
]

1

J
]

]

]

J
1
.J

' j

J
l
I

.;

J
l
j

i
d

--1

PART II.

C.A.R. HOARE.~· ·
< ""- { ~

67 \

Summary.

This puper illustrates the m0:nner in ·t-rhich the axiom2tic met:tod
mety be u.ppliec1 to t;,e rigorous c1efinition of :programming letnguc,ges.
It does nd:give a full c'.efinition of etny particular langu:,ge, but
rwther e:{plains und Uiscusses u selection of very generul c.xioms.,
•J}1:j.ch •,1ill apply to broac1 clusces of progremuning language.

1
1
]

1.

]

]

]

]

]

1
.J

]
!

J

l •

J

J

l
j

l
j

Intro<Juction.

There nre many purposes for \•Thich the description of CI progrnmming
lcmguc:ge is rec~uirec1, and it, is usual to construct different types of
description for each purpose. For example:

a teadling manuill, for those leurning to program;

a reference manunl, e:~~ng more advanced details
to t;1e initiateJ progrornmer;

a prograxnmers' guide, describing the use of a particular
-'implementation;

an implementors' manuul, containing suitnble instruct
ions and hints;

even t:->.e language compiler itself may be regarded as a form of language
description - indeed, the only one which is meaningful to a machine.

This paper deals \•rith yet <:Lnother purpose for '-tilic'< u language
description is required, namely the standardisation of tne language
ac:ross many implementations; anC: a form of description 1:/hich is
suitable for this purpose is rather different from t:1e forms -,-;hich
are familiar from their use in ot:1er contexts. A programming lar,guage
standard, like standur,ls for ot~1.er artefu.cts, is intended to lay do:-.rn
u set of necessary properties of a certain class of products (implement
ations); and these conditions must be satisfied by any product lvhich
claims to conform to the standard. Host standards 1dll leave the
product designer considerable freedom in specifying its non-essential
features, und lvill even permit variation vithin predefined limits
for the essential design parameters. Similarly, a language descript
ion formulated for langu<.<ge stand2rdisation purposes mus'c permit
reasonable vaziation of implementation details, so L''1at t'1e languwge
-can be successfully implemented on a variety of comz,;,ters, using a
variety of implementation tedmiques. HO\-Iever, this variety must
be constrained wit:1in certain bounds, since othenvise it '.vould not be
possible to lvrite progcams vhic}; coulc1 be accepted and run successfully
on all implementations.

Most descriptions of a standard are carefully and fairly unambig
uously expressed in an ordinary natural language, supplemented by a fe,:r
formulae, tables, and diagrams; 2nd ti1ey use terminology vlhich is
familiar and VIidely understood in the relevant field. However, in the
field of programming languages, there has not yet developec1 any
established termino1ogy, as vrill be revealed be a comparison of the
descriptions of existing and proposed language standards. Furthermore,
the larger programming languages are probably more complicated in their
structure than any other product \<Thich has ever been consi<lered as a
candidate for standardisation. A need has therefore been expressec1
(1) for some rigorous or even formal technique for describing a language
in a manner suitable for standardisation. Part I of this paper suggests
tha_t the axiomatic method, as practiced by geometers, mathematicians,
and logicians, may be Hell suited for this purpose.

In the construction of axiom sets modelling the essential features
of programming lcmguc:ges, tl.1e following design criteria are relevant:

1. The axioms should not place constrwints on
language implementors >Ihich might be
unacceptable for certain hardware designs
or configurations of equipment.

1

]

]

]

]

]

]
'1

J

l
)

]

J
1
J

]

)

]

]

]

J
]

]

- 2 -

2. The axioms s:;ould be sufficiently deterministic
for the programmer to be able to secure the
results \vhich he wants on any implementation
which satisfies the axioms.

3. The axioms should be formuluted in such ;:; uay
that many of them will apply unchanged to
many programming langu2ges. In this way
it should be possible to gain an insight
fnto the genuine similarities and differences
betcveen the v2rious l2nguitges.

4. The axioms should be reasonably independent of each
other, so ·that the l<.mguage c1esigner may freely
discuss one axiom or a small group of axioms in
isolation, cvithout fear of unexpected interact
ions and alterations in other parts of the
language.

5. The primitive (undefined} terms in the a;doms
should correspond vrith our pre-existing intuitive
understanding of the behaviour of programming
languages, and the axioms should recommend
themselves as "self-evident" to one who is familiar
c·rith programming. This 'tlill ease the task of
constructing proofs concerning the correctness
of programs.

6. The number of primitive concepts and axioms
should be kept to a reasonable minimum.

2. Simple tvpes.

2.1

2.2

The easiest and most obvious application of the axiomatic method
is in the definition of the primitive operations on simple values of the
vurious types. Sets of axioms which define the structure and beh<:.viour
of a simple type cvill bear a close resemblnnce to axiom sets already
familiar to mathematical logicians, 1Vith changes m.':lde necessary only by
the finitude of computer representations of the values concerned. A
suggestion for using axiom sets for defining the primitive operGtions of u
programming languuge was independently made by Laski (2}.

The Boolean type.

In the case of the Boo lean type· of ALGOL 60, the Gxioms .are
identical to those which describe Boolean algebr<:l. The axioms are not
in any way tuutological or redundant, even if at first glance they
appear so.

The integer type.

1. true and false are the only truthva1ues

2. '"'-true = false and -".false = true.

3. truel\true =true and true,l\false = false/\true =
false 1\ false = false.

4. falseVfalse =false and truevfalse = falseVtrue
= true v true = true.

The most familiar axiomatisation of the properties of integers is
that given by Peano (3}, cvhich is based on the concept of one mnnber ;('
being the successor of another nQmber x, i.e. x' = x + 1.

]

. ,
__ j

]

J
]

]

]

]

l
j

]

]

J
]
'l
' .)

J
J
J
J
]

- 3 -

The axioms given belml are slightly adapted from those of Peano (3)
since they hcwe to deal with negative numbers and '.'lith the possible finitude
of the number range. :-;m;ever, the basic concept is still th:1t of the
successor; and the fact that x is the successor of y is e:h.-pressed ySx •

It is useful here to introduce the concept of an ancestor or a
descendant '.;ith respect to a given relutionship r. If the relationship
r is that of being a person's parent, then the r-descendants of a person
are his children, and his childrens 1 children and so on; and his r
ancestors are his ancestors in the normal sense. Nore rigorously, x is
an r-a.ncestor of y if there is a sequence x 1 , x

2
, x such that x == x 1 ,

x = y, and x.r xi+l for 1-Si <n. Putting n = 1, ,,;e nobtain the convention
· tf\at everythiflg is :z.ts 0\·m r-<.mcestor. Similarly x is an r-descendant of

y if it is an r-Ldess;endant of y, \·rhere r-1 is the relational inverse of
r. (eg. offspring rather than parent).

These concepts can be axiomatised as follows:-

1.

2.

3.

x is an r-c:mcestor of x '(reflexivity)

If x is an r-uncestor of y and z r x then z is an r-uncestor
of y (closure).

If' x has property P mcO. vrhenever y hus property P and zry then
z has property P tl:e;, all r-ancestors of x have property P
(induction)

4. x r-ly =: y r x

5. x is an r-descendant of y =: x is an r-l~ancestor of y.

In future sections we shall also need further concepts. A relation
ship r is said to be convergent if it is a mcmy-one relationship; and is
linear if it is a one-one relationship. A relationship r is said to be
non-cyclic if there is no set of-elements x1 ,x2 , •••• x such that x r x1
and xi r xi+l for 1 S. i<: n. These concepts may be exf5ressed rigor8us1y:

6. r is convergent =dfVx,y,z (x r y and x r z:Jy = z)

7. r is linear =df both r and r-1 are convergent

8. r is noncyclic = dfVx,y. (xis an r-ancestor of y v.nd y is
an r-ancestor of xO x=y) •

1- ot o t 1 cte 0 ~e t'oo essent< al properties of the i01V ~ ~s easy o c 1<.~rt:.. r1~' !.~.... ... ~ _

successor relationship's, and of integerc;.

1. S is linear

2. x is an integer if and only if x is an S-ancestor or an S-

3.

4.

s.
6.

7.

descendant of zero (0)

-lSO & OSJ.

X+ 0 =X

ySy' & zsz' .:::> (z = x + y _ z' = x + Y')

X~ 0 = 0

ysy' & z' = z + xO(z = x•y =: z' = x><y')

Tc1.e remaining arithmetic operations cc.;:o be similarly described.

•

1

1
j

....
l
j

]

J
]
] 2.3

]

]

]

]

]

]

]

l
.J

1
.J

J

- 4 -

The main problem is constructing axioms for computer aritlornetic is
to ilvoid milking c.ny presuppositions on the rilr.ge of integers provided by
an implementation, and to permit a variety of treatments for integer over-
flO'.r. For example, many implementc;tions '.-!ill fail to detect integer
overflo'J, and Hill use moc1uJo arithmetic throughout. Other more
sophisticated implementations vlill detect integer overflow, and jump to
some interrupt program to take alternative action. Finally, one should
not rule out the possibility ti<at an implementation places effectively
no bound on the size of an integer.

It <;>.ppears t~1.at the axiomatic meti1od not only permits the decision
on these points to be made by an implementation; but it also permits the
implementor to describe his decision in terms of supplementary axioms,
which malce the previous general axioms more categoric3l, at the expense
of making t~1em more machine-dependent. For example, the decisions c1escribec~
above can be embodiec1 in a choice of one of t}le three follo'.-ling <>xioms:

8. S is cyclic (modulo arit;cmetic)

S. intmin and intmax are integers but t:<ere is no integer y such
that ySintmin or intmaxsy · (finite range arithmetic)

10. S is non cyclic anu for all x there is a y such thut xsy and
u z such th2..t zS;-c (infinite range) .

T~·,e reul type.

Axioms ccescribing the necessary properties of floating point
aritrunetic can be constructeu fairly simply in terms of integer aritl1metic,
using u technique similar to thut proposed by Peano to define the aritlt-
metic of fractions. :101-rever, it is essentLll to recognise that a flo<>ting
point number is not itself a fraction, but only iln appro;dmation to a
fraction a/b; in fuct, tl'le same flouting point number is an approximc;tion
to mcmy differen'~ fractions. If, for example, an implementation uses
a 3-digit decimal mantissa, the number .l2310o is an approximation for
the fractions: '

1226/10000, 1234/10000, 123/1001,

an~..1 even 123/1000

If x is a
the notion th<.Lt
b are int·=gers.

floating point number, 1ve write x = A(a/b) to express
x is an appro;dmation of the fraction a/b, '.vhere a and

The properties of A are described by axioms:

made
real

1. A is a many-one function

2. A(a/b) = _t(cxa/cxb)

3. x = A(a/~) & x = A(c/b) &a~i.$.c:>x = A(i/b)

4. If x,y,
exist
& z =

und z ure
integers

A(b/c)

floating point, and x = y + z tl~en tloere -:
a,b,c such t~1at x =A((a+b)/c) and y = A(a/b)

5. If x,y, and z are flo8ting point and x = y X z then there exist
integers a,b,c,d, such that :;: =A((a x b);fc x d)) and y =
A(a/c) and z = A{b/d)

A proposal for the axiomatisation of floating point 21rithmetic uas
by van Wijngaarden (4). Tl<is 1Vas bused on the arit:<metic of the
continumn rather ti1un t:-,at of integexs or fractions.

•

J

1
j

1
]

J
]

]

]

l
}

]

]

J

]

]

]

]

]

J

J

- 5 -

3. Sem<-1ntics:

3.1

'r~1e primitive oper<Jnds and Ol:>er~~tions of ;1 scientific progr.::lffiffiing
lan9uuge are intenJcJ to bel"\::>.VG like the f;_l.ffiiliur objects of m;J.t"'1em ... cticc;
and it is not surprising thut t·he axioms l·ih.ich describe their beh::.viour
should ~1:1ve u fairly f,.J.mi liur appe<.lr;Jnce. noHever, in t]~e uxiomi..:ttisation
of tl1e semc.ntic und ,:tyn:J.mic properties of u progrQffll11ing lc::.ngu:_ .. gc, t~1ere
is not such an Gst~J.blis~led tr~clition to dr<:l1:l upon, nnt.l tve must rely more
on intuition for the formulation ~nd verific0.tion of uxiom sets.

In t~ris section, 1;Je ·consider the st;:.tic properties and structure
of a program, excluding consideration of its dyn~:-mic execution.

Progr&m Structure.

In dealing wit;o t~.1e structure of progriuns, it is very inconvenient
to regard ti1em merely c<s lineur streams of Characters. It is more cipprop-
riate to consider them as tree StruCtures, in whiCh t'he relationships
bet1~een the meaningful parts and tl;e whole have been made explicit, as is
done, for exumple, by Cl syntilctic snalysis. in this w11y, it is possible to
sep~J.rate a discussion of semantics from the details of syntc.1x and not<J.tion,
as wus suggested by i··IcCurthy (5) in his proposal for an "abstract syntax".

As an example of the correspondence behveen a program text c,nd its
tr~e structure, consider t:te :£)1-lrase:

a + b x sinh (-x)

whicls. is pictured as u tree in figure 1. EaCh Citcle .represents a
meaningful subp~1rase of this phrase; and e<J.Ch p1.1rase is connected by a
line to till its irrunedi21t·e1y Constituent Subphru:;es. There is no need to
impose a limit to the number of brunChes eman<:1ting from e.J.ch node, but in
practice, most phri.J.ses will have either twO COnStituents, or one constituent,
or, of course, none.

]
..
j
j

'j

l

J
1
j

J
]

J
]

J
]

J
1

J

J
]
~~

• l 3. 2

]

J
-~

)

'I
I

- 6 -

In order to deal with the structure of phr<Jses, '"e introduce a
, primitive relation C 'vhich holds bet\·reen two phrases which are acljo.cent

nodes on some branch of the tree; thus xCy indicates that nodes x :..nc1 y
~re connected by a single line leading upward from x toy i.e., xis an
(immediate) constituent of y. We <Jlso have the concept of one phraae
being contained in another i if x is contained in y, this mec.ns t~-·c:.t
tl1ere is a series of lines (a path) leading up<-rard from x to y. Obviously,
x is containecT in y if, and only if, it is a C-c:ncestor of y.

1. x is_ contained in y = df x is a C-ancestor of y.

The mc.in property of the C-relationship is that each phrase is a
constituent of at most one other phrase; that no phrase is contained in
itself. These facts are emboilied in the axiom:

2. C is convergent and non-cyclic.

It 1·lill be helpful here to introduce a fe1-r auxiliary definitions and
not.:o:tions.

3. An atom xis a phrase wit;, no path leading down from it. i.e.
there is no y SUCi1 th;,,t ycx.

4.. A disjoint phrase xis a phrase v:hich is not a part of any other
p~1rase, i.e. there i.s no y such that xcy.

5. The whole of a phrase x is defined as the disjoint phrase 1vhich
contains it. i.e. x is contained in the whole of x, and the whole of x is
disjoint.

6. A monadic phrase x is one which has only a single constituent y.

7. A dyad_ic pc,rD.se x is one '·ri1ic:1 has ex;octly t'.·!O immec<i~.te
constituents ".\r~1.ich .'3-re }:no';Tn a.s its left constituent c:.nJ. it:::; ria:1t constituent.

We shall often use t>.e not.::.1tion x = y to inCic3.te t}:;;:ct x is mona.::~ic ..
anG v ia its only constituent; or t~·1e notation x == y. z to in~..licate t:.v.:,t x is
Uyoetic an<.J y is its Ieft constituent .:...n~..i z is its rig~1t co~stituent.

It is obvious that the C-rei2.tion is a many-one rather than a one
one relz.1tion 1 since o phrase may ~1a.ve mt:i.ny constituents. Functions "~:l~1ich
act as inverses of the C-.operation a.re ·known o.s selectors/ i.e., if S is a
selector t;1en S (x) C X for all X.

Examples of selectors are:

1. The function U \V'hich mo.ps c:;. monadic phrase onto its unique
consituent.

2. The functions I{ <:.~nd T, Vlhich map a dy~'~dic phrase onto its left
and rigl1t constituents respectively.

• 3. The selector 11 body11 vlhich m.3ps a block onto t~1e state.ment or
se~~uence of statements \V'iJ.ich form the body of the block.

sem.~ntic cCltegories •

In t1"1e description of a programming la.ngunge, we are concerne-:~ \Vith
the behaviour and properties of tbe individual phrases of each program.
Phrases with essentiil"ilv similar semantic properti-es mily be groupeJ.together
in semantic categories,~ eac11 of v.Ihich is given some suggestive name, for
example "truthV<J.lUe 11

, 11 integer", 11 assigrunent 11 , 11 jump 11
• It is n~tural to use

the E. -notc:,tion of set-ti1eory to represent the c;ctegory mE;mlbershlp of "

l
j

'1

J

1

1
]

J
]

]

]

J
]

]

J
J
]
-,
J

J
J
J
J
J

- 7 -

phruse, for example, "x":integl?r"; or less formully, one m::-_,y simply
'''rite 11 X is an integer 11

•

The beh~:.:.viour c::..nd properties of elernents of each semdntic
category \Vill be defined in terms of axioms which are true of .:s.ll
members of t~1at cctegory; examples of r;.xioms z.pplying to the c-::tegory
of integers h2:o.ve alre2dy been given. If axioms 2.re to
;_tpply to more than one language, it vrill be useful to define c. fe;irly
l2.rge number of semantic categories 1 and then to specify ~ny
pc1rticular lc..ngu.:::;ge a.::; not containing any pi.··n-ases of tltose categories
not represen~ec1 in t~1e langur:-:.ge. Thus a langu.::ge which does not
deal Hit;, rec.tls mc:.y be s1oecifiec1 by stating that tl1is categorY
is· empty. This· freedom to introduce c;:,tegories which c,ro empty
in " given language \•rill be even more useful when conEd 'Cering
intersections and other ,eelutionships between categories.

It is c. gr-ea.t convenience in d-:~scribing the properties of
p~1r:;1ses to pos·tulz.te a s:?p;J.r~··tG semc.:.ntic category to cover e;:.c'h
aspect of its b2~:1.aviour. For ex-:1.rnple, 2n .z::.rit11ffietic expression
involving multiplic."tion si1ares nvmy properties with e;ll other
~,rit:1111etic expre?ssionc, and even sho.res some of its properties
(e.g. sec~uentiz.lity) \-Vit;·t st<:t-tements. Such a phrase \Vill t:-:.erefore
belong t9: ~any ca.tegories~ and if these catego~ies 1"1ave been
previously define.:~, then a particular category can be defined <.:s
the intersection of ti1ese more embracing categories. It seems
harmless to nostulc.;te t~-1e existence of t:'"~.e int.ersection of t1tfO

categories, D.lthoug-11 in many cases the intersection vrill be empty,
either because the properties of t}\e categories are mutucclly
contradictory, or because U1e j_ntersection category is simply
not represented in c.:. givc:n language. The intersection of tv.ro
categories mc:cy be form&lly :1enote:1 by t;1e traditional set
intersection notation (n); or it may be inform<d.ly expressed by
combina.tion of ~1dj ecti ves and nouns. ~:.Io1·1ever, it must not be
supposed that the set-Union of categories in necessarily .:; cutegory;
in many cases, it would be misleuding to do so.

Another useful technic~ue for dealing at one time with sever cl
semantic categories sharing certain properties is to postulate
cett'-lin relationships behreen c'.:ltegories. For exc:mple, let C stand
for a category consisting of the values of some simple type, for
exarnple, trut"l1values or integers. Correspon::ting to t:tis category
there may be a category of variables to \vhich values of the given
type may be assigned: these will be knmm as C-variables.
Similarly, t:1ere will be a category of 2xpressions, whic:1. w"!-1en ev:s.lu::1_te:1
will designate an element of category C: ti1ese will be known ::cs
C-expressions. Finally, t;1ere will be a class of assig11ment
stDtements whicb ussign c• value of category C to a•C-variable:
t:1ese will be knoom as C--assignments. This technique is very
useful in mo.:1elling t:1e type-constraints which c::.n and should be
checked at compile-time. For example, it is a necessary property
of a C-assignment that its right hand side shall be a C-expression,
and its left 11and side a C-variable-expression. The use of this form
of quantification does not imply that in any particular language
a non-empty category, or even a meaningful category, \·rill result from
an arbitr;Jry substitutuion for t'he category variable c. Thus, although
"procedure" is a non-empty category in many languag2s, fe~.v langu.:~ges
permit "procedure-assign,,lents. 11 ·r}lis tec}·ui.ique of deuling with type-
constraints is a close se:c,antic ancologue of the synt<:lctic met'-loci
proposed by vun Wijnguarden (6).

3.3

]

J
J
J
J

J
J
]

J
J
] ·.

J
]

]

1
""

J
J

- 8 -

Dcnot~tion.

In a n2.turo:..:.l la.ngu2ge, t'i'te meuning of a sentence is :1erive-.-\
u_l~i;nat:=ly from t'-.. e meaning or ccenotation of the individu-ol 1.vords of
l'liU.c_,1 t,1e sent2nce is compos0:J. T}tis is true ulso in ~- p:rogro3lllining
lc::.ngu::.<gc; it is only the atomic constituents of a. p~1rase whic11
establis~:1 c.. connection between t:-1e p~1rase and t::1e entities YJ~1ic~:1
form t:12 subject mdtter of t~1e p~1rase. This is becuuse the <-Jtoms
are capable of denoting some object other t}tz.n t:1emselves; for
e;~ample, a constant may denote a certa.in value of come type.
I0entifiers in general dc=note objects w'hic~"'- are ·t::1emselvcs p11ra.ses;
for example·, an occurrence of a procedure identifier denotGs u
procedure boUy toget~1er with its heaLling, a.nd B.n occurrence of a.
label iUentifier <12notes the con:pou:r~d tail to whic1: its Cefining
occurrence is prefixeU. An identifier for a variable or form&l
pa.r<J.!11eter (~enotes t:1e relev;...tnt vari21ble or formal; a.nd it is
·convenient to reg3.rCl variables and formal pu.rcuueters t}lemselves
as atomic "p'hrases 11

, itT'hich are constituent pclrts of the block to
w:1ici< tioe c;uantit;i.es are local. We write y = Dx !/ is the denot<.ltion
of x) to inclicate thcot "' denotes y.

Note t~1ut tlte relu.tions}tip of denot&tion is an entirely stGtic
one, subsisting bet1.veen phra.ses and ot~1er pl1ruses or objects. This
rel0.tiOn.s::1ip ·is permuent, &nd cannot ch~:.nge during the execution
of the progrclffi. T~tus D. varidble is (~enotec1 by one or more ocCurrences
of a vari,"ble icc.ontifier, but t}le reL1tionship wc1ici1 holcls bet\veen
a variable and its current value at any time is not one of denotation.

In constructing a picture of <;. p~ra se vrhich includeS the
denotations of its atomic constituents, an arrm" may be Jrawn from
t}le denoting atom to a circle representing the object whici1 it
denotes, for ex.:lltlple: ·

0

Fig 2.

..
j

]

'1
'1
] 3.4

l
_j

]

J
J
J
J
l

J
' J

J
J
]
-~

..l

J
J
J

- 9 -

Alternatively, in t;<e case of l<1rger phruses, "' phr<1se m,oy be
labelled by un identifier, and the same identifier v;ritten •,;ithin
cm atom indicates t'<Llt the atom denotes the labelled phrase. It
is most important to re<J.lise the.t more th;::;.n one atomic phrase can
denote one and the same object. In this aspect, denotution is quite
different from structural relutionship C which connects the subphracoes
of a particular phrase. Two disjoint atoms muy sh:"re the same denotution
tvhereas it is not possible for bm disjoint phrases to share the sume
subphrase.

Expressions and t~1eir results.

·We are nm; in ti position to deal wit:1 the category of phrases knmm
as expressions. Expressions have t:1e capability of delivering "
result on evalm;tion; tve therefore postulate a primitive (undefined)

_fur;ction, which maps an expression x onto its result y (y =result (x));
provided, of course, t}J.at this result exists.

E:;.-pressions are normally classified in accordance 1tri th the type
of the result ':lhich they deliver' for example, integer-expressions
are capable of delivering integer results, but not reals. This kind
of type-constraint may be expressed generally by describing the properties
of C:-:e;xpr~ssl;ons,. v1here C stands for an arb~trary semuntic category.

An expression in '" progrumming langllioge can usuc:lly be converted to a
tree-form, in tvhich every phrase is either dyudic, mon:.:..dic, or atomic.
An atomic C-e:xpression is normally kno1Vl1 as a C-constont, and is assumed
to denote some vwlue of category c. This denotation is taken c:;s the
result of the const<.mt. A monadic C-expression has associ<:.cted cdth it
u monudic operutor P. Its result is obtained by applying P to the
result delivered by its only constituent. A dyadic C-expression has
similarly a dyedic operator P, tvhich is applied to the results of the
constituent subphrases to deliver the result of the Nhole expression.
These facts are summarised as follows:

1. If x is a C-expression and hss a result, then this result is
a c.

2. If xis an atomic C-expression, then result (x)"= denotation (x).

3. If a C-expression x =.y is a P-operation then result (x) =
P (result (y) }.

4. If a c.-expression x = y.z is a P-operation then result (x)
= P(result(y), result(z)).

Note t:1e equality of the last two axioms is a strong equality. The
existence of the results of the constituents together with the applicability
of the operator to these results, forms a necessary and sufficient
condition for the existence of the result of the whole phrase. It is
asswned thc't the existence and· identity of the result of a P-operation
can be derived from axioms defining the operator P.

We next deal with conditional C-expressions, in which the result is
:"elected from " pair of alternatives in accordance '<lith the trut;1 or
falsity of a condition. ·

5. If " C-expression x = i. (t.e) is a conditional then
t nnd e are C-expressions
i is a truthvu.lue-expression
if result (i) = true then result (x) = result (t)
if result (i) = false then result (x) = result (e)
if i has no result, then neither has x.

This formulation leaves open the possibility that the discarded limb of

J
l

l
]

J 3.5

J
J
J
]

J
I

J

l
,J

l
J
...,
J
-~

..J

]
-,
,.i

-J
..J

J
J
1

..1

J

- 10 -

the conditional may also have a result, vrhich is irrelevant to the
result of the conditional. In a practical implementation, this
result would never be evaluated, since it is certainly never needed,
and might not even exist. nevertheless, there seems to be no harm
in permitting a phrase to have a result, which is ignored.

Procedures.

The determination of the results of expressions is by itself a fairly
trivial task, and can be carried out by a desk calculating machine as
well as an automatic digital computer. aowever, :i,t is not an insignif
icant part of the definition of a high-level programming language.
The definition can be readily extended to cover the evaluation of the
whole class of general recursive functions, provided
that a suitable axiomatisation can be given to the concept of a procedure,
a procedure call, and of parameter substitution.

A procedure call or a function designator is defined in ALGOL 60
as an operation of making a new copy of some procedure body, with
replacement of formal parameters by the actuals. The resulting copy
is then evaluated, and its result (if any) is taken as the result of
the procedure call. These facts may be expressed:

1. If x = .y is a C-procedure call then y i~ a C-procedure-expression
resu'lt (y) is a C-expression (i.e. the new copy of the proced-
ure body)£, result (x) = result (result (y)). ·

In this axiom, it is assumed that y delivers a result which is a copy
of some procedure body. If there is no parameter-subsitution, this
is relatively trivial; the procedure identi,fier is represented by an atom
which denotes the procedure body itself, and delivers a £QEy of it as
result. If a single parameter substitution is involved, the procedure
expression will be a dyadic phrase, of \vhich the left constituent delivers
a procedure, and the right constituent delivers the actual paxameter.
The procedure itself is also,a dyadic phrase, of which the left constit
uent is the formal parameter and the right constituent is the body of
the procedure. If more than one parameter has to be substituted,·this
can be achieved by successive substitution of each parameter in the result
of previous substitutions; so this case does not involve any new principle.
Thus two axioms suffice:

2. If x = .y is a procedure-expression, then result (x) is a copy
of the denotation of y.

3. If x - y.z is a procedure-expression, then result (x) is a copy
of the right constituent of the result of y, with result (z)
substituted for the left constituent of the result of y.

,The concept of copying and substitution which underlie the axioms
quoted above, are concepts Which have a strong intuitive basis; hovrever,
it is still desirable to make the intuitive content explicit by means
of axioms, as Peano did in the case of counting. We write xt1y to
indicate that x is a copy of y, with or withoutfparameter substitution;
to make the substitution explicit, we write x 11 y to indicate that
the actual a has been substituted for the forma! f. The first
properties of copying are that each copy has at most one original,
although one original may have many copies and that no phrase is directly
or indirectly a copy of itself, i.e.

4. 11 is convergent and non-cyclic.

Next we must ensure that a copy has all the same semantic properties as its
original, and that it has the same structure.

5. If xf'ix' and C is a syntactic category then xr, C if and only if
x' t:c.

6. If xt1x' and s is a selector then s(x) H s(x').

J
,_"
I
.!

J
,
1
-'

J
i
J

1
1
j,

J
]

1
]

1
' ~

- 11 -

Treatment of denotwtion relationsl1ips are rCither more complicCited,
since 1:ve must distinguish the cc.1se r:ii1ere an atom of the origin:: .. l
denotes a phrase of t11e originCJl itself. In Ulis cCise we tvCint to ensure
that the atom within the copy denotes the correspondil}g phrCise in
the copy itself, ruti1er them denoting the sam.e phrase Hithin the
original. Thus in figure 3, tve wish to copy (a) as (b) rather than
as (c). The relevant axiom is:

(a) (b) {c)

Fig 3.

7. If xNx' and cvhole (x)Hy and the denotation of x' is contained
in y then the denotation (x) is contained in t}-,e whole of x and
denotation {x)lil denotation {:x')

We now consider the case v;here the original of an atomic phrase
is the formal parameter, and the phrase itself is therefore the
actual parameter. An occurrence of a formal parameter is represent-
ed as an atomic phrase denoting the form:.ol parameter itself and the copy
of the formal denotes the actual parameter. This models the old
FOHTH.AlT parameter mechanism (call "by denotation") 1 the ALGOL parameter
mechanism could be described by different axioms·, or by transforming
name parameters into functions, in the msnner described by Landin (6)

f e. If xl1 X' & X' denotes f then X denotes a. a

Finally vre need to ensure that any atoms of the origin"l which denote
constants or global quantities are copied as atoms with identical denot
ation.

9. If xMfx, & x' is not contained in the original of the cvhole of x a
then x and x' have the same denotation.

4. Dynamic Concepts.

Up to the present point, the axioms hCive related to a purely
functional langu:mge, cvhich is nevertheless powerful enough to compute
all computable functions by general recursive techniques. There
has been no need to introduce any concept of "executing" the programs
in some time-sequence; although it is obvious that any ClCtu:cl implement
ation of the language will evnluate functions in some time-sequence,
it does not matter what this time-sequence is. A sensible implementwtion
will avoid W<Jsting time on the evulu;}tion of the discurded limbs of

r
i

I

I

1
1
]

]

] 4.1

]

]

]

]

]

J
]

]

]

]
-~

,J

1
J

I
j

J

- 12 -

conditionuls which muy often be undefined; !:ut tr.ere is ne reason nt t'<is stag=
to prohibit the implementution from doing so, provided tlnt it does
not go on for ever, and thereby fail to deliver uny result ut 'lll.

However, there are m.:my ;:;pplications of computers for which the
purely functionul upprouch to progrumming is impractical, for example,
in dealing with lurge arrays, input/output, and in the simulution
of discrete event systems. Languages designed for these purposes
will contain assignments, declarations, compound statements, input/
output, and even jumps. The meaning of these features can only be
e:>..'})lained in terms of a more or less determina.te sequence of
execution of the individual phrases of the program.

Events.

One can axiom~tise the execution of a program and its subphrases
by postulating an abstract set of events which are related by a
successor-relutionship s. The fact the1t event x is immediately
followed by event y is indicated by l<riting xSy. In most program
ming languwges, one could postulate that S is a linear relutionship,
guaranteeing that each event either precedes or follows each other
event; but in langu0ges ~<hich permit parallel .:.ctions, this is no
longer true. Lost of the axioms quoted in the following sections
have 'been formulated to apply ~<ith ec:uill v.:1lidity to l:mgu:oges .vith
or without parallelism. Ho>vever, even in a parallel enviroment
it seems reasonecble to postulate that s is non-cyclic. . Each event
in the execution of a program is ussociated .vith som<> phrase of
the program or >liUl il copy (mar<> precisely an !\-ancestor) of et
p}1rase of the program. We distinguish the case of the event associated
with the initiation of the execution of the phrase, from the c<ose
when it terminutes execution of the phrase; if x is a phrase and e is an
event, '"" write e - init (x} in the former case, and e = termin (x}
in the latter. We can noh' define the execution of a program P as
the set of events which are S-dcscendants of init (P). Also, we can
define what is meant by the assertion that a program P termin2.tes
successfully: it is equivalent to saying that termin (P) is an S
descendant of init (P}. We use the letter P to denote the program
under execution.

In a procedural 16ngu;::.ge, it is a. regular occurcnce tha.t arl e;:-presS
ion of t~·"e· progr2JTI is executed more t~1an once, ancl on e;:}.ch case
delivers a different result. This vrould seem to invalidate some
of tl1e previous axioms, \V11iclr 2..ssume the uniqueness of t~;.e result of
each e:>..'})ression. T;.1is difficulty can be evaded by ensuring in our
model t1v.;t no pl1rase is executed more th~.n once, and in every cc.se
of "repeated 11 execution, it is in fact a £2EY of the phrase ~,vrtic~1 is
executed. If t;1is convention is observed, it is possible to st:.t.e
t~1at each phrase in initiated at most once, a.nc1 terminatec1 at most
once. Furt}1ermore, it is obvious thr..:.t the termination of a phrc.se
(if it occurs} must be an S· descendant of' its initiation.

The above general rerm:.~.r~-:.s are SlL'Ttmarised toget'her wi t:1 some useful
definitions, as follm·rs:-

_1. s is ~on-cyclic.

2. xis an event if and only if it is an S-descendant of init (P}

3. a phrase x is initiated = df init (x} is an event.

4. a phrase x is successfully termin'3.ted = df termin (x) is c:m
event.

5. init ancJ. b3rmin are one-one ma.ppiilgs bet~veen events anll p~.1rl:1.ses.

.,
J

l
l
J
J
J 4.2

J
J
J
..,
J

]

J
J
]
l
..J

J
J

4.3

l
.J

J
J
1

- 13 -

6. termin Ld, if it exists, in a.n S--Oef;cenG.ant of init {;d.

7. x precedes y = df y follovs x = df xis an S-ancestor of y,
where x ant.1 y are events.

It is useful to extenC t;1is last Jefinition tocases "'''en x or
y ar:e p"h·:ases ru.ther t~:1an events. In tl1is case, t1.te time of execution
of the pl1r2se is iCentifiell \•rith the event of its termination, foe
example:-

8. x pcececles y = df y follm·rs x = df tecrnin (x) prece<les termin (y)
Hhere x and y are phrases.

Ser~uencing.

We are no~ . ., in a position to examine the sequence in whicl1 11 control 11

is passed bet14Cen t~re various pl1ca.ses of a program. In muny cases, vrS:1en
a phrase is initiated, control passes immeJiately to one of its constit
uents; and if execution of tile constituent terminates, the-:1 control
passes to CJ.nother constituent, ancl so on, until all constituents are
termino.ted. Phrases whic~1. hove t~.1is property of passing control to
their po;nstituents are knov1n &s normc1l; th2y include monadic and
dyadic 8:i:pre'ssions. · Hate t}tat t~.1e "normalitY" of a phrase doe-s not
prohibit parc:llel ezecution of its constituents.

There is a cla.ss of non-normal p~1ra.ses '1.-lhich pass control to only
one of tl1eir constj_tuents, and Hl1ich terminate ·on termination of ti'lis
constituent; none of the other constituents are executed. Phrases
with this characteristic are kno\m as selections; an example of suc~1
a selection is given by the dyadic phrase Hhic;-, forms U1e right constit
uent of a conditional.

A third mode of sequencing is exhibited by procedure calls, H;1ich
transmit control to some copied p11rase, and which terminate on
termination of this phrase. These modes of sequencing are more
formally described in the follo1ving axioms.

1. If a phrase x is normal anditisinitiated then it has at leCtst one
constituent y such that init (x) S init (y) and if any constit

uent is not initiuted, t11is can only be because some other constituent
is initiated but not successfully terminated.
:-!ere He introduce an c;uxiliary definition.

·2. x terminates y =df termin (;.c) S termin (y) and result (x) = result (y),

3. If a p~1rase x is a selection u.nd is initiated then it hus a constit
uent y such-that init (x) S init (y) and y terminJtes x and y is the
only constituent of x 1trhid1 is initiC<ted •

4. If x is a call of y then there is a unique z such thett y = result
(z) and termin (z) S init (y) and y terminates x.

5. Expression~ except calls, are normal, and if i(t.e) is a con<lit
ional then t.e is a selection an<l if .y is a call, and is initiated,
then .y is a call of result (y).

Variables and Assignments.

One of the main characteristics of computing mo.chines, and of the
le1nguages whic}l control their operation, j.s that they are capable of storing
values in some stor0.ge medimn, of fetching these vwlues whenever requir-
ed, and of changing the values by assignment during the course of a
computation. It is this last feature \Vhich most cle0.rly distinguis:1es

procedure-oriented programming languc:ges from the more traditional
branches of mathemutics, uhich have already been successfully formalised.

j

1
]

]

J
J
]

]

]

J
]

l
,J

' j

]

]

J

J
]

- 14 -

The ease t·li t~1 which u.ssignment can be modelled is a crucial test of
the success of a rigorous method for programming language description,

An assignment involves tHo items, a. value \Vhic~1 is to be as-signed
and a variable to receive the value; and it is laid dov!n that these
must be of identical type. If the language permits automatic type
conversion, then it is assumed that all necessary transfer functions
are inserted by a preliminary scan of the source text. The concept
of a VCllue of any type ;is defined by the axioms governing that tzpe.
A variable,. on t:1e other hand, cannot be dealt With on the same st.:;.tic
basis, since in many lwnguages a v;.:.riable comes into existence dyanamic
ally on entry to t:ce block to •.vhich the variable is local. !io'.l suppose
;;e model a variable as an 11tomic phrase which is an actual constituent of
the block to \vhich that vari<>ble is local, and then arrange to make a
fresh copy of the bloclc •.vhenever 1Ve enter it. This ;vill autom<'ltically
ensure thc;t 1ve obtain fresh copies of all the variables on block entry,
which is exactly IVhat vre •.-rant, Let us also represent each occurrence
of the variable identifier in the program lis an atom lVhich denotes
the phrase representing the variable. Nm.r the copying process, as
described in section 3.5 (7), vlill ensure that all variuble identifiers
in the neH copy will correctly denote the ~ copies of the V<'lriables
rather than the old,

Thus it is natural to equate a variable with the declaratory occurrence
of its identifier; a~d every non-declaratory occurrence is assumed
to denote this. Furthermore, ;,re wish to stste categorically that
declarations occur only as constituents of a block, and it is not
possible to refer to a declared quantity from outside its scope,
In addition to declarations, a block normally contuins a bogy, which
is executed vrhen the block is entered; •.'le introduce a selector to
select the body from a block. The remarks made above are summarised
in the following axioms.

1. If x is a C-declaration then xis a C;and x is never initiated;
and if x is a constituent of b, then b is a block and if y
denotes x then some H-descen:'lant of y is contained in b.

2, If x = .y is a block-generator then result (y) is a copy of y
and xis a call of result (y).

·3. If b is a block then x = body (b) if und only if x is a
constituent of b but is not a declaration,

4. If x is a block and is initL:ttec1 then init (x) S init (body(x))
and body (x) .terminates x.

The body of a block is normally a statement or sequence of st<1tements,
kno;m as a compound tui l in ALGOL SO terminology. A sequence of phrases
is conveniently represented as a dyadic phrase, e1e left constituent of
"'hich is the first statement of the sec•uence; the other constituent is
the remainder of the sequence; 1Vhich may itself be a sequence or a single
statement (or e>,'Pression). If a block body is to pass buck a result,
this is conveniently talcen from the evulucttion of the last statement or
expression of the sequence, These facts are summ.orised as follo\Vs,

5. If x = y.z is a sequence then x is normal; termin (y) S init (z);
z terminates x.

We now need to introduce the concept of a current value of a variable
at a given time. If e is an event, g is a value, and v is a variable,
.ve write g = current v:olue (v,e) to signify that g is the current vclue
of v at the time of occurrence of event e. We also introduce the
cc:.tegory of an assignrnent statement, which is a normal dvadic p"hrase,
whose left constituent delivers a variable and lVhose right <.:onstituent
delivers a value; and assignment has the effect of defining the current
value of the relevant variable on termination of the assignment.

l
J
1
1
]

]

]

l
J

]

]

]

J
4.4

]

J
-.
I

,.)

J
j
' .l

J
l ,.

]

'J

- 15 -

6. If a = l.f" is a C-assignment then 1 is a C-variable-expression.
r is a C-expression;a is normal;r terminates U;current vwlue

1

(result (1), termin (a)) = result ()i).
!'-

!Tote that an assignment has a result equal to t:1at of its right hand
side; this is useful in dealing 'dith languc:ges permitting multiple
assignment, and is harmless in those that do not.

It is essentiul to c1"ra1v a distinction betHeen un occurrence of a
variable identifier as the left constituent of un assignment, and
its occurrence as a primary in an expression. The left-hand occurrence
cnn be represented simply as nn atom denoting the variable or by a
variable-expression in the gener<:1l case; when this is evuluated, it
delivers the varicble itself as a result, which is whut is WBnted.
~~Tot.;ever, 1·1hen the identifier occurs on the right-hQnd side,. w!Iqt is
required is the current value rather than the variable itself. Sucl1
occurrences as primaries are kno1m us variable-ev.::J.luators, and are
represented as monadic phrases, ,yhose only constituent delivers.the
V<lriable as a result, and which itself delivers the ·current value
of that variable:

7. If x = .y is a C-variable-evaluator then x is norm;ll;Y is a
C-variable-expressio~ if q = currentvalue (result (y),
termin (y)) then termin (y) S termin (x) and result (x) = q.

Finally, we need an aJdom to state that the current value of a.
variable does not change bet\Veen one assignment to that variable
and the next. For a la.nguege which does not permit parallel
assignments to the same variable, one could formulate the rule th"tt
the only reuson for a change in value is an intervening assignment.
aowever, to cater for the possibility of parallelism, one \Vould need to
be more subtle:

,Jumps.

If all successfully terminated assignments to x either precede
strictly follo;; e 2 t;1en currentvalue (x, e

2
) = currentvalue (x, e 1) •

In addition to assignment, the jump is another aspect of procedural
programming langu;oges tvhich presents problems for elegant formalisation.
The treatment given here follows closely that given by Landin in (7) •

In ALGOL 60, the destin;otion of a jump.is determined as the result of
ev."tluating a designational expression. This result is generally
supposed to be u label, which may be identified with (a copy of)
that part·of the compound t;oil to .vhich the defining occurrence of
the. label is prefixed. This section of program will be vrholly
contained tvithin the block to which the label is local; in fact
it will (in general) be that part of the compound tail of the block
which occurs between the defining occurrence of the l2ebel identifier
and the end of the block. Such a section of program tvill be knOtvn :1s
a program-point.

We may now represent a go to statement as a mona.dic phrase whose
only constituent is a design2tional expression. We assume that a
designational expression will deliver as its result a fresh E2£Y.
of some program point. This copy is then initiated; and if it term
inates, its successor is the terminution, not of the go to statement,
but of the block to 1vhich t;1e program point is local. In fact, the
jump itself can never terminute successfully. The block to 'dhich a
program point is local may be determined as the smc>llest block contain
ing an M-descendant of the program point.

l
'j
j

]

]

J
]

] s.

l
' • ...J

J
.....
J 5.1

J
J
J
J
J
J
J
J
J
l
""

0

I
' '

- 16 -

1. x = locnlity (p), where pis a program point, =Cif xis n
blod:, 5.nd x cont:oins an M-descenCiant q or p, .·,ne] if any
ot~.-,er block cont.-oins an 11-descendart: of p, t;1en it <also
cont:oins an N-descenCiant of x.

2. If x = .y is a jump then y is a progrc,m-point-expression; if y
h<>s a r-=suJ.t them loc::.lity (result (y)) is a c-:tll of result (y).

In the c~~se 1vhere ::.1 lah3l is p:_-efixed to the fin.3.l end of .:;::. block,
t}le relevant progrilln point consists of u null statement. liull
statementS are also useful in representing the suppressed ~ part
of a conditional st&tement.

3. If x is a null-stztement then x is atomic; in it (x) S termin (x);
x has no result.

Further features.

The language features axiomatised in the preceding sections cover the
most basic features of procedure-oriented programming languages. In
fact, they match almost exactly the features of Landin's Imperative
Applicative Expressions (7) and these have been shown to be sufficient
for the semantic definition of the tvhole of ALGOL 60. However, .it does ·
seem desirable to use the axiomatic method to explicate certain more
advanced features of modern programming languages, for example dynauic
a.rrays, input/output, record handling, and even parrnlellism •

Dynamic Arrays.

An array is a homogeneous collection of elements of the same
category. In the case of a single-dimensional array, the elements
are simple variables; but the elements of a multi-dimensional array
will themselves be arrays of one lower dimension. It seems reason~ble
to postulate that no element belongs to more than one array, and thoct
no element appears more than once \vi thin any given arrocy. It is
possible therefore to represent an array as a phrase, \vhose constit
uents. are identified with the elements of the array.

T\vo ne~l functions 11 1 11 and 11 U11 are introduced, which mop each
array onto its lower and upper subscript bounds respectively. We
also need a function 11 subscript 11

, which m.:J.ps an integer within the
subscript range of an array onto a selector ,,.,hich •.vill select the
corresponding element of that array. These functions are connected
by the following axioms, in which A is assumed to be of category C-array.

1. for all i such that 1 (A).::. i :!:: u (A), subscript (i) (A) exists end
is a C

2. 1 (subscript (i) A)= !(subscript (j)A) and u(subscript (i)A)=
u(subscript (j)A)

(i.e. multidimensional arreys are rectangular).

In a language with static arrey bounds, like FORTRAN, there is no
need for any further axioms dealing with the dynamic aspect of arrays.
A multidimensional array can be converted (by columns) into the
corresponding single-dimensional array, and nll references to it can be
converted by a static syntactic translator into the appropriate
reference to this single-dimensional array. The array declaration
(DIHEllSIOll statement) can be similarly expanded into an array 1;it:O
the appropriate number of elements, just as it is \<hen translccted
into machine code.

However, in o language such a.s ALGOL 60, which permits arrays to be
constructed dynamically, with dynamic bounds, the problem cannot be
dealt with by static transl~tion; some sem,.:ntic, or run-time, mechanism
is required as well. We therefore need to axiomatise a concept of an

J
"j

j

]

]

J
]
...,
J

J
J
J
l
..J

J
J

J
J
J
J
J

- 17 -

array-generator, which creates new instances of arrays. An array
generator needs three parameters:

1.

2.

An indication of the category of the elements, which in the
case of multidimensional arrays may be themselves arrays

A specification of the lower bound.

3. A·specification of the upper bound.

It is convenient to specify the category of the elements by an
example, which is copied the appropriate number of times.

4. If x = c. (lb.ub} is an array-generator then x and lb.ub are
normal; lb and ub are integer-designators; if x terminates
successfully then result (x} is an array

and 1 (result (x}} =result (lb}

and u (result (x}) =result (ub}

and each constituent of xis a copy of result (c) •

It is necessary to insert the proviso that x terminates successfully,
since the array generator may fail as a result of inadequacy of storage
in any finite implementation.

There is still the requirement in ALGCL 60 to link up all occurrences
of the array identifier inside the block with the newly generated
array. A suitable technique for doing this is to use the parameter
mechanism to set up the linkage. Thus the array identifier is regarded
as a formal parameter, and the array generator features as
the corresponding actual parameter. This means that the subscript
bounds of the array will naturally be evaluated in the enviroment
of the surrounding block, thereby evading a slight but tricky problem
in the definition, implementation and use of ALGOL 60, at the expense
of a fairly severe syntactic transformation of the original source
program •

Finally, we need to ensure that •rhenever an array is generated it is
an entirely fresh array, not the same as any other array previously
genere.ted. This is done by introducing the syntactic category of
"generator", which is assumed to include all array-generators.

5. If x and y are generators and result (x} = result (y} then
X = Y•

6. An array-generator is a generator

Input and output.

Input and output in the conventional sense of FORTRAN and ALGOL 60
is concerned with ordered sequences of values. Legible (formatted}
input/output can be dealt with on the same basis as communication
with backing stores, which normally takes place in non-legible internal
form. This is done by regarding characters as a specific type of
value. In our axiomatisation, we may regard a file as a sequence
of constants, each of which denote a value of some simple type.
This sequence can be represented in the same way as the sequence
of statements in a compound tail, i.e., as a dyadic phrase, whose
left constituent is the "current" element of the file, and whose
right constituent is the remainder of the file.

The relevant axiom is

1. If x = a.b is a c-file then a denotes a C and b is either
a C-file or an end-of-file indicator.

In any given computation or sub-computation, it is assumed that
a file is either an input-C-file or an output-C-file. The only

J
l
J
J
]

]

]

]

]

]

]

l
"..l 5.3

]

J
J
J
J
J

j

1

I
. .1

-1
""
'l

.J

- 18 -

operation on an output-C-file is an output operation, and the only
operation on an input-C-file is an input-operation. T~1e properties
of these operations are easily described:

2. If x = y.z is a C-output operation, then x is normal;
y is a C-expression;z is an output-C-file-exprcssion.
If x is successfully terminated and if currentposition
(result (z}, tcrmin (z}) = a.b then denotation (a} =
result (y} and current position (result (z}, termin (x}} =b.

3. If x = .y is a C-input-operation then x is normal;
y is an input-C-file designator.
If x is successfully terminated and currentposition (result
(y}, termin (y)) = a.b then result (x} = denotation (a}.
and currentposition (a.b, termin (x}} =b.

In t:>ese hro axioms, there is no means of proving the successful
termination of an input or output operation. This permits an
implementation to stop the program, or jump to an error routine,
in tl>e event of hard\•rare malfunction. Furthermore, tl1e result of
reading beyond the end-of-file indication has been carefully left
undefined.

There is still one loose end in the axioms 2 and 3: it is. necessary
to guarantee that the file remains stationary in between successive
input and output o:perations. This can be done as follov/S:-

4. x is an operation of f = df (x = y.z is a C-output-operation
or x = .z is a C-input-operation} and result (z} = f.

5. If all operations on f either precede e 1 or follo'tl e 2 , then
currentposition (f,e2 l = currentposieion (f,e1).

llote that this statement. is patterned on the corresponding assertion
about assignment, and is equally valid in a parallel as in a strictly
sequential environment.

Record handling.

Tl>e example of dynamic generation of arrays illustrates a tech
nic~ue t;(1ich can be used to deal tviti> other forms of dynamic
storage allocation, for example, record handling as described in (8}
A record class declaration may be regarded as a declaration consisting
of a sequence of variables representing the fields. This declaration
acts as the original from which all actual records of the class
are copied; so that each field is a copy of the corresponding field
in the record class declaration. Fields of a particular record may
be referred to from cvithin ti1e program by means of field designators.
A field designator consists of an expression delivering a record
of the appropriate class, and a field identifier, denoting t:1e origirwl
of the required field vlithin the record class declaration. Tl>e action
of a field designator is explained by means of a field-selection
function selectfield (f), (where f is a field}, which yields a selector
capable of accessing that field in any record.

1. If x = .y is a record-generator then xis a generator;¥ denotes
a record class declaration;if x terminates successfully then
result (x) is a copy of denotation (y}

2. If f is contained in original (r} then original ~electfield
(f) (r}} = f and selectfield (f) (r} is contained in r.

3. If x = y.z is q field-designator then xis norma~result (x) =
selectfield (denotation (y)} (result (z}}, if it exists;
otherwise x does notterminate successfully •

J

]

]

1
_)

J
] 5.4

l
..J

]

J
]

J
]

l ...
]

J
]
l
.J

~~

.J

l

j

-1
od

1
""

- 19 -

The remaining facility required for record handling is the
introduction of reference-variables, which may "point to" records
of some class, or else tuke a null value. Hmvever, apart from
null itself there is no need to introduce a separate concept of
a reference value, since we may equate a reference V-'\lue with
the record itself (not, of course, the value of the record).

4. If v is an ,<.-reference-variable c.nd -3 = l.r is an
assignment, and result (1) = v, then either result
(r) =null or original (result(r)) = R.

Note that in 4, rt sto.nds for a record class declaration, which
is a phrase of the program itself. Thus we hpve encountered
a case of a semantic category generated by a program at run time.

Parallelism.

In the preceding sections, we have carefully refrained from
stating the sequence of execution of the constituents of a phrase;
and we ha.ve even left open the possibility that they are executed
in parallel. The choice of sequencing rules can be expressed by
means of axioms. We need to distinguish at least four possibilities.

1. A phrase has a regidly determined sequence of execution. Such
phrases are known as strictly sequential.

2. A phrase has no. determined sequence of execution, but its
constituents must be executed in ~ sequence. This seems to
correspond to the situation with the primaries of an expression
in ALGOL 60. Such a phrase may be known as weakly sequential.

3. The execution of the constituents of the phrase is interle=ved,
in the sense that the events involved in the execution of one
constituent may appear mingled amoung the events associated with the
execution of another: but all events are linearly ordered. This
interleaving is guaranteed when a single m~chine attempts to simulate
parallelism.

4. There is no necessary ordering relationship ."J'lloung the events
involved in the execution of one constituent and those of another.
This is a genuine parallelism, such as might be achieved by multi
processor implementations of the language.

These four possibilities may be more rigorously described:

1. If x.y is strictly sequential, then termin (x)S init (y)

2. If x.y is weakly sequential then either termin (x) S
init (y) or termin (y)S init (x)

3. An event e is involved in execution of phrase P = df
there is an x such that e = init (x) or e = termin (x)
and P contains a call-ancestor of x (using "call" as the
name of the relationship of a being a call of b.)

4. If x.y is interleaved then for any event e involved in the
execution of x and any event f involved in the execution of y,
either e follows f or e precedes f.

5. If x.y is parallel then it is not interleaved, i.e., there is
at least one event in the execution of x and one in that of y
which have no defined sequence •

A language which specifies parallel or interleaved execution, should
also contain some means for the synchronisation of the parallel streams.
Several techniques have been proposed: one of the best defined is the
"semaphore" concept introduced by Z.W. Dijkstra. A semaphore acts
as if it were a finite collection of some item which may be "borrowed"

- 20 -

or "retnrned" by the parallel processes. If a process attempts to
borrow an item when the collection is empty, it is held up until
some other process returns <'m item. Otherwise, the effect of
borrowing and returning is merely to decrement or increment the
count of items available.

We thus introduce a new category of variable, the semaphore, and two
operations which may be performed upon it.

6. If x = .y is a semaphore-operation then x is normal
y is .a semaphore-expression
xis. either a borrow or a return, if xis successfully
terminated, then x is said to be an operation on result (y)

7. If x and y are operations on the same semaphore, then
x e·i ther precedes or follows y.

8. If x is an operation on semaphore s, then the set of all
operations on s that precede x does not contain more borrows
than returns.

This gives a very implicit definition of the essential nature of a
. semaphore, and it does not contain any hint on how it is to be

implemented on either a single processor or a multiple processor
system. :-Iowever, it· does s'"em to be powerful enough for a program
mer to prove that his programs have the desired properties, and
that they will therefore work on any implementation which satifies
the axioms.

6. syntax

In this paper, no attempt has been made to deal with the notations
and syntax of a programming language. It is assumed that some
method will be available for specifying the correspondence between
program texts and their abstract representation. An example of such
a method is given by Landin. (7)

7. Conclusion.

This paper has demonstrated and explained certain axioms of the
sort which are likely to feature in the axiomatic definition of many
general-purpose procedure-oriented programming languages. It is
notclear at the present stage how far these axioms satisfy the
design criteria laid down in the introduction. Such an appraisal
can be made only after a systematic application of the method to
several languages, and the attempt to apply the axioms in proofs of
the correctness of programs. Such proofs would be likely to be
excessively long, until a fairly powerful set of metatheorems are
developed from the axioms.

I
- 21 -

Acknm-rledgements.

This paper is published by kind permission of the Director of the
National Computing Centre.

References.

1. Criteria to be applied in the
standardisation of a programming
language

2. J.G. Laski

3. - Peano

4. A. van Wijngaarden

5. J. l-1cCarthy.

6. A. van Wijngaarden

7. P.J. Landin.

e. N. Wirth and
C.A.R. Hoare.

ISO/TC97/SC5.

Algol Bulletin.

Sul cocsetti di n~~ero

BIT

Formal language Definition
Languages.

!·In 93

A Correspondence betvreen AIDCL
60 and Church's Lambda-notation.
Parts I and II. Comm, A.C.M.
February/Harch 1965.

A Contribution to the Development
of ALGOL. Comm. A.C.M. June, 1966.

!

I
• !

I

I

