
1

/

•

·:I

~

~!b~-

.THE AXIOMATIC METHOD:

DATA MANIPULATION

C,A.R, HOARE,
/),-:_ c 6~

SUilllllS.I'y.

This paper illustrates the manner in which the axiomatic method
may be applie~ to the rigorous definition of programming languages, It
deals with the definition of the primitive types of operand, and the
operations which may be performed upon them. This is the area in which
programming languages are normally most machine-dependent; and yet the
axiomatic approach gives a largely machine-independent solution of the
problem. Furthermore, the solution appears to apply to broad classes or
language and many varieties of implementation. It seems, therefore,
highly suited for le.nguge standardisation purposes •

..
'

••

/

/
/

··-·"'

Introduction.

There are many purposes for which the description of a programming
language is required, and it is usual to construct different types of
description for each purpose. For example:

a teaching manual, for those learning to program;

a reference manual, explaining more advanced details
to the initiated programmer;

a programmers' guide, describing the use of a
particular implementation;

an implementors' manual, containing suitable
instructions and hints;

even the language compiler itself may be regarded as a form of language description -
indeed, the only one which is meaningful to a machine.

This paper deals with yet another purpose for which a language description
is required, namely the standardisation of the langaage across many implementations;
and a form of description which is suitable for this purpose is rather different
from the forms which are familiar from their use in other cont~s. A programming
language standard, like standards for other artefacts, is intended to lay down
a set of necessary properties of a certain class of products (implementations);
and these conditions must be satisfied by any product which claims to conform to
the standard. Most standards will leave the product designer considerable freedom
in specifying its non-essential features, and will even permit variation within
predefined limits for the essential design parameters. Similarly, a language
description formulated for language standardisation purposes must permit reasonable
variation of implementation details, so that the language can be successfully
implemented on a variety of computers, using a variety of implementation techniques.
However, this variety must be constrained within certain bounda, since otherwise it
would not be possible to write programs which could be accepted and run successfully
on all implementations,

Most descriptions of a standard are carefully and fairly unambiguously
expressed in an ordinary natural language, supplemented by a few formulae, tables,
and diagrams; and they use terminology which is familiar and widely understood
in the relevant field. However, in the field' of programming languages, there has
not yet developed any established terminology, as will be revealed by a comparison
of the descriptions of existing and proposed language standards. Furthermore,
the larger programming languages are probably more complicated in their struc~ure
than any other product which has ever been considered as a candidate for standardi
sation. A need has therefore been expressed (1) for some rigorous or even formal
technique for describing a language in a manner suitable for standardisation. It
has been suggested in a previous paper (2) that the axiomatic method, ns practiced
by geometers, mathematicians, and logicians, may be well suited for this purpose.

In the construction of axiom sets modelling the essential features of
programming languages, the following design criteria are relevant:

1. The axioms should not place constraints on language
implementors which might be unacceptable for
certain hardware designs or configurations of
equipment.

2. The axioms should be sufficiently deterministic
for the programmer to be able to secure the
results which he wants on any implementation
which satisfies the axioms. ' •

3. ~e axioms should be formulated in such a way
that meny of them will apply unchanged to many
data types in many programming languages. In
this way it should be possible to gain an insight
into the genuine similarities and differences
between the various languages.

)

/
""': .. ,.., - 2-

4, The axioms should be reasonably independent of each
other, so that the language designer may freely
discuss one axiom or a small group of axioms in
isolation, without fear of unexpected interactions
and alterations in other parts of the language.

5, The primitive (undefined) terms in the axioms
should correspond with our pre-existing intuitive
understanding of the behaviour of programming
languages, and the axioms should recommend themselves
as "self-evident" to one who is fa.milia.t' with
programming. This will ease the task of
checking the correctness of the axioms themselves,
and of using them in constructing proofs concerning
the correctness of programs.

6, The number of primitive concepts and axioms should be
kept to a reasonable minimum.

/

2. Data Types (General),

The easiest and most obvious application of the axiomatic method is in
the definition of the primitive operations on simple values of the various types.
This is also the area in which there is the greatest need for a machine-independent
techniques for controlling machine-dependent phenomena. Sets of axioms which
define the structure and behaviour of a simple type will bear a ciose resemblance to
axiom sets already familiar to mathematical 1ogicians, with changes made necessary
only by the finitude of computer l'epresentations of the values concerned• A
suggestion for using axiom sets for defining the primitive operations of a
programming language was independently made by Laski. (3)

A data type may be regarded in the traditional manner of abstract
mathematics as a set of objects over which certain operations are defined, In
general, on a computer, the built-in operations take their operands nnd deliver
results within the same date. type; this corresponds to the familiar mathematicnl
practice of defining closed systems, and ~iving an axiomatic description of the
properties of the operators which are defined within that system and nut outside
it. The concept of a type-transfer function corresponds to the concept of a
homeomorphism between closed systems, preserving some part of the structure of
the !lapped system. Thus languages which permit operations on operands of "mixed"
type are preferably regarded as merely definitional abbreviations of a language
in which all type-transfer functions have been made explicit.

In many branches of abstract mathematics, it is usual to define certain
very general properties of every system in general (e.g. the axioms of closure
in topology) and then to supplement these by specifying additional properties
for certain specific systems of interest. In the same way, it is possible to
list certain general properties of the operators (+, x, etc.) which apply to all
data types, and then to give a few additional axioms to differentiate the
individual types (real, integer, etc.). Thus many of the axioms will be
independent not only of any particular language, and of any particular machine,
but also independent of any particular data type.

2.1 Ordering.

A che.racte~istic feature of most data types is that there is defined
over them a partial or total ordering relationship, which we shall denote ~
In the case of most arithmetic data types, this ordering corresponds to the
natural numeric ordering; in the case of complex numbers, it must be interpreted
as an ordering between the moduli of the numbers. The axioms of ordering are
familiar:

01, X:SX

02. xsy" y:~>z ::; xsz

03, x~y 'V y~x

(reflexivity)

(transiti~ity)
(total ordering)

The following axiom is not vali . for complex numbers:

04. xsy " y.sx x=y
The following definition will be found usefUl:

05. x<y = .:1,1' xsy ", y,;x ___ _.,...,..

I''
- 3 -

2.2 Arithmetic.

Floating point arithmetic is well-known to be only an approximation
to the arithmetic of mathematics and analysis; in other words, it satisfies
only a selection of the familiar and traditional axioms. For example, in the
case of addition and multiplication, commutativity is the only property which
may be immediately claimed for computer a~ithmetic:

Al. xty = ytx

A2. X)<'y = y:X;;x

In order to reestablish the familiar identities of associativity and aistributivity,
it is necessary to introduce the concept of approximate equaly (~7. The exact
interpretation of approximate equality will depend on the characteristics of each
particular data type: for example, in the case of integers, approximate equality
is exactly equivalent to genuine identity, However, even when approximate
equality is used, it is necessary to make a stipulation that all operands and
results in the following axioms exist and are strictly positive:

A3 • x=y:;:, X;l}fy

A4. X y X

A5. (x+y)+z:!: x+(y+z) (associativity of addition)

A6, (xJ<:y)xz-! x)((y)lz)

A7. xx(y+z)~x.xy + ~z

A8. (x-y)+y~x

(associativity of multiplication)

(distributivity)

A9. (x/y) ~y :!!.x

Axiom A9 does not apply to integers, for which the I operator is not defined.
In order to characterisu the properties of arithmetic on nonpositive numbers, it is
necessary to provide rules for converting it to positive arithmetic, by suitably
distributing the monadic negation operator:

AlO. -(-x)=x

All. x+(-y)=x-y = -(y-x)

Al2. (-x)-y = -(x+y)

Al3. x.X(-y) = -(x;:y)

Al4. xo!y;; -x~-y

In all these axioms, the existence of the terms is a precondition of the
validity of the equation. In formalising logical deductions from these axioms, it
will be helpful to adopt a logical system which permits use of a functional notation,
but does not assume that an expression necessarily has a result: although if the
result exists, it will be unique. A statement which refers to a non-existent
object or a non-existent operation may be regarded, therefore, as vacuously true.

2.3 Conste.nts.

In each data type there are certain elements which uniquely satisfy certain
propositions. It is usual to desi&~ate these elements by the same conventional
symbols for all types, even though the types are disjoint, and the element denoted
is in fact different for each type. Thus there is a systematic ambiguity
for these symbols as there is for the operator symbols. In a programming language,
the chosen symbols are called "constants". The commonly encountered constants
are zero and unity; also it is useful to name the maximum and minimum values, with
respect to the ordering relationship defined over the type. These "constants",
when accessed from within a. program, can provide a useful "environment enquiry".

IS.· x+O = x

K2. xi'O = 0

K3 •. X.l:l = X

K4. x:>max

K5. minsx

K6' 0<-1

In types for which a given constant does not exist, the axioms which mention it may
be regarded as vacuously true.

~

- 4-

Finitude.

In proving theorems relating to elements of any given type it is
essential to be able to characterise the totality of elements of that type in an
exhaustive .but exclusive fashion. . In the case of integers, this is commonly
done by an axiom of induction; and we use here a very similar method to enable
inductive proof techniques to be applied to elements of the other types as well.
First, a successor relationship is defined: x is succeeded by y (XSy) if it is
strictly less than y, but there is no element between x and y. Then the set S*x
is defined as the set containing x and its successor(s), and the successor(s) of
its successor(s),and so on. Finally, it is possible to state that xsy only if y
belongs to the set S*x.

Fl. XSy = df x<y/'l-.3z(x<ZI\Z<y)

F2, XE S*x

F3. y e S*x " ySz ::> z e. S*x

F4. The only elements of S*x are as given by rules F2 and F3.

F5. x<y::Jy f. S*x

Axiom F5 effectively distinguishes computer arithmetic from the arithmetic of the
real continuum, in which the only member of S*x is x itself.

Taken in conjunction with K~ and K , axiom F5 effectively asserts the
finitude of each data type; since it impli~s that by starting with min and
repeatedly taking all successors of what we have already reached, we will eventually
in a finite number of steps, reach every element of the type, including max; '
and this has no successors.

3. Particular data types.

In addition to satisfying the general axioms listed in section 2, each
data type will satisfy further axioms, distinct from those satisfied by other types.
These axioms relate mainly to the interpretation of the approximate equality (~)
and the successor relationship (S).

3.1 Integers.

For the integer type, it has been stated that approximate equality cannot
be regarded as distinct from identity; furthermore, the successor of a number is
obtained by adding one to it:

I
1

x!y :>x=y

r
2

xSy :)y=x+l

These axioms, in addition to those which have gone before, seem sufficient to
characterise all the machine-independent aspects of computer arithmetic on integers.
However, certain machine-dependent aspects can be specified by means of supple
mentary a.xior.us. For example, if a machine uses"sign-plus-modulus" representations,
it will satisfy the first of the following axioms; but if it uses "twos
complement" it will satisfy the second:

I
3

max = -min

I' min = -max-1
3

An even more important choice in an implementation of integer arithmetic
is the treatment of overflow. In some implementations, an operation which
overflows will yield no result whatsoever; and in otpers, an overflowing operation
will yield a result computed by modul~ arithmetic. A distinction between these
two types of implementation may be made by a choice of one of the following:

r4 min = max+l

I' y = x+l."~XSy

__,J

.::,·' .. ;/.
~

L

I
- 5-

3.2 Floating point.

For floating point· arithmetic, the concept of approximation
is of vital importance. In fact, each computer "real" number may be regarded
as an approximation for a certain range of genuine real numbers which neighbour
on it. In standardised floating point arithmetic, the width of this range is
roughly proportional to the absolute magnitude of the number. In axiome.tising
the concept of a "range" surrounding each element, it is desirable not to have to
appeal to the existence of objects outside the data type itself. This can be
achieved by postulating that the floating point numbers have· a certain "density";
i.e., that each number is sufficiently "close" to its successor. This can
be done by postulating a floating point constant known as "span" which has the
property that there is a distinct number lying between any number and the result
of multiplying it by span. It is obvious that the smaller the value of span,
the more dense and accurate in general is the floating point representation.
Thus an implementor will try to quote smallest possible value of span, which
will therefore usually be a number just greater than unity; in fact, probably
the successor of unity. The relevant axioms are

Rl O<x "xSy ::l ysx X span

The concept of approximate equality may now be explained in terms of one
side of the equality being witltn the "span" of the other:

R2 O<x ~ O<y ·I x ··: y _:;. x<y)(span A y<xx.span

These three axioms, together with those given in section 2,appear to
characterise most of the machine-independent properties of standardised floating
point arithmetic, ie those properties which are independent of the range of
exponent, length of mantissa, and number base of standardisation.

Axioms for defining floating point arithmetic have previously been
proposed by A. vanWijngae.rden; these axioms, however, do not describe a closed
system, since they depend on the preexistence of the mathematics of the real
continUJ.llll.

3. 3 Fractions.

Most computers, and several programming languages, permit the programmer
to use fixed point arithmetic on fractions between -1 and +1, In fractional
arithmetic, the concept of approximation is also relevant: but in this case, the
size of the range of approximation surrounding each number is a constant, independent
of the magnitude of the number. In fact, this range is equal to the distance
between any two numbers, ie., the "step" which takes one number into its successor.
These facts are summarised in the following two axioms:

Pl, xSy • .')y=x+step

P2. x<t'lAy<u~.x "·': y -~· xsy+step /I ysx+step

In fractional arithmetic, multiplication must be approxime.tive, since, if
the result is to be of the same precision as the operands, there must be some
truncation or round-off error. Consequently associativity and distributivity
rules for multiplication are approximate. However, addition and subtraction are
completely accurate, and therefore the normal rules of associativity and
cancellation may be established as identities:

P3. (x+y)+z = x+(y+z)

P4. (x-y)+y = (x+y)-y = x

3.4 Complex Arithmetic.

One method of defining complex arithmetic is to construct a complex number
as an ordered pair of reals (known as its real part and its imaginary part), and
then to use the familiar rules to give a method of computing the results of the
arithmetic operations, for example:

real part (x+y) = real part (x) + real part (y)

imaginary part (x+y) = imaginary part; (x) + imaginary part (y)

_.)

/. -6

///,
an independent axiomatisation of complex 1 // However, t.here i~ eome advantage in giving

"'·' · / arithmetic, for the following reasons:

il·f 1. An implementation of complex a1·ithmetic may prefer to adopt a

.1'''
:':it

representation of complex numbers which is not the same as a pair of reals. For
eiample, it may be economical to represent them as a pair of mantissae sharing
the same exponent.

2. Even if complex numbers have been implemented using the standard
constructive technique, it is interesting to have an independent criterion for
acceptability, and to attempt to prove that the construction is valid, in the
sense that it satisfies this criterion,

Complex arithmetic satisfies all the axioms for real arithmetic· except
04, provided that the notation xsy is interpreted as the ordering relation on
the modul.i of the two numbers. A distinguishing characteristic of complex
numbers is that there is an operator'\. with the following properties, comparable
to those of the negation operator Al0-Al4:

Cl. thx) = -x

C2. '(x+-y) = hx)+hy)

C3. xX(-,y) = ,_(x~y)

C4, X'SlXSX

3.5 Characters.

In some computer languages, the concept of e. character is accepted as e.
primitive date. type, or as the primitive constituent of structures such as strings.
There are no intuitively appealing operations which can be performed upon
characters; but it is useful to define a total ordering on the character set,
and to ~sure that the set is finite. This can be done by postulating only
the axioms 01-05, Fl-F5, and if desired, K4 and K

5
•

3.6 Boolean Algebra.

The familiar Boolean type of ALGOL 60 can be seen to satisfy all the
general axioms of section 2, provided that following interpretations are given:

~~,..,

1. x:;y stands for x)y

2. x+y stands for r.ty and xXY' stands for x~y
3. approximate equality is interpreted as exact quality

4. min=O· stands for false and max=l stands for true

Note that A7-Al3 are vacuous for the Boolean type, since subtraction, negation,
and division are not Boolean operations.

The following supplementary axioms appear to. be valid-

Bl. x:!-y .::>x=y

B2, x+l = 1

B3. x+· .(-.x) = 1

B4. xxhx) = 0

B5. x+(y!lz) = (x+y) X (x+z)

B6. min=O 1\ max=l

B7· x=Ov x=l

In more recent programming languages, the programmer is given the
capability of performing logical operations on words of the store, taking advantage
of the fact that a word is an array of bits, and that hardware instructions are
available to operate simultaneously on all the bits of the word. These operations
are often regarded as highly machine-dependent, since their results depend rather
more immediately upon wordlength than is the case with the normal-range of integers.
However, if the axiomatic-method is used, there is no problem in leaving the
wordlength indeterminate, and yet prescribing in every other way the behaviour of
the values under the usual operations. In fact, the relevant axioms are exac~lY.
those of Boolean Algebra. These can be obtained (with some redundancy) by om1tt1118 -

'>f{' - 7-

exactly two axioms, namely 03 (total ordering) and B7, and adopting the
convention that 0 stands ror an all-zero word and l stands ror a word consisting
or all one bits.

It can be shown that if 0 has exactly N successors; ther~ will be 21'N
elements in the Boolean algebra.. The number N is of course, e~l to the number
of bits in the word of the computer on which the algebra is implemented.

4. Transfer fUnctions.

In the previous sections, each set of axioms has been intended to apply
only to values from the single type in question. In order to deal with operations
on values of mixed type, most programming languages specify certain standard
"transfer" fUnctions, which map the elements of one type into another. The'Se
transformations ill!ly be defined axioilllltice.lly in a manner similar to other
homeomorphisms between structured sets in mathematics.

4.1 Integer to floating peint.

The transfer of integers to floating point is known as "float", and has
the following properties:

Tl float (O) = 0

T2 float (1) = 1
T3 float (i + j) :::: float (i) + float (j)

In an, ;implementation in which the size of the floating point mantis sa is greater
than that of an integer, the approximate equality of the third axiom may usually be
strengthened to rull equality. In this case, the three axioms give a complete
characterisation or the float function.

4.2 Floating point to integer.

The primitive transfer fUnction is taken here to be the "entier"
fUnction of ALGOL 60.

T4 x-:sfloat(entier(x))~x

4.3 Relational Operators.

In a language such as ALGOL 6o, the relational operators < and = are
defined to give as result a value of' type Boolean. Thus the following axioms
are required

T5 (x=y)=l .:; x=y

T6 (xsy)=l :; x'5y

·Note that the bracketed occurrences of the = and < signs are new symbols
representing dyadie transfer functions. They have a different meaning to the
other occurrences; and consequently the axioms are not so tantologous as they appes

It is unfortunate that in some implementations of integer arithmetic,
axiom 6 is not true, and must be replaced by

T7 (xsy)=l? O<y-x

This gives a different answer (or fails to give an answer at al~ in the case of intege
overflow. ·

4 .• 4 Integer to· Bool e an Algebra.

One of the useful transfer functions betwee~ integers and the elements of
a Boolean algebra is cne which ranges over the successors of the zero, of the algebra.
This fUnction could be named "bit", and in a normaltiflplementation it would map
an integer i onto a word which had a 1-bit in the i bit position, and zeroes
elsewhere. A more machine-independant description may be given as fellows

- 8-

T8 ld..swordlength? 0 S unitset(i)

T9 i;i!j..Junitset(i)X unitset(j) = 0

Wordlength is assumed to be an integer constant (environment enquiry), stating the
number of bits in the word. of the computer.

Conclusion,

This paper has illustrated the use of the axiomatic method on
·characterising the primitive operations and operands of a programming language.
About 60 axioms have been quoted, covering some five important dat.a types and
some ten relations and operations defined upon their elements, In addition five
examples of transfer functions have been given.

I

No attempt has been made to prove consistency or completeness of the
axiom sets; consistency is verified by any accurate implementation of the
operations; and completeness would be contrary to our primary objective, Even
the usual studies of independence of axioms is not wholly relevant if the purpose
of the axioms is to demonstrate the essential similarities and differences between
the various types of data, and the way in which they are treated in various
languages,

However, further studies could profitably be devoted to the investigation
of the range of possible models for the machine-independent axioms, and the discovery
of elegant supplementary axioms which categorically define each of these models.
It may also be possible to find additional machine-independent axioms, particularly
for real and complex arithmetic, to assist a numerical analyst to prove the
validity of his algorithms.

References.

1 IS 0

2 Hoare, C.A.R. The Axiomatic Method (unpublished)

3 Laski, J.G. Sets and other types ALGOL Bulletin

4 vanWijngaarden. BIT.

