
T~-IE AXIOHATIC ~IETiclOD 

PART I 

C.A.R. l-IOARE. 

Stw.mu.ry. 

T':lis paper points a distinction bet1·reen ttvo fundamentally 
differing approaches to the definition of mathem<:tical foundations 
·and of computational algorithms; the two etpproaches are l.:nown 
as· 11 constructivist" anJ. 11 a_xiomztic 11

• J;t is suggested thw.t t~o_e 

axiomatic approaoh may be more suited to the rigorous definition 
of prograrruning languages, particularly for purposes of standard­
isation. 

. 
' 

f 
I 

t 
! 
r 
I 
' i 
I 
I. 

I 
l 
I 
I 
I 
I 
I 
t 

I 

I 
I 
I 
! 
i 
I 
r 
' ! 
~ 
I . 



1. Introduction. 

Most current approaches (1,2,3) to formal definition of languages 
· are based on a machine-like construction of some convenient degree of 
abstraction; this passes through a succession of states in accordance 
with more or less deterministic transition rules, laid down by the 
statements of the definition. such an approach may be characterised 
as mechanistic, constructivist, or algorithmic. The axiomatic 
approach, on the other hand, does not rely on the concept of a machine, 

. whether concrete or abstract; and it does not lay down any particular 
algorithm which must be used to execute a program in the given language. 
Rather, it uses axioms to state certain very general properties 
.which every algorthmic implementation of the language must possess 
in order to qualify for that title. The axiomatic approach tends 
to give subtle and implicit rather than explicit definitions, but 
nevertheless, it has advantages similar to those encountered in the 
formalisation of mathematics and in the design and description of 
general purpose programs. 

2. Foundations of Mathematics. 

The distinction between the axiomatic and constructivist methods 
is clearly apparent in the study of the foundations of mathematics. 
For example, consider the approach to the formalisation of the arith­
metic of natural numbers. There are several constructivist proposals 
on the subject: 

1. Frege (4) defined a natural number as a set 
of sets with the same number of elements. 

2. The CUCH (Sa) suggests that a natural nQ~ber 
is a functional, which transforms a function 
f into another function g, where the result 
of applying g is the same as that of applying 
f a certain number of times. 

3. Van Wijngaarden (Sb) constructs an integer in 
terms of its decimal representation as a 
sequence of digits. 

The question now arises whether these are valid interpretations 
of our 11 intu.itive 11 concept of natural numbers'? In order to answer 
this question, we will need to have an independent criterion for the 
meaning of natural numbers. In fact, such an independent criterion 
was supplied by Peano (6) in the form of axioms. The proponent of 
any constructivist definition of natural numbers is obliged to prove 
that they satisfy the axioms of Peano. Thus it is the axioms, not 
the constructions, which supply the definitive formalisation of the 
concept of a natural number. This fact is widely recognised among 
modern algebraists, who value their right to define groups, rings, 
fields, etc., in purely axiomatic terms; and would regard constructions 
which satisfy the axioms merely as instances, examples, illustrations, 
or models, of that which they are really interested in. 

I 
t 
I 



- 2 -

· A close analogy can be drawn with the definition of integer 
arithmetic in a programming language. An iteger in ALGOL 60 can 
be constructed {implemented) in many ways: 

1. As a collection of bistable electrical 
states in a binary computer. 

2·. As a rotary cog position in a calculating 
machine. 

3. As a position of beads on an abacus. 

The question now arises, whether these are valid implementations 
of ALGOL integers? If the formal definition of ALGOL were e~pressed 
in terms of a selected one of the techniques, then it would be impossible 
to prove that any of the other techniques was valid, unless we had an 
independent criterion of the properties which it must share with the 
selected technique. But if we have such a criterion, then there is 
now no need to enshrine one of the techniques in the formal definition; 
why can't we. use the criterion itself? As before, .the criterion 
could be expressed as a n'umber of axioms, similar to those of Peanq, 
but adapted in light of the finitude of computer arithmetic. 

3. Program Description. 

The distinction between the axiomatic and constructivist techn­
iques in the description of programming languages may also be 
illustrated by different approaches to the description of particular 
algorithms. Suppose, for example, we wish to ta.lk about sorting 
programs. There are many ways in which we could describe such programs: 

Informal Comment: 

The procedure SORT sorts an integer array ACnl:~using an integer­
valued function of integers, namely f, to define a sequencing on 
elements of A. 

· ·Axiomatic Approach: 

On exit from SORT, the array A will have been transformed to an 
array A' with the following properties: 

1. There is a one-one mapping P Cm:n.,> m:nJ such that 
A' [P{i)]: A tiJ for all i between m and n. 

2. f {A' [i) )f.f {A' [j]) for all i,j such that 
m~i~j~n. 

Algorithmic method: 

Procedure SORT {A,f); integer array A; integer procedure f; 

begin integer i,j ,k w,fw; 

for i::m+1 step 1 until n do 
begin w: :Ati] ; fvr: :f (w) ; 

for j:: i-1 step- 1 until m do 

if f{A[i) )>fw then A[j+l) ::A(j); 

else begin A(j] ::vr; 

f 
I 



A[mJ :=w; 

L: end i 

end SORT; 

- 3 -

Each of these three description methods is useful in different 
circumstances. The informal comment is essential to instruct a 
programmer how to use a sorting procedure within his program; and 
the algorithm is essential to uctually cause t:-.e sorting to tuke 
place in a computer. The axioms are in some ways more similar 
to the informal comment, and they might be chosen as a means of 
establishing a standard to which many different sorting algorithms 
are intended to conform. The use of an actual algorithm to 
define a standard suffers from the following defects: 

1. 

2. 

3. 

It contains an error; the stat.ement 
"A[j] :=w'' should read ''A[j+l] :=w" such 
errors are characteristic of the algorithmic 
descriptions of complex processes. 
If f (A [i] ) = f (A [j]) then these elements 
retain the order which they possessed before 
the beginning of the procedure. This is 
probably not an essential requirement on all 
sorting techniques. 

The procedure is very inefficient when the 
array A is large, or the function f laborious 
to compute. 

The axioms seem to offer corresponding advantages for standard­
isation purposes: 

1. The axioms are in general much simpler and more 
self-evident than any ulgorithm which implements 
them; and they are therefore less prone to error. 

2. The axioms enable the standardiser to leave 
indeterminate the effects of cases in which he 
does not mind what the result is, and yet he 
can define exactly the degree of determinacy 
that he needs. 

3. The implementor can take advantage of permitted 
indeterminacy to design an algorithm which is 
very much more efficient than the one quoted. 

4. Languaqe StanGardisation. 

A high level programming language should be capable of being 
implemented on computers vlith widely differing designs and architect­
ures. If the language is to be successful as a standard, it is 
essential that working programs should be capable of transfer from 
one machine to another \·Jithout any fear of producing incorrect 
results. That this is unachievable with existing languages only 
shows how far we have yet to go. 

f 
• 

l 



] 

) 

l 

I 

- 4 -

Hmvever, it is not good enough for a language to stcmdardise too 
rigidly, since othendse it will be impossible to implement it efficient­
ly on d:j.ffering harcJI.rare designs. It is essential to isolate 
implementation dependencies (for exwnple, accuracy of floating point), 
and leave the implementor sufficient freedom to make the best choice 
for his machine. That is vlhy it is not nracticable to standardise 
a language on a particular implementation of it. A successful 
language description technique \Vill ensure that the-limits of the 
undefinedness in implementation-dependent areas can be defined 
\vith sufficient determinacy. ·to enable the user to obtain the desired 
results from his program on all implementations. Thus the purpose 
of a formal definition is to establish the correct degree of standard­
isation of a language across many implementations. 

A set of axioms, it is believed, can be formulated to express 
exactly the properties \Vhich must be displayed by every implementation 
of the language, and it can do so in a simple and subtle manner. For 
exarrple, it can express a quite elegant formulation of the properties 
of real arithmetic which one would like to require of every implement­
ation of the language, without prescribing any particular accuracy of 
floating point representation. Hechanistic interpretations of a 
language tend to omit any description of real arithmetic, or else 
to describe it in a vay which puts unacceptable constraints on a 
practical implementation. 

Of course, the axiomatic definition of a language standard 
cannot, for practical reasons, prevent an implementation from 
possessing features extraneous to the definition of the language -
for example an implementor must choose some particular technique of 
floating point rounding or truncation. Such a choice can often 
itself be expressed by means of supplementary axioms; and thus 
many implementations may share all the standard axioms, but differ 
in a choice of certain specific axioms; just as Euclidean and non­
Euclidean geometries share most of their axioms, but differ in a 
choice of the parallel postulate. 

The use of axioms to describe the semantics of a programming 
language may be found to have other advantages besides that of 
assisting in standardisation. These potential advantages are 
described in the follo'..;ing sections. 

5. Proof Construction. 

The conventional technique '"hich a programmer uses to convince 
himself of the correctness of his program is to try it out in 
particular cases and to modify it if it provides results \vhich do 
not correspond to his intentions. After he has found a reasonably 
wide variety of example cases on which his program works, he believes 
that it will always vrork. This technique is adequate for small 
programs, in well understood applications; but for very large programs, 
or for new application areas, it is altogether less satisfactory; and 
when dealing with interrupts and parallel actions, the usefulness of 
traditional program testing methods is very suspect. 

Quite apart from practical difficulties, there are serious 
theoretical objections to a technique vlhich so closely resembles 
the attempt by a mathematician to prove a theorem by shmving thAt 
it is true of the first thousand numbers he thought of testing it 
on. For this reason it has been suggested (7,8,91 that the best 

I 



6. 

7. 

5 -

way of making sure that a program works is to prove that it \vorks, 
in the same way that <:1 mathematician proves a theorem. The proof 
can then be read and checked by other progranuners, or even published 
for the scrutiny of the learned \Vorld. It is only in this wo.y that 
a sound basis can be laid for the science of progranuning. 

Techniques for proving the correctness of programs at present 
must rely on an intuitive understanding of the meaning of the program 
itself. However, the axiomatic method might provide a set of axioms, 
theorems and metatheorems which can be used quite directly in the 
construction of proofs about programs. The axioms themselves should 
be reasonably "self-evident" as are the axioms of many of the branches 
of mathematics; and the primitives of the system should correspond 
closely to the intuitive understanding of the language by programmers. 
It will therefore be easier to discover and formulate proofs than 
if the basic axioms and concepts were purely arbitary. 

If the practice of providing proofs with programs becomes tVidely 
accepted, it will lead to a solution to the problem of program inter­
c(lange bet;veen differing implementations. A proof of program correct­
ness which uses only the axioms of the language ;vill ensure the success 
of program interchange; ;vhereas if the program takes advantage of 
implementation-dependent features the proof will need to use supplement­
ary axioms particular to an implementation, and then successful 
interchange cannot be guaranteed. 

Comparative linguistics. 

At present, programming languages are described in a wide variety 
of different ways. The proposed definition of the standards for ALGOL, 
FORTRAN, COBOL and PL/I are radically different in their style and 
content, in spite of great similarities in the languages which they 
describe. It is consequently almost impossible to identify the 
similarities and isolate the differences between them. 

It is hoped that a more rigorous method of language definition 
will provide a common technique for description of all languages, 
and thereby form a basis for the comparative examination and evaluation 
of existing languages and of new language proposals. If this hope 
is to be fulfilled, it is necessary that a reasonable proportion of 
all the statements of a language definition shall apply unchanged 
to other similar languages. Thus attention can be concentrated on 
those statements which are different, and one can begin to understand 
and explain these differences. The axiomatic method seems rather 
promising in this respect, since mathematicians already have experience 
in the choice of independent nxiom sets, in which n change to a fe;v 
of the axioms will not affect the validity of the rest; for example, 
the axioms of Euclidean geometry have been devised in such a way 
that a choice of tvJO non-Euclidean geometries may be obtained by 
modifying a single axiom. 

Language design. 

The regularity and clarity of the syntax of ALGOL 60 (as compared 
with, say, COBOL) is one of its most attractive features; and is of 
genuine assistance to the programmer in the avoidance of trivial but 
tiresome syntactic errors. This regularity is mainly explained 
by the strong desire of the designers of the language for simplicity 
and perspicuity; but at least part of the credit must be given to 
the use of Backus Normal Form, which made it easy to define 
constructions ;vhich correspond to our intuitive ideas of regularity 
and simplicity, and a lot more difficult to define a language which 
offends these ideas. 

' 

l 
f 

I 
I 

I 
f 
I 

I 
! 
I 

I 
I 



- 6 -

In the same •vu.y, it is hoped that a technique for formal definition 
of se.mu.ntics •·lill encouru.ge the design of languages which are semant­
ically simple and regular. If the axiomatic method of lu.nguu.ge 
definition is ?dopted, then it would seem likely that u. language which 
could be described in few "self-evident" axioms .vill be more appealing 
on grounds of simplicity them. one which requires many axioms. The 
minimisu.tion of axiom sets is an activity in which mathematicians 
and logicians are already skilled. 

There are three further grounds for supposing that the axiomatic 
method will prove a useful tool in the design of programming languages: 

1. It is extremely flexible; there is no 
assertion which a language designer cannot 
easily propose as an axiom. 

2. It enables the language designer clearly 

3. 

and simply to express his general intentions 
about a language, .vithout risk of confusion 
.vith a mass of barely relevant detail. 

Axioms can be formulated in a manner largely 
independent of each other, so that the reader 
can consider each axiom, or small group of 
axioms, in isolation from the .vhole mass of 
statements required to define the .vhole 
language. 

8. The roleof constructivism. 

One of the main objections to the axiomatic method is that it 
is too easy! This objection ·is well expressed by Russell [10], who 
held that, 

"The method of 'postulating' '"hu.t .ve .vant 
has many advantages; they are the same 
as the advantages of theft over honest 
toil. 11 

This objection certainly has valid grounds. In. constructing axioms, 
there are two hidden dangers: first, that the axioms .vill be contra­
dictory, and second, that they may not be sufficiently deterministic 
to serve their purpose. 

One of the best methods of proving that these dangers have been ','·' 
avoided is to construct a model .vhich satisfies the axioms, and prove 
that the model is deterministic to the required degree. In the case 
of a programming language, this model might very .vell be an abstract 
machine passing through a series of states in accordance .vith certain 
transition rules. Thus the axiomatic method still. requires the 
support of constructivist techniques to check consistency and complet­
ness. But if the claims of this paper justified, the construction 
can be thro.vn away as soon as it has served its purpose, and the 
axiom set will remain as the ultimate arbiter on matters of language 
definition. 

•· f.2!ls.lusion. 

A suggestion has been made that the axiomatic rnethod may be 
suited to the rigorous definition of programming languages, and 
contribute to the goals of standardisation, language comparison, 
evaluation and design, and also assist in constructing proofs 
about the correctness of programs. 

I 
' 

I 
I 
I 

I 
I 



l 
l 

10. 

- 7 -

Acknowledgements. 

The ideas of this paper have been influenced by fruitful 
discussions with H. Woodger, P.J. Landin, and members of the 
language definition group at the IBN Research Laboratory, Vienna. 

This paper is published by kind permission of the Director 
of the National Computing.centre. 

1. 

2. 

3. 

4. 

5. 

Landin, P.J. 

IB}! Vienna 
Research 
Laboratory 

de Bakker 

Frege, G. 

(a) Van 

Mechanical Evaluation of E:h'Pressions, 
The Computer Journal 6. 4, January, 1964. 

Formal Definition of PL/I (TR 25.071) 
December, 1966. 

Formal Definition of Algorithmic Languages 
lm 74, Hatematisch Centrum, Amsterdam, Hay, 1965. 

Die Grundlagen der Arithmetik,l884. 

Fonnal Language Description Languages, 
North Holland, 1966. 

Wijngaarden,A.- Recursive Definition of syntax and Semantics. 

(b) Bohm, c. The CUCH as a Formal and Description Language. 

6. Peano, G. Sul concetti di numero, Rivista di Matematica 
Vol. 1 1891. 

7 • McCarthy, J. Towards a Mathematical Theory of Computation, 
Proc. IFIP Congress 1962, North Holland 1963. 

s. Dijkstra, r:.w.- On the Design of l·lachine-Independent Programming 
Languages H.R. 34. l·latematisch Centrum, Amsterdam, 
October, 1961. 

9. Naur, P. Proof of Algorithms by General Snapshots 
BIT. 1966 Vel, 6. 

10. Russell, B. Introduction to Mathematical Philosphy, 
Allen & unwin, 1919. 

! 
I 

I 


