
Rely-guarantee thinking & separation logic

Cliff Jones, U. Newcastle
Viktor Vafeiadis, MPI-SWS

Overview

Separation & Interference

— Resource invariants

— Ownership transfer

— Rely-guarantee conditions

— Stability
Schedule

Part I. Separation logic (Viktor)

Part II. Rely-guarantee (Cliff)

Part III. RGSep (Viktor)

Concluding remarks

Separation in Hoare logic: Two important rules

Rule of constancy

Disjoint parallelism rule

What about programs with pointers?

{ P } C { Q }
{ P ∧ R } C { Q ∧ R }

fv(R) ∩ mod(C) = ∅

{ P1 } C1 { Q1 } { P2 } C2 { Q2 }
{ P1 ∧ P2 } C1 || C2 { Q1 ∧ Q2 }

fv(P1,C1,Q1) ∩ mod(C2) = ∅
fv(P2,C2,Q2) ∩ mod(C1) = ∅

Part I. Separation logic

Points-to assertions

SL: convenient syntax for describing the heap

q 5 nil q ↦ 5,nil

r 10 r ↦ 10,r

heap(q) = 5 ∧
heap(q+1) = nil

p 5 p ↦ 5 heap(p) = 5

Conjunction

p ↦ 5,nil ∧ p=q

q 5 nil

p 5 nil

p
5 nil

q

Q: What does p ↦ 5,nil ∧ q ↦ 5,nil denote?

p ↦ 5,nil ∧ q ↦ 5,nil ∧ p ≠ q

p ↦ 5,nil ∗ q ↦ 5,nil

Separating conjunction

q 5 nil

p 5 nil
p ↦ 5,nil ∗ q ↦ 5,nil

q 5 nil

p 5

p ↦ 5,q ∗ q ↦ 5,nil

A bigger assertion

p 5 6 7

∃q r. p ↦ 5,q ∗ q ↦ 6,r ∗ r ↦ 7,p

Classical vs intuitionistic SL

Classical SL

 p ↦ 5 heap(p) = 5 ∧ dom(heap) = { p }

 emp dom(heap) = ∅

Intuitionistic SL

 p ↦ 5 heap(p) = 5

 emp true

 P P ∗ true

Inductive definitions: list segments

listseg(x,y) x = y ∨ ∃v z. x ↦ v,z ∗ listseg(z,y)

x=y x listseg y

Q: What does listseg(p,p) denote?

def

Separation logic triples

Just as in Hoare logic...

 { P } C { Q }

... but the precondition must specify all cells the program accesses:

 { p ↦ 5 } [p] := 10 { p ↦ 10 }

 { p ↦ 5 ∗ q ↦ 6 } [p] := 10 { true }

 { true } [p] := 10 { true }

Frame rule

{ P } C { Q }
{ P ∗ R } C { Q ∗ R }

fv(R) ∩ mod(C) = ∅

{ p ↦ 5 ∗ q ↦ 6 } [p] := 10 { p ↦ 10 ∗ q ↦ 6 }

{ p ↦ 5 } [p] := 10 { p ↦ 10 }

Example:

Disjoint concurrency

{ P1 } C1 { Q1 } { P2 } C2 { Q2 }
{ P1 ∗ P2 } C1 || C2 { Q1 ∗ Q2 }

Well-specified processes ‘mind their own business’

fv(P1,C1,Q1) ∩ mod(C2) = ∅
fv(P2,C2,Q2) ∩ mod(C1) = ∅

Parallel merge sort

mergesort (p) {

 ...

}

{ list(p) } split(p, q) { list(p) ∗ list(q) }

list(p)

{ sorted(p) ∗ sorted(q) } merge(p, q) { sorted(p) }

sorted(p)

Exercise: Define predicates list(p) and sorted(p).

Parallel merge sort

mergesort (p) { local q;
 ...
 if (...) {
 split (p, q);
 mergesort (p) || mergesort (q) ;
 merge (p, q);
 }
}

{ list(p) } split(p, q) { list(p) ∗ list(q) }

list(p)

{ sorted(p) ∗ sorted(q) } merge(p, q) { sorted(p) }

sorted(p)

Parallel merge sort

mergesort (p) { local q; ...
 if (...) {

 split (p, q);

 mergesort (p) || mergesort (q) ;

 merge (p, q);

} }

{ list(p) } split(p, q) { list(p) ∗ list(q) }

list(p)

{ sorted(p) ∗ sorted(q) } merge(p, q) { sorted(p) }sorted(p)

list(p)

list(p) ∗ list(q)

sorted(p) ∗ sorted(q)

sorted(p)

Resource invariants & ownership tranfer

 thread 2

lock s

thread 1

lock r

Resource invariants & ownership tranfer

 thread 2

lock s

thread 1

lock racquire(r) — gain ownership

Resource invariants & ownership tranfer

 thread 2

lock s

thread 1

lock r
release(r) — give up ownership

Resource invariants

Γ ⊢ { (P ∗ R) ∧ B } C { Q ∗ R }
Γ, r: R ⊢ { P } with r when B do C { Q }

Γ, r : R ⊢ { P } C { Q }
Γ ⊢ { P ∗ R } resource r in C { Q ∗ R }

Resource declaration

Resource usage

NB: Variable side conditions elided.

Maintaining a data structure invariant

p := mkList()

insert(p,v)

remove(p,v)

sorted(p) sorted(p)

sorted(p) sorted(p)

true sorted(p)

with r do insert(p,5)
with r do remove(p,10)

p := mkList (); resource r in

with r do insert(p,7)
with r do insert(p,10)

true

sorted(p)

end

Maintaining a data structure invariant

with r do insert(p,5)

with r do remove(p,10)

p := mkList (); resource r in

with r do insert(p,7)

with r do insert(p,10)

true

sorted(p)

end

sorted(p) true

Resource Invariant: sorted(p)

true

true

true

true

true

true

Pointer-transferring buffer

x := new ;

with buf when ¬full do

 c := x; full := true

endwith

with buf when full do

 y := c; full := false

endwith ;

dispose (y)

resource buf in

true

¬full

Pointer-transferring buffer

x := new ;

with buf when ¬full do

 c := x; full := true

endwith

with buf when full do

 y := c; full := false

endwith ;

dispose (y)

x ↦ _

x ↦ _ ∧ ¬full

c ↦ _ ∧ full y ↦ _

c ↦ _ ∧ full

true true

y ↦ _ ∧ ¬full

true true

Resource Invariant: ¬full ∨ (c ↦ _ ∧ full)

Tools for separation logic

Inside interactive theorems provers: Coq, HOL4, Isabelle/HOL

 – User writes specs & proof (using tactics)

Stand-alone program verifiers: Smallfoot, Verifast, Jstar

 – User writes specs & loop invariants

Shape analyses: Space Invader, Thor, Xisa, SLAyer

 – User writes specs only (or nothing!)

Mostly just sequential programs

Answers to questions

Q: What does listseg(p,p) denote?
A: Either the empty state or a cyclic list.

list(p) p=nil ∨ ∃v z. x ↦ v,z ∗ list(p)

sorted(p,u) p=nil ∨ ∃v > u. ∃z. x ↦ v,z ∗ sorted(z,v)

sorted(p) sorted(p, −∞)

def

def

def

