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Summary;

This paper illustrates the manner in which the axiomatic method
may be applied to the rigeorous definition of programming langusges.
It does nd:give a full definition of any particular langusge, but
rather explains and discusses a selection of very general axioms,
~nich will apply to broald cluceces of programming languazge,
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Introduction.

There are many purposes for which the description of o programming
language is recuired, and it is usual to construct different types of
degscription for each purposzse. For example:

a teaching manuzal, for those learning to program;

a reference manuzl, explaining more advanced details
to the initiated programmer; g :

a programmers' guide, describing the use of a particular
~~implementation;

an implementors' -manual, containing suitable instruct-.
ions and hints; : :

even the language compller itself may be regarded as a form of language
description -~ indeed, the only one which is meaningful te a machine.

This paper deals with vet aznother purpose for vhich a language
description is required, namelv the standardisation of the language
across many implementations; and a form of description which is
suitable for this purpose is rather different from the forms which
are familiar from their use in other contexts. A programming larguage
standard, like standards for other artefacts, 1s intended to lay down
a set of necesgzary properties of a certain class of products (implement-
ations); and these conditions must be satisfied by any product which
cleims to conform to the standard. Most standards will leave the
product designer considerable freedom in specifying its non-essential
features, and will even permit variation within predefined limits
for the essential Jdesign parameters. Similarly, a language descript-
ion formulated far language standardisation purposes must permit '
reasonable variation of implementation detazils, so Lhat the language

can be successfully implemented on a variety of compi:ters, using a

variety of implementztion techniwues.  However, this variety must

be constrained within certain bounds, =since otherwise it would not be
possible to write programs which could be accepted and run successfully
on all implementations.

-Most descriptions of a standard are carefully and fairly unambig-
uously expressed in an ordinary natural language, supplemented by a few
formulae, tables, and diagrams; and they use terminology which is
familiar and widely understood in the relevant field. However, in the
field of programming languages, there has not yet developed any
established terminolagy, as will be revealed be a comparison of the
descriptions of existing and proposed language standards. Furthermore,
the larger programming languages are probably more complicated in their
structure than any other product which has ever been considered 3s a
candidate for standardisation. A need has therefore been expressed
(1) for some rigorous or even formal technique for describing a language
in a manner suitable for standardisation. Part I of this paper suggests
that the axiomatic methed, as practiced by geometers, mathematicians,
and logicians, may be well suited for this purpose,

In the construction of axiom sets modelling the essential features
of programming languages, the following design criteria are relevant:

1. The axioms should not place constraints on
language implementors which might be
unacceptable far certain hardware designs
or configurations of eguipment.
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2, he axioms should b= sufficiently determinicstic
for the programmer to be able to secure the
results which he wants on any implementation
which satisfies the axioms.

3. The axioms should be formulated in such a way
that many of them will apply unchanged to
many programming languages. In this way
it should be possible to gain an insight
into the genuine similarities and differences
between the various languages. I

4. The. axioms should be reasonably independent of each
. other, so-that the language designer may freely
discuss one axiom or a smzll group of axioms in
. isolation, without fear of unexpected interact-
lons and alterations in other parts of the
language. . . o .

5. = The primitive {(undefined} terms in the axioms
should correspond with our pre-existing intuitiwve
understanding of the beheviour of programming
languages, and the axioms should recommend
themselves as "self-evident® to one who is familiar
with programming. - This will ease the task of
constructing proofs concerning the correctrness
of programs.

6. The number of primitive coheepts and axioms
should be kept to a reasonable minimum.

Simple tvpes.

The easiest and most obvious application of the axiomatic method
is in the definition of the nrimitive operations on simple values of the
various types. Sets.of axioms which define the structure and behaviour
of a simple type will bear a close resemblance to axiom sets already
familiar to mathematical logicians, with changes made necessary only by
the f£initude of computer representations of the vazlues concerned. A

suggestion for using axiom sets for defining the primitive operations of a

- programming language was. independently made by Laskl (2).

The Boolean tvpe.

In the case of the Boolean type of ALGOL 60, the axioms are
identical to those which describe Boolean algebra. The axioms are. not
in any way tautoclogical or redundant, even 1f at first glance they

appear so0.
l. true and false are the only truthwvalues
2, ~true = false and \false = true.

B true Atrue = true and truen false = falseAtrue =
falseA false = false.

4. falsev false = false and truev false = falsevV true
= true vitrue = true.

2.2 The integer type.

The most familiar axiomatisation of the properties of integers is
that given by Peano (3}, which 1s based on the concept of one number x'
being the successor of another number x, i.e. x' = x + 1.
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" The axioms given below are slightly adapted from those of Peano {3j
since they hove to deal with negative numbers and with the possible finitude
of the number range. However, the basic concept is still that of the
successor; and the fact that x is the successor of y is expressed ySx.

It is useful here to introduce the concept of an ancestor or a
descendant with respect to a given relationship r. If the relationship
r is that of being a person's parent, then the r-descendants of a person
are his children, and his childrens' children and so on; and his r-

" ancestors are his ancestors in the normal sense. More rigorously, x is

an r-ancestor of y if there is a sequence x,, x raee e X such that x = x,, |
x_ =Y, and x,r x;,4 for 151 <n. Putting ™ n =71, we " obtain the convefition

tflat everythlng is its own r-uncestor,. Similarly x is an r-descendant of

vy if it is an. r~l*des,endant of y, where r-! is the relational inverse of
r. {(eg. offspring rather than parent).

These concepts can be axiomatised as follows:-

1. X is an r-ancestor of x freflexivity)

2. If x is an r-ancestor of y and z r x then z is an r-ancestor
of y (closure}.

3. If x has property P and whenever y has property P and zry then
z has property P tlien all r-ancestors of x have propérty P
{(induction)

4, x r-ly =y r x

5. X is an r-descendant of y = x is an r-l_ancestor of Ve
In future sections we shall also need further concepts. A relation-

ship r is said to be convergent if it is a mzany-one relationship, and is
linear if it is a one-one relationship. A relationship r is said to be

nonwczcllc if there is no set of elements X,,X~re.«+%X. such that x_r x

and X T X441 for 1€ i< n. These concepts may be expressed rigorously:

6. r is convergent =df\fx,y,z (xry and x r zDy = z)
7. r is linear =3 both r and r~! are convergent
8. r

is noncyclic = dfw’x,y. (L is an r-ancestor of y and y 1is
: an r-ancestor of X xX=V).

lfow it is easy to churacterise the essential properties of the
successor relationship S, and of integers.

1. 5 is linear

2. x is an integer if and only if x is an S-ancestor or an S5-
descendant of zero (0)

3. =180 & O81L

4, x +0 =x

5. ySy' &z8z'D{z=x+y=z' =x+y")

. xX{3 0

. ysy' &z' =z +xQ(z =xxy =2 =xxy')

tH

~1 O

The remaining arithmetic onerations cun be similarly described.
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The main problem is constructing axioms for computer arithmetic is
to avoid making wny presuppositions on the range of integers provided by

“an implementation, and to permit a variety of treatments for integer over-

flow. ror example, many implementations will fail to detect integer
overflow, and will use module arithmetic throughout.  Cther more
sophisticated implementations will detect integer overflow, and jump to
some interrupt program to take alternative action. Finally, one should
not rule out the possibility that an implementation places effectively
no bound on the size of an integer.

. It appears that the axiomatic method not only permits the decision
on these points to be made by an implementation; but it also permits the
implementor to describe his decisiorn in terms of supplementary uxioms,

. which make the previous general axioms more categoriczl, -at the expense

of making them more machine~dependent. For example, the decisions described
above can be embodiei in a choice of one of the three following axioms:

8. 8 is cyclic ' {(modulo aritimetic)

¢, intmin and intmax are integers but there is no integer y such
that ySintmin or intmaxSy' {(finite range arithmetic)

10. 8 is non cyclic and for all x there is a y such that xSy and
a z such that z8x (1nf1n1te range) .

The real tyne.

_ 2xioms describing the necessary properties of floating point
arithmetic can be constructed fairly simply in terms of integer arithmetic,
using & technigue similar to that proposed by Peanc to define the arith-
metic of fractions. However, it is essentizl to recognise that a floating
peint number is not itself a fraction, but only an approximation to a
fraction a/b; in fact, the same floating point number is an approximation
to many different fractions. If, for example, an implementation uses
a 3-digit decimal mantissa, the number .123100 iz an approximation for
the fractions: '

1226/10000,  1234/10000,  123/1001,
and even 123/1000

If x is a floqting point number, we write x = A(a/b) to express
the notion that x is an approximation of the fraction a/b, where a and
b are integers. The properties of A are described by axioms:

1. " Ais a many-one function

2. Alz/b) ﬂ“}\ c"a/cdb

3. x=Ala/f) & x = Alc/b) sakicDx = A(i/b)

4. If %x,v, and z are floating point, and x = y + z then there <
exist integers a,b,c such that x = A{(a+b)/¢) and y = A(a/b)
& z = alb/c) :

5. If x,¥, and =z are flogting point and x = v ¥ z then there exist

integers a,b,c,d, such that = = aA{{a X b)/’ xd)) and y =
Ala/c) and z = A(b/d)

A proposal for the axiomatisation of floating point aritimetic was
made Ly van Wijngaarden (4). This was hagsed on the arithmetic of the
real continuum rather tiian that of integers or fractions.
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" Semantics: stutie conziderations,

The primitive operands and oneruations of i1 scientific programming
language are intendzd to bshave like the familiar obhjects of mathemoatics;
and it is not surprising that the axioms which describe their behiviour
snould have o fairly fomiliar appearcence, However, in the axiomutisation
of the semantic and dynuomic properties of a programming langu:ige, thers
is not such an established tradition to Jdraw upon, and we must rely more
on intuition for the formulation znd verification of axiom sets,

In this section, we consider the static properties and structure
of a program, excluding consideration of its dynzmic execution.

Program Structure.

In dealing with the structuré of programs, it is very inconvenient

to regard them merely «s linear streams of characters. It is more approp-

riate to consider them as tree structures, in which the relationships
between the meaningful parts and the whole have been made explicit, as is
done, for example, by a syntactic analysis. 1In this way, it is poszible to
separate a discussion of semantics from the details of syntax and notation,
as was suggested by HcCarthy (5) in his proposal for an “abstract syntax®.

Az an example of the correspéndence between & program text aznd its
tree structure, consider the phrase;

a+ b x sinh{~x)}

which is pictured as & tree in fidgure 1. Each éircle represents a
meaningful subphrase of this phrase; and each phrase is connected by a

line to all its immediately constituent subphrases. Therz is no need to
impose a limit to the numnber of brianches emanating from each node, but in
practice, most phrases will have either two ¢onstituents, or one constituent,

or, of course, none,
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. In order to deal with the structure of phrases, we introduce a
primitive relation C which holds between two phrases which are adjacent
nodes on some branch of the tree; thus ®Cy indicates that nodes x and y
are connected by a single line leading upward from x to y i.e.,. x is an
(immediate) constituent of y. We also have the concept of one phrase
being contained in another; if x is contained in v, this means t™zt
there is a series of lines (a path) leading upward from x to ¥. Obviously,
x is contained in y if, and only if, it is a C-zncestor of Ve

1. x isicontained in y = df x is a C-ancestor of y.

~ The main property of the C-relationship is that each phrase is a
constituent of at most one other phrase; that no prhrase is contained in
itself. These facts are embodied in the axiom: ' .

2. C is convergent and non-cyclic.

It will be helpful here to introduce a few auxilizry definitions and
notztions. _ .

3. An atom x is a phrase with no path leading down from it, i.e.
there is no y such that yCx.
. 4: A disjoint phrase x is a phrase which is not a part of any other
parase, i.e. there is no y such that xCy. : :

. 5. The whole of a phrase x is defined as the disjoint phrase which
contains it, i.e. x is contained in the whole of ¥, and the whole of x is
disjoint. ' .
6. A monadic phrase x is one which has only a single constituent y.

7. A dyadic phrase x is one which has exactly two immedizte
constituents which are known as ite left constituent and its right constituent.
: T e
to indicate that x iz monalic.
x = y. 2 to indicate that x is
its right constituent.

w

We shall often use the notation x = y
and ¥ is its only constituent; or the notation
dyadic and y is its left constituent znd z is
. It is obvious that the C-relation is a many-one rather than & one-
one relation, since a phrase may have many constituents. Functions which
act as inverses of the C-operation are known as selectors, i.e., if S is a
selector then S(x} Cx for all x.

Examples of selectors are:

1. The function U which meps 2 monadic phrase onto its unigue

consituent. o )
2. The functions # wnd T, which map a dyazdic phrase onto_its left
and right constituents respectively. .

*
3. The selector "body" which maps a block onto the statement or
seguance of statements which form the body of the block.

Semzntic categories.

- In the description of a programming lasnguage, we are concerned with
he behaviour and propertiss of the individual phrases of each program.
Phrases with essentially similar semantic properties may be grouped together
in semantic categories, each of which is given some suggestive name, for
example "truthvalue', "integer", "assignment", *junp". Tt is nztural to use
the € -notation of set-theory to represent the category membership of a
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hrase, for example, "x~ integer"; or less formally, one m=y simply
r p 4 -
write ¥x is an integer®.

The behuviour and properties of elements of each semantic
catagory will be dafined in terms of axioms which sre trus of zll
members of that cotegory; examples of axioms spplying to the cztegory
of integers have already been given. If sxloms are to _
apply to more than one language, it will be useful to define z fairly
large number of semantic categories, and then to specify wny
particular languzge as not contzining zny phrases of thosze categories
not represented in the langusge. Thus a languzge which does not
deal with reals maey be smecified by stating that this category
is empty. This freedom to introducs categories which wrc empty
in & given language will be even more useful when consiiering

intersections and other relationships between categories.

It is & great convenience in describing the properties of
parases to postulate a saparcte semantic category to cover ezch
aspect of its banaviour. For example, an arithmetic éxpression
involving multiplication shares mzny properties with zll other
sritimetic expressions, and even shares some of its properties
{e.g. secuentizlity) with statements. Such a phrase will therefore
belong to many categories; and 1f these categories have been
previously defined, then a particular category can be defined ws -
the intersection of these more embracing categories. It ssems
harmless to postulats the existence of the intersection of two
categories, although in many cases the intersection will be empty,
either because the properties of the catsgories are mutuzslly
contradictory, or becsuse the intersection category is simply
not represent=d in & given language. The intersection of two
categories may be formally denoteld by the traditionzl set-
intersection notation (n); or it may be informzlly expressed by
combination of adjectives and nouns, Howevar, it must not be
supposed that the set-union of catagories in necessarily = cutegory;
in many cases, it would be misleading to do so.

Another useful technicue for dealing at one time with several
semantic categories sharing certain properties is to postulate
certain relationships between categories. For example, let C stand
for a categorv consisting of the values of some simple type, for
example, truthvalues or integers. Corresponding to thils category
there may b2 a category of variables to which values of the given
tvpe may be assigned: these will be known as C-~variables.

Similarly, there will be a catagory of expressions, whicda when evaluated

will designate an element of category C: these will be known s
C~expressions. Finally, there will be a class of assignment
statements which assign o value of category C to asC-variable:
these will be known as C-assignments, This technique is very
useful in modelling the type-constraints which can and should be
checked at compile-time. For example, it is a necessary property
of a C-assignment that its right hand side shall be a2 C~expression,
and its left hand side a C-variable-expression. The use of this form
of guantification Jdoes not imply that in any particular language

a non-empty category, or even a meaningful category, will result from

ar, arbitrary substitutuion for the category variable C. Thus, &although

"procedure" is a non-empty category in many Jlanguages, few languages
permit "procedure-assignaents.® This technigque of dealing with type-
constraints is a close sewantic analogue of the syntactic method
proposed by van Wijngaarden (5). '
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Donotcation.

In a natural language, the meuning of & gentence is Jerive!
ultimately from the meaning or Jenotétion of the individuzl words of
winieh the sentence is compos=ad. This is true alsc in = programming
language; it is only the atomic constituents of a phrase which
establish & connection betwesen the phrase and the entities whnich
form the subject matter of the phrase. This is because the atoms
are capable of denoting some object other than themselves; for
example, a constant may denote a certain value of some type.
Tdentifiers in general denotzs objects which are themselves phrases;
for example, an occurrence of a procedure identifier denotes a
procedure body togstiier with its heading, and an occurrance of =
label identifier denotes the compound tail to which its dJdefining
occurrence 1s prefixed. An identifier for a varizble or formzl

paraometer denotes the relevant variable or formal; and it is
convefilent to regard variablesz and formzl parameters themselves

as atomic "phrases”, which are constituent parts of the block to
waich the guantities are local. We write y = Dx ¥ is the denotation
of x} to indicate that denotua Ve ' ~

Note that the rplqtlonSﬂlo of denotation is an entirely static
one, subsisting between parases and other phruses or objects. This
relationship is permaent, and cannot chainge during the execution
of the program. Thus a variable is Jdenoted by one or more océurrences
of a variwble idantifier, but the relutionship which holds between
a vedable and its current value at any time is not one of denotsation.,

In constructing a picture of & pihrase which included the
denotations of its atomic constituents, an arrow may be drawn from
the Jdenoting atom to a circle representing the object which 1t
denotes, for example:

Fig 2,
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Alternatively, in the case of larger phruses, & phriase may be
labelled by un identifier, and the same identifier written within
an atom indicates that the atom denotes the labelled phrase. It
is most important to realise that more than one atomic phrase can _
denote one and the same object. In this aspect, denotation is guite
different from structural relationship C which connects the subphrases
of a particular phrase. Two disjoint atoms may share the same denotostion
whereas it is not possible for two disjoint phrases to share the same
subphrase.

s

Expressions and their results. L.

-We are now in & position to deal with the cutbgory'of rhrases known
as expressions. Exoresslons have the capakility of delivering a
result on evaluation; we therefore postulate a primitive (unueflnea)
~function, which maps an expression x onto its result y {y = reault ("));
provided, of course, that this result exists. : .

- BExpressions are normally classified in accordance with the type

of the result which they deliver, for example, integer-expressions

are capable of delivering integer results, but not reals. This kind

of type~constraint may be expressed generally by describing the properties

of C-expressions, where C stands for an arbitrary semantic category. :
An expression in progrummlng Tangugge can usuczlly be convertad to a@

tree~form, in which every phrase is either dyadic, monudic, or atomic,

An atomic C-expression is normally known as a C-constant, and is assumed

to denote some value of category C. This denotation is taken zs the

result of the constunt. A monadic C-expression has associacted with it

@ monadic operator P. Its result is obtained by applying P to the

result delivered by its only constituent., A dyadic C-expression has

similarly a dyadic operator P, which is applied to the results of the

constituent subphrases to deliver the result of the whole expression.

These facts are summarised as follows: ' - -

1l. If x is a C-expression and has a result, then this result is
a C.
2. If x is an atomic C-expression, then result (x)"= denotation (x).
3. If a C-expression x =.y is a P-operation then result (x} =
P(result(y}) :
A, If a C-expression X = y.z is a P-operation then result {x)

= P(result(y), result(”))

Note the equality of the last two axioms is a strong eguality. The
existence of the results of the constituents together with the applicability
of the operator to these results, forms a necessary and sufficient
condition for the existence of the result of the whole phrase. . It is
assumed that the existence and’ identity of the result of a P-operation

can be derived from axioms defining the operator P.

We next deal with conditional C-expressions, in which the result is
selected from a pair of alternztives in accordance with the truth or
falsity of & condition.

5. If a C-expression x = i. {t.e} is a conditional then

t and e are C-expressions

i is a truthvalue-expression

if result (i) = true then result (x) = result (t}
if result (i) = false then result (x} = result (e)
if i has no result, then neither has x.

This formulation leaves open the possibility that the discarded limb of
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the conditional may also have a result, which is irrelevant to the
result of the conditional. In a practical implementation, this
result would never be evaluated, since it is certainly never needed,
and might not even exist. llevertheless, there seems to be no harm
in permitting a phrase to have a result, which is ignored.

Procedures.

The determination of the results of expressions is by itself a fairly
trivial task, and can be carried out by a desk calculating machine as
well as an automatic digital computer. However, it is not an insignif-
icant part of the definition of a high-level programming language.

The definition can be readily extended to cover the evaluation of the
whole class of general recursive functlons, provided

that a suitable axiomatisation can be given to the concept of a procedure,

a procedure call, and of parameter substitution.

A procedure c¢all or a function designator is defined in ALGOL 60
as an operation of making a new copy of some procedure body, with

* replacement of formal parameters by the actuals. The resulting copy

is then evaluated, and its result {if any) is taken as the result of

the procedure call.  These facts may be expressed:
1, If x = .,y is a C-~procedure c¢all then y 'is a C-procedure- expresslon
" result {y} is a C-expression (i.e. the new copy of the proced-
ure body) & result (x) = result {(result (v)).

In this axiom, it is assumed that y delivers a result which is a copy
of some procedure body. If there is no parameter-subsitution, this
is relatively trivial; the procedure identifier is represented by an ztom

.which denotes the procedure body itself, and delivers a Copy of it as

result., If a slngle parameter substitution is involved, the procedure-
expression will be a dyadic phrase, of which the left constituant delivers
a procedure, and the right constituent delivers the actual parameter,

The procedure itself is also . a dyadic phrase, of which the left constit-
uent is the formal parameter and the right constituent is the body of

the procedure. If more than one parameter has tc be substituted, =this .

can be achieved by successive substitution of each parameter in the result
of previous substitutions; so this case does not involve any new principle.
Thus two axioms suffice: ' '

2. If x = .,y is a procedure- expre551on, then result (x) is a copy
of the denotation of vy.
3. If X - v.2 is a procedure-expression, then result (x}) is a copy

of the right constituent of the result of y, with result (z)
substituted for the left constituent of the result of y.

.The concept of copying and substitution which underlle the axioms
quoted above, are concepts which have a strong intutive basis; however,
it is still desirable to make the intuitive content explicit by means
of axioms, as Peano did in the case of counting. We write xMy to
indiecate that x is a copy of y, with or without _parameter substitution;
to make the substitution explicit, we write x M_y to indicate that
the actual a has been substituted for the formal £. The first
properties of copying are that each copy has at most one original,
although one original may have many copies and that no phrase is directly

or lndirectly a copy of itself, i.e.
4. M is convergent and non-cyclic.

Next we must ensure that a copy has all the same semantic properties as its
original, and that it has the same structure.

5. If xMx' and C 1s a syntactic category then x& C if and only if
x'gEC.
6. If xMx' and s is a selector then s{x) M s({x"').
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Treatment of denotation relationships are rather more complicated,
since we must distinguish the cuse where an atom of the original
denotes a phrase of the original itself, In this case we want to ensure
that the atom within the copy denotes the corresponding phrase in
the copy itself, rather than denoting the same phrase within the
original. Thus in figure 3, we wish to copy (a) as {(b) rather than
as {(c). The relevant axiom is: :

(a) (b) (c)

Fig 3.

7. If xx' and whole {Xjiy and the denotation of x! is contained
in y then the denotation (%) is contained in the whole of x and

" denotation (x}M denotation (%)

We now consider the case where the original of an atomic phrase
i& the formal parameter, and the phrase itself is therefore the
actual parameter. An cccurrence of a formal parameter is represent.
ed as an atomic phrase denoting the formal parameter itself and the copy
of the formal denotes the actual parameter, This models the old
FORTRAN parameter mechanism (call "by denotation"); the ALGOL parameter
mechanism could be described by different axioms, or by transforming
name parameters into functions, in the manner described by Landin (6)

8. if XM£X‘~& x! denptés f then x denotes a.

Finally we need to ensure that any atoms of the original which denote
constants or global quantities are copied as atoms with identical denot-
ation.

9. If xmix' & x' is not contained in the original of the whole of %

then x and x' have the same denotation.

Dynamic Concepts.

Up to the present point, the axioms have related to a purely
functional langusnge, which is nevertheless powerful encugh to compute
all computable functions by general recursive techniques. There
has been no need to introduce any concept of "executing” the programs
in some time-segquence; although it is obvious that any actuzl implement-
ation of the language will evaluate functions in scome time-seguence,
it does not matter what this time-sequence is. A sensible implementation
will avoid wasting time on the evaluation of the discarded limbs of

b —————
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conditionals which may often be undefined; hit there isnoreason at this stace
to prohibit the implementation from doing so, provided thzat it dces
not go on for ever, and thereby fail to deliver any result at zll,

However, there are many applications of computers for which the
purely functional approach to programming is impractical, for example,
in dealing with large arrays, input/output, and in the simulzation
of discrete event systems. Languages designed for these purposes
will contain assignments, declarations, compound statements, input/

- output, and even jumps. The meaning of these features can only be

|

explained in terms of a more or less determinste seguence of
ex ecutlon of the individual phrases of the program.

Events.

One can axiométise the execution of a program and its subphrases
by postulating an abstract set of events which are related by a

. successor-relationship S. The fact that event x is immediately

followed by event y is indicated by writing xSy. In most program-

'ming languages, one could postulate that S is a linear relstionship,

guaranteeing that each event either precedes or follows each other
event; but in languages which permit parallel actions, this is no
longer true. liost of the axioms guoted in the following sections

have ‘béen formulated to apply with ecual validity to languages with

or without parallelism. However, even in a parallel enviroment

it seems reasonable to postuldate that ‘S is non-cyclic. - Each event

in the execution of a program is assogiated with some phrase of

the program or with & copy {(more precisely an li-ancestor) of =

parase of the program. We distinguish the case of the event associated
with the initation of the execution of the phLase, from the cas

when it terminates execution of the phrase; if x is a phrase and e 1s an
event, we write e = init (x} in the former case, and e = termin {(x)

.in the latter. - We can now define the execution of a program P as

the set of events which are S-~descendants of init (P). Also, we can
define what is meant by the assertion that a program P terminates
successfully: it is eguivalent to saving that termin (P} is an S—
descendant of init (P). We use the letter P to denote the program
under execution. k

In a pLocecu al lunguuge, it is a regular occurance that an eipress-
ion of the program is executad more than once, ana on pach caze
delivers a different result. This would seem to invalidate some
of the previous axioms, which assume the unigueneszs of the result of
each eAprPSqion. Thaiz @ifficulty can he evaded by ensuring in our.
model that no phrase is executed more thzn once, and in every case
of "repeat=d" execution, it is in fact a co 124 of the phrase which is
executed. If this convention is observed, it is possible to stute

" that each parase in initiated at most once, and terminated at most

once. Furthermore, it is obvious that the termination of z pharase
(if it occurs) must be an S-descendant .of its initiation.

The above general remarlis are summariced together with some useful
definitions, as followf-m

1. s is non-cyclic,
7. % is an event if and only if it is an S-descendant of init (P)

3. a phrase x is initiated = 4 init (x) is an event.
4. a phrase x is successfully terminated = 4¢ termin (x) iz an
event. :

5, init and termin are one-one mappings between events and parases.
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termin (x), if it exists, in an S--descendant of init (x).

S
7. x precades y = af ¥ follows % = 31y # is an S-ancestor of ¥y,
where x and y are events.

It is useful to extend this last definition tocases when x or
y are phrases rather than events. In this case, the time of =xecution
of the phrase is identified with the event of its termination, for
example:~ ' .
8. x precedes y = df y follows x = df termin (x) precedes termin (y)
' where x and y are phrases.

Secuencing.

We are now in a position to examine the sequence in which "control®
is passed between the various phrases of a program. . In many cases, wien
a pHLase is initiated, control passes immediately to one of its constit-
uents; and if execution of the constituent terminates, then control
passes to another constituent, and so on, until all constituents are
terminated. Phrases which have this vroperty of passing control to
theilr constituents are known as normal; they include monadic and
dyadic expressions., Lote that the "normality" of a phrase d08a not
prohibit parallel execution of its constituents.

here is a class of non-normal phrases which pass control to only
one of their constituents, and which terminate ‘on terminstion of this

constituent; none of the other constituents are executed. Phrases
with this characteristic are known as selections an example of such

a selection is given by the dyadic pHLuse WHlCu forms tne right constit-
uent of & conditional. ) i

A third mode of sequencing is exhibited by procedure calls, wnich
transmit control to some copied phrase, and which terminate on
termination of this phrase. These modes of sequencing are more
formally dascrlbed in the following axioms.

1. If a pnrase x is normal anditisinitiated then it has at least one
constituent y such that init (x) S init (y} and if any constit-
uent is not initiated, this can only be because some other constituent
is initiated but not successzfully terminzted.

-Here we introduce an suxiliary definitiom.

‘2. x terminates v =df termin (x) § termin (y)} and result (x) = resuk Fh

3. If a phrase x is a selection and is initizted then it has a constit-
uent y such that init {x) S init (y) and y terminates x and y is the
only constituent of x which is initiated.

4. If x is a call of y then there is a unique z such that y = result
(z} and termin {z} S init (y) and y terminates x.

5. Expressions, except calls, are normal, and if ift.e} is a condit-
ional then t.e is a selection and if .y is a call, and is initiated,
then .y 1is a call of result (y). :

Variables and Assignments.

One of the main characteristics of computing machines, and of the

languages which control their operation, is that they are capable of storing

values in some storage medium, of fetching these values whenever reguir-
ed, and of changing the values by assignment during the course of a
computation. It is this last feature which most clearly distinguishes

-procedure-oriented programming languades from the more traditional

branches of mathematics, which have already been successfully formalised.
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The ease with which assignment can be modelled is a crucial test of

the success of a rigorous method for programming language description. -

An assignment involves two items, a value which is to be asgsigned
and a variable to receive the value; and it is laid down that these
must be of identical type. If the language permits automatic type-

- conversion, then it is assumed that all necessary transfer functions

are inserted by a preliminary scan of the source text, The concept

of a value of any type is defined by the axioms governing that type.

A variable, on the other hand, cannot be dealt wWith on the same static
basis, since in many languages a variable comes into existence dyenamic~
ally on entry to the block to which the variable is locazl. liow suppose
we model a variable as an atomic phrase which is an actual constituent of
the block to which that variable is local, and then arrange to make a

. fresh copy of the block whenever we enter it. This will automatically
ensure that we obtain fresh copies of all the variables on block entry,

wliitich 1s exactly what we want. ‘Let us also represent each occurrence
of the variable identifier in the program as an atom which denotes

the phrase representing the variable. liow the copying process, as
described in section 3.5 {7}, will ensure that all variable identificrs

“in the new copy will correctly denots the new copies of the variables

rather than the oldﬂ

Thus it is natural to equate a variable with the declaratory occurrence
of its identifier; and every non-declaratory occurrence is assumed
to denote this. Furthermor=, we wish to state categoricalily that
declarations occur only as constituents of a block, and it is not
possible to refer to a declared guantity from outside its scope.

In addition to declarations, a block normally contains a body, which
is executed when the block is entered:; we introduce a selector to
select the body from a block. The remarks made above are summarised
in the following axioms. )

1. If x is a C-declaration then x is a Cyand x is never initiated;

and if x is a constituent of b, then b is a block and if ¥
denotes x then some M-descendat of y is contazined in b.

2. If x = .y is a block-generator then result (y} is a copy of ¥
and x is a call of result (y).

a, If b is a block then x = body (b) if and only if x is a
constituent of b but is not & declaration,

4, If x is a block gnd is initicted then init (x}) 3 1n1t (body(h))
and body (%) terminates x.

The body of a block is normally a statement or sequence of statements,
known as a compound tail in ALGOL 50 terminology. A sequence of phrases
is conveniently represented as a dyadic phrase, the left constituent of
which is the first statement of the secuence; the other constituent is
the remainder of the sequence; which may itself be a sequence or a single
statement {or expression). If a block body is to pass back a result,
this is conveniently taken from the evaluation of the last statement or
expression of the sequence. These facts are summarised as follows.

5. If x = y.% is a sequence then x is normal; termin (y) S init (z};
z terminates x.

We now need to introduce the concept of a current value of a variable

at a given time. If e is an event, ¢ is a value, and v is a variable,
we write g = current value (v,e) to signify that g is the current value
of v at the time of occurrence of event e. We also introduce the

category of an assignment statement, which is a normal dvadic phrase,
whose left constituent delivers a variablé and whose right constituent
delivers a value; and assignment has the effect of defining the current
value of the relevant variable on termination of the assignment.



e

B

Bt o B

- 15 -

5. If a = 1.7 is a C-assignment then 1 is a Cuvarlnble—expres ion;
r is a C-expression;a is normal;r terminates u, current value
{result {1}, termln {ay) = result (v).
lote that an assignment hite a result equal to that of its right hand
side; +this is useful in deallng with languages permitting multiple
assignment, and is harmless in those that do not.

It is essential to draw a distinction between an occurrence of a
variable identifier as the left constituent of an assignment, and
its occurrence as a primary in an expression. The left-hand occurrence
can be represented simply as an atom denoting the variable or by &

- variable-expression in the general case; when this is evaluated, it

delivers the variasble itself as a result, which is what is wanted.
iflowever, when the identifier occurs on the right-hand side, what is
recuired is the current value rather than the variable itself. Such
occurrences as primaries are known as variable-evaluators, and are
represented as monadic phrases, whose only constituent delivers the
variable as a result, and which itself delivers the current value

of that variable:

7. If x = .y is a C-variable-evaluator then x is norm:l;y is a
+* C-variable-expression if g = currentvalue (result (v},
termin (y}) then termin (y) S termin (x} and result {(x) = q.

Finally, we need an axiom to state that the current value of a
variable does not change between one assignment to that variable
and the next. For a lasnguage which does not permit parallel
assignments to the same variable, one could formulate the rule that
the only reason for a change in value is an intervening assignment.
However, to cater for the possibility of parallelism, one would need to
be more subtle:

a, If all successfully terminated assignments to x either precede
e; or strictly follow e, then currentvalue (x,ez) = currentvalue (x,el}.
Sumps.

In addition to assignment, the jump is . .another aspect of procedural
programming languages which presents problems for elegant formalisation.
The treatment given here follows closely that given by Landin in (7).

In ALGOL 50, the destination of a jump is determined as the result of
evaluating a designational expression. This result is generally
supposed to be o label, which may be identified with (a copy of)
that part of the compound tail to which the defining occurrence of
the'  label is prefixed. This section of program will be wholly

. contained within the block to which the label is local; in fact

it will (in general) be that part of the compound tail of the block
which occurs between the defining occurrence of the lzhel identifier
and the end of the block. Such a section of program will be known 2
a program-point,

We may now represent a go to statement as a monadic phrase whose
only constituent is a designationzal expression. We assumne that a
designational expression will deliver as its result a fresh copy
of some program point. This copy 1s then initiated; and if it term-
inates, its succeassor is the termination, not of the go to to statement,
but of the block to which the program point is local,” In fact, the
jump itself can never terminate successfully. The block to which a
program point is local may be determined as the smallest block contain-

ing an M~descendart of the program point.
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1. x = locality (p}, whevre p is a program point, = 4f x is a
block, =nd x contains an M~descendant g or p, and if any
other block contsins an M-descendart of p, then it also
contains an M-descendmt of x.

2. If x = .y is a jump then y is 2 progrum-point-expression; if y
hzs a result than loculity (result (y)) is a cill of result (y).

In the cese where a labzl is prefixed to the finzl end of s block,
the relevant program point consists of o null statement, full
statements are also useful in representing the suppressed elge part
of a conditional statement.

3. If x is a null-statement then x is atomig init (x) S termin (x);
X has no result,

Further features.

The language features axiomatised in the preceding sections cover the

"most basic features of procedure-~oriented programming languages. In

fact, they match almost exactly the features of Landin's Imperative
Applicative Expressions (7} and these have been shown to be sufficient
for the semantic definition of the whole of ALGOL &0. However,; it does-
seem desirable to use the axiomatic method to explicate certain more
advanced features of modern programming langusges, for example dynamic
afrays, input/output, record handling, and even parralelism.

%

‘Dynamic Arrays.

An array is a homogeneous collection of elements of the same
category. In the case of a single-dimensional array, the elements
are simple variables; but the elements of a multi-dimensiconal array
will themselves be arrays of one lower dimension, It seems reasonzble
to postulate that no element belongs to more than one array, and that
no element appears more than once within any given array. It is
possible therefore to represent an array as a phrase, whose constit-
uents are identified with the elements of the array. ' ‘

Two new functions "1" and "u" are introduced, which map each
array onto its lower and upper subscript bounds respectively. We
also need a function "subscript!, which maps an integer within the
subscript range of an array onto a selector which will select the
corresponding element of that array. These functions are connected
by the following axioms, in which A is assumed to be of category C-array.

1, for all i such that 1 (A)S i fu (A}, subscript (i) (A} exists and
is a C : : '
2. 1 (subscript {i) A})= l(subscript {(j)Aa) and u{subscript (i}A)=
. u{subscript (j)A) _

(i.e. multidimensional arrays are rectangular).

In a language with static array bounds, liks FORTRAN, there is no
need for any further axioms dealing with the dynamic sspect of arrays.
A multidimensional array can be converted (by columns) into the
corresponding single-dimensional array, and all references to it can be
converted by a static syntactic translator into the appropriate
reference to this single-dimensional array. The array declaration
(DIMENSION statement) can be similarly expanded into an array with
the appropriate number of elements, just as it is when translated
into machine code.

However, in-a language such as ALGOL 60, which permits arrays to be
constructed dynamically, with dynamic bounds, the problem cannot be
dealt with by static transletion; some semuntic, or run-time, mechénism
is required as well. We therefore need to axiomstise a concept of an
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‘array-generator, which creates new instances of arrays. An array-
generator needs three parameters:

1. 2An indication of the category of the elements, which in the
case of multidimensional arrays may be themselves arrays

2. A specification of the lower bound.
3. A specification of the upper bound.

It is convenient to sﬁecify the category of the elements by an .
example, which is copied the appropriate number of times.:

4, If x = ¢. {(lb.ub) is an array-generator then x and lb.ub are
normal; lb and ub are integer-designators; if x terminates
successfully then result (x) is an array

and 1 {(result (x)}} = result (1lb)
and u (result (x)) = result (ub)
and each constituent of x is a copy of result (c).

It is necessary to insert the'proviso that x terminates successfully,
since the array generator may fail as a result of 1nadequacy of scoruge
in any finite implementation. . .

There is still the requirement in ALGCL 60 to link up all occurrences
of the array identifier inside the block with the newly génerated
array. A suitable technigque for doing this is to use the parameter
mechanism to set up the linkage. Thus the array identifier is regarded
as a formal parameter, and the array generator features as
the corresponding actual parameter. This means that the szubscript
bounds of the array will naturally be evaluated in the enviroment
of the surrounding hlock, thereby evading a slight but tricky problem
in the definition, implementation and use of ALGOL 60, at the expense
of a fairly severe syntactlc transformation of the orlglnal source

program.

Finally, we need to ensure that whenever an array is generated it is
an entirely fresh array, not the same as any other array previously
generated. This is done by introducing the syntactic category of

' "generator®, which is assumed to include all array- generators.

5, If X and y are generators and result (x} = result (y) then
Y '

6.  'An array-generator 1s a generator

Input and output.

Input and output in the conventional sense of FORTRAN and ALGOL 60
is concerned with ordered seguences of values. ILegible {(formatted)
input/output can be dealt with on the same basis as communication.
with backing stores, which normally takes place in non-legible internal
form. This is done by regarding characters as a specific type of
value, In our axiomatisation, we may regard a file as a sequence
of constants, each of which denote a value of some simple type.

This seguenhce can be represented in the same way as the sequence

of statements in 2 compound taill, i1.,e., as a dyadic phrase, whose
left constituent is the “current” element of the file, and whose

right constituent is the remainder of the file.

The relevant axiom is
1. If x = a.b is a c~-file then a denotes a C and b is either
a C~file or an end-of-file indicator.

In any given computation or sub-computation, it is assumed that
a file is either an input-C~file or an output-C-file. The only
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operation on an output-C-file is an output operation, and the only
operation on an input-C-~file is an input-operation, The properties
of these operations are easily described: _

2. If x = y.2 1z a C-output operation, then x is normal;
y 1s a C-expression;z is an output~C-file-expression,
If x 1s successfully terminated and if currentposition
{result (=), termin {z}} = a.b then denotation {a) =
result (y} and current position {(result (z}, termin (x}} = b.

3. If x= .y is a C-input-operation then x i's normal;
¥ is an input-C-file designator.
If x is successfully terminated and currentposition {result
(v}, termin (y) = a.b then result (x) = denotation (a)}.
and currentposition {(a.b, termin (x)) = b.

In these two axioms, there is no means of proving the successful

termination of an input or output operation. This permits an
implementation to stop the program, or jump to an error routine,
in the event of hardware malfunction. Furthermore, ths result of

-reading beyond the end-of-file indication has been carefully left

undefined.

There is still one loose end in the axioms 2 and 3: it is necessary
to guarantee that the file remains stationary in between successive
input and output operations. This can be done as follows:-

4. x is an operation of £ = df (x = y.z is a C-output-operation

or X = .2 is a C-input-operation} and result (z) = f.

5. If all operations on f either precede e, or follow €54 then
currentposition (f,ez) = currentposlélon (f,e ).

lote that this statement is patterned on the correspondlng assertion
about assignment, and is.ecually valid in a parallel as in a strictly
sequential environment.

Record handling.

The example of dynamic generzation of arrays illustrates a tech-

nique which can be used to deal with other forms of dynamic

storage allocation, for example, record handling as described in (8)

A record class declaration may be regarded as a declaration consisting
of a sequence of variables representing the fields. This declaration
acts as the original from which all actual records of the class

are copiled; so that each field is a copy of the corresponding field

in the record class declaration. Fields of a particular record may
be referred to from within the program by means of field designhators.

2 field designator consists of an expression delivering a record

of the appropriate class, and a field identifier, denoting the original
of the required field within the record class declaration. The action
of a field designator is explained by means of a fleld-selection
function selectfield (f), (where f is a field), which vields a selector
capable of accessing that field in any record.

1. If X = .y is a record-generator then x is a generator;y denotes
a record class declaration; if x terminates successfully then

result {x) is a copy of denotation (y)

2. If f is contained in original (r) then original (selectfield
(£} (r))} = £ and selectfield (f)(r) is contained in r.
3. If x = y.z is a field-designator then x is normal; result (x} =

selectfield f{(denotation (y)) {result (z}), if it exists:
otherwise x does nctterminate successfully.
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The remaining facility reguired for record handling is the _
introduction of referencevariables, which may "point to" recordgs
of some class, or else take a null value. However, apart fropm
null itself there is no need to introduce a separate concept of
a reference value, since we may eguate a reference value with
the record itself (not, of course, the value of the record).

4. If v is an _]-reference-variable znd a3 = l.r is an
assignment, and result {1} = v, then either result
{r} = null or original {resulti{r}) = R.

~Note that in 4, R® stands for a record class declaration, which

is a phrase of the program itself. Thus we have encountered
a case of a semantic category generated by a program at run time.

Parallelism. .

In the preceding sections, we have carefully refrained from
stating the sequence of execution of the constituents of a phrase;

‘and we have even left open the possibility that they are executed

in parzllel. The choice of sequencing rules can be expressed by
means of axioms. We need to distinguish at least four possibilities.

1. A phrase has a regidly determined sequence of execution. 3Such
phrases are known as gtrictly seguential.

2. A phrase has no determined segquence of execution, but its
constituents must be executed in some sequence. This seems to

- correspond to the situation with the primaries of an expression

in ALGOL &0. Such a phrase may be known as wezkly sequential.

3. The execution of the constituents of the phrase is interleaved,
in the sense that the events involved in the execution of one ‘
constituent may appear mingled amoung the events associated with the
execution of another; but all events are linearly ordered. This
interleaving is guaranteed when a 51ngle machine attempts to simulate
parallelism.

4. There is no necessary ordering relationship zmoung the events
involved in the execution of one constituent and those of another.
This is a genuine parzallelism, such as might be achleved by multi-
processor implementations of the 1anguage.

These four possibilities may be more rigorously.described:
1. If x.y is strictly sequential, then termin (x)S init (y)

2. If x.y is weakly sequential then either termin (x} S
init {y} or termin (y}S init {x)

3. An event e is involved in execution of phrase P = df
there is ar x such that e = init {x} or e = termin (x)
and P contains a call-ancestor of x {using "call" as the
name of the relationship of & being a czll of b.)

4, If x.y is interleaved then for any event e involved in the
execution of x znd any event £ involved in the execution of vy,
either e follows £ or e precedes f.

5. If xX.y is parallel then it is not interleaved, i.e., there is
at least one event in the execution of x and one in that of y
which have no defined sequence.

A language which specifies parallel or interleaved execution, should
also contain some means for the synchronisation of the parallel streams.
Several technigues have been proposed- one of the best defined is the
"semaphore’ concept introduced by Z.W. Dijkstra. 2 semaphore acts
as if it were a finite collection of some item which may be *"borrowed"
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or "returned" by the parallel processes. If a process attempts to
borrow an item when the collection is empty, 1t is held up until
some other process returns an item. Otherwise, the effect of
borrowing and returning is merely to decrement or increment the

count of items available.

We thus introduce a new category of variable, the semaphore, and two
operations which may be performed upon it.

6. If x = .y is a semaphore-operation then X is normal
y is a semaphore-expression . :
X is either a borrow or a return, if x is successfully
terminated, then x is said to be an operation on result (v}

7. If x and y are operations on the same semaphore, then
x g@ither precedes or follows y.

8. If x is an operation on semaphore s, then the set of all
operations on s that precede x does not contain more borrows

- than returns. ’

- This gives a very implicit definition of the essential nature of a
. semgphore, and it does not contain any hint on how it is to be

implemented on either a single processor or a multiple processor
system. However, it does seem to be powerful enough for -a program-
mer to prove that his programs have the desired properties, and
that they will therefore work on any implementation which satifies

the axioms.

Syntax

In this paper, no attempt has been made to deal with the notations
and syntax of a programming language. It is assumed that some
method will be available for specifying the correspondence between

program texts and their abstract represéntation. 2An example of such

a methed is given by Landin. (7}

Conclusion.

This paper has demonstrated and explained certzin axioms of the
sort which are likely to feature in the axiomatic definition of many
general-purpose procedure-oriented programming languages. It is
not clear at the present stage how far these axioms satisfy the
design criteria laid down in the introduction. Such an appraisal

‘can be made only after a systematic application of the method to

several languages, and the attempt to apply the axioms in proofs of
the correctness of programs. Such proofs would be likely to be
excessively long, until a fairly powerful set of metatheorems are
developed from the axioms.
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