THE AXIOMATIC METHOD

Program Execution

. AR Hearz

Summary.

This paper illustrates the manner in which the
axipmatic method may be applied to the rigorous definition
of a programming language. It deals with the dynemie
aspects of the behaviour of a program, which is an aspect
considered to be most far removed from treditional
- mathematics. However, it appears that the axiomatic
method not only shows how programming is closely related
to traditional branches of logic and mathematics, but
also formelises the techniques which may be used to
prove the correctness of a program over ite intended
area of application.

/1. Introduction.

Any successful description of a programming language must obviously
provide & technique for discovering the meaning of all programs expressed in that
language., The meaning of a program may be defined by specifying the effect of
executing the program in every possible enviromment in which it can be run.

Thus it appears necessary to give a comprehensive description of every possible
‘environment (machine state), and then -to . givé* e method ‘' +* for working out
the comprehensive description of the enviromment that results from executing

& given program. The main objections to this technigue are as follows:

(1) The environment is ususlly so large and complex, and the algorithm
so time consuming, thet the only practicel way of finding the meaning of the
progrem is by running it on a computer. Even this is impractical if we wish to
examine the effect of the program in every possible enviromment: or worse, if we
heve doubts about the accuracy of the implementation.

(2} Unless the programming language is inordinately complicated, it
seems that a program itself is much more concise and comprehensibe description
of a transformetion on an enviromment than the equivalent treatment embodied
in the language definition. :

(3) The method does not help in the formulation of proofs that a
program will perform correctly in any of the circumstances in which it may be
applied.

In this paper, we take a slightly different and possibly more fruitful
approach to programming languasge definition. We do not insist on any complete

‘environmental description either at the beginning or the end of progrem execution, or

at any intermediate stage; rather we permit the programmer himself to describe
cnly those features of the enviromment which he considers relevant for the
successful use of his program. In other words, he will make certain quite general
statements about those properties and relationships hclding between the values
of variebles at the time at which the program is invoked; and he will define
the purpose of the program by making other general statements about the environment
which will result on completion of the program. A person may be regarded as
having a "reading" understanding of a programming languege if he is able to check
whether the result of executing any program of the language will in fact satisfy
the claims made by the progremmer whenever it is applied in an environment for
which the declared preconditions hold. This may be done either by constructing
or by checking a proof that this is the ®mse. A person may be regarded as having
a "writing" knowledge of the language if he is in general capable of considering
the desired properties of the result of executing & program, and constructing a

" progrem which can be proved to have the desired result, subject, if necessary, to
stated preconditions. If this approach is taken, the meaning of a programming
language can be fully specified by describing a method of checking proofs that

an arbitrary progrem written in languape satisfies a given set of design
objectives,

This approach appears to avoid the drawbacks associated with previous
methods. It also appears to offer the promise of eliminating the expense of
traditional program testing and the danger of using incorrect progrems. Thus it
mey represent the same magnitude of advance in Computer Science as the axicmetic

- geometry of Euclid compared with the crude land-measurement of the ancient Egyptians.

2. Basic Features. ‘ .

In order to describe the preconditions and results of successful use of
a program, we will adopt the normal notational conventions of propositional and
predicate logic. To express a program, we will use mainly the notations of

ALGOL 60. Bit ©r the assertion of a relationship between the two, it will be necessary

to introduce a new and unfamiliar notation: P{Q}R, where P and R are assertions
and Q is a part of a program, will assert that if precondition P is true when §
is initiated, the statement R will be true on successful terminetion of Q.

if this assertion can be proved as a theorem from the axioms, we wfitef*P{Q}R.

Most of the formnl material in the following sections takes the form
of rules of inference rather than axioms. The ma;orlty of pure axioms relate
to the non=dynamic properties of the 51mple operations and operands of the
language, and have been treated in a previous paper.,

The following rules of inference are obv1ous extenslons of the rule
of deduction:

1. If PP and P{QIR then P {QIR
2. If RoR and P{QJR then P{QIR’
Furthermore, the following rule is intuitively appealing and useful:

3. If P{Q}R and P’ {QIR’ then PP {Q} RaR.

2.1 Assignment.

Aspignment is undoubtedly the most characteristic feature of propramming,
and that which distinguishes it most clearly from more traditionally "timeless"
brenches of mathematics. However, Floyd has shown how it can be treated in a
completely static fashion, by a simple logical technique of substitution of
free variables. This "frecezing" of time-dependent phenomena enables more
poverful logical and methematical techniques to be applied, in the seme way as the
realisation that a function of time could be regarded as a static completed
entity makes it possible to deal with integral equations and boundary problems,
in a manner which would be inconceivable to those who regard such a function
as definable only in & step*by*step fashion, .

Consider the assignment statement x:=f, ' S . -

where x is & simple variable identifier

and f is an expression, possibly containing x.

Suppose that an assertion P is true before the assignment is executed; we are -
interested in fipnding the strongest statement P' which is true after execution
of the assignment. Obviously, if the variable x does not occur at all in the
statement P or in the expression f, it is valid to state that

P{x:=f}x=FfAP

If the variable x appears (free) in P but not in £, we can remove the possibility
of such free occurrences by prefixing P by the exlstentlal quantifier (5x).
Since P23xP is a theorem we can state

PpIaPf {x:=f} x=fa1x.P

Finally, if x occurs free in f (as in the assignment x:=x+1) we can perform the
aspigmment in two stages e.g., t:=f ; x:=t, where t is an arbitrary variable
vhich does not occur in f or P. '
Consequently, as we have seen above,

P{t:=f} t =f AP (1)
and therefore for the second assigrment we get

t=f AP{x:=t} x=tAd x, tZhP | | (2)
But it is o theorem of predicate calculus thet ’

x=taJx.t=fAP 3 3 x_(x=f AP) S (3)

vhere f_ and P are like f end P except that they contain

free occurrences of x wherever the latter
contain free occurrenfes of x.

Combining the results (1), (2), (3), it beccmes obvious that
/P{x:=f}3 xo(x=fon Po) : |
This statement avoids the awkwardness of introducing the fresh unbound variable t on

every assigmment, and Floyd has proved that it is the strongest summary of
/ the effects of an assignment statement that can be given.

In order to ihcorpordte this discovery into a formal axiom, it is necessary
to adopt the technique of postulating an infinite set of axioms, each of which
exhibits the appropriate form. So we obtain

1. +P{x:=f)3 xo(x=f0APo) (Axiom of Assignment)

where x is a variable
. 4
X, is a varieble not free in f or P
f is an expression

£ is obtained from f by substituting X for free
occurrences of x

P is cbteined from P by substituting X for free
cceurrences of x. '

2.2 Composition.

A program normally consists of a sequence of statements which are executed
one after the other in the stated sequence. The notation {Q:;Q') is used here to
indicate & program or portion of program which specifies the execution of Q
followed by the execution of Q'. If Q and Q' were functions, (Q;Q') would be
known as their functional composition; and in fact it obviously satisfies the
same associativity principle, in that the effect of the program (Q;Q'):Q" must
always be identical to that of Q;{Q";Q"). This is the justification for removing
the brackets around pairs of stetements in a language like ALGOL 60,

The rule of inference associated with composition is rather obvious
and has slready been used in the informal reasoning of the previous section.
If it can be proved that P' is true on completion of Q, end whenever P' is true
on initiation of Q' we can prove that P" is true on its termination, then we
can assert categoricelly that P" will always be true after executing (Q;Q).
In more formal terms:

2. FIf P{Q}P' and FP'{Q'}P" then »P{Q;Q*'}P"
{rule of composition).

2.3 Conditionals.

A fundamental feature of computers is their ebility to decide on a course
of action in accordance with the truth or falsity of & condition. In machine code
and in primitive programming lenguages, such & test is normally associated with a
"Jjump" instruction; but in more advanced programming languages, the programmer is
invited to specify =& pair of (possibly compound) statements, say Q and Qf, only
one of which is ever executed. The selection is made in accordance with the
truth or falsity of a proposition B. In the construction:

if B then Q else QF

the st stment Q is initieted whenever B is true and the statement Q' whenever B is
false. Since we do not normally know the value of B until the program is under
execution it is obvious that any assertion made about the consequences of executing
the whole conditional must be true no matter which of the limbs has been selected.
The strongest assertion vhich has this property is the logical disjunction of the
two essertions R end R' which can be shown to be true when the limb Q end the limb Q'
are selected. Thus we have the following rule of inference:

3. If FPAB{QJR andtP~-B{Q']IR’
| thentP{if B then Q else Q'J}RvR'
In most languages which permit & sophisticated conditional construction, an
option is givem to the programmer to omit the second alternative after {and inmcluding)

the elge; in which case, when the condition is false, no action tekes place. The
omitted else clause may be regarded as a definitional abbreviation of "else null",

-l -

jnere null is & null,sﬁatement, performing no action. In other words, any
‘f§r0position which is true before executing a null statement remains true
after its execution. This simple rule may be embodied in the axiom scheme:

L, ¢P{null}p"

2.4 Loops.

The essential feature of a stored program computer, -~ indeed the only
feature which mekes it worth while to store the progrem at all, - is its
capability of executing the same section of progrem repeatedly. A section of
program capable of repeated execution is known as a loop. Two parts of a loop
can be distinguished:

1. A contimuation condition B: if this is true cn initiation of
any repetition of the loop, the execution of the loop comtinues; whereas if it
is false, the loop terminates immediately.

2. A statement S; this forms the body of the loop, and is executed
none or more times in accordance with the status of the condition B.
The simplest notation for a loop incorporating these two parts is:

while B do S

Every other form of loop, DO statement, for statement can be ultimately defined
in terms of this simple construction.

The loop is the first programming feature for which the construction of
proofs of program characteristics is non-trivial. In fact, it demands that one
find some proposition P whose truth can never be affected by execution of the body
of the loop 8. Then obviously, the truth of P will not be affected, no matter
how many times S5 is executed; and if it is true before the loop starts, it will
still be true when the loop terminates. Furthermore, at that stage it is known
that B is false. These considerations lead to the following slightly more accurate
formulation: :

5. If FPAB{S}P then kP{while B do S} —BaP

2.5 Declarations and blocks.

Most modern programming languages permit the programmer to mske an
arbitrary choice of identifier: for his varisbles. These identifiers are usually
regarded as "local" to some part of the program (block, procedure, subroutine);
and if the same identifier is introduced in an entirely disjoint portion
of the progran, it is regarded as in fact a different variable. The arbitrary
nature of the choice of a variable identifier is illustreted by the fact that
the identifier may be replaced systematically throughcut the relevant portion ‘
of program by some other suitably chosen variasble name, without making any difference
wvhatsoever to the meaning of the program.

In & languege such as ALGOL 60 or PL/I, which allows the nesting of
the scopes of declared variables, the rules for arbitrary substitution are slightly
more elaborate; since a distinction must be made between "free” and "bound”
occurrences of the same identifier. If a declaration (implicit or explicit) is
regarded as a form of "quantifying"” or "binding" occurrence of the declared
identifier, these rules ore exactly the same as those which govern the substitution
of variables in logic. This appeal to & familiar concept greatly simplifies the
treatment of declarations.

The main feature about & block in which a variable is declared is that
it is impossible to refer in any way to that variable when outside the block.
In other words, it iz not possible to carry out of the bleck any information about
the nature or value of the variable. This can be assured if the assertion R
deseribing the result of executing a block contains no free occurrences
of any identifier declared in the head of the block, Similarly, a description
of the conditions which hold on entry to a block must not be allowed to refer in
any way to a local variable of the block. Thus we can formulate the following

il of inference:

6. If P{Q)R and neither P nor R contain free occurrences
of the variable v, then

P{(d v;Q)IR

where d is a declarator.

- L » o L . r - a L]
: This definition deals with a bracketed block in which only one variable
is declared. The usual ALGOL block with

begin ... end brackets and multiple declarations may be regarded as an -
abbreviation; thus

begin &) Vi1aVips »ee3dy Yoy ereiese; 5 end stands for

(dyvy 1388, v, 53 (@v, 5(e005(8) 0000000)))

2.6 General Reservations.

-The axioms quoted above apply to a relatively simple language, in which
the evaluation of all expressions, and of Boolean expressions in particular can
never have any side-effects. Many modern languasges permit function calls
to feature in expressions, and do not prohibit these function calls from affecting
the truth of propositions which were valid before their execution. Such languages
should be reparded as providing merely an alternative notation for a languege in
vhich such function calls have been replaced by an appropriate sequence of procedure
(subroutine) calls, as is suggested by the ALGOL 60 definition. If the mmjor
purpose of using a highlevel language is to permit the easy verification of the
validity of programs expressed in the language, it is doubtful whether the use of
functional notation for procedures with side~effects is a genuine advantage.

Another general feature of the axioms quoted above is that the proof of
a theorem about the results of & program gives no guarantee whatsoever that the
progrem will ever actually produce those results; in fact it may never terminate
in the normal way. The failure to terminste could be due to one of many causes:

1. The evaluation of an expression demands the performance of an operation
which, as a result of so-called "overflow', fails to deliver a result.

2. The execution of the program demands more time than allowed by the
operating system time limit (time overflow).

3. The execution of the program demands more space than can be made
available to it (space overflow).

4., The program contains en infinite loop.

Although much attention has been given by theorists to the fourth possibility, it is
in facg?gfnless practical significance than the other three. On the other hand,
in spite of theoretical difficulties, it is usually fairly easy to prove termination
by some technique similer to that suggested by Floyd. Proofs that a program
will not encounter one of the cther three overflow conditions are often based
on the known characteristics of & particular implementation, and can obviously
never be achieved in a wholly machine-independent fashion unless careful use has
been made of enviromment enquiries. However, it is to be hoped that any good
implementation of & language will always clearly inform the user of a program
when one of these conditions has occurred; so in fact, all proofs from the axioms
quoted above should be regarded as proofs of a certain conditional assertion:

"If the progrem terminates successfully (ie.without an overflow message)
then its results will have the desired properties”. In mony circumstences, thie N i
weaker assertion is quite good enough, since the progrem is found to terminate ¢
successfully on most of the occasions it is needed, and on the remnining
occasions the results are disregarded and so cannot cause serious loss.

- -

However, in certaln kinds of real time control programs, operatlng
,’s;stems, etc, the effect of even a detected failure can be exceptionally serlous-
"-in theee cases, the prograrmmer has s duty to prove that overflows cannot occur,
even if he has to rely on machine-dependent characteristics to do so: This may
be one of the more inescapable reasons why real-time programming is so resistant
to machine-independent programming techniques.

3. Data Structures.

The preceding section deals with the assignment of simple values only
to simple variables. These values are assumed to belong to some primitive
type which is provided by the language, and defined by a suitable axiom set.
The programmer is invited to consider these values as completely unstructured
objects, since to regard them as a structure of (say) binary digits would be
to introduce both unnecessary profusion of detail and a high degree of machine-
dependence.

" However, in practice, a progremmer often requires to group together
certain informetion into a structure, which can be regarded in some waoy
es an independent entity in its own right. For example, in ALGOL 60 the
programmer can group together a sequence of varisbles in an array, whose elements
he can access and assign to individuslly. In languages such as COBOL and
PL/I, the programmer has access to other means of defining and using data structures.

It is helpful in & theoretical approech to separate the definition
a structured type from the declaration of an actual instance cof the structure, in
the same way as the type integer is distinet from any particular integer variable or
value., A structured type may be regarded as the set of all values which exhibit
the Btructure. For example a particular structured type could be defined as
"the set of all real arrays with subscripts ranging frem 1 to 24"; in ALGOL 60,
the declaration '

real array A, B, C [f1:247;

may be regarded as declaring three variables whose value belongs to the given
structured type.

3.1 Arraxs.

The only structuring method provided by ALGOL 60 is the array.
In general, a single-dimensional array A may be regarded as o mapping of one set
{a range of integers) onto the elements of a particular type {e.g. integers, or
reals, or Booleans). The element A [i/ is the value corresponding to the integer
i in the mapping A. A declaration of the form resl array A/m:n) may be regarded
as stating the domain of the mapping A to be the set of integers between
n and n (inclusive)}, and the range of the:&ﬁbplng to be a subset of floatlng point
numbers. In other words A is a meuber of the "power set" X, where X is the set
of reals, and ¥ is the set of integers between m and n.

In more general languages, the range of an array may be any data type,
and its domain may be other than a contiguous sequence of integers. For example,
a two~dimensional array may be regarded as a mapping between pairs of integers and
(say) reals. It is therefore appropriate to axiomatise the more general concept
of the power set X}’, where X and Y are arbitrary sets of velues.

Pl. xeX'> V (erDx[‘yjex) .

This axiom correctly falls to say anythlng about x/y/ in the case where ¥ is not
within the eppropriate "subscript range".

- 7 ey
e
In order to fully characterise a class of structursl obaects, it is

qucessary to state the conditions of equality of elements of the class. This
is usually a trivial matter:

2. a,be XY_:P. -asb = VylyeY Dafy/=bfy/])

Finally we wish to define that transformation on an array which consists in
assigning a new value to exactly one of ite components. The resulting array is
designated by (Alilx}, where i is the "subscript” of the changed element, and

x is its new value

3. AeXYAy EYAxEX O (A!y]x) € _XY
h. (AlyIx)/[z] = A[z] for z#y
5. (Alylx)fg =

Now it is a simple matter to define the effect of assignment to a
subscripted variables

P{x[i]:=f}3 X, x=(xoi iof fo)"‘ Po

where i _, £ , PO are like i, £, P, except that they contain
free océurrences of x vherever i, f, P contain free occurrences of x.

3.2 Cgrtesian Products.

. In languages such as COBOL, JOVIAL, and PL/I, the arroy-struciuring
mechanism is supplemented by a technique which permits the elements of the structure
to be aceessed by means of named selectors {"field idemtifiers") rather than by
computed subscripts. In suitable cases, this can afford many advantages:

1. The elements of the structure may be of different types, whereas
array elements must be all of the same type. '

2. Access to an element is entirely free from the rdisk of subscript
error, and no run-time check is required.

3. In the interests of conserving space, the elements can often be
packed together in a single computer word.

The "type" of a structured value of this kind may be defined by specifying
the types of the individual elements of the structure. If X and Y are types
{possibly the same)} then XxY is the type of all ordered pairs {x,y), where x
belongs o X and y belongs to Y. If X and Y are both floating point types, then
XxY is the set of all ordered pairs of floating point numbers. = Any element
(%,¥) of this type mny be regarded as representing the position of a point in
2~dimensional space, by means of its Cartesian coordinates. Thus the type
XxY may fairly be called the "Cartesismn Product” of the types X and Y; and the
term Cartesian Product has been adopted even in cases where X and Y are not
floating point.

In this section we give axioms for Cartesian prodacts of any number of
"dimensions". This implies that each axiom in fact stands for an infinity of
axioms, one for each required dimensionality. Thus the use of dots involves no
breach of rigour. The first axiom dcfines the range of elements of a Cartesien
product and the second defines the conditions of identity:

1, ae(Xy¥y...) = Ax,¥,.. (a={x;7,..)A x€Xrys¥a ...)
20 (X,¥see) =X,y 50)E x=X"AYEY'A Lo
If a group of elements of variocus types have been "packed”
together as a single element of the Cartesian Product type, the programmer will

require some facility to "unpack" the constituent elements again, so as to
inspect them and operate upon them individuelly. A suitable notation for achieving

#s is:

(xy¥,00s) 1=Ff
where x is & simple variable of type X,

y is a simple varisble of type Y,.

f is an expression yielding & value of type (Xx¥x...):

The relevant axiom to describe the effect of this statement is modelled on that
for normel assignment:

P
1

P{{x,¥s0s.) :=f}3ﬂxo,yo,...((x,y,..)=f6\Po)

where £ ,P_ are like f,P, except that they contein free occurrences
of xo,yo,..wherever the latter contain free oceurrences
of X;¥ye4.

3.3 Set Unions.

In machine code, it is possible to use the same storage area
at different times to hold valuzs of different types and different structures.
Highlevel langusges such as FORTRAN permit the programmer to achieve the same
effect by BEQUIVALENCE statements, or in COBOL by the REDEFIKES verb. The
use (or misuse) of this facility permits mechine~dependent cffects to be obtained,
and a programming language description must be cereful to leave these =ffects
undefined.

To represent this feasturs of computers and programmi:g.we introduce
the concept of a Unicn of types X,Y,... which may be written X+Y+...
The elements of the union must not be regarded as identical with the elements
of any of the types X,¥,...; 1in fect a Union type should be & closed system,
in the same way as other types. lHowever, for each alternative Z of (X+Y +Z+...)
there is a one-one mapping (transfer function) T, which maps & particular element
of the union type onto an element of the type Z.” Thus if we start wiEE an
elementz type Z we can obtain an element of the union type, namely T, ~z.
If we now apply T , we will get back the element T T “z=z itself. However, if
we apply the wrong transfer function, sey T_, theré€ is no way of telling which
element of X (if any) weé will obtain. ThuS the effect can only be understood
in machine~dependent terms.

The relevant axioms for the Union Type are:
1, a&(X+¥+...)< Txa,é-Xvaa €Y veuo

2n ngé(X"‘Y"‘s 'R)-/ E'a=b:.: TXB.:Txb ATyB-=Tyb N seee

.

S e S
3u B.G(X+Y+. .Z-. .)DTXTX B"aﬂ'ltTy a=g, Ao&l
l -

z € {X+Y+. . 4Z+...)

b, z&Z T
' Ty

The function T;1 for eny Z corresponds to the PL/I function UNSPEC which maps a -
value of any t¥pe onto the unspecified machine representation of that value.

Some languages which permit the use of & Union type also provide a
mechenism for the programmer to enquire exactly which type the current value of
a union variable belongs to. This implies thet en implementation metuaslly records,
as part of the velue of the variable, a marker quantity indicating the type of
the value of the rest of the variable: +this certainly has adventages, but it
ie not usuelly done in any COBOL, FOR{RAN or PL/I implementation. To discriminate

i
|
1
i
)

—9-

_5Q merker, a suitable notation is similar to that for the econditionsl
Jcese”) construction: |

consider v when X then Q

when Y then Q2

- A mr e e

/ where Ql‘is & statement to be executed when Txuex

Q2 is a stgtement to be executed when TyueY‘

- e

The relevamt axiom is also modelled on the conditional rule:

IT Paw ﬁX{Sl}Ql
and Ppu1eY{82}Q2, etc.,

then Pav €{X+¥+...){consider u vhen X then Ql

when Y then Q2

}le Q2 Y 4ee
3.4 Streams.
In representing the czizons of input and oubput, i+ 3o useful Lo introduce

yet another structuring mechauiszm. the stream. Thiz includes and unifies many
features usually associated with files, stacks, lists, and strings. A stream is
an arbitrarily long sequence of elements of some type, with at most on2 element
(the current element) accessitiz &t zny one time. There 1s assumed 0 e a
means of testing wlether a strzamm is “empty” (end-of-file coraision). The basic
operations on streuus are: '

output: Add an element of appropriate type at the end of the streeam
input : Remove an element from the beginning of the stream
backspace: Remove an element from the end of the streamn.

If S is a stream, and x is a potential element of the stream, we write {S{}x) for
the stream which results from outputting x at the end of 8; and we write
{x}]8) for the stream consisting of x followed in seguence by the elements of S.
We write X®* as the type of the stream, all of whose eleménts are members of X.
The following axioms apply.

1. millstream ¢ X*

2. xeXnSeX* D (x|ls) e X¥*a (S]}x)e X%

3. The only members of X¥ are as given by rules 1 and 2.

4, (x1}8). = (x'][s') = x=x'n8=5"

5. (Sljx) = (8'}jx") = x=x'p 8=s'

We are now 'in & position to define axioms for input and output:
6. Ploutput £ on 531§ (s=(s_l{ £) AP}
7. P{input x on S5}7] So,x0(50=(x HBIA Po)

8. P{backspace x on S}3 SO,xO(SO':(SHx)A PO)

4. Advenced femtures.

] The previous sections contain a set of axioms suitable for defining fairly
51mp1§ languages, which are nevertheless sufficiently powerful to express practical
algorithms in reasonably concise and efficient form. This section explores some of
thg more advanced features of modern langueges, with e viev to elucidating their
axiomatic basis.,

=@1 Procedures,
4 -

As defined in ALGOL €0, & procedure call is exactly equlvalent to the
insertion of a (possibly modlfled) copy of the procedure bedy im the place of the
call. This means that the results of a procedure call are identical to thoae

of the procedure body, provided the preconditions ere the same. Thus if we
introduce the notation

n=B

to signify thet n is a proceduwp identifier of & procedure with body B, then we
can readily adduce the following rule of inference:

1. if #P{B}Q then +Pan=B{call n}Q

Now all that is required is some means for establishing the truth of "n=0".
This is done in ALGOI~like languages by o procedure declaration in the head of
a block. Thus we postulate axioms of the form:

2. If+P An=B{Q)R then

FP{(procedure n;B;Q) IR

where n is not free in P or R. This approach is similar %o %hed “or ofher
declarations {2.5), and invites & similar convention for eiireviebio.

In most languages, some means is provided for passiiny parsmeters 40 a
procedure at time of its invocetici. There are many differ=ot mochan?sme for
parameter passing, but the neme parameter mechanism seems tiwe =i 5 and most
general, in terms of which many of the other mechenisms cen Lo defined, If we
use the convenience of lambda-notation, to express functlnnal abstrartlon, the
following axiom appears to be suff1c1ent'

?,,»y' '\,fwv:/‘ff“:’ L M-:ﬁ’ -

3. if FP{B}Q then hEAnélx,y,..)B{call n{x,¥sees4)}Q o

In the second assertion the occurrences of x,¥,...within B are assumed to be
"bound" by the occurrences within the preceding lembda=brackets, whereas

the occurrences of x,y,...as actuasl parameters are free, as are the occurrences
of Xy¥ye..within P and Q.

e
™ "

The relatlonshlp between the procedure identifier n and the procedure
ANx,¥,...)B is established by declaratlon

b, If pPan=N(x,¥,...)B{Q)R
then + P{procedure n{x,y,...); B; QIR

The axioms given above may be applied successfully to procedures in a
langusge like FORTRAN, which makes no attempt to define the effect of recursive
procedure cell. To make it possible to prove truths about recursive procedures,
a slightly more complicasted rule of inference is required, Just as a sllghtly
more complex storage control mechanism is required to implement them.

In this more complex formulation, the successful working of the internal recursive

calls may be assumed in the proof that the procedure body as a whole will be
successful: '

5. If from FP{call n(x,y,...)}Q it can be proved thst PfB}Q
then k PAn=Nz,¥,..)B{call n{x,ys+..)1Q

The possibility of mutual recursion adds yet Purther complexity to the .
situation. The axiom abcve must be strengthened still further: :

6. if from.kPﬂball a(x,y,...)]RA

and +Pjcall b(x',y",.,.)}RB 7 ﬁ;éfﬁvgx

it can be proved that

_!--PA{A}RA and E-PB{B}RB and

then PA,'\a=)\(x.y,...)AAb=k(x’.y‘,...)B eee{eall a_(;‘:.;y',...)}RJuL

Mutual recursion also requires a strengthening of the rule for
procedure declaretions:. ‘

A
T- Ifj'PAB.'gx,‘(:no)Ahb:)\(ano)Bn Q{Q}R
and 8, b, ... are not free in P or R,.

then FP{{procedure a(...):;A;procedure b(...);B;...;Q))R

b.2 Record Handling,

‘

- The axioms end rules of inference given so far do not meke any particular
assumption about the storage allocation method used in an implementation. A1l
the exioms except those permitting recursion, and equally true of FORTRAN, which
generally uses static allccation; and of ALGOL, for which a stacked technique
is often used. It is only the recursive axiom which differentials between the
two approaches. : '

In addition to the stack, several modern languages permit an even
greater degree of flexibility in the dynamic allocation of storsge, and for
deallocation they use possibly some entirely invisible "gartaze coileciion"
process., In such a language, the set of storage elements ! ="} which
heve been ellocated at any given moment of program executici f nofinile set
C, but the progrem at any time may add a new element to the sev, and sluore a
"reference" to this new element in & suitable pointer lor reiererce)verisils ¥,
The statement which achieves this effect may be given the frim:

r new C

This statement obviously changes the current values of the vurizble r
and of the class C; its effect may be described in a manner similer o assignment:

P{r new_C}arG,Co. e= CO+Lr}nyzCUaPo

vhere PO is like P except that it contains free occurrences of

r0 aend CO vherever P conteins free occurrences of r and C.

T ot i ey o

Certain modern languages claim to permit the prograpmer to specify that
two or more portions of program ere to be executed in parallel with each other.
The nature and implementation of this feature are still problematic; and its
rigorous definition is rather difficult, since parallelism apparently permits the
specification of programs with inherently unpredictable results. Since it is
very difficult to prove anything about the properties of unpredictable progrems,
it would not be surprising to find thet eny axioms which cleimed to apply in
such cases would be very complicated, and almost impossible to understand and use.

If the main purpose of using a programming language is to obtain programs
which can fairly readily be proved to work, it. would seem to be desirable to
restrict the facility for invoking parallelism to cases in which the unpredictability
is absent, or at least reasonably circumscribed. In the case of parallel
streams of computation, this can be achieved by ensuring that the parallel streaus
contaein no free variables in common; or at least that no assignment or input/
cutput operation is carried out on any variables which they have in common.
Introducing the notation (Q//Q') to indicate that @ and Q' are to be executed
in parallel: .

1. If+P{QIR and FP'{Q'}R',
end no left~hand varieble of @ is free in PY{Q'}R’'
end no left-hand variable of Q' is free in P{Q)R
then - PaP'{(Q//Q')IRAR’

M,

-]2 -

{ is assumed that the definition of "left-hand" variables of a piece of
Jrogram is achieved by m purely syntactic scan, very similer to thet used to

,fhflne the "free" varisbles of a text.

This form of parallelism may be used quite successfully by &
progremmer to achieve concurrency of computation and input/output. It

does, of course, completely exclude any possibility of indeterminacy, since it
does not permit any communication whatsoever between the parcllel processes.

A useful extension to the simple facility would be to introduce such
communicetion, provided this still permits proofs to be constructed about

the performence of the program. It appears that this can be achieved by
using the input/output mechanism, ermd linking the output of one parallel
process directly into the input of another. However, further discussion of
this topic would be out of place in this paper.

4-4 . Jumps.

It is notorious that ALGOL programs contasining any significant number
of go to statements ere remarkably difficult to understand and verify. It
would seem that proofs of the correctness of such programs will be equally
difficult to construct, and the axioms governing such proofs will be
correspondingly complicated., This complexity is mainly due to the
"linearity" of program texts when treated by conventional syntactic techniques.
If the program is orgznised as a flowchart, there is no problem with jumps,
es Floyd has shown. [Furthermore, there is not much difficulty in the case
of a "flat" langunge such as FORTRAN or mechine code which do not have any

"nesting” of statements, nor do they permit jumping out of & block. In such a
language, a fairly simple approach may he taken.

Let us deal first with a sequence of instructions T which contains
exactly one conditional jump instruction and one label.

Let X be the sequence of statements up to if B then gg_ﬁg,ﬁf
Y be the sequence of statements following "if B then go to A"

% be the sequence of statements following the label "A":

W be the sequence of statements féllowing.up to the label "aA". -
1. If *P(X}Q and }QAB{Z)}R and rQ-B{Y}R' and P{W}0' and Q{Y)R

then P{T}RvR'

If there are more than one conditional jump to A in a sequence T, the preconditions
of rule 1 must apply to every one of them. If there is more than one label,

yet further complexities arise. The unravelling of them is left to a reader

with a sufficient enthusiasm for jumping.

Conclusion.

The paper has adduced a number of axioms which define the dynemic
properties of a simple but complete and powerful programming langusge. It is
a considerably smaller language than those which are currently fashionable.
However, many of the feetures of more sophisticated languages may conveniently
be regarded as definitional abbreviations of material which could have been
expressed more diffusely in the primitive lenguage. The introduction of useful
definitional ebbreviations, and the preof of powerful metatheorems about them,
is one of the main avenues for advance in mathematics, end one would hope to
see the same possibility for develoPment in progremming languages, -
particularly those which permit the user to define new notetions and new inter=
pretations for existing symbols,

- 13 -

We have not made any attempt to prove the consistency, completeness,
mpendence of the proposed axiom set. A more-urgent task is actually
fdethe axiomatic proof technlque to develop & library of useful softwere
;g se correctness has been put beyond reasonable doubt. It is only by
Jgdmg on e foundation of reliable prograimns and theorems that we can hope
,ﬂ" @ extricate ourselves from our present software d:l.ffn.cult:.es, and progress
’Y in our capebility to use & computer effectively ans s partner in problem~
golving ectivity.

References:

o
Cc.
R,

P.

A. R, Hoare .

A. R. Hoare
W. Floyd

Naur

The Axiomatic Method
The Axiometic Method: Data Manipulstion
As_signing Meanings to Programs

Proof of slgorithms by generalised snapshots

