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Separation in Hoare logic:  Two important rules 

Rule of constancy

Disjoint parallelism rule

What about programs with pointers?

{ P } C { Q }
{ P ∧ R } C { Q ∧ R } 

fv(R) ∩ mod(C) = ∅

{ P1 } C1 { Q1 }         { P2 } C2 { Q2 }
{ P1 ∧ P2 } C1 || C2 { Q1 ∧ Q2 } 

fv(P1,C1,Q1) ∩ mod(C2) = ∅
fv(P2,C2,Q2) ∩ mod(C1) = ∅



Part I.  Separation logic



Points-to assertions

SL: convenient syntax for describing the heap

q 5 nil q ↦ 5,nil

r 10 r ↦ 10,r

heap(q) = 5 ∧
heap(q+1) = nil

p 5 p ↦ 5 heap(p) = 5



Conjunction

p ↦ 5,nil  ∧ p=q

q 5 nil

p 5 nil

p
5 nil

q

Q: What does p ↦ 5,nil  ∧ q ↦ 5,nil  denote?

p ↦ 5,nil  ∧ q ↦ 5,nil ∧ p ≠ q

p ↦ 5,nil ∗ q ↦ 5,nil



Separating conjunction

q 5 nil

p 5 nil
p ↦ 5,nil ∗ q ↦ 5,nil

q 5 nil

p 5

p ↦ 5,q ∗ q ↦ 5,nil



A bigger assertion

p 5 6 7

∃q r.  p ↦ 5,q ∗ q ↦ 6,r ∗ r ↦ 7,p 



Classical vs intuitionistic SL

Classical SL

         p ↦ 5                   heap(p) = 5  ∧  dom(heap) = { p }

         emp                       dom(heap) = ∅

Intuitionistic SL

        p ↦ 5                   heap(p) = 5

        emp                     true

        P       P ∗ true       



Inductive definitions: list segments

listseg(x,y)          x = y  ∨   ∃v z. x ↦ v,z ∗ listseg(z,y) 

x=y x listseg y

Q: What does  listseg(p,p)  denote?

def



Separation logic triples

Just as in Hoare logic...

                                     { P }  C  { Q }

... but the precondition must specify all cells the program accesses:

        { p ↦ 5 }  [p] := 10  { p ↦ 10 }

        { p ↦ 5 ∗ q ↦ 6 }  [p] := 10  { true }

        { true }  [p] := 10  { true }



Frame rule

{ P } C { Q }
{ P ∗ R } C { Q ∗ R } 

fv(R) ∩ mod(C) = ∅

{ p ↦ 5 ∗ q ↦ 6 }  [p] := 10  { p ↦ 10 ∗ q ↦ 6 }

{ p ↦ 5 }  [p] := 10  { p ↦ 10 }

Example: 



Disjoint concurrency

{ P1 } C1 { Q1 }          { P2 } C2 { Q2 }
{ P1 ∗ P2 } C1 || C2 { Q1 ∗ Q2  } 

Well-specified processes ‘mind their own business’

fv(P1,C1,Q1) ∩ mod(C2) = ∅
fv(P2,C2,Q2) ∩ mod(C1) = ∅



Parallel merge sort

mergesort (p) {  

   ...

}

{ list(p) } split(p, q)  { list(p) ∗ list(q) }

list(p)

{ sorted(p) ∗ sorted(q) } merge(p, q) { sorted(p) }

sorted(p)

Exercise:  Define predicates  list(p)  and  sorted(p). 



Parallel merge sort 

mergesort (p) {  local q;
    ...
    if ( ... ) { 
        split (p, q);
        mergesort (p)   ||   mergesort (q) ;
        merge (p, q);
    }
}

{ list(p) } split(p, q)  { list(p) ∗ list(q) }

list(p)

{ sorted(p) ∗ sorted(q) } merge(p, q) { sorted(p) }

sorted(p)



Parallel merge sort

mergesort (p) {  local q; ...
    if ( ... ) { 

        split (p, q);

        mergesort (p)   ||   mergesort (q) ;

        merge (p, q);

}   }

{ list(p) } split(p, q)  { list(p) ∗ list(q) }

list(p)

{ sorted(p) ∗ sorted(q) } merge(p, q) { sorted(p) }sorted(p)

list(p) 

list(p) ∗ list(q)

sorted(p) ∗ sorted(q)

sorted(p)



Resource invariants & ownership tranfer

         thread 2

lock s

thread 1

lock r



Resource invariants & ownership tranfer

         thread 2

lock s

thread 1

lock racquire(r) — gain ownership



Resource invariants & ownership tranfer

         thread 2

lock s

thread 1

lock r
release(r) — give up ownership



Resource invariants

Γ ⊢ { (P ∗ R) ∧ B } C { Q ∗ R }
Γ, r: R ⊢ { P } with r when B do C { Q }

Γ, r : R ⊢ { P } C { Q }
Γ ⊢ { P ∗ R } resource r in C { Q ∗ R }

Resource declaration

Resource usage

NB:  Variable side conditions elided.



Maintaining a data structure invariant

p := mkList()

insert(p,v)  

remove(p,v)

sorted(p) sorted(p)

sorted(p) sorted(p)

true sorted(p)

with r do insert(p,5)
with r do remove(p,10)

p := mkList ();  resource r in

with r do insert(p,7)
with r do insert(p,10)

true

sorted(p)

end



Maintaining a data structure invariant

with r do insert(p,5)

with r do remove(p,10)

p := mkList ();                   resource r in

with r do insert(p,7)

with r do insert(p,10)

true

sorted(p)

end

sorted(p) true

Resource Invariant: sorted(p)

true

true

true

true

true

true



Pointer-transferring buffer

x := new ;

with buf when ¬full do 

    c := x; full := true

endwith 

with buf when full do

    y := c; full := false

endwith ;

dispose (y)

resource buf in

true

¬full



Pointer-transferring buffer

x := new ;

with buf when ¬full do 

  

  c := x; full := true

endwith 

with buf when full do

    y := c; full := false

endwith ;

dispose (y)

x ↦ _ 

x ↦ _  ∧ ¬full

c ↦ _  ∧  full y ↦ _

c ↦ _  ∧  full

true true 

y ↦ _  ∧ ¬full

true true 

Resource Invariant: ¬full ∨ (c ↦ _ ∧ full)



Tools for separation logic

Inside interactive theorems provers: Coq, HOL4, Isabelle/HOL

   –  User writes specs & proof (using tactics)

Stand-alone program verifiers:  Smallfoot, Verifast, Jstar

   –  User writes specs & loop invariants

Shape analyses:  Space Invader, Thor, Xisa, SLAyer

   –  User writes specs only (or nothing!)

Mostly just sequential programs



Answers to questions

Q: What does  listseg(p,p)  denote?
A:  Either the empty state or a cyclic list.

list(p)        p=nil ∨ ∃v z. x ↦ v,z ∗ list(p)

sorted(p,u)      p=nil ∨ ∃v > u. ∃z. x ↦ v,z ∗ sorted(z,v) 

sorted(p)      sorted(p, −∞) 

def

def

def


