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This paper illustrates the manner in which the 
axiflll!atic method ma:r be applied to the rigorous definition 
of a programming language. It deals with the dynamic 
aspects of the behaviour of a program, which is an aspect 
considered to be most far removed from traditional 
mathematics. However, it appears that the axiomatic 
method not only shows how programming is closely related 
to traditional branches of logic and mathematics, but 
also formalises the techniques which may be used to 
prove the correctness of a program over its intended 
area of application, 
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Introduction. 

Any successful description of a programming language must obviously 
provide a technique for discovering the meaning of all programs expressed in that 
language. The meaning of a program may be defined by specifying the effect of 
executing the program in every possible environment in which it can be run. 
Thus it appears necessary to give a comprehensive description of every possible 
environment (machine state), and then ·to. eive•·_a method · "'. for working out 
the comprehensive description of the environment that results from executing 
a given program. The main objections to this technique are as follows: 

(1} The environment is usually so large and complex, and the algorithm 
so time consuming, that the only practical way of finding the meaning of the 
program is by running it on a computer. Even this is impractical if we wish to 
examine the effect of the program in every possible environment: or worse, if we 
have doubts about the accuracy of the implementation. 

(2) Unless the programming language is inordinately complicated, it 
seems that a program itself is much more concise and comprehensibe description 
of a transformation on an environment than the equivalent treatment embodied 
in the language definition. 

(3) The method does not help in the formulation of proofs that a 
program will perform correctly in any of the circumstances in which it may be 
applied. 

In this paper, we take a slightly different and possibly more fruitful 
approach to programming language definition. We do not insist on any complete 
environmental description either at the beginning or the end of program execution, or 
at any intermediate stage; rather we permit the programmer himself to describe 
only those features of the environment which he considers relevant for the 
successful use of his program. In other words, he will make certain quite general 
statements about those properties and relationships holding between the values 
of variables at the time at which the program is invoked; and he will define 
the purpose of the program by making other general statements about the environment 
which will result on completion of the program. A person may be regarded as 
having a "reading" understanding of a programming language if he is able to check 
whether the result of executing any program of the language will in fact satisfy 
the claims made by the programmer whenever it is applied in an environment for 
which the declared preconditions hold. This may be done either by constructing 
or by checking a proof that this is the Case. A person may be regarded as having 
a "writing" knowledge of the language if he is in general capable of considering 
the desired properties of the result of executing a program, and constructing a 
program which can be proved to have the desired result, subject, if necessary, to 
stated preconditions. If this approach is taken, the meaning of a programming 
language can be fully specified by describing a method of checking proofs that 
an arbitrary program written in language satisfies a given set of design 
objectives. 

Thi~ approach appears to avoid the drawbacks associated with previous 
methods. It also appears to offer the promise of eliminating the expense of 
traditional program testing and the danger of using incorrect programs. Thus it 
may represent· the same magnitude of advance in Computer Science as the axiomatic 
geometry of E.'uclid compared with the crude land-measurement of the ancient Egyptians. 

2. Basic Features. 

In order to describe the preconditions and results of successful use of 
a program, we will adopt the normal notational conventions of prepositional and 
predicate losic. To express a program, we will use mainly the notations of 
ALGOL 60. Ettt ~r the assertion of a relationship between the two, it will be necessary 
to introduce a new and unfamiliar notation: P{Q}R, where P and R are assertions 
and Q is a part of a program, will assert that if precondition P is true when Q 
is initiated, the statement R will be true on successful termination of Q. 
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assertion can be proved as a theorem from the axioms, we writei-P{Q}R. 

Most of the formal material in the followine sections takes the form 
of rules of inference rather than axioms. The majority of pure axioms relate 
to the non-dynamic properties of the simple operations and operands of the 
language, and have been treated in a previous paper. 

The following rules of inference are obvious extensions of the rule 
of deduction: 

1. If P~P and P{Q}R then P1 
{Q}R 

, } ' 2. If R :>R and P{Q R then P{Q}R 

Furthermore, the following rule is intuitively appealing and useful: 

3. If P{Q}R ' / r - ' and P {Q}R then P~P {Q} R~R. 

2.1 Assignment. 

Assignment is undoubtedly the most characteristic feature of programmin~, 
and that which distinguishes it most clearly from more traditionally "timeless" 
branches of mathematics. However, Floyd has shown how it can be treated in a 
completely static fashion, by a simple logical technique of substitution of 
free variables. This "freezing" of time-dependent phenomena enables more 
powerful logical and mathematical techniques to be applied1 in the same way as the 
realisation that a function of time could be regarded as a static completed 
entity makes it possible to deal with integral equations and boundary problems, 
in a manner which would be inconceivable to those who regard such a function 
as definable ouly in a step-by-step fashion. 

Consider the assignment statement x:=f, 

where x is a simple variable identifier 

and f is an expression, possibly containing x. 

Suppose that an assertion P is true before the assignment is executed; we are 
interested in finding the strongest statement P' which is true after execution 
of the assignment. Obviously, if the variable x does not occur at all in the 
statement P or in the expression f, it is valid to state that 

P{x:=f}x=f"P 

If the variable x appears (free) in P but not in f, we can remove the possibility 
of such free occurrences by prefixing P by the existential quantifier (3x). 
Since P~)xP is a theorem we can state 

P~.·3 *•P-I {x:=f} x=f" 1 x.P 

Finally, if x occurs free in f (as in the assignment x:=x+l) we can perform the 
assignment in two stages e.g. t:=f ; x:=t, where t is an arbitrary variable 
which does not occur in f or P. 
Consequently, as we have seen above, 

P{t:=f} t =f r.P 

and therefore for the second assignment we get 

t=f ,.,P{x:=t} x=ti\3 x, t=J,p 

But it is a theorem of predicate calculus that 

x=t-.3x.t=ftJ' ~ 3 x (x=f 1\P ) 
0 0 0 

where f and P are like f and P except that they contain 
0 0 

free occurrences of x wherever the latter 
contain free occurrenges of x. 

Combining the results (1), (2), (3), it becomes obvious that 

0 0 0 

(1) 

(2) 

(3) 

I P{x:=f}) x (x=f r. P ) .' 

This statement avoids the aw~wardness of introducing the fresh unbound variable t on 
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every assignment, and Floyd has proved that it is the strongest SUllllllllrY of 
the effects of aa assignment statement that can be given. 

In order to incorporate this discovery into a 
to adopt the technique or postulating an infinite set 
exhibits the appropriate form. So we obtain 

formal. axiom, it is necessary 
of axioms, each of which 

1. 1- P{x:=r}3 x (x=r "P ) 
0 0 0 

(Axiom of Assignment) 

where x is a variable 

2.2 Composition. 

x is a variable not free in f or P 
0 

f is an expression 

f is obtained from f by substituting X for free 
0 0 occurrences of x 

P is obtained from P by substituting x for free 
0 0 occurrences of x. 

A program normally consists of a sequence of statements which are executed 
one after the other in the stated sequence. The notation (Q;Q') is used here to 
indicate a program or portion of program which specifies the execution of Q 
followed by the execution of Q'. · If Q and Q' w·ere functions, (Q;Q') would be 
known as their functional composition; and in fact it obviously satisfies the 
same associativity principle, in that the effect of the program ( Q;Q') ;Q" must 
always be identical to that of Q;(Q';Q"). This is the justification for removing 
the brackets around pairs of statements in a language like ALGOL 60, 

The rule of inference associated with composition is rather obvious 
and has already been used in the informal reasoning of the previous section. 
If it can be proved that P' is true on completion of Q, and whenever P 1 is true 
on initiation of Q' we can prove that P" is true on its termination, then we 
can assert categorically that P" will always be true after executing (Q;Q). 
In more formal terms; 

2. 1- If P{Q}P' and 1-P'{Q'}P" then !-P{Q;Q'}P" 
(rule of composition) . 

2.3 Conditionals. 

A fundamental feature of computers is their ability to decide on a course 
of action in accordance with the truth or falsity of a condition. In machine code 
and in primitive programming languages, such a test is normally associated with a 
"jump" instruction; but in more advanced programming languages, the programmer is 
invited to specify a pair of (possibly compound) statements, say Q and Q', only 
one of which is ever executed. The selection is made in accordance with the 
truth or falsity of a proposition B. In the construction: 

if B ~ Q else Q' 

the~atnent Q is initiated whenever B is true and the statement Q' whenever B is 
fa:lse. Since we do not normally know the value of B until the program is under 
execution it is obvious that any assertion made about the consequences of executing 
the whole conditional must be true no matter which of the limbs has been selected. 
The strongest assertion which has this property is the logical disjunction of the 
two assertions Rand R' which can be shown to be true when the limb Q and the limb Q' 
are selected, Thus we have the following rule of inference: 

3. If 1-Pf\B{Q}R and~P"-.S{Q'}R' 

thenj-P{ if B then Q else Q' }R"R' 

In most languages which permit a sophisticated conditiona:l construction, an 
option is given to the programmer to omit the second alternative after (and including) 
the else; in which case, when the condition is false, no action takes place. The 
omitted else clause may be regarded as a definitiona:l abbreviation of "else null", 
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;ihere null is a null. statement, performing no action. In other words, any 
;proposition which is true before executing a null statement remains true 
· after its execution. This simple rule may be embodied in the axiom scheme: 

4. t- P{null}P . 

2.4 Loops. 

The essential feature of a stored program computer, - indeed the only 
feature which makes it worth while to store the program at all, - is its 
capability of executing the same section of program repeatedly. A section of 
program capable of repeated execution is known as a loop. Two parts of a loop 
can be distinguished: 

1. A continuation condition B: if this is true on initiation of 
any repetition of the loop, the execution of the loop continues; whereas if it 
is false, the loop terminates immediately. 

2. A statement S; this forms the body of the loop, and is executed 
none or more times in accordance with the status of the condition B. 
The simplest notation for a loop incorporating these two parts is: 

while B do S 

Every other form of loop, DO statement, for statement can be ultimately defined 
in terms of this simple construction. ---

The loop is the first programming feature for which the construction of 
proofs of program characteristics is non-trivial. In fact, it demands that one 
find some proposition P whose truth can never be affected by execution of the body 
of the loopS. Then obviously, the truth of P will not be affected, no matter 
how many times S is executed; and if it is true before the loop starts, it will 
still be true when the loop terminates. Furthermore, at that stage it is known 
that B is false. These considerations lead to the following slightly more accurate 
f::>rmulation: 

5. If 1-P,\.B{S}P then 1-P{while B do S} ..,Bt.P 

2.5 Declarations and blocks. 

Most modern programming languages permit the programmer to make an 
arbitrary choice of identifiersfor his variables. These identifiers are usually 
regarded as "local" to some part of the program (block, procedilre, subroutine); 
and if the same identifier is introduced in an entirely disjoint portion 
of the program, it is regarded as in fact a different variable. The arbitrary 
nature of the choice of a variable identifier is illustrated by the fact that 
the identifier may be replaced systematically throughout the relevant portion 
of program by some other suitably chosen variable name, without making any difference 
whatsoever to the meaning of the program. 

In a language such as ALGOL 60 or PL/I, which allows the nesting of 
the scopes of declared variables, the rules for arbitrary substitution are slightly 
more elaborate; since a distinction must be made between "free" and "bound" 
occurrences of the same identifier. If a declaration (implicit or explicit) is 
regarded as a form of "quantifying" or "binding" occurrence of the declared 
identifier, these rules are exactly the same as those which govern the substitution 
of variables in logic. This appeal to a familiar concept greatly simplifies the 
treatment of declarations. 

The ~ain feature about a block in which a variable is declared is that 
it is impossible to refer in any way to that variable when outside the block. 
In other words, it is not possible to carry out of the block apy information about 
tbe nature or value of the variable. This can be assured if the assertion R 
describing the result of executing a block contains no free occurrences 
o~ any identifier declared in the head of the block, Similarly, a description 
o~ the conditions which nold on entry to a block must not be allowed to refer in 
any way to a local variable of the block. Thus we can :formulate the following 
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inference: 

This 
is declared. 

6. If' P{Q}R and neither P nor R contain free occurrences 
of the·variable v, then 

P{(<J. v;Q) }R 

where£ is a declarator. 
I 

definition deals with a bracketed block 
The usual ALGOL block with 

in which only one variable 

begin ••• end brackets and multiple declarations may be regarded as an 
abbreviation; thus 

begin d1 v11 ,v12 , ••• ;~ v21 ••• ; ••• ;Send stands for 

(£1 V 11; (£1 V 12; (' • ' (~V 21; (' ' • ; ( S)' ' ) ) ' ' ' ) ) ) 

2.6 General Reservations. 

The axioms quoted above apply to a relatively simple language, in which 
the evaluation of all expressions, and of Boolean expressions in particular can 
never have any side-effects. Many modern languages permit function calls 
to feature in expressions, and do not prohibit these function calls from affecting 
the truth of propositions which were valid before their execution. Such languages 
should be regarded as providing merely an alternative notation for a language in 
which such function calls have been replaced by an appropriate sequence of procedure 
(subroutine) calls, as is suggested by the ALGOL 60 definition. If the mnjor 
purpose of using a highlevel language is to permit the easy verification of the 
validity of programs expressed in the language, it is doubtful whether the use of 
functional notation for procedures with side-effects is a genuine advantage. 

Another general feature of the axioms quoted above is that the proof of 
a theorem about the results of a program gives no guarantee whatsoever that the 
program will ever actually produce those results; in fact it may never terminate 
in the normal way. The failure to terminate could be due to one of many causes: 

1. The evaluation of an expression demands the performance of an operation 
which, as a result of so-called "overflow'~ fails to deliver a result. 

2. The execution of the program demands more time than allowed by the 
operating system time limit (time overflow). 

3. The execution of the program demands more space than can be made 
available to it (space overflow). 

4. The program contains an infinite loop. 

Althou&~tmuch attention has been given by theorists to the fourth possibility, it is 
in fac~/6f~ess practical significance than the other three. On the other hand, 
in spite of theoretical difficulties, it is usually fairly easy to prove termination 
by some te~hnique similar to that suggested by Floyd. Proofs that a program 
will not encounter one of the other three overflow conditions are often based 
on the known characteristics of a particular implementation, and can obviously 
never be achieved in a wholly machine-independent fashion unless careful use has 
been made of environment enquiries. However, it is to be hoped that any good 
implementation of a language will always clearly inform the user of a program 
when one of these conditions has occurred; so in fact, all proofs from the axioms 
quoted above should be regarded as proofs of a certain conditional assertion: 

"If the program terminates successfully (ie.without an overflow message) 
then its results. will have the desired properties". In many circumstances, this I ~ I 
weaker assertion is quite good enough, since the program is founu to terminate 0 

· 

successfully on most of the occasions it is needed, and on the remaining 
occasions the results are disregarded and so cannot cause serious loss. 
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However, in certain kinds of real time control programs, operating 
systems, etc. the effect of even a detected failure can be exceptionally serious; 
in these cases, the programmer has a duty to prove that overflows cannot occur, 
even if he has to rely on machine-dependent characteris~ics to do so• This may 
be .one of the more inescapable reasons why real-time programming is so resistant 
to machine-independent programming techniques. 

3. Data Structures. 

The preceding section deals with the assignment of simple values only 
to simple variables. These values are assumed to belong to some primitive 
type which is provided by the language, and defined by a suitable axiom set. 
The programmer is invited to consider these values as completely unstructured 
objects, since to regard them as a structure of (say) binary digits would be 
to introduce both unnecessary profusion of detail and a high degree of machine
dependence. 

However, in practice, a programmer often requires to group together 
certain information into a structure, which can be regarded in some way 
as an independent entity in its own right. For example, in ALGOL 60 the 
programmer can group together a sequence of variables in an array, whose elements 
he can access and assign to individually. In languages such as COBOL and 
PL/I, the programmer has access to other means of defininc and using data structures. 

It is helpful in a theo!'etical approach to separate the definition 
a structured type from the declaration of an actual instance of the structure, in 
the same way as the type integer is distinct from any particular integer variable or 
value. A structured type may be regarded as the set of all values which exhibit 
the structure. For example a particular structured type could be defined as 
"the set of all real arrays with subscripts ranging from 1 to 24"; in ALGOL 60, 
the declaration 

real array A, B, C .l1:21J; 

may be regarded as declaring three variables whose value babngs to the given 
structured type. 

3,1 Arrays, 

The only structuring method provided by ALGOL 60 is the array. 
In general, a single-dimensional array A may be regarded as a mapping of one set 
(a range of integers) onto the elements of a particular type (e.g. integers, or 
reals, or Booleans). The element A lil is the value corresponding to the integer 
i in the mapping A. A declaration of the form real array A/Jn:nJ may be regarded 
as stating the domain of the mapping A to be the set of integers between 
m and n (inclusive), and the range of theram-pping to be a subset of floating point 
numbers. In other words A is a :nenber of".the "power set" xY, where X is the set 
of reals, ~nd Y is the set of integers between m and n. 

In more general languages, the range of an array may be any data type, 
and its domain may be other than a contiguous sequence of integers. For example, 
a two-dimensional array may be regarded as a mapping between pairs of integers and 
(say) reals. It is therefore appropriate to axiomatise the more general concept 
of the power set xY, where X and Y are arbitrary sets of values, 

Pl. x 'iXY:::> V (ye Y.?x/.Y] ~X) 
y 

This axiom correctly fails to say anything about x[y] in the case where y is not 
within the appropriate "subscript range". 
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In order to fully characterise a class of structurai objects, it 
~ecessary to state the conditions of equality of elements of the class. 
is usually a trivial matter: 

2. 
y 

a,beX ~. a=b ;; Vy(yeY ;;> a[y]=bf.Y]) 

is 
This 

Finally we wish to define that transformation on an array which consists in 
assigning a new value to exactly one of its components. The resulting array is 
designated by (Aiilx), where i is the "subscript" of the changed element, and 
x is its new value 

3. AEXYAylY/\xeX ~(Aiyix) e Xy 

4. (A!ylx)[~ = A[Z] for z~y 

5, (Aiy\x)[y} = x 

Now it is a simple matter to define the effect of assignment to a 
subscripted variable: 

P{x[t}:=f} 3 x
0

, x=(x
0
1 i

0
j f

0
) 1\ P 

0 

where i , f , P are like i, f, P, except that they contain 
free ocgurrgnce~ of x wherever i, f, P contain free occurrences of x. 

0 

.3.2 Cartesian Products. 

In languages such as CO DOL, JOVIAL, and PL/I, the arn..y-structuring 
mechanism is supplemented by a technique which permits the elements of the structure 
to be a.ccessed by means of named selectors ("field identifiers") rather than by 
computed subscripts. In suitable cases, this can afford many advantages: 

1. The elements of the structure may be of different types, whereas 
array elements must be all of the same type. 

2. Access to an element is entirely free from the risk of subscript 
error, and no run-time check is required. 

3. In the interests of conserving space, the elements can often be 
packed together in a single computer word. 

The "type" of a structured value of this kind may be defined by specifying 
the types cf the individual elements of the structure. If X and Y are types 
(possibly the same) then XxY is the type of all ordered pairs (x,y), where x 
belongs to X and y belongs to Y. If X and Y are both floating point types, then 
XxY is the set of all ordered pairs of floating point numbers. Any element 
(x,y) of this type may be regarded as representing the position of a point in 
2-dimensional space, by means of its Cartesian coordinates. Thus the type 
XxY may fairly be called the "Cartesian Product" of the types X and Y; and the 
term Carte~ian Product has been adopted even in cases where X and Y are not 
floating point. 

In this section we give axioms for Cartesian prod~cts of any number of 
"dimensions". This implies that each axiom in fact stands for an infinity of 
axioms, one for each required dimensionality. Thus the use of dots involves no 
breach of rigour. The first axiom defines the range of elements of a Cartesian 
product and the second defines the conditions of identity: 

1, a~(X):Y:i( ... ):;: .Jx,y, •• (a=(x,y, .. ),\ X€Xf.y;Y11 ... ) 

2. (x,y, .. ) = (x',y', ... ).: x=x'Ay=y'.A ••• 

If a group of elements of various types have been "packed" 
together as a single element of the Cartesian Product type, the programmer will 
require some facility to "unpack" the constituent elements again, so as to 
inspect them and operate upon them individually. A suitable notation for achieving 
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(x,y, ... ) :=f 

where x is a simple .variable of type X, 

y is a simple variable of type Y, 

f is an expression yielding a value of type (XxYx ••• ). 

The' relevant axiom to describe the effect of this statement is modelled on that 
for normal assignment: 

1 
P{(x,y, ••• ) :=f}] x

0
,y

0
, ... ((x,y, .. )=fo"P

0
) 

where f ,P are like f,P, except that they contain free occurrences 
of §t .~ , , • wherever the latter contain free ocr!urrences 

0 0 of x,y, ••• 

3,3 Set Unions. 

In machine code, it is possible to use the same storage area 
at different times to hold vc.lu:os of different types and different s~;:ructures. 
Highlevel languages such as FOR'l'RAN permit the programmer to achieve tqe same 
effect by EQUIVALENCE statements, or in COBOL by the REDEFINES verb. Th~ 
use (or misuse) of this facility permits machine-dependent effects to be obtained, 
and a programming language description must be careful to leave these effects 
undefined. 

To represent this featw.''" of computers and progrmnn;i.:;;_;, we introduce 
the concept of a Union of types X,Y, ••• which may be written X+Y+ •• , 
The elements of the union must ~ be regarded as identical with the elements 
of any of the types X,Y, ••• ; in fact a Union type should be a closed system, 
in the same way as other types. However, for each alternative Z of (X+Y +Z+ ••• ) •· 
there is a~-~ mapping (transfer function) TZ which maps a particular element 
of the union type onto an element of the type z. Thus if we start wi1£ an 
elementzcf' type Z we can obtain an element of the un!£n type, na.mely TZ z. 
If we now apply T , we will get back the element TZT z=z itself. However, if 
we apply the wren~ transfer function, say TX' there is no way of telling which 
element of X (if any) we will obtain. Thus the effect can only be understood 
in machine-dependent terms. 

The relevant axioms for the Union Type are: 

1. 

2. 

3. 

4. 

ae(X+Y+ ••• ):; T MXVT a t:·Y v ••• 
X y 

a,b~(X+Y+ ... ).:)l".=b;T a=T bi\T a=T hi\ .... 
X X y y 

-1 -1 
ai<(X+Y+ •• z .. , );:!>TXTX a=a11T,_Ty a=a A ••• 

-1 ZE'Z .)T z € (X+Y+ •• +Z+ ••• ) . z 

The function T-l for any Z corresponds to the PL/I function UNSPEC which maps a 
value of any tyPe onto the unspecified machine representation of that value. 

Some languages which permit the use of c Union type also provide a 
mechanism for the programmer to enquire exactly which type the current value of 
a union variable belongs to. This implies that an implementation actually records, 
as part of the value of the variable, a marker quantity, indicating the type of 
the value of the rest of the variable: this certainly has advantages, but it 
is not usually done in any COBOL, FORrRAN or PL/I implementation. To discriminate 
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marker, a suitable notation is similar to that for the conditional 
) construction: 

~onsid~ u ~ X ~ ~ 

~ Y then Q
2 

Q_ is a statement to be executed when T ueX 
~- X 

~ is a statement to be executed when T ueY 

--------------------- y 
The relevant axiom is also modelled on the conditional rule: 

If l' /1 11 c:X{S1 }~ 

and Pf\Ul;Y{S
2

}Q2, etc., 

then PA u '(X+Y+,,. ){consider t•. "~"'E. X then Q1 

when Y then Q2 
----------------}~ V ~ 

3. 4 Streams • 

~ 

V • • • 

In representing th<O ''-~ (;1 Gn8 of' input and ontpu.t, :;;, :,; n<>cf'nl '.;o 5ntroduce 
yet another structuring mecbav.i c:m, T-he stream. Tbis inc1u6.•.os and unlf·i8B many 
features usually associated .,_;_u. :~iles, stacks, lis·i;s, and sL;-·ings. f\. 8tream is 
an arbitrarily long sequence o:t elEcmen-ts of some type, wi-th at mosf; o;.H element 
(the current element) accessiLJ.c.:, e:t e~w one time. 'T'here io a.~oum<o<i ·i-.o :oe a 
means of testing '>l•ether a str ,;:;>I•. ;;_8 '' P!'lpty" (end-of· file cur,(Li:'oion) . 'rhe basic 
operations on streu:~aG a:re; 

output: Add an element of appropriate type at the end of f;he·stream 
input : Remove an element from the beginning of the stream 
backspace: Remove an element from the end of the stream. 

IfS is a stream, and xis a potential element of' the stream, we write (SIIx) for 
the stream which results from outputting x at the end of' S; and we write 
(xfiS) for the stream consisting of x followed in sequence by the elements of's. 
We write X* as the type of the stream, all of whose elements are members of x. 
The following axioms apply. 

l. null stream f X* 

2. X(XI\SEX* .::> (x !IS) k X* A (S!ix)<,. X* 

3. The only members of X* are as given by rules l and 2. 

4. (x \IS) = (x'l/ S') :::. x=x' 1\ S=S' 

5. (s/jx) = (S'jjx'):;; x=x' '' S=s' 

We are now in a position to define axioms for inpUt and output: 

6. 

1. 

8. 

P{output f.£!! S}3 8
0 

(S=(S
0
II f

0
)-" P

0
) 

P{input x on S}3S ,x (S =(xijS)AP) 
- 0 0 0 . 0 

P{backspace x on S} 3 S ,x (S =(S 11 x) • P ) - ·ooo "o 

4. Advanced features. 

The previous sections contain a set of axioms suitable-for defining fairly 
simple languages, which are nevertheless sufficiently powerful to express practical 
algorithms in reasonably concise and efficient form. This section explores some of 
the more advanced features of modern languages, with a view to elucidating their 
axiomatic basis. 
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Procedures. 

As defined in ALGOL 60, a procedure call is exactly equivalent to the 
insertion of a (possibly modified) copy of the procedure body in the place of the 
call. This means that the results of a procedure call are identical to those 
of the procedure body, provided the preconditions are the same. Thus if we 
introduce the notation 

n=B 

to signify that n is a procedur~ identifier of a procedure with body B, then we 
can readily adduce the following rule .of inference: 

1. if loP{B}Q then 1-PIIn=B{call n}Q 

Now all that is required is some means for establishing the truth of "n='B". 
This is done in ALGOL-like laneuages by n procedure declaration in the head of 
a block, Thus we postulate axioms of the form: 

2. If~P 1\n=B{Q}R then 

1-P{ (procedure n;B;Q) }R 

where n is not free in P or R. This approach is similar t,c ·;·,i"'''' :";:n· .,;;[Ho>· 

declarations (2.5), and invites .a similar convention for f'c•<..:: ,,-v-.l,..L:i .. ): .• 

In most languages, some means is provided for passl;::" parm.wo·::c,;_'8 ·•en a 
procedure at time of its invocatio.:. There are many diffet·•:,-,·:; nc:ch.:.·•' '"""' for 
parameter passing, but the name parameter mechanism seems t:t•:· ,_ '-'•l"(•'-••c::: 0>1•\ most 
general, in terms of which many of the other mechanisms car; l·c defin•c1. If we 
use the convenience of lambda-notation, to express functional abstraction, the 
following axiom appears to be sufficient: 

-,f: .. )A '•!' :lic,;lc,_-, 

3. if 1-P{B}Q then 1--PJ'\n.Xx~y, .. )B{call n(x,y, .... )}Q 

In the second assertion the occurrences of x,y, ••• within Bare assumed to be 
"bound" by the occurrences within the preceding lambda-brackets, whereas 
the occurrences of x,y, ••• as actual parameters are free, as are the occurrences 
of x,y, ••• within P and Q. 

The relationship between the procedure identifier n and the procedure 
A(x,y, ••• )B is established by declaration: 

4. If ~PI\Il=},(x,y, ... )B{Q}R 

then 1- P{procedure n(x,y, ... ); B; Q}R 

The axioms given above may be applied successfully to procedures in a 
language like FORTRAN, which makes no attempt to define the effect of recursive 
procedure call, To make it possible to prove truths about recursive procedures, 
a slightly more complicated rule of inference is required, just as a slightly ~ 
more complex storage control mechanism is required to implement them. 
In this mQre complex formulation, the successful working of the internal recursive 
calls may be assumed in the proof that the procedure body as a whole will be 
successful: 

5. If from 1-P{call n(x,y, ... )}Q it can be proved that P{B}Q 

then 1- PAn=).,(x,y, .. )B{call n(x;y; ... )}Q 

The possibility of mutual recursion adds yet ~her complexity to the 
situation, The axiom above must be strengthened still further: 

'/<'. 

6. if from 1-PA~all a(x,y, ... )}RA 

and ~PJcall b(x',y',,,,)}RB 

it can be proved that 

~-PA{A}RA and ~PB{B}RB and .... 

f 
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then PJ!'a=)...(x,y, ... )AA b='l\(x',y 1 , ••• )B ••• {.£!!:!!_ a(x,y, ... )}RA 

Mutual recursion also requires a strengthening of the rule for 
procedure declarations:. 

>. 
7. If~PAa=JM: •• )A"b= A( ••• )B. ,{Q}R 

and a, b, ••• are not free in P or R, 

then ~P{ (p;r_qg~.fulr~ a( ••• ) ;A;procedure b( ••• ) ;B; ••• ;Q) }R 

4.2 Record Handling. 

The axioms and rules of inference given so far do not make any particular 
assumption about the storage allocation method used in e.n implementation. All 
the axioms except those permitting recursion, and equally true of PORTRAN, which 
generally uses static allocation, and of ALGOL, for which a ste.cked technique 
is often used. It is only the recursive axiom which differentials between the 

)J two approaches. 

In addition to the stack, several modern languages permit an even 
greater degree of flexibility in the dynamic allocation of st.oraGe, and for 
deallocation they use possibly some entirely invisible 11garbe.2:•:' c;.]J .• ,c·Vion" 
process. In such a language, the set of storage elements I ":.",··:c'.t'''"" j 'lh5.ch 
have been alloeated at any given moment of program executin, rev.·•. c;. fi.ni>; Hbt 
C, but the program at any time may add a new element to th'; '·'·~··,; iG;·:•. ~t.·)!:•,: " 
"reference" to this new element in a suitable pointer (or r<"·.'el eEce) H•.:l'i.c·.;:·-'-~ '~. 
The statement which achieves this effect may be given the f·:·::~'·' 

r~C 

This statement obviously changes the current values o.i' tlls vu.:•·j.~ble r 
ani of the class C; its effect may be described in a manner similar ·~o assignment: 

P{r new C} ~r ,C • C= C +{.r} -y"C 0<\P -- ;rvo. o ··"oo 

where P is like P except that it contains free occurrences of 
•0 

r and C wherever P contains free occurrences of r and C. 
0 0 

.4. 3: Paralle,;tj_l§!:l• 

Certain modern languages claim to permit the programmer to specify that 
two or more portions of program are to be executed in parallel with each other. 
The nature and implementation of this feature are still problematic; and its 
rigorous definition is rather difficult, since parallelism apparently permits the 
specification of programs with inherently unpredictable results. Since it is 
very difficult to prove anything about the properties of unpredictable programs, 
it would not be surprising to find that any axioms which claimed to apply in 
such cases would be very complicated, and almost impossible to understand and use. 

If the main purpose of using a programming language is to obtain programs 
which can fairly readily be proved to work, it would seem to be desirable to 
restrict the facility for invoking parallelism to cases in which the unpredictability 
is absent, or at least reasonably circumscribed. In the case of parallel 
streams of computation, this can be achieved by ensuring that the parallel streams 
contain no free variables in common; or at least that no assignment or input/ 
output operation is carried out on any variables which they have in common. 
Introducing the notation (Q//Q') to indicate that Q and Q' are to be executed 
in parallel: 

1. If t-·P{Q}R and I-P'{Q1 }R', 
and no left-hand variable of Q is free in P 1{Q'}R' 
and no left-hand variable of Q' is free in P{Q}R 
then P~P 1 {(Q//Q')}RAR 1 
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assumed that the definition of "left-hand" variables of a piece of 
!eoare.m is achieved by a purely syntactic scan, very similar to that used to 

the "free" variables of a text. 

This form of parallelism may be used quite successfully by a 
programmer to achieve concurrency of computation and input/output. It 
does, of course, completely exclude any possibility of indeterminacy, since it 
does not permit any communication whatsoever between the parallel processes. 
A useful extension to the simple facility would be to introduce such 
communication, provided this still permits proofs to be constructed about 
the performance of the program. It appears that this can be achieved by 
using the input/output mechanism, ani linking the output of one parallel 
process directly into the input of another. However, further discussion of 
this topic would be out of place in this paper. 

4+ Jumps. 

It is notorious that ALGOL programs containing any significant number 
of go to statements are remarkably difficult to understand and verify. It 
would seem that proofs of the correctness of such proerams will be equally 
difficult to construct, and the axioms governing such proofs will be 
correspondingly complicated. This complexity is mainly due to the 
"linearity" of program texts when treated by conventional syntactic techniques. 
If the program is organised as a flowchart, there· is no problem with jumps, 
as Floyd has shown. Furthermore, there is not much difficulty in the case 
of a "flat" language such as FORTRAN or machine code which do not have any 
"nesting" of statements, nor do they permit jumping out of a block. In such a 
language, a fairly simple approach may be taken. 

Let us deal first with a sequence of instructions T which contains 
exactly one conditional jump instruction and one label. 

Let H • tf 
X be the sequence of statements up to g B then ££ to A 

Y be the sequence of statements following "if B then ££·.!?.£.A" 

Z be the sequence of statements following the label "A": 
W be the sequence of statements :C61\I.g.:wh\g.. up to the label "A"· 

1, If f..p{X}Q and 1-Qi\B{Z}R and 1- QI\-.B{Y}R' and P{W}O 1 and Q{Y}R 

then P{T}RvR' 

If there are more than one conditional jump to A in a sequence T, the preconditions 
of rule l must apply to every one of them. If there is more than one label, 
yet further complexities arise. The unravelling of them is left to a reader 
with a sufficient enthusiasm for jumping, 

Conclusion. 

'l'he paper has adduced a number of axioms which define the dynamic 
properties of a simple but complete and powerful programming language. It is 
a considerably smaller language than those which are currently fashionable. 
However, many of the features of more sophisticated languages may conveniently 
be regarded as definitional abbreviations of material which could have been 
expressed more diffusely in the primitive language. The introduction of useful 
definitional abbreviations, and the proof of powerful metatheorems about them, 
is one of the main avenues for advance in mathematics; and one would hope to 
see the same possibility for development in programming languages, - , 
particularly those which permit the user to define new notations and new inter
pretations for existing symbols. 
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We have not made any attempt to prove the consistency, completeness, 
Jcpendence of the proposed axiom set. A m~re v.rgent task is actually 

5e the axiomatic proof technique to develop a library of useful software 
· correctness has been put beyond reasonable doubt. It is only by 

;ilding on a foundation of reliable programs and theorems that we can hope 
extricate ourselves from our present software difficulties, and progress 

in our capability to use a computer effectively as a partner in problem
solving activity, 

.. 
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