Rely-guarantee thinking & separation logic

Cliff Jones, U. Newcastle
Viktor Vafeiadis, MPI-SWS

Overview

Separation & Interference

— Resource invariants

— Ownership transfer

— Rely-guarantee conditions

— Stability Schedule

EPartI. Separation logic Niktor)g

gPart II. Rely-guarantee (CIiff)
Part lll. RGSep

%Concluding remarks

Separation in Hoare logic: Two important rules

Rule of constancy

{P}C{Q]
(PARIC{QAR]

fV(R) n mod(C) = @

Disjoint parallelism rule

{P1} G { Q] {P2} Co{Q2} fV(P1,C1,Q1) n mod(Co) = @
{P1AP2}C1||Co{Q1AQ2} fv(P2,C2,Q2) n mod(C1) = @

What about programs with pointers?

Part |. Separation logic

Points-to assertions

SL: convenient syntax for describing the heap

D——> D~ 5 heap(p) = 5

heap(q) =5 A

— heap(g+1) = nil

-

Conjunction

Q: What does p —» 5,nil A g+ 5,nil denote?

P
q) i p = 5,nil A p=q

p—5nl Age-5nlAp#Qg

P+~ 5Nl g~ 5nil

Separating conjunction

o+~ 50 =g~ 5ni

A bigger assertion

d9r. p~»509«qQr0O,rxr—/7,p

Classical vs intuitionistic SL

Classical SL
p=9O

emp

Intuitionistic SL
p+= 9O
emp

P& P o« true

heap(p) =5 A dom(heap) = {p}

dom(heap) = @

Inductive definitions: list segments

X=Y X w—

listseg(x,y) <‘§> X=Yy v 3vz X~ VzZxlistseg(z,y)

Q: What does listseg(p,p) denote?

Separation logic triples

Just as in Hoare logic...

(P} C{Q}

.. but the precondition must specify all cells the program accesses:

Frame rule

Example:

Disjoint concurrency

{P1}C1 {Q1} [P2}Co{Q2} ™(P1,C1,Q1) n Mod(Co) =
{P1 P2} Ci||Co{ Q1+ Q2 } fv(P2,C2,Q2) n mod(Cy) =

(Well—specified processes ‘mind their own business’

Parallel merge sort

Exercise: Define predicates list(p) and sorted(p).

Parallel merge sort

mergesort (p) { local q;

if (...) {
split (p, a);
mergesort (o) || mergesort (Q) ;

merge (o, 9);

Parallel merge sort

Resource invariants & ownership tranfer

Resource invariants & ownership tranfer

Resource invariants & ownership tranfer

Resource invariants

[r:BRE{P}C{Q]}

- Resource declaration
[-{P «R}resourcerinC{Q « R}

F{P+RAB}C{Q*R}

Resource usage

(P
[, r: RI—{P}WlthrwheanoC{Q}

NB: Variable side conditions elided.

Maintaining a data structure invariant

p = kalst()

insert(p,V)

' remove(p,v)

p := mkList (); resource rr in

with r do insert(p,7) with r do insert(p,5)
with r do insert(p,10) with r do remove(p,10)

Maintaining a data structure invariant

Pointer-transferring buffer

resource buf in

X 1= NEeW ; with buf when full do
with buf when —=full do y = ¢; full := false
c = x; full ;= true endwith ;

endwith dispose (y)

Pointer-transferring buffer

Tools for separation logic

Inside interactive theorems provers: Coqg, HOL4, Isabelle/HOL

— User writes specs & proof (using tactics)

Stand-alone program verifiers: Smallfoot, Verifast, Jstar

— User writes specs & loop invariants

Shape analyses: Space Invader, Thor, Xisa, SLAyer

— User writes specs only (or nothing!)

Mostly just sequential programs

Answers to questions

Q: What does listseg(p,p) denote?
A: Either the empty state or a cyclic list.

f
list(p) <‘§§> p=nil v Av z. X » v,z = list(p)
sorted(p,u)g_—?é p=nil v v > u. Jz. X » v,z = sorted(z,V)

sorted(p)g:?; sorted(p, —o)

