of
two alternatives, depending on some condition, 'rhe basic form is:

~ b ~ ,22 C1 9!. 9£._ C2

If b has the value ~ command C1 is executed, otherwise command C2
is executed.

For e:x:ample,

Again, then or do are accepted in place of ~ .9:£;
or is accepted in place of .'?.!:: 2£..

10.5 We ca11 construct !lll.llti~level conditional comma.nds,
for exemple
~ b1 ~ !!:£ Cl 9!. ~ b2 ~ ~ C2 £!: C3

If b1 is true the command C1 is obeyed, otherwise b2 is tested and command
C2 or C3 is obeyed according as b2 is ~ or false.
This ll!a.Y also be wdtten:

~b1 ~Cl

2£~b2.~C2

·2! C3

as the compiler will infer in such cases that the end of the line
does NOT imply the end of ·I:Jie conmmd.

10.6 Sometimes it may be desired to skip a whole section of :program
if a certain condition holds: this is a. situation in which a compound
command is useful. A ·compound command is considered a single command,
so we can have constructions like:

if :p>65 then do § a:~o
- -- b:=c+dfe

f:=€1!-h $

11 CONDITIONAL EXPRESSIONS,

We have, in conditional commands, a powerful mechanism for
performing condiUonal operations. Conditional expressions offer
an alternative way,

The simplest form of a conditional expression is:-

b-+ El , E2

Here b is a Boolean condition and El and E2 are expressions
(which may, of course, be variables or constants). If condition b has the
value true, the value of the expression is El, otherwise it is E2.

A coiiditonal expression could be the entire right-hand side of a
command, for example:-

a := a<O _,. 0, a

This is equivalent to

i:r a.<o ~do a := o

However, we can include the conditional expression in a more complicated
right-hand side; in,this case it must be enclosed in brackets, for
exaJIIPle,

a:= a+ (cto-> bfc, d)

Similarly, we can use it as the argumen·~ of a function (section 18), thus:

a := b + FN[a < b+c-+ X[l], X(2Jl

More elaborate possibilities are introduced by the fact that El and
E2 are themselves allowed to be conditional. This permits the writing
of extremely complex conditional expressions; for example,

b1 -+ b2 -+ El, E2, b3 ...,. E3, E4

If such an expression seems unclear, its consti·tuent sub-expressions
should be bracketed, ~le completely bracketed expression whose
effect is ident:!.cal to the exsmple above is written

(b1 -• (b2 El, E2), (b3 E3, E4))

Conditional expressions can be applied to expressions
of any type permi·~ted in CPL. For eXllJllPle, with label expressions

ee. ,:!:2 (a< 0-> Ll, a= 0 12, L3)

A conditional expression can also appear on the LEFT of an assignment
command, e.g.

(x > 0 ~ a ·, b) := p + q

Here, if x > 0 a is· set equal top+ q, otherwise b is set equal
top+ q,

12 :u.BEL E.n"'PRES.SIONS.

The :form of a transfer comniand is ,·.·····'

~!2 <label expression>

where a label expression has as its value a co!lBiland label. In the
simplest case it is ill fact just such a label, but i·t can be a label
variable, Variables of type label hold as their values cO!lBiland la.be].s;
assignments may be made to them in the usual way, As an example of
their use, consider the program

§ let b be Boolean and L be label - ----- -.
-~--~-~---~---~----~~-
L1: ~---··---··---··-----
L2: - ... _ ~ ... -- ... --·~-- ... -- ...

L := (b-> L"l 1 L2)

~------~---~~~-----

1·

In this illstance, L is used as a link which may be set to hold different
command labels under different conditions and may later be used in
transfer cormllands ,

More CO!l1Plex Hnldng mechanisms can be set up by defining '.:
label a.rrays, and using variable subscripts to transfer to ;· ·
d:i.f'ferent l.abe.la, depending 011 circUlllBta.nces.

CYCLES AND REPETITIONS

13.1 Various facilities are provided in CPL to cope with cycles
and repetitions. If C is a command or compt'lUnd command, and b is
a Boolean condition, then the instruction

C repeat while b

causes C to be obeyed once, and to be repeated as iong as
b is ~· Alternatively we 11111¥ write

while b do C

In this case, if b is false initially, C is omitted,
and control is transferred to the next command in sequence.

Variants on these with obvious meanings are:

C repeat until b

until b ~ C

If several commands are to be repeated, they
MUST be enclosed in section brackets.

13.2 Modified repetition of a command, simple or compound,
is done by using the .!2:£ command. One :form of this is

.!2:£ <variable> = Step El, E2i E3 ~ C

Here El , E2, E3 are expressions or constants and C is a c01111118l1d..
~

f.Gp l'l = ~ o, 0.1) 1 ~

C is executed n+l times, where n is the value of (E3- E1)jE2, rounded
to the nearest integer; the controlled variable takes the values
El .• El + E21 E1 + 2E2, etc., in turn. Note that the expressions El, E21 E31

are evaluated once and :for all before the cycle is started; it is not
possible :for the cycle to change the increment or the end condition,

Note .also that it is not necessary to write rep(at after a :for command,
A .!2:£ command has a similar structure to a BLOCK see section tiT,
The controlled variable is local to the repeated command, and its 'nPE
is deduced by the compiler :from the types of El, E21 E3,

This means that when the repetitic~ has :finished the controlled
variable ceases to exist and it is not possible to use the final value
directly, If the programmer wishes an external variable to be used,
the for symbol is followed by ext, thus: · -· -

16.
: ,,

·)'1

:/

13.3 A frequent use of the step form is iri specifying unit steps,
thus:

ill v = step El, 1 , E2 d9 C
This may be replaced by the form El ;!:£ E2, thus I

~V= 1 j:£20_§eC

Similarly:

ill v = 1, 2, ••• , 20 do C

where the meaning is self-explanatory. The c0111111e.s are me.nde.tory,
and at l<>.a.St two dots must be used.

13.4 Another form for specifying repetition is the explicit
list of values, for example:

for X= o, 1.7, 2.51 §e C

As many values a.s desired can be included in the list: the c0111111e.nd C
is obeyed with the controlled variable taking each value in turn.

13.5 With all forms of the for command, the strict definition
is that the controlled variable is set before each repetition
to the next value in the control sequence, which cannot be altered
from within the loop.

13.6 Any of the forms of repeated command in this section may
be terminated either by e. transfer to e. label outside the c0111111e.nd1
or by obeying the basic command break, which effectively transfers control
to the command :following the smallest repeated command containing the '
break order,

. 17.

14• ARRAYS AND INDICES.

·In CPL we have arrays of any number of dimension~~ that is to say,
subscriR'!;I'l. d variables wi -vh any number of subscrip~~i though 1 - and 2·
dimensio1}!U arrays are probably the most likely. "\lm array is given a ~e
like any:~other variable,. and lllUSt be defined at "j;~i;i''head of a block '
along wi ilh. the other vanables used in the bloc!~;: •. ;
The defin:l:tion must specify the dimensionality Q!f':<t;he array, and the lr ' '
type of its elements, for eXB.Illple: . · ' ,

. '• .
· .. f ' 1;: ": }

let), XYZ :!?.!:. ~ 1 array , index 3 a!'ll~tJ

The symbols i;ector and matrix are synonymous with 1 array and
2 array respectively. (Note that 1 array is NOT hyphenated}.
However, it does NOT follow that variables defined in this way obey
the rules of matrix algebra. With a few exceptions (detailed later)
all array operations must be carried out on the individual elements
as in the example at the end of this section.

It is also necessary to set the range of subscripts. The way in
which this is done is described in the next section.

An element of an array is referred to by writing the name, followed
"'"' the subscripts in SQUARE brackets, separated by coll!lllas, thus:

A [10) , XYZ [i,j,k]

The sub~cripts can be expressions if required, for eXB.Illple:

XYZ[i(i+1),j(j+1),k(k+1}]

It is sufficient to use real or integer variables in these expressions,
but index variables may always be used.
The use of index variables in subscripts sometimes speeds up a program.

As an eXB.Illple in the use of arrays, suppose we have three two­
dimensional square arrays A, B, C, whose subscripts go from 1 to n,
then the following program sets C equal to the matrix product AB:

£2::i=1.!!2ndo

§1,1 ~ j = 1 .'!!2 n £2.

§1.2 let a = 0

for k = 1 to n do --
§1.3 a:= a+ A[i,k] B[k,j] ·j1.3

Note that the section brackets tagged 1.3 are included for purposes of clarity
only; the variable a is local to the block with tag 1.2 ,

18.

15. ARRAY INITIALISATION •

.An array must be initialised before its element$ can be used
in any -way. This can be done by an initialised definition of the
array, e.g.

let A= B

with B already initialised: or by defining the array by type, as
in section 14 above, and then assigning to it:

let A !:£ ~ 1 array

A := B

Before initialisation, an array does not possess any elements.
The function Newarray can be used to obta;J.n an array of the req\1:1-red.

type, dimensiona.lity and subscript range, as shown in the following
eXaJI!Pl.es:

let A = Newarray [real, (1, 1 O)]
let B = Newarray [integer, (-4, 4), (-1, 5)] ·
let C = Newarray [real, (1, n), · (1, n), (1 , n)]

A is a one-dimensional array of real elements, with subscripts
ruru1ing from 1 to 10. -

B is a 9 by 7 rectangular array of integer elements: the first
subscript runs from -4 to +4 and the second from -1 to +5•

C is a dynamic array, that is to say, its dimensions depend on some
previously computed quantity, and may be different on the several OCC$Sions
on which the relevant block is entered. As in any other initialised
definition, the array bounds may be expressions involving variableS
global to the block.

The elements of the array produced by a call to Newarray are not
initialised in any way.

If it is required to specify the values of the elements when the
array is initialised, the :function Fol·marray can be used: e.g.

!.!::!! M= Formarray[real, (1,2),(1,2)][8,10,12,-16]

This definition both defines M as a 2 by 2 array and also initialises
the values from the second argument list; i.e.

M[1 1 1] = 8

M[2,1] .. 12

M[1,2) = 10

M[2,2] '" -16

19.

' ~·

16. .ARRAY EXPRESSIONS.

Arrays are regarded as being variables in thEir own right;
the,dimensionality and the type of their elements is fixed on
definition, but the bounds may be changed by commands.
They may be defined by ·type only, as in

let Work, Place be ~ 3 array, ~ :l !!!?l

or they may be initialised thus

let Work= Newarray [reaJ., (1, 10),(1,10),(1,10)] - -
The right hand s:!.de of the initialised defini ti"n is an expression
of the relevant type; in this case, an array ex?l"ession, Such an
expression consists of ei·~her an array name or a :f\inction cal.l
Which produces an array or space for an array,

Array assignment commands may be written thus

Place : = \fork
Work := Newarray [~, (1, 5), (1 ,5), (1, 5)]

By the use of such colll!l'lailds the bounds of an a:rray may be changed
during operation of the program at any stage. vlhtm a colll!l'laild such
as the first example above is obeyed, the val.ue of the right hand
side is taken, ~h413-ca-rt-&l:ement.-by..e:l:emell'\'-eo~~:f:-:17he-et'l'ley-

'l#erk~s-new-copy-;i;~s&:j:gned-to,..the arre-y-'Y'ar-i&bl:e L...... ~
'-l:t:t , !.... tNi CAse a...-~ "} ~ ~ - Ho-.-. r--

'"'""-'· ~~ ~ ~ .cr.t. .wt2J ... -~, .n..A. $10~ ~ ~ ' ~~ t.(Ci;>h •
' p.c.- ' """"" WM 1 NOTE the distinction between an array expression whose

vaJ.ue is an a:r.ray, and a reference to an array el<~ment whose
value is a data item, for exe.lllPle, a real number.

lt Q, w.tl..es "' &ey - ~.) 4 ~dolo P'tl-...,e,.

w..:.., .ft4 bM0.. ., ... tAtD;._, eo.., . ToM. . -e;y.wDj

& ·-·- Lor>:J CA 1

. • ;fk,j! t.ct":J to a. .. tb LoJ'~ u.e ~ }\ 44<A- "'"'t? ...

20.

·'''·

.... -'

17. FUNCTIONS AND ROUTINES.

The concepts of FUNCTION and ROUTJNF. are of central importance
in CPL. Both are self-contained subsections of the program,
written in terms of dummy variables (or FORMAL PA~METERS); they
may therefore be called at different places in the same program,
usually with different sets of values for their arguments.
A routine is essentially a CO!IMAND (which can of course be
compound, and include assignment commands), which is obeyed.

A function on ·the other hand is an EXPRESSION, the evaluation
of which produces a RESULT.

Both functions and routines are treated as entities in their own
right and have names. The type of a function includes the type of
its result (',;·,g. ~ function) •

A FUNCTION or ROUTINE CALL is written in the form of the function
or routine name, follo•~ed in SQUARE BRACl(E'lS by a list of expressions
separated by commas (AC~AL PARAMETERS).
When a function call is encountered as an expression to be evaluated,
the formal parameters take as their values the values of the
corresponding actual parameters. The result of evaluating the
expression defining the function, with the formal parameters
taking these values, is the value of the function call.

Similarly, when a routine call is encountered as a command to be
obeyed, the command (usually compound) defining the routine is executed
with the formal parameters taking the values of the corresponding . ·
actual parameters. (Routines may call their parameters by reference,
in which case an 'address' is handed over: see section 20.2) .---
It should. be emphasised that each function call is an expression
and is defined by an expression, whereas a routine Call is a command
and is defined by a command,

It is possible to define P~SS functions and routines,
which have no .formal parameters, Calls to such functions and routines
are written using the function or routine name, followed by a patr
of square brackets, thus:

a:= Function1(]
Routine1 []

. The square brackets are mandatory for function calls, bUt may
be omitted in routine calls.

21.

18. FUNCTIONS,

A function is a complicated rule for specifying a value: let us
take a specific example. Suppose we wish to use the symbol 'F to
stand for the function defined by

2 F(x) = 3x + 4x + 1

At the head of some appropriate block, when we wish to define
it along with the other definitions, we write a FUNCTION DEFINITION

~ F(x] = 3x42 + 4x + 1

x is a dUilllllY variable, called a FORMAL PARAMETER: when we wish to
evaluate the function, within the block in which it is defined, we
write a FUNCTION CALL with the desired argument as an AC'lUAL PARAMETER.

If the arguments of a function are of any other type than the preferred
type of the compiler then this must be indicated in the definitions: e.g.

let P[matrix Alpha, index n] = Alpha[n,n)

~~ Q[~~ i,j) = i(i+1) + j

In the second example, i,j al'e both taken to be index,

The type of the result is deduced from the definition by the compiler.
If at the function call the actual parameters of a function do not ·
correspond in type to the formal parameters, transfer functions are
inserted automatically •

. For example, if we have

§ let a, b ~ real;
let k be index
let Q [_index i, j] = i(i + 1) + j

••••• I) •••

• • • • • & ••••

a := Q[b, k]

"""······· ~t
then b will be converted to type index before the function Q is evaluated.

The definition of a function is in terms of an expression,
:By using a result expression (section 22) as the expression,
the functionmaybe effectively defined in terms of a command sequence.

Note that function calls, being e=tpressions1 can occur anywhere
that a simple expression might, Thus:

a:= Fttnction1[Function2[a,b],c)

is a legal assignment collllll!Uld, provided that the r.aunber of arguments
and types of the results of Function1 and Function2 are correct,

22.

l
A
I i

.'l

., , .
. ·;
',
'

'~

• See pages B2 1 B3 at back of Hanua.l'

-23-

-:J..'t-

See P"je 61

20, ROUTINES

20.1 A function call is a notational device for abbreviating
an expression, In the same way we need a notational device for

·abbreviating a compound co!llllland, For this we use a ROUTINE.
Suppose we wish at various points in a program to solve the equations:

ax+by=c
- a'x + b'y = c'

with a jump to a specified label if' there is no solution,
We give the routine a name, say LINEQ, and at the head of some block
we write the ROUTINE DEFINITION as follows:

;!' w-
routine LINEQ [~ a, b, c, a.' 1 b 1 , c ,~x, y,t~'l:. L] t!
-;t;-il(i, lf
~et DET = ab 1 - a 1b

ifMod[DET] < l'f-6 ge to L
x:= (cb1 - c 'b) jDET ~
y :=(ac 1 - a'c)/DET 1~

This will solve the equations for various values of aib,c,a',b',c'
and assign the solution to x,y.

The first two lines are the ROUTINE HEADING; the remainder is. the
ROUTINE BODY, and consists of a block ~th, in this case, one
local variable DET. The routine heading gives the name of the routine
and the list of FORMAL PARAMETERS; when we wish to use the routine we
call it by writing the name followed by the list of ACTUAL PARAMETERS
which are to be substituted for the formal parameters,
Thus the CO!llllla.nd

LINEQ [1,2,3,4,51 6,V,W,ERROR)

wiil solve the equations

V+2W=3
4V + 5W = 6

assign the solution to V1 lo/ and send control to the label ERROR
if there is no solution, The formal parameters are dummiesi
like the formal parameters in a function definition,

20.2 In this routine, x and y differ from the other formal
parameters in that assignments are made to them, A variable to which
a value is assigned corresponds to an address in the computer where
that value is stored; x ru1d y are there:t'ore distinguished in the
routine heading l!!~ 'll!o!e line re:r~. This means tha",; they are called
by REFE'REiqcE. It has the effect that for the duration of the routine
they will be regarded as 'address-like',

The other parameters are called by VALUE; that is, their actual values
will be handed over. (Parameters are assumed to be called by value
unless it is explicitly stated otherwise,)

If an assignment is made in the routine body to a pa..r.ameter called
. by value, the parameter is changed for the remainder of the routine
application, but no assignment is made to the corresponding actual
parameter. .

Free va:dables of a rout1.ne are caJ~ed by reference, in exactly the
same way a..s the free variables of a '=' function,

. '

20.3 The :formal :parameters o:f' a routine lllB¥ themselves be rout41es or
\

.. · functions.

The end o:f a routine may be indicated by the end o:f the command
which is its body, and after obeying the command, control ·
returns to the command :following the routine call. It lll!l¥ be· r

convenient :for the dynamic end of the routine not to pe at this :
:point; for this :purpose there is a built;..in command return, which
causes a return to the command following the routine call, e.g. 1

·r• • e • •"' n

g b ~ return
•• $ ••

that return is a collllllll.nd, so that we write
· ••••• ~ ffE!. .!\2 retur11 •.

••••• then return, Nor

21.

a)

' i
; EXAMPLES OF ROUTINES !::f) · ~
r?utin~ Scalru"'Product 1:-eJI_ x,;...v$ctor A,

!:'e--~e--

~ r x == o u
!: ~ Pi for i = 1 to n do x := x + A[i]

if x « 1 !!£?.. toL $
. " "

The routine call

-

B, index n~ labet L]
rl

B[i] !

Scalarproduct [X, CAT,, DOG, \01 ORTH) .,

will ~et X equal to the scalar product o:f two vectors CAT and"
DOG, each of which has ten elements subscripted :f'rom 1 to 10.
I:f' t.ho v-ect.ro·s at"e orthogonal control. goes to the command J.abelled
flH'l'f:i, · ·

'b) routine Ge.ussquad [~ a,
..;p~

§: J.et s = (b - a) I

!St~
b, ,(I, Xtunct:l.on f]

:: I := S (.27778 :f'[a + .l1270s) +
.4444~. :f[a + .50000s]: +
.27778 da + .8873os]i)

I

n

Jb :f(x)
a

' . 'I

dx, using a Gaussian 3-point formula. This routin~ sets I =

26.

rl

22 RESULT EXPRESSIONS.

Throughout CPL there is a sharp distin9tion between commands
and e~,:pressions, Val.ue of is a construction which aJ.lows· us to obey
several. collllllands, which perform some caJ.culation, and treat the result
as an e~ression, to be incorporated in a larger e~ression.
This is particularly useful in function definitions; the form
of a ftlnction definition requires the body to be an e~ression
and it may well happen that it requires several commands to evaluate
the function. For ex~le, suppose we wish to define the function:

10
f(x) =:Eo len

n=O n
Let us suppose that the coefficients are available as an array. A
with subscripts running from 0 to 10, Then given x, the series iS
evaJ.uated by the following block:

§let Sum= 0
- fori= step 10, -1,0 do

- Sum := x Sum + A[iT *
I .

We have here a block which sets the locaJ. variable Sum to the required
value. To convert this to an ~ression we precede it by value of
and insert at the end of the command result is SUm, The function
definition thus becomes: -

f[x] = value of § ~ Sum = 0

,!2! i = Ste12 f10, -1, of ,2:2
'

Sum := X Sum + A(i]

result is Sum 1·
Although we have used a function definition as an example

value of can be used anywhere to convert a COII!Pound colll1lland
or block into an expression, which can then be used wherever any
other e~ression could be used.

A result expression may include more than one instance
of the command form result is, and the first such colll1lland met
during execution causes termination of the result e~ression, ·

27.

1See pages B2 1 B3 at back of Manual'

\
\.
\

•

-28-

24, RECURSION.

A recursive function or routine 1e one which explicitl~
calls itself. Thus

f[x] = (x=O ~ 1, xf[x-1])

is a recursive function, if 'f' on the right hand side is
interpreted as the function under definition; it computes x! ,
the factorial function. Special facilities must be provided for
the definition of recursive functions, since apparently the rule
which determines the scope of 1f 1 would be violated if
the necessary interpretation were made. (In non-recursive
function definitions, any functions occurring on the right hand
side of the definition must have been previously defined),

If we wish to define a recursive function or routine, this must be
indicated by preceding the definition with the symbol rec. As an
exaxnpl.e of this technique, take the Euclidean algorithiiifor
finding the HCF of two integers:

~ rec HCF [i;:teger n, m] =
(m> n-> HCF[m, n],

m= 0 _,. n,

HCF (m, Rem[n, m]])

Recursion is only meaningful in the case of functions and routines,
For e~le:

~ .!!!! f(x] .:. {x < q - x, f[x - a])

let rec routine R [x,y]

---~ ------------
R [x + 1, a - x]

---------------- 1
Here, we have defined a recursive function and a recursive routine,

As another example:

let rec §1 routine R [x] ~

~---- §2 ---------------
R [a + x] ; S [a -x]
----------------- 1-2 and routine S [y] !:'! §2 :::_:: _______ _

R (y - b] ; S [y + a]
----------- 12 41

NOTE the use of section brackets in the last example to force
treatment of the two definitions as a single one in order to specify
mutually recursive routines.

If the symbol rec is omitted from the definition of a function,
the occurrences of that function name in ita own definition
are taken as referring to a global variable of that name,
and not to the function being defined.

25. LOGICAL V4JliABLES AND EXPRESSIONS.

25. 1 A variable of type logicaJ. is a string of bits, of
some standard length (24 in Atlas); each bit is processed
independently. A variable of type long logicaJ. is a string with
twice the standard number of bits, also processed independently of
each other. ·

In the remainder of this section we talk about logical
variables; everything that is said applies to 1ong logical
variables, the only difference being that in general, operations on a
logical are faster than the corresponding operations on a long logical.

25.2 Operations on logical variables.

Logical variables provide the means whereby most non-numerical
work is carried out in CPL, and it is therefore necessary to have mqre
coll[llicated operations than those so far described. For this purpos~{
there is provided a basic set of built-in functions, in terms of whiqb
the more complex operations can be programmed. It is necessary first
to define a convention for the numbering of the digits in a logical
variable, which is done by numbering the digits upwards from the
right hand end starting from o.

Unless otherwise stated, the functions described below operate
on logical or long logical variables, and produce a result of the same
type as the logical opera.iid. We use logical without underlining
when we do not wish to distin~ish between logical and long logical
variables.

25.3 Functions for logicai.operations.

(a.) Shifts,

LShift [p, j)

RShift (p, j]

Rotate [p, j]

p is a logical variable, and j is an index variable which defines
the number of places shifted. LShift and RShift are logical left and
right shifts; Rotate is s. circular left shift. In all cases if j is
ne89.tive the direction of the shift is reversed, so that

LShift [p, j)

is equivalent to

Rshift [p,-j]

With LShift and RShift the bits moved in to fill the 89.PS are zeros.

(b) Masking operations,

Ones [j, k]

Here, j and k are index variables. Ones [j, k] produces a mask
in which bits j to k inclusive are ones and all other bits are
zeros; the order in which j,k are written is immaterial, i.e.
Qnes[j,k] = Ones[k1 j]. . .

30.

(c) Other bit-manipulations,

Field [:p,J,k]

Bit [:p,j]

p is a logicaJ. variable, J and lt are index variables; as usuaJ.,
the order of k and J does not matter, Th;e-fUnction Field [p,j,k)
masks off bits j to k inclusive, and then right justifies the
group, so that if j > k, bit k of the argument becomes bit 0 of
the result, and bit j becomes bit (j-k). For example, the effect
of Field [p,6,1o] is shown in the diagram,

p L _,.L !--' 10

Result I_ Zeros I I
~~ 0

Bit [p,j] is equivaJ.en·t to Field [p,J,J]; it has the effect of specifying
and right justifying a single bit. Trte fUnctions Bit and Field may be
used on the left-hand side of assignment commands; their results, therefore,
are effectively the 'addresses' of the bit or area specified,

25.4 togical Constants.

Logical consta."1ts can be written in bipary or octal, being
preceded by the symbols 2 or 8 respectively. (As 7=111 in binary,
an octal string is equivaient-to a binary sti·ing grouped in threes.
Thus, 2 010111011 = 8 273,) They are normally assumed to be positioned
at the-least significant end of a logical variable: thus_fl.77 !'
is understood to mean 8 00000077. However, positioning at the more significant .. ';.·
end can be indicated by a bar: in this case zeros at the less significant
end can be omitted, and 8 1273 is understood to mean 8 27300000
(assuming, in this case,-that 24 is the standard length).

Logical variables can be combined to form logicaJ. expressions
using the same eperators as for Boolean e:x;pressions, viz , A, V, ;::, ;1;.

(The basic logicaJ. operations on bits are

11\1 = 1 1V1 "' 1 -1 =,0

11\0 = 0 1VO = 1 ... o " 1

()1\0 = 0 CNO = 0

1 ;:1 .. 1 1!1 "'0

1;::0 = 0 1.f.O = 1

O:f> = 1 o;l;o = o

The specified oper.,t1on is carx·ied out on aJ.l bits independently,
Thus if a, b, c, e,re logical variables,

a := c A §.177

maskes off the top six bits of c and sets a equal to this, while

c := (c/lr-b) V (bl\a)

replaces the field in c specified by the ones in b, by the corresponding
field of a.)

Jj
I
I

I
1
' 'I
l
;l
j

•

26. STRING EXPRESSIONS,

A string variable is a. string of characters with po~sible local
limits on ma.ximUnl length. The characters IIUSt be those of the CPl.
alphabet,

A string constant consists of the characters of the string
enclosed in STRING QUarES, 1 ••••••• '; tor example,

'this is a string' 1123/AB/6'

with the exceptions that the cha.ra.cters
~~ I

have a. special significance; also occurences of 11 (double vertical bal-)
within string constants initiate comments (section 27), which ere ip~.
A special mechanism is required for speci:fying a.s pert of

a. string a. character, other than a. space, which does not print, or
cannot be represented a.s a. CPL cha.ra.cter, For these the ASTERISK

· . is given a. special significance, Wherever an asterisk occur,!!
in a. string constant it is interpreted together with the foUov.Lns
character according to some local convention concerntns such
characters, the precise nature of which depends on the llla.chine .
and output devices used, ·

For Atlas Flexowriters, these conventions are that

'·N and ''n
·~send *s
*T and *t
·*B and ·"b
'-fE and -::·e

*Z and *z
*U and ~u
•'L and *l

stands for *
stends for
stands for
stand for newline
stand for space
stand for tab
stand for backspace
stand for erase
stand for stopcode
stand for upper case
stand for lower case

For example, the string constant
1 123*n456** I

is a. representation of
123

One infixed operator may be used in forming string eJQ?ressions, the
conca.tena.ting operator <=>. Other operations on 11trings are carried out
by a. set of basic i\mctions, which ere described in section ~6.2 below,

Relational expressions may be written using strings and the
operators

These have the same form a.s a.ri thmetic relational eJQ?ressions and they
form a. subset of Boolean expressions.

A longer string is 'greater' in relational eJQ?ressions
. than a. shorter string identical to its starting characters; thus

. I A'!i.AS I > I AT'

is true, The relations between CPl. characters which determine the
pre'Ci'Se lexicographic ordering on strings is subject to local
convention, and may be altered to suit individual pro~.

32.

•
26.2 String manipulation functions.

In the following descriptions, s is a string constant and i is
an index parameter. Unless otherwise stated, the result is of type
string,

Length [s)
Tile result is of type index and is the number of characters in s.

First [s]
Last [s]

The-result is the first or last character of s, respectively.

Character [i, s 1
The result is the i-th character of s.

Initiels [i,s]
Finals [i,s]

•

Tile result is the first or last i characters of s, respectively,

27. COMMENTS,

It is sometimes required to include in a program eXPlanatory
notes which ere intended for the human reader only, and which mu$t be
ignored by the computer when reading the program. In CPL such
comments ere introduced by two vertical bars and continue to th~ end
ot that line; e.g.

11 X is the mean value

11 if p is zero this is dealt with in §1,2 ,

28. COMPLETE PROGRAM LAYOUT,

A complete CPL program consists, basically, of a sequence
of commands. It will usually begin with the programmer's
definitions; the program is to be thought of as embedded
in a global system block which contains all built-in
definitions.

The basic command Finish may be used anywhere in the progr~
and terminates the execution of that program. It would normally
occur as the final command in a program, and if' it is not
present the compiler will insert it.

More information on program la:yout and preparation is given
in the local operating manuals, •

('

\~
i!,

' F

.. ·~

16. ARRAY EXPRESSIONS.

Arrays are regarded as being variables in the.ir own right;
the dimensionali ty and the t;y:pe of their elements is fixed on
definition, but the bounds may be changed by commands.
They may be defined by t;y:pe only, as in

1~ Work, Place be real 3 array, £.!:!! :3 !!:!.2-;2:

or they may .be initialised thus

let Work = Ne1varray [real 1 (1 , 1 0), (1 , 1 0), (1 , 1 0)] - -
The right hand sj.de of the initialised definition is an expression
of the relevant t;y:pe; in this case, an array ex?l"ession. Such an
expression consists of ei-~her an array na.rne or a function call
which produces an array or space for an array,

Array assignment commands may be written thus

Place : = lvork
Work := Newarray [~, (1,5),(1,5),(1,5)]

By the use of such collllllBJlds the bounds of an a:n:ay may be changed
during operation of the progrBJll at any stage. V/hon a command such
as the first example above is obeyed, the value of the right hand
side is taken, ;i,n-4,Me-ease-e.n-e-1emen'bwby..cl:emeirt-eOW'-&;J;....:t;h~

'WGrk~.:i:f :i:s-n~se-:t-gned-to-the-arre-y-var-ie;ele '--....... .
. l.p.1 -1 . ""' lh4 CAJe a... ~ 6) ~ ~' .._ H.o_.,. Y'"" -
'"'"""-'· ~::; ~ ~ ~ <IM~ -...c;, .n..:. $10~ 4.t-eA. ~ . f'-i6, ""'"~ . > PL... /IIJ. w,..~c., •.

· l~O'l'E the distinction between an array expression whose ; .
Value is an array, and a. reference to an array el,~nent whose
value is a. data. item, for exaJl1Ple, a. real. number.

lj a. c..e, ... t'J,ey a- -:/> 4 ~ dA> So
P'tl~"

~ .fW b.u.:C.. ~ a,...,. T.t..e. ~W Dj

& ·-·- Cop:J (A 1

• • ~ 4Jf>:; ro a .
\1, tb "'"-' u.a. ~ " -.... '"'t1'"'

--·-'

17. FUNCTIONS AliD :ROUTINES.

The concepts of FUNCTION and ROUTTNF. are of cen.tral importance
in CPL. Both are self-contained subsections of the program,
written in terms of dummy variables {or FORMAL PA/!AMETE:RS); they
may therefore be called at different places in the same program,
usually with different sets of values for their argMments.
A routine is essentially a COl-JMAND (which can of course be
compound, and include assignment commands), which is obeyed.

A function on ·the other hand is an EXPRESSION, the evaluation
of which produces a RESULT.

Both functions and routines are treated as entities in their own
right and have names. The type of a function includes the type of
its result (".,,g, ~ function) •

A FUNCTION or ROUTINE CALL is written in the form of the function
or routine name, followed in SQUARE BRACKETS by a list of expressions
separated by commas (ACTUAL PARAMETERS).
When a function call is encountered as an expression to be evaluated,
the formal parameters take as their values the values of the
corresponding actual parameters. The result of evaluatin.~ the
expression defining the function, with the formal parame·~ers
taking these values, is the value of the function call,

Similarly, when a routine call is encountered as a command to be
obeyed, the command (usually compound) defining the routine i43 executed
with the formal parameters taking the values of the corresponding .
actual parameters. (:Routines may call their parameters by reference,
in which case an 'address' is handed over: see section 20.2) ----
It should be emphasi~ed that each function call is an expression
and is defined by an expression, whereas a routine call i4il a command
and is defined by a command,

It is possible to define PA:RAMETE:RLESS functions and routines,
which have no formal parameters, Calls to such functions and routines
are written using the function or routine name, followed by a pa.ir ·
of equare brackets, thus:

a := Function1 []
Routine1 (]

The square brackets are mandatory for function calls, bUt may
be omitted in routine calls.

21.

18. FUNCTIONS.

A function is a complicated rule for specifying a value: let us
take a specific example. Suppose we Wish to use the symbol 'F to
stand for the function defined by

2 F(x) = 3x + 4x + 1

At the head of some appropriate block, when we wish to define
it along with the other definitions, we \a-ite a FUNCTION DEFINITION

~ F(x] = 3x42 + 4x + 1

x is a dummy variable, called a FORMAL PARAMETER: when we wish to
evaluate the function, Within the block in which it is defined, we
write a FUNCTION CALL with the desired argument as an ACTUAL P~.

If the arguments of a function are of any other type than the preferred
type of the compiler then this lllUSt be indicated in the definitions: e.g.

~ P[matrix Alpha, index n] = Alpha[n,n]

~et Q(index i,j] = i(i+1} + j

In the second eXB.li!Ple, i,j are both taken to be index.

The type of the result is deduced from the definition by the compiler.
If at the function call the actual parameters of a function do not
correspond in type to the formal parameters, transfer functions are
inserted automatically ,

.For example, if we have

§ ~ a, b be real;
let k be index
let Q [index i, j] = i(i + 1) + j - --

............
a := Q[b, k]
.......... ., ~f

then b will be converted to type index before the function Q is evaluated.

The definition of a function is in terms of an eXPression,
By using a ~1lt expression (section 22) as the expression,
the function n;a.y be effectively defined in terms of a command sequence.

Note that function calls, being ~~ressions, can occur anywhere
that a simple expression might, Thus:

e. : = FL!nction 1 [Ftlnction2 [a, b), c]

is a legal assignment command, provided that the rnunber of arBMments
and types of the results of Function1 and Ftmction2 are correct,

22.

1See pages B2 1 B3 at back of Nanual 1

See p-,e 61

20. ROUTINES

20.1 A function call is a notational device for abbreviating
an expression, In the same way we need a notational device for

· abbreviating a compound command. For this we use a ROUTINE.
Suppose we wish at various points in a program to solve the equations:

ax+by=c
a'x + b'y = c 1

with a jump to a specified label if' there is no solution.
We give the routine a name, say LINEQ, and at the head of some block
we write the ROUTINE DEFINITION as follows:

~ ~
routine LINEQ [~a, b, c, a', b', c ,~x, y,~label L] ~
J>ef_,_....
§ let DET = a.b 1 - a 1b

IfMod[DET] < 1 "-6 ~ to L x:= (cb 1 - c 'b) /DET ~
y :=(ac' - a'c)/DET 1t,

This will solve the equations for various values of a1 b,c,a1,b1 ,c1

and assign the solution to x,y.

The first two lines are the ROUTINE HEADING; the remainder is the
ROUTINE BODY, and consists of a block wi,th, in this case, one
local variable DET. The routine heading gives the name of the routine
and the list of FORMAL PARAMETERS; when we wish to use the routine we
call it by writing the na.me followed by the list of ACTUAL P~
which are to be substituted for the formal parameters,
Thus the command

LINEQ [1,2,3,4,5,6,V,W,ERROR]

wiil solve the equations

V+2W=3
4V + 5W = 6

assign the solution to V,W and send control to the label ERROR
if there is no solution. The formal parameters are dummies,
like the formal parameters in a function definition.

20.2 In this routine, x and y differ from the other formal
parameters in tha·t assignments are made to them, A variable to which
a value is assigned corresponds to an address in the computer where
that value is stored; x and y are therefore distinguished in the
routine heading 'l!oy '!!.he l:i:ne re:r~.This means that they are called
by REFERENCE. It has the effect that for the duration of the routine
they will be regarded as 'address-like'.

The other parameters are called by VALUE; that is, their actual values
will be handed over. (Parameters are assumed to be called by value
unless it is explicitly stated otherwise.)

If an assignment is made in the routine body to a pa:r.ameter called
. by value, the parameter is changed for the remainder of the routine
application, but no assignment is n~e to the corresponding actual
parameter, .

Free variables of a rout:i.ne are caJ~ed by reference, in exactly the
same way as the free variables of a '=' function,

20.3
:fUnctions.

The :t'ol:'lli8J. parame-ters of a. routine may themselves be routi~s or

The end o:t' a. routine ma.y be indicated by the end ot the command
which is its body, and atter obeying the command, control ·
returns to the colJl!llalld following the routine call. It may be· 1

· convenient tor the dynamic end of the routine not to be at this :
point: .for .this purpose there is a built:...:tn command return, which
causes a return to the colJl!llalld :following the routine cSil, e.g. :

· '' 6 • • • e
if b then return

n , " " .

--•••••

":.·

Note that return is a collllna.rld, so tha.t we write , ~ return, NOT.
•, •• ~fiE.~ retunl.

21.
> 1
; E:K:AMPLES OF ROUTINES !:!f , ~

r?utine Scala:rproduct lh--e~ x,;..vr;,ctor A,
!:1e;t:.. ... ,... A;;;...

' -§ l1 X := 0

a.) B1 index n~ labet L]

rl
• I H for i = 1 to n do x :~ x + A[i]

ifx « 1 fiE. toL $
B[i]

. "
The routine call

Scalarproduct [X, CAT,, DOG, 1
9
0, ORTH]

will ~et X equal to the sca.lar product o:t' two vectors CAT and
DOG, each ot which has ten elements subscripted from 1 to 10.

'l

If t.ho vectm·a at'e orthogona.l control goes to the c0ll1lllalld. labelled
fllfl'H, . .

'b) rsutine Gaussquad [~ a.,
~
§;let s = (b - a)

!Si~
b11(C,~:f'unction f]

:, I:= S (.27778 f'[a.+ .l1270s}+
.44444 f[a. + o50000S]i+
.27778 f[a + .88730s]i)

I

"

~
This routine· sets I = J b f(x) dx, u~ing a Ga.ussian 3-point formula.

a

11

26.

22 RESULT EXPRESSIONS.

Throughout CPL there is a sharp distin9tion between commands
and e.l..'Pressions, Value of is a construction which allows' us to obey
several collllllands, which perform some calculation, and treat the result
as an expression, to be incorporated in a larger expression.
This is particularly useful in function definitions; the form
of a function definition requires the body to be an expression
and it may well happen that it requires several commands to evaluate
the function. For example, suppose we wish to define the :f\metion:

10
f(x) = 2. n l:n

n=O n
Let us suppose that the coefi'iciants are available as an array A
with subscripts running from 0 to 10. Then given x, the series is
evaluated by the following block:

§let Sum= 0
--- fori= step 10, -1, 0 do

- ~x Sum+ A[iT f
I

We have here a block which sets the local variable Sum to the required
value. To convert this to an expression we precede it by value of
and insert at the end of the command result is Sum, The function
definition thus becomes: ---

f[x] = value of § ~ Sum = 0

f2! i = Ste12 -£10, -1 1 of !!2_
'

Sum := X Sum + A(i]

result is Sum ~~

Although we have used a function definition as an example
value of' can be used anywhere to convert a cOI!ij;)ound collJillalld
or block into an expression, which can then be used wherever any
other expression could be used.

A result expression may include more than one instance
of the collJillalld form result is, and the first such command met
during execution causes termination of the result expression.

27.

•See pages B2 1 B3 at back of Manual'

\
t

'

. .

-28-

24. RECURSION.

A recursive function or routihe 1s one.Which explicitly
calls itself, Thus

f[x] = (x=O ... 1, xf[x-1])

is a recursive function, if 'f' on the right hand side is
interpreted as the function under definition; it computes xl ,
the factorial function. Special facilities must be provided for
the definition of recursive functions, since apparently the rule
which determines the scope of 1 f 1 would .be violated if
the necessary interpretation were made. (In non-recursive
function definitions, any functions occurring on the right hand
side of the definition must have been previously defined),

If we wish to define a recursive function or routine, this must be
indicated by preceding the definition with the symbol rec. As an
example of this technique, take the Euclidean algprithmlfor
finding the HCF of two integers:

~ !!.£ HCF [integer n, m] =

(m > n -> HCF tm, n],

m= 0- n,

HCF [m, Rem[n, m]])

Recursion is only meaningful in the case of functions and routines.
For ~le:

let ::::.£ f(x] .:. (x < q -+ x, ·-f[x - a])

let rec routine R [x,y] ~

-----~ ------------
R [x + 11 a - xl

---------------- *
Here, we have defined a recursive function and a recursive routine.

As another example:

~ !!£ §1 routine R [x] ~

' §2 ---------------R [a + x] ; s (a -x]
----------------- 12 and routine S [y] (le.
§2 :::_::________ -

R (y - b] ; S [y + a]
----------- 42 41

NOTE the use of section brackets in the last example to force
treatment of the two definitions as a single one in order to specifY
mutually recursive routines.

If the symbol rec is omitted from the definition of a function,
the occurrences or-that function name in its own definition
are taken as referring to a global variable of that neme,
and not to the function being defined.

29.

•

25. LOGICAL Vl).RIABLES AND EXPRESSIONS,

25. 1 A variable of type logical is a string of bits 1 of
some standard length (24 in Atlas); each bit is processed
independently. A variable of type long logical is a string with
twice the standard number of bits, also processed independently of
each other. · ·

In the remainder of this section we talk about logical
variables; everything that is said applies to l.on.g logical
variables, the only difference being that in general, operations on a
logical are faster than the corresponding operations on a long logi~.

25.2 OPerations on logical variables.

Logical variables provide the means whereby most non-numerical
work is carried out in CPL, and it is therefore necessary to have Jll9!fe
cotiq?licated operations than those so far described. For this purposE\(
there is provided a basic set of built-in functions, in terms of Whiqh
the more complex operations can be programmed. It is necessary first
to define a convention for the numbering of the digits in a logical
variable, which is done by numbering the digits upwards from the
right hand end starting from o.

Unless otherwise stated, the functions described below operate
on logical or long logical variables, and produce a result of the same
type as the logical operand, We use logical without underlining
When we do not wish to distin~ish between logical end long log;!.cal
variables.

25.3 Functions for logical operations,

(e.) Shifts,

LShift [p, j]

RShift [p, j]

Rotate [p, j)

p is a logical variable, and j is an index variable which defines
the number of places shifted. LShift and RShift are logical left end
right shifts; Rotate is a circular left shift, In all cases if j is
negative the direction of the shift is reversed, so that

LShift [p, J]

is equivalent to

Rshift [p,-j]

With LShift and RSh.1f& the bits moved in to fill the gaps are zeros,

(b) Masking operations,

Ones [j, k]

Here, j and k are index variables, Ones [j, k] produces a mask
in which bits j to k inclusive are ones and all other bits are
zeros; the order in which j,k are written is immaterial, i.e.
ones[J,k] = Qnes[k,j]. . .

}0. I
.
:

(c) Other bit-manipulations,

Field [p,j,k]

Bit [p,J]

p is a logical variable, j and k are index variables; as usual,
the order of k and j does not matter, The fUnction Field (p,j,k]
masks off bits j to k inclusive, and then right justifies the
group, so that if j > k, bit k of the argument becomes bit 0 of
the result, and bit j becomes bit (j-k). For e~le, the effect
of Field [p1 6,10] is shown in the diagram,

p

Result ---·-&-1_1 If 0
Zeros

Bit [p,j] is equivalent to Field [p,j,j]; it has the effect of specifYing
and right justifying a single bit. Tne fUnctions Bit and Field ~ be
used on the left-hand side of assignment commands; their results, therefol~,
are effectively the 'addresses' of the bit or area specified.

25•4 togical Constants.

Logical constants can be written in bipary or octal, being
preceded by the symbols 2 or 8 respectively, (As 7;111 in binary,
an octal string is equiv8ient-to a binary string grouped in threes.
Thus, 2 010111011 = 8 273,) They are normally assumed to be positioned
at the-least significant end of a logical variable: thus 877
is understood to mean 8 00000077· However, positioning ar-the more significant J
end can be indicated by a bar: in this case zeros at the less significant
end can be omitted, and 8 !273 is understood to mean 8 27300000
(assuming, in this case, -that 24 is the standard length),

Logical variables can be combined to form logical expressions
using the same operators as for Boolean expressions, viz. ~, A; V, =• ±•

(The basic logiceJ. operations on bits are :

1/\1 = 1 1V1 "' 1
_,

=,0

1/\0 = 0 1VO = 1 ... o .. 1

()11.0 = 0 CNO = 0

1 =1 = 1 1;i1 : 0

1,:,0 = 0 1;iO = 1

o.:.o = 1 ofo = o

The specified operation is carried out on all bits independently,
Thus if a, b, c, a.re logical variables,

a := c 1\ §177

maskes off the top six bits of c and sets a equal to this 1 while

c := (~b) V (bAa)

,'

replaces the field in c specified by the ones in b, by the corresponding
field of a.)

,,
' .I

:1
.j
.,
' '

j
.,

''·1

:1

(

•

26. STRING EXPBESSIONS.

A string variable is a. string of chare.cters with possible local
;Limits on ma.ximum length. The characters IIUSt be those of the CPL
alphabet,

A string constant consists of the chare.cters of the string
eJl(llosed in STRING QUOl'ES, 1 ••••••• 1; for example,

1this is a string' 1123/AB/6'

with the exceptions the.t the characters
{(· I

have a special significance; a.iso occurences of 11 (double vertical bai)
within string constants initiate comments (section 27), which are 1~.
A special mechanism is required for specifYing as part of

a string e. character, other than e. space, which does not print, or
cannot be represented as a CPL che.ra.cter. For these the ASTERISK
is given a special significance. \o/herever an asterisk occurs
in a string constant it is interpreted together with the following
character according to some local convention concerning such
che.re.cters, the preCise ne.ture of which depends on the me.chine
and output devices used, · ·

For Atlas Flexowriters, these conventions are the.t

'·Nand ''n
·"S and *s
*T and <ft
·*Band "b
"E and ·::·e
*Z and <>z
*U and «u
•'L and *l

stands for ~'
stands for . I
stands for 1

stand for newline
stand for space
stand for tab
stand for backspace
stand for erase
stand for stopcode
stand for upper case
stand for lower ce.se

For example, the string constant
1123*n456"* I

is a representation of
123

One infixed operator may be used in fo~ng string e~essions, the
concatenating operator <.:>. Other operations on strings are carried ou.t
by e. set, of basic :functions, which are described in section 26.2 belOW,

Relational e~essions may be written using strings and the
operators

< <=t>?:.

These he.ve the same form as arithmetic relational ~essions and they
form a subset of Boolean expressions.

A longer string is 'greater' in relational e~essions
.than a shorter string identical to its starting characters; thus

• 1AT.LAS 1 > 1AT1

is true. The relations between CPL characters which determine the
preCISe lexicographic ordering on strings is subject to local
convention, and may be altered to suit individual pro~.

32.

.

'
26.2 String manipulation functions.

In the following descripoions, s is a string constant and i is
an index parameter. Unless otherwise stated, the result is of type
string.

Length [s]
The result is of type index and is the number of characters in ••

First [s]
Last [s]

. The- result is the first or last character of a, respectively,

Character [i,s]
The result is the i-th character of s.

In1 tiels [i, s]
Finals [i,s]

'

The result is the first or last i characters of s, respectively,

27. COMMENTS.

It is sometimes required to include in a program explanatory
notes which ere intended for the human reader only, and which DUst be
ignored by the computer when reading the program, In CPL such
comments ere introduced by two vertical bars and continue to th~ end
ot that line; e.g.

11 x is the mean veJ.ue

11 if p is zero this is deeJ.t with in §1,2

28. COMPLETE PROGRAM LAYOUT,

A complete CPL program consists, basically, of a sequence
of commands. It wlll usually begin with the programmer's
definitions; the program is to be thought of as embedded
in a global system block which contains all built-in
definitions.

•

The basic command Finish may be used anywhere in the program
and terminates the execution of that program, It would normally
occur as the final command in a program, and if it is not
present the compiler will insert it,

More information on program layout and preparation is given
in the local operating manuals, ,

33·

APPENDIX 1

A SHORT LIST OF CPL BASIC SYMBCO:.S
WITH THEIR SYNONYM3 AND ABBREVIATIONS,

Basic symbols may be written in upper or lower case, or a
mixture of the two,

Spaces in basic symbols, whether underlined or not, are isnored.
(e.g. i2 ~ mey be written go to or ~.) . ·

:Basic symbols are listed under the sect10J1 number 1ri 'Which they
first e,ppear,

Section 1

real
Index
integer
dOuble
coll!Plex
double COil!Plex
i

Section

+

X
L'
I
if

)
(

Section 8

and
Where
are -

4

not ini tiall.y. ill!Plemented
. "

tr

11

all are both are

A1.

•

•

J,

"' •'

Section 9

Boolean
true
faiSe •

=

+ " >
<
>
<
>>
<<

• ~

V
t\
=

±
Section 11

go to ~ JUIIIP to
if
then then do do
unle'ss
~ ot.l:ler1dse or or do else - -...
,

Section 12

label

Section 13 •

repeat
while
until
step
ext
for .'

.bi:-eak -··

Section 14

array
vector
matrix

)

•

•

In the following sections, ab"breviations foUowed by an
asterisk ma:y be followed by a :t\lllstop, possibl.y underUned.
e.g. routine tl_ !.!:• !.!:.:.. ·

Section 18

function £!! *
= [definition by t~robars]

= [definition by threebars]

Section 20

routine rt ·::·

section 22

vel.ue of
result is

Section 23

vel. of

- [initiali~ation by reference]

= [initialisation by value]

Section 24

recursive !:.!:£" *

Section 25

logical.
long logical

[JustifY symbol]

.

Section 26

string

[string quote l
" [escape character]
<=>

Section 28

11 r comment]

Section 29

finish

'\

"(-.;

A4.

CPL REFERENCE MANUAL

The Editor regrets that due to diffioulties in reproduction

the page numbers referred to in tb,e following corrections have

been removed from some of the pages in the preceding section of

the manual. This may lead to some difficulty in correcting these

omissions.

PS. Insert after line 9:
'Variables declared at the head ·.>f a block are said to be
the Bound variables of that block. 1

P11. Line11
1 ••• in the standard lll!mner when applied to the simple types mentioned
in section 3. (For equality between functions, routines, labels, etc.,
see the Advanced Programmipg Manual.) '

P16. Delete lines -15 to -16

· P20. Replace lines -6 to -4 by:
', •• side is taken, in this case an indication of the storage area
reserved for the arra,y 'work'. Note that after the assignment, this
e.rrey storage area is shared between 1Place1 and 1Worlt1 ; and assignments
to array elements of the one will e.ssi~ to arra,y elements of the .
other, 1

Insert at bottom:
1 If a programmer wishes to copy e.n array, this ce.n be done vie. the
basic function Copy. Thus the effect of:

B := Copy(AJ

is to copy the arra,y A and assign the copy to B. 1

Pa7 Line -10
1 !£!: i =step 10~-1,0 ~ •

p A3. Delete lines 1 to 3

fn. !)1!. -
!:i· rt. -
ref. ref. -
~· ve.l.

i

tr

I
~J

I
I

I
I

I
I

u
·'

'i ,,

NOTE: the form for a routine definition is now:

let rt R[<formal parameter list>) ~ § •••••••••••• $
and the formal parameter list now has the form

[ref re~ a, !:Y!:!. index b) with the following rules:

'l'hEI TYPE of a formal parameter is the nearest type specified to the left0
If'no type is specified it is preferred type.

Similarly, the MODE is the nearest mode specified to the left: if no mode is
specified, it is ~·

Thus the routine LINEQ now looks like:
v.U..

~!:!:. LINEQ[a,b,c,a1 ,b1 ,c' .~ x,yJlabel L] ~ § ••••••••• $
NOTE also that, as formal parameters of functions can now be called by ,
reference, the parameter lists for functions and routines are now identical.

The following section replaces sections 19 and 23.

INITIALISATION BY VAWE .1\IiJD BY REFERENCE. '

An initialised definition, as in section 7.1, associates a name with
an initial value. There are in :fact two modes of initialisation, by VALUE
and by REFEREI'ICE. These are w:ri tten w~ th a 1 =' sign and a 1

::::.' sign respecti vel,y.

An initialisation by VALUE causes the variable concerned to be associated
with a :fresh storage location, whose.initial contents are given by the right
hand side of the definition.

An initialisation by REFERENCE cs.uses the ~iable concerned to be associated
with a storage location whi.ch is speci:fie(l;'::i.n terms o:f the storage locations
fi!.lready associated with other variables/This storage location is specified
by the expression on the right hand side o:f the definition, some r;imple e":amples
of expressions which may be taken as speci~ing storage locations are:

A[i]

(b-> a, A[i])

some basic functions which may be interpreted as producing storage locations
are given in SecUon 25.3(c). (It is also possible for the programmer tD
define such :functions himself: see the Advanced Programming Manual),
If the expresai.on on the right hand side does not specify a storage location,
the variable concerned is associated· ·with a constant, whose value is t.ake.l"l as
the current value of the right hand side of the definition, Fut.ure assignments
to that variable will be const1~ed as error~.
For example, after:

otl:.ll'~<liBG&tl<l!

1b 1 has the constant value 2. An assignrilemt b := 0 is then in error.

A variable initialised by reference shares its value with the vo.r:i.able 61r
expression on the right hand side, a.n~an-assignment to· either expreooion
has the effect of changing both, . -

Consider: § ~ a = "I

1..~b::::.a

let c = a

b := 2 1
Final values of a, b, care 2, 2, 1.

fixed at the old value Df a., namely ·1.
b and a share the new assignment: c i~

The final values had the aosignment been a. := 3 wouJ.,d be 3,3,1.

Similarly, consider:

§ l.e·t. A be real vt~ctor and i be index - ·-----
let i = 3 ; !!:i A[3] = 10

ill a = A[:i]

~ b ::: A[i]

A[3] := 11 ~

. With subscripted variables, t.he suh6~ is evaluated in both cases and
fi;(;ed at i = 3: but the ·~e.lue of the element in b - A[i) may che.nge.
After the assignment, the values of a and b-are 10-a.nd 11 respectively,

··--·-··--·-·---- ··----·--~-····--·-·

BOUIID VARIABLES; FREE VARII\B.tES and FORMAL PARAMETERS •

The names that occul" on ·the right hand side of a function defi..Lition
!llt:lY be; qlassif:i.ed as occurrences or' the BOUND VARIABLES,FORMl\L PARAMETERS,
and FREE VARIABLES of the function.

A BOUIID VARIABLE is an occurrence of a name in o context in which it
is subject to a definition within ~ ~lnction b~dx: this con happen
either in on expression quoJ.if:!.ed by a where clause, or within a result
expression (see sect;i,on 22). -- .

A FORMAL PARAMETER is e.n occurrence on the ;t·:i.ght hand oide of the function
defin:Ltion of one of the names in the ;paro.m.eter l:lst on the left hond side
of the definition, in a conte~'Ct in which it fl! not a bound variable of the
function (i.e. not redefined ~.d thin the :functi.on body.)

A FREE VARIABLE occurrence is any occurrence of a name which does not fall
into either o:t' the other two categories. Free variables must be mea.ning:t'tll
within the :funct:l.on definit5.oni thu-G is_, either t..ue :t'Ltuc-t:l.cm de:t':tnition
must be Within the scope of some definition of the free variables conce1ned, or
those names lllUst be :t'o:t'l!laJ. 11sra•neters o:f· solne enclo.aing :t'lmct:Lon or rou-tine
definition or be names of libi•a.cy funct:I.Olls.

Tlru.a, in:
§ let, a .. 2 ~ b = 3 · ·

let g(y] = nxx+by 1
g[y] has ttu·ee free variables, a, b, and x

We have seen tha-t vo:r:tables msy be initialised by value or b:Y reference.
Similarly, parameters in a function or routine msy be Cli.LT..ED Ill" VALUE
or CAU.ED BY REFEREIJCI<:. The mode in which the :t'omaJ. ;parameters a-re caJ~ed
is s;pecif'ied in the :func-tion or :mut1.ne heading (see the Note fo:c P25.)
The mode in which the free variables o:t' a :funct-ion are culled de;p,.,nds UJ?Oll
whether it is a f\:mction defined by twobe.ra (=) or by ·ttu·eebars (,;.).

There is a very close ons~ogy be-tween the formoJ. and a.ct-uaJ. param-eters of
a :function or routine, m1d 'the 1B:f.'t ru!d right; hand sides of an initialised

('definition. For exlllllPle, consider•

ill !:! R[x] P-2. § x : = 1 ~

let a = 3 -
R[a]

oeoib'OJ'I)O.E!Iflt>Q

The formal parameter, x, msy be called e:i:ther by value or by reference.
- -~ ----·--·-·----~---"--"-~ .. - -----····· --

I:f we have R[val x] then after clllling R[a.], a. still has the value 3.
The a.naJ.ogy wOUld be:

let a. = 3
let x =a

X := 1
Which obviously does not e:t':fect the value of e..

It we had R[!2f x] on. the other hand, this would be a.nologous to:

let a. = 3
let x:::::o.

X := 1
.. •lld e.s e:x;ple.ined above the :t':!.nol value of' a will be 11 shured with x.

(.'

•

•

•

•

This may be sUllllllSl:'ised as:

Assignments to formal parameters called by value do Iifar result in assignments
to the corresponding actual pa~ameters.
Assignments to formal parameters called by reference DO result in assignments
to the corresponding actual parameters.

Assignments to a parameter called by value in any function or routine
evaluation has the expected effect of changing the value of that parameter
for the rest of the evaluation, In the case of functions this can only be
done through the use of a result expression.

The free variables of a function may be called in either mode, depending
on whether the definition of the function 'WaS by twobars or by threebars.
In a twobar (=) function the variables are called by VALUE: that is, the
current values of the free variables at DEFI!UTIO!l' t.i.me are copied., ·
and during the evaluation of the function the tree variables are taken as
referring to these private copies and not to the global variables of' the same
names. Assignments may HOT be made to the free variables of a twobar function
from within the body of t.he function.

In a threebar (:) function the free variables are called by REFEREiifCE, end
take the current values of the variables with the same names at the time
o:f EVALUATIOn of the function, which may well be different from the values
that they had at; definition time. Assignments to free variables called by
reference can be made from w:Lthill the func-tion evaluation, via a result
expressioo.

The :following example illus·trates the, dif:ference between the two modes of
calling free variables:

ill :f(x] :;. s.xx +bx +C ·

ill g[x] = s.xx +b.x + c"

a,b,c := 5,6,'7

L1: w,z := :f'[w], g[z]

When the colllr.lalld labelled Ll :l.s obeyed, lv :l.s set equal to (5mr + 6w + "{)

' z is se·~ eQual. ·to (2zz + 3z + 4).

B4

r

f .
I"

i
f

t

11

I
f

!
I

I

I ,,
f
r
I
I

p,10 line -10 Replace "longest possib],e" by "longest immediately".

line -5 Replace 11is" by "as"

For an account of function definitions, see section 18.

The first example here illustrates a common misuse of ~ clauses.

Note that y is to be initialised before the function f is defined, so
that x in the definition of y must have been defined at that time and
cannot depend on future values of the parnmcter of f.

The first example would be acceptable if it occurred in a context within
the scope of some definition of x, e.g.

§ !2.!:. X = 1

!2.!:. f[x] = (1 + yy)/y whe~ y = g[x]

.. ~ . . . -~
f would then be defined as the function with the constant value (1 + yy)/y
for all parruneter values, where y is obtained by evaluating g[1j. This
may not be what the programmer intends.

p.12 line -14 "!2.!:. routine R !:£"

p.16 Note: •:=', not '=', in f2!. ~ x :=step 1, 2, 11 do

pp. 19-20 It is important that an array should be thoup;ht of not as the
total:i.ty of its elements but as an indication of where these

elements are to be found, i,e, as a 'pointer' to the relevant element
storage area, The effect of an array assignment or initialisation by
value is to assign a 'pointer' and not to copy the array elements; any
such copying is to bo done by a call to the function 'Copy',

p.26 Example (a) should now start:

"!2.!:. routine Scalarproduct [::!:f ~ x, val vector A,B, ~ n, ~ L] be

§ x:=O" etc,

Example (b) should start :

"ill routine Gaussquad [~ a,b, ~ I, ~ function f) J22

P•29 lines -11)
-15)
-21)

B4 Une -9

line -7

line -3

§ ill s=(b-a)" etc.

Insert "be" in all routine definitions.

§ !2.!:. a,b,c ~be ;r~

§ ill w,z £2..lli be ~

L1: w,z:== f[w], g(z] ' •

C"PL

Editor's Apolo,~ia

The unfinished draft which follows shows imperfections
of several kinds:

1. Missing sections

1.3.Lf, 1.3.5, 9.2.3, are missing merely because they have
not yet been written. They presented some problems in exposition
and so were postponed.

1.4-, 9.5.1, 9.5.2 were postponed because the content was
still under discussion.

Appendices 2 and 3 are still under discussion.

2. Incorrect Sections

The whole of section 2 is an um·evised earlier draft and
may need. major revision.

9.5 is now largely vrrong as we have altered the rules. o.~out
break, return and result is to allow a more general use. This is
too complicated to insert as a manuscript alteration.

3.2, 3.Lf.6 and 6.5 will need modification when the type
character is introduced.

4.6 and 8.3.5 will need modification when the scope of
where-clauses is changed,

3. Errors, Misprints and Infelicities

Some of these have been corrected in manuscript.
be very grateful f'or a note of' any more which come to

4. Defects of Style

I should
light.

The draft inevitably still shows signs of its original
multiple authorship in the varying styles of the different sections.
More serious, perhaps, is the vacillation betvveeh a conci.se
definition-like style (such as used in the Algol 60 report) and a
more relaxed expository style. I find myself tempermontally averse
from writing in English in a very formalised manner, so that ti1e
longer the draft has been under my care, the longer it has become.
The only cure I can see for this is the development of a precise
and symbollically expressed formo.l theory of" semantics which still
eludes our grasp.

5. Defects of Exposition

These are probably frequent and are only partly inadvertent.
The Reference Manual is not intended to be an exposition or
explication of CPL. The definitions o.f the meaning or effect of
some operator or command in terms of other or simpler constructions
may be in error in prescribing undesirable actions in infrequent
cases. As these are discovered they will be altered.

It is part of our general approach to CPL that logical coherence
and convenience in use are not to be sacrificed to brevity or
simplicity in explanation.

In the ordinary course of events I should have been most
unwilling to publish a report with so many defects. However, in
the circumstances, given the desirability of circulating more
infonnation about CPL at once and the equally great urgency of working
on Compound Data Structures together with the fact that none of
the authors has time to spare on the Reference Manual, there seems
to be nothing else to do.

I hope it will be possible to publish a revised and corrected
version of the Reference Manual incorporating the treatment of
Conpound Data Structures on which we are now working in the not
too distant future. It would be of great assistance to me if
readers who discover errors of any sort in this draft would send me
a list of them. If a sufficiently large number appear, we s;1all
try to circulate a correction sheet to everyone who has a copy of this
report.

July 1966.

C. Strachey

Programming Research Group
45 Banbury Road

Oxford
England.

A
~..,;;;!

CPL Reference Manual Introduction 19 Jan 66 PAGE 1

INTRODUCTION

This report is intended to be a complete description of
CPL as at present defined. The syntax of the language is

. given using a system based on that used for ALGOL 60 (see
Section 1.2). Semantic descriptions are given in words and
by example (see Section 1.3). As a satisfactory formal
language for describing semantics has not yet emerged, this
document should not be regarded as completely rigorous; it
should be read with a modicum of common sense.

One of the principal aims in designing CPL was to make
it a practical application of a logically coherent theory of
programming languages. lt is not the purpose of this report
to expound the underlying theory. However, some parts of
this report, and in particular, the semantic descriptions,
have been much simplified by making use of some of its
concepts. As these may be unfamiliar, a brief general
discussion of some of the issues involved, particularly as
they apply to CPL, has been included in Section 1. Section
2 contains an informal account of the relationship between
Publication CPL and the more formal Canonical CPL which
underlies the publication language.

Part 11 (Sections 3-11) contain the description of
Canonical CPL which is the main purpose of this report.

I
I

I

CPL Reference Manual Contents 18 March 66 PAGE 1

Authors' Preface X

Introduction
11

N :.s.s..'YI:;

M ... t YluA itl1• J Dr '«.¥ ; J iC\'\

PART I

1

2 '

General Considerations
1.1 Algorithms, Programs and Programming Languages

1.1.1 Commands and Expressions
1.1.2 Equivalence of Algorithms
1.1.3 Equivalence of Programs
1.1.4 Equivalence of Expressions
1.1.5 Rearrangement Rules ·

1.2 Syntactic Problems
1,2,1 Publication and Canonical CPL
1.2.2 Syntax Rules
1.2.3 Purposes and Limitations of Syntax

1.3 Semantic Problems
1.3.1 General Approach
1.3.2 Data Items, Types.
1.3.3 Transfer and Representation Functions

')(1.3,4 R-values, L-values
')c 1.3.5 Load-Update Pairs

X 1,4 Relation with the Environment
~ 1.4.1 The Operating System
>' 1.4 ,2 Input and Output
X1.4.3 Compi 1ation
)\1.4.4 Errors

The Transformation from Publication to Canonical CPL
2.1 Features of Publication CPL

2.1.1 General Principles
2.1.2 Terminators and Layout
2.1.3 Brilckets
2.1,4 Conditional Expressions
2.1.5 Other Features

•

2.2 Categories Recognized During Transformation
2.2.1 Names
2.2.2 Numbers
2.2.3 Strings

2.3 Rules for Transformation

PART 11 CANONICAL CPL

3 Preliminaries
3.1 Canonical Form

3.1.1 Genera 1
3.1,2 CPL Publication Alphabet
3.1.3 Basic Symbols·
3.1.4 Basic Categories

3. 2 Types
3.2.1 General
3.2.2 Numerical Types
3.2.3 Logical Types
3.2.4 Other Types

\

A
I;;;..;.J

CPL Reference Manual Contents 18 March 66

3.3 Transfer and Representation Functions
3.3.1 . Programmers Transfer Functions
3.3,2 Basle Transfer Functions
3.3.3 · Automat re Insertion of Transfer Functions
3.3.4 Polymorphic Operators
3,3,5 Representation Functions

3.1t Constants
3.1t.l General
3,11,2 Syntax
3.4.3 Numerical Constants
3,4.4 logical Constants

li 3.4.5 String Constants
3.1t.6 Character Representation
3.4.7 Other Constant Expressions

· lt Expressions
4.1 Syntax
4.2 Evaluation
4.3 Conditional-Expressions

4.3.1 Syntax
4.3.2 Semantics

4.4 Block-Expressions
4,11,1 Syntax
4.4.2 Semantics

4.5 Expression-Lists P 4.6 Where-Clauses
5 Prefixed Operators and Expressions

5.1 Monadlc Operators
5.1.1 Syntal<
5. 1. 2 S em an t i c s

5.2 Prefixed-Operators
5,2,1 Syntax
5.2.2 Semantics

5.3 Prefixed-Expressions
5.3.1 Syntax
5.3.2 Semantics
5.3.3 Array References

6 lnfixed Operators and Expression
6,1 Syntax and Grouping

6.1.1 Syntax
6.1.2 General

!I 6.1,3 Juxtaposition, Pos and .llil.g
6.1.4 Grouping

6,2 Numerical Operators
6.2.1 Types
6,2,2 Semantics

6,3 logical Operators
6. 4 Relations

11 6, 5 String Operators
6,6 Polymorphism and Type Matching

CPL Reference Manua 1 Contents

7 Definitions
7.1 Syntax
7.2 Modes of Definition

18 March 66

7.2.1 Definition by Type
7.2.2 Definition by Value
7.2.3 Definition by Reference

7.3 Constant and Variable Definitions
7.4 Definitions and Types

7.4.1 Preferred Type
7,4~2 Type Definitions . .

•• ?·4,3 Simple Initial I zed Definitl~rn~
8 Deftnttton Structure and Scope Rules · •

8.1· Syntax
8.2 Scope and Extent

8. 2 .1 Scope
8.2.2 Extent

8.3 Scope Rules for Definitions
8,3,1 Recursiv~
8.3.2 Composite Definitions
8 • 3 • 3 . .8llii.
8.3.4 .Ln

11 8.3.5 Wber.e
8 • 3 • 6 .l..a.t.

8.4 Other Scope Rules
9 Commands

9.1 Syntax
9.2. Assignment-Commands

9.2.1 Syntax
)<. q •'1.·3 9 • 2 • 2 S em anti cs 1

9.~ Transfer-Commands and Labels
9.3.1 Syntax
9.3.2 Semantics
9.3.3 Labels

9.4 Routine-Commands
9.4,1 Syntax
9.4.2 Semantics

9.5 Other Simple-Commands
~ 9.5.1 Syntax
•y.. 9.5.2 Ret!J.r.n

ll 9,5,3 fl1·eak
9,5,4 _Result b.

9.6 Conditional-Commands
9,6,1 Syntax
9.6.2 If-Commands
9.6.3 Test-Commands

9,7 Cycle-Commands
9.7.1 Synta)(
9. 7. 2 \1h i 1 e-Commands
9.7.3 Repeat-Commands
9.7.4 For-Commands

ll 9.7,5 Evaluation of For-lists

PAGE 3

.. I

'-

CPL Reference Manual Contents

)<. 9, 8 B 1 ocks
~ 9,8,1 Syntax
,- 9 • 8. 2 Notes
~ 9.8.3 Declarations
~ 9.8.4 Command-Sequences
X 9,8,5 Leaving Blocks

10 F~nctions and Routines

18 March 66

10~1 Introduction. Function and Routine Calls
10.1.1 Syntax
10.1.2 Semantics

10,2 Functions and Routines as Data Items
10.2.1 Syntax
10.2.2 Types
10.2,3 Expressions and Assignments

PAGE 4

10.2,4 Equality between Functions, Routines
10~3 Function and Routine Definitions

10.3.1 Syntax.

11 Arrays

10.3,2 Semantics. General
10,3,3 Formal Parameters
10.3.4 Free Variables
10,3.5 LH Functions
10.3,6 Determination of Result Types

11.1 Suhscripted Expressions. Arrays as Data Items
11.1.1 Syntax
11.1.2 Semantics

11.2 Basle Functions for Arrays
11.2.1 Array-creating Functions
11.2.2 Other Functions

11 eye~ J:)<. l

>< rrw ... J·~ :2..

I' ~tr r~ .. J'J.. .:s

/?..~z. ']>,.t '(ro'-~S.£Vi"

c..J.. ... r ,~· S.i'G eT~.
c·- l A _,-I -~' ~-' - ~ A lRt>:Ji-,....,_, ~~.G\IA.C{dP-..f""A -""" ' I IIO)y'\.,lf ..., t)l.

CPL Reference Manual Section 1.0 12 July 66

1, General Considerations

NOTE

1.1 Algorithms, Programs and Programming Languages

1. i .1
1. i .2
1.1 .3
1 .1 .4
1.1.5

C ommand.s a.nd Expressions
Equivalence of Algorith:ns
Equivalence of Pro0ro.mo
Equivalence of Expressions
Rearrangement Rules

1,2 Syntactic l~·oblems

1.2.1
1.2.2
1,2.3

Publication and Canonical CPL
Syntax Rules
Purposes and Limitations of Syntax

1,3 Semantic Problems

1 .3. 1
'1.3.2
1.3.3
1 .311)~·
1.3.5

General Approach
Data Items, Types
Transfer and Representation Functions
R-values, L-values
Load-Update Pairs

1.4 Relation with the Environment

1 , L,, 1
1.4.2
1 .1+.3
1.4.4

The Operating System
Input and Output
Compilation
Errors

Sections i .3.4, 1.3.5 and the whole of 1.4 are not
yet written.

Page 1

A
~~

CPL Reference l\!anual Section 1.1 15 Jun 69 · Page 1

1.1.1. Commands and E::s..J2X'essions

An ALGORI'rr-m is a rule for computation;. using the
words in a wide and informal sense. A PROGRA.M \is an algor­
ithm presented in a form in which it can be acc~pted and,
hopefully, executed by a computing machine. A PROGRAMMING
LANGUAGE is the formalism in which a program is expressed.

. Algorithms are built up in an hierarchical manner
(which is not usually described formally) from components
which are imperative sentences. These sentences contain
verbs and nouns or descriptive phrases which take the place
of nouns. For example in the imperative sentence:

"Replace x by the product of x and y."

the phrase "the product of x and y" is a description which is
the second object of the verb "replace".

One of the ways in which the hierarchy is built up is
by using one algorithm as part of a descriptive phrase used in
another. The example just given might have been written
"Replace x by the result of multiplying x by y." Here
"multiply x by y" is a subsidiary imperative which has become
incorporated in the descriptive phrase "the result of •••• ".
In this case, however, there is some ambiguity as it is.not
entirely clear if the comm'l.nd "multiply x by y" means
"replace x by the result of multiplying x by y" or merely
"discover the result of multiplying x by y". Such ambiguities
cannot be tolerated in a program, and it is part of the
function of a programming language to make their elimination
simple and safe.

The features discussed above make their appearance in
all programming languages, though in some the ambiguity has
not been wholly eliminated. The terms used in CPL to describe
them are the following.

A COJ\'1MAND corresponds to an imperative sentence.

An EXPRE3SION corresponds to a descriptive phrase.

A.NM~E corresponds to a noun and is a special case of
an expression.

The mechanism for incorporating the result of one
algorithm in a descriptive phrase of another is completely
explicit (see Section 4.4).

0 . .

CPL Reference Manual Section 1.1 15 Ju~e 66 Page 2

1.1.2 Equivalence of Algorithms

There is no generally accepted rule for detemining
the equivalence of two algorithms independently of their
context. There is, however, one situation when it is
quite clear what shoul<f be meant by such an equivalence. If
an algorithm, A, occurs as part of the descriptive phrase
"·•• the result of ••• " as a component of a larger algorithm,
then we are only interested in the "result".of 'A and any
other algorithm, B, which produces exactly the same result
will be acceptable in its place. In these circumstances we
can say that A and Bare locally equivalent.

1.1.3 Equivalence of Programs

Two programs are said to be equivalent if they pro­
duce indistinguishable effects whenever they are executed •
This execution must be complete, not partial, so that,
for instance the intermediate effects of two equivalent
programs may differ, and in particular all programs which do
not terminate may be regarded as equivalent. The question
whether two given progra@s are equivalent or not in this
sense is '***''~ undecidable, but in certain simple cases
it may be possible to prove equivalence by one of the follow­
'ing rules.

1. Certain commands are defined in this manual to be
equivalent to ~ other, generally simpler, commands or
sequences of these.

· 2. Two commands which differ only in their component
parts (which may be expressions or other commands) are equi­
valent if each of the corresponding component parts of the two
commands are equivalent.

These are not the only possible cases in which commands
are equivalent •. The whole question of equivalence of programs

·is a complicated and not yet fully understood one and its
investigation lies outside the. scope of this ;report.

(Note that equality of routines as defined.in section
10.2.4 is a completely different·and much stronger concept

. ·than that of equivalence between programs,) · .· · .. ·.

IV"i\
V

' >

CPL Reference Manual Section 1.1 15 June q6 !'age 3

1.1.4 Eauivalence of Exnressions

Two expressions are equivalent when they have the same
value. In the case of a block-expression the value of the
whole expression is the value of the expression following the
basic symbol result is so that any "side effects" such as
assignments to non-local variables are ignored when determintng
equivalence.

When detennining the equivalence of expressions in­
volving standard mathematical operators only the properties
of the ideal mathematical operators are relevant. Departures
from the ideal owing ·to the fact that only finite represent­
ations are used in a computer, are to be ignored. Thus, for
example, the expressions x + y - z and y - z + x are to be
considered as equivalent irrespective of the precision or
range of the internal representations of numbers, and irres­
pective of the order of evaluation of the components.

1.1.5 Rearrangement Rules

The general rule in CPL is permissive. Any program
or expression may be replaced by any other which is equivalent
to it in the sense of sections 1.1.3 and 1.1.4.

In order to allow a detailed control over sequencing
and the deliberate use of side effects, it has been made
possible to prevent any replacement or rearrangement of this
sort. This is done by using the note sic at the head of the
block. This has the effect of preventing the re~lacement or
rearrangement of the commands inside the block. lSee Section
9.8.2) .

,,

CPL Reference Manual Section 1,2 20 Dec 65 PAGE 1

1,2 Syntactic Problems

1.2.1 Publjcatjon and Cano.!:l.ti;al CPL

Public~tion CPL contains a number of convenient
programming• ~evlces. These are described in the Elementary
Programming Manuals and a brief summary is given here in
Section 2.1. Some of these features are not easily
described in a formal system, and so publication CPL is
formally defined by describing a transformation which
changes a publication CPL document into canonical CPL. A
description of this transformation is given in words in
Section 2 and as a CPL program in Appendix 1. lt should be
noted that the transformation from publication to canonical
CPL can be carried out by a number of processes and that the
one described in this manual is by no means the only
possible one.

Canonical CPL, which Is Introduced in this way as a
device to aid in description of the language, is more easily
subject to a formal description which occupies Part 11 of
this report. A program in canonical CPL is a context-free
character string with no dependence on layout or
representation.

The existence of canonical CPL aids the task of
specifying other hardware representations, such as those
using cards, quite substantially. Logically unimportant
changes, for example to the identifier rules, may be
advisable in such cases. These alternatives are readily
defined by specifying their transforms into canonical CPL.

Any practical implementation of CPL will probably
accept an input which differs to some extent from both
publication and canonical CPL. One possible way of
constructing a compiler for such a system is to transform
the locally defined input stream into a representation of
canonical CPL before further processing. The program given
in Appendix 1 would serve as such a PREPROCESSOR for a
system whose local input language was pub] icat ion CPl. Its
inclusion may help to suggest a method for writing similar
preprocessors for other local representations of CPL.

Publication CPL with only minor changes in the
character set is used as the hardware representation at the
London and Cambri~ge establishments,

1.2,2 Syntax Rules

Syntax descriptions of canonical CPL are given in terms
of metallnguistic formulae. Sequences of letters enclosed
in brackets < > represent syntactic categories; they are

CPL Reference Manual Section 1,2 20 Dec 65 PAGE 2

chosen to be words describing approximately th~ meaning of
the corresponding strings. The sign ::= ~eparates the
category being defined on its left from \:he defining
sequence on its right, The vertical bar I is used to
separate alternative sequences. Any sign which is not a
category stands for itself. Juxtaposition of 1 signs and/or
categories signifies juxtaposition of the sequences they
denote.

Metalinguistic brackets<> may be nested and thus used
to group together more than one constituent sequence (which
may contain alternatives). An integer subscript may be
attached to a metalinguistic bracket and used to specify
repetition; if it is an integer n, then the sequence within
the bracket must be repeated at least n times; if the
Integer is fo 11 ow·ed by a - sign, then the sequence may be
repeated at most n times or it may be absent,

For example, the formula

<ab>::= <ab><d>l<ab> 1_(I L

gives a recursive rule for the formation of values of the
category <ab>; a legitimate value may be formed by some
other value followed by a value of <d>, or by a (possibly
absent) value followed by (, or by [. If the values of <d>
are the decimal digits, some values of <ab> are

'[(((1(37(
(12345(
(((
(6

Grouping or association rules can be expressed in two
ways in the syntax. Unsubscripted recursive formulae or
groups of formulae imply a corresponding semantic grouping.
Subscrlpted formulae (which are generally not recursive)
imply no such grouping. Thus:

(p) ::= (q>l<p)(q)

Implies association to the left- i.e., a grouping of the
type (((qq)q)q) and

<r> ::= <s>l<s><r>

implies association to the right- I.e. (s(s(ss))) while

and
<x> ::= <y><<z><y>>o

<x> ::= <<y><z>>o<Y>

have th~ same meaning and imply no association among the
components of x so that the only grouping is (yzyzyzy).

Syntax descriptions are given adjacent to those
sections of text which describe the corresponding semantics,

0

' 0

CPL Reference Manual Section 1,2 20 Dec 65 PAGE 3

and a complete syntax is given in Appendix 5.
For clarity, the ~ separators are not included In the

syntax formulae.
In order to avoid confusion, the canonical CPL symbols

< > << >> and 1 are replaced in syntactic formulae (where
they might be confused with the metasyntactic symbols<> I)
by the basic symbols ~~ ~~ muchlesstban,
muchgreaterthan, Qs£.

1.2.3 Purposes and Llm1tatlons gf Syntax

There is often some confusion about the precise
meanings of the wo1·ds syntax and semantics and some doubt as
to where to draw the line between them. In this report we
do not attempt either to discuss this issue or to be
particularly nice in our distinction between the two;
roughly speaking we call anything we express in the notation
described in the last section·syntax, and everything else in
this manual semantics.

The purpose of our syntactical analysis Is to allow a
CPL program to be divided into smaller segments, known as
syntactic categories, in a way which will make the
subsequent discussion of its effect (or meaning) simpler and
more precise. Any text which cannot be analysed in this way
will not be a correct CPL program, and this fact allows a
compiler to detect many of the slips and trivial errors in a
program at an early stage by a rather superficial
'syntactic' analysis. However, the converse is by no means
true, as a text which is syntactically correct in the sense
of this paragraph may be semantically meaningless.

The syntactic rules in this report are not even
sufficient to group a CPL text completely. In·· some cases
(e.g., infixed-expressions) they leave the final grouping to
a later stage of the analysis which we have here included in
the semantics. In others, the syntactic categories
correspond not to groupings of the text but to semantically
related items (e.g., relations).

CPL Reference Manual Section 1.3

1.3 Semaotic Pr.Qblems

1.3.1 General Approadl

26 March 66
l

PAGE 1

As no satisfactory and generally accepted method of
describing the semantics of a programming language has yet
emerged, the method adopted In this report is a mixture of
informal description in English sometimes illustrated by
examples in publication CPL with, in some cases, definitions
in term5 of other CPL forms. Some of the concepts used in
these descriptions are discussed in Sections 1.3.2 to 1,3.5,

When giVIng examples in publication CPL it is
convenient to be able to use variables whose values are
individual members of various syntactic categories. Upper
case Roman letters with numerical subscripts are used for
this purpose. The letter is chosen to give some Indication
of which syntatic category Is being represented, and the
suffix is used Identify the particular Individual member of
this category. Thus, for example, when discussing the
assignment command which has the syntactic form

<assignment command> ::=<expression> :=<expression list>

the example used is ..
Ea := E1.

which makes it possible for the subsequent discussion to
refer to the components of the command as E1 and Ea.•

1.3.2 Data Items. Typgs

A CPL program is concerned with operations on and
relations between certain objects known as DATA ITEMS, (or
sometimes merely as ITEMS). These can be thought of in
several ways, At one level they may consist of patterns of
magnetization in a core store, at another they may be
thought of as bit patterns or binary words. At another
level they may be divided into 'Instructions' anrl 'data',
while at another they may be thought of as being numbers or
letters.

The point of view adopted by CPL Is that ultimately all
data items are represented by bit patterns of various
lengths. However, these bit pattern represent other,

·generally abstrac~ objects, such as numbers or functions and
their importance stems from this representation. This
attitude allows us to talk about the abstract objects in CPL
without being concerned with any particular representation

~""'\
\,;J

/'

CPL Reference Manual Section 1.3 26 March 66 PAGE 2

as a bit-string (which may well be lmplementatinn dependent)
but at the same time makes it possible to consider
explicitly questions which Involve this representation.

The TYPE of a data Item determines its representation
and at the same time constrains the range of entities which
may be represented. Thus, for examp·le, the type l.nteger can
only be used to represent integers in a certain range, Both
the extent of this range and the details of the
representation of Integers within this range are
implementation dependent. The existence of the type
j nteger:, however, is a property of the language.

CPL provides for a fairly wide range of types which are
discuss.ed in some detail in Section 3.2

it Is possible for a single abstract entity to be
represented in more than one way as a bit pattern. The
integer 3, for example, can be a data item of type J:e.ill. or
one of type ~~£r (among other possibilities), These two
items would be quite distant and their bit-patterns would,
in general, be different. There are a series of TRANSFER
FUNCTIONS available In CPL whJch have the effect of changing
from one form of representation to another without altering
the abstract entity being representerl. These are discussed
further In Section 3.3.

The various types In CPL provide representations for a
number of well-defined classes of abstract objects. lt is
these abstract objects which constitute the data items,

In some cases (for ex amp ·1 e, the type il..iJ..l) the
representation of the abstract object is only approximate.
The usual situation Is that a range of entities all have the
same representation. In these circumstances it Is important
to be clear whether the CPL program Is discussing the ideal
abstracts or their approximate representations. In other
cases, however, where the representation Is exact there Is
no significant difference In outcome whichever view is
taken, and it is considerably simpler in these cases to
regard CPL as manipulating the abstract entities directly
and to leave the questions of representation to the
implementation. lt is partly for this reason that the
rearrangement rules have been Included In CPL.

This implies that In normal operation CPL is to be
regarded as describing opea·ations on abstract objects and
not on their representations. In those cases where the
difference between the approximation of the representation
and the ideal abstract are of importance, it is possible to
specify the exact sequence of elementary operations to be
performed on the representations by using the note ~ at
the head of the block (see Sections-~1.1.5).

In accordance with this view there are certain specific
situations in which tnwsfer functions are inserted
automatically by the Implementation In order to ensure that
a correct representation Is used,

)

CPL Reference Manual Section 1.3 26 March 66 PAGE 3

Certain functions are available in CPL which deal
explicitly with the representation of a data item. One
class of these, known as TRANSFER FUNCTIONS, have as their
aim the control of the type by which an item is represented.
Another, known as REPRESENTATION FUNCl"iONS, allow access to
the actual bit patterns used In the representations; these,
of course, are strongly implementation dependent.

Transfer functions are, ln general, polymorphic; they
take a single argument, which may be of any meaningful type,
and produce a single result which has the same value as its
argument (or-an a~prox!matlon to it) and has a specified
type. These functions are listed in Section 3.3.1 and are
available for explicit use by the prog1·ammer. They are also
inserted automatically by the compiling system in certain
places to ensure that a suitable representation Is used.

While the finer details of the transfer functions (and
in particular, their alarm conditions) are implementation
dependent, their general nature, and the situations in which
they are to be inserted automatically by the compiling
system are a part of the language. These are described in
detail in Section 3.3.

Representation functions are not concerned with the
abstract value of their arguments, merely with the bit
string which represents them In the current implementation.
(see Note at end of this section.) They are not, in
general, inserted by the compiling system and their use by a
programmer serves as a warning that the program containing
them is probably implementation dependent.

There is one exception to the statement that
representation functions are not inserted by the compiling
system. The abll ity to use table lookup as a method of
processing non-numerical items (such as characters) is so
convenient and widely used that the fact that it involves
representation explicitly Is often overlooked, In order to
preserve this facility, the representation functions which
take single character _uLi.J:l.g,a., J..Q.RL~ and j nde2> into each
other may be invoked automatically by the compiling system.
The details of this, and of the other representation
functions are given in Section 3.3.

l:JQI£.: In this section and elsewhere where bit strings and
items of type .lruti~ and J..Q.J.J.S lo,g;jcqj are discussed, it has
been tacitlY assumed that the implementation will be on a
binary machine. For implementations on a decimal machine,
considerable revision of the functions and operations
dealing with these types would be necessary.

,''i

CP.L Reference Manual Section 2,0 12 July 66

2, The Transformation from Publication to Canonical CPL

NOTE

2,1 Features of Publication CPL

2.1 .1
2.1.2
2,1 .3
2.1.4
2,1 .5

General Principles
Terminators and Layout
Brackets
Conditional Expressions
Other features

2,2 Categories Recognized During Transfor;nation

2, 2.1
2,2,2
2.2 . .3
2,2.4
2.2.5
2.2.6

Names
Left Section Bracket
Right Section Bracket
Strings
Dot string
Numbers

2.3 Rules for Transformation

This section is taken from an earlier version and has
not been edited, It may well need major revision and
is only included to give the reader some idea of the
chief features of publication GPL.

Page 1

' j

' '·

CPL Reference Manual Section 2,1 1 July 66 Page 1

2,1 Features of Publication CPL

2,1,1 General Principles

The general principle underlying publication CPL has been to relieve
the user, where possible, of the labour of including redundant information
in his program. To the user, a program is best regarded as a document
written in lines on sheets of paper and, as in studying the content of
other documents, its layout may well convey information in the most con­
venient form. The publication language, therefore, makes use of abbre­
viations, permits omissions where no ambiguity is possible, and makes use
of the layout to convey part of the meaning,

A programming language is more readily described in a formal way if
programs are regarded as context-free strings of symbols. Canonical CPL
is such a language, and the transformation from publication to canonical
is here described, The verbal descriptions in this section describe its
main features in an informal way. A more rigorous definition of the trans­
formation is given as a program in publication CPL in Appendix l,

2,1.2 Terminators and Layout

A command or definition may be terminated in one of three ways:

1) Explicitly, by use of a semicolon.

2) By its layout; an end of line is a terminator unless the end
of line occurs at a point in the program where the context indicates
that a command could not terminate at that point. Ends of lines
which cannot be accepted as terminators or which are adjacent to
the symbol ~ are ignored.

3) Implicitly; a terminator may be omitted if its presence is not
essential to avoid ambiguity.

The use of "space" in CPL is deri v.ed from its use in written language
in general, Spaces may be inserted freely between words to improve the
layout. They are not used within words, and they must be used to separate
words whose juxtaposition~ might cause ambiguity.

For example, consider the commands

test x = y ~ z := z + ljerz := 1 +
z (a + b); Total := Present Factor

The semicolon before "or" may be omitted, The end of line following
"+" cannot terminate a command and is therefore ignored, A space is
necessary only between "Present" and "Factor" to avoid ambiguity (this is
a case of implicit multiplication).

CPL Reference Manual Section 2,1

2,1,3 Brackets

It is often the case in writing
of program come to an end at the same
section brackets has to be inserted,
'the number of closing brackets needed

1 July 66 Page 2

programs that several nested sections
point, where a string of closing
This is an error-prone operation as
is easily miscounted.

Section brackets in CPL may therefore be distinguished from each
other by attaching names or tags to them, A closing section bracket cor­
responds to the nearest opening bracket earlier in the program which bears
the same tag. It defines the end of the section thus specified, and it
implies the closure at this point of any contained sections of program
which have not yet been closed,

Examplesof the use of tagged section brackets may be found in the
Introductory Manual and in Appendix 1.

2.1.4 Conditional Expressions

In publication CPL, the form of a conditional expression is

Any occurrence of a comma used in a conditional expression is
replaced in the canonical form by the basic symbol "~".

2,1,5 Other features

Monadic occurrences of + and - are allowed in publication CPL.
In the canonical form, they are replaced by the basic symbols "pos"
and ''neg".

A wide range of synonyms is available for the basic underlined words
in the canonical form. Many examples are found in the Introductory Manual
which contains a list of synonyms.

Comments may be inserted freely in publication CPL text. A comment
is intoduced by a double bar and continues up to the end of that line; the
whole of this text is ignored.

In some cases, symbols may be omitted in the publication form if no
ambiguity is caused; for example,

if B then goto L

may be written

if B goto L

CPL Reference Manual Section 2.2 ·1 July 66 Page 1

2.2 Categories recognised during Transformation

All instances of the following six categories are recognised during
the transformation process. Their descriptions, and the modifications
introduced during transformation, are described here. Note that strings
of characters or primes mentioned in this section may :lo~til t I • r :i /re
C' null. ms b?Zl&:

2.2.1 < name>

A single lower case letter followed by any number of primes, or an
upper case letter followed by a tag,

A tag is a string of letters of either case, digits and dots, followed
by any number of primes.

In the canonical form, the symbol '!fj. is inserted before all occur­
rences of names.

2.2.2 < left section bracket >

h 4S A> r...'f.
The symbol § followed by a tag. The canonical form is >meltant<;!l.

2.2.3 <right section bracket>

sll ho.s ... o l'"f.
The symbol 'l' followed by a tag. The canonical form ie •meha11~d.

Note that two section brackets with identical tags are said to
"match".

The closing brackets omitted in publication CPL as in 2.,/. '3' above
are inserted by the transformation.

2.2.4 <string constant>

A string of characters starting and ending with a prime. Within a
string constant the symbol 10 (subscript ten) is used as an escape character:

stands for 1010 10

10
t stands for 1

CPL Reference Manual Section 2, 2 1 July 66 Page 2

and the meaning of any other character following a single 10 is imple-
mentation dependent, . ,

In the canonical form, the symbol $ is inserted before all instance~

<1 $~ UJ~.t/:d1th.

2,2.5 <dot string>

:z..
A string of dots and spaces which must include at least,a'dots and

which is surrounded by commas, The canonical form is as follows:

' . ~ . ,

2.2.6 <number:>

A string of any number of digits and dots which may include spaces
and musyinclude at least one digit, The canonical form is preceded by
the sumbol .d.

CPL Reference Manual Section 2.3 1 July 66 Page 1

2.3 Rules for Transformation

These rules are intended as a brief verbal guide to the operation of
the preprocessor program given in Appendix 1. They describe the operations
performed on a complete publication text in a series of four passes, the
end product being the corresponding canonical text. The operations des­
cribed under each pass are done together.

Pass 1

1. Remove all comment text.

Pass 2

2. Recognise all instances of the six categories described in 2,2
above, a~d transform where necessary as described in that section.

Pass 3

3. Insert matching closing section brackets where required.

4. Instances of commas used in conditional expressions are
replaced by "~" ..

5. Change all new lines to semicolons, replace consecutive semi­
colons by a single semicolon. Consider the symbols adjacent to each
semicolon. If either is ~· remove the semicolon. Unless the preceding
symbol can legally precede a semicolon and the succeeding symbol can
start a command, delete the semicolon.

Pass 4

6. Remove all occurrences of the basic symbol c,

7. Insert do between any pair of symbols such that the first of
these cannot precede a command and the second must start a command.

8. Recognise monadic uses of + and - and replace them by pos and
~respectively.

()

CPL Reference Manual Section 3.0 6 March 66 PAGE 1

3 PRELIMINARIES

w'.ll

e,~)

--~~~
:N"

3.1 Canonical Form

3.2

3. 1.1
3 .1. 2
3.1.3
3 .l. 4

Types
3.2.1
3.2.2
3.2.3
3.2.4

General
CPL Publication Alphabet
Basic Symbols
Basic Categories

General
Numerical Types
Logical Types
Other Types

3,3 Transfer and Representation Functions

3.3.1
3. 3. 2
3.3.3
3.3.4
3.3.5

Programmers Transfer Functions
Ba~ic Transfer Functions
Automatic Insertion of Transfer Functions
Polymorphic Operators
Representation Functions

3.4 Constants

3.4.1
3.4.2
3.4.3
3.4.4

11 3.4.5
3.4.6
3.4.7

General
Syntax
Numerical Constants
Logical Constants
String Constants
Character Representation
Other Constant Expressions

.., ~ u ·r'IJ ~-.. t-1
7

k

"'6" .Jr<'.'(.t> _:, i!l~s::u7 fhe..ill..ve.

c_<>""'rc,.J ..]) ... f ...

~ Jk.le ... n-e~
..S /h.. X.. re..s <.,) : 11 '? r-e> t-.., W 7 .,. I; "' e .l!.Te ...J

~'efT 7 ---r;pe$ s.;. -ri.. .. r
,......

.s eel~~~"'

<~...:.J't~.JeP.

~
iJ

J

CPL Reference Manual Section 3,1 22 Feb 66 PAGE 1

3.1 Canonical Form

3.1.1 General

A program in canonical CPL consists of a string of
Items which are either BASIC SYMBOLS or members of a BASIC
CATEGORY. A basic symbol is a single character from the CPL
basic alphabet vt~ defined in Section 3.1.3. A member of a
basic category consists of a character from ~ identifying
the category followed by a word (string of characters) from
the possibly Implementation dependent alphabet associated
with the category. The categories and their associated
alphabets are described in Section 3.1.4.

Every implementation must have a method of representing
all the characters in ,;;1;-;:a and the alphabets associated with
the basic categories by one or more characters from its
IMPLEMENTATION ALPHARET vl:i.r.· These are the characters which
occupy one print position in the program together with
certain extra symbols representing the layout.

The implementation characters may in
represented by one or more HARDWARE CHARACTERS
alphabet ds11 • These are the basic hardware units
and output such as a single row of punched tape,
column of a punched card or a single keystroke on
connected keyboard.

turn be
from the
of Input
a single

a directly

Thus, for example, in a hardware implementation which
uses a backspace to provide compound or overstruck
characters, the following three strings of length six each
produces the same printed result (The symbol ~ is used
temporarily to denote the hardware character 'backspace').

,..., _f.p­
if...i)-6> _
_ ,J?i_~f

In each case the result produced should be the two
string from the implementation alphabet l f, This
represents the single character (basic symbol) lf
alphabet vli:s.

character
in turn,

from the

The transformation from a string of hardware characters
to a string of implementation characters is largely
implementation dependent, However, it should be arranged so
that hardware character strings which would produce the same
printed image will produce the same implementation character
string as illustrated by the example given above.

The transformation from a string of implementation
characters to canonical CPL is done by a preprocessor of the
type described in Section 2 and Appendix 1.

0

CPL Reference Manual Section 3.1 22 Feb 66 PAGE 2

3.1,2 CPL Publi9ation Alphabet

There is one 'implementation' alphabet which is not
implementation dependent; this is the publication alphabet
JU?which contains the following 162 printing characters:

A B C D E F G H i J K l M N 0 P Q R S T U V W X Y Z
a h c d e f g h i j k 1 m n o p Q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9
AR~QEEQHl~K~MNO£QR~T~YWXYZ
£Q£n~ighllklmnQQQL~~lix~~x~
Q l l .2. .L2. .2. l .!l. 2
+ - x. I 1'
>L..=rs..<<<-;
N !!!. ~ 4:}
A.V=i.
< >r:r-9~ . . ·­, • I •-

10
l'o:_n

and the two non-printing characters 'space' and 'newllne'.

These characters are used In the
except that the three symbols ~ ~ :z
occupy two print positions each.

3.1.3 Basic Symbols

rest of the manual
may be typed so as to

The CPL Basic Alphabet vt~ contains the 109 symbols
listed below. The symbols are given in the representation
used in the syntax tables and also, If necessary, the form
or forms by which they can be represented in the publication
language. it is a general rule of the publication language
that when representing a basic symbol by an UNDERLINED WORD
(including words of one letter) no distinction is made
between upper and lower case letters and spaces, whether
underlined or not, are ignored. Thus the two strings

GO TO

in the publication language both represent the same basic
symbol which is represented in the table below as gQlQ.

(a) The following 25 symbols from J;'Palso represent unique
basic symbols from o.~"t:;,.

)<./1'$._= "fLAV:..i. N!;!_

; : :: () [1 § f,~ ,.,

0 ~ ·f

CPL Reference Manual Section 3.1 22 Feb 66 PAGE 3

(b) the following five basic symbols are represented in the
syntax tables by underlined words and in the publication
language by single symbols. (see Section 1.2,2)

Syntax Form Publication Symbol

bar I
~~rthan >
1 essthan <
muchgreatertban >>
muchlessthao <<

(c) The following 54 basic symbols are represented in the
syntax tables and in the publication by the same underlined
word •

.ami jll!neral n il..li
array m.:tQ note ~e
Booleao l prefer ~
break if

ln J.: uol!C:s~
.Q2.lS. index rea_l unt i 1

ioteger: repeat UQdatg
Q .r:._epeatunt U
~ .!.. CeQeatwh!le ves:;tor
double label resu]tis
doublg!:;Q!l!l2l!C:II let returo

j_oad
false logical ~
finish 1Qog]ogica] ~
fix
fi21ed matrix
£ru:.
.f.t:tt

(d) The following 14 basic symbols can
the publication language by any one of a
In the table below, the first form is
syntax tables.

a 1 1 be bot hare botbtle
!lll ll
s:;oos:tan:t cons);
do then tbeodo
fore21:terna] for:e11t
fuo~:;tion fn
ru::. ordo
re~:;yrsive ~

):1hgt:e
wh i] g

ll.

l
.§.

be represented in
number of synonyms.
that used in the

.a.;,:,g,

0

CPL Reference Manual Section 3.1 22 Feb 66 PAGE 4

reference ref
referenceof refof
routine rt < r, ~v~a~1*u~e~------_;,~~aT.------~ D

va 1 ueof .l@.l of
variable ~

{e) The following six basic symbols are represented by only
three symbols in the publication language. The preprocessor
decides from the context which is the appropriate basic
symbol to use.

Syntax form

comma

'
+

Pub1 ication Symbol

,
,
+
+

(f) The remaining five basic symbols are the following:

dotstrlng which has the publication language re­
presentation of at least .Ydots, possibly
interspersed with spaces and surrounded by
commas. The following are three examples
of dotstrings in the publication language:

, • 0 • , ' ,
which are used to indicate the basic cate­
gories name, number and string-constant re­
spectively,

which is sometimes used when writing can­
onical CPL strings to separate the basic
symbols where there might otherwise be con­
fusion. lt has no other significance.

l
l

l
l

~
~

CPL Reference Manual Section 3,1 22 Feb 66 PAGE 5

3.1,4 Basic Categorie§

The precise definition of the basic categories is
implementation dependent. The definitions given in this
section apply to the publication language, The basic
categories are recognised by the preprocessor.

(a) Names
A member of the basic category <name> in canonical CPL

consists of a name-word from the alphabet vtw preceded by
the basic symbol nand followed by the basic symbol ~ {both
from the alphabet Jt~).

For publication CPL the alphabet ~N contains the
following 64 symbols:

A B C D E F G H I J K L M N 0 P Q R S T U V W X Y Z
a b c d e f g h i j k 1 m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 •

A name-word consists of .a single lower case
followed by any number of primes, or an upper case
followed by a tag,

letter
letter

A tag consists of a string of letters (of either case),
digits or dots of any length followed by any number of
primes. A tag may not include spaces - indeed a space Is
not a symbol in the alphabet *N·

The alphabet .;~~11 is a sub-alphabet of .ii;:. and
symbols are represented in the publication language' by
same s ymbo 1 s from .;t'l" •

its
the

(b) Numbers
A member of the basic category <number> in ,canonical

CPL consists of a number-word from the alphabet .;i'J> preceded
by the basic symbol ~and followed by the basic symbol ~
(both from the alphabet ~).

For publication CPL the ,alphabet JG» contains the
following 11 symbols:

0 1 2 3 4 5 6 1 8 9 •

A number-word consists of any string of these
containing at least one digit.

The a 1 phabet vt:~> Is a sub-a 1 ph abet of ;t,.
symbols are represented in the publication language
same symbols from .;f?.

(c) String-Constants

symbols

and its
by the

A member.of the basic category <string constant> in
canonical CPL consists of a string-word from the QUOTABLE
ALPHABET vt~ preceded by the basic symbol ~and followed by

A
V

t1"'1\
V

CPL Reference Manual Section 3.1 22 Feb 66 PAGE 6

the basic symbo 1 rf> (both from the a 1 phabet .?.l:11.).
For publication CPL the alphabet ..7/ra contains the 162

printing characters from the publication alphabet vt-p {see
Section 3.1.2) together with the three non-printing
characters:

1 space' 'backspace' 1 newl i ne'

A string-word consists of any number of these symbols
{including zero).

In publication CPl a string-constant is distinguished
from other parts of the text by being enclosed by primes.
This fact, together with the rules for dealing with comments
in the preprocessor mean that although the characters of .:ka
and .;ti> are very similar, some of the characters from vt<il
cannot be straightforwardly represented by the same
character from .kp. The precise rule is the following:

The following five characters from ~lll,have a special
representation In characters from .:1\;f as shown:

Character from #lil
backspace

newl i ne
'

Representation in ~?
. ! b

!n
I I .
I I

! il
The remaining 150 characters in hlil are represented by

the same character from.-*,. In addition, the non-printing
character 'space' in '*tit may also be represented by the
characters ~s from .i'!i"'l'·

Note that string-constants are defined above by the way
in which the characters f1·om .f.-o. are represented, and not in
the way in which an arbitrary string of characters from .A:.,
can be interpreted.· This Implies that not all possible
strings enclosed in string-quotes (primes) are acceptable.
In particular, the ESCAPE CHARACTER : is only defined if
followed by one of the six characters b n 1 ! 11 or s.

Publication CPL has the additional rule (implemented by
the preprocessor) that new lines and trailing spaces (at the
right end of a line) are ignored In string-constants.

{d) Section-Brackets
In publication CPL the basic symbols § and ~ may be

followed by a tag taken from the alphabet *~'~~ (see (a)
above). These are used by the preprocessor to insert extra
closing section brackets (.f) where necessary so that in a
canonical CPL program all section brackets nest and match
correctly. This means that the tags associated with them in
the pub! !cation language are no lonRer necessary so that
they do not form a part of the canonical CPL program.

Thus section brackets do not form a basic category in
the strict sense, They must, however, be treated as such in

~
~

CPL Reference Manual Section 3.1 22 Feb 66 PAGE 7

the preprocessor and many implementations will find it
desirable to continue to associate a tag with each section
bracket even when it is no longer logically necessary in
order to give some assistance in locating errors in the
program.

~
V

0 .

CPL Reference Manual Section 3.2 10 Jan 65 PAGE 1

3.2 Tyoes

3.2.1 General

The following sections list all the tYPes of data Item
currently included in CPL and give a brief description of
them. The details are implementation dependent.

Further types may be added from time to time, and it is
possible that the incorporation of a more comprehensive
treatment of compound data structures may force a
considerable revision or extension of the concepts of this
section.

The rules concerning transfer functions are collected
in Section 3.3 for convenience. They are discussed' in more
general terms in Sections 1.3,2 and 1.3.3,

3.2.2 Numerical Types

A real number, whose range and precision are
implementation dependent.

jnteger
An integer, whose range is implementation dependent.

jndex
An integer, whose range is probably less than that of

integer and whose use may improve object program efficiency,
for example, in subscripts.

complex
A pair of real numbers taken In order as the real and

imaginary parts of a complex number.

double
A real number with approximately double the precision

of type real.

rJoub 1 ecomp 1 ex
A pair of real numbers taken in order

imaginary parts of a complex number, The
approximatelY double the precision of the
~omplex data item.

as the real
components

components

and
have

of a

•

CPL Reference Manual Section 3.2 10 Jan 65 PAGE 2

3,2,3 Logical Types

Boo lean
A truth value; its value is either~ or false

Jogjcal
A bit string of a fixed and implementation dependent

length.

Jonglogical
A bit string of a fixed

length probably greater than
and implementation

that of logical.
dependent

The intention of logical and longlogica] is that it
should be possible to transform reasonably large sections of
type index into logical and of type .r:..g.9.l into Jonglogi cal
without loss' of information.

In an implementation based on a binary word oriented
computer where reals occupied one word and index a shorter,
possibly address-length, segment,]ogjcals would probably be
the length of an Index register and longlogicals a whole
computer word.

3.2,4 Other TYpes

string
A string of characters of any length including null

(See Sections 3,1.4, 3,4.5 and 3,4,6),

label
A location in the program and a description of an

environment of that area of program (See Section 9,3),

function
A representation of a function (See Section%.

routine
A representation of a routine (See Section 10),

array ,,('
A representation of an array (See Section~'·

A data item whose value Is a data item type,

general
A data item whose type may vary dynami ea 11 y; ;r """ Ire.

... J.s ... -7r·, C.f'("c.r TF~ <M" fv. .. :rl;;-,.-7r~ ~ ... r ... :r; q_

.s""ate -'vr~ --<·-ii u..... .s.,:r:~ (.I).

11·1·2-/

~

l!f'!ltJ.
~

CPL Reference Manual Section 3.3 15 Jan 66 PAGE 1

3.3 Transfer and Representation Functions

3.3.1 Programmers Transfer Functjons

The following transfer functions are available to the
programmer:

DoubleComplex de
Complex c
Double d
Real r
integer n
Index X

Longlogical 11
Logical 1
String s
Boo lean b

Each takes a single argument which may be of any
meaningful type and produces as its single result an item of
the tYPe indicated by its name. Each function exists in two
forms, according to the mode of the context in which it is
used.

a) The R-mode Transfer Functions
These take a single R-mode argument and produce a

single R-mode result. The details are implementation
dependent, but the results can be described with the aid of
the following table which uses the abbreviations indicated
above for types.

f CPL Reference Manual Section 3,3 15 Jan 66 PAGE 2

Target Type
X n r d c de 1 1 1 s b

X - n n n n n 1 (1) s (b)

n X - r r r· r (x) (x) (x) (x)

r n n - d c c (n) (n) (n) (n)

d r r r - r de (r) { r) (rl (r)
Original

c r r r r - de (r) (r) (r) (r)
Type

de c c c d c - (c) (cl (cl (cl

1 X (x) (x) (x) (x) <xl - 1 1 s (x)

1 1 (1) (!) (1) (1) (1) (1) 1 - (l) {1)

s X . (x) (x) (x) (x) (x) 1 (1) -
b (X) {x) (x) (x) (X) (X) (x) (x) -

Table of Initial Transfer Functions

The entry corresponding to a
table indicates the first type to
be transformed in a transfer from
second. Thus the transfer from
would pass through the sequence.

pair of types in this
which the data item is to

the first type to the
strjng to doublecomolex

s t r j ng~ index-+ j ntegru:.-'>..t:.ll.l-'>compl ex -tdoub 1 ecomp 1 ex

Further details of the BASIC TRANSFER FUNCTIONS which
make up chains of this sort are given in Section 3.3.2.

The transfers indicated by entries enclosed in
parenthesis can only be initiated by ~n explicitly written
transfer function. The others may, in suitable
circumstances, be invoked automatically by the compiling
system (see Section 3.3.3).

There are direct transfer functions from every type
(including those not mentioned in the table) to type general
Which make no change In the representation. Transfers from
general to other types can only take place in circumstances
when a transfer from the dynamically current type associated
with the general would be permitted,

b) The L-mode Transfer Functions
These are ~~~-H~clate ~airs and can be defined in terms

of the R-mode functions. Thus, for example, the L-mode

-
-

CPL Reference Manual Section 3.3 15 Jan 66 PAGE 3

transfer function which takes r.e.;al into complex is
equivalent to the following,

Function RealtoComplex C:.r:..d .r..ruU x] ~
· load§ result 1..§. Complex 'C.xJ ,f
update § X :=Real£ rhs) ~

c) Mode Forcing Functions
The functions

RV a 1 ue [x J
LValue[xl

which can take an argument of any type, force the evaluation
of their argument in the mode indicated, They are not true
transfer functions, but may invoke the mode transfers
described in Section 4,2, These functions may be of use
when it is desirable to specify the mode of evaluation in
circumstances where the context would not otherwise do this
(~!'!ica-tion ef a ve:ril!l.J5le 01

Po&msl f 'I~'< et i·<ms h

d) Other Types
There are no transfer functions

above. Representation functions are
3.3.5.

3;3,2 Basle Transfer Functions

a) index to integer
integer to .r:W .
.J:.M..l to double
real to comp 1 ex
double to double complex
complex to double complex

except those mentioned
discussed in Section

These are standard numerical transfers with changes of
representation but normally no loss of Information. With
the possible exception of Integer to .J:.M..l no alarm
conditions should be necessary,

b) integer to l..rl.ru:.l>.
double to real
double complex to complex
These involve a decrease in preciSIOn (and possibly of

range) without a change of the nature of the number. They
will normally involve a rounding or truncating operation and
should give an alarm if the range Is exceeded.

c) ~to integer
complex to~
double complex to doubla
These involve a change in

probably without alteration of
the nature of the number

the precision or range, The

CPL Reference Manual Section 3.3 15 Jan 66 PAGE 4

two complex to real transformations should show an alarm if
the imaginary part of the complex number is not negligible
in an implementation dependent sense compared with the real
part. The r~L to inL~~L transfer is intended to allow
operations on integers to be carried out using reals even if
the representation of~~ does not allow exact integer
arithmetic to be performed, The transformation should
therefore show an alarm whene~er the divergence of the ~
from an integral value is more than a certain implementation
dependent amount. lt is open to the implementation to make
this quantity anything between 0 and 0,5 so that programs
which require the nearest integer to a ~ whose exact
value should not be Integral should use the basic function
Round (see Appendix 3), ,

An alarm should also be given if the result is out of
range.

d) logical to longloglcal
Jonglogical to logical
The logical is taken to be the right hand (least

significant) end of a looEJ..9.r.,l,r.al whose remaining bits are
all zeros. As these transfer functions may be inserted
automatically, there should be an alarm on an attempt to
transform a Jongloglcal whose extra bits were not all zeros.
The basic function Mask (see Appendix 3) may be used to
ensure this if required,

e) Jogjcal to lnd~x
l.i::LQ_gx t 0 1 0 ,. ic a.l
string to index
index to string
logical to string
string to logical
Bool.g_gn to index
index to·Boolean
These transfers are made by considering all the types

concerned to be Integers. For lo2icals this Is done by
treating them as unsigned (positive) binary integers. For
strings the functions are only defined for strings of length
1 (single characters); for these, the corresponding integer
is that given in the collating table (see Section 3.4.6).
If several characters have the same number in this table,
one of these should be nominated for use by the transfer
functions. For Booleans the correspondence is~~ 1 and
false ~ 0.

An alarm should be given if the result is out of range
or, in the case of transfers to string, if no suitable
character exists.

0

CPL Reference Manual Section 5.3 31 Jan 66 PAGE 5

3.3.3 Automatic Insertion of Transfer Functions

The transfer functions corresponding to the
unparenthesised entries in the table of Section 3.3.1, those
to and from type general, and the mode transfer functions
(see Section 4,2) and no others, will be inserted by the
compiling system as necessary in the following situations.

(a) When the type and/or mode of an
constrained by its"context. This arises in
cases.

expression is
the following

(i) The right hand side of an assignment statement. The
mode is R-mode and the type must be that of the L-value
it is to update (see Section 9,2).
(ii) An argument of a function or routine call in the
special case where the written operator is the name of a
function or routine data item with the attribute
constant, and whose formal parameter types and modes are
explicitly (or by default) stated in the definition (see
Sections 5,3,2 and 10.1,2).
(iii) An argument of a polymorphic function, routine or
operator after the particular version of the function,
routine or operator has been determined by the rules
given in Section 3,3,4, Appendix 3 or elsewhere.

(Note that programmers' functions and routines come under
case (i) and basic and library functions under case (ii) or
(i i i) .)

In these situations the compiler will insert the
necessary transfer functions t~ match the mode and type of
the expression to its context. If the necessary transfer
functions either do not exist or are not allowed to be
inserted automatically, the outcome Is undefined,

c:J (b) When the value of an expression may be that of one of a
number of · expressions. The choice being determined
dynamically. This arises in the following cases:

(i) The arms of a conditional-expression.
(ii) When a block-expression contains two or more
resultis commands,

In these situations each of the alternative expressions
is transformed to the type which is the least upper bound of
their individual types. This is defined in an obvious way
from the diagram on the next page.

0

CPL Reference Manual Section 3,3 31 Jan 66 PAGE 6

general

-----------double complex (all other types)

/~
double complex

~/
..c.eli.

I
integer

I
jndex lQng_ logical

~/
logical

stri/

. Hierarchv of Types

If the required transfer functions do not exist or
cannot be· inserted automatically, the least upper bound is
taken as general.

Mode transfers are not required in these situations.

3.3.4 Polymorphic Operators

Polymorphic operators are operators which exist in
several versions, all known by the same name. The choice
between these versions is dependent on the types of their
arguments. There are two classes of polymorphic operators,
those for which a unique version exists for each allowable
set of argument types, and those for which only a limited
set of versions exist and transfer functions are used to
extend the permissible set of argument types. Transfer t/
representation functions are in the first class, most basic /

0

CPL Reference Manual Section 3,3 31 Jan 66 PAGE 7

functions and infixerl operators are In the
Polymo;phic c;>Perators are a part of the lang;j,lage
mechantsm extsts at present to allow a programm'er to

second.
and no
define

his own polymorphic functions or routines. · ·
The selection of the correct version~f a

operator of· the second class is governe.d by
following rules; the particular rule .to !;le
determined by the name (or in ··.the;
infixed-operator, the symbol) of the operator:

po 1 ymorph i c
one of the

used being
case of an

If any of the operands are of type general then this
rule must be applied dynamically (i.e. at the time at which
the operator is to be applied to its operands); the current
types of the general arguments must be used to select the
correct version of the operator as described below. If the
type of the result depends on the version of the operator
used in any way, the result must be converted back to type
general. If all versions of the operator produce the same
type (as occurs, for example, with relations where the
result is always Boolean), then this is also the type of the
result.

In cases where none of the operands are general, the
rule selected can be applied by the compiling system and any
transfer functions required may be inserted statically
(provided this is allowed under the rules given in Section
3.3.3).

Rule A
The version of the operator selected is the least upper

bound (in the sense of Section 3.3.3) of the types of all
the operands and of the lowest available operator type. If
no version of the operator of this type exists, or if the
least upper bound is general , the effect is undefined. If
a suitable operator exists, Its type will define the types
required of the operands all of which must be transformed to
this type before the operator is applied. The tYPe of the
result is also determined by the version of the operator; in
general it is either the same as that of the operands, or
restricted to a single type such as Boolean.

Rule B
The operator requires all its parameters except one to

be of a unique specified type, so that polymorphism occurs
for only one of its arguents. The version of the operator
is determined from the actual type of its only polymorphic
argument as follows:

i) If a version of the operator exists which
an argument of exactly this type, this is the
chosen.

accepts
version

ii) if no such version exists, then the operator is
taken to be a single specified version.

In the first case transfer functions may be inserted
automatically for those arguments for which the operators is
not polymorphic; in the second case they may be inserted for
all arguments,

CPL Reference Manual Section 3.3 31 Jan 66 PAGE 8 .

3,3,5 Representation Fuoctions

The following representation functions are available to
the programmer.

1. Bitpattern [x]

This is a polymorphic function of the firs' class (see
Section 3,3.4) which has the following version~:

Argument Type

real
integer
index
charact,.g;:

Result Type

long1ogica1
]onglogical

logical
logjcal

Other implementation dependent versions may also exist.
The effect is to treat the actual (implementation

dependent) representation of its argument as a bit pattern
of the corresponding type, any spare bits in the result type
being filled with zeros. No transfer functions are inserted
automatically for this function.

2. Formreal [11l
Forminteger (11]
Formlndex [IJ
Formcharacter [l]

These functions, which are not polymorphic, together
form the inverse of Bitpattern x • They take a longloglcal
or logical argument as indicated and treat it as if it were
the internal representation of the type suggested by the
name of the function.

Other representation functions forming the inverse of
further versions of Bitpattern may also exist,

CPL Reference Manual Section 3.3 31 Jan 66 PAGE 8 .

3,3,5 Representation Function§

The following representation functions are available to
the programmer,

1. Bitpattern[x]

This is a polymorphic function of the first class (see
Section 3.3.4) which has the following version;:

Argument Type

real
J.nj:eger
index
character

Result Type

1ong1ogical
longlogjcal

jQgl.~.al.
logical

Other implementation dependent versions may also exist.
The effect is to treat the actual (implementation

dependent) representation of its argument as a bit pattern
of the corresponding type, any spare bits in the result type
being filled with zeros. No transfer functions are inserted
automatically for this function.

2. Formreal [111
Form integer (11 J
Formindex [l]
Formcharacter [1 J
These functions, which are not polymorphic, together

form the inverse of Bitpattern x • They take a 1ong1ogical
or logical argument as indicated and treat it as if it were
the internal representation of the type suggested by the
name of the function.

Other representation functions forming the inverse of
further versions of Bitpattern may also exist.

CPL Reference Manual Section 3.4 20 Feb 66

3,4 Constants

3.4.1 General

Written constants have a~ R-value which is
and independent of any definitions or assignments
the program. Their natural mode of evaluation (see
4. 2) is R-mode so that they behave as if they
L-value.

PAGE 1

invariant
made in

Section
had no

There are two forms of written constants: ATOMIC
CONSTANTS which are usually basic symbols such as~ or a
single digit, and which have the property that their R-value
depends only on their complete written form and cannot be
deduced from the R-values of any of its components (if lt
can be decomposed at all); and COMPOUND CONSTANTS whose
R-value can be deduced from the R-values of its components.
A number such as 231 is a compound constant and its value
can be deduced from the values of its component digits 2, 3
and l •.

Compound constants are a form of constant expression
but the rules governing their evaluation are not those
governing the other expressions in CPL.

As constants have an R-value which is immediately
determinable from their written form, the concepts of scope
and extent (see Section 8.2) are not applicable to them. In
this respect they differ from named data items which have
been defined with the attribute constant (see Section 7,3
and 10.3,2),

3.4.2 Syntax

<basic numerical constant>::= <number><<,.,l,.,+ 110 - ><number»,_

<constant prefix> ::=~In I L I u I~ I~
<numerical constant> ::=<constant prefix>,.

<basic numerical constant>! l

<logical prefix> ::= l I 1 Ill I SL I 11 I 11

<logical constant> ::=<logical prefix><number>l
<logical prefix><number> .bar I
<logical prefix> ~ <number>!
Q2L <logical prefix><number>

<Boolean constant> : := .lJ:.Y.e. I false

0

CPL Reference Manual Section 3.4 20 Feb 66 PAGE 2

<constant> ::=<numerical constant>l<logical constant>!
<string constant>I<Boolean constant>!
<single type>

3.4.3 Numerical Constants

A basic-numerical-constant of the form

N, 10 N;&.

where N1 and N~ are members of the basic category number, is
only defined if N1 contains at most one dot and N~ contains
no dots. The dot In N1 , if present, is taken as a decimal
point; If N1 contains no dot it is taken as a decimal
integer. The 10 denotes that theN:., following it is to be
interpreted as a decimal exponent. If there is a + or a
between the 10 and N~, this is taken as the sign of the
exponent; if there is no sign; the exponent is considered
positive.

Two unprefixed basic-numerical-constants which have the
same numerical values will always be represented in the same
way. Thus the constants

1, +1, 1,0, +0.1 10 +1

are interchangeable and only differ in the way in which they
are written on the paper.

The type of a numerical-constant prefixed by AI n, L,
i, ~~ or~ is jndex, jnteger, ~~ double, complex, or
doublecomplex, respectively,

The type of an unprefixed numerical-constant is the
least upper bound (in the sense of Section 3,3.3) of its
PRESUMPTIVE TYPE and its MINIMUM TYPE.

The presumptive type is determined by context: if the
numerical constant stands alone on the right hand side of a
definition, the presumptive type is the preferred type if
this is numerical. In all other cases and contexts the
presumptive type is index.

The minimum type of a numerical-constant is determined
by Its value. If this is intel!:ral and within the index
range, then the minimum type is index. If the value is
integral and outside the index range but within the integer
range, then the minimum type is integer, In all other cases
tha minimum type is ~.

The basic symbol l represents a numerical constant of
~ype complex whose value is a complex number with zero real
~art and unit imaginery part. Note that with this exception
~~ere are no unprefixed numerical-constants of type double,
romplex, or doublecomplex, but that an expression such as

0 ' .

CPL Refere~ce Manual Section 3.4 20 Feb 66 PAGE 3

2 + 31

will be of type complex by virtue of the rules governing the
types of lnfixed-expresslons (see Section 6).

3.4.4 Logjcal Constants

The occurrence of l or~ in a logical prefix indicates
that the constant is to be represented in the type
longlogical. Otherwise it Is Jogjcal. If the prefix
contains 1, the constant is a binary pattern and may only
contain digits 0 and l. If the prefix contains.§., it is an
octal pattern and may only contain digits 0 to 7. Logical
constants are assumed right justified unless QsL is present,
in which case justification takes place towards the side on
which hsL appears.

3.4,5 String-Constants

A string-constant is a member of a basic category and,
as such, its syntax is not a part of canonical CPL (see
Sect Ion 3.1.4).

In Publ !cation CPL in particular a string-constant is
identified by being preceded and fo 11 owed by a 'prime.
Inside these string quotes the character ! is used as a
single-character-quote or escape indicator. If it is
immediately.followed by one of the characters

b n s I
• 11

the pair is taken as the single string character (i.e., the
single character from~~)

backspace newl ine space I
• li

respectively.
Thus, for example, a string-constant in Publication CPL

which was written as

I s! bl ! I lf.! I 0! b I I

has a length of 10 string characters

s backspace I 1 l i ' o backspace' I

and when·printed would produce

~; ..

("';\
V

0

CPL Reference Manual Section 3,4 20 Feb 66 PAGE 4

t. 'li'91

3.4.6 Character Representation

The internal representation of strings Is by characters
from the internal alphabet~~· The number of characters in
the alphabet is implementation dependent and the characters
have a fixed association with (small) integerl which is that
used by the transfer functions between strings of length one·
(characters) and the types Index and ~ ~

The characters of the alphabets :Z, -"Tf.l , vfiv and *a may all be represented In vr~. The details of the
representation are implementation dependent; in particular
it is not necessary for the various alphabets to be
represented by disjoint sections of Jtx nor is it necessary
for single characters to be represented by single characters
although this is very desirable at least for the quotable
a 1 phabet ~lli , .

Tables showing the representation of .7t-1' and A:~ which
are relevant to publication CPL are given In Appendix 2,

3.4.7 Other Constant Expressions

a) Boolean Constants
The basic symbols~ and false are constants of type

Boo lean.

b) Type Constants
Any expression which falls into the syntactic category

<single type> (see Section 7.1) ·is a constant of type~.

c) Other Types
There are no constants of type label,

rnutjne, array or general except those introduced
by a definition with the attribute constant.

function,
explicitly

0

CPL Reference Manual Section 4.1 20Dec65

4 EXPRESSIONS

4.1 Syntax

4.1 Syntax
4.2 Evaluation
4.3 Conditional-Expressions

4.3.1 Syntax
4.3.2 Semantics

4.4 Block-Expressions
4.4.1 Syntax
4.4.2 Semantics

4.5 Expression-Lists
4.6 Where-Clauses

PAGE 1

<prefixed operator> ::= <name>l<prefixed expression>!~ I
<<expression>)

<prefixed expression>::= <prefixed operator>(<expression>,_]

<Individual> ::= <constant>i<name>i<preflxed expression>!
.v<individual>l<block expression>!~ I
~ I .ogg I (<expression>)

<relation> ::= muchlessthan I Jessthan I S. I = I (' 2. I
greaterthan I mucbgreaterthan

<lnfixed operator> ::= + I - I x I I I ~ I ~ I i A I v I
#!<relation>

<infixed expression> ::• <<indlvidual><infixed operator>r->o
<Individual>

<conditional expression>::= <infixed expression>~
<basic expression> comma <basic expression>

<block expression> ::= valueof <block>! referenceof <block>

<basic expression>::= <infixed expression>!
<conditional expression>

<expression list>::= <basic expression><,<basic expression>~

<expression>::= <expression list>l
<expression> where <in definition>

0 ' '

CPL Reference Manual Section 4,2 20 Dec 65 PAGE 1

4.2 Evaluation

An expression basically consists of a name, a constant,
or an operator with Its operands; both the operator and the
operands are themselves expressions. More generally an
expression may be a sequence of such forms separated by
commas.

An expression is a rule for the evaluation of a
sequence of one or more quantities or values. Evaluation
may in general be performed in either of two modes: L-mode
and R-mode. The result of an expression evaluated in L-mode
is a sequence of one or more L-values, and the result of an
expression evaluated in R-mode is a sequence of one or more
R-values (see Section 4,5), The number of members of such a
sequence is normally restricted by the context of the
expression. In particular, an expression which occurs as
the operand of a monadic or infixed-operator (see Sections 5
and 6) must yield a single value.

The mode of evaluation of a particular expression is
determined by centext, although certain operators may have a
natural mode of evaluation. For example, all monadic and
infixed-operators require R-values as operands and produce
single R-values as results, whereas prefixed-operators may
take R-value or L-value operands and produce R-value or
L-value results accordinR to context. The natural mode of
evaluation of a name is L-mode, and of a constant, R-mode.
In both cases, the result Is a single value.

In circumstances where the mode required by context
conflicts with the natural mode, transfers are automatically
effected as follows.

a) L-Va!ue to R-Value

The data specified by the L-value is extracted to give
an R-value.

b) R-Value to L-Value

A new (disjoint) L-value is created and the R-va!ue
becomes associated with it; the new L-v.alue is given· the
attribute constant (see Section 7.3).

·CPL Reference Manual Section 4.2 20 Dec 65 PAGE 2

The following rules apply to the evaluation of
operators and oper.ands in expressions.

1. Except where otherwise stated, an operator and its
operands (including their component parts) may be
evaluated in any order or in parallel. An operator may
be applied to its operands at any time after each of
them has been evaluated.

2. Expressions may be transformed and re-ordered in any way
that would give identical results if all evaluations
were performed exactly.

~: , .. ,;
. ·:'i
''· -·y1:
·.~ ,-;

",* ,_'._,,

of

CPL Reference Manual Section 4,3 20 Dec 65 PAGE. 1

4.3 Conditional-Expressions

4.3.1 Syntax

<conditional expression> ::= <infixed expression>-7
<basic expression> comma <basic expression>

In the conditional-expression

E
1
-7 E ,_, E.:&

the syntax rules permit E1 to be an infixed-expression and
each of E~ and E3 to be a basic-expression. This implies
that if either E~ orE~ is to represent an expression-list
or is to be qualified by a where-clause, then this must be
enclosed in parentheses; similarly, E1 must be bracketed if
it is itself a conditional-expression or is qualified by a
where-clause. ·

4.3.2 Semantics

The conditional-expression

has the same value as the expression

reference of § testE, .1..biill. result 1.§. El. QL result 1.§. E.a t
(see Sections 4.4 and 9.6) Note that on evaluating this
conditional-expression E, is evaluated in R-mode and that
one only of E~ or E3 is evaluated in L-mode. Thus the
natural mode of evaluation (section 4.2) is L-mode.

0

' .
CPL Reference Manual Section 4.4 20 Dec 65 PAGE 1

4.4 Block-Exoressjons

4.4.1 SYntax

<block expression> ::= valueof <block>! referenceof <block>

A block-expression enables the computation of one or
more results to be written in the form of a command, or
block. There are two forms depending on the required mode
of evaluation.

value Qf <block>
reference of <block>

which produces one or more R-values
which produces one or more L-values

In either case, the block must contain one or more result~
commands (for syntax see Section 9.5.4). The type of each
result of a block-expression is defined to be the least
upper bound (as defined in Section 6.6.2) of the types of
the corresponding members of the constituent expressions in
all result is commands which appear in the block, but
excluding any which appear in further block-expressions
within the block.

4.4.2 Semantics

A block-expression is evaluated as follows. The
commands (and declarations, if any) are executed in sequence
until one of the result~ commands is encountered, The
constituent expression of this command is then evaluated in
the mode determined by the prefix value of or reference of,
and the results transformed if necessary to the appropriate
types as defined in the previous paragraph. These results
form the value of the block-expression and the execution of
the block is then terminated,

Commands in a block-expression may include assignments
which update L-values which are non-local to the block (i.e.
which ar~ not lost when the execution of the block is
terminated). In such cases the block-expression is said to
have SIDE EFFECTS, and particular care must be taken to
ensure that the results of the Program are not dependent on
the order of evaluations or the rules given in Section 4,2
may imply that the results are unpredictable.

0

,_:,. CPL Reference Manual Section 4.5 20 Dec 65 PAGE 1

4.5 Expressjon-Ljsts

An expression may generally produce a sequence of
results; where there are two or more of these, the syntactic
class expression-list enables the members to be written
explicitly separated by commas. This form is naturally only
meaningful in contexts where several values are meaningful:
for example, in assignment-commands where several
simultaneous assignments are being made (see Section 9.2),
and in actual parameter lists where several values are being
handed over as the operands of a function or routine call
(see Section 10.1).

Note that whenever an expression produces a sequence of
two or more values, these values are never considered
together as being a single value; and thus such an
expression does not have a single type, but a sequence of
types.

Several or all of the members of an expression-list may
be bracketed: for example, in order to delimit the scope of
a where-clause. Otherwise, bracketing in an expression-list
has no significance. ·

A
V

CPL Reference Manual Section 4.6 20 Dec 65 PAGE 1

4,6 Where-Clauses

The general form of an expression qualified by a
where-clause is

E
1

where D 1

where the syntax rules permit E, to be any expression
(possibly qualified by a where-clause itself> and 01 to be an
in-definitior (see Section 8,1), However, since commands
and definitions may also be qualified by where-clauses,. it
is usually necessary for the above form to be enclosed in
parentheses. For this reason, the syntactic rules for
certain commands and declarations use the forms
expression-list or basic-expression to indicate that, if the
expression only is to be qualified by a where-clause, they
must be enclosed in parentheses.

The semantics of an expression qualified by a
where-clause are conveniently defined by the following
equivalent form

.t:.ti Q£ §lll D1 ; result 12. E1 *
(See Sections 4.4 and 8.3).

-
(/~""'7

k cJ ,.rJ.. r;

ll.. ..

tofc"''~ ~ 1-tert" T

~ ..D..vt- c:.lc. ~

.s ,\.._ ~ I <.r "" - J.

A
V

0

CPL Reference Manual Section 5,0

5 PREFIXED OPERATORS AND EXPRESSIONS

5,1 Monadlc Operators

5 .1.1 Syntax
5.1.2 Semantics

5.2 Prefixed-Operators

5.2,1 Syntax
5.2.2 Semantics

5.3 Prefixed-Expressions

Syntax
Semantics

23 Nov 65

5. 3.1
5.3.2
5.3.3 Array References

PAGE 1

0

CPL Reference Manual Section 5.1 23 Nov 65 PAGE 1

5.1 Monadjc Ooerators

5.1.1 Syntax

<individual>
' ' ' '

::= <constant>l<name>i<prefixed expression>!
""<individual>l<block expression>! .t:.h§. I

Q.Q.§. I ~ I (<expression))

5.1.2 Semantics

(a) The operator·"'

This is written immediately before its operand, and is
less binding than any prefixed-operator, but more binding
than any infixed-operator (see Sectinn 6.1). lt takes an
R-value as an operand (which must be of the type logical,
longlogjcal or Boolean) and produces an R-value of the same
type as its result.

If the operand is of type logical or looglogical, the
nth bit of the result is determined by the nth bit of the
operand according to the following table:

Operand 0 1
Result ;I' /

If the operand is of type Boolean
defined by the following table.

(b) Operators + -

Operand
Result

false
..t..l:lJJ!

.t.J::.!J.e
false

the result is

+and- may be used as monadic operators In publication
CPL. However, the transformation to canonical CPL replaces
them by the symbols ~~ and ~ respectively. In the
precedence and grouping rules for determining
infixed-operators (see Section 6.1), these symbols are
formally treated as equivalent to the symbol sequences (+1)
and (-1) respectively. Thus the meaning of prefixed + and -
is defined to be the same as that of multiplication by the
system constants (+1) and (-1) which have the values 0+1 and
0-1 respectively.

A
V

A
V

CPL Reference Manual Section 5.2 22 Nov 65 PAGE 1

5,2 Prefjxeo~~~

5,2,1 Syntax

<prefixed operator> ::"<name>! .~ I<PI"efiJ<ed expression>!
(<expression>)

5.2,2 Semantics

A prefixed-operator can be a name, a general expression
enclosed in parentheses, or a prefixed-expression. if the
prefixed-operator Is a name, it must be either a BASIC
FUNCTION (see Section 10.1.2) or a PROGRAMMER'S FUNCTION
(see Section 10.3) or an ARRAY (see Section 11}. If the
prefixed-operator is an expression, lt must be possible to
evaluate it in R-mode to produce a function or array.

CPL Reference Manual Section 5,3 22 Nov 65 PAGE 1

5.3 Prefjxed-Expressjoos

5,3,1 Syntax

(prefixed expression> ::• <prefixed operator>[<expression>~J

A prefixed-expression consists of a prefixed-operator
fo 11 owed by its ARGUMENT LIST wh i eh is enclosed in SQUARE
brackets. The brackets must be present even if the argument
list is empty Ci.e. if the operator requires no operands),

() 5.3.2 Semantics

A prefixed-expression is used to indicate the
APPLICATION of a prefixed-operator to its operands. (Note
that the EVALUATION of an operator and its APPLICATION are
two completely distinct processes.) The evaluation of a
prefixed-expression In either L-mode or R-mode is performed
in two stages:

(a) The prefixed-operator is evaluated in R-mode to
produce a function or array, and the operand (which is
the expression enclosed in brackets following it) is
evaluated in the appropriate mode to form the argument
list. These two evaluations may be performed in any
order.

(b) The resulting function or array Is applied to its
argument in the manner described in Section 10.1 to
produce the value of the prefixed-expression. The
application of a function to its arguments is known as
a FUNCTION CALL.

In general, the operand is evaluated in L-mode and the
resulting argument list of L-values, without changes of
type, is used in the function call. However, in the special
case where the written operator is the name of a function
data item with the attribute constill!..t, and whose formal
parameter tYPeS and modes are explicitly (or by default)
stated in the definition, the components of the argument
list in a function call are further transformed (if
possible) so that they match the corresponding formal
parameters in mode and type. (Note that this special case
will probably be the most common form of function call.)

A function may only be called with an argument list·
with the correct number of arguments. (Some basic functions
may be called with anY number of arguments- see Appendix 3.
ll!o programmer's functions can have this property.)

D

CPL Reference Manual Section 5.3 22 Nov 65 PAGE 2

The type of a prefixed-expression is determined by ~
it~ its prefixed-operator (see Section lO,z',2.).

5.3.3 Array References

An array-type data item may be used as a
prefix-operator to refer to an element of an array. In this
form, the operator takes a single operand of type index in
R-mode (called a subscript), which is used to select the
required element according to the definition of the array
(see Section 11), The natural mode of evaluation of an
array reference is L-mode, giving the L-value of an element
of the array. The result could itself be an array, which
may be applied to a further. subscript to obtain a
sub-element, and so on.

For example, if A represents a three dimensional
of ~ e 1 ements (i.e •. of type ~ 3 array), and i,
.represent index values

array
j, k

A l:i J
A!i Jl:j]
A (i)(jJlk]

gives an L-value of type~ 2 arraY
gives an L-value of type ~ 1 array
gives an L-value of type~

An alternative syntactic
reference to be written with two
specify directly sub-elements of
For example:

form permits an array
or more subscripts to

multidimensional arrays,

A Li, j J
A(i,j,kJ

is equivalent to AliJlj]
is equivalent to A(i]tjJLk]

The result of an array reference is only defined if the
value of the subscript lies within the bounds of the array.

CPL Reference Manual Section 6.0 1 Feb 66 PAGE 1

6 !NFIXED OPERATORS AND EXPRESSIONS

6,1 Syntax and Grouping
6.1.1 Syntax
6.1.2 General
6.1.3 Juxtaposition, .£2.§. and .tJ..e.g,
6.1.4 Grouping

6.2 . Numeri ea 1 Operators
6.2.1 Types
6.2.2 Semantics

6.3 Log i ea 1 Operators

0 6.4 Relations

6.5 String Operators

6,6 Polymorphism and Type Matching

0

CPL Reference Manual Section 6.1 1 Jan 66 PAGE 1

6,1 Syntax and Groupjng

6,1,1 Synta~:~.

<relation>::= muchlessthan I lessthan I i_ I =I f. >I
freaterthan I muchgreaterthan

<infixed operator> ::= + I - I x I I I~ I ~I i I A I v I
#!<relation>

<infixed expression> ::= <<individual><infixed operator>,-> 0
< i nd i vi d ua 1)

6,1.2 General

lnfixed-operators require two operands; they may
require operands of a particular type or be polymorphic (see
Section 6,2 and 6,6). With the possible exception of the
OPerators =and f., their operands are evaluated in R-mode
and the result they produce Is always an R-value.
· In the written form of expressions, an infixed-operator
is placed between its operands and together these may form
an operand of a further operator. Thus, an expression may

·appear as a sequence of alternate operands (i.e. items of
the syntactic class individual) and infixed-operators; and
therefore rules exist to determine the grouping of operators
with operands in any such sequence. These rules may be
overridden explicitly by enclosure of an operand in

C) parentheses.

6,1,3 Juxtaposjtjon. Pos and Neg

The symbols ~ and ~ rank as members of the
syntactic class individual. Semantically, they are treated
as constant data items with the values +1 and -1
respectively, their type being that numerical tYPe with the
lowest precision (i.e. normallY jndex).

The juxtaposition of two individuals in an ~
infixed-expression is taken as implying multiplication and
the operator is therefore inserted before any further
analysis takes place.

CPL Reference Manual Section 6,1 1 Jan 66 PAGE 2

6.1.4 Groupjng

Operator 1' X I + 4::;> <relation> A V = i.. -
PL 10 9 9 6 6 5 4 3 2 1

PR 8 9 8 7 6 5 4 . 3 2 1

Tabls: of Pce~edeo~e:.

Grouping rules are determined by assigning two
PRECEDENCES to each infixed-operator (a left precedence Pl
and a right precedence PR), and by specifying a procedure of
analysis on an operand-operator sequence of the general form

where Ac, A1 , ••• A"' are individuals and x,, x:L, ••• x,.. are
infixed-operators. The operator-operand sequence is
preceded by a dummy operator x 0 (for which PR = 0) and
followed by a dummy operator Xn+o (for which Pl = 0); thus:

x.,A0 xa A, x:L. ••• x.,.A,..x 11 t 1

The grouping procedure is the following.
is searched for anY subsequence A i. x, .. , ••• x .i

i < j
PL[x;.,. 1) PR !x l] <

PRfx.;) > Pl[Xj·n)

and, for a 11 s = i+l, • • • j -1

PR [x,) = PLfxs • ..J f. 0

The sequence
A• such that

J

A subsequence of this form is termed a PRIME PHRASE. Any
prime phrase found is enclosed in parentheses and thus
becomes an individual; the operator-operand sequence is then
renumbered to take account of this. The process is repeated
until no further prime phrases can be found.

This procedure will not group an infixed-expression
completely into pairs of operands separated by an operator.
In particular, the operators which are associative (viz x +
" " .::. and i..l may occur in groups with any number of

members. These may, in the cases of X and+, be followed by
a single occurence of I or respectively. Thus an
1nfixed-expression such as:

a + b + c - d
p .>(q I r
X .::. y i_ Z

CPL Reference Manual Section 6,1 1 Jan 66

are treated as individuals and not grouped
This, however, is in accordance with
mathematical meaning which implies that the
grouping) of the operations inside such a
effect on its value.

PAGE 3

any further.
their normal
ordering (or

group has no

The relations are also combined into a single group. A
COMPOUND RELATION, as such a group is called, has the
Boolean value~ if and only· if each of its component
relations has the value~. Thus the compound relation

E, R:z. EL R~ E 3 • .. E '71-l R11 E'll

has the value~ if and only if all the relations

E1 Ra.El.
E.2.R3 E.3
• • • • •

y the va 1 ue .J.r..u..e..

0

0

CPL Reference Manual Section 6,2 1 Jan.66 PAGE 1

6,2 Numerjcal Operators

6. 2 .1 Types

lnfixed-operators are in general POLYMORPHIC; that is
they may take operands of various types, and may produce
results whose type depends upon that of the operands.
However, in all cases, the operator takes two operands of
the same type. (Two operands of differing types are
permitted in certain circumstances, but these are always
converted to a single common type before application of the
operator: See Section 6,6,)

In this and following sections, a table is given for
each operator (or group of operators) specifying the type of
the result as a function of the tYPe of the operands.

Operators + - X

Operand Type Result Type

jndex jodex

integer integer

J:.aal ~

double double

complex complex

double comp 1 ex double complex

g~o~ral geog(al

Operators I t

Operand Type Result Type

J:.aal J:.aal

double double

complex comp J ex

double compl~x double complex

g~o~t:ial g~ogcal

CPL Reference Manual Section 6,2 1 Jan 66 PAGE 2

6.2.2 Semantics

The meaning of the numerical infixed-operators is
intended to be the same as their normal mathematical
meaning, In many cases, however, the correspondence is only
approximate due to the presence of rounding and similar
errors. Such divergences from the mathematical ideal are
implementation dependent,

lnfixed division (/) produces a minimum type of ~.
There is thus no infixed-operator producing the integer type
of division with a remainder. These results can be obtained
by using the basic functions Quot[x,yJ and Rem[x,y) (see
Appendix 3), The division symbol+ is not a part of CPL.

lnfixed exponentiation Ct) is somewhat irregular.
Like division its minimum type is~. but its result type
is required to be the same as its operand type and for
operands of types ~or double this imposes a restriction
on the values of the operands.

More precisely, the value of the
one of the values of exp(E~logE 1)
res tr i et ions:

expression
with the

E/I'E:... is
following

1) if E 1 and E:>.. are of type ~ or
expression is undefined unless at least
values of exp(E.._logE 1) is not complex.

2) If E1 and E:z.. are of type ~ or
exp(E:z..1ogE 1) has two real values, the value
the positive one of these.

double,
one of

the
the

double and
of E/I'"E 4 is

3) If E 1 and E ... are of type complex or double complex
and exp(E:>..logE 1) has more than one value, the choice
between them is implementation dependent.

0

0

CPL Reference Manual Section 6,3 1 Jan 66 PAGE 1

6,3 Logjcal Operators

Operators 1\V"i..

Operand Type Result Type

logjcal logjca!

.J.Qn.g: logjcal J.Q.n.g; logjcal

Booleao Booleao

general general

\1/here these operators produce logical or .lQ.o1r logjcal
results, they are defined to be bit-by-bit manipulations on
the individual bi'ts of the operands. Thus, the nth bit of
the result is determined by the nth bit of each operand
according to the following table.

1st operand 0 0 1 1

2nd operand 0 1 .o 1

1\ 0 0 0 1

V 0 1 1 l

= 1 0 0 1 -
i.. 0 1 1 0

When the operators produce Boolean results, their
values may be determined from the same table by replacing 0
by false and 1 by ~.

0

0
v:!t:
..

::J

CPL Reference Manual Section 6.4 3 Jan 66 PAGE 1

6.4 Relatjons

Operators = f'

Operand Type Result Type

any [:lQOj~gn

If the operands are one of the numerical types, then

E1 = El-

ls ~if (E 1 -E~) is a representation of zero.
with subtraction, equality of numerical
implementation dependent.

For all other types, E,= E~ is ~ if the
yield identical R-values (but see Section 10.2.4).

The expression

is always equivalent to

""(E 1 =Ez.)

Thus, as
values is

operands

Note that, if the operands are of different types,
transfer functions may be invoked under the rules of Section
6.6. For equality between operands of type functiQn or
routine see Section 10.2.4, and between operands of type
§rr§Y see Section 11.1.2.

Operators < i. 2. >
Operand Type Result Type

index Boo lean

jnteg~r BoQjean

~ BQolean

double Boo lean

string BQol~gn

If the operands E1 , E~ are of one of the permitted
numerical types (which are all non-complex) the value of the
relation is determined from the value of E 1 -E~. Transfer
functions may be invoked (see Section 6.6) to make this

0

0

CPL Reference Manual Section 6.4 3 Jan 66 PAGE 2

possible.
If the operands are of type string, comparison is

effected by repeatedly comparing the numerical equivalent
(see Section 3.3.5) of successive characters of each string
value (beginning with the first or most significant
character) until the required attribute is established. If
the characters of one of the operands are exhausted before
the other in this process, it is assumed to continue with
sufficient dummy characters whose numerical equivalents are
less than any other character.

Operators « »
Operand Type Resu 1 t Type

index Boo lean

jntep;er Boo lean,

Le.ill Boo lean

double ~oolean

These operators formally give the result ~ if the
value of one is negligible compared with the, value of the
other. This normally means that

E1 « E;~. is equivalent to (E 1 +E2..) = E2..
E 1 » El. i s eq u i v a 1 en t to (E 1 + E ;z..l = E ,

The precise definition however is implementation dependent,
and in some floating point implementations of the types Le.ill
and double the decision may be made in the basis of the
value of the exponent alone, so that E 1 « E;... may sometimes
be stronger than E,+E~ = E2..and sometimes be weaker.

If E, is of type index or integer and does not have the
value zero, 0 « E1 is always true. The value of 0 « 0 is
implementation dependent but should normally be false.

""' u

0

CPL Reference Manual Section 6.4 3 Jan 66 PAGE 2

possible.
if the operands are of type strjng, comparison is

effected by repeatedly comparing the numerical equivalent
(see Section 3.3.5) of successive characters of each string
value (beginning with the first or most significant
character) until the required attribute is established. If
the characters of one of the operands are exhausted before
the other in this process, it is assumed to continue with
sufficient dummy characters whose numerical equivalents are
less than any other character.

Operators « »
Operand Type Result Type

jndex Boo lean

jntPger Boo lean

Lell Boo lean

double BQol~ao

These operators formally give the result ~ if the
value of one is negligible compared with the value of the
6ther. This normally means that ·

E, << E~ is equivalent to CE,+E~) = E~
E1 » E:~. is equivalent to CE,+E2 _) = E,

The precise definition however is implementation dependent,
and in some floating point implementations of the types real
and double the decision may be made in the basis of the
value of the exponent alone, so that E 1 << E;,.. may sometimes
be stronger than E, +El. = E ,_and sometimes be weaker.

If E 1 is of type index or integer and does not have the
value zero, 0 « E1 is always~. The value of 0 « 0 is
implementation dependent but should normally be false.

0

0

CPL Reference Manual Section 6.5 3 Jan 66 PAGE 1

6,5 Strjng Operators

Operator #

Operand Type Result Type

string string

This operator concatenates two strings, That is, the
result is a string consisting of the characters of the first
operand, followed by the characters of the second operand.

'12-e ; "I<'>) J ... ,r: "" 1 r. '(f'<- cL..~"'-' I v- ,
;-,.,ufvc

~ ,.- r. it:;., ~ <1 /1 v:r, I l ,:-....._, See-If:.""\-..

0

0

CPL Reference Manual Section 6,6 22 Jan 66 PAGE 1

6,6 Polymorphism and Type Matching

The infixed-operators described in Sections 6.2, 6,3
and 6.4 are all polymorphic. The general rules for choosing
the correct version of a polymorphic operator and inserting
any necessary transfer functions are given in Sections 3,3,3
and 3.3.4, The choice for all these operators Js made using
Rule A of Section 3.3.4 I

0

0

CPL Reference Manual Section 7,0 22 Jan 66

7 OEF!NfTrONS

7.1 Syntax

7.2 Modes
7.2.1
7.2.2
7.2.3

of Definition
Definition by
Definition by
Definition by

Type
Value
Reference

· 7,3 Constant and Variable Definitions

7.4 Definitions and Types
7.4.1 Preferred Type
7,4,2 Type Definitions

PAGE 1

7,4,3 Simple initialized Definitions

CPL Reference Manual Section 7.1 22 Jan 66 PAGE 1

7.1 Syntax

<data type>::= real I integer I complex I double I logical I
index I longlogical I doublecomplex I tYDfl I
Boolean I label I routine I string I general

<array type> ::=<single type~ 1-<number> array I
<single type> 1• < vector I matrix >

<function type>::= <single type>,.functjon

<single type> ::=<data type>l<array type>l<function type>l
(<single type list>)

<single type list>::= <single type><,<single type>>
0

Q <name list>::= <name><,<name>>0

0

<formal parametef> ::=<single type>< value I reference ><name>l
<value I referenc.e. >1_<sing1e type>1_

<name> .

<formal parameter 1 ist> ::= <formal parameter>
<,<formal parameter>b

<type definition> ::=<name list>< be l allbe ><single type 1 ist>

<simple definition>::=< variable I constant >1- <name list>
<=I!::! I .iLU- I .iLll ~>

<expression list>

<LH function body>::=< fix <definition»,_
l!<.ild. <block> update <block>

<function definition> : := < recursive >1- < variabl~ I constant >1_

<name>[<formal parameter list),_J
< = I~ ><expression list>l

< recursive >o-< vari2ble I constant >1 -

< fixed I free >,_<fUUction>,$name>
L<'formal parameter 1 ist>,. J be
<<LH function body>l .

,9<LH function body>$>

<routine definition>::=< recursivG. >1-< variable I constan.:l;. >1•

<fixed I~ > 1 -<routine~iname>
<(<formal parameter list> 1:]> 1 _

be <block>

<basic definition> ::=<type definition>i<simple definition>!
<function definition>!
<routine definition>! t
<recursive >1 _ §<definition>f

0

0

CPL Reference Manual Section 7.2 22 Jan 66 PAGE 1

7.2 Modes of Definition

One of the functions of a definition is to introduce a
name which refers to a data item, and which is then
identified with all other occurrences of the same name in
the scope of the definition. The scope rules are given in
Section 8. Other characteristics depend on whether the
definition is by value or reference.

7.2,1 Defjnjtjon by Type

Type-definitions have the defining operator be or
allbe. They create a new L-value (i.e. one which is
disjoint from all other existing at the moment of
definition) and associate this with the defined name. The
R-value ~ssoclated with this new L-value is undefined.

7.2.2 Defjnjtjon by Value

A definition by value creates a new L-value and
associates this with the defined name; it also associates an
initial R-value with the L-value. Definitions by the
defining operators = , all = and the special forms of c

function and routine definitions all define by value,

7.2.3 Definition by Referen~e

A definition by reference is primarily intended to
associate an already existing L-value with the name defined.
The L-value is the one obtained by evaluating the defining
expression in L-mode. In the exceptional case where the
natural mode of evaluation of 1 the defining expression is
R-mode, a new L-value of the appropriate type is created,
its R-value is the result obtained by evaluating the
defining expression in R-mode. This L-value is ~~
associated with the defined name. ~~

0

0

CPL Reference Manual Section 7.3 22 Jan 66 PAGE 1

7.3 Constant and Variable Definitions

An L-value in CPL has either the property constant or
variable, depending solely on how the L-value was created.
If an L-value has the property constant, it means that its
R-value cannot be changed by assignment, lt is meaningful
to include the word variable or constant only in definitions
by value, If it is omitted from a definition, a constancy
attribute is assumed. A function or routine definition is
assumed to have the attribute constant unless expl lcitly
specified as variable, whereas a type or simple .definition
Is taken as variable, unless otherwise specified.

0

-_; ,,

CPL Reference Manual Section 7,4 22 Jan 66 PAGE 1

7.4 Definitions and Types

Data items of any type may be defined; however the
actual type in most cases need not be explicitly stated.
The rules for determining the type depend on the kind of
definition, and on the current PREFERRED TYPE.

7.4.1 Preferred Tyoe

There are many occasions when it is necessary to
determine the type of a data item in CPL. In most cases
this can be deduced from known or ascertainable types of its
component parts, but there are a few situations where this
is not possible. The most important of these are: in the
formal parameter lists of function and routine definitions
(see Section 10), and In written numerical constants. In
these situations it Is always possible to specify the type
required explicitly.

lt is possible for the programmer to select a preferred
type which will be used in certain circumstances, where the
type of a data item is otherwise unknown.

Initially the preferred type is real; it will
altered only if the programmer writes a directive In
form

nrefer <single type>

be
the

where the <single type> specifies the new preferred type.
This directive may be written in the declaration sequence of
a block; its scope consists of any succeeding declarations,
together with the command sequence of the block.

If the programmer has specified the type of an array,
matrix, vector or function without specifying the
single-type which determines the type of its components or
result, this is assumed to be the preferred type, This does
not apply to functions defined by one of the special forms
of definition described in Section 10.3 whose result types
are discussed In Section 10.3,6.

7.4.2 Type Definitions

(a) The defining operator be
The syntax of the simplest form of type definition is

<name list> .12!;. <single type list>

0

0

CPL Reference Manual Section 7.4 22 Jan 66 PAGE 2

lt is only meaningful if the name-i ist and single-type-l'ist
have the same number of members, in which case the names on
the left of the operator .Q..e. are associated with data items
whose types are the corresponding single-types of the
single-type-1 ist. Initial values for the data items are not
defined.

(b) The defining operator
This operator may be

define by type a number of
For example, the following
meaning.

.illl .b..e.
used when it is necessary to
data items all of the same type.
two definitions have the same

x, y, z be .r:g_ql, real, .r:g_qJ_
x, y, z .Q.ll .b..e. real

7.4.3 Simple Initialized Definitions

(a) The defining operator =
The type of ea~h of the data items on the left Is the

type of the corresponding expression on the right. There
must be the same number of defining expressions on the right
as names in the name-list on the left, If any of the
defining expressions is a single numerical constant and the
preferred type is numerical then the type of this constant
is determined by the rules given in Section 3.2.2. This
form of definition defines by value (see Section 7.2.2).

(b) The defining operator~
As in (a) the type of each of the data items on the

left is the type of the corresponding expression on the
right, and there must be the same number of defining
expressions as names defined. For each name defined the
corresponding defining expression is evaluated in L-mode,
and the L-value obtained is associated with the name. (See
Section 7.2.3.) ·

(c) The defining operators Qll =and .illl~
The effects of these operators are best described in

terms of the operators described above.
For example, the following two definitions are

synonymous:

a, b, c
a, b, c

all= E,
= (X, X, X where x = E,)

.i~ilarly the following two are also synonymous:

a, b, c
a, b, c

a 1~ -::t E,
:! (X, X, X where x ~ E,)

CPL Reference Manual Section 8,0 30 Jan 66 PAGE 1

8 DEFINITION STRUCTURE AND SCOPE RULES

8,1 Syntax

8,2 Scope and Extent

8. 2. 1 Scope
8,2,2 Extent

8.3 Scope Rules for Definitions

8,3.1 R!lC!Jt:Sive

:) 8,3,2 Composite Definitions
8.3.3 And
8. 3. 4 l.n.
8.3.5 \vhece
8.3.6 .!..e.!

8.4 Other Scope Rules

CPL Reference Manual Section B.l 30 Jan 66 PAGE 1

8.1 Syntax

<and definition> ::=<basic definition>
< and <basic definition>>0

<In definition> ::=<and definition>!
<and definition> in <in definition>

<definition> ::=<in definition>l
<definition> where <In definition>

<declaration>::= ~<definition>

0 . '""'")

0

0

0

CPL Reference Manual Section 8.2 30 Jan 66 PAGE 1

8,2 Scope and Extent

8.2.1 Scope

The SCOPE of a definition is a syntactic concept; it is
that area of the written program in which the data items
defined in definitions may be referred to using the names
with which the definitions associate them.

·If a definition (the 'inner' definition) occurs within
the scope of another definition of the same name (the
'outer' definition), the inner definition supersedes the
outer one. The outer definition is said to be 'shielded'
from the scope of the inner one, and to have a 'hole' in its
scope.

8.2.2 Extent

The EXTENT of a data item is a dynamic concept; it is
that part of the dynamic execution of a program through
which a named data item maintains a continous existance.

In CPL the extent of a named data item is controlled by
the scope of its definition. lt continues as long as the
command currently being executed lies within the scope
(including any holes there may be in it); it terminates as
soon as the current command lies outside the scope of the
definition.

For this purpose the whole of the execution of a
routine call is considered to lie in the extent containing
the call, irrespective of the scope which contains the body
of the routine.

0

CPL Reference Manual Section 8.3 30 Jan 66 PAGE 1

3.3 Scope Rules for Definitions

The scope of a definition is controlled bY its position
in a program, and by use of the words recursjve, ani, ln and
where.

3.3.1 Recursive

.The scope of a definition does not normally include its
own definiens (i.e. the right hand side of its own
definition). However, by preceeding the definition by the
word recursive, it can be made to do so. This may only be
used if all the data items defined by the definition are
either functions or routines. The effect of recursjve on
other definitions is undefined.

8.3.2 Composjte Definitions

Composite definitions made u~ of definitions joined by
and, ln or where together with uses of recursive may be
formed into a single basic definition by enclosing them in
section brackets. The resulting definition may also be
qualified by preceeding it by the word recursjve provided it
satisfies the conditions of Section 8.3.1.

0 3.3.3 .Aru!.

This word is used to combine two or more definitions
into one. Unless this combined definition is recursive,
none of the component definitions is in the scope of any
other component definition. The order of activation of the
definitions is undefined; it is intended that they be
considered as activated in parallel. Thus, for example, the
effect of the definitions.

N, " E ,
.a.rui N A. " E :1.
ani N-r " E.,..

is the same as the effect of the definition

0

0

CPL Reference Manual Section 8.3 30 Jan 66 PAGE 2

The effect is undefined unless the names N1 ,N
4

, ••• ,N~
are all different.

3,3,4 l.o.

When this word separates a number of definitions there
Is an implied association rule. to the right. For example,
the definition

D 1 l.n D:~..ln D,a

is synonymous with

D, ~ g D;.. .Ln D2. ~
lt is therefore only necessary to consider the simple
composite form

D 1 l.o.D,_

The scope of 0 1 is D;~., alone, and the scope of D,. is the
same as that of the whole definition. If the composite
definition is recursive then its scope includes Its
deflniens; that is the scope of D,. now includes D, and D~,
but the scope of 0 1 is still only D:~..•

8,3,5 lvhere
tJj3 '"TJ.,.._ .. -..l<.s 1-&vtrn ;,..I }C, "<"''("-
" I u .f I

As with the
of definitions
association rule

~h~-.:. (J ""'{::J.S.,.-r""·
word .Ln, the word where separates a
but in this case there is an
to the left. For example

0 1 where 0 1 where o3
Is synonymous with

§ D 1 where D.-.. $ where D-"3

number
implied

it is therefore only n~cessary to consider the simple form

D 1 where D,.

The above definition is exactly equivalent in meaning to

D4 l.o.D 1

This form is described in Section 8.3.4 above.

0

0

CPL Reference Manual Section 8.3 30 Jan 66 PAGE 3

The word where may also be used to introduce a
where-clause qualifying an expression or command. The
general rule is that a where-clause qualifies the longest
command, definition or expression {in that order of
preference) immediatelY preceding it; the scope of its
component definition is the qualified command, definition or
expression. As commands and definitions frequently
terminate in expressions, it is generally necessary to
enclose expressions qualified by where-clauses in
parentheses. {See Sections 4.6 and 9,8,)

A declaration is a definition preceded by the word~.
A declaration or a sequence of declarations may only occur
at the head of a block. The scope of a declaration is the
set of immediately following declarations and the command
sequence of the block. If the definition in the declaration
is recursive then its scope includes its definiens as well.

J

)

CPL Reference Manual Section 8.4 30 Jin 66 PAGE 1

8.4 Other Scope Rules

The concept of scope also applies in ~ituations where
names are introduced other than by deflnltidn. There are
two cases, as follows. · ·\.

(a) Formal Parameters
The scope of a formal parameter in a

routine definition is the defining expression
(see Section 10,)

(b) Labels

function or
or command.

The scope of labels declared by colon as in the command

L : a : = bx+c

Is the smallest enclosing routine body or block expression
(see Section 9.8),

)

CPL Reference Manual Section 9,0 17 Feb 66

9 COt~[.1ANDS

"

9.1 Syntax

9.2 Assignment-Commands

9.2.1 Syntax
9.2.2 Semantics

>' '1·1-·3

9.3 Transfer-Commands and Labels

9.3.1
9.3.2
9.3.3

Syntax
Semantics
Labels

9.4 Routine-Commands

9.4.1 Syntax
9.4.2 Semantics

9.5 Other Simple-Commands

)< 9.5.1
''f 9.5.2

11
9.5.3
9.5.4

Syntax
Return
Break
Result li

9.6 conditional-Commands

9.7

9.6.1
9.6.2
9.6.3

Syntax
If-Commands
Test-Commands

Cycle-Commands

9,7.1 Syntax
9. 7. 2 \'lh i 1 e-Commands
9. 7. 3 Repeat-Commands
9.7.4 For-Commands

h 9.7.5 Evaluation of For-Lists

9.8 Blocks

'\(
I 9.8.1 Syntax
I' 9,8.2 Notes .., 9.8.3 Declarations
>< 9.8.4 Command-Sequences
'I 9.8.5 Leaving Blocks

PAGE 1

J

)

CPL Reference Manual Section 9,1 4 Jan 66 PAGE 1

9.1 Svntax

<assignment command> ::=<expression> :=<expression list>l
<expression> £11 := <basic expression>

<transfer command> ::= goto <basic expression>

<routine command> ::= <name>i<prefixed expression>

<simple command> ::=<assignment command>l<transfer command>!
<routine command> I resu 1 t is <expression> I
break I return I <block>

<if command> ::= < lf I unless ><expression> do <basic command>

<test command> ::=~<expression> do <command> ru:.
<basic command>

<cond;tional command> ::=<if command>l<test command>

<while command> ::=<while 1 until ><expression> do
<basic command>

<repeat command>::= <command>< repeatwhile I repeatuntil >
<basic expression>!

<command> repeat

<for element> ::=<basic expression>!
~<basic expression>,<basic expression>,

<basic expression>!
<basic expression> to <basic expression>!
<basic expression>,<basic expression>

dotstrjng <basic expression>

<for list> ::=<for element><,<for element>>ol
<..f o 1 1 i s-t........,,!:te;=e < i A .a e f l n i t~

<for command> ::=for <name>= <for list> do <basic command>!
forexternal <individual><= I :=><for list> QQ.

<basic command>

<cycle command> ::=<while command>l<repeat command>!
<for command>

<basic command>::= «name> >o«conditional command>!
<simple command>l<cycle command>>

<command>::= <basic command>i<command> where <in definition>

<note> ::=prefer <single type>!~ I~ <string constant>

<block> ::= §«note>, <dec1aration>0 i<declaration> 1 !<command»
<; <command»0 §

•

CPL Reference Manual Section 9.2 27 Nov 65 PAGE 1

9.2 Assjgnment-Commands

9.2.1 Syntax

' (assignment command> ::• <expression> :=<expression list>l
<expression>~ :• <basic expression>

9.2.2 Semaqtics

(a) The effect of the command

is as follows, The expression E, is evaluated in L-mode to
produce a sequence of L-values of any type, say L 1 ,L~ ••• L~;
the expression E~ is also evaluated in R-mode to produce a
sequence of R-values of anY type, say R,,R~ ••• R~; these
evaluations may be performed in any order, but must be
complete before the next phase starts. In order for the
command to be well-formed, it is necessary that m=n. Each
member of the sequence L,, L;~.., ••• , L,... Is then UPDATED by the
corresponding member of the sequence R,Ru ••• ,R"'.

To update the L-value Lll,with the R-value R1v Ril is
first transformed to be of the same type as Lk if the
appropriate transfer function exists (if it does not, the
effect of the command is undefined). Let the transformed
R-value be R,. The R-value associated with Lk is now
altered to be Rk so that future evaluations of E, in R-mode
will produce the R-value Rh (unless modified by further
assignment-commands).

Note that the L-value Lh is not altered by updating
it, and that the R-value of any expression which has the
L-value Lk is altered by updating Lil.• If two L-values are
not disjoint - i.e. if they share a part or the whole of
their associated R-values • then updating either will effect
the R-value associated with both at least as far as their
shared part is concerned.

The order in which the sequence L 1 ,L~, ••• ,L~ is updated
is unspecified (cf. Section 4.2). This means that in
general the L-values in the sequence L1 ,L:>.•···•L..,should be
di:>joint or the effect of the assignment-command may be
undefined.

(b) The effect of the command

E .
l..

0

0

CPL Reference Manual Section 9.2 27 Nov 65 PAGE 2

is as follows. The expression E, and E~
described above to yield the sequences
R 1 ,R~, ••• ,Rn• In this case the sequence
have only one member (i.e. n=l),

The command is completed by updating
the sequence L 1 ,L~, .•• ,L~with the R-value

9,2,:$ Updating

are evaluated as
L.,4;,., ••. ,L...., and

of R-values must

everY member of
RI.

If L 1 Is an L-value and R, is an R-value of
type, there is an operation known as updating L,
This operation depends on the way in which L1
arose.

the same
with R,.
originally

CFL Reference Manual Section 9.3 5 July 66 Page 1

9.3 Transfer-Commands and Labels

9.3.1 Svntax

<·(;ransfer conunand):: = go to (basic expression)

(basic command)::= ((nJ-me) :) 0 ((conditional command> (

<simple command) I <cycle command))

9.3.2 Semantics

In a transfer-command, the basic symbol f'·oto is
followed by a basic-expression which is to be evaluated to
produce an R- value of type label.

The process of executing a command is known as an ·p·:·:.~
"activation" of that command. At any moment in the activ·:tion
of a command, a number of further activations may be current,
since one activation may call for a succession of further
activations to be completed before it can be completed itself.
Thus activation of a routine-command ccclls for ,:;,n activ:,tj_on
of the routine body which may call for <;.ctivation of some sub­
block of the body, and so on, each activation beine "called
for" by the most recent previous activation of the sequence
which is not yet complete. I:t' a function or routine is ca.lled
recursively, the same command may have more than one activ­
ation current at the same moment.

An activation may
described elsewhere, or
of type label associated
destination of the jump,

be terminated either normally, as
by a jump; a jmnp has an R - value
with it. This value specifies the

providi11g the following informR.tion:

(a) a point in some configuration of commands at
which some activation is to be continued.

(b) a r1.1.l.e for determining which activation is to
be continued at the point specified; this is
in the form of a rule for determining whether
or not an s,ctivation is "live" to the
destination.

The effect of a transfer-command is then specif:Led by
the followiTJ,>'.· rule, which is to be applied iterr,ti vely:
activation of a trmsfer-com.rnand is inLmediately termin tted by
a jump whose destination is specified by the value of the
expression associated with the command. If an s.cti vat ion calls
for an activation which is terminated by a jump to a destination
to which it is not itself live, then it also is termiTJated by
t[;,c, jump,

CPI, Reference Manual Section 9.3 5 July 66 Page 2

(For rules governing the termination of blocks and cycle­
commands, see 9.8.5.)

This process is continued until an activation {s found which is
live to the destination.

The effect of a jump is undefined if there is no current
activation to which it is live.

The following trivial example illustrates the way in
which ambiguities may arise when recursive routines and functions
are involved, and how this rule resolves them. If R is defined
by

ill recursive routine R [integer n, label 1, M] ~
§ if n)O do R [n-1, M, N]

N : goto L ~
I .

the effect of executing R [10, Even, Odd] , SE!:f, is to jump to
the destination "Even", whereas R [9, Even, OddJ jumps to the
destination "Odd". Note that each call of R ultimately has its
two label parameters specifying the same point N intwo different
activations of R.

Once the correct activation has been discovered, the
poi.nt i?ct which it i.s to be reswned may still lie within blocks,
cc.Dditional-commands or cycle-commands which are not yet act­
ivated. (The rules of 9.3.3. will imply that these are the
only possibilities; in particular, note that the effect of
attemp-cing to jump into an expression is undefined.) These
activations are achieved by successively "jumping into" the
commands, starting with the largest command which is not yet
activated and working inwards.

The effect of jumping into the command

if E1 ~ c1
is identical with the effect of jumping into the result of
replacing this conditional command, until terminated, by c1 •

The effect of jumping into the command

is to execute the command as
on the first cycle, if ;,ny,
jump into it, after setting

written, with the exception
C is entered by continuing
th~ initial value of N1 .

that
the

On jumping into a block, any initialisations are yler­
formed as if entering the block normally, before continuing
tl".e jmr.p further into the body of the block.

CPI, Reference Manual Section 9.3 l July 1966 Page 3

If, while evaluating the expressions occurring in a
block or cycle command head for this purpose, a transfer­
command is executed which terminates the block or cycle­
command, this jump supersedes the former one, which is not
pursued further.

'l'he effect of attempting to jump from the head of a
block or cycle-command into its body is implementa·tion
dependent.

The effects of jumping into other forms of compound­
command may be deduced from the rules for expressing such
commands in terms of corunands of the above form.

The effect of a tramJfer·-command which according to
the above rules would terminate a call to the load or update
part of a load-update pair, is implementation dependent, and
may be undefined. (See Sec .10 ,3. 5.)

9.3.3 Labels

An identifier of type label may be introduced in one of
two different w~ys: by a definition using- one of the b!'lsic
symbols let, and, in and where, as specified in Sect ions 7
and 8; or by its occurrence as a "command label", in which
case it occurs in the text followed by a colon, and preceding
some command (or Bome further command label for a command).

A command label has the status of a definition of type
label for the identifier which is used, in thJ.t a new data item
is associated with that identifier whenever the scone of the
corur,and label is entered. The scope is that which a definition
by let would have if placed at the head of the smallest .routine
body or block-expression body in which the command L1bel occurs.
The effect when two command l1bei. occurrences use the same
identifier and have the s~me scone is undefined (see also Note
1.) -

Tbe data item associated with the command label identifier
has an R - V·ctlue which specifies a destination for jumps,
providing the information :for (a)., (b) of 9.3.2 as follows:

(a)

(b)

the point inrlicated is the point of the com;nand
label. occurrence.

the activation of the routine or block-exnression
body which is being initiated is live to the
destination; an activation of a block, conditional­
com.:n;:;.nd or cycle-command will be live to the
destination if its text contains the command label
occurrence, and if called for by a command which is
also live to the destination.

The data item associated with a command l~bel is a con­
s-e·· :,t, and may not be updated. But its R - value may be

CPL Reference Manual Section 9.3 5 July 66 Page 4

assigned to variables of type label (declared at the head of
a block, say) •

Excepting possibly for an implementation dependent set
of library labels, ·every R- value of type label originates
as the value associated with a command label in the above
way. For the sake of the boolean relations =,:!:: applied to
labels, two such R - values are equal if they krise from
(possibly different) labels for the same command at the same
activation. Rules for equalitv between library labels are
implementation dependent.

NOTE

1. For convenience in implementing labels,
interpretation is left implementation dependent in
of no great significance.

the
two situation§l

i.

(a) when, according to the above rules, a
command label occurrence does not lie
within its own scope.

(e.g.

let routine R be §flet L be ~ ; L : ~ 3J · · rf L .. ··f)
(b) when the scope is a routine body, and

the comr11and label identifier is also
used as a formal parameter for the routine.

0 .

0

CPL Reference Manual Section 9.4 29 Nov 65 PAGE 1

9.4 Routjne-Commands

9.4.1 Svntax

<routine command> ::= <name>l<prefixed expression>

(prefixed'~xpression> ::=<prefixed operator>[<expression>,_]

9.4.2 Semantics

(a) If N1 Is a name the command

N,

has the same effect as the command

(b) lf a command is a prefixed-expression, the operator
and operand are evaluated In the manner described in Section
5.3.2. The evaluation of the prefixed-operator, In this
case, however, must produce a routine. The rules about
evaluating the operand and transforming the resulting
arguments to the appropriate mode and type are those given
in Section 5.3.2.

The application of a routine to Its arguments Is a form
of command; its effect is described in Section 10.1.

)

)

Temporary Heading. Line length 60 Page length 66. PAGE 1
.S..,.,. Ti '""""' '1 . ;-./ J. 'I . .>.1. ;.. ;)/ 71 'i w • ':1fe ...

9.5.3 Break

The basic symbol break is a command which may only
appear within the controlled command of;{cYcle-command, it a./
may not a pp ear in the -flo<ly o~~-i-;:l..i.ct;.+&n or in t!Te 1\
block following the basic symbol upd.at.£:. unless the
cycle-command immediately enclosing lt textually does so
also (see Section 10,3).

it has the same effect as a transfer-command to a label
immediately following the smallest cycle-command enclosing
it textually.

9.5,4 Result-is

The command

result li E

may appear in the block followin~ one of the basic symbols
;;-Y~a~J~u~e~Qf.t::;,~r~e~"~, e~r~e~n:~4e~otf or loa<i. It may not appear in the
li> • ·~-'L:.l'l"e"block following the
basic sy'mbol .Jd.!ldate unless the basic symbol with which it is
associated does so also (see Section 10,3).

The effect of the command is described in Sections 4,4
and 10.3.5,

I

,!

I

CPL Reference Manual Section 9,6 29 Nov 65 PAGE 1

9,6 Conditional-Commands

9,6,1 Syntax

<if command> ::= < l.f. I unless ><expression> QQ. <basic command>

<test command> ::=~<expression> QQ. <command> .QL
<basic command>

9,6,2 If Commands

G:) The command sequence

0

l.f. E, do C 11-

Cl.-

has the following effect:
The expression E, is evaluated in R-mode to produce a

result of type Boolean. If the value of E1 is false, the
command c, is skipped and the execution continues with the
command C:u if the value of E, is ~, the execution
continues with the command C1 • If the R-value of E, is not
transformable to type Boolean, the effect is undefined.

The command

unless E, do c,
has the same effect as the command

l.f.I'I(E,) do c,

9.6.3 The Test-Command

The command

~ E
1

QQ. C1 .QL c ..

has the same effect as the command

§l.f. B, .QQ C, ,-1;
unless B

1
do C~ o/ where B1 = E1

provided the name B1 used
E:xpres si on E 1 is chosen to
occuring in the command.

for the value of the Boolean
be distinct from all other names

0

0

CPL Reference Manual Section 9.7 29 Nov ,;.65 PAGE 1

9.7 CYcle-Commands

9.7.1 Syntax

<while command>::"< whiLe I until ><expression> do
<basic command>

<repeat command> ::=<command>< repeatwh!le 1 ~atuntil >
<basic expression>!

<command> repeat

<for element> ::=<basic expression>!
~<basic expression>,<basic expression>,

<basic expression>!
<basic expression> !Q <basic expression>!
<basic expression>,<basic expression>

dotstrjng<baslc expression>

<for list>::= <for elemeot><,<for element».,!
440 e i" 1 i !I tl>· '•'~-A:§3H { i n a e f i A i-t;..i.e.~

<for command> ::=for <name>= <for list> do <basic command>!
~x:ternal <individual><= I := ><forlist> do

· <basic command>

<cycle command> ::=<while command>l<repeat command>!
<for command>

! :,: .,..- -:::; "'"(k "'-•c.l ~.\ t>.'it::fr t'"""" ~ r-CJNI":'"'~ J..
9.7.2 While-Commands

(a) The command

while E, .dQ c,_

has the same effect as the command

(b) The command

untj J E1 .d.Q C1

has the same effect as the command

while ~ (E,) do c,

CPL Reference Manual Section 9,7 29 Nov 65 PAGE 2

9.7.3 Repeat-Comma~

(a) The command

C1 reoea t

has the same effect as the command

(b) The command

C 1 repeat while E,

~ has the same effect as the command ._)
9 c,
unless E

1
d.Q. break ~ repeat

(c) The command

C1 repeat unti 1 E1

has the same effect as the command

C1 repeat whjle N(£ 1)

9.7.4 For-Commands

(a) The commands

for external I, := F, do C,and
fQJ:external1 1 =F 1 .d.Q.C 1

have the same effect as the command

§ .l..e1. N I e::. E ' .
.f.Q.!:. N1. = F I .d.Q. S' Ncl == ;l. $

provided N1 and NL are names which are distinct from any
other names occuring in the command.

(b) The command

0

CPL Reference Manual Section 9,7 29 Nov 65 PAGE 3

is interpreted as follows. The for-1 ist F1 is evaluated in
R-mode as described in Section 9,7,5 to specify a sequence
of R-values. The name N1 Is taken as the name of a new
CONTROL variable whose type is the least upper bound of the
types of the elements in this sequence and whose .scope is
the controlled command C1 •

If the sequence of R-values obtained by evaluating F,
is void, the for-·command has no effect. Otherwise, if the
sequence of R-values obtained is V, V'J., ... v., (n 2. 1) the
effect of the for-command is the same as the effect of the
command

§ ~.l.e.J;. N' = Vt; C 1 f
g.L.e.J;. N, = v .. ; c,.tp

' § i ~ t . N; . ~ . v~ ; . c; .}' . *
Note that the values V1 , V,_;o .. V..,. are determined once

and for all before the cycle is entered, so that they cannot
be altered by assignments within the controlled command, and
that the control variable N, is redefine·d with the next
value of the sequence at the start of each cycle, so that
assignments to N, are effective only until the end of the
cYcle in which they are made.

Ajumpout of the controlled command either
transfer-command to a label external to it or by a
command, has the effect of jumping out of a block so
the control variable N is lost.

by a
break
that

A jump into the controlled command is treated like
jump into a block (see Section 9,8) and the evaluation
the for-list Is treated as part of the declarations at
head of the block. More precisely, the effect of
commands

•••••• f!

is the same as that of the commands

........
L2 : §I ltl

.fu.r:.
B, = .."Ir..\li:.
N1 • = F, .tiQ.
fl.ll B, do

c, ; ••• <I • ;

a
of

the
the

provided the new names introduced are distinct from all
others. Note that this equivalence, unlike many given
elsewhere in this section, is only true dynamically. There
is no simple textually equivalent sequence of commands as
the interpretation of L1 as a label in a transfer-command

)

CPL Reference Manual Section 9.7 29 Nov 65 PAGE 4

depends on its context, i.e. on whether the tra~sfer-command
is Inside or outside the for-statement which corttains L1 •

' "
',)

9, 7. 5 Eyaluatjon of For-Li.,!ill

The sequence of values ·specified by a for-list is the
sequence of R-values of its component for-elements taken In
order from left to right. A for-element which is a
basic-expression specifies a single value; the other forms
specify an arithmetic progression (which may have no
members) determined as follows-:

(a) The for-element

~Q E1 , E~, E~

where E,, E1..and E3 are numerical expressions specifies .a y
sequence with n+l values where n=~[Realpt[<E3 -E, l/E-.1] 7.~ ·
if n l 0 and an empty sequence if n < 0, Here the function
Realpt gives the real part of its argument for complex
numbers, and the function Integer gives the nearest Integer
to its argument (see Appendix 3). If n l 0 the sequence of
values specified is given by E1 +rE4 for r = O,l, ••• ,n. The
type of each element of a sequence which is not void is the
type of the expression E 1 +E~.

(b) The for-element

specifies the same sequence as the for-element

(c) The for-element

E I , E .v •.• ' E.a

specifies the same sequence as the for-element

":s~c~o~p::;e~o:=~:~~:::::::;;~~~~~::;:~~~;~::::o:n:~~~~~~~~:~:~~~~~ command

E1 := F, w C

~:~~~~c~~~~H+~~~~~~~~~~
iR£l!!Qe either F 1 or c.,..

CPL Reference Manual Section 10.0 12 Feb 66 PAGE 1

10 FUNCTIONS AND ROUTINES

10.1 Introduction, Function and Routine Calls

10. 1. 1
10.1.2

Syntax
Semantics

10.2 Fu.nctions and Routines as Data Items

10.2.1
10.2.2
10.2.3
10,2.4

Syntax
Types
Expressions and Assignments
Equality between Functions, Routines

10.3 Function and Routine Definitions

10.3.1
10,3,2
1 o. 3. 3
10.3,4
10,3.5
10.3.6

Syntax
Semantics. General
Formal Parameters
Free Variables
LH Functions

·Determination of Result Types

CPL Reference Manual Section 10,1 30 Jan 66 PAGE 1

10.1 Introduction. function and Routine Calls

10.1.1 Syntax

<prefixed operator>::= <name>l <<expression>> I m I
<prefixed expression>

<prefixed expression> ::= <prefixed operator>C<expression>1.)

<routine command> ::= <name>l<prefixed expression>

Q:J 10,1,2 Semantics

A function is a representation of a rule for evaluating
function calls, which are forms of expression (see Section
5.3>. A routine is a representation of a rule for obeying
routine calls, which are forms of command (see Section 9,4).

Functions and routines fall into the following
categories:

(a)

(b)

(c)

Programmers' functions and routines:
and routines introduced by an activation
the special forms for definition to be
In Section 10,3,

functions
of one of
described

Basic functions and routines: any of the
functions and routines described in Appendix 3 to
this manual, introduced Into the program by use of
the corresponding name, in a context where it is'
not subject to any definition of that name.
Library functions and routjnes: an implementation
dependent function or routine, introduced by an
undefined occurrence of a name which does not
correspond to any basic function or routine name.
lt is assumed that any published program will be
accompanied by an adequate, possibly informal
account of these functions and routines. In
particular, it must be possible to ascertain the
data type of any expression involving a reference
to such a function or routine.

All functions and routines are regarded
do;a items, of one of the function types
1v,2.2) or of type routine,

directly as
(see Section

A function call is any prefixed-expression in which the
po·dfixed-operator is an expression of one of the function
t. >es, A routine call is a routine command consisting
ei.her of a single name of type routine, or of a
prefixed-expression in which the prefixed-operator is an

0 . .

CPL Reference Manual Section 10,1 30 Jan 66 PAGE 2

expression of type routine. The single name routine call is
interpreted as a call without parameters to the routine
which is the value of the name. Other function and routine
calls indicate an 'actual parameter list', which is the
possibly empty list of expressions which;1 follows the
prefixed-operator, enclosed in square brackets,

To evaluate a function call, or to obey ,~routine call,
the R-value of the function or routine is obtained, by
evaluating the prefixed-operator of the prefixed-expresion
(or the single identifier, in the parameterless routine
call), The rule represented by this R-value is then invoked
using the ordered sequence of data items obtained by
evaluating the actual parameter expressions for the call (in

· L-mode or in R-mode, depending on the mode of call of each
parameter, see Section 10,3,3), In the case of a routine,
this rule determines a sequence of commands to be obeyed.
In the case of a function, the rule determines an evaluation
process, from which a list of results is obtain~d. There
are two forms of this rule; one determines how the
evaluation is to be carried out in L-mode, and·th~ oth~r In
R-mode, The choice between these forms is determined by the
mode of evaluation of the function call as an expression •

•

CPL Reference Manual Section 10.2 30 Jan 66

10.2 Functions and Routines as Qat~ Item~

10.2,1 Syntax

<function type> ::=<single type>1_ functloq

<single type> ::=<data type>l<array type>!

PAGE 1

<function type>! <<single type li$t>)

<single type list> ::=<single type><,<single type>>0

10,2,2 Types

There is just; one type of routine, the type r;oqtin~.
There are an infinite number of types of function, <t<w<o

functions having the same data type if and only if they
produce the same type of result, or produce results which
match in number and <in types<, if they produce more than one
result each.

As data items, those basic and library functions which
are polymorphic as to their results (whose result types
depend on the types of their parameters), are considered as

<functions of result type general, or <eenergl, genergl), or
(general, general, general) etc. depending on the number of
results, Polymorphic functions with varying numbers of
results are not considered as data items, and may only occur
In the position of single name prefixed-operators.

Programmers' functions and routines may not be
polymorphic. The numbers and types of results and
parameters are specified in the special forms for function
and routine definition (see Section 10,3),

The data type of a function is symbolised by preceding
the basic symbol function by the result types in order,
surrounded by parentheses and separated by commas if there
is more than one result. Functions specified as type
function, without any specification of result types, are
assumed to have one result each, of the preferred type. Any
of the data types in the result type list may itself be a
functional type, For example, the following is an
acceptable declaration:

l.!U, f ~ (~, I pdex funct j on, fun et Ion) funct j on

<Values of f within the scope of
functions producing three results
and index-valued function, and a
value of the preferred type.

this definition
ea<;:h; in order,

fun<::tion with

must be
a~,

a single

~­V

CPL Reference Manual Section 10,2 30 Jan 66 PAGE 2

Transfer functions may be defined between those
function types for which there are transfer functions
between result and parameter types. None of these Is
ImplicitlY Invoked in cases of mismatching, e.g., If a
funGtion _is assigned to a function variable of a different
result type.

Note that the type of a function or routine does NOT
dePP,nd on the number, types, or modes of Cqlling. of
parameters, nor on whether the function or routine Is fjx~d
or~ (see Section 10,3,4), '

10.Z.3 Expressjons and Assignments

The R-value of an expression of a function or routine
type is a function or routine which may be applied,
assigned, or used as parameter in a function or routine
call, At any point in a computation, any function or
routine R-value which may arise must have originated In one
of the foll owl ng ways:

(a) as the R-value of a basic or library function or
routine.

(b) as an R-value obtained from a call to a basic or
library function whose result tYPe involves a
function or routine type,

(c) as the initial R-value of a function or routine
irlentlfled defined previously using one of the
special forms of function routine definition to be
described in Section 10,3.

Such an R-value may be assigned to any function or routine
variable for future assignment or application.

The rules for applying R-values of types (a) and (b)
are to be obtained from the specifications of the basic or
library functions or routines involved. The rules for
aPPlYing R-values of type (c) are described in Section 10,3,

In a function or routine assignment, what is assigned
Is a representation of a computational rule; the rule itself
remains unaltered, Thus, If f, g are function identifiers
of the same result type, any sequence

f := g ; b := g(aJ

in a program can be replaced without altering the
interpretation of the program, by the sequence

f : = g ; b : = f[a]

CPL Reference Manual Section 10.2 30 Jan 66 PAGE 3

10,2.4 EqualitY between Functions. Routines (see Note 1)

The only inflxed relational operators between function
expressiqns or between routine expressions are the operators

= 'I

Before definin~ a notion of equality between function
or routine R-values, it will be necessary to define a notion
of EQUIVALENCE between two L-values of the same data type.
This notion, and the notion of equality between function or
routine R-values, will be seen to be interdependent.

Firstly, it should be noted that the only ways in which
L-values may arise are the followin~:

(aa) as constant L-values, i.e., as the L-values of
constant unalterable R-values.

(bb) as the L-values allotted to lo al variables, or
to parameters called h value, or to a ata 1tem
Without an l-value (see Sec 10n 4,2).

(cc) as resu s o
(dd) as results of

functions.

unctions,
to basic or library

There are four corresponding rules to define the
equivalence of two L-values. Two l-values are equivalent If
and onlY if they are of the same data type and satisfy one
of the following conditions:

(aa'> they are both constant L-values, whose R-values
are equal.

(bb') they are both the same
L-value allotted at the same
variable or parameter called
~ valYe tG b-valYe transfer.

L-value,
activation
by value,

i.e., the
to a 1 oca 1
er an

(cc'> they both result from calls to LH functions, and
are compounded from load functions and update
routines which are equal in the sense of this
section.

(dd 1
) one l-value results from a call to a basic or
library function, whose specifications, together
with the rules of this section, imply that it is
identical with the other l-value.

To define equality between two function or
R-values, it is necessary, in the same way, to refer
origins of the two R-values, as analyzed in Section
Two function or routine R-values are equal if and
one of the following conditions hold:

routine
to the
10.2.3.

on 1 y if

(a') they are both R-values of the same basic or
library function or routine.

(b 1
) both R-values originate from the same special

function or routine definition, possibly at
different activatlons, and the l-values of
corresponding free variables are equivalent. (see
Note 2)

CPL Reference Manual Section 10,2 30 Jan 66

(C I)

NOTES

one of the R-values results from
basic o~ library function, whose
together with the rules of this
equality with the other R-value.

PAGE 4

' at call to a
sp'ec If i cations,
septlon, imply

1. This specification is given in its present form with an
eye to compatibility with any extension of CPL Jwhich might
deal with more complicated forms of data structure than are
at present incorporated. These may possibly be viewed as
types of free function, in which case the definition of
equality between such functions is of importance. Until
that time, the feature is of small significance, and deviant
interpretations of this equality notion might not be
disasterous. In particular (b') might be amended to:

(b") both R-values originate from the same activation
of the same special function or routine
definition.

·without the roof caving in.

2. In particular, if the two R-values are fixed, they are
equal if and only If the R-values of all free variables were
equal at deflntion time.

CPL Reference Manual Section 10,3 5 Feb 66 PAGE 1

10,3 Functjon and Routjne Defjnjtjons ...

10.3.1 Syntax

<LH function body> ::=<~<definition>>,-

<function definitior>

~ <block> update <block>

::=<recursive >•-< variable I constant), 1..,

<name>\:<formal parameter list>,_] ~.·
< = 1.:: ><expression list>l·::;

< recursive >.- < variable I constant >,.
< fixed I ~ >1-<'functjon>.<name>
[<forma 1 parameter 1 i st> ,_J ''be
«LH function body>l .

§ < LH function body>~>

<routine definition> : := < recursive >•- < variable I >,_
< fjxed I~ >•- u ~name>
<(<formal parameter list>,.>,_

.b.e. <block>

10.3.2 Semantics. General

Functions and routines may be defined by type, or by
value or by reference, in any of the standard ways described
in Section 7. These forms of definition, however, can only
create a new function or routine R-value by a call for one
of the basic or library functionsi in this case the
computational rule specified by the R-value will be
determined by the specification of the basic or library
function which produces it. Definitions of the special
forms of function and routine definitions whose syntax is
given in Section 10,3,1 can also produce new function or
routine R-values, Each instance of such a definition
characterizes a computational rule, and, when activated,
sets up a function or routine R-value which represents that
rule.

Function and routine definitions have the following
features:

(a) an identifier, the name which is the subject of
the definition.

(b) a list of identifiers and basic symbols, following
(a), enclosed in square brackets, and possibly
emPtYi this is the FOR~1AL PARAMETER LIST for the
function or routine definition.

~ .,;,

""\ .)

CPL Reference Manual Section 10,3 5 Feb 66 PAGE 2

(c) a ,BODY; that part of the definl tion following an
occurence of one of the basic symbols

.!2..e. = =

The remaining parts of function and routipe definitions
have the following significances: ~

' variable signifies that the function or routine is a
variable data item which may subsequently be updated.
Otherwise the data item Is assumed to be constant, with
an unalterable R-value, The latter iS also signified
by using the basic symbol constant In the definition.

fynctjon ••• .!2..e. are used In LH function definitions (see
Section 10,3,5),

routjne ••• .!2..e. are used in routine definitions,

fixed signifies that the LH function or routine is fixed
· (see Section 10,3,4),

~ signifies that the LH function or routine is free (see
Section 10,3,4),

If neither f!li~Q nor .f.r.e.e. occur In a LH function or
routine def in I t ion, i t is assumed to be free if it has any
free variables, and fixed If I t has none.

= signifies an ordinary definition of a fixed function.

= signifies an ordinary - definition of a free function.

For ordinary function definitions, the body of the
definition is an expression list; for routine definitions,
the body is a command (in the form of a block), In these
cases the rule for application of the corresponding function
or routine is that the body of its definition is,
respectively, evaluated or obeyed, special provision being
made for the evaluation of any identifiers which are not
defined within the body (which have FREE occurrences in the
body, not in the scope of any definition of the identifier
concerned within the body), These identifiers are either
FORMAL PARAMETERS i.e., those identifiers whose names appear
In the formal parameter list of the definition, or FREE
VARIABLES i.e., any other identifiers having free
occurrences within the body.

CPL Reference Manual Section 10.3 5 Feb 66 PAGE 3

10.3.3 Formal Parameters

The identifiers in the formal parameter list are
alloted a data type and mode of calling, by use of the basic
symbols value and reference, and the data type specifiers
described in Section 7.1. The type and mode of calling of
any identifier are given by the nearest preceding type
speclfier and mode specifier (value or reference) in this
list. Value signifies that the parameter· is CALLED BY
VALUE; reference signifies that it is CALLED BY REFERENCE.
If there is no preceding type specifier in the list, the
type of a parameter is taken to be the preferred type. If
there is no preceding mode specifier, the mode is by value.

Before applying a function or routine definition, the
formal parameters are provided with L-values, which bear the
following relation to the corresponding actual parameters.
If the parameter is called by value, Its L-value is taken as
a fresh l-value, with an initial R-value given by the
R-value of the corresponding actual parameter expression.
If the parameter is called by reference, it is given the
L-value of the corresponding actual parameter expression in
the call. (Note the similarity between parameters called by
value and local variables defined using =, and between
parameters called by reference and local variables defined
by !:):! •)

Unless the prefix operator in the function or routine
call is a name standing by itself, and occurs as the subject
of a special function or routine definition with the
attribute constant, the type of each actual parameter
exression must be the same as that specified for the
corresponding formal parameter in the formal parameter list.
In the exceptional case, transfer functions are implicitly
invoked where necessary (see Section 5.3.2).

Function and routine calls must result in the same
number of actual parameter values as there are formal
parameters in the formal parameter list.

10.3.4 Free Variables

The treatment of free variables depends on whether the
function or routine is fixed or free. If it is free, the
L-values of the free variables are taken to be precisely the
L-values of these identifiers at the moment of activation of
the definition. If the function or routine is fixed, the
free variables are provided, at definition time, with
L-values, whose R-values are constant, and are the R-values
of those identifiers at definition time. If any free
variable in the body of a fixed function or routine Is a
free array, the constant R-value is taken to be that of a
fixed copy of the array, the elements of which are

CPL Reference Manual Section 10.3 5 Feb 66 PAGE 4

unalterable:(see Section 11.1.2). Fixed fpnctions and
routines may not nave free variables which are.: either free
functions or free routines or labels. l~ithin Uihe bodies of
fixed functions and routines, no assignments mt~ be made to
free variables, or to elements of free variabl,~iarrays.

10.3.5 LH Functions

In the normal course of events, L-values are disjoint;
that is to say, any assignment to one L-value does not
affect the R-value associated with any other L-value. This
is because L-values are ordinarily created either by
activating a definition by type, or definition by=, or at a
function or routine call, as the L-value of a parameter
called by value, in which case the new L-value is always
chosen to be disjoint from all previously created L-values.

In general, however, it is not adequate that any two
L-values ae either identical, or disjoint; it is desirable
to have ways of creating new L-values, which may SHARE with
previously created L-values In arbitrarily complex ways.
These are provided by calls to LH functions, and by the
special forms for definition provided by LH function
definitions.

An L-value may be compounded from two data items of the
fo 11 owing sorts:

(a) a parameterless function, of type T1 function, for
some data type specifier T,; this produces an
associated R-value, of data type T,, when
evaluated in R-mode; this is called the LOAD
FUNCTION.

(b) a routine with one parameter called by value, of
type T1 , this is known as the UPDATE ROUTINE, and,
when called, it has the effect of changing the
associated R-value to be the R-value of Its actual
parameter expression.

The result of a call to an LH function is
compounded in this way from a function, defined
following the basic symbol~. and a routine
the block following the basic symbol update.

To be more precise, where the LH function
reads:

• • o .J.Q..Q..Q. C 1 U pd a t e C!l. • • • •

an L-value
by the block
defined by

definition

C1 , C~, standing for blocks, the L-value produced by a
to that LH function is compounded from the function f
would be defined by:

ea 11
which

CPL Reference Manual Section 10,3 5 Feb 66 PAGE 5

.ltl f c:J .::. v a 1 u e .Q.f. C 1

and the routine R, which would be defined by:

.ltl routine R[T,x] ~ Ca

in place of that part of the body of the LH function
definition.' c.'! here is obtained by substituting x for the
basic symbol J:.b.s. at all its occurrences in Ca (outside any
nested LH function definition), and T, is the result type of
f.

The definition following the basic symbol fjx, if it
occurs,. is activated when the LH function call is evaluated,
and has as its scope the remainder of the body. Its purpose
is to make it possible to ensure that the L-value concerned
(but not, of course, its associated R-value) is not altered
by the side effects of other assignment statements between
its evaluation at the application of the LH function and its
possibly subsequent use to find the R-value or to update the
L-value.

LH functions may only be
result type of f as defined above
type, and not a data type list.

single-valued; i.e.,
must be a single

the
data

The result of evaluating a call to
R-mode is otalned by evaluating the call
calling the load function to obtain the
R-value,

a LH function in
in L-mode, and then
current associated

10,3,6 Qeterminatjon of Result Types

The data types
function definitions
the following ways:

of functions introduced by special
Is determined from the definitions In

(a) Non-recursive ordinary functions
The result type list for a non-recursive ordinary

function definition is the ordered 1 ist of types of
constituents of the expression list on the right hand side
of the =or.::. sign •. The same rules apply for the types of
numerical constants as in simple definitions using = (see
Section 7,4,3),

(b) Non-recursive LH functions
Each result type list consists of a single tYpe.

the body of the LH function definition reads:

••• lQad c, update c4 ..•

I~ hen

with C1, C4 blocks, the type of the LH function is identical
with that of the function defined by:

CPL Reference Manual Section 10,3 5 Feb 66 PAGE 6

~ f[J = yalue Q£ C1

The type of .r.b.:;. in C1 is taken as the result type of the
function as determined in the above manner.

(c) Recursive functions
The result type list for a recursive function, or set

of mutually recursive functions cannot necessarily be
determined directly from (a) or (b) above, since the type of
a defining expression may depend on one of the types to be
determined. In this case, the result types are defined as
follows:

Given any recursive set of definitions, an assignment
of data types to the definitions is CONSISTENT if, assuming
those data types on the right-hand side of definitions in
the set, the data types for the definitions obtained by
following (a), (b) above and the rule of Section 4 are
transferable without loss of information to the assumed
types. That is to say, corresponding data types that are
not functional are directly transferable according to the
rules of Section 3,3, and result type lists for functional
data types have corresponding components that are also
transferable without loss of information in this sense. If,
for each definition of the set, there exists a data type
which is transferable without loss of information to each
data type corresponding to that definition in any consistent
assignment of data types to the set, then that is taken as
the data type for that definition, provided that in this
manner a consistent assignment of data type is obtained. If
no unique consistent assignment can be obtained in this way,
the data types are implementation dependent.

/

CPL Reference Manual Section 11,0 22 Feb 66 PAGE 1

11 ARRAYS

11,1 Subscripted Expressions. Arrays as Data Items

11.1.1
11.1.2

Syntax
Semantics

11,2 Basic Functions for Arrays

11.2.1
11,2.2

Array-creating Functions
Other Functions

CPL Reference Manual Section 11,1 12 Feb 66 PAGE 1

11.1 Subscrjpted Expressjons. Arrays as Data Items

11.1.1 Syntax

<prefixed operator>::= <name> I (<expression>) I
(prefixed expression>

<prefixed expression> ::=<prefixed operator>[<expression> 1_]

<array type> ::=<single type> 1.<number> array
<single type) 1• yector I
<single type> 1• matrjx

11.1,2 Semantics

An array is a particular sort of function, of one jndex
parameter (by value) defined on just one closed segment of
possible parameters. The free variables of an array are in
one-to-one correspondence with the set of possible parameter
values, and have mutually disjoint L-values; the result of
evaluating a call to an array is that free variable which
corresponds to the value of the parameter.

Arrays may be either free or fixed.
An R-value of one of the array-types is a

representation of an array. The different possible
array-types correspond to the different result types of the
array, considered as a function, in the following manner:

If T 1 is a single-type, an R·value of type T1 1 array
or T, vector represents an array of result type T1 • If T,
is omitted, the result type is taken as the preferred type.
The remaining result types may be deduced from the following
synonymies:

matrix, 2 array are synonymous with 1 array 1 array
3 array is synonymous with 1 array 1 array 1 array

and so on. For example, a ~ 4 array R·value represents
an array with result type ~ 1 array 1 array 1 array,
i.e., with result type~ 3 array,

A subscripted expression is any prefixed-expression in
which the prefixed-operator expression is of an array-type,
If A1 is an expression of some array-type, and E1 , ••• ,E~ are
expressions, then ·

A I [E,' E)J ••• ,E.,]

is synonymous with

CPL Reference Manual Section 11.1 12 Feb 66 PAGE 2

The expressions separated by commas are the subscripts .of
the subscripted expression. A subscripted expression with
just one subscript is evaluated In the same way as a
function call (see Section 10). If there is more than one
subscript, the expression is evaluated In accordance with
the reduction to the one subscript case given above.

If the subscript value is outside the range of
permitted values, the result is undefined.

The semantics of array expressions, assignments, etc.,
may be obtained by reference to the corresponding properties·
for functions (see Section 10,2.3, 10.2,4).

In particular, note the following points:

(a) No automatic copying of arrays is done on assignment.
For example, after obeying

A, := B1 ; B,[t) := B,(i) + 1
A1 [i] will have been altered,

(b) Note particularly that equality between arrays is
defined in a very strong sense, which, for numerical vectors
and matrices, does not coincide with ordinary mathematical
usage. Two free arrays are equal only if their free
variables have the same L-values; that is to say, only if
both have been obtained by sequences of assignments of the
same array (only if both are the same array, In every
sense). For equality in the mathematical sense between f.ree
arrays, the Boolean function Equal must be used (see
Appendix 3). Note that two fixed arrays are equal if they
are equal in the weak mathematical sense.

There are no special forms available for
of arrays, nor are there transfer functions
types to array types. The only ways in which
created are as the results of calls to
functions (see Section 11.2.1).

the definition
from function
arrays may be
certain basic

N.B. (a) and (b) above will be seen to be intuitively
acceptable if an array is conceived of, not as
configuration of its elements, but as a POINTER to
configuration. Assignment and equality apply to
pointers rather than to the totalities of elements.

more
the

this
these

CPL Reference Manual Section 11,2 12 Feb 66 PAGE 1

11,2 Basic Functions for Arrays.

11.2,1 Array-Creating Eunctjons

(a) Newarray
A call has the form

Newarray[T,, E,}

where E1 is an expression 1 Jst, and T 1 is a data-type
specifier, The function is VARIADIC; that is, it may be
called with varying numbers of parameters, On evaluation E,
produces 2n R-values, A1,B,, ••• ,An,B~ of type index. The D value of the call is then a new array of type

T1 n array

the L-values in which are disjoint from existing L-values,
The values A,,s,, ••• ,A~,Bn determine subscript bounds; after
the assignment

N1 := Newarray [T1 ,E,]

the expression

Is a subscripted expression all of whose subscripts are
within bounds if and only if

A~ i. Xj i B i. for 1 i

where each X0 Is the R-value of Et.
i. n

(N,B. Arrays need not be rectangular, although arrays
directly produced by Newarray are,)

(b) Eormarray:
A call has the form

Eormarray (T1 , E
1

]

with T,,E 1 as in (a), With the notation of (a), the value
of the call is a function of type

"1\
~ n array function

taking.lT (Bt -A~+ 1) arguments of type T1 , which, at each
"=:f

call forms a new array; the R-values of
for the call will be the R-values of

actual parameters
elements of the

CPL Reference Manual Section 11.2 12 Feb 66 PAGE 2

resulting array arranged in lexicographic order with respect
to subscripts. For example, after obeying

N 1 := Formarray [~,(1,2),(1,2),(1,2))[<<<E .,.,E ,..,),
(E I J,; I , E)) , ((E 1.1 I I E ']..I 4) , (El. J,; I , E "1.1.1)) >1

each N1 (i,J,k] has the R-value of E~k· for l,j,k = 1 or 2,

(Note the use of cosmetic parenthesis in the
these could be omitted without altering the
command,)

above
effect

example;
of the

(c) Copy
The value of Copy[E,], with E 1 an expression of

array-type, Is a new free array of the same type, the
spectrum of legitimate subscript sequences, and the
R-values for corresponding elements as the value of
Elements which are arrays are copied.

some
same
same

E I •

(d) Fix .
The value of Fix[E 1] is a fixed array of the same type

as E1, the same spectrum of subscripts, and the same
R-values for corresponding elements. E1 may be an
expression of any array type, except for label n array, (any
n). The effect of Fix applied to an array containing a free
function or routine is undefined,

11.2.2 Other Functions

(a) Bounds
A function of type (jndex, jndex) function; taking one

parameter of any array-type. The two values are, in order,
the lower and upper bounds for single subscripts of the
array (considered as a vector of subarrays).

(b) Equal
A function of type boolean function; taking two

parameters of array-types. The value is~ if and only if
the two arrays are of the same type, have the same spectra
of subscript sequences, and equal R-values in corresponding
elements.

(N,B, Equal [N., Copy [N,]] always has the value
N1 = Copy [N 1] always has the value false, unless
null array,)

.t..r.Y.l:l.' b u t
N is a I

CP.IJ Reference Manual (Draft) Appendix 1

Appendix 1 The Preprocessor

Part 1 General Description

This is intended to be both a description of the transformation
from an implementation alphabet to canonical CPL and a general example
of a CPL program. The transformation is written in CPL and appears
in Part 2; Part 3 then describes the functions and routines which are
used but not declared in Part 2.

The routine Preprocessor uses recursion to model the bracketing
structure of the source test; each level of recursion corresponds to
a level of brackets. Its actual parameters are the Bracket type
(e.g. § ([-), the section bracket tag if the bracket type is ~
and a label to return to if a closing section bracket is found with
a tag which does not match with the current section. It is thus easy
to write the preprocessor rule concerned with the insertion of closing
section brackets.

The removal of comment is done by the input routine NextChar and
since comment is introduced by the pair of symbols I I this routine
requires a single character buffer which is called InputBuffer. The
end of the source stream is recognised by a special end of stream
character.

Host of the preprocessor rules are performed by the output routine
Output. This routine mal,es use of the boolean variables TerminatorPending
and TerminatorSuppressed to control the insertion or deletion of the
command separator ';' • TerminatorSuppressed is true if the most recent
symbol processed other than ';'and 'Newline' was the symbol c.
TerminatorPending is true if a Newline or ';' has been read since the
last canonical CPL symbol was output. The rule for insertion of
terminators can most clearly be expressed as follows: a terminator is
inserted between two canonical CPL symbols if a terminator is pending
and not suppressed by c and if the first symbol can end a command and
the second can start a-command. It should be noted that all symbols
which may end a declaration may also end a command. The last canonical
CPL symbol output is always held in the string variable LastOutput. The
rules for the insertion of ~ and the recognition of pos and neg are
also incorporated in Output.

The working variable c, is used by Preprocessor and always contains
the latest character produced by NextChar. Preprocessor is always
called with c set to the next character. The routines ReadTag
ReadUnderlinedWord and ReadSpaces all leave c correctly set,

CPL Reference Manual (Draft) Appendix 1 Page 2

Part 2 The Preprocessor Program

let c, s, s' ~be string

let La.stOutput, InputBuffer both :: '' 11 i.e. the empty string

~ TerminatorPending, TerminatorSuppressed = ~. true

~ ~ NextChar [~s:tr~~~·n~g~r=e=f~c:]_:b:e ____________________ _

§N.ch c (JrnputBuffer

·. Readchar [CPL.Source , InputBuffer]

If c = ' I 1 = InputBuffer do
-§until c = ••n• do Readchar [CPL.Source,c]

Readehar [CPL.SOilrce, InputBuffer] tN.ch

~ rt Output [string x] ~

~o. p if x = ':£ • do ~ TerminatorSuppressed

return '

if Terminator Pending A "' TerminatorSuppressed 1\
- CanEndCommand [LastOutput] ACanStartCommand [x) do

§ Write ['; ,!•]
· LastOutput : = 1 ; 1 ll;

TerminatorPending, TerminatorSuppressed both : = false
x : = MonadicTransformation [La.stOutput;-xr-

if MustStartCommand
- ~ ~

Write [x <=> 'P']
La.stOutput : = x

[x) A CannotProceedCommand
Write ['do ,!•]
LastOutput: = 'do • ~

~O.p

[LastOutput]

~ ~ ReadTag [string ~ s] be

~R.T

§

S • - lt . -
NextChar (c]
unless Letter.Digit.Dot [c] break
s : = 6 <=> c t repeat

until c I'*''~ § 6 : = 6 <=> c
NextChar [c] ~R.T.

I
l

CPL Reference Manual (Draft) Appendix·1 Page 3

let rt ReadUnderlinedWord [string ~ s] be
- fR.u.w s : = c

while UnderlinedLetter [c] do
- § s : = ,ff- s <=> lmAll .• UnderlinedLetter[c]

NextChar [c] }R.u.w.

!!!.t ti ReadSpaees [string ~ c] !?.!,

§R.S. ~ NextChar [c]
.!!. c ,l ••s• return ~ repeat ~R.S

!!!.t !:!£. ti Preprocessor [string BracketType, BracketTag,
~ MismatchReturn] !?.!,

Switch :

case'§'

Jump.!!!: c ~
: ReadTag [s]

Output [1 § ']
Proprocessor [' § ',
goto Switch

s, Mismatch]

~ ·~·: ReadTag [s]
if BracketType ,l ' §' do Report [1]

case - ' . ' . , .

~ t(l:

Error :

~ •)•

case •]• -

Output [' * 1
] -

!£ BracketTag ,l s goto MismatchReturn
return

case '*n •
Terminator Pending
NextChar [c]

=true

goto Switch

case 1[' : case 1-'

Output [c] ;--6 : = c
NextChar [c]

-

Preprocessor [s, ''• Error]
go to . Switch

unless BracketType = '(1 do Report [2]
OutpU.t [c] ; NextChar [eT
return

¥nless BracketType = '[' 92 Report [3]
Output [c) ; NextChar [c]
return

if BracketType = •-• do
- § Output r'~•] ; NextChar [c]

[c)
get S: . I ;I! ~ 'Rt"T... I

ReadS paces
unless c = '.' .!!2 § Output [', •]

goto Switch
; NextChar

t
[c)

\

CPL Reference M!ulual (Draft) Appendix 1 Page4

~ :

case '<' : -

~ •:•

NextChar [c]
if Digit [c] do
- ~Dgt Output [•, 1]

f3: = •.•
while Digit [c] 2£ §

Output [•~• <=> s]
goto Switch *Dgt

s : = s<=> c
NextChar [c] ~

if c = ••s• do ReadSpaces (c]
if cf. '•' do Report (4]
While c = • • .-do ReadSpaces [c]
unless c = •,•~o Report [5]
Output [•dot string•] ; NextChar
goto Switch

s : = t t

NextChar [c]
until c = •Jt" do

[c)

§1 teat EscapeCharacter [c]
-thendo § NextChar [c]

a : =S<=> SpecialChar [c] ~
or do a : = s <=> c

NextChar [c] §1
Output [')I' <=> a] ; NextChar [c]
goto Switch

NextChar [c]
g c = 1<' do ~ Output [•«•]

goto Switch
if c = '=' do

NextChar [c]

§ Nextc:iiar [c]
g c = '>' 2£ i
Report

Output [•<•]
goto Switch

NextChar [c]

[6]

~

Output [•< = >']
goto Switch * NextChar(c]

g c = '>' 2£ §

Output ['>']
gotoSwitch

Output ['>> '] ;
goto '*-lt ~

NextChar [c] ·· /
S'<i(i..J.

NextChar (c]
g c = '=' do ~

Output [•:•]
goto Switch

Output [':=•]
goto switch

; NextChar [c]

~

CPL Reference Manual (Draft) Appendix 1 Page 5

the rest : --

I I NextChar [c]
goto Switch

if BigLetter [c] do
- § s :-;; c

ReadTag [s 1]

Output [I,..(I

~Switch
if SmallLetter [c] do
- j s:=c-

<=>a<=> a']

*
NextChar [c]
~c='*''do§ s:=s<=>c

NeXtChar [c)
Output [•.>< 1

goto Switch

if Digit.Dot [c] do

<=> s]

t
-.§a:=''-
~ Digit.Dot [c] £2 § a : = s <=> e

NextChar [c] ~
Output [1 JlC • <=> s]
go to Switch I§

if UnderlinedLetter [c] do
- § 1 ReadUnderlinedWord [s]

a : = Standard [a]
while Combinable [s] do
- §2 if c = 1*s 1 do ReadSpaces [c]

unless UnderlinedLetter [c] do
~ Output [s] -

go~o Switch ~
ReadUnderlinedWor 1]

8 1 : = Standard [s 1]

test Standardizable [s <=> a•]
--"tiiendo a : = standard [s <=> s 1 :

~ § Output [a]
s : = s'

Output [a]
goto Switch

'2
if c = Endof StreamChar do

§ unless BracketType =
return

Output [c]
NextChar [c]
goto Switch .P.P

1 StreamS tart 1 do.
Report [7]

CPL Reference Manual (Draft) Appendix 1

lt Main program
LastOutput, InputBuffer both:= ''
NextChar [c] ; NextChar [;:;;-

Page six

Preprocessor ['StreamS tart' , ' ', Error] Error finish

Part 3 Additional definitions.

A number of identifiers in Part 2 were left undefined; these
are defined informally in this section.

a) The boolean function CanfudCommand [string LaatOutput]
is ~ if LaatOutput is any of the fo}lowing:­

Number, Name, StringConstant ']) :
repeat break return rhs finish
index integer·; ~ etc.

b) The boo lean function Ca:riStartCommand [string x]
is ~ if x is any of the following

Number, Name, StringConstant
pos, neg, + - (§
if unless while until test for forext
break finish returnresi:iltis valof refof goto

c) CannotPreeeedCommand [string LaatOutput] is true if
LaatOutput is any of the following:-

;§ do:or

d) MustStartCommand [string x] is true if x is any of the
following:-

if unless while until test
for forext z:etilrn ~eak-rinish
resul tis go to --

e) The string function MonadicTransformation [stringLastOutput, x]
is used to recognise when + and - are monadic; if x is not + or - then
the result is x, if LaatOutput is not any of the following:-

number, name,] , f •)
and x is + or - then the result is pos or neg respectively.

f) Standard [string x)
is allbe

· be
'Const
do
forext
g£
or
reo
ref
refof
result is

is a string
if xis

function whose result
are or bothbe
is
constant
then thendo ~
:r;;r;xternal
go to
~ else otherwise
recursive
reference
referenceof
result be

CPL Reference Manual (Draft)

rt
to
val
valof -

otherwise the result is x

Appendix 1

routine
thru
Value
ValUe of

g) Combinable [stri& x] is !:!:!!! if x is
all d do double for
.52 long-or !:.!!! -
result repeat ~

Page seven

h) Standardizable [stri& x] is !:!:!!! if
the result of Standard [x] is an underlined word in the basic
symbol set of canonical CPL.

i) Letter.Digit.Dot [string c] is ~ if c is a
letter or a digit or a dot.

j) Digit.Dot [string c] is !:!:!!! if c is either a
digit or a dot.

t/

the

k) Digit (string c] is !:!:!!! i4 c is a digit.

l) EscapeCharacter [string c] is ~ if c is
escapecharacter for strings.

tl
t/

m) SpecialChar [string c] transforms the special
character which occurs after the escape character in strings
to the string character it represents.

e.g. the result is the character 'Newline' if c is n
'Backspace• b
'Erase' e

etc.

The switoh-oommand

Syntax

<switch command> : := ,..swi::.::.:t:.::c?h on <expression> into
- - -<block> ~·

<label> : := <identifier> : I ~ <constant> f I default :

The synonyms for switch on are :­
caseswitch and jumpon

and for default are :-
the rest and others

Semantics

The switch-command is a convenient way of controlling a multiway
decision in CPL; it is designed as an extension to the test-command
which switches to one of two alternatives depending on the value of a
boolean expression.

The type of the switch is the type of its controlling expression
and this may be string or any of the numerical or logical types. A
case-label is said to belong to the smallest enclosing lexicographic
switch-command and its constant is transformed to the type of this
switch-command.

To execute a switch-command first the controlling expression is
• evaluated in R mode and then execution is resumed at the case-label
which belongs to the switch-command and whose constant equals this
value, or if no matching case exists execution continues at the command
labelled default: • The constants of two case-labels belonging to the
same switch-command may not be equal.

; ... v.--c e-("a>n.t
,... 1. 1r

' ·~
- -11... ~si

t

t
r
'

List of Changes Foreseen in CPL

A. Alterations

1, Scope of where-clauses

This is somewhat confusing and unsatisfactory at present,
We shall probably distinguish between an "expression-where" and
a "command-where" (which probably includes a "definition-where")
by some syntactic device similar to that which picks out the
conditional commas and replaces them at the preprocessor stage
by comma.

2, result is, return and break

"Detached" uses of these will be allowed with a scope which
is lexicographically determined. These co~respond, inter alia, to
Landin's "program points".

3. finish

This exists only in the Elementary Manual.
extended and generalised,

B. Additions

1. Character

Its use will be

We hope to introduce a type character into the language.

2. Switch-commands

The switch-command described on p,8 of Appendix 1 will be
added.

3. Table look-up

Commands for Table look-up seem to be desirable. These rna:y
prove to be part of the operations on sets (see next section).

C. Extensions

1. Compound Data Structures

The entire area of Compound Data Structures and relaterl
concepts needs to be added to CPL. This will involve a considerable
extension of the concept of type, An outline scheme is already
under consideration, but much more work is needed before it can be
regarded as good enough for incorporation in the language,

2. Segmentation

Methods for segmenting large programs, compiling and testing
the segments separately and finally combining them into a larger

·program are essential to the practical utility of any pl'ogramming
language. We hope to be able to include these facilities in GPL
by a natural extension of the language rather than an ad hoc device.

Sets -
It may be possible and desirable to introduce the concept

of a set (an unordered collection of identifiable objects) and to
provide certain operations on them. (For example a table look-up
is very close to a function whose domain is the member of a set),

	SMonmouth1607211044015
	SMonmouth1607201336014
	SMonmouth1607201336013
	SMonmouth1607201336012
	SMonmouth1607201336011
	SMonmouth1607201336010
	SMonmouth160720133609
	SMonmouth160720133608
	SMonmouth160720133607
	SMonmouth160720133606
	SMonmouth160720133605
	SMonmouth160720133604
	SMonmouth160720133603
	SMonmouth160720133602
	SMonmouth160720133601
	SMonmouth160721104400

