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Foreword

VDM is currently the most widely spread method for the systematic, via rigorous, to
formal development of software, from programs to programming systems.

Background

VDM, as first conceived, around 1973–1975, at the IBM Vienna Laboratory, derived
its foundational and methodological constituents from many academic sources: notably
from the works of, and inspired by such researchers as, Jaco de Bakker, Rod Burstall,
Tony Hoare, Peter Landin, John McCarthy, Robin Milner, John Reynolds, Dana Scott,
Christopher Strachey, and many others. The inspirational background offered here was
cast into a whole to form ‘classical’ VDM by the Viennese industrial researchers (the
late) Hans Bekić, and Wolfgang Henhapl, Peter Lucas, Cliff Jones and myself.

Three VDM R&D phases – and two schools

Since VDM research and development left Vienna, around 1975–1976, a number of in-
dependent, mostly compatible directions have been pursued. Roughly three phases of
VDM R&D can be identified: (1) the ‘classical’ Vienna VDM (1973–1978) – as mani-
fested for example in the book: The Vienna Development Method – the Meta-Language
published in 1978 by Springer Verlag as its 61st Lecture Notes in Computer Science
volume (LNCS61), and Formal Specification and Software Development mostly by Cliff
Jones and myself (Prentice Hall International (PH), 1982); (2) the parallel, complement-
ing VDM as witnessed by the books: Software Development – a Rigorous Approach
(SDRA) by Cliff Jones (PH), 1980, Towards a Formal Description of Ada (Springer
Verlag, LNCS98), and Systematic Software Development using VDM (SSD/VDM) by
Cliff Jones (PH, 1986); and the more independent, not always fully compatible lines of
VDM R&D as witnessed by the book MetaSoft Primer by Andrzej Blikle (Springer Ver-
lag, LNCS288, 1987), and by the article ‘The RAISE Language, Method and Tools’, by
Mogens Nielsen et al., and appearing in Springer Verlag’s new journal: Formal Aspects
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viii Foreword

of Computing, Vol. 1, No. 1, 1989.
Phase 2 can be characterized as composed of a Danish (LNCS98) and an English

(SDRA and SSD/VDM) ‘school’. The difference in emphasis between the two schools
is really superficial: styles of notation differ, modes of defining functions and opera-
tions either mostly directly, and mostly applicatively (the Danish school), or (the English
school) by means of pre-/post-conditions, and, for operations, on a slightly different im-
perial state notion.

– a unification

The British Standards Institute’s current VDM standardization effort is successfully
amalgamating these two schools. The present book follows this consolidation.

Whereas phase 3 work may be called post-VDM, and whereas it is too early to speak
of this work’s wide acceptance, the present book offers material that can be readily
adapted in any mature industrial environment.

The present book

For widespread acceptance of formal methods in industry, realistic case studies, carefully
documented, must be presented. The various case examples presented here ought to
convince most dogmatic ‘anti-formalists’ that VDM is a sound, industry-ready method
for developing large scale, primarily sequential, deterministic software – software that
can be trusted.

Although VDM was first conceived while developing a compiler for PL/I, it is re-
freshing to see its wider use in such diverse areas as databases (Chapters 2–3), proof
systems (Chapter 4), explaining and implementing the crucial, ‘originally’ logic pro-
gramming notion of unification (Chapters 5–6), storage management, whether in an op-
erating system, a database management system or a program’s run-time system (Chap-
ters 7–8), non von Neumann computer architectures (Chapter 11), user interface systems
(Chapter 12), or graphics (Chapter 13). Of course, a classical programming language
definition must be given (Chapter 9) – and that chapter may be a good starting point
for students, but a semantic analysis, in the form of a definition, of what constitutes
‘object-orientedness’ in programming languages is also presented (Chapter 10).

A warning, and a promise

It is my sincere belief, one which has been tempered by many years of sad industrial
experience, that the present, large software houses may easily become extinct if they
do not provide a means – for the hundreds of young candidates that graduate yearly –
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to pursue software development in the only exciting and professionally responsible way
it should be developed – namely formally. Young, upstart, companies which offer this
opportunity to the recent academically trained software engineers and programmers will
attract the coming (large) generations.

An old generation clings to such ‘dogmatisms’ as: (1) formal definitions are
unreadable, (2) it is hard to prove programs correct, (3) the technology
is not available.

This book proves otherwise: (1) the definitions are easy to read – and one should
only entrust serious software development to professionals anyway; (2) it is not that
hard to reason about correctness – and who would want incorrect software if it could be
correct?; and (3) the technology, VDM, has been here for quite a while – it is industry’s
task to develop industry-scale tools.

Industry no longer has any excuse not to put the results of academic research into
daily practice. This volume certainly proves that academic research is industrially useful.

To specify formally, and to formally develop software, is to create insight into, and
theories about, otherwise complex systems.

This book, with its balanced examples proves that point: it is refreshingly relaxing to
develop beautiful software embodying elegant theories formally – and VDM is presently
the strongest contender!

Dines Bjørner
Holte, 25 September 1989
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Preface

Although young by the standards of most engineering disciplines, software development
tackles tasks of enormous complexity. In seeking a systematic approach to control this
complexity, the software industry is recognizing the need for a variety of new practices.
High on their list is an acceptance that ‘formal methods’ are necessary if large systems
are to be developed to higher standards than currently prevail. Formal methods is a term
which is used to cover both the use of mathematical notation in the functional specifica-
tions of systems and the use of justifications which relate designs to their specifications.
One of the most widely known and used formal methods is called the ‘Vienna Develop-
ment Method’ (more often referred to as ‘VDM’). VDM was developed in an industrial
environment but has also evoked considerable academic research.

VDM provides both a specification notation and proof obligations which enable a
designer to establish the correctness of steps of design. It is a development method in
the sense that it offers notation and framework for recording and justifying specifica-
tions and design steps. VDM does not, however, claim to be a normative method in the
sense that it results in the choice of a standard or best design: the designer provides the
insight. Chapter 1 discusses how VDM concepts fit into the broader subject of ‘software
engineering’.

VDM grew out of earlier research but became a coherent whole in the mid 1970s.
Since then it has been developed and discussed in a literally hundreds of publications.
A clear sign of its maturity for industrial use is the availability of a variety of textbooks
which set out to teach the use of both the specification and design justification parts
of the method. Furthermore, courses are available from commercial organizations and
two international conferences (organized by the European Community, ‘VDM-Europe’
group) have been dedicated to VDM.

It is the experience of the authors and editors of the current volume (amongst many
other people) that methods like VDM enable them to describe major computer sys-
tems. Such experience is difficult to convey in a book and a textbook on a method
such as [Jon90] is certainly an inadequate medium. Although the examples in this vol-
ume are not large by industrial standards, they should provide a much clearer indication
of how to tackle major systems than is possible in any book whose main task is teaching
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xii Preface

the method from scratch. It has long been obvious that there is a significant need for
such material: both of the editors have taught courses where the step from the textbook
examples to an industry-sized specification has to be bridged by some sort of case study.

Much case study material has – in fact – been available in the literature. Unfortu-
nately, the papers are not always easily located and the notation (often because of such
mundane issues as printing devices) varies from one publication to the next. Experi-
ence of teaching VDM to industrial audiences constantly reminds one of the importance
of a uniform style of presentation, at least during the early stages of the learning pro-
cess. While researchers often show a cavalier disdain for issues of syntax, more practi-
cally oriented people tend to get confused when presented with a variety of notation. In
fact, some industrial organizations cite the absence of a stable language (along with the
paucity of tools) as a major reason for their reluctance to embrace formal methods.

The work of the British Standards Institution (BSI) group BSI IST/5/50 has pro-
gressed to the point that an outline standard is now available for comment. This presents
a timely opportunity to publish a collection of VDM material in a coherent notation
which should achieve wide acceptance. There is also evidence that this stability is
stimulating tool builders. A second edition of Systematic Software Development using
VDM [Jon90] has been prepared using the draft BSI standard notation and the current
volume adopts the same language.

The case studies illustrate all facets of VDM. Some confine themselves to speci-
fications often providing insight as to why the particular specification was developed.
Other examples cover design by data reification1 or operation decomposition. In many
chapters proofs are only sketched but some very detailed proofs are also presented.

Ten authors have contributed a total of twelve case studies (Chapters 2–13). The
authors come from backgrounds as varied as their material and – beyond conformity to
the specification notation itself – the editors have not tried to force the material into a
particular mould. In fact the editors could echo George Bernard Shaw’s comment in the
preface to Essays on Socialism that ‘there has been no sacrifice of individuality’. There
are several positive reasons for this. Before tackling larger specifications the reader must
become aware that there is often no ‘right’ specification. Furthermore, seeing a range of
styles will help the readers focus on what they wish to develop as their own approach.

The size of the chosen case studies is such that they illustrate many of the points
made in [Jon90] better than was possible there. This is particularly the case with the
exhortation to use more formal approaches in the early stages of design. Another major
point which should become clear is the importance of providing a design record. Most
readers will probably begin their study of the material with application areas with which

1The term reification is preferred to the more widely-used word ‘refinement’. Michael Jackson pointed
out to the author that the latter term is hardly appropriate for the step from a clean mathematical abstraction
to a messy representation dictated by a particular machine architecture. The Concise Oxford Dictionary
defines the verb ‘reify’ as ‘convert (person, abstract concept) into thing, materialize’.
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they are familiar. This should enable them to perceive the use of formal models in
experimenting with alternative architectures.

Apart from the case studies themselves, an appendix covers the notation used. In
part, this is just a summary of the language; but it also discusses those aspects which are
needed in some case studies but are not covered in [Jon90] (e.g. Lambda expressions).
A reader who encounters anything unfamiliar should consult Appendix A. There is also
a list of references to the literature (a wider list of references is to be included in the
Teacher’s Notes associated with [Jon90]; since the material covered here represents only
a very small percentage of that published about VDM; the reader is encouraged to follow
such references as might be relevant to their own application area). It was decided to
confine the material is this book to the major uses of VDM and only Chapter 12 explores
extensions to VDM in the area of user interface design. In particular, no attempt has
been made to exemplify material which extends VDM to handle concurrency. Work in
this area is at the research stage and the interested reader must follow the references to
the relevant publications.

Different users of this book will obviously employ it in different ways. It is likely to
be background reading for undergraduate courses which use one or the other textbook
to teach VDM; while an MSc or industrial course might make detailed analysis of the
case studies. A particularly valuable way of doing this is to organize some sort of ‘walk-
through’ of chosen examples. By their very nature, few of the examples are closed and
there is excellent scope for extending a case study as a major project.

The editors are grateful to the long-suffering authors who have provided the bulk of
this book, to Prentice Hall and Ruth Freestone for their help and encouragement in its
formation and to Peter Luckham for his efforts in obtaining the Linotron output. Cliff
Jones wishes to express his thanks for financial support to his research from the Wolfson
Foundation and SERC; the latter both from research grants and his Senior Fellowship.
He also gratefully acknowledges the stimulus provided by meetings of IFIP WG2.3.
Roger Shaw expresses his thanks to Praxis Systems plc for support of his part in editing
this book.
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Introduction – Formal Methods and
Software Engineering

Roger C. Shaw

In the course of presenting industrial training on formal methods a number of
questions relating to the application and relevance of such methods to soft-
ware engineering have cropped up repeatedly. Some of these questions relate
to the scope of such methods as VDM. Others reveal a concern over the use
of the term ‘method’, and suggest that many software engineers have a differ-
ent understanding of its meaning than do the proponents of formal methods.
The intention of this chapter is to explain what is meant by the term ‘for-
mal method’ and to show how such methods fit naturally into the software
development process.

1



2 1 Introduction – Formal Methods and Software Engineering

1.1 Introduction

Neither this collection of case studies nor the companion textbook [Jon90] is intended to
teach the topic of software engineering: there are many good texts devoted to that subject
[Pre87, Rat87, Sho83, Som88] and some of these present a fairly extensive discussion
of the role of formal methods [Rat87, Som88] within the software development process.
Nonetheless we need to briefly review what is meant by ‘software engineering’.

For the purposes of the following discussion software engineering may be viewed as
those activities associated with the development of software for computer-based appli-
cations. The development activities considered should ensure that the software produced
is fit for the purpose, that the development employs the best available practices, and that
the development is properly recorded and soundly organized, planned and managed. In
other words software engineering encompasses those management, technical and quality
related activities that are involved in the professional development of software.

1.2 Process models

In order to manage the software engineering task considerable attention has been fo-
cused on the development process itself. Learning from existing engineering disciplines
the software community has developed its own process or life cycle models. Essentially
these models stress development steps, deliverables, and verification and validation ac-
tivities.

A number of phases are identified and various tasks associated with these phases.
For instance, we usually find a requirements-capture phase, a specification phase, a de-
sign phase and so on. Each of these phases is defined in terms of phase inputs, phase
related technical and management tasks, and deliverables for input to subsequent phases.
Within each phase, methods and tools applicable to the development tasks are used in
the specification, design, implementation, testing and acceptance of deliverables. The
application of tools, in-phase reviews and audits, end of phase milestone reviews, etc.
ensure that verification and validation is carried out. Work produced within a phase is re-
viewed and placed under change control whence it acts as baselined input to subsequent
phases.

Considerable debate surrounds these models, stressing different aspects of the de-
velopment task, or its management, such as the role of prototyping, how to manage
reiteration and rework, the importance of incremental development, transformational
development and similar. Figure 1.1 shows a not untypical life cycle model with phases
and milestone reviews identified.1

1For completeness such a model should include definitions of the tasks undertaken within each phase,
the nature and form of the phase deliverables, guidelines relating to applicable tools, and methods and
procedures for configuration management and change control.



1.2 Process models 3

Planning Product development Marketing
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PHASES KEY MILESTONE REVIEWS
CP Conceptual planning
RD Requirements definition PIR Product initiation review
PS Product specification PSR Product specification review
AD Architectural design PDR Product design review
DD Detailed design DDR Detailed design review
IMP Implementation
UT Unit testing IR Implementation review
IT Integration testing INR Integration review

PSUDR Product support and
documentation review

STT System test and transfer PAR Product acceptance review
SM Sales and marketing
PR Product review SSPR Sales/Support periodic review

Figure 1.1 A software development life cycle model
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1.3 The contractual model

A particularly useful view of the development process is known as the contractual model
[Coh89]. The contractual model views the development process in terms of a number
of phases following one from another. Each phase receives as input a statement of re-
quirements and produces a specification which purports to satisfy the requirements. The
output of one phase can become the input to a subsequent phase. For instance, a cus-
tomer produces a statement of requirements which is given to a supplier. The supplier’s
analyst turns this into a specification which satisfies the requirements. This specification
then becomes the requirements statement for the subsequent design phase. A designer
then produces a design which satisfies the specification. This process continues until
an implementation is forthcoming. If each step in the development process satisfies
its statement of requirements then, by an appeal to transitivity, the implementation will
satisfy the customer’s original requirements.

The idea of a contract arises from the agreement reached, at each stage, between the
person producing the specification and the person who has produced the statement of
requirements. Perhaps the most important aspect of the contractual model is its stress on
the verification and validation activities that take place within each phase step. These are
depicted in Figure 1.2. Verification aims to establish the consistency of a specification
– essentially ‘are we building the system right?’ Validation, on the other hand, attempts
to establish that a specification satisfies its requirements – ‘are we building the right
system?’ Within the traditional development model verification and validation activities
are carried out through the use of tools, formal reviews, audits and walkthroughs.

1.4 The formal methods view of software development

Let us now turn our attention to the formal development paradigm and see how it relates
to the conventional phase model view of software development. A formal method has
three essential characteristics.

1. Formal systems. The use of formal systems, that is, formal languages with
well defined syntax, semantics and proof systems. Thus, in the case of VDM,
Jones describes, informally, a formal system for the specification of software sys-
tems [Jon90]. This includes a logic for partial functions (LPF), set theory, function
theory, etc. and their associated proof systems.

2. Development technique. The idea of reification, or refinement, whereby an im-
plementation is produced from a specification though the application of a number
of development steps each focusing on well understood design decisions.
This involves capturing the requirements of a system in an abstract specification
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Requirementsn Specificationn 1

ValidationVerification

Rework within phase
or previous phases

Requirementsn 1

failed ok

failed

ok

Figure 1.2 Phase verification and validation

(SP0) using a formal specification language. In the case of VDM the abstract spec-
ification takes the form of a model of the intended problem that characterizes what
is required; it eschews, as far as possible, issues to do with how the requirements
will be implemented. Then, through a series of reification (refinement) steps, the
specification is transformed into an implementation which satisfies the specifica-
tion (SP1 to IMP4). The process of reification involves the controlled introduction
of detail related to problem space partitioning, abstract algorithm selection, data
representation, algorithm decomposition and implementation. Reification is de-
picted in Figure 1.3.
Figure 1.3 depicts reification in a rather simplistic manner. Firstly, during this pro-
cess, many considerations have to be analyzed and specification decisions made.
Rework is not uncommon and thus the normal iterative and backtracking activi-
ties associated with investigating any design are encountered. Secondly, at each
step in the development, decisions are taken relating to strategic design objectives.
For instance, algorithm or data representation decisions may be made to achieve
a minimum store or fastest execution objective. Refinement choices are made de-
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Figure 1.3 Reification development steps

pending on whether a prototype implementation or final product implementation
is required. These questions, or similar, will appear at each development step.
Secondly, as indicated in Figure 1.4, a development step may result in a single
reification or a decomposition into several components which, when composed,
satisfy their specification. In this case the composition operator composes
specifications SP21 and SP22 while the operator composes specifications SP31
and SP32. Here we would need to show that SP31 SP32 satisfies SP21 and that
SP21 SP22 satisfies SP1. Various composition operators are possible and depend
on the particular formal language being used.
Conceptually, reification and decomposition allow us to develop detailed imple-
mentation level specifications from our abstract specifications. However, life is
not quite so straightforward. While there is considerable agreement on how to
specify sequential systems research activity is being expended on finding out how
best to specify parallelism. In addition, there is no clear view on how best to spec-
ify and decompose problems involving both parallel and sequential components.
Should we start with a specification that views parallelism as the natural order and
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Figure 1.4 Development reification and decomposition

introduce sequentiality within the reification and decomposition process or vice
versa? These remain interesting research questions to which answers are eagerly
awaited.

3. Verification technique. In order to ensure that a series of reification steps pre-
serves correctness, i.e. fulfils the top level specification, there is an obligation
to prove that each reification correctly models the previous specification. This is
termed a ‘proof obligation’. Further, it shows that the implementation satisfies
the specification, that is, IMP4 satisfies SP3 which in turn satisfies SP2, which
satisfies SP1 and that, finally, SP1 satisfies SP0. In VDM this involves the gen-
eration of what are called adequacy and operation modelling proof obligations.2

2Considerable debate has focused on what is meant by the terms ‘refinement’ and ‘reification’. Vari-
ous applications need different formulations of what is called the refinement proof obligation. Chapter 8
of Jones [Jon90] advocates a specific relationship which is a special case of the more general relations
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In addition, proof obligations are generated to show that specifications are im-
plementable, that they satisfy the data type invariant and that initial states exist.
These proof obligations were discussed in Chapters 5 and 8 of [Jon90]. Addition-
ally, when specifications are decomposed into components, compositional proof
obligations are required to show that specifications are satisfied when their com-
ponents are brought together. Finally, the language itself yields proof obligations
relating to type compatibility and the well formed definition of expressions. Some
of these can be checked by tools (type checkers) while others appear in the form of
proof obligations. For instance, proof obligations arise from the use of data type
invariants and type checking can be said to require theorem proving, that is, the
requirements for a well typed expression can be formulated as proof obligations
or theorems.

1.5 What do we mean by method?

The question we now ask is what is meant by method in the context of the term ‘formal
method’? Proprietary methods such as SSADM [NCC86] and JSD [Cam86] are seen as
legitimate exemplars of ‘methods’. Where, the question is often asked, is the method
underpinning such formal development approaches as VDM and Z?

What do we mean by method? The purpose of a method is to guide users in under-
taking a specific task, to help them get from one point within that task to another; it is
task or process oriented. In order to achieve this objective a method must offer guid-
ance on how to organize the task and provide rules which guide the undertaking of those
tasks. It is essentially a collection of dependent steps and rules that guide progression
from step to step. Returning to Figure 1.1, a method, depending on its scope, may sug-
gest what phases are required within the development process and, within those phases,
may suggest how specific tasks such as specification, design and implementation should
be organized, approached and undertaken. In these terms, both SSADM and JSDmay be
viewed as methods in that they both provide guidance on how to structure work in terms
of dependent steps and how to progress from step to step through the application of var-
ious heuristics or rules. SSADM is much broader in scope than JSD while JSD provides
a far more systematic approach to the design task; nonetheless both are methods.

How do formal methods bear up under this definition of method? What are the
characteristics of formal methods?

1. Formal methods provide precise notations for capturing functional specification
decisions be they abstract characterizations of the requirements or implementation
specific. A specification language is used for this purpose.

suggested by other authors [MRG88, HHS87, Nip86]: these should be investigated.
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2. The notion of abstraction is essential to the application of a formal method. The
first step is to produce an abstract specification characterizing the essential proper-
ties of the problem and stating what is required rather than how it is to be achieved.
In VDM implicit specification is the main vehicle for abstraction.

3. The reification process advocates progressive development towards implementa-
tion with design – and implementation – specific details being introduced system-
atically and progressively.

4. Proof obligations provide the substance for verification and validation activities.
Discharged rigorously, or formally, they focus attention on critical questions con-
cerning the consistency and correctness of specification and reification steps.

5. Decomposition encourages breaking larger specifications into components which
can be reified independently and then, through composition combinators, shown
to satisfy the larger specification.

6. Guidelines are provided for assessing specifications – the complexity of data type
invariants and proof obligations, the idea of implementation bias [Jon90].

From this discussion it is clear that formal methods have little to say about review
procedures, management practices, costing, performance modelling, sizing, reliability
modelling, testing 3 and the host of other activities undertaken within the development
process. But then most other development methods do not address all of these topics.
Procedures, methods and tools appropriate to these activities must be sought elsewhere.
In fact, as suggested below, formal methods can quite easily be added to development
methods that lack a formal specification language and formal development framework.

The method side of formal methods may be viewed as the use of formal systems,
the use of abstraction and reification and the generation and discharging of specific
proof obligations. In these terms we have a method, not an all-embracing develop-
ment method, but nonetheless a method. Formal methods do not proscribe the use of
ideas and heuristics drawn from other methods. In fact, formal methods complement
existing development approaches such as SSADM by allowing practitioners to formally
capture specification and development detail that is only informally captured in these
other methods.

Returning to the discussion of the process and contractual models; formal methods
provide a framework for recording our specification and designs. The concept of reifica-
tion provides a formal framework for the phase development steps outlined in the model.
Proof obligations formalize the substance of the verification and validation activities and
thus underpin reviews. In these terms the formal framework of software development

3See [Hay85] for an interesting discussion on how formal specifications can assist in the generation of
test cases.
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may be viewed as an abstract representation of some of the tasks undertaken within the
software development process model.



2

NDB: The Formal Specification and
Rigorous Design of a Single-user
Database System

Ann Walshe

This specification of a general-purpose database system provides a good illus-
tration of the usefulness of model-oriented specification techniques for sys-
tems. The chosen system (NDB) also has intrinsic interest. This chapter ex-
plains the derivation of the appropriate state; after this is found, writing pre-
and post-conditions for the operations is relatively straightforward. The start-
ing point for this specification exercise was an informal description which
made heavy use of pictures. It was also couched too much in terms of the
implementation to be abstract enough for a concise formal specification. As
well as the specification itself, this chapter provides a good example of the
development method (particularly data reification).

11



12 2 NDB

2.1 Introduction

This chapter illustrates the use of VDM [Jon80, Jon90] in the formal specification and
development of a program to implement simple update operations on a binary relational
database called NDB [WS79]. It is shown how an initial specification can be formed and
then manipulated in a rigorous way through the careful introduction of design detail in
the form of data structures and operations until an implementation is reached. The work
is described more fully in [Wel82].

The paper has the following structure. Firstly the rigorous method is briefly re-
viewed. Then NDB, the database to be implemented, is explained before the specifica-
tion, development and implementation steps are presented.

2.2 VDM – a rigorous method of specification and design

VDM is described in [Jon90]. In the rigorous method, objects are normally specified
in terms of a model. The specification of a program takes the form of an operation
(or operations) on a state which defines a class or set of valid states. Well-formedness
conditions, known as data type invariants, may be used to limit the defined class further.
Operations are specified using pre-condition predicates (predicates on a single initial
state) and two-state post-condition predicates (predicates over the initial and final state
values). This style of specification aims to be implicit, that is it aims to fix the properties
required of the program without specifying how they are to be achieved. All operations
must preserve any data type invariant which may exist, i.e. they may change the value of
the state as long as the new value is a valid state.

The initial specification should aim to capture abstract concepts and avoid imple-
mentation detail. Development to a program by gradually including design, algorithmic
and implementation detail then proceeds either by data reification or by operation de-
composition.

In data reification (refinement), a new state ‘closer’ to the implementation is defined
and the operations are redefined on this state. A retrieve function relates the new, more
concrete specification to the more abstract specification by showing how, given a state of
the representation, the corresponding abstract state can be achieved. At each reification
stage, it is important to construct proofs that show why the reification adequately models
the previous stage. Some of the relevant proofs that arise in the development of NDB
are detailed below as they occur.

In operation decomposition, the state remains unchanged and the operations are re-
defined in terms of combinations of simpler operations using control constructs such as
sequence, selection and iteration. As with the reification process, a number of proof
obligations arise; at least one for each of the control constructs used within the decom-
position process.
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The program development described here uses data reification; four separate states
are defined in moving from the most abstract specification to the implementation. Oper-
ation decomposition is not used.

2.3 NDB – a binary relational database

A database consists of entities and of relationships linking those entities. One particular
database system architecture provides three views of the data in a database. The internal
view describes the way in which data items are physically stored, the (possibly more
than one) external view describes an individual’s view of the data, and the conceptual
view provides an abstract view of the whole database. There are three main approaches
to designing the conceptual model: the relational approach, the hierarchical approach
and the network approach. The relational model organizes data in tables and n-tuples.
For further information on databases, see [Dat81].

NDB [WS79] is a database architecture which directly supports the conceptual view
of data, i.e. the abstract representation of the database. It is based on the binary rela-
tional model, in which data are organized into tables of pairs as shown in Figure 2.1.
In [Wel82], NDB is specified with some small design changes. To avoid confusion, the
changed version only is presented here.

In NDB, there are two basic components, elements and connections, representing
entities and named binary relationships respectively. (NDB has only one type of entity,
which may or may not have a value.)

The single kind of logical data element used to represent both entities and values is
known as a V-element and is accessed via a unique identifier. It has two components:

1. An identifier giving access to its connections.

2. A value which is a variable-length string or NULL if the V-element has no value.

Two or more V-elements can have the same value, as they can be distinguished by the
V-element identifiers. A V-element can be depicted as in Figure 2.2.

Connections are made between V-elements via R-elements and C-elements, see Fig-
ure 2.3 which represents the relation ‘Scotland exports tweed’. Connections represent
directed associations where the first component of the R-element is the identifier of the
relationship being used (in this case the ‘exports’ relationship) and the second compo-
nent of the R-element is the identifier of the C-element, which, in turn, has as its only
component the target V-element identifier. This is a one-one relation.

Multiple relations are constructed by means of lists. So to represent a one-many
relation the C-element is replaced by a list of C-elements called a C-list. Figure 2.4
represents the relation ‘China exports silk and satin’. Similarly, to allow a V-element to
take part in more than one relation, the R-element can be replaced by a list of R-elements
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Country Currency
Scotland pound
China yuan
Australia dollar

Material Price per meter
tweed 4.50
wool 6.00
silk 8.00
satin 9.50

Export no. Country
E1 Scotland
E2 Scotland
E3 China
E4 China
E5 Australia

Export no. Material
E1 tweed
E2 wool
E3 satin
E4 silk
E5 wool

Export no. Amount in meters
E1 400
E2 300
E3 200
E4 700
E5 200

Figure 2.1 Conceptual view of a binary relational database

value

identifier identifier of connections

Figure 2.2 A V-element
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Scotland

exports

tweed
V-element

R-element C-element

V-element

Figure 2.3 A one-one connection

China

exports

silk

satin

R-Element

C-list

Figure 2.4 A one-many connection

called an R-list. Figure 2.5 represents the relations ‘Scotland has currency pound’ and
‘Scotland exports tweed and wool’. Many-one and many-many relations can also be
represented by using this structure; Figure 2.6 represents a many-many relation.

The data dictionary of NDB

Operations on the database are controlled by a data dictionary, which is closely inte-
grated with, and uses the same structure as, the database. Entities belong to possibly
overlapping sets representing an abstraction of the real world. These sets are metadata
as opposed to data, yet are implemented using the elements described above. A single
V-element represents each entity set type, its member entities being retrieved via a spe-
cial membership relation. Similarly, relations are each of a given type, represented by
a single V-element. In addition, there are two metasets, namely the set of all entity sets
and the set of all relationship types. Sets and relationship types have special attributes.
Sets have attributes called ‘status’, ‘picture’ and ‘width’ defined as follows:
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Scotland exports

currency

wool

tweed

pound

R-list

Figure 2.5 A V-element taking part in two relations

Australia

Scotland

exports

exports

wool

tweed

Figure 2.6 A many-many connection
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status This states whether or not entities may be added to or deleted from a set.

picture This details the format of the values of member entities.

width This is used in outputting values.

Relationship types have attributes ‘fromset’, ‘name’, ‘toset’ and ‘maptype’ defined as
follows:

fromset This is the type of objects which the relationship may be ‘from’.

name This is the name of the relation.

toset This is the type of object which the relation may be ‘to’.

maptype This indicates whether the relation may be single- or multi-valued.

These are system-defined relationship types and require system-defined entity sets, such
as the set to which every status belongs.

So, although the end user of the database system may see none of the metadata
structure, the application programmer will see a set of all sets, containing the system-
defined sets, and a set of all relationship types, containing system-defined relations, all
accessed via system-given names and enabling him to create further sets and relations.

Context conditions or constraints on the database

There are various constraints to be observed when implementing NDB. These will be
expressed in the specification either by an appropriate choice of state or by data type
invariants on the state. The following constraints are defined:

1. Every connection has an inverse; there are no facilities for connecting in one di-
rection only. Figure 2.7 shows an inverse connection. The connection ‘Scotland
exports tweed’ has the inverse ‘tweed is exported by Scotland’. The first compo-
nent of the R-element of the backward connection is the first component of the
forward connection R-element preceded by a minus sign.

2. Connections are ordered, in that each C-list is ordered by the values of the V-
element to which it points. This allows the implementation of the functions ‘prior’
and ‘next’ to find the previous or next element in a C-list with respect to a given
C-element. (Thus in Figure 2.4, next(satin) is silk.)

3. The first components of the R-elements in an R-list are unique. Unlike the ele-
ments in a C-list, they are not ordered.
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Scotland

exports

-exports

tweed

Figure 2.7 An inverse connection

4. The relation from a V-element to a list of V-elements will be known to be a relation
from a particular type of object to another particular type of object. Therefore, all
V-elements in a C-list are assumed to be of the same entity type, namely the target
object type of the relation in which the C-list is involved.

2.4 The specification and design

It may be seen from the above description that although NDB has a simple external
structure, the way in which this structure embodies all the information about the database
is conceptually quite complicated. In writing the formal specification, it is necessary to
understand the structure exactly. This means that questions are answered and problems
solved long before implementation is begun, ensuring that the final program will capture
the essence of NDB.

The specification of NDB, and its operations, and their development through various
levels, are now described. The abstraction of NDB, State-a, is developed in Section 2.5.
The abstraction provides a precise set of criteria by which to judge the correctness of
alternative designs, and allows alternative designs to be compared. Section 2.6 describes
the reification of State-a into a binary relational structure, State-r, and Section 2.7 the
reification of the binary relations into the NDB model State-i. The Pascal level of speci-
fication, State-p, is presented in Section 2.8.

At each of these levels of reification, two operations are defined and justified. (Fur-
ther database update operations are defined in [Wel82].) The two operations are:

1. ADD – add an entity set.

2. DELETE – delete a connection.
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To add an entity set, a new V-element must be created, and the parameters of the op-
eration are the set name, its status, picture and width. Recall their definition in Sec-
tion 2.3. To delete a connection, the parameters given need to identify the connection to
be deleted.

At each stage of development a preliminary check needs to be made to ensure that
the operations can be defined on the proposed state, but they are not fully specified at
that stage until the final state has been formed.

Some proofs are given as examples of the method; in reality all the required proofs
should be sketched in enough detail to show that they could be constructed formally if
necessary.

Section 2.10 contains a table of abbreviations used in the specification. Additionally
it should be noted that not all the auxiliary functions used within the specifications are
defined here, as their meaning should be clear enough for the purposes of this paper.

2.5 The abstract state – State-a

The first abstract representation of NDB shows the database concepts that have been
described. This most abstract level avoids representation details and concentrates on the
fundamental characteristics of NDB.

The binary relational database example given in Figure 2.1 above can be represented
as in Figure 2.8. Here, members of entity sets have distinct values but in general this
will not be the case. It will be remembered that two entities are distinguished by means
of their identifiers rather than their values. This must be reflected in the abstract state by
giving each entity an (arbitrary but distinct) identifier.

Each table in the database example can be thought of as a relationship type expressed
by an optional name and the types of the objects between which the relationship can
occur. In terms of NDB, wherever the relationship type occurs in an R-list, the type of the
V-element to which the R-list belongs is called the fromset and the type of the V-elements
in the corresponding C-list is called the toset. For instance, there is a relationship type
with fromset ‘country’, no name, and toset ‘currency’. Associated with each relationship
is a set of pairs of entities connected by that relationship.

A step-by-step derivation of State-a now follows, to show how a specification will
be reworked, either to simplify the state or to simplify the invariant or to make the oper-
ations easier to define.

The abstract state comprises two parts:

1. Entity sets with their associated members.

2. Relationship types with their associated connection pairs.

This can be written as:
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Entity set Members (identifier / value pairs)
country (1, Scotland), (2, China), (3, Australia)
currency (4, pound), (5, yuan), (6, dollar)
material (7, tweed), (8, wool), (9, satin), (10, silk)
price per meter (11, 4.50), (12, 6.00), (13, 8.00), (14, 9.50)
amount in meters (15, 200), (16, 300), (17, 400), (18, 700)
export number (19, E1), (20, E2), (21, E3), (22, E4), (23, E5)

Relationship type Connections
Fromset Name Toset

country currency (1,4), (2,5), (3,6)
material cost price per meter (7, 11), (8, 12), (10, 13), (9, 14)
export number country (19, 1), (20, 1), (21, 2)

(22, 2), (23, 3)
export number material (19, 7), (20, 8), (21, 9)

(22, 10), (23, 8)
export number amount in meters (19, 17), (20, 16), (21, 15)

(22, 18), (23, 15)

Figure 2.8 Example of a database

State-a1 :: esets : Esetnm
m Esetinf

rels : Reltype m Relinf

Esetinf :: membs : Eid m Value

Reltype :: fs : Esetnm
nm : Relnm
ts : Esetnm

Relinf :: conns : Pair-set

Pair :: fv : Eid m Value
tv : Eid m Value

The structure of Esetnm, Relnm, Eid and Value are irrelevant to the specification and
so they are not defined further. If required, a structure could be given to them later in the
development. The NDB NULL value is represented in the abstract state by nil.

Note, the chosen mapping structure ensures that no two entity sets have the same
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name and no two relationship types have the same fromset, name and toset, fulfilling
two of the conditions to be observed when implementing NDB (i.e. entity sets are dis-
tinguishable and relationship types are distinguishable).

Note also that since entity identifiers are unique, entity-identifier value pairs are rep-
resented as mappings from entity identifiers to values, although in the fv or tv component
of a pair the mapping will contain only a single maplet.

However, in the relation information, a mapping from an entity identifier to a value
can be replaced by the entity identifier only, since the value can be retrieved by looking
in the relevant entity set information. The abstract state becomes:

State-a2 :: esets : Esetnm
m Esetinf

rels : Reltype m Relinf

Esetinf :: membs : Eid m Value

Reltype :: fs : Esetnm
nm : Relnm
ts : Esetnm

Relinf :: conns : Pair-set

Pair :: fv : Eid
tv : Eid

State-a2 already represents the fact that all relationship types have a fromset, name
and toset. The special attribute ‘maptype’ can be expressed by adding an extra compo-
nent to the relation information – a maptype. Similarly, the special attributes of entity
sets, namely ‘status’, ‘picture’ and ‘width’, can be added to the information associated
with each entity set. The special attributes are system-defined relationship types and re-
quire system-defined entity sets, such as the set to which every status belongs. The state
now becomes:

State-a3 :: esets : Esetnm
m Esetinf

rels : Reltype m Relinf

Esetinf :: status : Status
picture : Picture
width : Width
membs : Eid m Value
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Reltype :: fs : Esetnm
nm : Relnm
ts : Esetnm

Relinf :: map : Maptype
conns : Pair-set

Maptype 1:1 1:M M:1 M:M

Pair :: fv : Eid
tv : Eid

Since entities can belong to more than one set, information may be duplicated, i.e. the
value associated with an Eid is given in every set in which the Eid appears. If the
mapping Eid m Value is extracted, this information will appear only once; thus
inconsistencies will not arise or need to be disallowed by an invariant.

The final version of the abstract state becomes:

State-a :: esets : Esetnm m Esetinf
rels : Reltype m Relinf
ents : Eid m Value

Esetinf :: status : Status
picture : Picture
width : Width
membs : Eid-set

Reltype :: fs : Esetnm
nm : Relnm
ts : Esetnm

Relinf :: map : Maptype
conns : Pair-set

Maptype 1:1 1:M M:1 M:M

Pair :: fv : Eid
tv : Eid

Status Picture Width Eid Esetnm Relnm Value NOT YET DEFINED
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The invariant on State-a

The invariant must state the following:

1. For each set, all values of the members of that set must match the picture of that
set, i.e. values have the correct format.

2. The fromset and toset of every relationship type must appear in the set of entity
sets.

3. Entities in value pairs must belong to the sets dictated by the relationship type
fromset and toset.

4. For each relation information, the value pairs must obey the mapping restriction.

5. All entities in all entity sets must have a value (although this may be NULL).

Following this breakdown the invariant is defined as follows:

inva :State-a Bool
inva mk-State-a esm rm em

esetnm dom esm
inv-vals esm esetnm em inv-esets dom esm dom rm
inv-pairs esm rm inv-ents rng esm dom em

inv-vals :Esetinf Eid m Value
inv-vals esetinf em

eid membs esetinf picturematch em eid picture esetinf

inv-esets :Esetnm-set Reltype-set
inv-esets esetnms em

reltype reltypes
fs reltype esetnms ts reltype esetnms

inv-pairs : Esetnm m Esetinf Reltype m Relinf
inv-pairs esm rm

reltype dom rm
let mk-Reltype fs nm ts reltype in
let prset conns rm reltype in
are-membs froms prset esm fs
are-membs tos prset esm ts
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The function inv-pairs uses the following auxiliary functions:

are-membs :Eid-set Esetinf
are-membs eset esetinf eset membs esetinf

froms :Pair-set Eid-set
froms prset fv pr pr prset

tos :Pair-set Eid-set
tos prset tv pr pr prset

inv-ents :Esetinf -set Eid-set
inv-ents esetinfs eids

let ents membs esetinf esetinf esetinfs in
ents eids

There is also an invariant on the type Relinf , which must be satisfied by any object
of that type created in the specification. This is defined as follows:

inv-map :Relinf m

inv-map mk-Relinf map prset
cases map of
M:M true
M:1 pr1 pr2 prset pr1 pr2 fv pr1 fv pr2
1:M pr1 pr2 prset pr1 pr2 tv pr1 tv pr2
1:1 pr1 pr2 prset

pr1 pr2 fv pr1 fv pr2 tv pr1 tv pr2
end

The operations on State-a

In designing State-a, a check must be made that the database operations can be specified
using this data structure, e.g. to add a connection, a value pair would be added to the
conns field of the relation information corresponding to the relation involved.

Each operation is specified by a pre-condition and a post-condition and a list of the
state components (externals) to which it requires read (rd) or read/write (wr) access.

The operation to add an entity set is defined as follows:

ADDA eset:Esetnm s:Status p:Picture w:Width
ext wr esets : Esetnm m Esetinf
pre eset dom esets
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post esets esets eset mk-Esetinf s p w

The parameters to the operation are the new entity set name, and the values which
are to be its status, picture and width. The pre-condition states that an entity set of that
name must not exist already.

The post-condition states that the state after the operation has been performed (the
final state) is the state before the operation is performed (the initial state) with the new
entity set added to the esets mapping. Note that the specification does not indicate how
this changed state is to be obtained. It merely specifies a relationship between the initial
and final states.

2.6 The first representation state – State-r

Having obtained an abstract description of NDB, the aim is to use stepwise reification
so as to eventually obtain a programmed implementation. The first attempt employed
a representation of State-a using structures directly corresponding to the V-, R- and C-
elements of NDB (cf. State-i below). However, the task of formulating an invariant and
of proving that this state was a reification of State-a proved to be so great as to warrant
an intermediate stage.

Since NDB is based on the binary relational model, it ought to be possible to convert
the information contained in State-a into a set of binary relations. This becomes the
required intermediate stage, State-r. To obtain binary relations from the mappings in
State-a, the records must be split into separate mappings. So the mapping from an
entity set name to a record must be split into several mappings, each from the entity set
name to one component of the record. The Reltype record which identifies a relationship
type must also be split, and since this effectively destroys the means of identifying a
relationship type, a new means, namely a relationship type identifier (Rid), must be
introduced. Based on this analysis the new state, State-r, becomes:

State-r :: status : Esetnm m Status
picture : Esetnm m Picture
width : Esetnm m Width
membs : Esetnm m Eid-set
fs : Rid m Esetnm
nm : Rid m Relnm
ts : Rid m Esetnm
map : Rid m Maptype
valof : Eid m Value
conns : Triple-set
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Triple :: fv : Eid
rnm : Rid
tv : Eid

Maptype 1:1 1:M M:1 M:M

Status Picture Width Eid Esetnm Relnm Value Rid NOT YET DEFINED

Note that the conns component is a set of triples rather than a mapping,

Rid m Pair-set

as would be expected. The decision to represent this component in a different way
was made because it contains the actual data rather than the metadata of the database.

The invariant on State-r

The conditions which had to be true for State-a will also have to be included in the
invariant State-r. In addition, extra conditions will be required to express conditions
which are no longer imposed by the structure of the state, e.g. if lists are used to represent
the sets of the previous level, there must be a new condition that ensures values in a list
are unique.

In writing the invariant, care must be taken that it is complete and correct. This is
likely to become more difficult as the specification develops because at each reification
step the invariant may grow longer. To simplify the task of deciding whether the invariant
is complete and correct, it is stated as part of invr that the state obtained after applying
the retrieve function (retra) to a state in State-r must satisfy inva.

The only conditions to be added are those which are new at this level or which are
necessary for the validity of the retrieve function. This generalization has the same
effect; take, for instance, the condition that values have to have a format matching that
(those) of the entity set(s) to which they belong. If the values do not have the correct
format in State-r, then they will not have the correct format in the retrieved State-a ;
therefore, for the invariant on State-a to be satisfied, this condition must be fulfilled on
the State-r level and need not be restated in full.

Three additional conditions, related to domains, must be stated:

1. The status, picture and width mappings must all hold information for every entity
set, i.e. their domains are the same, and the fromset, name, toset and map map-
pings contain information for every relationship type, i.e. their domains are the
same.

2. All elements of type Rid appearing in the triples of conns(State-r) are valid rela-
tionship type identifiers.
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3. No two relationship types have the same fromset, name and toset.

The invariant is defined as:

invr :State-r
invr sr

inva retra sr
inv-domains sr inv-rids conns sr dom nm sr
inv-rels fs sr nm sr ts sr

inv-domains :State-r
inv-domains sr

let statusr dom status sr in let fsr dom fs sr in
domwidth sr statusr dom picture sr statusr
dommembs sr statusr dom nm sr fsr
dom ts sr fsr dommap sr fsr

inv-rids :Triple-set Rid-set
inv-rids conns nms

t conns rnm t nms

inv-rels : Rid m Esetnm Rid m Relnm Rid m Esetnm
inv-rels fs nm ts

rid1 rid2 dom fs
rid1 rid2 fs rid1 fs rid2
nm rid1 nm rid2 ts rid1 ts rid2

A problem may arise in evaluating invr State-r in that the first term,

inva retra sr

may be undefined if any of the subsequent terms is false, as a valid State-a cannot be
retrieved from an invalid State-r. This situation is cleanly catered for within LPF (Logic
for Partial Functions) – see Section 3.3 of [Jon90] – where the conjunction of an unde-
fined value and false is defined to be false.

The retrieve function, retra

To show that State-r is a valid representation of State-a, a function must be written to
retrieve State-a from State-r. This is easily done, e.g. for every entity set name, create
its Esetinf by collecting status, picture, width and members from the appropriate fields
of State-r. A pair is extracted from each triple and placed into the correct Relinf as
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designated by the rnm component of the triple. Rids are discarded, as this means of
binding relationship type attributes is not required in the abstract state. The definition of
retra is:

retra :State-r State-a
retra sr

let esets esetnm esetinfo esetnm sr esetnm dom status sr in
let rels reltype rid sr relinfo rid sr rid dom fs sr in
let ents valof sr in
mk-State-a esets rels ents

esetinfo :Esetnm State-r Esetinf
esetinfo esetnm sr

let a status status sr esetnm in
let a picture picture sr esetnm in
let a width width sr esetnm in
let a membs membs sr esetnm in
mk-Esetinf a status a picture a width a membs

reltype :Rid State-r Reltype
reltype rid sr

let a fs fs sr rid in
let a nm nm sr rid in
let a ts ts sr rid in
mk-Reltype a fs a nm a ts

relinfo :Rid State-r Relinf
relinfo rid sr

let a map map sr rid in
let a conns mk-Pair fv t tv t t conns sr rnm t rid in
mk-Relinf a map a conns

Now, using this retrieve function, the following adequacy proof obligation must be
discharged:

a State-a r State-r retra r a
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from r State-r eset Esetnm s Status p Picture w Width
1 from eset dom esets retra r
1.1 dom esets retra r dom status r retra

infer eset dom status r h1, 1.1
2 ! eset dom esets retra r h
3 eset dom esets retra r eset dom status r -I(2,1)
infer pre-ADDA eset s p w retra r pre-ADDR eset s p w r

Figure 2.9 A proof of the domain rule for the ADDR operation

The operations on State-r

The operations which were defined on State-a must now be redefined on State-r. The
operation to add an entity set is defined by:

ADDR eset:Esetnm s:Status p:Picture w:Width
ext wr status : Esetnm m Status
wr picture : Esetnm m Picture
wr width : Esetnm m Width
wr membs : Esetnm m Eid-set

pre eset dom status
post status status eset s

picture picture eset p
width width eset w
membs membs eset

The parameters are the entity set name, the status, picture and width as before. The
pre-condition again states that an entity set of the given name must not exist already; this
time the check is made by looking in the status mapping although the picture, width or
membs mapping could equally well have been used. The post-condition states that the
entity set name has been added to the domains of the first four mappings of the state and
mapped to the appropriate values.

In order that ADDR models ADDA, two conditions must be satisfied. They are as
follows:

1. Domain Rule. If a set of parameters satisfies the pre-condition of ADDA (the
abstract specification of the ADD operation) then it must satisfy the pre-condition
of the reified specification of the ADD operation, ADDR. This proof amounts to
showing that the pre-condition of the ADDR operation is not too restrictive. The
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domain rule proof obligation is formalized as follows:

r State-r pre-ADDA retr r pre-ADDR r

2. Result Rule. Here we are concerned with showing that initial/final state pairs that
satisfy the post-condition of ADDR must also satisfy the post-condition of ADDA
when they are viewed through the retrieve function. The proof obligation is stated
as follows:

r r State-r
pre-ADDA retr r post-ADDR r r

post-ADDA retr r retr r

The antecedent of the implication has two conjuncts. The first states that we are
only concerned with pre-conditions that satisfy the post-condition of the abstract
state (that is, the reified operation may have a wider pre-condition) and the second
conjunct restricts consideration to those states that satisfy the post-condition of
the reified operation.

Generally, it is not necessary to fully construct a formal proof that these rules are sat-
isfied. The nature of the retrieve function, which directly relates states and state changes
on different levels, usually eliminates the need. However, it is important to establish that
formal proofs can be constructed if required. Figure 2.9 shows a proof of the domain
rule and Figure 2.10 a proof of the range rule.

The operation to delete a connection is defined on State-r as follows:

DELCONNR eid1:Eid rid:Rid eid2:Eid
ext wr conns : Triple-set
pre mk-Triple eid1 rid eid2 conns
post conns conns mk-Triple eid1 rid eid2

The parameters are the identifiers of the two connected entities (eid1 and eid2) and
the identifier of the relationship connecting them (rid). The pre-condition states that
the connection must exist for it to be deleted. The post-condition shows that the triple
representing the given connection has been removed from the conns component of the
state. Note that this operation was not defined on State-a. This is because the concept
of a Rid was not introduced into the specification until State-r. An equivalent operation
could have been defined, but with different parameters, namely a Reltype rather than a
Rid to define the connection to be deleted.
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from r r State-r eset Esetnm s Status p Picture w Width
1 from pre-ADDA eset s p w retra r post-ADDR eset s p w r r
1.1 eset dom esets retra r -E(h1),pre-ADDA
1.2 status r status r eset s -E(h1),post-ADDR

picture r picture r eset p
width r width r eset w
membs r membs r eset

1.3 eset dom status r retra,1.1,1.2
1.4 dom status r dom status r eset -E(1.2)
1.5 esets retra r

esetnm mk-Esetinf status r esetnm picture r esetnm
width r esetnm membs r esetnm
esetnm dom status r retra

1.6 status r eset s picture r eset p
width r eset w membs r eset -E(1.2)

1.7 esets retra r
esetnm mk-Esetinf status r esetnm picture r esetnm

width r esetnm membs r esetnm
esetnm dom status r

eset mk-Esetinf status r eset picture r eset
width r eset membs r eset 1.4,1.5,1.6

1.8 esets retra r
esets retra r eset mk-Esetinf s p w retra,1.7

infer post-ADDA eset s p w retra r retra r
2 ! pre-ADDA eset s p w retra r post-ADDR eset s p w r r h
infer pre-ADDA eset s p w retra r post-ADDR eset s p w r r -I(1,2)

post-ADDA eset s p w retra r retra r

Figure 2.10 A proof of the range rule for the ADDR operation
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2.7 The implementation state – State-i

The stage has now been reached when the abstract concepts of NDB, stated by State-a
and formed into binary relations by State-r, are modelled in terms of NDB elements
by the next reification, State-i. The development of the structure of State-i is explained
step-by-step below.

To understand the reification of State-r, the following small example database is
used:

Entity set Members (identifier/value pairs)
country (1, Scotland), (2, China), (3, Australia)
currency (4, pound), (5, yuan), (6, dollar)

Relationship type Connections
Fromset Name Toset
country currency (1, 4), (2, 5), (3, 6)

This is represented in State-r by:

mk-State-r
country s1 currency s2
country p1 currency p2
country w1 currency w2
country 1 2 3 currency 4 5 6
r1 country
r1 nil
r1 currency
r1 M:1
1 Scotland 2 China 3 Australia 4 pound 5 yuan 6 dollar
mk-Triple 1 r1 4 mk-Triple 2 r1 5 mk-Triple 3 r1 6

where arbitrary identifiers have been introduced.
To see how this is represented in State-i, consider first the conns component. In

State-r it is defined as a set of triples of the form:

Triple :: fv : Eid
rnm : Rid
tv : Eid

From this set, a map can be formed as follows. Each entity identifier, eid1, which
is the first component of a triple in the set is mapped to a list of all pairs rid eid2 for
which the triple eid1 rid eid2 is in the set, thus:

1 r1 4 2 r1 5 3 r1 6
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Each sequence in the range of this map can also be transformed into a map as follows.
For each sequence, each relation identifier, rid, which is the first component of a pair in
the sequence is mapped to a list of all the elements eid2 for which the pair rid eid2 is
in the sequence, thus:

1 r1 4 2 r1 5 3 r1 6

Now, the values of the entity identifiers in the domain of this map can be incorporated
into the range of the map by introducing a composite object as follows:

1 mk-Vel r1 4 Scotland
2 mk-Vel r1 5 China
3 mk-Vel r1 6 Australia

The reason for calling this object a Vel will become apparent below.
State-i contains a map of this form and is written:

State-i1 :: vm : Eid m Vel

Vel :: rl : Rid m Eid
val : Value

Note that Eids occurring in the domain of valof State-r may not appear as the first
component of a triple in conns State-r . In such cases, the Eid must map to a Vel which
has as its rl component an empty mapping.

Since they can be restated in triple form, all the other components of State-r can be
incorporated into the above State-i structure.

The triples will be formed by the following transformation:

1. Let the component in State-r be C and have the following form: A m B.

2. For every element a in A, the domain of C, create for each element b to which it
maps, a triple (a m b) wherem is a special relationship type identifier (metarid) for
component C as given in Figure 2.11. So in the above example, since the metarid
for STATUS State-r is ‘DBSTATUS’, triples of the form (Esetnm, Status) will
result, thus, (country, ‘DBSTATUS’, s1),(currency,‘DBSTATUS’,s2)

This is not sufficient, since State-i requires identifier triples and the triples formed
here contain a mixture of identifiers and values. The values must be replaced by identi-
fiers. When the corresponding map is formed, for each value, a new identifier is created
and mapped to a Vel. This Vel has the value as its val component and the relationships in
which the value is involved as its rl component. For example, the resulting map for the
status component is:
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State-r component Special identifier in State-i
STATUS ‘DBSTATUS’
PICTURE ‘DBPICTURE’
WIDTH ‘DBWIDTH’
MEMBS ‘SMEMBS’
FS ‘DBFSET’
NM ‘DBREL’
TS ‘DBTSET’
MAP ‘DBMAP’

Figure 2.11 NDB special relationship type identifiers

countryid mk-Vel ‘DBSTATUS’ s1id country
s1id mk-Vel s1
currencyid mk-Vel ‘DBSTATUS’ s2id currency
s2id mk-Vel s2

Thus all components of State-r can be fitted into the State-i structure.
vm State-i will consist not only of mappings from Eids but from other identifiers

too, including Rids. All these identifiers (ids) are given the collective name Vid (Vel
identifier). State-i becomes:

State-i :: vm : Vid m Vel

Vel :: rl : Vid m Vid
val : Value

Now some way of indicating which Vids are relationship type ids, entity ids, sta-
tus ids, etc. is needed. This is done by linking each Vid to a Vel which describes its
type, i.e. which names the set of which the Vel to which Vid maps is a member, by
means of another metarid, the ‘is-member’ relationship. Another level of special ids
(metasets) identifying the sets is created. These identifiers are tabulated in Figure 2.12.
All the metasets in Figure 2.12 except ‘DBSUSE’ and ‘DBRUSE’ are entity set iden-
tifiers (Esetids) so these in turn are mapped via the ‘is-member’ relationship to ‘DB-
SUSE’. All the metarids in Figure 2.11 are relationship type identifiers (Rids) so they
are mapped to ‘DBRUSE’. Therefore, the whole database is linked and can be accessed
from ‘DBSUSE’ and ‘DBRUSE’. The metasets and metarids must also have the at-
tributes that ordinary entity sets and relationship types have, namely status etc. These
metadata are introduced into the invariant. This is done by including statements that the
special identifiers exist, with their own attributes.
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Type of element in State-r Id of set to which it belongs in State-i
Status ‘DBSTATUSSET’
Picture ‘DBPICTURESET’
Width ‘DBWIDTHSET’
Relnm ‘RELATIONS’
Maptype ‘DBRELMAP’
Esetnm ‘DBSUSE’
Rid ‘DBRUSE’

Figure 2.12 NDB special entity set identifiers

The invariant on State-i

Having described the structure of State-i we can now formally write down the invariant.

inv-i :State-i
inv-i si

invr retrr si
let vm vm si in is-submap initmap vm
vid dom vm
vid ‘DBSUSE’ vid ‘DBRUSE’

vid getesetids vm
vid getreltypeids vm
vid geteids vm

esetid getesids vm inv-entset vm esetid
reltypeid getreltypeids vm inv-reltype vm reltypeid

inv-conns vm inv-order vm inv-esetnames vm

The following auxiliary functions are used:

getesetids :Vid m Vel Esetid-set
getesetids vm

let vel vm ‘DBSUSE’ in
rng rl vel ‘SSMEMBS’

getreltypeids :Vid m Vel Rid-set
getreltypeids vm

let vel vm ‘DBRUSE’ in
rng rl vel ‘RMEMBS’
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geteids :Vid m Vel Eid-set
geteids vm members esetid vm esetid getesetids vm

members :Esetid Vid m Vel Eid-set
members esetid vm

let rel rl vm esetid in
if ‘SMEMBS’ dom rel
then rng rel ‘SMEMBS’
else

initmap is a mapping representing the information displayed in Figure 2.13.

VID RID C-list VALUE
‘DBSUSE’ ‘SSMEMBS’ ‘DBSTATUSSET’,...(metasets) NULL
‘DBRUSE’ ‘RMEMBS’ ‘DBTSET’,..(metarels) NULL

ID ‘DBSTATUS’ ‘DBPICTURE’ ‘DBWIDTH’
‘RELATIONS’ ... ... ...
‘DBSTATUSSET’ ... ... ...
‘DBPICTURESET’ ... ... ...
‘DBWIDTHSET’ ... ... ...
‘DBRELMAP’ ... ... ...

ID ‘DBFSET’ ‘DBTSET’ ‘DBREL’ ‘DBMAP’
‘DBTSET’ ‘DBRUSE’ ‘DBSUSE’ TO M:1
‘DBFSET’ ‘DBRUSE’ ‘DBSUSE’ FROM M:1
‘DBREL’ ‘DBRUSE’ ‘RELATION’ NAME M:1
‘DBMAP’ ‘DBRUSE’ ‘DBRELMAP’ MAP M:1
‘DBSTATUS’ ‘DBSUSE’ ‘DBSTATUSSET’ STATUS M:1
‘DBPICTURE’ ‘DBSUSE’ ‘DBPICTURESET’ PICTURE M:1
‘DBWIDTH’ ‘DBSUSE’ ‘DBWIDTHSET’ WIDTH M:1
‘SSMEMBS’ ‘DBSUSE’ ‘DBSUSE’ MEMBS 1:M
‘RMEMBS’ ‘DBRUSE’ ‘DBRUSE’ MEMBS 1:M
‘SMEMBS’ ‘DBSUSE’ ‘DBSUSE’ MEMBS M:M

Figure 2.13 Metamappings

Apart from the prerequisite that a State-r retrieved from a State-i must satisfy the
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invariant on State-r, the following context conditions apply:

1. The mapping of system-defined entity sets and relationship types to their respec-
tive attributes must be part of any database. This is expressed in invi State-i by
is-submap.

2. The map defined by the table describing initmap must be a ‘submap’ of any valid
State-i, i.e. all relations in the table must appear in State-i. The first part of initmap
says that the mapping

‘DBSUSE’ mk-Vel ‘SSMEMBS’ metaid-list nil

where metaid-list is a list of the metasets, and the mapping

‘DBRUSE’ mk-Vel ‘RMEMBS’ metarid-list nil

where metarid-list is a list of all the metarids, must appear in State-i.
The second part of the table gives the status, picture and width of each metaset.
So State-i must include a mapping

‘RELATIONS’
mk-Vel ‘DBSTATUS’ sid
‘DBPICTURE’ pid ‘DBWIDTH’ wid nil

where sid (pid, wid) maps to a Vel which has as its value the status (picture, width)
of the entity set mapped to by the identifier ‘RELATIONS’. The omitted values
in the table (indicated by ellipses) are implementation-dependent and therefore
cannot be specified here; the table merely indicates that such values must exist.
The third part of the table gives the fromset, toset, relation name and mapping
attribute of each metarelation. The fromset and the toset are the identifiers of the
relevant entity sets; the relation name and the mapping are values of entities in the
sets identified by ‘RELATIONS’ and ‘DBRELMAP’ respectively. So the mapping

‘DBTSET’
mk-Vel ‘DBFSET’ ‘DBRUSE’ ‘DBTSET’ ‘DBSUSE’
‘DBREL’ nameid ‘DBMAP’ mapid nil

where the value component of the V-elements identified by nameid and mapid are
‘to’ and ‘M:1’ respectively, must be part of State-i.

3. The database must be connected, so that every V-element can be accessed from
‘DBRUSE’ or ‘DBSUSE’ via the metadata. This is ensured by the membership
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relations – all relationship types belong to ‘DBRUSE’, all entity sets belong to
‘DBSUSE’ and every entity belongs to at least one entity set.
Every V-element except ‘DBRUSE’ and ‘DBSUSE’ denotes either an entity set or
a relationship type or an entity. This coincides with the final version of State-a,
which also reflects the notion of three types of object, namely entity set, relation-
ship type and entity.

4. All members of ‘DBSUSE’ are entity sets and therefore have the attributes sta-
tus, picture and width (expressed by inv-entset); all members of ‘DBRUSE’ are
relationship types and therefore have the attributes fromset, name, toset and map
(expressed by inv-reltype).

5. All connections have an inverse (expressed by inv-conns). For each mapping

eid1 mk-Vel rid eid2 v1

representing the triple eid1 rid eid2 , the mapping

eid2 mk-Vel rid eid1 v2

where v1 and v2 are the values of eid1 and eid2 respectively, must be included in
State-i. This allows efficient access of relations in both directions. The inverse of
a connection has in the first component of the R-element the first component of
the R-element of the forward connection preceded by a minus sign.

6. C-lists are ordered by the values of the V-elements to which they point (expressed
by inv-order), hence the use of a Vid-list rather than a Vid-set.

7. Entity set names are unique (expressed by inv-esetnames). This is an implementa-
tion decision, as entity set V-elements are distinguished by their values rather than
by their identifiers. This condition is included, because normally, two V-elements
can have the same value, e.g. two people can have the same name.

The retrieve function, retrr

In retrieving State-r from State-i, only forward connections are retained. For every en-
tity set which is not a metaset, an entry is made in status State-r , picture State-r ,
width State-r and membs State-r (if a set has no ‘smembs’ relationship then it maps
to the empty set in membs State-r ), and similarly for every relationship type which
is not a metarelation its attributes are placed in the appropriate fields of State-r. Fi-
nally, the triples which comprise the actual data connections are retrieved and placed in
conns State-r .
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retrr :State-i State-r
retrr mk-State-i vm

let esetids getesetids vm -metasets in
let reltypeids getreltypeids vm -metarels in
let eids geteids vm -metaeids vm in
let stam

val vm esetid status vm esetid vm esetid esetids in
let picm

val vm esetid picture vm esetid vm esetid esetids in
let widm

val vm esetid width vm esetid vm esetid esetids in
let membs

val vm esetid members esetid vm esetid esetids in
let fsm rid fromset vm rid vm rid reltypeids in
let nm rid name vm rid vm rid reltypeids in
let tsm rid toset vm rid vm rid reltypeids in
let mapm rid map vm rid vm rid reltypeids in
let valm eid val vm eid rid reltypeids in
let conns

mk-Triple eid r vid r dom rl vm eid not-minus r
vid rng rl vm eid r eid eids in

mk-Stater stam picm widm membs fsm nm tsm mapm valm conns

A number of auxiliary functions are used within retrr. Several of these are specified
below and in Section 2.7. The specification of the remainder is left as an exercise for the
reader. All are specified in [Wel82].

fromset :Vel Vid m Vel Esetnm
fromset vel vm

let esetid fsetid vel in
val vm esetid

pre ‘-SSMEMBS’ ‘DBSTATUS’ ‘DBPICTURE’ ‘DBWIDTH’ dom rl vel

fsetid :Vel Esetid
fsetid vel

let esetid rl vel ‘DBFSET’ in
esetid

pre ‘-RMEMBS’ ‘DBFSET’ ‘DBTSET’ ‘DBREL’ ‘DBMAP’ dom rl vel
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The operations on State-i

The operation to add an entity set is defined as follows:

ADDI eset:Esetnm s:Status p:Picture w:Width esetid:Esetid
ext wr vm : Vid m Vel
pre vid getesetids vm val vm vid eset
post esetid domvm

dom vm esetid dom vm
esetid getesetids vm
val vm esetid eset
let vel vm esetid in picture vel vm p status vel vm s
width vel vm w members vel vm

The parameters have changed slightly in that a result parameter giving the identifier of
the new V-element created is returned. There was no concept of an ‘entity set identifier’
in the previous two states.

The operation to delete a connection is defined as:

DELCONNI eid1:Eid rid:Rid eid2:Eid
ext wr vm : Vid m Vel
pre eid1 eid2 geteids vm

let vel vm eid1 in rid dom rl vel eid2 elems rl vel rid
post let vel1 vm eid1 in let rl1 rl vel1 in

elems rl1 rid elemsrl1 rid eid2
let vel2 vm eid2 in let rl2 rl vel2 in
elems rl2 minus rid elemsrl2 minus rid eid1
ALL OTHER THINGS REMAIN THE SAME

Note the informal use of ‘all other things remain the same’. If complete formality
were required, this should be expanded.

Again, although not presented here, proofs should be constructed that ADDI and
DELCONNI respectively model ADDR and DELCONNR.

2.8 The Pascal version – State-p

State-p is designed to resemble the Pascal structure to be used in coding State-i. It
introduces a design change, which provides some optimization by making use of the
observation that the function of a C-element in a connection is to allow many-valued
relations. If a relation is known to be single-valued (i.e. it is a many-one or one-one
relation) the need for a C-element disappears and it can be omitted. The structure shown
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Scotland Edinburgh

Figure 2.14 Single-valued relation

in Figure 2.14 is sufficient to represent the connection between Scotland and its (only)
capital Edinburgh.

So the second component of an R-list is either a C-list identifier or a V-element
identifier.

Each V-element has the structure:

Velp :: rl : Vid m Cnlid Vid
val : Value

Note that Cnlid Vid allows a nil value as the second R-element component; this
occurs when deleting connections – it effectively indicates that there is no connection.

There must also be some mapping from connection list identifiers to connection lists.
Connection lists are stored in blocks with pointers between blocks, i.e. a connection list
is a list of Vids followed by a next pointer to a continuation connection list.

The resulting state which expresses this is:

State-p :: vm : Vid m Velp
cm : Cnlid m Cnl

Velp :: rl : Vid m Cnlid Vid
val : Value

Cnl :: cl : Vid
np : Cnlid

The invariant on State-p

The new conditions on State-p are:

1. R-lists and the cl component of Cnls have a fixed maximum length.

2. If a relationship type is many-one or one-one then a Vid, otherwise a Cnlid, must
appear in rl rid , where rl is the rl component of a V-element and contains rid in
its domain, and all Cnlids are in dom cm(State-p).
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invp :State-p
invp sp

invi retri sp inv-length sp inv-optconn sp inv-clists sp

The retrieve function, retri

State-p is similar to State-i, so State-i can be easily retrieved. The retrieve function
shows that State-p models State-i.

retri :State-p State-i
retri mk-State-p vm cm

mk-State-i vid newvel vm vid cm vid dom vm

To retrieve State-i from State-p, take vm State-p and for each V-element replace the
identifiers in the range of rl by the lists to which they point. A V-element identifier, vid,
is replaced by the list [vid]; a C-list identifier cnlid is replaced by the list in the Cnl to
which it maps in cm (concatenated to the continuation list(s) if the np component of the
Cnl is not nil).

Note that State-i and State-p are so similar that they could have been merged into
a single refinement step. However, State-i resembles NDB more closely than would a
state which included the design decisions of State-p. Also, one level only would require
too great a jump from State-r. For these reasons, two separate states are maintained.

The operations on State-p

The two operations are defined as follows:

ADDP eset:Esetnm s:Status p:Picture w:Width esetid:Esetid
ext wr vm : Vid m Velp
rd cm : Cnlid m Cnl

pre vid getesetidsp vm cm val vm vid eset
post esetid domvm

dom vm esetid dom vm
esetid getesetidsp vm cm
let velp vm esetid in val velp eset
statusp velp vm s
picturep velp vm p
widthp velp vm w
membersp esetid vm cm
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DELCONNP eid1:Eid rid:Rid eid2:Eid
ext wr vm : Vid m Velp
wr cm : Cnlid m Cnl

pre eid1 eid2 geteidsp vm cm
let velp vm eid1 in rid dom rl velp
eid2 idset rl velp rid cm

post let velp1 vm eid1 in let rl1 rl velp1 rid in
idset rl1 cm idset rl1 cm eid2
let velp2 vm eid2 in let rl2 rl velp2 minus rid in
idset rl2 cm idset rl2 cm eid1

2.9 The implementation

This specification was implemented in Pascal on an Apollo computer. The internal struc-
ture of the data is shown in Figure 2.15. The data are stored as an array of V-elements,
one for each Vid, and an array of connection-list elements, one for each Cnlid. Each
V-element has a fixed length R-list, which may or may not be filled. The last used R-list
position is indicated by a pointer LASTREL. The value of the V-element may vary con-
siderably in length, and so is stored in a long string together with all the other values. It
is accessed by a pointer to where it starts, and its length. So the VALUE component of a
V-element consists of a starting pointer and a length.

The C-list of a connection-list element is also of fixed length and has a pointer to the
last C-element. NP is an identifier as in State-p and should be nil if cl is not full.

For each array, the free elements (all of them at first) are chained together and ac-
cessed via a free chain pointer. So each V-element and connection-list element has a
next pointer, which is nil if the element is not free.

Once the data structures have been decided, the operations can then be converted to
code. Each operation is coded as a procedure.

Finally, to complete the formal specification and development of the program, as-
sertions are included in the procedures to show that the pre- and post-conditions of the
operations they implement are satisfied and that the data structure continues to satisfy
the invariant.
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Cnlid

C-element

nil

nil

free
chain

Vid

V-element

nil

free
chain

(iii) Organization of V- and C-elements

LASTCEL

C-list NP

nil nil

LASTREL

R-list VALUE

starting
pointer length nil

(ii) A connection-list element

(i) A V-element

Figure 2.15 Internal representation of the database
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2.10 Table of abbreviations
Abbreviation Description
clist C-list
cnl connection list
conns connections
eid entity identifier
em entity map
ent entity
eset entity set
esetinf entity set information
esetnm entity set name
esm entity set map
fs fromset
fv from value
id identifier
membs members
nm name
pr pair
rel relationship type
relinf relation information
relnm relation name
reltype relationship type
rid relationship type identifier
rl R-list
rm relation map
ts toset
tv to value
val value
vel V-element
vid V-element identifier
vm V-element map
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3

The ISTAR Database

Roger C. Shaw

This chapter discusses the specification of a special-purpose database system.
The material therefore complements Chapter 2. The system described is an
early version of IST’s integrated project support environment known as IS-
TAR. A link is established – in this chapter – between the task of requirements
analysis and the design of the state of a VDM state. The specification goes
further into VDM notation by using both the module and exception specifi-
cation notations.

47
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3.1 Introduction

This chapter presents the design specification of the original ISTAR database manage-
ment system [Ste86]. Current versions of ISTAR no longer use the binary relationship
model described here, rather, a full entity relationship model is now supported.

Section 3.2 describes the informal design requirements that were produced prior to
the development of the database system. These requirements have been extracted from
the original technical design documents [IST85]. Section 3.3 presents an analysis of the
requirements using entity relationship modelling and the various database operations are
also identified. From this an outline specification structure is derived in Section 3.4 and
presented in Sections 3.5, 3.6 and 3.7.

The problem analysis is rudimentary to the extent that none of the customer/analyst
interactions are represented and many of the important steps that would be undertaken
when performing the first stages of a data analysis are only hinted at. Nonetheless the
material presented here should provide a good indication of how formal specification
techniques and traditional data analysis methods blend well together.

3.2 Informal requirements

We start by providing an informal description of the database system.

Organizational model for the database

The database employs the binary relationship model. Data are stored in the database in
the form of triples, each of which has the following structure:

[ subject , verb , object ]

The subject is related to the object through the verb, thus, for example, we may record
the following relationship in the database:

[ ‘Jennifer’ , ‘Studies’ , ‘Computer Science’ ]

Here the verb Studies denotes the relationship between Jennifer and Computer Science.
In the database verbs must be declared before use and each declared verb must be

given an inverse. In the above example we may declare the verb and verb-inverse pair
as:

‘Studies’/ ‘Is Studied by’

This leads to relationships of the following form which are said to be synonymous
i.e. they represent two alternative ways of saying the same thing:
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[ ‘Jennifer’ , ‘Studies’ , ‘Computer Science’ ]
[ ‘Computer Science’ , ‘Is Studied by’ , ‘Jennifer’ ]

This single fact can be entered into the database using either of these two forms and can
subsequently be returned in either form.

The content of a database consists of a collection of defined verb/verb inverse pairs
and a collection of triples of the form described above. For example, the following shows
a possible database state in the sense that the indicated verb/verb inverse pair has been
entered along with the specific relationships:

Verb and verb inverses
‘Studies’ ‘Is Studied by’

Relationships entered
[ ‘Jennifer’ , ‘Studies’ , ‘Computer Science’ ]
[ ‘Jennifer’ , ‘Studies’ , ‘Mathematics’ ]
[ ‘Ben’ , ‘Studies’ , ‘Mathematics’ ]

[ ‘Mathematics’ , ‘Is Studied by’ , ‘Ruth’ ]
[ ‘Louise’ , ‘Studies’ , ‘Physics’ ]

Query of a database

The database is queried by retrieving all those triples in the database that match a given
template. A template has three fields corresponding to the subject – verb – object struc-
ture of a triple but, as we will see, can also contain some special matching symbols.

In the following discussion we will assume a database set up as shown above. Three
forms of query may be identified as follows.

Checking if a specific triple is in the database. A template of the form

[ ‘Jennifer’ , ‘Studies’ , ‘Computer Science’ ]

would match a triple in our database and thus the query would return true. A
template of the form

[ ‘Mathematics’, ‘Is Studied by’, ‘Jennifer’ ]

would likewise return true because, for any triple entered into the database, the
inverse relation is also considered to be present.
The following query, not being in our database, would return false:

[ ‘Jennifer’ , ‘Studies’ , ‘Physics’ ]
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The match anything symbol. The wild card symbol ‘?’ can be used in a template to
indicate that any field may be considered as a match for this entry. Thus, in our
example database, the query template:

[ ‘Jennifer’ , ‘Studies’ , ‘?’ ]

would yield:

[ ‘Jennifer’ , ‘Studies’ , ‘Computer Science’ ]
[ ‘Jennifer’ , ‘Studies’ , ‘Mathematics’ ]

The template:

[ ‘?’ , ‘Studies’ ‘Mathematics’ ]

would yield:

[ ‘Jennifer’ , ‘Studies’ , ‘Mathematics’ ]
[ ‘Ben’ , ‘Studies’ , ‘Mathematics’ ]
[ ‘Ruth’ , ‘Studies’ , ‘Mathematics’ ]

The template:

[‘Physics’, ‘?’, ‘?’]

would retrieve the triple:

[‘Physics’, ‘Is Studied by’, ‘Louise’]

The template:

[ ‘?’ , ‘?’ , ‘?’ ]

would yield the entire database, thus:

[ ‘Jennifer’ , ‘Studies’ , ‘Computer Science’ ]
[ ‘Jennifer’ , ‘Studies’ , ‘Mathematics’ ]
[ ‘Ben’ , ‘Studies’ , ‘Mathematics’ ]
[ ‘Ruth’ , ‘Studies’ , ‘Mathematics’ ]
[ ‘Louise’ , ‘Studies’ , ‘Physics’ ]

[‘Computer Science’, ‘Is Studied by’, ‘Jennifer’ ]
[‘Mathematics’, ‘Is Studied by’, ‘Jennifer’ ]
[‘Mathematics’, ‘Is Studied by’, ‘Ben’ ]
[‘Mathematics’, ‘Is Studied by’, ‘Ruth’ ]
[‘Physics’, ‘Is Studied by’, ‘Louise’ ]
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The don’t care symbol. For some queries the value of one or more field is of no in-
terest; in such cases the ‘*’ symbol is used as a don’t care indicator. The query
template:

[ ‘*’, ‘Studies’, ‘?’]

would retrieve the following triples:

[ ‘*’, ‘Studies’, ‘Computer Science’]
[ ‘*’, ‘Studies’, ‘Mathematics’]
[ ‘*’, ‘Studies’, ‘Physics’]

Note that only one triple of the form:

[ ‘*’, ‘Studies’, ‘Mathematics’]

is returned even though there are three entries in the database that would be re-
turned by the query:

[ ‘?’, ‘Studies’, ‘Mathematics’].

The query:

[ ‘?’, ‘*’, ‘*’]

would yield each subject and object token used in the database (remember that
both the forward and inverse relation is held in the database).

Insertion and deletion of verbs

As stated earlier verbs, and their inverses, must be inserted into the database before they
can be used within a triple. Likewise verbs may be deleted from the database. When
deleting a verb it is necessary to ensure that no triple within the database uses that verb;
if reference is made to the verb then the deletion should not be allowed.

Insertion of triples into the database

Data are inserted into the database simply by inserting specific triples. The subject and
object fields must be literal strings and the verb must be a literal string that has already
been declared to the database. The insert operation only adds a triple into the database, it
does not modify an existing triple in any way. Thus, for instance, if we add the following
triple to the database
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[ ‘Louise’ , ‘Studies’, ‘Music’]

then ‘Louise’ will be related to both ‘Physics’ and ‘Music’ through the verb ‘Studies’. If
a course transfer was being registered then we would have to make a deletion removing
the triple relating ‘Louise’ to ‘Physics’ and then insert the new relationship.

Deletion of triples from the database

Triples can be deleted from the database once again through the provision of a match or
query template. All triples matching the template will be deleted from the database. The
deletion template is set up in exactly the same way as a query template and may contain
both strings and the special character ‘?’. The don’t care symbol ‘*’ may not be used as
it is too permissive.

Counting triples in a database

An operation is provided to count the number of triples that match a given template.
The rules for the template are the same as those that apply when a template is used for
a query or deletion. The operation returns a count of the number of distinct triples that
match the template – thus it counts the number of triples that would be retrieved if this
template were used as a query or the number that would be deleted if this template were
used for a deletion. Both the match anything symbol ‘?’ and the don’t care symbol ‘*’
can be used.

Database partitions

So far, in discussing the ISTAR database, the impression has been given that we have a
single database comprising a collection of triples and a collection of verb/verb-inverse
pairs. This is an oversimplification of matters. What we have is zero or more databases,
each of which comprises a set of partitions. Each of these partitions is a logically distinct
object having a unique identifier within the system and with a set of declared verbs and
a set of triples. Every database consists of one or more partitions.

Thus each partition of a database has all the properties outlined above. A database
is a collection of partitions each of which may have verbs declared, triples added to
and deleted from it and queries undertaken on its contents. To a considerable degree,
then, each partition is a separate logical unit. However, there are logical groupings of
partitions, and such a grouping is termed a ‘database’. Partitions are important because
they can be updated and queried in the manner discussed above. Complete databases are
important because of the ideas of a database owner, a database identifier and a database
session, as discussed below.
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Access control

Every individual database has an owner. Each partition within a database may have a
number of users who are authorized readers and writers. Writers are permitted to both
read from and write to the partition while readers may only read from the partition. The
owner of the database may write to or read from any partition.

At the time that a database is first created the creator is established as the owner
of the database. The owner may subsequently create and delete partitions within the
database and may modify the authorized readers and writers of any partition as required.
Each partition has its own name which is unique within the context of that database.

Database sessions

Databases are accessed during well-defined sessions, where a session can be a read, a
write or an owner session. Operations are provided for session initiation and session
termination. The owner of a database may initiate any kind of session. A user who is
not the owner may initiate a write session only if that user is authorized to write to some
partition of the database, or a read session only if authorized to read from some partition.
For an individual database there may be many read sessions active at one time; however,
there may only be one owner or writer session active at one time although read sessions
may be run concurrently.

Partition access

The partitions of a database may be accessed only during a session on that database.
Write access to a partition is permitted only during a writer or owner session, and only
if the user is the database owner or an authorized writer of the partition. Read access to
a partition is permitted during any session by any user who is authorized to access the
partition. Subject to the read/write restrictions mentioned above there are no limits to
the number of partition sessions that may be initiated on a particular partition.

Creating and destroying database

At the outermost, or user level, facilities are provided for creating and destroying com-
plete individual databases. Every database has a unique identifier, this identifier being
specified by the user who creates the database.

Database query operations

The extraction of query results from the database is a two-step process. Firstly a query
operation is initiated using a query template. The use of templates has been described
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in Section 3.2. Such queries result in zero or more triples being detected that satisfy the
template. The set of triples that satisfy the query is tagged with a unique reference num-
ber, or key, which is then returned to the user. Subsequently the user may wish to extract
triples from the query set. This is done by using an extraction operation which, given an
appropriate reference number, will yield a triple from the set of triples associated with
that particular reference number.

Committing and annulling databases

There are three types of database session – read, write and owner. A read session may
be initiated by a user who has authorized read access to at least one partition within a
database. There may be any number of concurrent read sessions on a particular database
at any one time. Write sessions may similarly be initiated by a user who has authorized
write access to at least one partition within the database. Unlike read sessions there can
only be one write session on a database at any time; a write session and one or more read
sessions on a database are allowed. Owner sessions are like write sessions except that
the initiator must be the owner of the database.

Once a write or owner session is initiated, partition changes may be made as already
described. On terminating a session the database will become the most recent or com-
mitted database and will be used as a basis for all subsequently initiated sessions of any
access mode. Alternatively, if a write or owner session wishes to terminate without com-
mitting the database then an alternative annul session operation is available. During a
database session the database may be committed without closing the session; in this case
the state of the database when committed will become the latest version available for
subsequent use. Alternatively, the database may be annulled in which case the session
continues but with the last committed database.

3.3 Analysis of the requirements

The purpose of this section is to undertake an analysis of the requirements in order to get
a feel for the structure of the problem. The technique known as data analysis will be used
for this purpose. Data analysis provides a framework for examining the given require-
ments and extracting what are known as entities and the relationships that exist between
those entities. Having identified entities, their attributes and interrelationships, the oper-
ations required are tabulated and the entity relationship model examined to see if it will
support the development of the operations. How, then, does this relate to VDM? When
producing a VDM specification we are required to design a state model which captures
the essential data and data relationships of our problem. Operations are then specified
using the state model. Data analysis provides an interesting technique which provides
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useful insight in the development of the VDM state model. A thorough discussion of
data analysis techniques may be found in [How83].

We start by undertaking a simple entity/relationship analysis of the requirements. An
entity is a concept or object which has independent existence, which can be uniquely
identified and about which there is a need to record information. A relationship is an
association between two or more entities that is significant within the problem space that
is being modelled.

The analysis will be undertaken as follows:

1. Identify the important entities arising from the problem description.

2. Identify the list of operations that must be supported.

3. Draw a simple ERA diagram showing how entities are related to one another.

4. For each entity, identify potential attributes and identify any complex relationships
that have attributes. If required redraw the ERA diagram.

5. Check that the ERA diagram will support the identified operations.

Entity identification

Based on our reading of the previous section we may identify the following entities.

Database User
Database
Partition
Triple
Verb
Retrieved Triple

After some consideration a Database Session and a Partition Session are both consid-
ered to be relations that hold between aDatabase User and aDatabase, and a Database
and a Partition respectively.

Operation list

The next step in our analysis is to examine the various operations that must be sup-
ported. These are shown in Figure 3.1.1 Not all of these operations were explic-
itly included in the informal requirements. What we have done here is go through

1Abbreviations have been attached to the name of each operation and these will be used in various places
within the remaining parts of the chapter. In this case the need for such shortforms arises from page layout
problems associated with the use of the longer names.
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Entity Operation
Database User REGISTER USER (RU), DELETE USER (DU)
Database CREATE DB (CDB), DELETE DB (DDB),

START SESSION (SS), COMMIT (COM),
ANNUL (AN), END SESSION (ES),
ANNUL SESSION (ANS)

Partition CREATE PARTITION (CP),
DELETE PARTITION (DP), RENAME (RE),
COPY PARTITION (CPYP),
OPEN PARTITION (OPP),
CLOSE PARTITION (CLP),
GRANT ACCESS (GA)

Verb DECLARE VERB (DV),
UNDECLARE VERB (UV),
VERB INVERSE (VI), TEST VERB (TV)

Triple BUILD TRIPLES (BT), COUNT (CT),
SHORT COUNT (SCT),
DELETE (DLT), INSERT (INS)

Retrieved Triple GET TRIPLE (GT)

Figure 3.1 Operation/entity associations

the requirements and extract obvious operations such as INSERT , BUILD TRIPLES,
GET TRIPLE, COMMIT , CREATE DB, etc. and introduce others which seem to be
useful such as VERB INVERSE, RENAME, COUNT , etc. All these operations will have
to be specified and then discussed with the customer.

ERA diagram

We now produce an ERA diagram. An entity relationship diagram shows the relation-
ships that hold between entities. Looking at Figure 3.2, consider the entities Partition
and Verb. An instance of the entity set Verb is associated with a single Partition in-
stance; this is shown by the single-headed vector running from Verb to Partition. A
Partition instance has, optionally, many Verb instances associated with it. The one –
many relationship is shown by the double-headed arrow and the optional nature of the
relationship is shown by the ‘O’ on the relationship line nearest to the entity which is
optional in the relationship. The solid boxes represent the entities indicated above while
the dotted boxes represent two relationships that have attributes in their own right. These
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two relationships have been introduced to remove the many many relationships that exist
between Database User and Database on the one hand and Database and Partition on
the other. Howe provides a detailed discussion of this problem [How83]. The relations
between the entities should be fairly clear from the discussions in the previous section.
Relationships should all be explicitly named; however, for brevity this has not been done.

Entity attribute identification

Taking the ERA model shown in Figure 3.2 we now look at each named entity and
named relationship on the diagram and identify attributes which allow us to model them.
Firstly we consider the entities; keys are shown in a typewriter style font.

Database User. A database user has two attributes, a name and an indication of whether
he or she is an authorized database owner.

Database User(user name, can own)

Database. Recall that databases are owned by users; thus, each database will have an
owner attribute. In addition a database will have a unique name. The rules relat-
ing read, write and owner access to a database session suggest that there can be,
at least potentially, several instances of a named database. For example, there will
be the most recently committed version and, depending on session histories, there
may be different historical versions still associated with open read sessions. In ad-
dition a write or owner session will have a copy of the current database to which
updates will be allowed. This analysis suggests an instance indicator allowing
multiple versions of a particular named database. Each instance of a database rep-
resents a repeating group and therefore we need to introduce an instance entity to
which partitions associated with that instance can be linked. In addition database
instances are known to be committed or not. For instance, a write or owner ac-
cessed database session will be based on the most recently committed version of
a particular named database. While being accessed that database will not be com-
mitted. However, subsequent to the execution of a COMMIT or END SESSION
operation the database instance will become the most recently committed version.
All read access sessions will be based on the most recently committed version of a
particular named database. The introduction of the term most recently committed
suggests that there will be an ordering on the database instance indicator:

Database(db name, owner)
Db instance(db instance key, db name, committed)
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Database User

Database
Session

Database

Partition
Session

Partition

Verb Triple Retrieved
Triple

O

O

O

O

O O O

O

Figure 3.2 ISTAR database – entity relationship model
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Partition. Partitions are associated with an instance of a named database. A partition
therefore has a name and a reference to the database instance to which it is asso-
ciated. In addition, partitions have associated authorized readers and writers. We
may be tempted to include authorized readers and writers as attributes of a parti-
tion. However, note that authorized readers and writers are optionally associated
with a partition, that is, a partition may have no such users or a number of them.
For this reason we will include them as derived entities. Lastly, for each partition,
there is the possibility that several instances may exist associated with different
read and write sessions. For example, a write session on a partion creates a new
instance of that partition. When the partition is closed it may be reopened by a
subsequent read session. That partition instance will remain until the database is
closed or the partition is closed. Each write access partition that is closed may be
picked up by a read session and thus several instances may coexist:

Partition(p name, db instance key)
P instance(p instance key, p name)
Readers(user name, p instance key)
Writers(user name, p instance key)

Verb. A verb is identified by its verbname but is also associated with its inverse. This
gives the following structure:

Verb(verb name, p instance key, verb name)

Triple. A triple comprises a subject and object together with a link to the associated
verb that makes up the relationship:

Triple(subject, object, p instance key, verb name)

Retrieved Triple. A retrieved triple associates a key with one or more triples resulting
from a template query. The associated triples are extracted from the entity set
‘triple’ but they may be changed to the extent that any of the fields may contain
the ‘*’ symbol. We will therefore identify an attribute called r triple to model this
situation:

Retrieved Triple(key, p instance key, r triple)

Two relationships are identified on the ERA diagram which have attributes. These
are Database Session and Partition Session. These relationships were put in to resolve
the two potential many to many relationships that appear between Database Users and
Databases and between Databases and Partitions. These two relationships are mod-
elled as follows.
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Database Session(db session key, db instance key, db mode)
Partition Session(p session key, p instance key, p mode)

In the light of this analysis we can redraw the entity relation diagram showing the newly
identified entities and relationships – this is shown in Figure 3.3. In addition we need to
reassign operations to entities as shown in Figure 3.4

Relating operations, attributes and relationships

The last stage of our analysis aims to check that the entity/attribute tables identified in
the previous section are capable of supporting the operations identified in Section 3.3. To
do this we cross-tabulate entity attributes with the operations and, where each operation
requires access to an entity, indicate whether the access is a Read (r), Update (u), Store
(s) or Delete (d) access. An example of this form of tabulation is given in Figures 3.5.
The analysis should be carried out for all attributes and all operations. Some operations
contain a number of different access keys representing complex conditions that can arise
when that operation is used. For instance, the COMMIT operation requires the following
accesses:

1. Database Session to check that the mode is write or owner.

2. Db Instance, Db Session, Partition, P Instance, Partition Session to make a
copy of the database instance, i.e. create a new instance of the current state for the
purposes of continuing the session.

3. Db Instance of the committed instance to change the attribute committed to the
committed state.

4. Database Session, Partition Session to close any sessions within the committed
instance of the database.

Note that the entity Database Session is now referring to the newly created database
instance which is effectively a copy of the state at the time the COMMIT operation was
issued.

This form of analysis should also be carried out to check that the modelled relations
are capable of supporting the operations. Once again refer to Howe [How83] for a full
discussion.

3.4 A specification of the ISTAR database system

In Section 3.3 we examined the database requirements using the entity relationship anal-
ysis technique. This yielded a number of entities and associated attributes together with
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Figure 3.3 ISTAR database – entity relationship model
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Entity Operation
Database User REGISTER USER (RU), DELETE USER (DU)
Database Instance COMMIT (COM), ANNUL (AN),

END SESSION (ES),START SESSION (SS),
ANNUL SESSION (AS)

Database CREATE DB (CDB), DELETE DB (DDB),
Partition Instance OPEN PARTITION (OPP),

CLOSE PARTITION (CLP)
Partition CREATE PARTITION (CP),

DELETE PARTITION (DP), RENAME (RE),
COPY PARTITION (CPYP)

Readers, Writers GRANT ACCESS (GA)
Verb DECLARE VERB (DV),

UNDECLARE VERB (UV),
VERB INVERSE (VI), TEST VERB (TV)

Triple BUILD TRIPLES (BT), COUNT (CT),
SHORT COUNT (SCT),
DELETE (DLT), INSERT (INS)

Retrieved Triple GET TRIPLE (GT)

Figure 3.4 Revised operation/entity association

a list of operations. We now wish to use that analysis as a guide in producing a formal
specification of the database problem. Essentially we will examine the set of entities
and identify several abstract data types each of which will have a state and associated
operations. The states models will be derived from the entity relationship analysis al-
ready undertaken and operations will be associated with an appropriate data type. The
operations will then be specified using the data type state model. As we will end up
with a hierarchy of data types we will have to deal with the problem of migrating the
operations associated with basic data types through the specification hierarchy.

If we look at Figure 3.3 we see the need to model the entity sets Database User,
Database and the relationship Database Session. This latter relationship captures the
concept of a database session where a specific instance of a named database is linked to
a session key and mode. A database may be associated with many read mode sessions
but only one write or owner session. Thus, a particular named database may have several
instances associated with different session keys. Remember a write session may result in
several COMMIT operations leading to instances of the database which could be picked
up by newly initiated read sessions. With this in mind we will produce a specification
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Entity Attribute Operations
CDB DDB SS COM AN ES AS

Database user nm r r
User can own r r r
Database db name r,s r,d r r d r d

owner s r,d r d d
Database db instance key s d s d d
Instance db name s d s d d

committed s d s,u d u d
Database db session key r s r,d r r,d r,d
Session db instance key r s r,s,d u r,d r,d

db mode r s r,s,d r r,d r,d
Partition p name d s d d

db instance key d s d d
Partition p instance key d s d d
Instance p name d s d d
Partition p session key s,d d d d
Session p instance key s,d d d d

p mode s,d d d d

Key Access definition
d Delete
r Read
s Store
u Update

Figure 3.5 Operation – attribute tabulation
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of a data type called Dbms which will capture the User and Database Instance entity
sets as well as the Database Session relationship. The second data type that will be
modelled will be called Database and will capture the entity set Partition Instance as
well as the relationship Partition Session. Lastly, the data type Partition will capture
the entity sets Triple, Verb and Retrieved Triple. These entities and their associated
relationships will be modelled using the basic VDM data types of sets, functions and
cross-products or records.

We need to consider operations for a moment. As mentioned above we will introduce
three data type specifications – Partition, Database and Dbms. The operations associ-
ated with these three data types follow more or less from Figure 3.4. However, there are
some minor differences. The operations CREATE PARTITION, DELETE PARTITION,
CREATE DATABASE and DELETE DATABASE all have the effect of creating or de-
stroying an instance of, respectively, type Partition and Database. Instances of type
Partition will be held in a Database state and, similarly, instances if type Database will
be held in the Dbms state. Thus, CREATE PARTITION will alter a Database state. Con-
sidering CREATE PARTITION, we see there are two effects. Firstly an instance of type
Partition is generated and secondly the instance is associated with aDatabase state. Data
type instances are dealt with by an initialization operation or assertion on the initial state
of the data type – for this we will use an INIT operation. The creation and deletion oper-
ations will therefore be associated with the data type whose state is changed as a result
of generating an instance of a data type object. To this end CREATE PARTITION will
be associated with the data type Database and similarly with the remaining operations.
The operations RENAME and COPY PARTITION offer similar difficulties. RENAME
requires that the new name is not associated with any partition in a database. Only
the Database data type has access to partition names within it thus this operation must
be a Database operation. However, we will require a CHANGE NAME operation on
the Partition data type. Similarly, COPY PARTITION requires a new instance of type
Partition to be created and once again has name restrictions associated with it. This
operation will also be associated with the Database data type.

With these observations in mind we now embark on the specification of the Partition,
Database and Dbms data types.

3.5 The Partition data type

The first task is to address the development of the state model. The heart of the system
is the Partition instance. Such an instance may be modelled as follows

p name. The name of the partition.

verbs and inverses. This models the verb/verb inverse pairs that are held in the partition.
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For each verb entry we record a maplet between the verb and its inverse and the
inverse and its verb.

data. Here we model triples within a partition as a set of type Triple where a triple is
modelled as a cross-product of type (subject, verb, object).

retrieved triples. The BUILD TRIPLE operation yields a set of triples that match a
given template. For each query the resulting set of triples is indexed by a unique
query key. The GET TRIPLE operation will access this state component when
extracting the results for a particular query key.

readers. Authorized users who may read from the partition.

writers. Authorized users who may write to the partition.

Something should be said about the attribute p instance key which is clearly not explic-
itly modelled. The key was used to identify specific partition instances and an ordering
was required on that key to determine the latest instance of a partition. Each instance
of a Partition will be managed in the Database specification and as will be seen there
is no need to include such a key either to distinguish the latest partition instance or to
distinguish one partition from another. For this reason the key is not modelled.

Briefly, some of the type definitions are:

Template. ATemplate has the same form as a triple but allows any of the fields to contain
symbols of type Match symbol.

D template. A template used by the DELETE operation. The type only allows the ‘?’
special symbol and precludes ‘*’.

R triple. Partition enquiries can result in triples being returned with the special symbol
‘*’ appearing in some fields. This type allows for results of this form.

Get triple result. Used to return information from the GET TRIPLE operation.

Query key. The BUILD TRIPLE operation constructs query sets which are indexed by
instances if this type.

Pr types. A union type which brings together the types of the results produced by par-
tition operations.

Match symbol. This type models the special symbols ‘*’ and ‘?’ which are, in turn,
represented by members of type Star and Question mark respectively.
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The full state specification is now presented:

Partition :: p name : P name
verbs and inverses : Verbmap
data : Tripleset
retrieved triples : Query key m R triple-set
readers : User-set
writers : User-set

inv mk-Partition nm v-and-i d rt r w
tr d
let mk-Triple subject verb object tr in
mk-Triple object v and i verb subject d
verb dom v and i

Having defined the state careful consideration should be given to identifying any
data type invariants applicable to the state as a whole or to any of the types used within
the state definition. The invariant on the state asserts that for any (subject, verb, object)
relationship within a partition the inverse verb relationship should also be in the partition.
The following invariant might be considered to hold:

rng rt d

However, on reflection it seems unreasonable that triples can not be deleted from the
database if they exist explicitly in a query set.

Verbmap Verbname m Verbname
inv vm vn dom vm vn vm vm vn

vn vm vn dom vm rng vm

The type Verbmap requires an invariant restricting the map to be well formed with re-
spect to verbs and their inverses, that is, the inverse of each verb is the verb itself and the
name of the inverse verb should not be the same as the verb itself. The remaining type
definitions are given below.

Tripleset Triple-set

Triple :: subject : Text
verb : Verbname
object : Text

Template :: subject : Text Match symbol
verb : Verbname Match symbol
object : Text Match symbol
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R triple Template
inv mk-R triple s v o

s o Text Star v Verbname Star

D template Template
inv mk-D template s v o

s o Text Question mark v Verbname Question mark

Match symbol Question mark Star

Question mark is not yet defined

Star is not yet defined

P access READ WRITE

Get triple result :: tr : R-triple
more :

Yes no OK FAILED

Verbname Text

Pr types Yes no Get triple result Query key Verbname

Query key P name is not yet defined

We now turn to the specification of some auxiliary functions that are used in the
specification of other data types. As presented here it appears that these functions are
divined before the operations are specified or the other specifications are developed.
However, it should be clear that these functions were extracted as the specification was
developed and are presented here, together, for convenience.2

triplematch :Template Tripleset Verbmap R triple-set
triplematch tem data v and i res

2The definitions given below deliberately employ several different styles, even though this is not really
warranted for the present specification, purely for the purposes of illustration.
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post let mk-Template s v o tem in
v dom v and i v Match symbol res

v dom v and i v Match symbol
res mk-R triple sr vr or mk-Triple su vb ob data

s Question mark sr su s Star sr Star
s Text sr su su s

v Question mark vr vb v Star vr Star
v Text vr vb vb v

o Question mark or ob o Star or Star
o Text or ob ob o

The triplematch function takes a template, a set of triples and the verb inverse map
and returns the set of all triples that match the template. This formulation of triplematch
looks overly complicated and a simplification may be achieved as follows:

simple match :Template Tripleset Tripleset
simple match tem data let mk-Template s v o tem in

mk-Triple su vb ob mk-Triple su vb ob data
su s s Match symbol
vb v v Match symbol
ob o o Match symbol

star match :Template Tripleset R triple-set
star match tem data let mk-Template s v o tem in

mk-R triple su vb ob mk-Triple subject verb object data
su Star s Star su subject s Star
vb Star v Star vb verb v Star
ob Star o Star ob object o Star

With these two subsidiary functions we can now respecify triplematch as follows:

triplematch :Template Tripleset Verbmap R triple-set
triplematch tem data v and i res



3.5 The Partition data type 69

post let mk-Template s v o tem in
v dom v and i v Match symbol res

v dom v and i v Match symbol
res star match tem simple match tem data

The following additional functions are required:

p name is :Partition P name
p name is state p name state

The p name is function is used to return the name of the partition.

p authorized :Partition User P access
p authorized state "user access

access READ user readers state
access WRITE user writers state

Depending on the setting of the access parameter the p authorized function returns true
if the indicated user is in the set of authorized readers or writers.

p change name :Partition P name Partition
p change name state name µ state p name name

There is a need to change the name of a partition. This function accepts an argument of
type Partition and a name and returns the partition state with the name changed.3

We can now address the specification of the operations identified earlier in Section
3.3. For this specification exception conditions have been stated in the post condition
of each operation. No use has been made of the special syntax available for specifying
exceptions. This notation will be employed when we consider the specification of the
data type Database in Section 3.6. A brief commentry on each operation follows the
specification.

BT tem:Template result:Query key
ext wr retrieved triples : Query key m R triple-set
rd data : Tripleset
rd verbs and inverses : Verbmap

post let queryset triplematch tem data verbs and inverses in
result dom retrieved triples
retrieved triples retrieved triples result queryset

3The functions p name is and p authorized have been specified using lambda notation; p change name
uses currying. Both of these forms are described in Appendix A.



70 3 The ISTAR Database

The BUILD TRIPLE operation takes a template and constructs the set of triples that
satisfy the query template. The set of retrieved triples is inserted into the retrieved
triples map using a unique key, that is one that has not already been allocated, and the
key is returned as an output from the operation.

CT tem:Template result:
ext rd data : Tripleset
rd verbs and inverses : Verbmap

post result card triplematch tem data verbs and inverses

This simple operation takes a template as argument and returns a count of the number or
triples within the partition that match the template as discussed in Section 3.2.

DV fv:Verbname iv:Verbname result:Yes no
ext wr verbs and inverses : Verbmap
post fv dom verbs and inverses iv domverbs and inverses

fv iv verbs and inverses verbs and inverses
fv iv iv fv

result OK

fv dom verbs and inverses iv domverbs and inverses
fv iv verbs and inverses verbs and inverses
result FAILED

Verbs and their inverses must be entered into a partition. The DECLARE VERB opera-
tion performs that task. Clearly the forward verb and the inverse verb should not have
already been defined and they should not be identical to one another. Given this con-
dition the verb/inverse pair will be entered into verbs and inverses and a satisfactory
response returned. If this is not the case then a failed response is returned.

DLT tem:D template result:Yes no
ext rd verbs and inverses : Verbmap
wr data : Tripleset
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post let mk-D template s v o tem in
let valid verb v dom verbs and inverses v Question mark in
let match all v Question mark in
cases valid verb of
true match all

let fs triplematch tem data verbs and inverses in
let r tem mk-Template s v o in
let is triplematch r tem data verbs and inverses in
data data fs is result OK

match all
let fs triplematch tem data verbs and inverses in
let r tem mk-Template o verbs and inverses v s in
let is triplematch r tem data verbs and inverses in
data data fs is result OK

others data data result FAILED
end

How do we remove triples from a partition? The DELETE operation is provided to
perform this task. Given a template (not containing the star symbol), all those triples
which match the template (forward and inverse relations included) are taken out of the
partition. An exception is raised when the verb provided within the template is neither
of type Question mark nor a verb within verbs and inverses.

GT key:Query key result:Get triple result
ext wr retrieved triples : Query key m R triple-set



72 3 The ISTAR Database

post key dom retrieved triples
retrieved triples key
let triple retrieved triples key in
let newset retrieved triples key -triple in
let more newset in
retrieved triples retrieved triples † key newset
result mk-Get triple result triple more

retrieved triples key
retrieved triples key retrieved triples
result mk-Get triple result NIL FALSE

key dom retrieved triples
retrieved triples retrieved triples
result mk-Get triple result NIL FALSE

Recall the partition query mechanism described in Section 3.2. BUILD TRIPLE is used
to create an indexed set of triples satisfying a query template. Extracting elements from
this query set is accomplished by the GET TRIPLE operation. Given an argument of
type Query key the operation returns a record containing an arbitrary element from the
query set and a boolean indicator stating whether there are further triples to be retrieved.
A final call of the operation when the query set is empty causes the query set to be
removed entirely.

GA u:User access:P access
ext wr readers : User-set
wr writers : User-set

post access READ
readers readers u writers writers

access WRITE

writers writers u readers readers

This operation GRANT ACCESS alters the read or write access authority as indicated.

INIT nm:P name
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ext wr p name : P name
wr verbs and inverses : Verbmap
wr data : Tripleset
wr retrieved triples : Query key m R triple-set
wr readers : User-set
wr writers : User-set

post p name nm verbs and inverses
data retrieved triples
readers writers

The initialization of a data type is an important specification consideration. When a data
type is instantiated, i.e. when a new instance of the type is first created, the initializa-
tion operation must be employed. The initialization operation establishes the data type
invariant on the initial state of the data type.

INS tr:Triple result:Yes no
ext rd verbs and inverses : Verbmap
wr data : Tripleset

post let mk-Triple s v o tr in
v dom verbs and inverses
data data tr mk-Triple o verbs and inverses v s
result OK

v dom verbs and inverses
data data result FAILED

We have already seen the DELETE operation that removes triples from a partition. The
INSERT operation inserts triples into a partition. A triple is provided as input to the
operation. If the verb is valid then the triple and its inverse are placed in data. Note, if
the triple is already present in the database then no indication to this effect is given. If
the verb is invalid, that is not in verbs and inverses, then a failure is signalled.

PCL
ext wr retrieved triples : Query key m R triple-set
post retrieved triples

The PARTITION CLEAR operation produces a partition without any outstanding triple
queries.

SCT tem:Template result:
ext rd verbs and inverses : Verbmap
rd data : Tripleset
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post let count card triplematch tem data verbs and inverses in
count 1 result count
count 1 result 1

SHORT COUNT returns zero or one if there are zero or one template matches. If there
is more than one match then an arbitrary natural number, but not zero or one, is returned.
Note that the result type constrains the response to being of type natural number; apart
from zero or one the specific value is not determined.

TV fv:Verbname iv:Verbname result:
ext rd verbs and inverses : Verbmap
post result fv dom verbs and inverses

verbs and inverses fv iv

Given two verbs the TEST VERB operation returns true if the verbs have been declared
and are the inverse of one another.

UV fv:Verbname iv:Verbname result:Yes no
ext wr verbs and inverses : Verbmap
rd data : Tripleset

post let wf -verb
fv dom verbs and inverses verbs and inverses fv iv in

let not-in-db
trip data verb trip fv verb trip iv in

let undeclare wf -verb not-in-db in
undeclare
verbs and inverses fv iv verbs and inverses
result OK

undeclare
verbs and inverses verbs and inverses result FAILED

The UNDECLARE VERB operation removes a verb and its inverse from the partition.
Two conditions must be fulfilled. Firstly, the verb and verb inverse must be well-formed
and, secondly, neither the verb nor its inverse should appear in a triple within the parti-
tion.

VI v:Verbname result:Verbname Yes no
ext rd verbs and inverses : Verbmap
post v dom verbs and inverses result verbs and inverses v

v dom verbs and inverses result FAILED

This operation, given a declared verb, will return its inverse.
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The bulk of the specification for this data type is now complete. However, there
are two further issues that require addressing. The first relates to the use of Partition
operations on instances of this type and the second concerns the visibility of names
outside of the specification.

Recall for a moment how partitions are used. Firstly a user will create a database
and then initiate a database session. Subsequently a partition will be created and opened
resulting in a partition session. Operations such as INSERT and DECLARE VERB will
then be available for use within the context of a particular database and partition ses-
sion. Clearly, we do not want to explicitly specify analogs of these operations in both
the Database and Dbms specifications. Rather we seek to provide an abstract syntax
description of these operations which can then be used within these other specifications
appropriately linked to partition and session keys. How do we provide such an abstract
syntax? Consider the DECLARE VERB operation. This has two arguments representing
the forward and inverse verbs. The operation signature can be described as a record type
with two fields, thus:

Dv :: forward verb : Verbname
inverse verb : Verbname

The SCT operation signature may be described as follows:

Sct :: template : Template

How these abstract syntax representations will be used is described in Section 3.6.
Accepting this mode of description we need to add the following definitions to our col-
lection of types:

Partition ops Bt Ct Dv Dlt Gt Ga Ins Sct Tv Uv Vi

Abstract syntax representations for all these operations may easily be generated as
indicated above.

The final issue remaining is that of name space management. Name visibility is
controlled through the use of an interface specification which states what names are to be
exported (made visible) outside of the specification and what names are to be imported
into the specification i.e. made visible for use within the specification. Import and
export clauses are provided within the interface specification to capture this information.
Figure 3.6 shows the interface specification for the Partition data type.

3.6 The Database data type

In this specification we aim to model the type Database. Guided by the discussion in
Section 3.3, we construct the state as follows:
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module Partition
exports
operations
BT: Template o Query key
CT:Template o

DV:Verbname Verbname o Yes no
DLT:D template o Yes no
GT:Query key o Get triple result
GA:User P access o

INIT:P name o

INS:Triple o Yes no
PCL: o

SCT:Template o

TV:Verbname Verbname o

UV:Verbname Verbname o Yes no
VI:Verbname o Verbname Yes no

functions
p name is:Partition P name
p authorized:Partition User P access
p change name:Partition P name Partition

types
Pr types Yes no Get triple result Query key Verbname
P access P name Template D template Triple R triple
Partition ops Bt Ct Dv Dlt Gt Ga Ins Sct Tv Uv Vi

imports from Dbms
types
User

end

Figure 3.6 Interface specification for the Partition data type
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db name. The name of the database.

owner. The user who owns the database.

partitions. This state element models the set of created partitions. The names of the cre-
ated partitions should be unique and the set will always contain the most recently
commited partition instance.

p sessions. This map models partition sessions. Associated with each partition is a par-
tition key. The range of this map will feature partitions drawn from partitions
when the session was initiated by an OPEN PARTITION operation.

p modes. Once again, associated with each partition session, is a mode indicator which
will be either READ or WRITE.

Database :: name : Db name
owner : User
partitions : Partition-set
p sessions : P key m Partition
p modes : P key m P mode

inv mk-Database n o p ps pm
let write sessions k k dom pm pm pk WRITE in
i j write sessions

i j p name is ps i p name is ps j
let part names p name is entry entry p in
let session p names p name is entry entry rng ps in
session p names part names
i j p p name is i p name is j i j

dom ps dom pm

The data type invariant states that:

1. No partition is associated with more than one WRITE session.

2. The names of partitions associated with sessions are a subset of the names of
currently created partitions.

3. The names of created partitions are unique.

4. p sessions and p modes have the same domain set of keys.

The remaining type definitions are:

P mode READ WRITE
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Dbr types Yes no P key

Db name P key is not yet defined

close partitions :P key-set P key m Partition
P key m P mode Partition-set Partition-set

close partitions pks p ses p mod pre part post part
let updated partitions

pt pt Partition p pks p mod p WRITE
post-PCL p ses p pt in

let old partitions
pt pt pre part p pks p mod p WRITE

p name is pt p name is p ses p in
post part pre part old partitions updated partitions

The function close partition asserts that all write sessions in the paramaterized set of
session keys are properly closed and that partitions will be updated to contain these
latest instances.

db owner :Database User
db owner state "user owner state user

This function returns true if the user is the owner of the database.

db authorized :Database User P mode
db authorized state

"user mode let mk-Database - - partitions - - state in
entry partitions p authorized entry user mode

db authorized returns true if the database allows the user access of the indicated mode.
Note the use of VDM’s ‘don’t care’ entries in the let construct where the record of type
Database is constructed. The ‘-’ entries indicate that we are not interested in these fields
and are therefore willing to accept any value constrained only by type and invariant.

db name is :Database Db name
db name is state name state

We now turn to the specification of the operations. As a contrast to the specification
of Partition, exceptions will be specified using the notational extensions described in
Chapter 9 of [Jon90]. Where exceptions are specified it is assumed that the state is
not changed and assertions are made only to specify the result conditions. Additionally,
exceptions have been specified to return FAILED in all cases; this is clearly unreasonable
but suffices for the purpose of this exercise.
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CLAP
ext wr partitions : Partition-set
wr p sessions : P key m Partition
wr p modes : P key m P mode

post let p keys dom p sessions in
close partitions p keys p sessions p modes partitions partitions

p sessions p modes

CLP pk:P key result:Yes no
ext wr partitions : Partition-set
wr p sessions : P key m Partition
wr p modes : P key m P mode

pre pk dom p sessions
post close partitions pk p sessions p modes partitions partitions

p sessions pk p sessions p modes pk p modes
result OK

errs INVALID SESSION:pk dom p sessions result FAILED

The requirements for the CLOSE ALL PARTITIONS operation arose during the spec-
ification of Dbms. When a database is committed, for instance, it is required that all
partitions be properly closed. The second operation is similar but is specific to a single
partition. The first operation is not provided to users of the database system while the
second is.

CPYP from:P name to:P name result:Yes no
ext wr partitions : Partition-set
rd p sessions : P key m Partition

pre entry from partitions p name is entry from from
entry to partitions p name is entry to to
entry rng p sessions p name is entry from

post entry partitions
p name is entry from
partitions partitions p change name entry to
result OK
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errs NO SOURCE: entry from partitions
p name is entry from from result FAILED

TO EXISTS: entry to partitions
p name is entry to to result FAILED

SESSION: entry rng p sessions
p name is entry from result FAILED

This operation duplicates a partition and renames it. The operation requires that the from
partition exists, that there is no extant session on this partition and that no database exists
with the same name as to.

CP nm:P name result:Yes no
ext wr partitions : Partition-set
pre p partitions p name is p nm
post p Partition Partition post-INIT nm - p

partitions partitions p result OK
errs EXISTS: p partitions

p name is p nm result FAILED

DP nm:P name result:Yes no
ext wr partitions : Partition-set
rd p sessions : P key m Partition

pre entry partitions p name is entry nm
entry rng p sessions p name is entry nm

post entry partitions
p name is entry nm
partitions partitions entry result OK

errs NOT EXIST: entry partitions
p name is entry nm result FAILED

SESSION: entry rng p sessions
p name is entry nm result FAILED

These two operations create and delete partitions. The specifications should be fairly
self-evident. Note the need to distinguish that the INIT operation is that operation asso-
ciated with the type Partition.

INIT u:User nm:Db name
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ext wr name : Db name
wr owner : User
wr partitions : Partition-set
wr p sessions : P key m Partition
wr p modes : P key m P mode

post name nm owner u partitions
p sessions p modes

INIT establishes the data type invariant for initial instances of the data type.

OPP u:User nm:P name
mode:P mode result:P key Yes no

ext rd owner : User
rd partitions : Partition-set
wr p sessions : P key m Partition
wr p modes : P key m P mode

pre entry partitions
p name is entry nm
let authorized reader p authorized entry u READ in
let authorized writer p authorized entry u WRITE in
let valid owner u owner in
let no write sessions

pk dom p sessions
p name is p sessions pk nm

p modes pk WRITE
in

mode WRITE
valid owner authorized writer no write sessions

mode READ
valid owner authorized reader authorized writer

post entry partitions p name is entry nm
let key domp sessions in
p sessions p sessions † key entry
p modes p modes † key mode result OK



82 3 The ISTAR Database

errs INVALID NAME: entry partitions
p name is entry nm result FAILED

NOT AUTHORIZED:
let authorized reader p authorized entry u READ in
let authorized writer p authorized entry u WRITE in
let valid owner u owner in
mode WRITE
authorized writer valid owner
mode READ
valid owner authorized reader authorized writer

result FAILED
SESSION:mode WRITE
pk dom p sessions

p name is p sessions pk nm p modes pk WRITE
result FAILED

Partition sessions are established by the OPEN PARTITION operation. A session may
only be established for a partition if the named partition exists and is owned by the nom-
inated user or the user has access of the appropriate mode. Further, for write sessions,
there should be no other write session associated with that partition.

RE present name:P name new name:P name result:Yes no
ext wr partitions : Partition-set
rd p sessions : P key m Partition

pre entry partitions p name is entry present name
entry rng p sessions p name is entry present name
entry partitions p name is entry new name

post entry partitions p name is entry present name
partitions partitions entry p change name entry new name
result OK

errs NO DB: entry partitions
p name is entry present name result FAILED

SESSION: entry rng p sessions
p name is entry present name result FAILED

NAME EXISTS: entry partitions
p name is entry new name result FAILED

The RENAME operation renames an existing partition. The partition must not be in-
volved in a session and the new name must be unique.

POPS pk:P key op:Partition ops result:Pr types
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ext wr p sessions : P key m Partition
rd p modes : P key m P mode

pre pk dom p sessions op Dv op Dlt op Ins op Uv
p modes pk WRITE

post let pre-st p sessions pk in
post-st Partition
cases op of
mk-Bt t post-BT t pre-st post-st result
mk-Ct t post-CT t pre-st post-st result
mk-Dv fv iv post-DV fv iv pre-st post-st result
mk-Dlt dt post-DLT dt pre-st post-st result
mk-Gt qk post-GT qk pre-st post-st result
mk-Ga u a post-GA u a pre-st post-st result
mk-Ins t post-INS t pre-st post-st result
mk-Sct t post-SCT t pre-st post-st result
mk-Tv fv iv post-TV fv iv pre-st post-st result
mk-Uv fv iv post-UV fv iv pre-st post-st result
mk-Vi v post-VI v pre-st post-st result
end

p sessions p sessions † pk post-st

errs INVALID KEY:pk dom p sessions result FAILED
NOT WRITE: op Dv op Dlt op Ins op Uv

p modes pk WRITE result FAILED

PARTITION OPERATIONS specifies how partition operations are to be handled by the
Database data type. Remember that partition operations only have meaning in the pres-
ence of a database instance. This operation reveals that all partition operations require
a partition key which associates the partition operations with a particular partition in-
stance. In addition, some of the operations can only be used within a write session.

When we specified Partition, abstract syntax representations for the various user op-
erations were produced and exported through the interface specification. Those abstract
syntax representations are used here. PARTITION OPERATIONS accepts an argument
of type Partition ops and one of type P key. All operations of type Partition ops are
specific to a particular partition and thus require a partition key as argument. In the
post condition the individual operations are identified through their abstract syntax rep-
resentation and each, individually, results in a specific Partition operation being quoted.
Quotation is fully described in [Jon90].

Lastly, before defining the interface specification, we need to generate the abstract
syntax for the Database operations. The types we require are defined as follows:

Database ops Clp Cpyp Cp Dp Opp Re
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Finally, the interface specification is shown in Figure 3.7.

module Database
exports
operations
CLAP: o

CLP:P key o Yes no
CPYP:P name P name o Yes no
CP:P name o Yes no
DP:P name o Yes no
INIT:User Db name o

OPP:User P name P-mode o P key Yes no
RE:P name P name o Yes no
POPS:P key Partition ops o Pr types

functions
db name is:Database Db name
db authorized:Database User P mode
db owner:Database User

types
Database ops Clp Cpyp Cp Dp Re Opp
Dbr types Db name P mode P key
Partition ops Bt Ct Dv Dlv Gt Ga Ins Sct Tv Uv Vi
Pr types Yes no Get triple result Query key Verbname
R triple P name P access D template Template Triple

imports from Partition all
imports from Dbms
types

User
end

Figure 3.7 Interface specification for the Database data type

3.7 The Dbms data type

Repeating the specification pattern followed when defining the previous two data types
we firstly produce the state model.
db users. Here we model the entity set Database user and, by using a map, associate
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each user with a boolean value indicating whether he or she is allowed (true) or
is not allowed (false) to own a database. This is an important distinction. Only
owners of databases may create them or write to them.

databases. The set of most recently created and committed databases.

db sessions. A map from database session key to an associated database instance.

db modes. Each session key is mapped to the session mode (read, write or owner).

The state outlined above follows almost directly from the entity/relationship analysis
carried out in Section 3.3.

Dbms :: db users : User m

databases : Database-set
db sessions : Sk m Database
db modes : Sk m Db mode

inv mk-Dbms du db dbs dbm
let write sessions k k dom dbm

dbm k WRITE dbm k OWNER in
i j write sessions i j

db name is dbs i db name is dbs j
let db names db name is entry entry db in
let session db names db name is entry entry rng dbs in
session db names db names
i j db db name is i db name is j i j

dom dbs dom dbm
i db j dom du db owner i j du j

The data type invariant follows that developed for the data type Database with the
addition of the final condition which states that all databases must have an owner who is
a legitimate database owner, that is, no database can be owned by an unregistered user.

Associated types are now defined.

Db mode READ WRITE OWNER

User Sk is not yet defined

In the operation specifications that follow no exception conditions are specified. Pre
conditions record the assumptions made by each of the operations.
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commit db :Sk Database-set Database-set Sk m Database
commit db sk old dbs new dbs db sessions

let dbname db name is db sessions sk in
clean db Database

post-CLAP db sessions sk clean-db
entry old dbs

db name is entry dbname
new dbs old dbs entry clean db

The commit db function commits the database referenced by the session key. All par-
titions are closed and the database instance noted as the most recently committed by
placing it in databases.

AN sk:Sk
ext rd databases : Database-set
wr db sessions : Sk m Database
rd db modes : Sk m Db mode

pre sk dom db sessions
db modes sk WRITE db modes sk OWNER

post let dbname db name is db sessions sk in
entry databases

db name is entry dbname
db sessions db sessions † sk entry

The ANNUL operation causes a database session to be annulled. The session key must
be valid and the session must be a write or owner session. Note that the existing session
key is unchanged but becomes associated with the most recently committed database.
As the database has a current write or owner session associated with it we can safely
pick up the last committed version because no other write or owner session will have
been allowed.

ANS sk:Sk
ext wr db sessions : Sk m Database
wr db modes : Sk m Db mode

pre sk dom db sessions
db modes sk WRITE db modes sk OWNER

post db sessions sk db sessions
db modes sk db modes

This operation, ANNUL SESSION, annuls a session removing both the session key and
the associated database instance.
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COM sk:Sk
ext wr databases : Database-set
rd db sessions : Sk m Database
rd db modes : Sk m Db mode

pre sk dom db sessions
db modes sk WRITE db modes sk OWNER

post commit db sk databases databases db sessions

The COMMIT operation causes the current read or owner session database to be com-
mitted. A copy of a ‘tidy’ version of the database is made and is stored as the most
recently committed instance of the database. The session then continues.

CDB u:User nm:Db name
ext rd db users : User m

wr databases : Database-set
pre u dom db users db users u

entry databases db name is entry nm
post entry Database

Database post-INIT u nm - entry databases databases entry

DDB u:User nm:Db name
ext rd db users : User m

wr databases : Database-set
rd db sessions : Sk m Database

pre u dom db users db users u
entry databases
db name is entry nm db owner entry u

entry rng db sessions db name is entry nm
post entry databases db name is entry nm

databases databases- entry

The two operations specified above create and delete databases. In the first instance no
database must exist with the indicated name and in the second case a named instance
of the database must exist and no sessions should be associated with an instance of that
database. A database may only be created by a user who is authorized to own databases,
while a database may only be deleted by its owner.

ES sk:Sk
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ext wr databases : Database-set
wr db sessions : Sk m Database
wr db modes : Sk m Db mode

pre sk dom db sessions
post db modes sk WRITE db modes sk OWNER

commit db sk databases databases db sessions

db modes sk READ databases databases

db sessions sk db sessions db modes sk db modes

The END SESSION operation terminates a read, write or owner session. In the case of
owner or write databases the associated database instance is tidied and made the most
recently committed version of that database by replacing the previous version.

SS u:User nm:Db name mode:Db mode key:Sk
ext rd db users : user m

rd databases : Database-set
wr db sessions : Sk m Database
wr db modes : Sk m Db mode

pre entry databases
db name is entry nm
let authorized reader db authorized entry u READ in
let authorized writer db authorized entry u WRITE in
let valid owner db owner entry u in
let s keys sk sk dom db sessions

db name is db sessions sk nm in
let no write owner session

k s keys
db modes k WRITE db modes k OWNER in

mode OWNER valid owner no write owner session

mode WRITE
authorized writer valid owner no write owner session

mode READ
authorized reader authorized writer valid owner
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post let key dom db sessions in
entry databases

db name is entry nm
db sessions db sessions † key entry

db modes db modes † key mode

Sessions may be started when the following conditions, asserted in the pre condition,
hold:

1. The named database exists.

2. If the session mode indicates an owner session then the database must be owned
by the indicated user and there must not be an existing owner or write session on
that database.

3. If the session mode is write then the user must be authorized to write to a partition
in the database or the user must be the owner and must still be allowed to own
a database. Further, no write or owner sessions should be associated with that
database.

4. If the session is a read session then the user must be allowed read access to at least
one partition in the database or the user must be the owner of the database and still
be registered as a database owner.

DBOPS sk:Sk pk: P key
op:Partition ops Database ops res:Dbr types Pr types

ext rd db users : User m

wr db sessions : Sk m Database
rd db modes : Sk m Db mode

pre sk dom db sessions
op Cpyp op Cp op Dp op Re op Ga

db modes sk OWNER
op Partition ops pk NIL
op Ga let mk-Ga u - op in
u dom db users
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post let pre-st db sessions sk in
post-st Partition
cases op of
mk-Clp pk post-CLP pk pre-st post-st res
mk-Cpyp f t post-CPYP f t pre-st post-st res
mk-Cp nm post-CP nm pre-st post-st res
mk-Dp nm post-DP nm pre-st post-st res
mk-Opp u nm md post-OPP u nm md pre-st post-st res
mk-Re on nn post-RE on nn pre-st post-st res
others post-POPS pk op pre-st post-st res
end

db sessions db sessions † sk post-st

The interface specification for Dbms is given in Figure 3.8

module Dbms
exports
operations
AN:Sk o

ANS:Sk o

COM:Sk o

CDB:User Db name o

DDB:User Db name o

ES:Sk o

SS:User Db name Db mode o Sk
DBOPS:Sk P-key Partition ops Database ops o

Dbr types Pr types
types
Sk User Db mode
Database ops Clp Cpp Cp Dp Op Re
Dbr types Db name P mode P key
Partition ops Bt Ct Dv Dlt Gt Ga Ins Sct Tv Uv Vi
Pr types Yes no Get triple result Query key Verbname
R triple P name P access D template Template Triple

imports from Database all
end

Figure 3.8 Interface specification for the Dbms data type
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Muffin: A Proof Assistant

Richard C. Moore

As has already been seen, the use of formal methods introduces the idea of
proof obligations, that is, theorems which record desirable properties of our
specifications or development steps. How do we go about discharging these
proof obligations? What automated support can be provided to help with this
task? Richard Moore’s chapter discusses these issues. Restricting itself to
the propositional calculus, the paper first considers proof style and the vari-
ous strategies that might be adopted when proving a simple theorem. Having
identified how proofs may be performed, the chapter then presents a speci-
fication of a proof editor which will support the strategies identified in the
earlier discussion. Although only the specification is given here, a develop-
ment using Smalltalk 80 has been undertaken. Subsequent work by the same
group has built a system which handles more general logics.
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4.1 Introduction

The prime objective of the formal reasoning work in the Alvey/SERC supported IPSE
2.5 project [JL88, War89] is to design and build a theorem proving assistant which will
provide sufficient support for the task that a user will be encouraged to use it to actually
discover formal proofs rather than just to check the details of proofs already sketched
out on paper. The general consensus amongst the researchers at Manchester University
and Rutherford Appleton Laboratory who are engaged in this part of the project is that
two things in particular could go a long way towards helping achieve this aim. First, the
system should be sufficiently flexible to allow the user to work as ‘naturally’ as possible;
specifically, it should impose no fixed order of working on the user, and it should allow
the user access to all of its functionality. Second, it should have sufficient ‘knowledge’
of the mathematics that it is supporting to allow it both to help the user to decide what
to do next by offering a selection of possible actions consistent with the underlying
mathematics and to advise on the existence of any inconsistencies. The emphasis is,
therefore, on a user-driven, machine-supported theorem prover rather than vice versa.

Very early in the project, an investigation of existing theorem proving systems was
undertaken [Lin88]. Not one of the systems surveyed satisfied all our requirements as
set out above, and it was therefore decided that some experimentation of our own with
user interface issues was required. The resulting system, known as Muffin for reasons
which are likely to remain totally obscure here, is the subject of this paper.

Muffin’s emphasis as an experiment in the design of a user interface to a theorem
proving assistant meant that it could be restricted to dealing with a single, simple self-
contained branch of mathematics, in fact the propositional calculus. In addition, initial
ideas on the exact form of the surface user interface (i.e. the appearance of the screen)
were somewhat nebulous. The first stage of the development of Muffin therefore con-
sisted of designing and specifying a theorem store for the propositional calculus. This
abstract theorem store could then be ‘viewed’ in a range of different ways by simply cod-
ing different ‘projection functions’ on top of it, thus allowing experimentation with the
surface user interface. Having fixed on the surface functionality, the specification was
then extended to cover the whole system.1 It is interesting to note that this additional
specification exercise led to the discovery of a couple of bugs in the code.

4.2 Proofs in the propositional calculus

Consider the following two statements:
1Lesser mortals are asked to spare a thought at this point for all true VDM aficionados, who will un-

doubtedly have just been sent into paroxysms of foaming at the mouth and demented teeth-gnashing by this
heinous admission.
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1. All pink elephants can fly.

2. The only things that can fly are birds, planes and survivors of the wholesale de-
struction of the planet Krypton.

¿From these, together with the two ‘obvious’ statements

3. An elephant is not a bird.

4. An elephant is not a plane.

most readers should have little difficulty in deducing that

5. All pink elephants are survivors of the wholesale destruction of the planet Krypton.

Let us first rewrite these five statements in terms of six propositions:

(A) X is an elephant.

(B) X is pink.

(C) X can fly.

(D) X is a bird.

(E) X is a plane.

(F) X is a survivor of the wholesale destruction of the planet Krypton.

They turn into:

1 . If X is an elephant and X is pink Then X can fly.

2 . If X can fly Then X is a bird or X is a plane or X is a survivor of the wholesale
destruction of the planet Krypton.

3 . If X is an elephant Then X is not a bird.

4 . If X is an elephant Then X is not a plane.

5 . If X is an elephant and X is pink Then X is a survivor of the wholesale destruction
of the planet Krypton.

Symbolically,

1 . A B C

2 . C D E F



94 4 Muffin: A Proof Assistant

3 . A D

4 . A E

5 . A B F

The sequents express the fact that the proposition on the right of the ‘turnstile’ ( ) can
be deduced from the proposition(s) on the left, and , and represent and, or and not
respectively.

To establish the validity of statement 5, we first assume that both proposition A
(X is an elephant) and proposition B (X is pink) are true. Statement 1 then tells us
that proposition C is true (X can fly), whence, with the help of statement 2, it follows
that either proposition D is true (X is a bird) or proposition E is true (X is a plane) or
proposition F is true (X is a survivor of the wholesale destruction of the planet Krypton).
Since we know that proposition A is true (X is an elephant), however, statements 4 and
5 allow us to deduce that both proposition D and proposition E are false (X is not a bird;
X is not a plane). The only remaining alternative is therefore that proposition F is true
(X is a survivor of the wholesale destruction of the planet Krypton). Thus the sequent

5 A B F

is established as a valid inference.
The sorts of argument leading to the result above are exactly the same sorts of argu-

ment used in proofs in the propositional calculus, the only difference being that the above
example employed reasoning about specific propositions whereas the propositional cal-
culus deals with reasoning about propositions in the abstract. Thus, expressions in the
propositional calculus are built up from the operators (not), (and), (or), (im-
plies) and (equivalence),2 together with letters to represent the propositions. The
fact that one expression follows from another is still represented as a sequent. Note that
a sequent with nothing to the left of its turnstile means that whatever is to the right of
the turnstile follows from no assumptions: that is, it is itself true. This is exactly what
is meant when we write an expression alone, so that a sequent with an empty set of
assumptions is equivalent to an expression.

Valid deductions in the propositional calculus are represented by inference rules.
These have one or more hypotheses and a conclusion, and are often written with the
hypotheses and conclusion respectively above and below a horizontal line. An example
of such an inference rule is the -Er (and-elimination-right) rule:

-Er
E1 E2
E1

2The operators are listed in order of decreasing priority.
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which effectively corresponds to the statement:

If E1 and E2 Then E1

Note, however, that this represents a valid deduction for any propositions E1, E2. It can
therefore be used to justify results such as:

p q p r p q

Another ‘obvious’ rule is the -I (and-introduction) rule:

-I E1; E2
E1 E2

which corresponds to the statement:

If both E1; E2 Then E1 and E2

This could, however, be stated equivalently as either:

If E1 Then ( If E2 Then E1 and E2)

or:

If E2 Then ( If E1 Then E1 and E2)

corresponding respectively to:

-I E1
E2 E1 E2

-I E2
E1 E1 E2

There is thus some duplication inherent in the above description, which is generally
removed by insisting that the conclusion of an inference rule should not be a sequent.

A more complicated inference rule, which has sequents among its hypotheses, is the
-E (or-elimination) rule:

-E E1 E2; E1 E; E2 E
E

This states that if E1 E2 is known and if some conclusion E has been shown to follow
from each of the disjuncts E1 and E2, then E can be deduced, or, alternatively:

If all E1 E2; (If E1 Then E); (If E2 Then E) Then E
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This rule thus provides a way of reasoning by cases and can be used to justify, for
instance, the deduction of p q r from the three ‘knowns’ p q, p p q r and
q p q r.

Although the individual rules, such as -Er, might not in themselves appear to be
particularly useful, combinations of these rules can be used to build larger proofs and
thus establish nontrivial results. One way of presenting such proofs is shown in Figure
4.1.

from p q p r
1 p q -Er(h)
2 from p

infer p q r ¡??¿
3 from q
3.1 p r -El(h)
3.2 from r
3.2.1 q r -I(h3,h3.2)

infer p q r ¡??¿
infer p q r -E(2,3.1,3.2)

infer p q r -E(1,2,3)

Figure 4.1 A partial proof

Here, the body of line 1 (i.e. p q) has been deduced by applying the rule -Er to the
overall hypothesis p q p r , referred to in line 1 as h, and the overall conclusion
p q r has been justified by appeal to the instance of the -E rule above, applied to
line 1 and boxes 2 and 3. Notice how sequent hypotheses in the -E rule are justified by
appeal to boxes: the hypotheses of the sequent appear on the from line of the box, the
conclusion of the sequent on the infer line.

Of course, the fact that the conclusion of the proof is justified does not mean that
the proof as a whole is complete – not all of the things used to justify the conclusion
are themselves justified. In fact, this example nicely illustrates two aspects of the kind
of freedom of action Muffin aims to support. First, there is the ability to reason both
‘forwards’ and ‘backwards’. Forward inferencing corresponds to the creation of lines
like line 1 in Figure 4.1 which can be deduced, either directly or indirectly, from the
overall hypotheses of the proof. The set of such valid deductions, together with the
proof’s hypotheses, are called the ‘knowns’ of the proof. In the example of Figure
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4.1 the knowns are thus the two expressions p q p r and p q. Backwards
inferencing, on the other hand, effectively amounts to filling in the proof from the bottom
(the overall conclusion) upwards. Thus, in Figure 4.1 the overall conclusion is justified
by appeal to an application of the -E rule to the (justified) line 1 and the (unjustified)
boxes 2 and 3. The ‘goal’ of proving p q r has therefore been reduced to three
‘subgoals’, namely to proving p q, which has indeed already been established, and the
two sequents p p q r and q p q r.

Some progress towards establishing the validity of the second of this pair of sequents
has indeed already been made. Thus, line 3.1 follows from the overall hypothesis anal-
ogously to line 1, this time via the -El (and-elimination-left) rule:

-El
E1 E2
E2

and the conclusion of box 3 has again been justified by appeal to the -E rule, here
applied to the (justified) line 3.1 and the (unjustified) boxes 2 and 3.2. One forward step
has also been created in box 3.2, where line 3.2.1 has been deduced by applying the -I
rule to the hypothesis of box 3 and that of box 3.2.

In order to complete the proof of Figure 4.1, the conclusions of both box 2 and box
3.2 need to be correctly justified. It is worth looking at these steps in some detail. The
conclusion of box 2 could in principle be correctly justified by appeal to any of the
following:

p – the local hypothesis of box 2.

p q p r – the overall hypothesis.

p q – a conclusion which depends only on outer hypotheses.

In other words, the knowns of box 2 plus the knowns of all its containing boxes (in this
case only the box corresponding to the proof as a whole). Thus, in trying to justify the
conclusion of box 2 we are effectively trying to validate the sequent:

p q p r ; p q; p p q r

This can be done straightforwardly by appeal to the -Ir (or-introduction-right) rule:

-Ir
E1

E1 E2
which justifies:

p p q r

This completes the justification of everything in box 2.
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Suppose, however, that the -Ir rule had not been shown to be valid. In such a case,
a user of Muffin could abandon the proof of Figure 4.1 in the state shown, prove the -Ir
rule, then return to the current proof some time later and complete the proof of box 2
by appeal to the new -Ir rule. This illustrates the second aspect of freedom of action
alluded to above that Muffin supports.

Turning attention to box 3.2, its conclusion can similarly be correctly justified by
appeal to any of its knowns (in this case both r and q r) or to any of the knowns of
its containing boxes. Note that, since box 2 is now completely justified, the sequent
p p q r which it represents has become a known of the overall proof. Lines and
indeed boxes (were there any) inside box 2 are, however, not knowns available within
box 3 as they depend on assumptions (namely p) which do not hold there.

The proof of box 3.2 is completed by appeal to the rule -Il (or-introduction-left),
analogous to -Ir used to justify the conclusion of box 2:

-Il
E2

E1 E2
The proof as a whole is now complete and is shown in Figure 4.2.

from p q p r
1 p q -Er(h)
2 from p

infer p q r -Ir(h2)
3 from q
3.1 p r -El(h)
3.2 from r
3.2.1 q r -I(h3,h3.2)

infer p q r -Il(3.2.1)
infer p q r -E(2,3.1,3.2)

infer p q r -E(1,2,3)

Figure 4.2 Proof (one direction) that distributes over

One final point, which is important for the understanding of Muffin, is that this
complete proof justifies a new derived inference rule, namely:

E1 E2 E1 E3
E1 E2 E3
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This rule is then available for use in future proofs in just the same way as the rules
mentioned so far.

4.3 The formal specification of Muffin’s theorem store

The Muffin theorem store should support all the notions of partial proofs, complete
proofs, inference rules, etc. as introduced in the previous section. This section shows
how these can be described in VDM. It is important to realize, however, that the specifi-
cation as developed here is an abstract description of the objects introduced above. Thus,
for example, the partial proof shown in Figure 4.1 above is one possible ‘projection’ or
‘view’ of the underlying abstract object representing an incomplete proof.

Expressions, sequents and problems

The fundamental entities in Muffin are, of course, expressions. As explained above,
these are built up from the logical operators , , , etc.3 together with letters to
represent propositions. In abstract terms, propositions can therefore be represented by
some infinite set of structureless tokens. For want of some better name, we shall call
them Atoms. In the examples of Section 4.2 Atoms are being projected as letters.

A composite expression like p q r can be thought of most simply as some logical
operator, here , having other expressions as its operands. Atoms are therefore to be
considered as a kind of expression. The logical operators fall into two distinct classes,
unary operators like which have a single operand, and binary operators like which
have two operands.

It is normal in specifications to describe such objects in terms of ‘trees’, so that, for
example, the tree-forms Tnot and Tand of and respectively would have the form:

Tnot :: tn : Texp

Tand :: tandl : Texp
tandr : Texp

with

Texp Atom Tnot Tand

In such a description, a tree-form unary expression like Tnot has a single operand,
which is either an Atom or some composite tree-form expression, and a tree-form binary

3A particular set of operators has, in fact, been chosen and is built into Muffin. This is, however, largely
for convenience and is by no means crucial. The (fairly simple) modifications that have to be made to
the specification developed here in order to accommodate a user-defined set of operators can be found
in [Moo87].
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expression like Tand has both a left and a right operand, each of which is either an
Atom or a composite tree-form expression. Thus, the expression p q r would actually
correspond to:

mk-Tor ap mk-Tand aq ar

where ap, aq and ar are Atoms representing p, q and r respectively.
In these terms, a tree-form sequent (rather inexplicably called Tsubseq here) would

have a set of tree-form expressions to the left of its turnstile and a single tree-form
expression to the right. A Tsubseq could then be described in terms of a left-hand side
and a right-hand side as:

Tsubseq :: tlhs : Texp-set
trhs : Texp

inv mk-Tsubseq l r l

The invariant removes the duplication between expressions and sequents with empty
left-hand sides.4

Turning attention next to inference rules and proofs, it is clear that some sort of
interdependency is needed which is more general than the tree representation described
above: a derived inference rule is to have some associated proof(s), the lines of which
are justified by appeal to inference rules. The set of inference rules and their proofs thus
has a graph-like rather than a tree-like structure, which is normally modelled in formal
specifications by associating each object with some sort of structureless reference object.

In fact, it is also possible to treat expressions as graph-like objects, with expressions
being associated with some references to expressions (Exprefs) via some expression store
(Expstore):

Expstore Expref m Exp

where

Exp Atom Not And

In such a scheme, expressions have references to expressions rather than expressions
themselves as their operands, so that, for example, Not and And are described by:

Not :: not : Expref

And :: andl : Expref
andr : Expref

4The alternative approach, namely that more complex objects do not contain expressions at all but rather
have them represented as sequents with empty left-hand sides, would also have been perfectly feasible.
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In order to ensure that this description makes sense, some consistency conditions have
to be imposed on the Expstore. First, any reference appearing as an operand in some ex-
pression in the range of the Expstore should be in its domain. This condition ensures that
all expressions are completely defined and is itself expressed by the function is-closed:

is-closed :Expref m Exp
is-closed m x rngm args x domm

This closure condition on the Expstore is equivalent to saying that all sub-expressions
(args) of any expression in the Expstore are defined in the Expstore. The other consis-
tency condition states that no expression should be a sub-expression of itself:

is-finite :Expref m Exp
is-finite m y domm x rng trace y m y args x

The function trace effectively finds the sub-map of m having as its domain some set of
expressions, in this case the unit set containing y, and all their sub-expressions. Full
details of the auxiliary functions args and trace, and indeed the full Muffin specification,
can be found in [JM88].

The full invariant on the Expstore is therefore:

inv-Expstore :Expstore
inv-Expstore es is-closed es is-finite es

In this scheme, a Subseq has a set of references to expressions as its left-hand side and a
single reference to an expression as its right-hand side. The invariant that the left-hand
side should not be empty remains:

Subseq :: lhs : Expref -set
rhs : Expref

inv mk-Subseq l r l

References are associated with Subseqs via the Subseqstore:

Subseqstore Subseqref m Subseq

For consistency, any Expref occurring in the exps (that is, the left-hand side plus the
right-hand side) of a Subseq in the Subseqstore should be in the Expstore:

is-valid-subseqstore :Subseqstore Expstore
is-valid-subseqstore ss es q rng ss exps q dom es

For convenience, expressions and sequents are collectively referred to as Nodes:

Tnode Texp Tsubseq
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Node Expref Subseqref

These form the building blocks for more complex objects in Muffin.
Before proceeding, it is worth reviewing the processes to be supported in Muffin.

To begin with, a user will want to define a set of axioms for the propositional calculus.
These will have the same form as inference rules but will not have associated proofs. The
user should then be able to create other objects of the same syntactic form as inference
rules (we shall call them problems) and try to prove them. Two main classes of problem
can therefore be distinguished. On the one hand there are unsolved problems, problems
which are neither axioms nor have some associated complete proof.5 On the other hand
there are solved problems, of which three sub-classes can conveniently be distinguished.
First, axioms, which are problems having the special status of being proved but which
have no associated proofs.6 Second, there are derived inference rules, solved problems
with at least one associated complete proof and third, there are all the rest of the solved
problems, those which are neither axioms nor derived inference rules.7

All these classes of problem can be described in terms of a single abstract object,
called Problem. It has a set of Nodes ((references to) expressions and/or sequents) as its
hypotheses, and a single (reference to an) expression as its conclusion (cf the -E rule).8

Problem :: hyp : Node-set
con : Expref

Again, Problems are associated with references to Problems (Problemrefs), this time via
the Problemstore:

Problemstore Problemref m Problem

The Problemstore should be consistent with the Subseqstore and the Expstore in that the
nodes (that is, the hypotheses plus the conclusion) of any Problem in the Problemstore
should be in either the Subseqstore or the Expstore, whichever is appropriate:

is-valid-problemstore :Problemstore Subseqstore Expstore
is-valid-problemstore ps ss es o rng ps nodes o dom ss dom es

Proofs

The last primitive object we need to be able to describe is a proof. Let us first consider
only complete proofs, in particular the one shown in Figure 4.2. A cursory perusal of this

5They may, of course, have a whole cart-load of incomplete proofs.
6That’s right, neither complete nor incomplete.
7Muffin’s inference rules are its axioms plus its derived inference rules, just as you would expect.
8Recall the equivalence explained above which allowed the restriction that no sequent should appear as

the conclusion of an inference rule.



4.3 The formal specification of Muffin’s theorem store 103

proof reveals a marked similarity between the proof as a whole and any of its boxes (e.g.
box 3) – each has a set of hypotheses (the from line) and a conclusion (the infer line)
and contains some list of lines and boxes. In fact the only difference between a proof and
a box is that the hypotheses of a proof can contain sequent hypotheses whereas those of
a box cannot. (Recall that a box is used to justify a sequent hypothesis in some rule, with
the hypotheses of the box consisting of the left-hand side of the sequent to be so justified
and the conclusion of the box the right-hand side of that sequent. Since the left-hand
side of a sequent is a set of expressions, the hypotheses of a box will also be a set of
expressions.) This suggests a picture in which a box and a proof are described by the
same abstract object.

We have already seen how validating a box corresponds to proving a problem whose
conclusion is the expression on the infer line of the box and whose hypotheses are the
knowns available inside the box. This is, however, not a good picture to adopt overall
as adding lines to containing boxes can change the knowns available inside the box and
hence the effective hypotheses of its corresponding problem. The picture can, however,
be made unambiguous by noting that it is sufficient to take the effective hypotheses of
the problem representing a box to be the hypotheses of the box itself plus the hypotheses
of all its containing boxes – any nonhypothesis knowns omitted under this scheme can be
regenerated inside the box in question via the same set of steps as was used to generate
them in their actual positions in the proof, as all the hypotheses on which they depend
will be available there. Redrawing the proof of Figure 4.2 in this scheme leads to the
alternative projection shown in Figure 4.3. Notice how all the boxes are now disjoint,
i.e. all justifications of lines inside a box only refer to things also inside the box.

The last step of the abstraction comes about by rewriting the lines with justifications
as sequents. A line like line 1 is effectively recording the fact that its body p q can
be deduced by applying the -Er rule to the overall hypothesis p q p r , or
equivalently that p q p r p q is a valid instance of the -Er rule. This
results in the alternative projection of Figure 4.3 shown in Figure 4.4.

Here, each line of a proof consists of a problem together with some proof of that
problem. That proof can be simply a reference to some inference rule (when the problem
is simply an instance of that inference rule) or it can itself be a list of lines. In abstract
terms, a proof can therefore be either an instantiation, an inference rule together with a
mapping recording how atoms in the rule’s statement are to be replaced by expressions
in order to build the required instance of the rule, or a composite proof, a sequence of
solved problems. Proofs are also assigned references, this time via the Proofstore.

Instantiation :: of : Problemref
by : Atom m Expref

inv mk-Instantiation o m m
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from p q p r
1 p q -Er(h)
2 from p; p q p r

infer p q r -Ir(h21)
3 from q; p q p r
3.1 p r -El(h32)
3.2 from p; q; p q p r

infer p q r -Ir(h3.21)
3.3 from r; q; p q p r
3.3.1 q r -I(h3.31, h3.32)

infer p q r -Il(3.3.1)
infer p q r -E(3.1, 3.2, 3.3)

infer p q r -E(1, 2, 3)

Figure 4.3 Modularized version of Figure 4.2

Composite-proof Problemref

Proof Instantiation Composite-proof

Proofstore Proofref m Proof

Note that the invariant on Instantiation says that the mapping defining the substitution
should not be empty: that is, some substitution should actually be performed. This is to
remove the redundancy corresponding to a problem being considered as an instance of
itself.

For ease of testing equality, the Expstore, Subseqstore and Problemstore have all
been described by 1-1 mappings. Such a restriction turns out to be impractical for proofs,
however, because new complete proofs are going to be built by editing (i.e. adding
and/or removing steps to/from) incomplete proofs and sometimes different references
to essentially the same proof might be needed. (For example, the user might get part
way through some proof and then not be able to see exactly how to proceed. Allowing
duplication of the current state of the proof at this point would permit the exploration of
different possibilities.) Since there is no concept of editing an Instantiation, however, it
is possible to restrict the Proofstore in such a way that it assigns a unique reference to
each Instantiation. The following invariant is therefore imposed on the Proofstore:
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from p q p r
infer p q r

by
1 p q p r p q -Er
2 from p; p q p r

infer p q r
by
2.1 p p q r -Ir

3 from q; p q p r
infer p q r

by
3.1 p q p r p r -El
3.2 from p; q; p q p r

infer p q r
by
3.2.1 p p q r -Ir

3.3 from r; q; p q p r
infer p q r

by
3.3.1 q; r q r -I
3.3.2 q r p q r -Il

3.4 p r; p p q r; r p q r
p q r -E

4 p r; p p q r; q p q r p q r -E

Figure 4.4 The proof of Figure 4.2 in Muffin style

inv-Proofstore :Proofstore
inv-Proofstore fs

p q dom fs fs p fs q is-instantiation fs p p q

The exactly opposite position is in fact taken for composite proofs – indeed, parts of the
consistency conditions on the Proofmap and the Incomplete-proofmap (see below) will
insist that any Proofref referencing a composite proof should not belong to more than
one problem. This is actually rather stronger than is absolutely necessary, however, and
it would be possible to weaken it such that sharing of complete composite proofs was
allowed but sharing of incomplete ones was not.

In addition, the Proofstore has to satisfy the usual consistency condition, namely
that all components of each proof in it are in the Expstore, the Subseqstore or the
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Problemstore as appropriate. For an instantiation this amounts to the conditions that
the problem being instantiated (its of field) should be in the Problemstore, that the do-
main of the substitution mapping (its by field) should be a subset of the Atoms appearing
in that problem, that the expressions in the range of the substitution mapping should all
be in the Expstore, and that the substitution should not replace some Atom with (a refer-
ence to) itself. For a composite proof the condition states simply that all elements of the
proof should be in the Problemstore. The full consistency condition is therefore:

is-valid-proofstore fs:Proofstore ps:Problemstore
ss:Subseqstore es:Expstore r:

pre is-valid-subseqstore ss es is-valid-problemstore ps ss es
post r

v rng fs is-instantiation v
is-valid-instantiation v ps ss es

is-composite-proof v is-valid-composite v ps

An instantiation is a complete proof of some problem if that problem is obtained as a
result of performing the substitution of expressions for atoms defined in its by field on
the problem representing the inference rule defined in its of field. A composite proof is a
complete proof of some problem if the knowns of the problem with respect to the proof
include the conclusion of the problem.

The knowns of a problem p with respect to some composite proof c are obtained as
follows:

If c has no elements, the knowns are just the hypotheses of the problem p.

If c is not empty, the ith element v of c contributes a new known to the set of
knowns k collected from the first i 1 elements of c according to the following
rules:

1. If the hypotheses of v are all in k, the new known is the conclusion of v.
2. If not, but if there is some sequent s in the Subseqstore such that the right-
hand side of s is the conclusion of v and the left-hand side of s added to the
hypotheses of p gives the hypotheses of v, then the new known is s.

3. If neither of the above, v contributes no new known to k:

new-known p:Problemref k:Node-set v:Problemref
ps:Problemstore ss:Subseqstore r:Node-set

pre p v dom ps
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post r if hyp ps v k
then con ps v
else if s dom ss

lhs ss s hyp ps p hyp ps v rhs ss s con ps v
then s
else

Notice how this works in Figure 4.4. Line 1 contributes p q to the knowns, line 2
contributes the sequent p p q r, line 3 the sequent q p q r, and line 4 the
desired conclusion p q r. Similarly, in box 2, line 2.1 adds its conclusion directly,
whilst in box 3 line 3.1 adds p r to its knowns, box 3.2 adds p p q r, box 3.3
adds r p q r, and line 3.4 adds its conclusion p q r. Finally, in box 3.2 the
conclusion is added directly by line 3.2.1, and in box 3.3 line 3.3.1 adds q r and its
conclusion is added by line 3.3.2.

So far only complete proofs like that in Figure 4.2 have been considered. Does
this picture work for incomplete proofs like the one in Figure 4.1 too? Let us begin by
rewriting that proof in the style of Figure 4.4. The result is shown in Figure 4.5.

At the top level, boxes 2 and 3 remain incomplete, although completing the proofs
of boxes 3.2 and 3.3 would be sufficient to complete box 3. The top level proof at this
point therefore can contain only lines 1 and 4 – it can not contain boxes 2 and 3 as only
solved problems can occur in a proof. The proof at box 2 is empty. Similarly, the proof
at box 3 contains just lines 3.1 and 3.4 and that at box 3.2 is empty. Finally, the proof at
box 3.3 contains the single line 3.3.1.

As explained earlier, this proof uses examples of both forward and backward infer-
encing. Thus at the top level line 1 is an example of a forward inferencing step whilst
line 4 is an example of backward inferencing – the former adds to the knowns (in this
case p q) and the latter reduces a goal to subgoals (here, p q r has been reduced
to p q, p p q r and q p q r). To progress in the proof, the user can add
either forward steps, thereby increasing the knowns, or add backward steps and reduce
some goal to subgoals. This amounts to adding new elements to the middle of the list
constituting an incomplete composite proof. In order to describe incomplete proofs in
the above picture we therefore need to know the position in the sequence of elements of
an incomplete composite proof marking the division between the forward and the back-
ward steps. This is done by recording the position of the last element of the forward
proof in the Indexmap:

Indexmap Proofref m

Next, some record of which proofs, complete and incomplete, are associated with which
problems is needed. The Proofmap and the Incomplete-proofmap store this information

Proofmap Problemref m Proofref -set
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from p q p r
infer p q r

by
1 p q p r p q -Er
2 from p; p q p r

infer p q r
by
¡??¿

3 from q; p q p r
infer p q r

by
3.1 p q p r p r -El
3.2 from p; q; p q p r

infer p q r
by
¡??¿

3.3 from r; q; p q p r
infer p q r

by
3.3.1 q; r q r -I
¡??¿

3.4 p r; p p q r; r p q r
p q r -E

4 p r; p p q r; q p q r p q r -E

Figure 4.5 The incomplete proof of Figure 4.1 in Muffin style

Incomplete-proofmap Problemref m Proofref -set

Note that each maps a Problemref to a set of Proofref – a problem may have many
proofs, both complete and incomplete.

There are essentially two different but equivalent ways in which a problem could
have no incomplete proofs in this scheme. Either it could map to the empty set under the
Incomplete-proofmap or it could simply not appear in the domain thereof. In Muffin, the
(arbitrary) choice that the latter is the case is made, thus allowing the restriction that the
empty set should not occur in the range of the Incomplete-proofmap. The restriction that
no two problems should have composite proofs in common leads to the second clause of
the invariant on the Incomplete-proofmap:
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inv-Incomplete-proofmap : Incomplete-proofmap
inv-Incomplete-proofmap im

rng im k m dom im im k im m k m

The solved problems are those appearing in the domain of the Proofmap. All other
problems, that is those in the domain of the Problemstore but not in that of the Proofmap,
are unsolved. The axioms of Muffin are made to conform to this definition by mapping
them to the empty set under the Proofmap.

Some subset of the solved problems is designated as the rules of inference of Muffin.
These problems, which should include all the axioms, are distinguished by giving them
names via the Rulemap. Again, no two rules may have the same name and the empty
string is not a valid name.

Rulemap String m Problemref
inv rm dom rm

The consistency condition on the Rulemap states that all rules should be solved prob-
lems, that all axioms should be rules, and that all instantiations should be instances of
rules:

is-valid-rulemap :Rulemap Proofmap Proofstore
is-valid-rulemap rm jm fs

axioms jm rules rm rules rm solved-problems jm
p complete-proofs jm

p dom fs is-instantiation fs p of fs p rules rm

The consistency condition on the Proofmap is somewhat more complicated. The easy
bits state that all solved problems (i.e. everything in the domain of the Proofmap) should
be in the Problemstore, that no two problems share a complete composite proof, and that
all proofs attached to a problem via the Proofmap are in the Proofstore, contain only
solved problems in their components, and are actually complete proofs of that problem.
The hard bit says that the set of solved problems and their proofs should be logically
sound. This bit is further complicated by the fact that a solved problem can in princi-
ple have more than one complete proof. This means that circularities can exist in the
problem-proof graph – a user might prove a rule A directly from the axioms of the sys-
tem, then construct a proof of a rule B in which some line is justified by appeal to the
derived rule A, and finally construct a second proof of the rule A in which some line
is justified by appeal to the derived rule B, all without destroying the logical sound-
ness of the system (because there is a proof of A which does not depend on the rule
B). The statement of logical soundness for Muffin is therefore that each solved prob-
lem should be derivable, at least in principle, directly from the axioms of the system
(is-self -consistent):
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is-self -consistent jm:Proofmap fs:Proofstore r:
pre complete-proofs jm dom fs
post r solved-problems jm derivable-results jm fs axioms jm

The full consistency condition on the Proofmap then reads:

is-valid-proofmap jm:Proofmap fs:Proofstore ps:Problemstore
ss:Subseqstore es:Expstore r:

pre is-valid-subseqstore ss es is-valid-problemstore ps ss es
is-valid-proofstore fs ps ss es

post r
solved-problems jm dom ps complete-proofs jm dom fs
is-self -consistent jm fs
u solved-problems jm v jm u

problems fs v dom jm is-complete-proof fs v u ps ss es
k m dom jm

v jm k jm m is-composite-proof fs v k m

The validity condition on the Incomplete-proofmap is built up similarly. First, any prob-
lem in its domain must be in the Problemstore and any incomplete proof attached to that
problem in the Proofstore. In fact, this condition is extended to state that the Proofstore
contains only those proofs which are attached to some problem via either the Proofmap
or the Incomplete-proofmap. Here, however, the proof must not be a complete proof of
the problem, though it must still consist only of solved problems. In addition, no proof
should be both an incomplete proof of some problem and a complete proof of some
other. Finally, Muffin views the building of an Instantiation as an essentially single-step
process and provides no operations for editing existing ones. This effectively means
that only complete Instantiations are considered, thus allowing the restriction that no
Instantiation should occur in any element in the range of the Incomplete-proofmap.

is-valid-incomplete-proofmap im: Incomplete-proofmap jm:Proofmap
fs:Proofstore ps:Problemstore
ss:Subseqstore es:Expstore r:

pre is-valid-subseqstore ss es is-valid-problemstore ps ss es
is-valid-proofstore fs ps ss es is-valid-proofmap jm fs ps ss es

post r dom im dom ps axioms jm dom im
complete-proofs jm incomplete-proofs im dom fs
complete-proofs jm incomplete-proofs im
u dom im v im u problems fs v solved-problems jm
is-composite-proof fs v is-complete-proof fs v u ps ss es

As we have already seen, incomplete proofs consist effectively of two parts, the forward
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proof and the backward proof, with the proof as a whole being the concatenation of the
backward proof onto the forward proof. When attempting to convert an incomplete proof
of some problem into a complete proof thereof, new elements can be added either to the
tail of the forward proof or to the head of the backward proof, corresponding respectively
to forward inferencing and backward inferencing. The index of the last element of the
forward proof is stored in the Indexmap.

The elements of the forward proof give rise to all the knowns, with part of the va-
lidity condition on the Indexmap being that each element of the forward proof should
actually contribute to the knowns. The elements of the backward proof, on the other
hand, provide a proof of the conclusion of the relevant problem from some set of sub-
goals. Proving all these subgoals would be sufficient to complete the proof. In this case,
a new element can be added to the head of the backward proof if the conclusion of that
element is amongst the current subgoals. This condition also forms part of the validity
constraint.

Another part of the validity condition on the Indexmap states that the backward proof
should contain no element all of whose hypotheses are among the current knowns – such
an element would correctly contribute its conclusion to the knowns and should therefore
be positioned at the tail of the forward proof. Finally, the Indexmap should record an
index for each incomplete proof but for no complete proof, with the value of that index
lying somewhere between zero and the number of elements in the proof.

is-valid-indexmap xm: Indexmap im: Incomplete-proofmap jm:Proofmap
fs:Proofstore ps:Problemstore
ss:Subseqstore es:Expstore r:

pre is-valid-subseqstore ss es is-valid-problemstore ps ss es
is-valid-proofstore fs ps ss es is-valid-proofmap jm fs ps ss es
is-valid-incomplete-proofmap im jm fs ps ss es

post dom xm incomplete-proofs im u dom im v im u
let fp forward-proof v fs xm

bp backward-proof v fs xm
gp reverse bp in

0 xm v len fs v
z rng bp hyp ps z knowns u hyp ps u fp ps ss

g dom gp
con ps gp g goals con ps u g len gp gp ps

b dom fp
adds-known u knowns u hyp ps u b len fp fp ps ss

fp b ps ss

Finally, each of the primitive objects introduced above can be given a name in Muffin so
that a user can more easily identify those objects of particular interest. The names are
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stored in a name store, mapping strings to the appropriate class of reference object, for
each of the basic types of object. There is a restriction that no two objects of the same
type can have the same name, and another that the empty string is not a valid name. The
ProofNames map is typical of the class:

ProofNames String m Proofref
inv fn dom fn

String Character

The consistency condition for each name store ensures that only objects in the relevant
object store are assigned names, for example:

is-valid-proofnames :ProofNames Proofstore
is-valid-proofnames fn fs rng fn dom fs

Putting all this together leads to the following description of the full Muffin state:

Muffin :: es : Expstore
ss : Subseqstore
ps : Problemstore
fs : Proofstore
en : ExpNames
sn : SubseqNames
pn : ProblemNames
fn : ProofNames
jm : Proofmap
rm : Rulemap
im : Incomplete-proofmap
xm : Indexmap

inv mk-Muffin es ss ps fs en sn pn fn jm rm im xm
is-valid-subseqstore ss es is-valid-problemstore ps ss es
is-valid-proofstore fs ps ss es is-valid-expnames en es
is-valid-subseqnames sn ss is-valid-problemnames pn ps
is-valid-proofnames fn fs is-valid-proofmap jm fs ps ss es
is-valid-rulemap rm jm fs
is-valid-incomplete-proofmap im jm fs ps ss es
is-valid-indexmap xm im jm fs ps ss es



4.4 Operations on the Muffin state 113

4.4 Operations on the Muffin state

This section explores some of the exciting things one might want to do to the Muffin
state in the process of building up a theory of the propositional calculus. The reader is
referred to the full specification [JM88] for the complete story.

First of all, it is almost certainly going to be useful to be able to build new expres-
sions, sequents and problems. There are two methods provided for this. The first of
them allows a new object to be built provided all the objects needed to make up its fields
already exist, the second builds an instance of some existing object by replacing Atoms
occurring within it with existing expressions. Thus you can add a new expression to the
Expstore if the immediate sub-expressions of that expression are already in the Expstore:

add-exp x:Exp y:Expref
ext wr es : Expstore
pre args x dom es
post x rng es y dom es es y x es es

x rng es y dom es es es y x

and you can add a new sequent to the Subseqstore if all the expressions you want it to
consist of are already in the Expstore:

add-subseq z:Expref -set y:Expref g:Subseqref
ext rd es : Expstore
wr ss : Subseqstore

pre z y dom es z
post let t mk-Subseq z y in

t rng ss g dom ss ss g t ss ss
t rng ss g dom ss ss ss g t

Finally, you can add a new problem to the Problemstore if all the sequents and expres-
sions you want to make it out of are in the Subseqstore and the Expstore respectively.9

add-problem n:Node-set y:Expref u:Problemref
ext rd es : Expstore
rd ss : Subseqstore
wr ps : Problemstore

pre y dom es n dom es dom ss
post let t mk-Problem n y in

t rng ps u dom ps ps u t ps ps
t rng ps u dom ps ps ps u t

9The functions add-subseq and add-problem, although depressingly similar to add-exp, are included
here because their pre-conditions are incorrect in [JM88].
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Alternatively, you can add new expressions to the Expstore by building instances of
old ones. The function is-substitution appearing in the pre-condition essentially ensures
that Atoms are only replaced with existing expressions. The invariant on the Expstore
is maintained by adding not only the new instantiated expression but also any sub-
expressions (descendents) which are not already in the Expstore.

instantiate-exp y:Expref m:Atom m Expref r:Expref
ext wr es : Expstore
pre y dom es is-substitution y m es
post es es r dom es is-exp-match y r m es

dom es dom es descendents r es

New sequents and problems can also be added by this method, but the operations for do-
ing this are even more unspeakable than the above. They are all in the full specification,
of course.

Flushed with success at having created a new problem, you will no doubt be eager to
call it ‘fred’, in which case the operation name-problem is just the thing you will need.
Its pre-condition means, however, that you can only name some problem ‘fred’ if the
problem exists and if no other problem is called ‘fred’, though it rather magnanimously
allows you to call a problem ‘fred’ if it is already called ‘fred’. Not only that, but if the
problem is actually called ‘gladys’ it gets renamed ‘fred’. And that’s not all. Naming
something with the empty string actually unnames it.

name-problem n:String p:Problemref
ext wr pn : ProblemNames
rd ps : Problemstore

pre p dom ps n dom pn pn n p
post n dom pn pn pn n pn pn p

n dom pn n pn pn p n p

The operations for naming expressions, sequents and proofs are entirely analogous.
So you have a new problem called ‘fred’. What can you do with it? One thing

you might want to do is throw it away. There is a catch here, though. You can only
throw away unsolved problems (on the grounds that throwing away a solved problem
is dangerous – it might have been used to justify some step in a proof of some other
problem10). Not only that, but it is not just a case of removing it from the Problemstore
and the ProblemNames either – it might have a whole slew of incomplete proofs. In
10Of course, it would be possible to get around this and write an operation for throwing away solved

problems. The only snag would be that proofs using it would become invalid, so that some problems would
have to revert from being solved problems to being unsolved problems, then any proofs using those would
become invalid, so more problems would go back to being unsolved, etc. Such an operation is, thankfully,
outside Muffin’s scope.
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that case, it also has to be removed from the domain of the Incomplete-proofmap and
any proofs which were attached to it there have to be removed from the Proofstore, their
names from the ProofNames, and their indices from the Indexmap:

remove-problem p:Problemref
ext wr ps : Problemstore
wr fs : Proofstore
wr im : Incomplete-proofmap
wr xm : Indexmap
wr pn : ProblemNames
wr fn : ProofNames
rd jm : Proofmap

pre p dom ps p dom jm
post ps p ps pn pn p

p dom im im p im fs im p fs
xm im p xm fn fn im p

p dom im im im fs fs xm xm fn fn

Another thing you might want to do to your wonderful new problem is make it an axiom
of your system. To do this you have to give it a name (some non-empty string) in the
Rulemap. If the problem in question is already an axiom, the effect of the operation
make-axiom is simply to rename it, though unnaming it by renaming it with the empty
string (which amounts to removing it from the set of axioms) is not allowed as this might
destroy the logical soundness of the system. In addition, the pre-condition will not let
you convert a derived rule to an axiom – after all, if you have already proved something
from your existing axioms, turning it into an axiom gains you nothing. Converting an
unsolved problem to an axiom is thus the only case of any interest. Here, any incomplete
proofs of the problem are removed from the Proofstore and their names and indices from
the ProofNames and the Indexmap respectively. The problem itself is removed from the
Incomplete-proofmap and an association mapping it to the empty set is added to the
Proofmap.

make-axiom p:Problemref n:String
ext wr im : Incomplete-proofmap
wr jm : Proofmap
wr rm : Rulemap
wr xm : Indexmap
wr fs : Proofstore
wr fn : ProofNames

pre n p axioms jm n dom rm rm n p p dom jm
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post p dom jm jm jm p rm rm n p im p im
p dom im xm im p xm fs im p fs fn im p fn

p dom im xm xm fs fs fn fn
p dom jm im im xm xm jm jm rm rm p n p

fs fs fn fn

A third possibility is that the problem named ‘fred’ is justifiable by some Instantiation,
in which case the operation add-instantiation should prove useful. In order that the
invariants on Instantiation and Proofmap be respected, the problem p being instantiated
should be a rule and the instantiation mapping m should not be empty, should have a
domain which is a subset of the Atoms occurring in p and should have a range containing
only expressions existing in the Expstore. Building the instance of the problem pwith the
instantiation mapping m should result in the problem q (i.e. the problem called ‘fred’).
The whole process is, however, forbidden if the problem named ‘fred’ is an axiom –
adding proofs to an axiom would convert it to a derived rule, possibly destroying the
logical soundness of the system into the bargain.

If the Instantiation i (i.e. mk-Instantiation p m ) is in the range of the Proofstore,
the Proofref f referencing it is added as a new complete proof of the problem q by adding
f to the set to which q is mapped under the Proofmap. Otherwise, some new association
f i is added to the Proofstore first, where f is now some new Proofref not previously
existing in the domain of the Proofstore, then the Proofmap is updated as above. These
contortions ensure that the invariant on the Proofstore, in particular the part insisting that
Instantiations are assigned unique references therein, is maintained.

add-instantiation p:Problemref m:Atom m Expref q:Problemref
ext wr fs : Proofstore
wr jm : Proofmap
rd rm : Rulemap
rd ps : Problemstore
rd ss : Subseqstore
rd es : Expstore

pre p rng rm m domm vars nodes ps p ss es
is-substitution nodes ps p m ss es is-problem-match p q m ps ss es
q axioms jm

post let i mk-Instantiation p m in
i rng fs f dom fs fs f i fs fs

i rng fs f dom fs fs fs f i
q dom jm s jm q f q dom jm s f
jm jm † q s
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If the conclusion of some problem is amongst its hypotheses, it already automatically
satisfies the condition by which a composite proof of it is complete (the conclusion of
the problem is in its knowns with respect to the proof). It can therefore be proved by
an empty composite proof (not an empty set of proofs as this would mean it was an
axiom). The operation add-assumption thus adds an empty composite proof to the set of
complete proofs of such a problem. Of course, the problem should not be an axiom for
exactly the same reasons as given above.

add-assumption p:Problemref
ext wr fs : Proofstore
wr jm : Proofmap
rd ps : Problemstore

pre p dom ps p axioms jm con ps p hyp ps p
post f dom fs fs fs f

p dom jm jm jm † p jm p f
p dom jm jm jm p f

If none of the above appeals, you might like to try to construct a non-trivial composite
proof of your new problem. The first step in this process is to add a new empty com-
posite proof to the incomplete proofs of the problem. Again, the problem should not be
an axiom. It should, however, be an existing problem (in the Problemstore). In addi-
tion, its hypotheses should not include its conclusion – if they did the empty composite
proof would actually be a complete proof of the problem, in which case it should not
be attached to it via the Incomplete-proofmap. The operation add-empty-proof there-
fore adds a new empty composite proof to the Proofstore, assigns it the index 0 in the
Indexmap (corresponding to it having no forward proof), and adds this new proof to the
set of incomplete proofs of the problem as recorded in the Incomplete-proofmap.

add-empty-proof p:Problemref
ext wr im : Incomplete-proofmap
wr xm : Indexmap
wr fs : Proofstore
rd jm : Proofmap
rd ps : Problemstore

pre p axioms jm p dom ps con ps p hyp ps p
post f dom fs fs fs f xm xm f 0

p dom im im im † p im p f
p dom im im im p f

There are operations for naming and removing proofs similar to those given above for
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doing likewise to problems. The restriction here is that only incomplete proofs can be
thrown away – throwing away a complete proof might cause the problem of which it was
a proof to revert to being unsolved, thus leading to the selfsame set of undesirable conse-
quences as arise when throwing away a solved problem. See the complete specification
for the full details of these operations.

Having created a new empty composite proof, you will want to add steps to it, ei-
ther forward (via add-fwd-step) or backward (via add-bwd-step). You can add a new
Problemref s to the tail of the forward proof of some incomplete proof if s is a solved
problem and if it satisfies the condition for adding some new known to the proof. The
new step is inserted immediately after the element whose position is defined by the in-
dex of the proof. As a result of the insertion, however, that part of the invariant saying
that the backward proof contains no element whose hypotheses are amongst the current
knowns might have been violated – addition of the new forward step will have increased
the knowns. Thus, any step in the backward proof whose hypotheses are indeed amongst
the new knowns must be transferred to the tail of the forward proof, this process being
repeated until the backward proof contains no more such elements. In turn, shifting ele-
ments out of the backward proof may have destroyed the part of the invariant that insists
that the steps of the backward proof taken in reverse order progressively reduce goals
to subgoals. Those elements remaining in the backward proof after the transference of
elements to the forward proof which do not satisfy this condition should therefore be
discarded.

If the new forward proof is a complete proof of the problem in question, the whole of
the backward proof is discarded and the new forward proof is added as a complete proof
of the problem, reference to the proof being removed from the Incomplete-proofmap
and the Indexmap into the bargain. Otherwise, the proof as a whole (still incomplete)
becomes the new forward proof concatenated with the new backward proof, with its new
index being the number of elements in the new forward proof.

add-fwd-step p:Problemref f :Proofref s:Problemref
ext wr fs : Proofstore
wr im : Incomplete-proofmap
wr xm : Indexmap
wr jm : Proofmap
rd ps : Problemstore
rd ss : Subseqstore
rd es : Expstore

pre let k knowns p hyp ps p forward-proof f fs xm ps ss in
p dom im f im p s dom jm adds-known p k s ps ss
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post let y forward-proof f fs xm s
z backward-proof f fs xm
k knowns p hyp ps p y ps ss
l new-fwd-steps k z ps
bwd new-bwd-steps con ps p reverse z rng l ps
fwd y l
new-proof fwd bwd
in
is-complete-proof fwd p ps ss es fs fs † f new-proof

jm jm im im xm xm† f xm f len l 1
is-complete-proof fwd p ps ss es xm f xm
im p f im p im im p f im im† p im p f

Adding a backward step is somewhat easier as no reorganization of the proof is required
– the pre-condition ensures that the new step being added to the head of the backward
proof is not a valid forward step and none of the existing backward steps can be because
they would have been transferred previously if they were. The rest of the pre-condition
just checks that the new step is a solved problem and that its conclusion is one of the
current goals. The proof becomes the old forward proof, the new element and the old
backward proof in that order. Its index does not change as its forward proof has not
altered.

add-bwd-step p:Problemref f :Proofref s:Problemref
ext wr fs : Proofstore
rd im : Incomplete-proofmap
rd xm : Indexmap
rd jm : Proofmap
rd ps : Problemstore
rd ss : Subseqstore

pre let k knowns p hyp ps p forward-proof f fs xm ps ss
g goals con ps p reverse backward-proof f fs xm ps
in

p dom im f im p s dom jm hyp ps s k con ps s g k
post let new-proof forward-proof f fs xm

s backward-proof f fs xm in
fs fs † f new-proof

If you have completely messed things up as a result of the above, you can always remedy
the situation with the help of the ‘undo’ functions undo-fwd-step and undo-bwd-step.
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The former removes the tail of the forward proof (provided there is a forward proof),
the latter the head of the backward proof under a similar condition. There is a surprise
in store here for the unwary, though – undo-fwd-step is not necessarily the inverse of
add-fwd-step as some steps might have been transferred from the backward proof to the
forward proof as part of the add-fwd-step action. The corresponding operations on the
backward proof are mutually inverse, however, as no reorganization of the proof occurs.
Both operations are fairly predictable, simply removing the relevant element from the
proof. In addition, undo-fwd-proof decrements the proof’s index by one. You can only
apply them to incomplete proofs, of course.

undo-fwd-step p:Problemref f :Proofref
ext wr fs : Proofstore
wr xm : Indexmap
rd im : Incomplete-proofmap

pre p dom im f im p xm f 0
post xm xm† f xm f 1 fs fs † f xm f fs f

undo-bwd-step p:Problemref f :Proofref
ext wr fs : Proofstore
wr xm : Indexmap
rd im : Incomplete-proofmap

pre p dom im f im p xm f len fs f
post xm xm fs fs † f xm f 1 fs f

If you get stuck in some proof and want to try out different strategies from that point you
can copy the current state of your proof with the spawn-proof operation. Your problem
then acquires a new incomplete proof which looks just like the one you got stuck in. The
new proof is added to the Proofstore and its index to the Indexmap as part of the process.

spawn-proof p:Problemref f :Proofref
ext wr im : Incomplete-proofmap
wr xm : Indexmap
wr fs : Proofstore

pre p dom im f im p
post g dom fs fs fs g fs f xm xm g xm f

im im † p im p g

Finally, when you have completed your proof you can make the problem it was a proof
of into a derived rule with the help of the operation name-rule. This just associates a
name (non-empty string) with the problem via the Rulemap. Note that the operation can
also be used for renaming existing rules.
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name-rule n:String p:Problemref
ext wr rm : Rulemap
rd jm : Proofmap

pre n p dom jm n dom rm rm n p
post rm rm p n p

4.5 Muffin

This final section gives some details of the actual implementation of Muffin in Smalltalk
80 which was based on the specification described in the two preceding sections.11

The various components of the system can conveniently be divided into three cate-
gories, the browser, the builder and the prover.

Muffin’s browser essentially allows the user to inspect the current state of Muffin.
The user can select the type of object of interest from the list axioms, proofs, rules,
problems, subsequents (i.e. sequents) and expressions. The browser will then show all
objects of the selected type. Where the particular type selected has multiple subtypes,
e.g. complete and incomplete for proofs, and, or, etc. for expressions, the user can addi-
tionally select one of these subtypes and the browser will then show only those objects
of the selected subtype. Objects can be accessed via their names or some textual repre-
sentation of the objects themselves. When the object selected is a problem, the browser
shows additionally either the status of any existing proofs of that problem or that the
selected problem is an axiom. In the latter case, the axiom name is also shown. Figure
4.6 shows the browser where the selection is the unsolved problem named or-and-dist
and its incomplete proof of the same name, the completed version of which is shown in
Figure 4.2.

In addition, the browser allows a few simple changes to be made to the state of
Muffin, such as naming and renaming of objects, conversion of an unsolved problem
to an axiom, conversion of a solved problem to a (derived) rule, and addition of a new
empty composite proof to the set of incomplete proofs of some problem.

Finally, the browser acts as a controller for the other components of Muffin. Thus,
for instance, it allows the user to start up either a builder or a prover, to inspect the cur-
rent status of some existing proof, to remove incomplete proofs and unsolved problems
from Muffin’s store, and to restart some abandoned proof at the point at which it was
abandoned.

The builder, of which there are several different forms, allows the user to create new
expressions, (sub)sequents and problems and add them to the relevant object stores.
11The system is an ‘Alvey deliverable’ and copies of the code are available via M.K.Tordoff, STL NW,

Copthall House, Nelson Place, Newcastle-under-Lyme, Staffs ST5 1EZ.
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Figure 4.6 Muffin’s browser
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Lastly, the prover allows the user to edit an incomplete proof with a view to convert-
ing it into a complete proof. It uses a display based on the ideas of the knowns and the
goals of the problem in question with respect to the proof. Figure 4.7 shows a prover
at that point during the construction of the proof of Figure 4.2 at which the proof is
complete apart from the subproof at box 3.

The top pane of the prover shows the problem which is to be solved, the middle pane
the knowns of the problem with respect to the proof, and the bottom pane the current
subgoals. Subproofs of the proof, for example the one at box 3 in Figure 4.2, each
appear in a separate prover, where the problem to be solved has as its conclusion the
conclusion of the relevant box and as its hypotheses the hypotheses of the box itself
plus all the hypotheses of each of its containing boxes. If the amount of information
becomes too great, the user can chose to reduce it by making use of the facility of elision
of knowns. Thus, for instance, if a user decides that some particular known is not going
to be useful in the remainder of the proof it can be designated as hidden and it is then
removed from the display. When a prover has hidden knowns, Muffin reminds the user
of this by displaying ellipsis points at the foot of the list of displayed knowns. Any
hidden known remains a known of the proof, of course, and the reverse operation of
redisplaying hidden knowns is available at any time.

Muffin offers some assistance with the process of proof creation, largely through its
‘matching’ facilities. Thus, the user can select an expression from either the knowns
or the goals and ask Muffin for a list of all rules matching that expression, that is any
rules which might be applicable. In the case where the selection is a known, Muffin
provides a list of all the rules so far proved which contain some expression amongst their
hypotheses which could be instantiated to the selected expression. When the selection
is a goal, the list provided is of those rules whose conclusion can be instantiated to the
selected expression. Selecting a rule from the list returned then causes Muffin to try to
build the appropriate instance of the selected rule and add this as a new step to the proof.

The variable substitution deduced from the matching process is not always complete,
however. For instance, more than one element of the hypotheses of the selected rule
might match the selected expression, or the rule might contain more Atoms than the
expression which was used in the matching procedure. In such circumstances, Muffin
prompts the user to complete the parts of the instantiation mapping it was unable to
deduce for itself. When this has been completed satisfactorily, it adds the new step to
the proof.

The other way in which Muffin offers assistance with the proof is in the case where
one of the subgoals is a sequent (as in Figure 4.7). We have already seen that, in order to
make a sequent a known of a proof it is necessary to add to the tail of the forward proof
a (solved) problem, the conclusion of which is the right-hand side of the sequent and
the hypotheses of which are the hypotheses of the sequent plus those of its containing
problem (the containing problem is the problem appearing in the top pane of the prover).
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Figure 4.7 Muffin’s prover
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The user can therefore select a sequent in the goals pane of the prover and ask Muffin to
search through all its solved problems to see whether the appropriate problem is amongst
them. If it is, Muffin adds it to the tail of the forward proof, and the sequent becomes
a known of the proof. Otherwise, Muffin offers the user the opportunity to open a new
prover in order to attempt to solve that problem.

The user may have as many provers, browsers and builders as desired active and
displayed on the screen at once and can switch the focus of attention between them at
will. In particular, there may be provers in which different problems are being proved
as well as provers showing different attempted proofs of the same problem. Thus, for
example, if, while working on some proof, the user decides that the proof would be
more straightforward if some new derived rule were proved first, the current proof can
be abandoned and the problem stating that derived rule can be built in a builder, proved in
some other prover, then designated as a derived rule, maybe in a browser. On returning to
the original proof, the new rule will now be available and it can be used there as desired.

The surface user interface as described here thus offers the user several different
‘views’ of the underlying Muffin state, together with ways of altering that state. Each
component of the user interface thus essentially filters out that part of the total infor-
mation held in the Muffin state as a whole which is relevant to the particular task in
hand and presents it to the user, hopefully in a way which makes assimilation of that
information straightforward and which allows the user to carry out the desired actions
as ‘naturally’ (whatever that might mean) as possible. Of course, the abstract state de-
fined above places only a single restriction on the surface user interface, namely that
only information actually stored in the state can be projected. Thus, a user interface of
radically different appearance to the one described here would be an equally valid way
of interacting with the Muffin state as specified. Indeed, the experimentation with user
interface issues carried out in the Muffin project indicates that different users will prefer
different interaction styles (in tests, some expressed a preference for the ‘knowns-goals’
style described above, others would prefer to interact with a display based on the lay-
out of a proof shown in Figure 4.1.). The conclusion is therefore that a whole range of
(preferably user-tailorable) user interface components offering a variety of ways of per-
forming essentially the same set of tasks should be provided in order to really support
the process of interactive theorem proving.
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5

Unification: Specification and
Development

John S. Fitzgerald

This and the next chapter apply VDM to a problem of considerable practi-
cal importance in computing. Proofs in propositional calculus, discussed in
Chapter 3, require simple pattern matching to determine how inference rules
can be used. For the full predicate calculus, unification is required. The re-
alization that unification is a fundamental process in many applications has
led to much study aimed at producing algorithms of satisfactory time/space
complexity. This chapter sets the scene by showing how certain ‘obvious
algorithms’ do not work and uses these to construct a simple unification algo-
rithm informally. By constrast, a formal specification is constructed and one
particular algorithm developed from it. This illustrates the use of operation
decomposition rules and proofs in guiding the development of code.

127
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5.1 Introduction

This case study concerns the specification of a practically important problem and the
rigorous development of an algorithm from the specification.

The idea of unification of first order terms in an empty equational theory is intro-
duced; its importance as the basis of many practical applications and the wide range
of extant algorithms are noted. It is argued that a formal specification of unification
is required as a basis for the rigorous development of such algorithms. An algorithm
is developed entirely informally. A formal specification of first order unification is de-
veloped and the necessary supporting proofs are outlined. The obligation to prove im-
plementability of the specification is discharged by means of a constructive proof using
operation decomposition rules to guide design of an algorithm similar to the one devel-
oped informally, but this time with some assurance of correctness because of the rigor
of the development.

Some comments on the specification and development processes conclude the case
study.

The idea of unification

Unification is a process of pattern matching. This case study concerns pattern matching
between first order terms. A first order term is either a variable symbol (e.g. x y z)
or a function name followed by a (possibly empty) list of arguments (usually shown in
parentheses). The arguments are themselves terms. So

g f x h x y

is a first order term with function symbol g and arguments f x and h x y .
A substitution is a mapping from variables to terms. When a substitution is applied

to a term the variables in the term are replaced by their images under the substitution
mapping. Thus the substitution #:

# x g y z y

when applied to the term t1:
t1 f x z

yields the term
f g y y

by replacing each occurrence of x in t1 by g y and each occurrence of z by y. Applying
# to t2:

t2 f g y z
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yields the same result, namely f g y y . # is said to unify t1 and t2 and is called a unifier
of those terms. This study is restricted to unifiers which make terms exactly equal, not
merely equal modulo properties of the functions denoted by the function names (such as
associativity or commutativity).

Notice that # x g y is also a unifier of t1 and t2. # is said to be more general
than #, because # can be derived from # (by adding the maplet z y to it). Not all
sets of first order terms have unifiers, but those which do always have a most general
unifier, i.e. a unifier from which all the other unifiers of the terms can be derived. These
ideas will be expressed more rigorously in Section 5.2.

This study concerns procedures for finding the most general unifier of sets of first
order terms in the absence of equational properties of the functionals. Such procedures
are called unification algorithms.

Developing a naı̈ve unification algorithm

A unification algorithm will be regarded as a procedure which, given some terms as in-
put, returns a most general unifier if one exists and a failure flag otherwise. Consider the
terms t1 and t2 as input. A unifying substitution u is to be returned if they are unifiable.
A failure flag is to be set if they are not. The unifier must reconcile all disagreements
between t1 and t2. It seems a good idea to look for a disagreement between t1 and t2 and
to try to resolve it by applying a suitable substitution. This could be repeated until all
the disagreements are resolved and the terms unified.

Suppose disagreeing subterms of t1 and t2 will be reconciled from left to right. Con-
sider the example:

t1 f x h a
t2 f a y

where x and y are variables and f , h and a are function symbols (a takes no arguments –
it is a constant). Here the first disagreement is between x and a. The first disagreement
pair for t1 and t2 is x a .

Algorithm 1 below works in the way suggested above, generating the disagreement
pair (one component of which must be a variable), recording the assignment needed to
resolve the disagreement in u and updating t1 and t2. The process is repeated until all
disagreements are resolved:

Algorithm 1
Input: t1,t2
Output: substitution u, failure flag
u: ;
while t1 t2

Generate disagreement pair d1 d2 ;
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let d1 be the variable in the pair in
Record d1 d2 in u;
Apply u to t1 and t2

endwhile

The means of recording pairs in substitutions will be more fully discussed in Section 5.2.
Applying Algorithm 1 to the above example yields:

1. Initialize u: u .
2. Generate disagreement pair x a .
3. Reconcile disagreement: u x a .
4. Apply u to t1 and t2:

t1 f a h a
t2 f a y

5. Generate disagreement pair h a y .
6. Reconcile disagreement: u x a y h a .
7. Apply u to t1 and t2:

t1 f a h a
t2 f a h a

8. t1 t2 – Stop.

So the algorithm works for some pairs of terms but not for all. For example, in trying to
unify:

t1 f g x
t2 f h x

the first disagreement pair is g x h x . This disagreement cannot be reconciled since
no substitution will make the functionals g and h the same. Clearly t1 and t2 are not
unifiable. The algorithm should test for this kind of failure (called a clash because it
is due to clashing function symbols). A clash occurs when there is no variable in the
disagreement pair, so a check for the variable’s presence should be incorporated into the
algorithm. This yields Algorithm 2:

Algorithm 2
Input: t1,t2
Output: substitution u, failure flag
u: ;
while t1 t2 and not failed

Generate disagreement pair d1 d2 ;
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if neither d1 nor d2 a variable then FAIL Clash
else let d1 be the variable in the pair in

begin
Record d1 d2 in u;
Apply u to t1 and t2
end

endwhile
End Algorithm 2

Algorithm 2 still fails on some inputs. Consider:

t1 f x
t2 f h x

The first disagreement pair is x h x . According to Algorithm 2:

u x h x

but applying u to t1 and t2 yields

t1 f h x
t2 f h h x

The algorithm goes on generating the same disagreement and never making the terms
equal. It will not terminate because the substitutions generated do not eliminate x. The
substitution is called cyclic and t1 and t2 are not finitely unifiable. This study – and
the majority of practical applications – deal only in finitely unifiable terms, so a check
(the ‘Occurs’ check) is included to look for a variable in the disagreement occurring in
another term of the disagreement. Termination can then be forced when such a disagree-
ment is detected. This gives Algorithm 3:

Algorithm 3
Input: t1,t2
Output: substitution u, failure flag
u: ;
while t1 t2 and not failed

Generate disagreement pair d1 d2 ;
if neither d1 nor d2 a variable then FAIL Clash
else let d1 be the variable in the pair in

if d1 occurs in d2 then FAIL Cycle
else begin
Record d1 d2 in u;
Apply u to t1 and t2
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end
endwhile
End Algorithm 3

Algorithm 3 is similar to Robinson’s well-known unification algorithm [Rob65]. It is also
related to the algorithm developed rigorously in Section 5.4.

Exponential time complexity is the main vice of Robinson’s algorithm, countering
its virtue of intuitive simplicity. This exponentiality, according to Corbin and Bidoit
[CB83], derives from the choice of data structure used to represent terms. The next
example illustrates this.

Consider terms represented as ordered trees (we assume ordering of arguments left
to right in the diagrams below). Consider unifying:

t1: f

x g

x y

t2: f

g g

y z g h

h y

u

u

The unifier is x g h u h u y h u z h u . The resultant unified term has
five copies of the subterm h u if represented as a tree:

f

g g

h

u

h

u

g h

h h

uu

u

The h u subterm is copied eight times during the execution of Algorithm 3 on this prob-
lem. The unification computation done in this way on tree structures can lead to expo-
nential growth. To take an extreme example, consider unifying the following terms by
Robinson’s algorithm (or Algorithm 3):
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t1: f

x1 x2 xm. . . . .

t2: f

g g g

x0 x0 x1 x1 xm xm

. . . . .

The first disagreement pair is x1 g x0 x0 . Applying the resultant substitution to t1 and
t2 yields:

t1: f

g x2 xm

x0 x0

. . . . .

t2: f

g g g

x0 x0 g g xm xm

x0 x0 x0 x0

. . . . .

In general the k th disagreement results in adding a component of the form x a term
of 2k 1nodes to the substitution. This is the source of the exponential complexity in
Robinson’s algorithm. Corbin and Bidoit [CB83] proposed the use of directed acyclic
graphs to represent terms to allow sharing of subterms and thus minimize copying. Thus
the term

f

g g

h

u

h

u

g h

h h

uu

u

could be represented with one h u subterm and one g h u h u subterm:
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f

g g

h

u

The use of this term representation is claimed to bring about a dramatic improvement
in the algorithm’s performance.

The process of deriving a unification algorithm appears to be nontrivial. Apart from
the need to handle all kinds of disagreement, the algorithm’s efficiency is greatly influ-
enced by such issues as the choice of data structure. Is it worth the effort? How useful
is unification?

Why unification is important

Unification algorithms are fundamental to a wide range of practical applications, for
instance:

Automated theorem proving. The first unification algorithm proper appeared in the
1930s in Herbrand’s thesis [Her67] but the subject did not receive popular atten-
tion until the development of automated theorem proving in the 1960s, Robinson
[Rob65] employed it in his resolution rule, which involves the unification of liter-
als in antecedent clauses to obtain a consequent clause.

Prolog. The invocation of a Prolog procedure is like a resolution step. It is pattern-
directed and involves the unification of a goal with a clause-head. A unification
algorithm is thus at the heart of a Prolog system. The occurs check is an expensive
overhead in many Prolog systems since it may involve search of deep trees. This,
coupled with the frequency of its execution, causes it to have a serious effect on the
algorithm’s performance. Most Prolog systems omit the occurs check, but these
have to handle the potential generation of infinitely large terms. Some systems
terminate in error when very large terms are generated. Other systems use finite
(cyclic) internal representations for infinite terms [Fil84].

Computer algebra. Consider symbolic integration, for example. The integrand might
be matched against certain patterns to determine the class of problems to which it
belongs. The appropriate integration method can then be invoked.
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Type checking. Type checking in an environment with polymorphic functions involves
substitution of type expressions for type variables. In checking the compatibility
of two type expressions, they must be unified [ASU86].

Other applications. Examples include string handling, information retrieval, computer
vision (unification of graphs) and knowledge representation in expert systems.

The variety of algorithms

The unification operation is as fundamental to many of its applications as arithmetic op-
erations are to numerical computing, so choice of algorithm has a significant effect on the
performance of any application of which it is a part. Siekmann [Sie84] considers ‘The
Next 700 Unification Algorithms’ – and he has a point: the importance of unification
to practical applications has motivated the development of a large corpus of algorithms
differing widely on a number of counts:

Method. Some algorithms, like that of Corbin and Bidoit [CB83] are based on Robin-
son. Others, like Paterson and Wegman’s [PW78] or Martelli and Montanari’s
[MM82] are based on the idea of equivalence classes of terms.

Complexity. One major aim in the development of novel unification algorithms has
been the relief of inefficiencies inherent in Robinson’s original. Improvements
have been suggested which lower the original algorithm’s exponential space com-
plexity [Rob71, BM72]. Corbin and Bidoit [CB83] suggest the different term rep-
resentation described above and claim that it brings improved complexity in both
time and space, their algorithm being quadratic in the number of symbols in the
input terms. Paterson and Wegman [PW78] mention the existence of nonrecursive
O AE V -time algorithms (where V is the number of vertices and E the number
of edges in the directed acyclic graph representation of the input terms and A is the
functional inverse of Ackerman’s function). Vitter and Simons [VS86] present an
algorithm which satisfies this. They also give an O E V sequential algorithm
and a parallel version for an exclusive read/write parallel random access machine
which is O E P V logP -time where P is the number of processors.

Data structures. Corbin and Bidoit’s improvements are based on the use of directed
acyclic graphs as an alternative to the more conventional tree-structures used to
represent terms. It is shown below how this can bring about an improvement in
unification algorithm complexity. Martinelli and Montanari [MM82] use multi-
terms and multisets of terms.

Reaction to environment. One cannot simply state than one algorithm is ‘better’ than
another. Algorithms behave differently in different environments. Unification
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algorithm performance can depend on a number of environmental factors, such as
the ‘shape’ (depth of nesting and number of arguments) of the input terms and the
probability that they are not unifiable.

The development of a correct and efficient unification algorithm is, then, an activity
of considerable practical value. In this section a simple (and probably highly inefficient)
unification algorithm has been developed in an ad hoc way. The design methodology
was crude: think of a possible algorithm and find bugs; correct the bugs and check the
algorithm again; repeat the process until convinced of the algorithm’s ‘correctness’. The
reader with any practical experience in algorithm design will wonder if the development
has gone far enough at Algorithm 3. Does it really find a unifier for all unifiable input
terms and stop with failure on all nonunifiable inputs ... and is that unifier the most
general? This question of gaining conviction of correctness is at the center of this case
study, where a rigorous approach to the specification of unification gives a basis for
judging the correctness of proposed algorithms. It also provides a starting point for
the analysis of the variety of algorithms described above in a controlled and rigorous
manner. Different algorithms can be viewed as alternative developments of the same
specification.

The rest of this case study illustrates part of this approach. First, unification is de-
fined by means of a formal specification. Then the rigorous development of an algorithm
similar to Algorithm 3 is considered. The methods used should ensure the correctness of
the result.

5.2 Building a specification of unification

Section 5.1 considers the motivation for a rigorous approach to the specification, devel-
opment and verification of unification algorithms. Such a specification is now presented
piece by piece.

Two types of data object are involved in unification: terms and substitutions. Specifi-
cations for each of these types and primitive operations on them are developed, working
towards an implicit specification for most general unification.

Terms

Functional terms consist of a function name and a list of arguments which are themselves
terms. The name has an associated ‘arity’ – a natural number giving the correct number
of arguments in any well-formed term containing the function name. Let FT be the type
of functional terms and GT the type of general terms (defined below). Functional terms
may then be specified thus:
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FT :: fn : F-Id
args : GT

The arity is taken to be part of the function name fn. Informally, the arity will be
shown as a superscript in the function name. Thus f2 x y and f3 x y z are valid terms
with different function names. Note that FTs with no arguments are individual constants.

Let the type of variables be V-Id. A term is either a variable or a functional term, so
the type GT of terms is defined as the union of V-Id and FT:

GT V-Id FT

Note that V-Id and F-Id are considered atomic types. It is assumed that equality on
them is defined. Equality is also assumed to be defined on FT and GT in the obvious
structural way.

This specification does not admit infinite terms involving cycles, like:

f 2

a0 g2

x g2

a0

The reason is that, in VDM, recursively-defined objects are required to be finite. This
is essential for the well-foundedness of structural induction rules. Such a rule can be
written for GT . It allows the proof of assertions about ‘all t in GT’. The rule is called
GT-Ind:

GT-Ind

t V-Id p t ;
f F-Id l GT a rng l p a p mk-FT f l

t GT p t

Informally, this rule says that if p v can be shown to hold for any variable v and
p mk-FT f l can be shown to hold if p a holds on each argument a in l, then p t
holds whenever t is a GT .

Now that variables and terms are dealt with, the occurs check mentioned above can
be specified. Occurs is a function which takes a variable and a term and returns the
boolean value true if and only if the variable occurs somewhere in the term.

A variable ‘occurs’ inside itself. Thus:

Occurs x x true
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Occurs x f2 a0 y false

Occurs y f2 a0 y true

Occurs is specified as follows:

Occurs :V-Id GT
Occurs v t if t V-Id

then v t
else a rng args t Occurs v a

If the term t is a variable, the check reduces to v t. Otherwise tmust be a functional
term and for the variable to occur in t it must occur in some argument of t. Since Occurs
is a defined function, we can derive inference rules describing its behavior:

Occurs -Def
v V-Id; t GT V-Id
Occurs v t v t

Occurs -Def
v V-Id; t GT V-Id

Occurs v t a rng args t Occurs v a

Such rules can be derived for all the defined functions in the specification, and this is left
as an exercise for the reader.

It is now possible to write a function which returns the disagreement set of a set of
terms. This will be used in the algorithm developed in Section 5.4 below.

Dis :GT-set GT-set
Dis s if card s 1

then
else if V-Id s

t1 t2 s fn t1 fn t2 len args t1 len args t2
then s
else SeqDis args t t s

where

SeqDis :GT -set GT-set
SeqDis q if q

then
else if Dis hd l l q

then SeqDis tl l l q
else Dis hd l l q
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Dis returns if the supplied set is empty or singleton. If the set contains a variable,
then all the other terms must disagree with that variable, so Dis returns the whole set.
If the set contains a clash, then all the terms are in disagreement, so again Dis returns
the whole set. Otherwise, SeqDis works through the arguments of the terms ‘from left
to right’ and returns the leftmost set of disagreeing subterms. Of course, a different
function could be chosen which works ‘right to left’ or even in no particular order at all.
Indeed, an implicit specification of SeqDis would not suggest an order. However, this
function is really for use in the development of an algorithm later on, so the deterministic
definition above will suffice.

Substitutions

A substitution may be viewed as a mapping from V-Id to GT:

Subst V-Id m GT

When a substitution is applied to a term, all occurrences of variables which appear
in both the term and the domain of the substitution are replaced by their images un-
der the substitution. For example, under the substitution x g1 z y a0 , the term
f 3 x g1 y z becomes f3 g1 z g1 a0 z . As in this example, the mapping can be par-
tial (i.e. need not apply to all variables in V-Id).

It has been shown how cyclic substitutions might arise in the unification process.
Such substitutions can be characterized and excluded from the type Subst by means of
an invariant, the derivation of which follows.

Consider the directed graph of a substitution. Variables and functionals are repre-
sented by nodes. Variable nodes each occur only once in the graph. When a variable is
in the domain of a substitution it has one outgoing arc pointing to its image. If a variable
is in the range of the substitution, it will have at least one incoming arc. Functional terms
are represented in the usual way, with a functional node and arcs pointing to arguments.
Thus the substitution x g2 a0 y z u has graph:

x g2
a0

y
z u

This graph is acyclic, and so is the substitution.
The substitution x f2 x y is cyclic (x on both sides of the same component)

and so is its graph:
x f 2 y
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This kind of substitution in which a domain variable occurs in its own image is called
directly or immediately cyclic. A more pernicious kind of substitution is the indirectly
cyclic type. Here the cycle may not be clear until one examines the graph:

x f 1 y y g2 u z u f 1 z z g2 v x

g2 v

x

z

f 1

f 1

y

u

g2

An invariant on Subst is used to characterize and eliminate cyclic substitutions. This
is done in the spirit of Jones [Jon90] so that subsequent searches for representation data
types can capitalize on this invariant property, though it is quite possible to develop
algorithms which do not rely on acyclicity as an invariant on substitutions, and this is
just what is done in the development below. A cyclicity testing function could be derived
which would search the substitution graph to see if any variable can be reached from
itself ([Vad86, Nil84]). The definition of such a function is avoided by using a property
of substitutions pointed out by Manna and Waldinger [MW81] and Eder [Ede85].

If a substitution is cyclic then there is a variable in its graph which can be reached
from itself. The variable’s node must have both an incoming and an outgoing arc (the
incoming arc shows that the variable is in some term of the substitution’s range, while
the outgoing arc shows that the variable occurs in the domain of the substitution). If the
domain and set of variables in the range are disjoint then there will be no variable nodes
with both incoming and outgoing arcs. Hence the substitution represented by the graph
will be acyclic. A substitution with this disjointness property will be called var-disjoint.

Var-disjoint substitutions are always acyclic, but not all acyclic substitutions are var-
disjoint. This is why Vadera [Vad86] argues that his specification of substitutions is
more general than that presented here. This is indeed so, but for the purposes of this
application, we do not ‘lose out’ by insisting on var-disjoint substitutions. This point is
considered with substitution reduction below.

Now for a function describing var-disjointedness:

VarDisj :V-Id m GT
VarDisj # x y dom# Occurs x # y

VarDisj # is true if and only if no variable in the domain of # occurs in a term
in the range of #. One rule derived from this function definition is used in the proof in
Figure 5.1 below.
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VarDisj -Def

# V-Id m GT
x y dom# Occurs x # y

VarDisj #

There are some acyclic substitutions which are not var-disjoint. These substitutions
have graphs containing paths through one or more domain variables. For example:

# y g1 x x a0 z a0

y g1 x a0

z a0

Here the variable x occurs in the domain of # and in a term of the range, yet the substi-
tution is acyclic. Is inv-Subst too strong in excluding this type of substitution? In fact,
non-var-disjoint acyclic substitutions can be reduced to var-disjoint ones. For example,
# can be reduced to # :

# y g1 a0 x a0 z a0

y g1 a0

x a0

z a0

A reduction function which, given a non-var-disjoint acyclic substitution, returns its
var-disjoint equivalent can be defined. (Two substitutions are equivalent if, when ap-
plied to any term, they yield the same resultant term.) Thus it is possible to show that
any non-var-disjoint acyclic substitution has a var-disjoint equivalent. For this reason,
the VarDisj invariant on Subst will be used. This may appear to give a simpler speci-
fication for substitutions, but there is no such thing as a free lunch. In fact, the gain in
the simplicity of substitution application (all of the substitution can be applied at once)
may be countered by the complexity of substitution composition, which must preserve
var-disjointedness. At this stage in the specification, one can see that var-disjointedness
may bring gains in the speed of substitution application, but at the price of maintain-
ing the invariant. This will be a favourable trade-off in applications where substitution
application is more important than fast substitution construction or modification.

Application of a substitution to a term is simply specified. If the term is a variable in
the domain of the substitution then the variable is replaced by its image under the sub-
stitution. Var-disjointedness of substitutions ensures that this does not have to be done
recursively. If the term is a variable not in the domain of the substitution, then it is unaf-
fected by application of the substitution. If the term is functional, then the function name
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is unaffected by the substitution, and the arguments all have the substitution applied to
them. Hence we specify the application operator ( t ) thus:

t :Subst GT GT
t # t if t V-Id

then if t dom#
then # t
else t

else µ t args i t
# args t i i dom args t

Infix notation will be used for this function, so for t # t , # t t is preferred.
Application has been explicitly defined, so the definition can be followed through on

an example.
Let t mk-FT f 3 x y z and # x mk-FT g1 z . Then:

# t t µ t args 1 # t x 2 # t y 3 # t z
µ t args # x y z
µ t args mk-FT g1 z y z
mk-FT f mk-FT g1 z y z

The operator s extends t to cope with the application of a substitution to a set of
terms:

s :Subst GT-set GT-set
s # s # t t t s

This will also be used in infix form: # s s.
In the informal development of a simple unification algorithm, it was necessary to

combine substitutions in some way. Indeed, this is the case for all unification algorithms
which accumulate a unifier component by component.

An infix composition operator, , can be specified so that for substitutions #1 #2,
#1 #2 is a substitution which has the same effect on any term as applying #1 to the
term and then applying #2 to the result. So, the composition #1 #2 is a (var-disjoint)
substitution r such that for any term t in GT , r t t #2

t #1
t t . This gives an ob-

vious post-condition for an implicit specification of . The pre-condition is rather more
complex. First, the full function specification is given, and then the derivation of the
pre-condition is considered:

#1 #2:Subst r:Subst
pre x y dom#1 dom#2

Occurs x #2
t
#1

t y x #2
t
#1

t x
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post t GT r t t #2
t
#1

t t

The pre-condition on an operation or function specification delimits the domain of
states and input values over which the operation or function must be defined. When
specifying , it must be ensured that there are no input values for which it is impossible
to give an output satisfying the post-condition. This is the essence of the implementabil-
ity proof obligation in Jones [Jon90]. The pre-condition in the specification of above
is there to exclude pairs of substitutions which have no var-disjoint composed form. For
example:

#1 x u y z
#2 u w z f 1 x

A composed substitution should map x to w and y to f1 x , but such a substitution would
not be var-disjoint. pre- excludes cases like this by requiring that no variables in the
input substitutions can participate in a cycle in the result (unless the cycle is a trivial one
like x x in which case the component can be eliminated).

Var-disjoint substitutions have an interesting property, namely idempotence under
substitution composition. In general, x is idempotent under a binary operation if and
only if x x x. Var-disjoint substitutions are idempotent under substitution composition
(defined below).The reader is invited to formulate and prove this property.

It is claimed that pre- is sufficiently weak, i.e. no #1 #2 excluded by pre- could
have a var-disjoint composed form. See Section 5.6 for a consideration of the proof of
this assertion. The claim that all #1 #2 permitted by pre- have var-disjoint composed
forms satisfying post- is the implementability proof obligation (see Section 5.3).

Unification

It is now possible to specify unification of a set of terms. A substitution unifies a set of
terms if and only if applying it to all terms in the set yields the same result. The function
unifies defines just this:

unifies :Subst GT-set
unifies # s t1 t2 s #

t t1 #
t t2

Again, infix form will be preferred: #unifies s. Following this definition, any substitution
unifies the empty set of terms.
The most general unifier for a set of terms is that unifier from which any other unifier

of the set may be constructed by composing it with a suitable substitution. The function
MGen , given a set of terms and a substitution, checks that the substitution is indeed the
most general unifier of the set.



144 5 Unification: Specification and Development

MGen :Subst GT-set
MGen # s #unifies s $ Subst $unifies s " Subst $ # "

A set of terms is unifiable if and only if it has a unifier:

Unifiable :GT-set
Unifiable s # Subst #unifies s

The operation MGUoperates over a set of terms, a unifier and a boolean flag. If a set
of terms s is not unifiable, MGUmust leave the flag b false. In that case the value of
the unifying substitution u is irrelevant and may be arbitrary. If s is unifiable, MGUmust
leave b true and u set to the most general unifier of the set.

MGU
ext rd s : GT-set
wr b :
wr u : Subst

post b MGen u s
b Unifiable s

It is not necessary to write to s to find a unifier and so the operation has read access
only (this might be different if the unified term had to be returned). Since a unifier is to
be constructed in u and the flag b must be set, read and write access is given to them.

5.3 Proofs supporting the specification

At each stage in the design of a piece of software, claims are made about the consistency
of design decisions with preceding work. In the approach employed here such claims
become proof obligations.

Obviously, specifications which cannot be met should not be used as the basis for
further development. Implementability must therefore be proved for each specified func-
tion/operation which we intend to implement. In this section such proofs are considered,
with examples.

The implementability proof obligation given by Jones [Jon90] requires that there
should be an output satisfying the post-condition of the specification for every input
over which it is defined (i.e. every input satisfying the pre-condition). For functions, the
obligation is:

d D pre-f d r R post-f d r

where D is the domain space of f and R its result space. For operations the obligation is:

# % pre-OP # # % post-OP # #
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where % is the state space (including the operation parameters). The extension of this
rule to operations with input and result parameters is obvious.

When the implementability obligation is discharged, one must show that a result of
the appropriate type exists for a given input. This existential proof is often constructive
and is thus not very different from the process of building an implementation at the same
level of abstraction as the specification. In such situations, the implementation often
proceeds given the (strong) feeling that the obligation can be discharged.

An example proof: implementability of substitution composition

In this case the obligation reduces to proving:

#1 #2 Subst pre- #1 #2 & Subst post- #1 #2 &

i.e. that for any pair of substitutions satisfying pre- it is possible to construct a substi-
tution & which is their composition and so satisfies post- . The proof is constructive,
i.e. for any #1 #2, a suitable & is constructed. To do this, a function R is defined. It
is to be proved that R #1 #2 is a substitution satisfying inv-Subst and, furthermore,
post- #1 #2 R #1 #2 holds. First, however, the definition of R:

R :Subst Subst Subst
R #1 #2

v #2
t
#1

t v v dom#1 dom#2 v #2
t
#1

t v

R #1 #2 maps each variable v in the domains of #1 and #2 to #2
t
#1

t v , unless
this would introduce an identity cycle such as x x , in which case the guilty variable
is ignored. Consider an example:

#1 x f 2 u v w y
#2 u a0 y w

R #1 #2 x f 2 a0 v u a0

The main proof (Figure 5.3) has two parts. Firstly, the invariant preservation proof,
that for any #1 #2 Subst, R #1 #2 is still a well-formed substitution:

InvPres-R
#1 #2 Subst;pre- #1 #2

inv-Subst R #1 #2

This is dealt with separately in Figure 5.1 and is used at line 1.1 in the main proof.
Secondly, the proof that R #1 #2 satisfies post- : post- is a predicate quantified over
all t GT , so the structural induction rule GT-Ind introduced above is used. The base
case:
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from #1 #2 Subst pre- #1 #2
1 v dom#1 dom#2 #2

t
#1

t v GT h, t , Subst
2 R #1 #2 V-Id m GT 1, h
3 from x y domR #1 #2
3.1 x y dom#1 dom#2 h3, R
3.2 x #2

t
#1

t x h3, R
3.3 R #1 #2 x #2

t
#1

t x h3, R
3.4 R #1 #2 y #2

t
#1

t y h3, R
3.5 Occurs x #2

t
#1

t y x #2
t
#1

t x pre- , -E(h,3.1)
3.6 Occurs x R #1 #2 y x R #1 #2 x

=-subs (3.3, =-subs (3.4, 3.5))
3.7 x R #1 #2 x =-subs (3.3, 3.2)

infer Occurs x R #1 #2 y vac -E (3.6, 3.7)
4 x y domR #1 #2 Occurs x R #1 #2 y -I (3)
5 VarDisj R #1 #2 VarDisj -Def (2, 4)
infer inv-Subst R #1 #2 inv-Subst, 2, 5

Figure5 1 InvPres R – invariant preservation by R

Base
#1 #2 Subst;pre- #1 #2

t V-Id R #1 #2
t t #2

t
#1

t t

is shown in Figure 5.2 which contributes line 1.2 to the main proof. The induction step
itself is shown in the main proof at 1.4.

Implementability of MGU

At this point it is worth considering the implementability proof for MGU . As MGU is
an operation capable of modifying the state on which it operates, the obligation amounts
to showing that:

# % true # % post-OP # #

A brief examination of this obligation (as expanded by substituting the full post-
condition) and an outline of its proof (left as an exercise for the reader) shows that
discharging the obligation depends on the proposition that for any unifiable set of terms
there is a most general unifier. The truth of this proposition can be proved by designing
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from #1 #2 Subst pre- #1 #2
1 R #1 #2 Subst Lemma 1
2 from t V-Id
2.1 from t domR #1 #2
2.1.1 R #1 #2

t t R #1 #2 t h2, h2.1, 1, t

infer R #1 #2
t t #2

t
#1

t t -inst (h2.1, 2.1.1)
2.2 from t domR #1 #2
2.2.1 t dom#1 t dom#2 t #2

t
#1

t t h2.2, R,
2.2.2 from t dom#1 t dom#2
2.2.2.1 #1

t t t h2, -E (h2.2.2), t

2.2.2.2 #2
t #1

t t #2
t t 2.2.2.1, t

2.2.2.3 #2
t t t h2, -E (h2.2.2), t

infer t #2
t
#1

t t -trans (2.2.2.2, 2.2.2.3)
2.2.3 t #2

t
#1

t t 2.2.1, 2.2.2
2.2.4 R #1 #2

t t t h2.2, t

infer R #1 #2
t t #2

t
#1

t t 2.2.3, 2.2.4
2.3 t domR #1 #2 t domR #1 #2 h2, 1,

infer R #1 #2
t t #2

t
#1

t t -E(2.3, 2.1, 2.2)
infer t V-Id R #1 #2

t t #2
t
#1

t t -I(2)

Figure5 2 Base – base case property for main implementability proof

a correct algorithm which generates such a most general unifier for any unifiable set of
terms. This is the subject of Section 5.4.

5.4 Developing a correct algorithm

In Section 5.2 a specification for most general unification of a set of terms was given.
In this section, a unification algorithm based on Robinson’s (operating on the data types
defined in the specification) is developed using operation decomposition techniques to
assure correctness.
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from #1 #2 Subst
1 from pre- #1 #2
1.1 inv-Subst R #1 #2 h, InvPres R
1.2 t V-Id R #1 #2

t t #2
t #1

t t h, Base
1.3 from t V-Id

infer R #1 #2
t t #2

t #1
t t -E(h1.3, 1.2)

1.4 from f F-Id l GT inv-FT mk-FT f l
a rng l R #1 #2

t a #2
t #1

t a
1.4.1 R #1 #2

t mk-FT f l
mk-FT f i R #1 #2

t l i i dom l t , h1.4
1.4.2 from i dom l
1.4.2.1 l i rng l h1.4, h1.4.2

infer R #1 #2
t l i #2

t #1
t l i -E (1.4.2.1, h1.4)

1.4.3 i dom l R #1 #2
t l i #2

t #1
t l i -I (1.4.2)

1.4.4 R #1 #2
t mk-FT f l

mk-FT f i #2
t #1

t l i i dom l 1.4.1, 1.4.3
1.4.5 #1

t mk-FT f l
mk-FT f i #1

t l i i dom l h, h1.4, t

1.4.6 #2
t #1

t mk-FT f l
mk-FT f i #2

t #1
t l i i dom i #1

t l i i dom l
h, 1.4.5, h1.4, t

1.4.7 #2
t #1

t mk-FT f l
mk-FT f i #2

t #1
t l i i dom l 1.4.6, t , µ

infer R #1 #2
t mk-FT f l #2

t
#1

t mk-FT f l 1.4.7, 1.4.4
1.5 t GT R #1 #2

t t #2
t
#1

t t -I (GT-Ind (1.3, 1.4))
1.6 post- #1 #2 R #1 #2 1.5,
1.7 R #1 #2 Subst 1.1

infer & Subst post- #1 #2 & -I (1.7, 1.6)
2 ! pre- #1 #2

t ,
infer pre- #1 #2 & Subst post- #1 #2 & -I (1,2)

Figure5 3 Main proof of implementability of substitution composition
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The algorithm

In Section 5.1 a simple unification algorithm (Algorithm 3) was developed in an ad hoc
manner. Now a development can be presented more rigorously, working on the the data
types introduced in the specification via the operators also introduced there.

As in Algorithm 3, the procedure will be iterative, generating and resolving disagree-
ment sets until either the set of terms reduces to a singleton under application of the
constructed substitution or a clash or cycle is found and the set is deemed nonunifiable.

Algorithm development

Technique

Now that a specification of unification has been given, we can consider the design of
an algorithm which meets the specification. In Section 5.1, Algorithm 3 was developed
informally, but here the design will proceed in a controlled manner, starting from the
specification. We begin with the specification of the operation we wish to implement (in
this case MGU) and break it down into structured code in some suitable implementation
language. The development proceeds in stages. For example, if we are developing an
algorithm similar to Algorithm 3 above, we can break MGU into two operations which
are sequentially composed:

;

Initialization will itself be broken down into sequentially composed assignments while
MainPhase employs a while-loop whose body breaks down into nested conditionals and
so on. This process of breaking an operation down into component operations linked
by combinators is called operation decomposition. The combinators are usually based
on constructs of an implementation language, but need not be so concrete. Successive
decompositions can be used to eliminate the more abstract combinators so that the fully
decomposed operation specification is a program in the implementation language.

At each step in a decomposition, the code designer chooses to introduce a new con-
struct from a range of alternatives. The step involves a design decision – and in a rigor-
ous development such design decisions must be shown to preserve the properties of the
specification which forms the input to the decomposition step. Thus each step generates
a proof obligation. The behaviour of each construct in the combinator/implementation
language is described by rules which are used to justify the decomposition step.

What do the operation decomposition rules look like? It is possible to ‘comment’ a
program with assertions over the state variables. Operation decomposition rules allow
the manipulation of these assertions. The set of rules used in a development clearly
depend on the particular implementation language chosen. For the purposes of this case
study, the rules needed are as follows.
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Assignment. : -I WD e E x: e x e E x x

where E x x is E with all free xs replaced by x . Thus if E is asserted before an
assignment, it can, properly qualified, be asserted afterwards. WD e indicates that e
should denote a proper value (i.e. it should not be undefined). Strictly, there is a class
of such assignment rules, one for each possible type. Thus if T is the class of all types,
then for each T:T .

: -I e T E x: e x e E x x

Conditional. if-I
pre test TH post ; pre test EL post

pre if test then TH else EL post

In order to introduce a conditional given pre, show that the post-assertion holds in both
limbs separately.

Iteration. while-I
inv test S inv rel

inv while test do S end inv rel test

inv is an invariant predicate which is true before and after each iteration of the loop. The
predicate rel denotes a well-founded and transitive relation on states before and after
execution on the loop body. rel is its reflexive closure.

Sequential composition. ;-I
pre1 S1 post1 pre2 ; pre2 S2 post2

pre1 S1;S2 post1 post2
where

post1 post2 # # #i % post1 # #i post2 #i #

The hypotheses ensure that the two operations S1 and S2 can be connected sequentially,
i.e. that S1 sets up a state in which S2 is defined. The conclusion states that there is
then an intermediate state linking the state before S1;S2 to that after. Note that if post1
and post2 are single-state predicates, so that they refer only to # and not to # , this rule
simplifies to

;-I’
pre1 S1 post1 ; post1 S2 post2

pre1 S1;S2 post2
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Consequence. weaken
pres pre; pre S post ; post postw

pres S postw
If S satisfies a specification then it satisfies a weaker specification.

Nondeterministic choice. let-I
s ; pre v s S post

pre letv s inS post

This rule does not appear in [Jon90]. It allows the introduction of a nondeterministic
choice construct provided the set over which selection is made is nonempty.

Inheritance. pre
pre S post

pre S pre post

This allows the strengthening of a post-assertion by addition of the pre-assertion with all
the free variables hooked. Note that for any variable v to which the S operation has only
rd or no access, v v. We will tend to use this fact implicitly below.

The development

As has been indicated above, the development process involves the manipulation of
assertions about the state and program variables. We kick this process off by using
the pre- and post-conditions of the operation we wish to implement. MGUAlg will be
correct with respect to the specification of MGU if, for all starting states satisfying
pre-MGU , the algorithm terminates and does so with a state satisfying post-MGU . Note
that post-MGU is a single-state predicate so we may write post-MGU s b u instead of
post-MGU s b u s b u . Note that since s is a -only component of the state, we
can use the fact that s s when appropriate.

Thus the following should hold:

true post-MGU s b u

We must construct a proof which concludes this from definitions.
The first development step breaks MGUAlg into an initialization phase and a main

processing phase (the loop which will construct the unifier). Then:

true ; post-MGU s b u

This decomposition has to be justified by the ;-I rule. Our proof is then of the form
shown in Figure 5.4. The lemmas1 used in Figure 5.4 are:
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from Definitions
1 true ; u b post-MGU s b u

;-I (Lemma 5.1, Lemma 5.2)
2 u b post-MGU s b u post-MGU s b u

, , Set
infer true post-MGU s b u weaken(1,2)

Figure5 4 Form of main developmental proof for MGUAlg

from Definitions
1 WD WD
2 WD true WD
3 true WD true 1,
4 u true WD true u 2, ,
5 WD true u: u true : -I
6 true u: WD true u weaken(3,5,4)
7 WD true u b: true b true u : -I
infer true u: ; b: true u b true ;-I (6,7)

Figure 5.5 Developmental proof for Initialization

true u b (5.1)

u b post-MGU s b u (5.2)

Lemma 5.1’s proof justifies the development of Initialization and Lemma 5.2’s that of
MainPhase. First consider Initialization. It can be decomposed into:

true u: ; b: true u b

The proof of Lemma 5.1 in Figure 5.5 is one possible justification for this decomposition.
In the rest of this study, arguments relating to the ‘definedness’ of assigned expressions
will be suppressed to avoid obscuring the substance of the development.

Now for the (more complex) decomposition of MainPhase. It is intended that, as
in Algorithm 3, MainPhase be a loop which generates disagreements and tries to resolve

1In the sequel, lemmas are shown as numbered formulae.
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from Definitions
1 inv inv test rel while-I (Lemma 5.3)
infer u b post-MGU s b u

weaken (Lemma 5.4, 1, Lemma 5.5)

Figure5 6 Justifying the while loop introduction

them, adding a new component to u each time (unless a clash or cycle is detected). So
one possible decomposition of MainPhase is as follows:

u b
card u s s 1 b

post-MGU s b u

We would like to use while-I to justify this decomposition via a proof of Lemma 5.2 of
the form shown in Figure 5.6 (where test stands for card u s s 1 b) and the lemmas
used are:

inv test inv rel (5.3)

u b inv (5.4)

inv test rel post-MGU s b u (5.5)

Now inv and rel must be chosen so that Lemmas 5.4 and 5.5 are satisfied and Bodymust
be developed so that Lemma 5.3 holds.

The relation rel should be well-founded, relating states at the beginning of each
execution of the loop body to the corresponding states at the end of the loop body. It
describes the possible state transitions caused by the loop body. It should refer to a
decreasing quantity in the system and should not have an infinitely descending chain of
values of that quantity, so that termination of the loop can be proved. In the case of Body,
two possible kinds of state transitions have to be described: either the terms are found
to be nonunifiable (clash or cycle discovered) and b is set false to force termination or
a disagreement is resolved and the number of variables in u s s is reduced (since the
new substitution component replaces the variable in the disagreement with a term which
introduces no new variables). The number of variables in u s s has to be at least zero,
so the following well-founded transitive rel is suggested:2

2The interested reader may care to prove the well-foundedness and transitivity of this relation.
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rel b b
b b NV u s s NV u s s

What factors need to be invariant over all iterations of MainPhase? These form inv.
As the loop executes, disagreements are resolved and each resolution brings u closer to
being a most general unifier for s and if b is ever set false then s is not unifiable.

inv $ Subst $unifies s " Subst $ u "
b Unifiable s

Does this choice of inv and rel satisfy the criteria imposed by Lemmas 5.4 and 5.5?

Lemma 5.4 holds because if u then $ itself is a suitable " in inv since $ ".
The second conjunct of inv is vacuously true because b is true.

Lemma 5.5 holds because if inv card u s s 1 b rel then:

Case: if b then card u s s 1, in which case uunifies s and (by inv) MGen u s .
Case: if b then (by inv) Unifiable s .

These two cases construct post-MGU s b u .

So now we have an inv and rel which can serve for the development of the loop body.
Body is to be filled out so that the following holds where test card u s s 1 b:

inv test inv rel

The body must check the disagreement set for clashes of function symbols and cycles.
If none are found, a new component must be added to u. Let the cycle and clash checks
be done by nested if-statements. Firstly the clash check:

inv test
ifV-Id Dis u s s b: false

inv rel

This decomposition can be proved valid (using if-I) if Lemmas 5.6 and 5.7 hold:

inv test V-Id Dis u s s b: false inv rel (5.6)

inv test V-Id Dis u s s

inv rel
(5.7)
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from Definitions
1 WD false WD
2 WD false Unifiable s b: false Unifiable s b : -I
3 Unifiable s WD false Unifiable s 1, ,
4 Unifiable s b: false Unifiable s b weaken(3,2)
5 inv test V-Id Dis u s s

b: false
Unifiable s b weaken (Lemma 5.8, 4)

6 inv test V-Id Dis u s s
b: false
inv test V-Id Dis u s s Unifiable s b pre (5)

infer inv test V-Id Dis u s s b: false inv rel
weaken (6,Lemma 5.9)

Figure 5.7 Proving the first conditional limb

One proof of Lemma 5.6 using : -I, weaken and pre is shown in Figure 5.7.
Note that the lemmas required by this proof are really facts about the data types

and operations in the specification. They can be proved separately, independent of the
algorithm development and operation decomposition rules. Since at this point we can
stop using the operation decomposition rules and appeal to the theory associated with
the original specification, we call these ‘terminal lemmas’. They are:

inv test V-Id Dis u s s Unifiable s (5.8)

inv test V-Id Dis u s s Unifiable s b inv rel (5.9)

The proof of Lemma 5.8 depends on the fact that if there are no variables in Dis u s s
then s is not unifiable because a clash has been detected. For Lemma 5.9, since s is not
unifiable, inv holds. rel holds after the assignment because b has been changed from
true to false.

Proving Lemma 5.7 guides the development of CycleCheck. The idea is to select a
variable from the disagreement set (using nondeterministic choice) and then check for
a term containing it in the disagreement set. The presence of such a term means the
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original set of terms was un-unifiable. First, the introduction of the let statement:

inv test V-Id Dis u s s
v V-Id Dis u s s

inv rel

For this to be a correct decomposition (by let-I) we require that:

inv test V-Id Dis u s s v V-Id Dis u s s

inv rel

Now let be a conditional which looks for a potential cycle. If none is found,
resolve a disagreement. So we will have:

inv test V-Id Dis u s s v V-Id Dis u s s
if t Dis u s s v Occurs v t b: false

inv rel

If this is to be a valid decomposition (by if-I), the following two lemmas must hold:

inv test V-Id Dis u s s v V-Id Dis u s s
t Dis u s s v Occurs v t

b: false
inv rel

(5.10)

inv test V-Id Dis u s s v V-Id Dis u s s
t Dis u s s v Occurs v t

inv rel

(5.11)

Discharging 5.10 proceeds in a similar way to 5.6, and the terminal lemmas are:

inv test V-Id Dis u s s v V-Id Dis u s s
t Dis u s s v Occurs v t

Unifiable s
(5.12)

inv test V-Id Dis u s s v V-Id Dis u s s
t Dis u s s v Occurs v t
Unifiable s b
inv rel

(5.13)
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The proof of Lemma 5.12 depends on the fact that if there is a term t in Dis u s s v
containing v then the original set s is not unifiable.3 Given this we can show Lemma 5.13.
inv holds because s has no unifiers and rel holds because b has been set to false.

The proof of Lemma 5.11 governs the decomposition of Resolve. Resolve will (non-
deterministically) select a term t from Dis u s s v and compose v t into u.
Lemma 5.11 would then be:

inv test V-Id Dis u s s v V-Id Dis u s s
t Dis u s s v Occurs v t
t t Dis u s s v Occurs v t

u: R u v t
inv rel

For this to be a valid decomposition (by let-I) the following must hold:

inv test V-Id Dis u s s v V-Id Dis u s s
t Dis u s s v Occurs v t
t t Dis u s s v Occurs v t

u: R u v t
inv rel

(5.14)

Let the pre-assignment assertion be called X for brevity. To show the validity of this
decomposition, use : -I, weaken and pre in the usual way, the terminal lemmas being:

X WD R u v t (5.15)

X u u u R u v t inv rel (5.16)

Discharging Lemma 5.15 involves showing that u and v t are indeed well-formed
substitutions. Discharging Lemma 5.16 amounts to showing that, for any substitution $
unifying s which could be constructed from u, $ can still be constructed from u. This
construction is, in fact, unchanged. It is also necessary (for rel) to show a reduction in
the number of variables in u s s. Since v and t are drawn from terms in u s s, v occurs
in a term in u s s. v does not occur in t so replacing all occurrences of v in u s s
by t will not introduce any variables into u s s which were not there already and will
eliminate v altogether. Hence NV u s s NV u s s .

We have now shown
inv test inv rel

and so by while-I:
inv inv test rel

3Again, this property can be proved separately.
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as required, and the development is completed as per the proof outlined at the beginning
of the decomposition. The final algorithm is:

Algorithm MGUAlg
ext rd s:GT-set

wr b:
wr u:Subst
u: ;
b: true;
while card u s s 1 b

if V-Id Dis u s s then b: false
else let v V-Id Dis u s s in

if t Dis u s s Occurs v t then b: false
else let t t Dis u s s Occurs v t in
u: R u v t

endwhile
End MGUAlg

It is worth standing back from the minutiae of the development illustrated above
to look at the process of development itself. Each program construct introduced repre-
sented a design decision. Each design decision generated a proof obligation to justify
the introduction by the operation decomposition rules. The chain of design decisions
involved in the development of the algorithm terminated when the obligation could be
proved by appealing to properties of the data types and operations on which the algo-
rithm was based. These properties are then proved separately (perhaps using a natural
deduction format). Examples of such terminal obligations are 5.8, 5.12 and 5.15. The
use of the operation decomposition rules restricts the freedom of the algorithm designer
at the point of each design decision to only those possible design options which pre-
serve the truth of the required assertions. This ‘chains back’ all the way through the
development, so that the only justifiable designs are those which respect the original as-
sertions imposed at the start of the development, namely the pre- and post-conditions on
the specification of the implemented operation.

5.5 Conclusions

About specification

It is worth considering the process by which the specification was derived, as it illustrates
a few interesting points. The brevity of the specification itself is in stark contrast to the
amount of time taken over its construction. A first attempt at the specification yielded
a simple, but faulty, product. Subsequently it grew more complex, including features
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like a cyclicity testing function for substitutions. After a certain level of complexity
had been reached, it became more apparent that a simpler specification (which still dealt
with acyclic substitutions) would result from using ideas like the idempotence property.
Introducing the idempotence invariant on substitutions did have a complicating effect
on the specification’s explanation, necessitating the introduction of ideas such as var-
disjointedness and substitution reduction. It is often the case that devoting a little extra
time to the specification phase in a rigorous development produces a more considered,
and possibly much simplified, result for delivery to the developer.

It is noted (Section 5.2) that the idempotence (var-disjointedness) requirement on
substitutions is a restriction on this theory of unification. Idempotence is documented as
an invariant primarily for the benefit of further development. The algorithm developed
does not use the property, but other algorithms might use results from a theory of uni-
fication which does exploit idempotence. However, the aim of this case study is not to
develop such a theory, but rather to develop a specification for practical use. inv-Subst
may reduce the generality of substitutions permitted, but the excluded substitutions can
be reduced to an acceptable form.

Only some simple proofs of properties about the specification have been shown,
and those not in great depth. It is worth noting that the level of detail required in proofs
should be decided with an awareness of the consequences of opting for low-level detailed
proofs in terms of the effort required. These proofs are often long and routine, requiring
relatively little mathematical insight, a characteristic which makes their development
susceptible to automated assistance [JL88].

Implementability proofs play an important role in this study. In the case of sub-
stitution composition, an implementation (the function R) is developed in the proof.
This method is related to the constructive mathematics approach illustrated in [MW80,
MW81, C 86]. Development can be viewed as the constructive discharging of the im-
plementability proof, but there are major pragmatic differences discharge the imple-
mentability obligation at an abstratct level and actually going about the development of
executable code. For example, R may not be directly executable in the language or on
the machine of our choice. It merely shows the existence of an implementation defined
on the data types of the specification. The algorithm MGUAlg, based round more classi-
cal imperative programming constructs, may be nearer executable code for a particular
application. Operation decomposition would not be an appropriate technique for con-
structing the abstract proof of MGU implementability. Certainly the development of an
implementation does discharge the implementability obligation, but failure to attempt
the implementability proof at the abstract level of a specification can result in a huge
amount of wasted development time if it transpires that no implementation exists.
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About development

This intimate connection between development and proof has other consequences. The
author freely confesses great difficulty experienced in choosing how to present the de-
velopment of Section 5.4. Should one begin with the terminal lemmas and provide a
bottom-up construction, building the necessary program constructs? No, for who would
begin a development by producing Lemma 5.15 out of thin air? The development pro-
cess itself is not purely bottom-up. Nor is it purely top-down: the designer does not
groundlessly choose to introduce a conditional construct here and a while-loop there. In
this study an attempt has been made to steer a middle course. The overall development is
top-down in that it decomposes the specification ofMGU , but individual steps have been
bottom-up, introducing constructs derived from the informally developed algorithm of
Section 5.1. It is important to note, however, that a formal development is more than just
a pretty way of documenting the design.

It is suggested in Section 5.1 that the ‘hack it until you think it’s right’ approach
to algorithm design may benefit from some formalism. Controlled development from a
formal specification allows real conviction of the algorithm’s correctness to be gained.
But how does one gain conviction of the specification’s correctness? Has the ‘hack it’
approach only been shifted out of the implementation phase and put into the specification
phase of development? The interface between intuitive ideas and formalism must come
somewhere. The advantage of the approach described here is that there are obligations
to be met by the specification. The proofs of obligations provide an environment in
which the details of the specification can be opened to systematic scrutiny in a way in
which raw code cannot. Faults discovered at this stage can be corrected before they
reach code. This method results in a top-down approach to proving lemmas about the
data objects and operations in the specification. Only those properties required for the
main obligation-discharging proof are proved.

About further work

One motivating factor for this case study is the need to provide a formal basis for the
development and analysis of a range of unification algorithms. How far has the work
presented gone towards meeting that need? Success in this respect depends on the degree
of abstraction inherent in the specification. One might ask what changes are needed to
the specification to allow development of another algorithm and whether those changes
just amount to reifications. MGUAlg is a derivative of Robinson’s original, so other
algorithms sharing this approach should be relatively easy to develop in a manner similar
to that used above. Operation decomposition techniques might also be used to develop
other types of algorithm (e.g. [PW78]) and this is one area for future work. The level
of abstraction at which the specification is set means that reification steps can be taken
to develop algorithms working on more concrete data structures, such as the directed
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acyclic graph structure for terms discussed in Section 5.1.
There are several other areas into which the approach described here on model-

oriented specifications of unification might extend. For example:

The extension of the specification to allow equational theories on first order terms:
particular properties (such as associativity) can be built into a unification algorithm
[Bun83].

A universal unification algorithm is one which, given a set of terms and a theory,
returns a complete set of unifiers for the terms within the theory [Sie84]. One
approach to specifying this might be the representation of equational axioms as
sets of rewrite rules.

The semidecidable problem of unification of second order terms: Bundy [Bun83]
presents an algorithm due to Huet which incorporates the '-,(- and )- rules of
"-calculus. The specification of this sort of problem might require not only the
specification of a data type for second order terms, but the incorporation of equa-
tional axioms as well.

5.6 Additional material

Weakness of pre-condition on substitution composition

It is to be shown that no pairs of substitutions excluded by pre- have a var-disjoint
composed form satisfying post- , i.e.:

#1 #2 Subst pre- #1 #2 r Subst post- #1 #2 r

Consider any #1 #2 Subst such that pre- #1 #2 . Then:

x y dom#1 dom#2 Occurs x #2
t
#1

t y x #2
t
#1

t x

by definition of pre- .
So now consider x y dom#1 dom#2 under the assumption:

Occurs x #2
t
#1

t y x #2
t
#1

t x

and consider any substitution r:
Case x dom r and y dom r.
1.1 r Subst, so Var-Disj r
1.2 So x y dom r Occurs x r y
1.3 In particular Occurs x r y
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1.4 and Occurs x r t y since r t y r y by definition of t .
So r t y #2

t
#1

t y because otherwise (by assumption) Occurs x #2
t
#1

t y ;
hence Occurs x r t y , which would contradict line 1.4 above.
Case x dom r and y dom r.
2.1 r t y y by definition of t

2.2 x y, by the case assumption
2.3 Occurs x y by definition of Occurs
2.4 Occurs x r t y by line 2.1 above

So r t y #2
t #1

t y because otherwise (by assumption) Occurs x #2
t #1

t y ;
hence Occurs x r t y , which would contradict line 2.4 above.
Case x dom r
3.1 r t x x by definition of t

3.2 So r t x #2
t
#1

t x by assumptions.
Thus, in this case, x is a term for which r does not generate the same result as applying
#1 and then #2. So when x dom r, post- does not hold. This exhausts the possible
cases. Thus under the current assumption, there is a term (x or y) for which r does not
generate the same result as applying #1 and then #2.

By case distinction, for any r, post- does not hold. It is, therefore, not possible to
generate a suitable r when the assumption pre- #1 #2 holds. Hence

#1 #2 Subst pre- #1 #2 r Subst post- #1 #2 r
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6

Building a Theory of Unification

Sunil Vadera

The same application is addressed here as in the previous chapter. The em-
phasis in Sunil Vadera’s work is on building a theory of the basic concepts
which are discussed in the specification and development. Sunil Vadera’s
work was done independntly of John Fitzgerald’s and a comparison of the two
chapters well illustrates the point that there is no single ‘right’ approach to a
specification. The chapters can be read independntly but a careful compari-
son pinpoints interesting differences like the precise invariant on substitution
mappings. The algorithm developed in this chapter is quite space efficient.
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6.1 Introduction

Unification is an important concept. It is used in Prolog, resolution, term rewriting, and
natural language understanding. As the use of formal methods increase, unification will
be part of formally developed systems. Hence a theory of unification is desirable.

We use VDM to formalize unification. We define substitution application recur-
sively, develop a theory of noncircular substitutions, and write an implicit specification
of unification. Some example proofs are presented in the theory.

The correctness of a particular unification algorithm is proved with respect to the
specification. The algorithm proved is more space efficient than the one proved by
Manna and Waldinger. We also compare the theory developed with that of Manna and
Waldinger and present some advantages of using VDM.

The unification algorithm is used in many systems. It is used in resolution [Rob65]
and term rewriting [HO80] approaches to theorem proving. It is a key feature of the
programming language Prolog [CM84]. It is used in natural language understanding
[SA77]. Siekmann [Sie84] describes the uses of unification, and Fitzgerald (see Chapter
5 of this book) lists the applications.

The systems that use unification obviously rely on its correctness, and on specific
properties of unification. Further, as the use of formal methods of software development
increase, unification will be part of systems which are developed formally (e.g. [Nil84]).
Hence, we develop a theory of unification.

Section 6.1 summarizes some conventions, and the induction rule that we use. It also
introduces the main ideas of unification. These ideas are then formalized in sections 6.2
to 6.6. Section 6.7 uses this formalization to prove a particular unification algorithm
correct. Section 6.8 compares the theory developed with that of Manna and Waldinger
[MW81].

In formalizing our notion of unification, we also present the proofs of some lemmas.
For conciseness, we omit a number of proofs. These can be found in Vadera [Vad86].

Some conventions

Proof obligation

To show that a function, f with domain Tp and range Tr satisfies a specification, we have
to prove:

p Tp pre-f p post-f p f p f p Tr

When the pre-condition is true, and the result is clearly of the right type, we will
write this in the more compact form: post-f p f p .
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Induction

Mathematical induction is a technique of proving that a property P holds for the set of
natural numbers. To show that P n is true for all n , we first show that P 0 is true.
Then, we show that P j is true under the assumption that P k is true for all k j,
where j 0.

To use induction on a set other than , say D, we define a total function which maps
the elements of D onto . We also use induction on 1 , and on 1 .

Proof presentation

We present proofs as in [Jon86a]. However, when referencing a line in a justification
we adopt the convention that n refers to a line m n where m refers to the enclosing
from/infer box. This helps to reduce references like ‘2.2.3.2.3.2’ in a deep proof.

Introduction to unification

A number of problem solving tasks can be posed as finding a proof for a theorem in pred-
icate calculus. When proving theorems, it is often necessary to unify certain expressions.
For example, given

good-student jim

and

good-student X pass X

we want to show that pass jim is true.
We first have to unify good-student X with good-student jim . We can do this by

setting the variable X to jim. We can record this fact in a substitution: X jim . We
call such a substitution a unifier of the two terms. We can now apply the substitution to
good-student X pass X , and eliminate the implication to prove pass jim .

In general, both the terms to be unified may contain variables. For example, the
terms line X 1 and line 2 Y have a unifier X 2 Y 1 .

Of course, it is not always possible to unify two terms. Thus line X X and line 1 2
cannot be unified. Further, the unification process must find the most general unifier.
For example, although the terms line X and line Y can be unified by an infinite set of
unifiers:

X 1 Y 1 X 2 Y 2

the unification algorithm must return one of the following unifiers:

X Y or Y X
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Terms

Substitutions

Unifiers

Most General Unifiers

sec 6.2

sec 6.3

sec 6.4

sec 6.5

Figure6 1 Layer by layer formalization

When formalizing unification, we must also decide whether our theory will cater for
circular substitutions like X f X .

We formalize these ideas in a layer by layer manner as shown in Figure 6.1. We
begin by developing a theory of terms. The theory of substitutions formalizes the no-
tions of substitution application, circular substitutions, substitution equality, substitution
composition, and idempotent substitutions. The concepts of a substitution being a unifier
and a most general unifier are then formalized.

6.2 Terms

Abstract syntax

Terms are the basic objects that are unified. A term may be a compound term, or a
variable. A compound term is one which has a function name followed by a sequence of
terms. We specify terms by:

Term Cmpterm Var

Cmpterm :: Fid
Terms

Terms Term
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Var Fid Ident

We denote terms by t1 t2 tn, and lists of terms by tl tl1 tl2 tln. Variables
are denoted by v v1 vn, or by capital letters. For readability, we prefer to write a
well-formed term:

mk-Cmpterm person mk-Cmpterm age X

in the concrete syntax:

person age X

Properties of terms

There are a number of properties of terms that we may believe to be true. Thus, the
property the variables in the head of a list of terms is a subset of the variables in the list
of terms is intuitively true. To formalize such properties, we define the functions:

vars-Term :Term Var-set
vars-Term t

cases t of
mk-Cmpterm fid tl vars-Terms tl
v v
end

vars-Terms :Terms Var-set
vars-Terms tl vars-Term tl i i inds tl

vars-Term and vars-Terms are abbreviated to vars when it is obvious which is meant.
Thus,

vars X f Y g Z X Y Z

We can now write the above property as:

len tl 0 vars hd tl vars tl

Notice that we make use of the logic of partial functions. Since, when tl is the empty
list, hd tl is undefined and we have a situation false . Which, by the logic of partial
functions, is true.

To carry out the proofs by induction, we will need to order the terms. This is achieved
by mapping the terms to natural numbers by the functions:
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tm 1 len tl 0 vars hd tl vars tl

tm 2 len tl 0 vars tl tl vars tl

tm 3 len tl 0 no-Term hd tl no-Terms tl

tm 4 len tl 0 no-Terms tl tl no-Terms tl

tm 5 no-Term(mk-Cmpterm(id,tl)) = no-Terms(tl) + 1

tm 6 vars(mk-Cmpterm(id,tl)) = vars(tl)

tm 7 v vars tl i inds tl v vars tl i

Figure6 2 Lemmas about terms

no-Term :Terms 1
no-Term t cases t of

mk-Cmpterm fid tl no-Terms tl 1
v 1
end

no-Terms :Terms
no-Terms tl if tl

then 0
else no-Terms tl tl no-Term hd tl

Thus, no-Term f Y g Z 4.
Lemmas about terms are straightforward and are listed in Figure 6.2.

6.3 Substitutions

Abstract syntax

A substitution records the bindings of a variable to a term. Hence, a natural VDM
specification for substitutions uses maps:

Subst Var m Term

VDM’s dom operator can be used to obtain the variables in the domain of the sub-
stitution. The variables in the range of a substitution can be obtained by applying the
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function:

range :Subst Var-set
range s vars s v v dom s

Thus range s X Y Z for the substitution:

s X f Z Y Y f X Y

For the union of two maps to be defined, their domains must be disjoint. Hence we
define:

dom-disjoint :Subst Subst
dom-disjoint s1 s2 dom s1 dom s2

We will also encounter situations where we discuss a substitution whose domain is
disjoint from the range of another. Hence we define:

dom-range-disjoint :Subst Subst
dom-range-disjoint s1 s2 dom s1 range s2

Thus, given s1 X f Z Z f Y , and s2 Q f X , then dom-disjoint s1 s2
is true but dom-range-disjoint s1 s2 is false.

Substitution application

Applying the substitution:

s = X f Y Z g

to a term has the effect of replacing any Xs by f Y , and any Zs by g. Thus applying s to
t X f Z g results in the term t f Y f g g . However, what is the result of applying

X f Z Z g to t X f Z g

If we simply replace the variables with their associated term in the range, we obtain
t f Z f g g . Do we now replace the Z in this term by g? Some authors [Ede85,
MW81] define substitution application so that this further replacement is not done. As
we shall see, this constrains their specification to the extent that the unification algorithm
we prove does not satisfy their specification. Hence, we define substitution application
recursively:
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ap 1 mk-Cmpterm fid s mk-Cmpterm fid

ap 2 ts Var t Var

ap 3 dom s vars t ts t

ap 4 v dom s v vars t v vars ts

ap 5 vars ts vars vs v vars t

ap 6 vars ts vars t range s

Figure6 3 Lemmas about substitution application

apply-sub :Term Subst Term
apply-sub t s

cases t of
mk-Cmpterm fid tl1 let tl2 apply-sub tl i s i inds tl

in
mk-Cmpterm fid tl2

v if v dom s then apply-sub s v v s else t
end

We abbreviate apply-sub t s to ts. We also write tls for

apply-sub tl i s i inds tl

Thus, t X f Z g X f Z Z g t f g f g g .
Lemmas about substitutions are listed in Figure 6.3. For example, Lemma ap4 states

that substitution application does not remove those variables which are not in the domain
of the substitution.

A proof of ap4 is given in Figure 6.4. The proof proceeds by induction on no-Term t .
The base case is proved by line 1, and the induction step is proved by line 2.

The base case distinguishes between two cases. First, when t is a variable, line 1.2.2
proves the consequence of ap4 from the antecedent of ap4. It achieves this by the fact
that t must be v, and that applying s does not remove v. Line 1.2 then introduces the
implication to obtain ap4 from line 1.2.2. Second, when t is a compound term, line 1.3
proves ap4 by showing that the antecedent of ap4 is false since there are no variables in
t.

The induction step is carried out by first showing that the induction hypothesis can
be applied to all subterms of t (line 2.3) and then proving the consequence of ap4 from
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from true
1 from no-Term t 1
1.1 t Var t Cmpterm (h1,no-Term)
1.2 from t Var
1.2.1 vars t t (vars, h1.2)
1.2.2 from v dom s v vars t
1.2.2.1 t v (1.2.1, h1.2.2, )
1.2.2.2 dom s vars t (1.2.1, .1, h1.2.2, )
1.2.2.3 ts v (.2, ap3, -E, .1)

infer v vars ts (vars, .3, )
infer ap4 ( -I, ! h1 2 2 ,1.2.2)

1.3 from t Cmpterm
1.3.1 t Cmpterm fid (h1.3, h1, no-Term)
1.3.2 vars t (1.3.1, vars)

infer ap4 (vars, vac-I)
infer ap4 (1.1,1.2,1.3, -E)

2 from ap4 true for all no-Term t n n 1 no-Term t n
2.1 no-Term t 1 (h2)
2.2 let t mk-Cmpterm fid tl in (2.1, no-Term)
2.3 i inds tl no-Term tl i n

(2.2,tm5,tm3,tm4, no-Terms, h2)
2.4 vars t vars tl (2.2, tm6)
2.5 from v vars t v dom s
2.5.1 v vars tl (h2.5, 2.4)
2.5.2 i inds tl v vars tl i (2.5.1, tm7)
2.5.3 i inds tl v vars tl i s (h2.5,2.3,2.5.2,h2)
2.5.4 v vars tls (2.5.3,tm7)

infer v vars ts (2.2,2.5.4,tm6)
infer ap4 for no-Term t n (2.5, -I)

infer ap4 (1,2, induction)

Figure6 4 Proof of ap4

the antecedent of ap4 (line 2.5). This is done by applying the induction hypothesis to a
subterm of t to obtain the consequence for the subterm (line 2.5.3). Lemmas tm7 and
tm6 are then used to convert this into the consequence of ap4 for t.
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Circularity

Notice that the above definition of apply-sub removes the possibility of nontermination
in cases like:

s X f Y Y g X and Xs produces f g X

Substitutions like s are known as circular since their graph is circular.
Circular substitutions can arise when we attempt to unify terms. For example, con-

sider an attempt to unify the terms:

t1 t X Y t2 t f Y g X

The first components of t can be unified by X f Y . Now the second components
of t could be unified by Y g X . However, when these two substitutions are com-
bined by taking their union, we obtain a circular substitution X f Y Y g X . To
formalize our notions of circularity we introduce a function:

reach :Var Var Subst
reach v1 v2 s

if v1 dom s
then false
else let vset vars s v1 in

if v2 vset
then true
else v3 vset reach v3 v2 v1 s

Figure 6.5 lists some properties of reach. We examine the first lemma below, but
leave the others as exercises for the reader (see [Vad86] if your theorem prover fails).

Lemma re1 relates the ideas of reachability and substitution application. It states that
the variables left after applying a substitution to v1 are reachable from v1 provided that
v1 is in the domain of the substitution. Thus, since X vars X X f Y Y g X ),
we may conclude that reach X X X f Y Y g X ).

We present a proof of Lemma re1 in Figure 6.6. The proof proceeds by induction
on card s. The base case is straightforward since an empty substitution means that the
antecedent of re1 is false.

The inductive step is carried out by proving the consequent of re1 from its antecedent
(line 2.1). To use the induction hypothesis we must reduce the size of the substitution.
We do this by unfolding apply-sub to obtain line 2.1.1. However, this is still not in the
form required by the second conjunct of the induction hypothesis since s v1 may be a
term. Fortunately, by Lemma ap5, there must be a variable in s v1 such that applying
the substitution v1 s to it results in a term which contains v2. We consider two cases
for such a variable. First, when it is v2, line 2.1.3.2 obtains reach v1 v2 s by folding
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re 1 v1 dom s v2 vars v1s reach v1 v2 s

re 2 reach v1 v2 s reach v2 v3 s reach v1 v3 s

re 3 dom-disjoint s1 s2 reach v1 v2 s1 reach v1 v2 s1 s2

re 4 v1 dom s1 v2 dom s2 dom-disjoint s1 s2
v3 dom s2 reach v1 v3 s1 s2 reach v3 v2 s1 s2

reach v1 v2 s1 s2 reach v1 v2 s1

re 5 dom-disjoint s1 s2 v1 dom s1 v2 dom s1 reach v1 v2 s1 s2
v2 vars v1s1 v3 vars v1s1 reach v3 v2 s1 s2

re 6 v1 dom s2 v2 dom s1 dom-disjoint s1 s2 reach v1 v2 s1 s2
reach v1 v2 s1 reduce s2 s1

Figure6 5 Lemmas about reachability

the definition of reach. Second, when it is not v2, lines 2.1.3.3.1 and 2.1.3.3.2 show that
this variable must be in the domain of v1 s. Line 2.1.3.3.3 can then use the induction
hypothesis and the -E rule to deduce that v2 is reachable from this variable in v1 s.
We then use the definition of reach to obtain reach v1 v2 s .

We now return to use reach to define circularity:

circular :Subst
circular s v dom s reach v v s

For conciseness, we will denote noncircular substitutions by $, $1, . . .$n. We are
now in a position to examine some properties of noncircular substitutions.

Given a noncircular substitution, we can partition the substitution into two noncircu-
lar substitutions using the lemma:

cr 1 dom-disjoint s1 s2 circular s1 s2
circular s1 circular s2

As the example at the start of this section illustrated, the union of two noncircular
substitutions is not necessarily noncircular. However, if their domains are disjoint, and
the domain of one of the substitutions is disjoint from the range of the other substitution,
then their union will also be noncircular:

cr 2 dom-disjoint $1 $2 dom-range-disjoint $1 $2 circular $1 $2
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from true
1 from card s 0

infer re1
2 from re1 is true for all card s n n 0 card s n
2.1 from v1 dom s v2 vars v1s
2.1.1 v2 vars s v1 v1 s (apply-sub, h2.1)
2.1.2 v2 vars v3 v1 s v3 vars s v1 (2.1.1,ap5)
2.1.3 from v2 vars v3 v1 s v3 vars s v1
2.1.3.1 v3 v2 v3 v2
2.1.3.2 from v3 v2
2.1.3.2.1 v2 vars s v1 (h2.1.3.2,h2.1.3)

infer reach v1 v2 s (2.1.3.2.1,reach)
2.1.3.3 from v3 v2
2.1.3.3.1 from v3 dom v1 s
2.1.3.3.1.1 v3 v1 s v3 (h2.1.3.3.1, ap3)

infer v2 vars v3 v1 s (.1, vars, h2.1.3.3)
2.1.3.3.2 v3 dom v1 s (.1, h2.1.3,contra)
2.1.3.3.3 reach v3 v2 v1 s (.2,h2.1.3, h2)

infer reach v1 v2 s (h2.1.3, .3, reach)
infer reach v1 v2 s (.1, .2, .3, -E)

infer reach v1 v2 s (2.1.2, 2.1.3)
infer re1 true for card s n (2.1,!(h2.1) -I)

infer re1 (induction, 1, 2)

Figure6 6 Proof of Lemma re1

Thus, given that

X f Y , and Y g Z W Y Z g V

are noncircular substitutions, whose domains are disjoint, and the variables in the second
substitution’s range do not occur in the domain of the first substitution, we can conclude
that their union:

X f Y Y g Z W Y Z g V

is noncircular.
Lemmas cr1 and cr2 do not allow us to conclude that the union of the substitutions
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X f Y and Y Z P X is noncircular. But it clearly would be (why?). We
can reach this conclusion by:

cr 3 dom-disjoint $1 $2 circular $1 reduce $2 $1 circular $1 $2

where

reduce :Subst Subst Subst
reduce s1 s2 v s1 v s2 v dom s1

We restrict ourselves to noncircular substitutions although algorithms for producing
circular substitutions do exist (see [Fil84]).

An elegant property, which is true for noncircular substitutions, but does not hold for
circular substitutions is:

ap8 v dom $ v vars t$

Thus, this does not hold for the circular substitution

X f X

since X vars X X f X .

Equality

We define two substitutions to be equivalent if substitution application has the same
effect on any term:

equal-sub :Subst Subst
equal-sub s1 s1 t ts1 ts2

We write equal-sub s1 s2 in the infix notation s1 s2. Thus, for example,

X Y Y a X a Y a

but

X Y Y X

Instead of using the definition to show that two substitutions are equal, we can use
the result:

eq 1 s1 s2 v Var vs1 vs2

Thus, with

s1 X Y Y a and s2 X a Y a
s1 s2
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since

Xs1 Xs2 a Ys1 Ys2 a, and Vs1 Vs2 V for any other variable V

Composition

Consider how we could proceed to unify the terms: t1 f X g X and t2 f a Y .
We can unify the first components by X a . In the context of this substitution, we
can unify the second components by Y g a . Now applying these two substitutions
in sequence unifies the two terms: t1 X a Y g a t2 X a Y g a
f a g a .

Now since we seek one substitution to unify t1 and t2, we would like a substitution
which has the same effect as applying the two substitutions in sequence. In our example,
the obvious choice is X a Y g a . However, X a Y g X also has the
same effect.

Hence, we say that a substitution s3 is a composition of two substitutions s1 and s2,
written s1 s2, if:

t ts1s2 ts3

In the above example, we obtained the composition of the substitutions X a and
Y f a by simply taking their union. However, if we do this for the substitutions:

X f Y and Z X

we obtain

X f Y Z X

This, however, is not equivalent to applying them in sequence since

Z X f Y Z X f Y

but

Z X f Y Z X X

We therefore develop the lemmas given in Figure 6.7 to guide us when composing
substitutions. In particular, Lemma cp4 allows us to deduce that:

X a Y f a X a Y f X

and Lemma cp5 allows us to conclude:

X a Y f X X a Y f a
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cp 1 $ $ $

cp 2 reduce $1 $2 $3 reduce reduce $1 $2 $3

cp 3 v dom $ v vars t$ t$ treduce $ v x

cp 4 dom-disjoint $1 $2 circular $1 $2
$1 $2 $1 reduce $2 $1

cp 5 dom-disjoint $1 $2 circular $1 $2
$1 $2 $1 $1 $2 $1 reduce $2 $1

Figure6 7 Lemmas to guide substitution composition

id 1 idempotent s circular s

id 2 dom-range-disjoint s s idempotent s

id 3 $2 reduce $1 $1 idempotent $2 $2 $1

Figure6 8 Lemmas about idempotence

Idempotence

Idempotence does not play a significant role in our theory. However, we include it to
relate to the work of Manna and Waldinger [MW81].

We define a substitution s to be idempotent if reduce s s s. Manna and Waldinger
define a substitution, s to be idempotent if s s s. With our recursive definition of
apply-sub, all noncircular substitutions would be idempotent if we adopted their defini-
tion (by Lemma cp1), and idempotent substitutions in our theory would not be idempo-
tent in Manna and Waldinger’s theory. Lemmas about idempotence are given in Figure
6.8.

6.4 Unifiers

A substitution $, is a unifier of two terms, t1 and t2 if:

unifier :Term Term Subst
unifier t1 t2 $ t1$ t2$
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un 1 unifier v t $ $ v t $

un 2 t Cmpterm v vars t $ unifier v t $

Figure6 9 Lemmas about unifiers

Thus, the substitutions:

X Y Y g X g

are both unifiers of the terms: g, and X. Two useful lemmas about unifiers are given in
Figure 6.9.

As mentioned in the introduction, a unification algorithm must produce a most gen-
eral unifier (when one exists). We therefore need to formalize the notions of generality.
We say that a substitution $1 is more general than another substitution $2 if:

more-general :Subst Subst
more-general $1 $2 $ $2 $1 $

We write $1 $2, or $2 $1 for more-general $1 $2 . For example:

X f X f Y X

since

X f Y X X f Y f (by Lemma cp4)

Substitution generality is transitive:

gn 1 $1 $2 $2 $3 $1 $3

Given a unifier, $1, of two terms t1, and t2, any substitution which is less general
than $1 is also a unifier of t1 and t2. More formally:

gn 2 $2 $1 unifier t1 t2 $1 unifier t1 t2 $2

Thus, since X f is a unifier of X and f , X f Y X is also a unifier of X
and f .

6.5 Most general unifiers

We can define a substitution $ to be a most general unifier of two terms if it unifies
the terms, and any other unifier is less general than $. In practice, unification is often
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performed in the context of an existing substitution ([Nil84, SA77] for example). Hence,
we also include a context substitution in our specification.

A substitution $2 is a most general unifier of two terms t1 and t2 in the context of an
existing substitution $1 if:

mgu :Term Term Subst Subst
mgu t1 t2 $1 $2

$2 $1 unifier t1 t2 $2
$ $ $1 unifier t1 t2 $ $ $2

When mgu has list arguments, the above definition is applied to the corresponding
elements of the two lists. The arguments will make it obvious which definition is meant.

To construct a most general unifier of two terms t1 and t2 in the context of a substi-
tution $1 consider two situations. First when one of the terms is a variable and the other
is a compound term, and second when both terms are compound.

When t1 is a variable but t2 is a compound term in the context of $1, the following
lemma can be used to construct a most general unifier.

mg 1 t1$1 Var t1$1 vars t2$1 mgu t1 t2 $1 $1 t1$1 t2

Thus, X and Y have a most general unifier

X Z Y f a Z Y in the context of X Z Y f a

The conjunct t1$1 Var t1$1 vars t2$1 in Lemma mg1 ensures that the con-
structed substitution is not circular. If the constructed substitution is circular, then the
following lemma tells us that there is no most general unifier:

mg 2 t2$1 Cmpterm t1$1 vars t2$1 $2 mgu t1 t2 $1 $2

Now consider how we could proceed to unify the compound terms:

t1 t X f b Y t2 t Y f X a in the context

The first components have a most general unifier:

X Y or Y X

Suppose we choose X Y to proceed to unify the second components. However,
in the context of this substitution, the second components: f b Y and f Y a , cannot
be unified. At this stage, should we backtrack to the first components and choose the
alternative most general unifier Y X before again attempting to unify the second
components? Fortunately, the following lemma allows us to conclude that there is no
unifier without the need to backtrack:
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mg 3 mgu t1 t2 $1 $2 $3 mgu tl1 tl2 $2 $3
$4 mgu t1 tl1 t2 tl2 $1 $4

Of course, if the first components can not be unified, then we can conclude that there
is no most general unifier without attempting to unify the remaining components:

mg 4 $2 mgu t1 t2 $1 $2 $3 mgu t1 tl1 t2 tl2 $1 $3

If a most general unifier does exist, we can find it in a sequential manner:

mg 5 mgu t1 t2 $1 $2 mgu tl1 tl2 $2 $3
mgu t1 tl1 t2 tl2 $1 $3

Thus, given that V g X X is a most general unifier of g X X and V in the
context , and V g X X W g Y Y X Y is a most general unifier of W W
and g Y Y V in the context V g X X , we may use Lemma mg5 to conclude that
V g X X W g Y Y X Y is a most general unifier of g X X W W and
V g Y Y V in the context .
Note that if $2 is a most general unifier of the terms t1 and t2 in the context $1, then $2

must not have any variables which are not in t1$1 and t2$1. We state this as a proposition
rather than complicate the definition:

mg 6 mgu t1 t2 $1 $2
$3 $2 $1 $3
dom $3 vars-term t1$1 vars-term t2$1
range $3 vars-term t1$1 vars-term t2$1

The proof of the mg lemmas can be based on the earlier lemmas and do not require
induction. As an example, Figure 6.10 presents the proof of Lemma mg2. The proof
proceeds by establishing each requirement for the substitution to be a most general uni-
fier.

6.6 Specification of unification

We now write an implicit specification of the unification algorithm:

unify t1 t2:Term $1:Subst b: $2 :Subst
pre true
post b mgu t1 t2 $1 $2 b $ mgu t1 t2 $1 $

The specification of unifylist is similar.
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from t1$1 Vars t1$ vars t2$1
1 let v t1$1 in (h)
2 v dom $1 (1, ap8)
3 vars t2$1 dom$1 (ap8)
4 circular v t2$1 (h, 1, reach, circular)
5 circular $1 v t2$1 (2, 3, 4, cr2)
6 circular $1 v t2 (2, 5, cr3)
7 $1 v t2 $1 v t2$1 (2, 6, cp4)
8 t1$1 v t2$1 t2$1 (1, , apply-sub)
9 t2$1 v t2$1 t2$1 (h, ap3)
10 unifier t1 t2 $1 v t2 (6, 7, 8, 9, unifier, )
11 $1 v t2 $1 (7, )
12 from $ $1 t1$ t2$
12.1 $3 $ $1 $3 t1$1$3 t2$1$3 (h12, , )
12.2 $3 $ $1 $3 $3 v t2$1 $3 (1, 12.1, h, un1)
12.3 $3 $ $1 v t2$1 $3 (12.2, )
12.4 $3 $ $1 v t2 $3 (7, 12.3, , )

infer $ $1 v t2 (12.4, )
13 $ $ $1 unifier t1 t2 $ $ $1 v t

(12, unifier, -I, -I)
infer mgu t1 t2 $1 $1 t1$1 t2 (6, 10, 11, 13, mgu)

Figure6 10 Proof of mg2

6.7 Proof of a unification algorithm

A common unification algorithm takes the form [BM72, Nil84]:
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unify :Term Term Subst Subst
unify term1 term2 $1

let t1 coerce term1 $1 t2 coerce term2 $1 in
cases t1 t2 of
mk-Cmpterm id1 tl1 mk-Cmpterm id2 tl2

if id1 id2 then unifylist tl1 tl2 $1 else false
mk-Cmpterm id1 tl1 v2

if v2 vars t1$1 then true $1 v2 term1 else false
v1 mk-Cmpterm id2 tl2

if v1 vars t2$1 then true $1 v1 term2 else false
v1 v2

if v1 v2 then true $1 else true $1 v2 term1
end

where

coerce :Term Subst Subst
coerce t $

cases t of
mk-Cmpterm t
v if v dom $ then coerce $ v v $ else t
end

and unifylist takes the form:

unifylist :Terms Terms Subst Subst
unifylist tl1 tl2 $1

if tl1 or tl2
then tl1 tl2 $1
else let succ $4 unify hd tl1 hd tl2 $1 in

if succ
then unifylist tl tl1 tl tl2 $4
else false $1

The use of coerce avoids the need to apply the context substitution to the terms, and
therefore reduces the overheads. Thus to unify Y and g X X in the context:

X g Z Z Z g V V

Y is unified with g X X to produce a substitution:

X g Z Z Z g V V Y g X X

instead of the substitution:
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X g Z Z
Z g V V
Y g g g V V g V V g g V V g V V

The following two lemmas relate coerce to substitution application:

co 1 coerce t $ $ t$

co 2 coerce t1 $1 v t1$1 v

For example, with

$ X Y Y Z Z g V V U U W

we have:

coerce X $ $ X$ g W , and coerce V $ V$ W

We can show an analogous result to Lemma mg1:

co 3 v2 vars t1$1 t1 coerce term1 $1
v2 coerce term2 $1 mgu t1 v2 $1 $1 v2 term1

Further, the most general unifier of coerced terms is the same as the most general
unifier of the terms (under the context):

co 4 t1 coerce term1 $1 t2 coerce term2 $1
mgu t1 t2 $1 $2 mgu term1 term2 $1 $2

In examining the above algorithm, we notice that the length of the terms (no-Term)
may increase on a subsequent recursive call to unify. Hence, we can not prove the
algorithm by simply using induction on the length of the terms. However, we can use
the fact that the number of variables decreases (after application of the context) when
the length of the terms does not decrease. We therefore use the following ordering:

* :Terms Terms Subst
* tl1 tl2 $

card vars tl1$ vars tl2$ no-Terms tl1$ no-Terms tl2$

A similar definition holds for term arguments.
We will need the following properties of this ordering when proving the above algo-

rithm correct.

or 1 len tl1 0 len tl2 0 * hd tl1 hd tl2 $ * tl1 tl2 $

or 2 * tl1 tl2 $ * mk-Cmpterm id1 tl1 mk-Cmpterm id2 tl2 $
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or 3 len tl1 0 len tl2 0 mgu hd tl1 hd tl2 $1 $2
* tl1 tl2 $2 * tl1 tl2 $1

As an example of Lemma or3 in operation, consider the following situation:

$1 X g Z Z Z g V V
$2 X g Z Z Z g V V Y g X X
tl1 Y P tl2 g X X Z

where $2 is a most general unifier of hd tl1 and hd tl2 in the context of $1,

tl1$1 Y P $1 Y P
tl2$1 g X X Z $1

g g g V V g V V g g V V g V V g V V
tl1$2 Y P $2

g g g V V g V V g g V V g V V P
tl2$2 g X X Z $2

g g V V g V V g g V V g V V g V V

Thus, although the total number of terms after application of $2 is larger than the
total number of terms after application of $1, the number of variables in the terms after
application of $2 is less than the number of variables after application of $1. The number
of variables reduces because the domain of $2 has an additional variable Y , which is
removed from the terms by the application of $2 (Lemma ap8) without introducing any
new variables.

A proof of Lemma or3 is presented in Figure 6.11. It has two cases. When $3 is
empty, the result clearly holds (line 2.3). When $3 is not empty, line 2.4 obtains or3 by
showing that the number of variables in t1$2 t2$2 reduces .

We approach the proof that unify is correct in two stages. We first prove that unifylist
is relatively correct. That is, we prove:

rc * t1 t2 $1 n k post-unify t1 t2 $1 unify t1 t2 $1

* tl1 tl2 $2 n k post-unifylist tl1 tl2 $2 unifylist tl1 tl2 $2

Before we present the proof of this lemma it is worth outlining the key ideas upon
which the proof is based. Each recursive call to unifylist reduces the length of tl1. Hence
the proof is by induction on the length of tl1. The proof relies on the fact that if the
initial arguments satisfy * tl1 tl2 $2 n k then any subsequent call to unifylist, say
with arguments tl4, tl5, $5, will also maintain the relationship * tl4 tl5 $5 n k . This
is shown with the aid of Lemmas or1 and or3. When unifylist produces a most general
unifier, Lemma mg5 informs us that it satisfies our specification. When unifylist fails
to find a unifier, Lemmas mg3 and mg4 inform us that there is no most general unifier.
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from len tl1 0 len tl2 0 mgu hd tl1 hd tl2 $1 $2
1 $3 $2 $1 $3 dom$3 vars tl1$1 vars tl2$1

range $3 vars tl1$1 vars tl2$1 (h, mg6, tm1)
2 from $2 $1 $3 dom$3 vars tl1$1 vars tl2$1

range $3 vars tl1$1 vars tl2$1
2.1 $2 $1 $3 (h2, -E)
2.2 $3 $3
2.3 from $3
2.3.1 $1 $2 (h2.3, 2.1, )

infer * tl1 tl2 $2 * tl1 tl2 $1 (2.3.1, , *)
2.4 from $3
2.4.1 vars tl1$1$3 vars tl1$1 range $3 (ap6)
2.4.2 vars tl2$1$3 vars tl2$1 range $3 (ap6)
2.4.3 vars tl1$2 vars tl2$2

vars tl1$1 vars tl2$1 range $3
(2.4.1, 2.4.2, , 2.1, )

2.4.4 vars tl1$2 vars tl2$2 vars tl1$1 vars tl2$1
(2.4.3, h2, )

2.4.5 dom $3 vars tl1$1 vars tl2$1 (h2, -E)
2.4.6 v vars tl1$1 vars tl2$1 v vars tl1$2 vars tl2$2

(h2.4, 2.4.5, 2.1 ap8)
2.4.7 vars tl1$2 vars tl2$2 vars tl1$1 vars tl2$1

(2.4.4, 2.4.6)
infer * tl1 tl2 $2 * tl1 tl2 $1 (2.4.7, *)

infer * tl1 tl2 $2 * tl1 tl2 $1 (2.2, 2.3, 2.4, -E)
infer * tl1 tl2 $2 * tl1 tl2 $1 (1,2, -E)

Figure6 11 Proof of Lemma or3
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from true
1 rc is true for len tl1 0 (unifylist, post-unifylist, vac-I)
2 from rc is true for all len tl1 m m 0 len tl1 m
2.1 from * t1 t2 $1 n k

post-unify t1 t2 $1 unify t1 t2 $1
2.1.1 from * tl1 tl2 $2 n k
2.1.1.1 tl2 tl2
2.1.1.2 from tl2

infer post-unifylist tl1 tl2 $1
unifylist tl1 tl2 $1 (see Figure 6.13 )

2.1.1.3 from tl2
infer post-unifylist tl1 tl2 $2
unifylist tl1 tl2 $2 (see Figure 6.14)

infer post-unifylist tl1 tl2 $2 unifylist tl1 tl2 $2
(2.1.1.1, 2.1.1.2, 2.1.1.3, -E)

infer * tl1 tl2 $2 n k post-unifylist tl1 tl2 $2
unifylist tl1 tl2 $2 (2.1.1, !(h2.1.1), -I))

infer rc is true for len tl1 m (2.1, ,!(h2.1), -I)
infer rc (1, 2, induction)

Figure6 12 Top level proof of relative correctness

2.1.1.2 from tl2
2.1.1.2.1 tl1 (h2)
2.1.1.2.2 $ tl1$ tl2$ (.1, apply-sub, =)

infer post-unifylist tl1 tl2 $1 unifylist tl1 tl2 $1
(.2, post-unifylist, h2.1.1.2, unifylist)

Figure6 13 Proof when tl is empty

Figure 6.12 presents the top level of the proof. Figure 6.13 presents the the proof when
tl is empty, whilst Figure 6.14 presents the proof when tl is not empty.

To show that unify satisfies our specification, we prove:
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2.1.1.3 from tl2
2.1.1.3.1 * hd tl1 hd tl2 $2 n k (h2.1.1, h2.1.1.3, h2, or1)
2.1.1.3.2 let succ $3 unify hd tl1 hd tl2 $2 in
2.1.1.3.3 post-unify hd tl1 hd tl2 $2 succ $3 (.1, .2, h2.1)
2.1.1.3.4 succ succ
2.1.1.3.5 from succ
2.1.1.3.5.1 mgu hd tl1 hd tl2 $2 $3

(h2.1.1.3.5, 2.1.1.3.3, post-unify)
2.1.1.3.5.2 * tl1 tl2 $3 n k (h2.1.1.3, h2, .1, or3, h2.1.1)
2.1.1.3.5.3 * tl tl1 tl tl2 $3 n k (.2, h2.1.1.3, h2, tl , *)
2.1.1.3.5.4 len tl tl1 m (h2, tl , len )
2.1.1.3.5.5 let b $4 unifylist tl tl1 tl tl2 $3 in
2.1.1.3.5.6 post-unifylist tl tl1 tl tl2 $3 b $4 (h2.1, .3, .4, .5, h2)
2.1.1.3.5.7 b b
2.1.1.3.5.8 from b

infer post-unifylist tl1 tl2 $2 b $4 (See Figure 6.15)
2.1.1.3.5.9 from b

infer post-unifylist tl1 tl2 $2 b $4 (See Figure 6.15)
2.1.1.3.5.10 post-unifylist tl1 tl2 $2 unifylist tl tl1 tl tl2 $3

(.7, .8, .9, -E, .5)
infer post-unifylist tl1 tl2 $2 unifylist tl1 tl2 $2

(.10, h2.1.1.3.5, 2.1.1.3.2, h2.1.1.3, h2, unifylist)
2.1.1.3.6 from succ
2.1.1.3.6.1 $3 mgu hd tl1 hd tl2 $2 $3

(h2.1.1.3.6, 2.1.1.3.3, post-unify)
2.1.1.3.6.2 post-unifylist tl1 tl2 $2 succ $2

(.1, h2.1.1.3.6, mg4, post-unifylist)
infer post-unifylist tl1 tl2 $2 unifylist tl1 tl2 $2

(.2, h2.1.1.3.6, 2.1.1.3.2, h2.1.1.3, h2, unifylist)
infer post-unifylist tl1 tl2 $2 unifylist tl1 tl2 $2

(.4, .5, .6, -E)

Figure6 14 Proof when tl is not empty
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2.1.1.3.5.8 from b
2.1.1.3.5.8.1 mgu tl tl1 tl tl2 $3 $4

(2.1.1.3.5.6,post-unifylist, h2.1.1.3.5.8)
2.1.1.3.5.8.2 mgu hd tl1 hd tl1 $2 $3

(2.1.1.3.3, h2.1.1.3.5, post-unify)
2.1.1.3.5.8.3 mgu tl1 tl2 $2 $4 (.1,.2, mg5)

infer post-unifylist tl1 tl2 $2 b $4
(.3, h2.1.1.3.5.8, post-unifylist)

2.1.1.3.5.9 from b
2.1.1.3.5.9.1 $4 mgu tl tl1 tl tl2 $3 $4

(2.1.1.3.5.6, post-unifylist, h2.1.1.3.5.9)
2.1.1.3.5.9.2 mgu hd tl1 hd tl2 $2 $3

(2.1.1.3.3, h2.1.1.3.5, post-unify)
2.1.1.3.5.9.3 $4 mgu tl1 tl2 $2 $4 (.1,.2, mg3)

infer post-unifylist tl1 tl2 $2 b $4
(.3, h2.1.1.3.5.9, post-unifylist)

Figure6 15 Proof cases of b

post-unify term1 term2 $1 unify term1 term2 $1

As mentioned above, the proof is by induction on * term1 term2 $1 . Letting t1
coerce term1 $1 , and t2 coerce term2 $1 , there are four cases that may occur. In
each case we first deduce:

cl post-unify t1 t2 $1 unify term1 term2 $1

Then we use Lemma co4 to obtain

post-unify term1 term2 $1 unify term1 term2 $1

The first case, when both t1 and t2 are compound terms, leads to Lemma c1 with the
aid of Lemma rc and Lemma or2. The second and third cases, when one of t1 and t2 is
a variable but the other is a compound term, leads to Lemma c1 by Lemma co3 (when
there is a unifier), and Lemma mg2 (when there is no unifier). In the fourth case, when
both t1 and t2 are variables, Lemma c1 is proved with the aid of Lemmas co2 and co3.

We present the detailed proof in two stages. Figure 6.16 shows how the four cases
are combined, whilst Figures 6.17 to 6.19 prove each case. The third case is anologous
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from term1 term2 Term $1 Subst
1 from * term1 term2 $1 0 2

infer post-unify term1 term2 $1 unify term1 term2 $1
(*, post-unify, unify)

2 from post-unify term1 term2 $1 unify term1 term2 $1 is true
for * term1 term2 $1 n k n k 0 2
* term1 term2 $1 n k

2.2 let t1 coerce term1 $1 t2 coerce term2 $1 in
2.3 first case see Figure 6.17
2.4 second and third cases see Figure 6.18
2.5 fourth case see Figure 6.19
2.6 t1 t2 mk-Cmpterm id1 tl1 mk-Cmpterm id2 tl2

t1 t2 mk-Cmpterm id1 tl1 v2
t1 t2 v1 mk-Cmpterm id2 tl2
t1 t2 v1 v2 (Term)

2.7 post-unify t1 t2 $1
cases t1 t2 of
mk-Cmpterm id1 tl1 mk-Cmpterm id2 tl2
mk-Cmpterm id1 tl1 v2
v1 mk-Cmpterm id2 tl2
v1 v2
end

(2.3, 2.4, 2.5, 2.6, Cases-I)
2.8 post-unify t1 t2 $1 unify term1 term2 $1 (2.2, 2.7, unify)

infer post-unify term1 term2 $1 unify term1 term2 $1
(2.8, 2.2, co4, post-unify)

infer post-unify term1 term2 $1 unify term1 term2 $1
(1,2, induction)

Figure6 16 Proof of correctness

to the second case and is therefore omitted.
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2.3 from t1 t2 mk-Cmpterm id1 tl1 mk-Cmpterm id2 tl2
2.3.1 id1 id2 id1 id2
2.3.2 from id1 id2
2.3.2.1 * t1 t2 $1 * term1 term2 $1 (2.2, co1, *)
2.3.2.2 * tl1 tl2 $1 * t1 t2 $1 (h2.3, or2)
2.3.2.3 * tl1 tl2 $1 n k (.1, .2, h2)
2.3.2.4 let b $ unifylist tl1 tl2 $1 in
2.3.2.5 post-unifylist tl1 tl2 $1 b $ (h2, .3, .4, rc)
2.3.2.6 post-unify t1 t2 $1 b $

(.5, h2.3, h2.3.2, =, post-unifylist, post-unify)
infer post-unify t1 t2 $1

if id1 id2 then unifylist tl1 tl2 $1 else false
(.6, .4, h2.3.2, ifth-subs)

2.3.3 from id1 id2
2.3.3.1 $ mgu t1 t2 $1 $ (h2.3.3, h2.3, =, mgu)

infer post-unify t1 t2 $1
if id1 id2 then unifylist tl1 tl2 $1 else false

(.1,post-unify, h2.3.3, ifel-subs)
infer post-unify t1 t2 $1

if id1 id2 then unifylist tl1 tl2 $1 else false
(2.3.1, 2.3.2, 2.3.3, -E)

Figure6 17 Proof of first case

6.8 Discussion

In this section we compare the above theory with those of Manna and Waldinger
[MW81], and Paulson [Pau85].

First, we must bear in mind that our objectives are different. Manna and Waldinger
use unification as a nontrivial example of the ‘constructive proof’ approach to derive
programs. Paulson automates the proof in LCF to increase our understanding of the
automatic proof and development of programs. In pursuing these objectives, they restrict
their attention to a theory of idempotent substitutions. Our aim has been to develop a
more general theory and to use it to prove a more space efficient algorithm. Manna and
Waldinger use an algebraic approach to specification. As a result they need to develop
a theory of maps. Paulson also needs to do this because maps are not ‘in-built’ in LCF.
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2.4 from t1 t2 mk-Cmpterm id1 tl1 v2
2.4.1 v2 vars t1$1 v2 vars t1$1
2.4.2 from v2 vars t1$1
2.4.2.1 mgu t1 t2 $1 $1 v2 term1

(h2.4.2, 2.2, h2.4, =, co3)
infer post-unify t1 t2 $1

if v2 vars t1$1 then true $1 v2 term1 else false
(2.4.2.1, post-unify, h2.4.2, ifth-subs)

2.4.3 from v2 vars t1$1
2.4.3.1 t2$1 v2 (2.2, h2.4, co2)
2.4.3.2 $ mgu t1 t2 $1 $ (.1, h2.4.3, h2.4, mg2, mgu)

infer post-unify t1 t2 $1
if v2 vars t1$1 then true $1 v2 term1 else false

(.2, post-unify, h2.4.3, ifel-subs)
infer post-unify t1 t2 $1

if v2 vars t1$1 then true $1 v2 term1 else false
(2.4.1, 2.4.2, 2.4.3, -E)

Figure6 18 Proof of second case

VDM includes maps as a data type; thus we have avoided defining maps. We have used
the logic of partial functions [BCJ83]. Hence, we did not require our definitions to be
total. The logic of partial functions has been particularly useful in expressing lemmas of
the form:

dom-disjoint $1 $2 P $1 $2

A theory of noncircular substitutions is developed. To do this, we have had to for-
malize the notion of circularity. Since idempotent substitutions are noncircular, this
theory is more general. Substitution application is defined recursively, whereas Manna
and Waldinger define it as parallel application. For example, if in parallel substitution
application:

$ X Y Y Z
X$ Y

but in recursive substitution application:

X$ Z
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2.5 from t1 t2 v1 v2
2.5.1 v1 v2 v1 v2
2.5.2 from v1 v2
2.5.2.1 mgu t1 t2 $1 $1 v2 term1

(2.2, h2.5, vars,co2, h2.5.2, co3)
infer post-unify t1 t2 $1

if v1 v2 then true $1 else true $1 v2 term1
(.1, post-unify, h2.5.2, ifel-subs)

2.5.3 from v1 v2
infer post-unify t1 t2 $1

if v1 v2 then true $1 else true $1 v2 term1
(h2.5.3, h2.5, post-unify, ifth-subs)

infer post-unify t1 t2 $1
if v1 v2 then true $1 else true $1 v2 term1

(2.5.1, 2.5.2, 2.5.3, -E)

Figure6 19 Proof of fourth case

The specification of a most general unifier differs from Manna and Waldinger’s in
two respects. First, we allow the unification of terms in an existing context substitution.
We can, of course, remove this context substitution by setting it to the empty map. As
a result of a theory of noncircular substitutions, substitutions which may be most gen-
eral unifiers in our work, may not be most general unifiers in Manna and Waldinger’s
definition. For example, with

$ X Y Y Z

although:

f X X $ f Y Z $ f Z Z

in our definition; in Manna and Waldinger’s theory this substitution is not a unifier:

f X X $ f Y Y but f Y Z $ f Z Z

The algorithm we have proved is more space efficient than the one ‘proved’ by
Manna and Waldinger provided that the check for circularity (the occurs check) is ig-
nored (or implemented using the definition of reach). For example, to unify the terms
(from [CB83, p. 910]):
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t1 f X1 X2 Xm , and
t2 f g X0 X0 g X1 X1 g Xm-1 Xm-1

The algorithm in Manna and Waldinger gives:

X1 g X0 X0
X2 g g X0 X0 g X0 X0
X3 g g g X0 X0 g X0 X0

g g X0 X0 g X0 X0
...
Xm
Thus the space complexity of the algorithm they prove is exponential with respect to

the length of the terms to be unified. The algorithm we prove gives:

X1 g X0 X0 X2 g X1 X1 Xm g Xm-1 Xm-1

In general, the use of coerce in the above algorithm ensures that any pair v t
that is accumulated in the substitution is such that the length of t is less than or equal to
the larger of the terms to be unified (assuming that the initial context is empty). Thus
the space complexity is of order m n where m is the length of the larger of the terms
to be unified, and n is the number of variables occurring in the terms. However, the
above algorithm does not improve upon the exponential time complexity of the algorithm
proved by Manna and Waldinger.

The major benefit of our more general theory has been that we have captured the
behavior of a wider class of unification algorithms. The example above illustrates the
fact that the algorithm we prove does not satisfy Manna and Waldinger’s definition of the
most general unifier, that is, the algorithm we prove does not satisfy their specification
of unification.

6.9 Conclusion

We have developed a theory of noncircular substitutions. Since idempotent substitu-
tions are a proper subset of noncircular substitutions, and when restricted to idempo-
tent substitutions, our definition of substitution application is equivalent to Manna and
Waldinger’s, a theory of noncircular substitutions is more general than a theory of idem-
potent substitutions.

We have presented a proof of an algorithm which does not satisfy Manna andWaldinger’s
specification and is more space efficient than the one they prove. More efficient unifica-
tion algorithms than the one we prove do exist [CB83]). These tend to represent substi-
tuitions as graphs [CB83, PW78]). To prove these in VDM, we would have to use the
ideas of reification [Jon86a]. There are also a number of extensions to unification that
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we have not discussed [Hue75, SR88]. Specifying and proving these algorithms correct
would require further research. For example, we would have to tackle the problem of
‘variable capture’ if we attempt to extend our work to cater for quantified terms [SR88].
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7

Heap Storage

Chris W. George

The specification describes the NEW and DISPOSE operations of the heap
storage in Pascal. It contains several levels of specification, each intended
to implement the previous one. It shows how an efficient implementation
may be gradually created from an abstract specification by successive com-
mitments to data structures and algorithms: VDM is used to capture design
decisions one at a time. The example was originally created as an exercise for
a VDM course. It has the advantage of being a problem many programmers
are aware of while not being trivial.
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7.1 The heap as a set of locations

The first specification, level 0, is an attempt to be as abstract as possible. The free space
is simply a set of locations; disposal is then simply a matter of set union. Allocating free
space with NEW0 involves finding a sufficiently long sequence.

Loc

NEW0 req: res:Loc-set
ext wr FREE : Loc-set
pre s Loc has seq s req free
post s Loc

has seq s req free
res elems s
free free res

DISPOSE0 ret:Loc-set
ext wr FREE : Loc-set
pre ret free
post free free ret

has seq :Loc Loc-set Bool
has seq s n free is sequential s

elems s free
len s n

is sequential : Bool
is sequential s i j s i j

7.2 The heap as a set of pieces

Level 1 tries to tackle the inefficiency of NEW , which in level 0 consisted of a search for
a suitable set. The free space is now held as a set of nonoverlapping, nonabutting pieces.
NEW is now a matter of finding a suitable piece. It was originally intended that it would
be undecided at this stage whether the pieces were nonabutting, but it was realized that if
they were allowed to abut then either the pre-condition of NEW1 would need changing to
show that there existed a set of pieces that could be assembled to form the requirement,
or there would be cases where NEW0 would satisfy its pre-condition and NEW1 would
not. Hence the level 1 invariant now insists on nonabutting pieces.



7.2 The heap as a set of pieces 197

The retrieve function is:

retr1 0 locs

Note that the normal refinement rules, as for example in [Jon90], will not work for
NEW1 and DISPOSE1 since their signatures have changed. (A careful examination will
also show that in level 1 we have also added the restriction that the argument toDISPOSE
must be a single piece, i.e. a sequential set of locations. This was not true at level 0.)

Free1 Piece-set
inv ps p1 p2 ps

p1 p2 locs of p1 locs of p2
LOC p1 SIZE p1 LOC p2

/* pieces must be disjoint and nonabutting */

Piece :: LOC : Loc
SIZE :

Loc

NEW1 req: res:Piece
ext wr FREE : Free1
pre p free SIZE p req
post locs free locs free locs of res

locs of res locs free
SIZE res req

DISPOSE1 ret:Piece
ext wr FREE : Free1
pre locs of ret locs free
post locs free locs free locs of ret

locs :Free1 Loc-set
locs ps locs of p p ps

locs of :Piece Loc-set
locs of p LOC p LOC p SIZE p 1
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7.3 Ordering the pieces

Having tried to deal with the problem of NEW in level 1, it still seems that DISPOSE
has a problem of checking for abutment of the pieces it tries to add to the free space with
those already there – apparently checking each of the free set of pieces. The level 2 state
now holds the pieces in a recursive and ordered structure allowing for a simple search.
The retrieve function to level 1 is:

retr2 1 : Fp Piece-set
retr2 1 free

mk-Piece FPLOC fp FPSIZE fp
fp Fp is reachable fp free

but it is perhaps easier to give that back to level 0 as:

retr2 0 locs2

since the post-conditions of NEW2 and DISPOSE2 use locs2. Note that it would be more
convenient to represent the level 2 state by:

Free2 Piece

when the type Fp and the function is reachable are no longer necessary – the quantifi-
cation in the pre-condition of NEW2 can be done over the ‘elems’ of the state. This
example was written without using the list data type of VDM, but effectively modelling
it, to show how recursive structures may be defined, and to show the use of predicates
like is reachable with such structures.

Free2 Fp
inv x is ok2 x

Fp :: FPLOC : Loc
FPSIZE :
FPNEXT : Fp

Piece :: LOC : Loc
SIZE :

Loc
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is ok2 :Free2 Bool
is ok2 fp

if fp nil
then true
else if FPNEXT fp nil

then true
else FPLOC fp FPSIZE fp FPLOC FPNEXT fp

is ok2 FPNEXT fp

/* Note that the pieces are in ascending order. Note also that the use of ‘ ’ rather than
‘ ’ forces the pieces not to abut. */

NEW2 req: res:Piece
ext wr FREE : Free2
pre fp Fp

FPSIZE fp req
is reachable fp free

post locs2 free locs2 free locs of res
locs of res locs2 free
SIZE res req

DISPOSE2 ret:Piece
ext wr FREE : Free2
pre locs of ret locs2 free
post locs2 free locs2 free locs of ret

locs2 :Free2 Loc-set
locs2 fp

if fp nil
then
else FPLOC fp FPLOC fp FPSIZE fp 1

locs2 FPNEXT fp
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is reachable :Fp Free2 Bool
is reachable fp start

if start nil
then false
else if fp start

then true
else is reachable fp FPNEXT start

7.4 Proof of a refinement step

So far we have defined retrieve functions for each level but not given any proofs. We
will now give an example proof of the refinement from level 1 to level 2.

Adequacy

The retrieve function from level 2 to level 1 is:

retr2 1 :Free2 Free1
retr2 1 free

mk-Piece FPLOC fp FPSIZE fp
fp Fp is reachable fp free

This is clearly a total function, being given a well defined explicit definition. The
next thing we have to do is to prove adequacy, i.e. that:

ps Free1 fp Free2 retr2 1 fp ps

Frequently, the easiest way to prove such an adequacy requirement is to invent a
function that is an inverse of the retrieve function. The existence of an appropriate fp is
then shown by applying this inverse function to the ps value. In this case the algorithm
for the inverse function is clear. If ps is empty the result is nil. Otherwise, since by its
invariant all the pieces in ps are disjoint we can select the first as the one with the lowest
initial location and construct a record of type Fp. The FPNEXT field will be the result
of applying the same function to the rest of ps. More formally, we define a function split
that splits a (nonempty) set of pieces into the first piece and the rest, and the inverse
retrieve in terms of split.

split ps:Free1 r:Piece Free1
pre ps
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post let p s r in
p ps
s ps p
q s LOC p LOC q

inv retr2 1 :Free1 Free2
inv retr2 1 ps if ps

then nil
else let p s split ps in

mk-Fp LOC p SIZE p inv retr2 1 s

It is worth noting that the result of inv retr2 1 is in the type Free2, not just Fp ,
and so the invariant on Free2 is claimed to hold for it. This is easily proved from the
invariant on Free1 that holds on its input.

If we now assume that split is a well defined function with a unique result (which
could also be proved formally) we can give the following proof that inv retr2 1 is a right
inverse of retr2 1 and hence of the required adequacy result:

from ps Free1
1 from ps
1.1 inv retr2 1 ps nil inv retr2 1
1.2 retr2 1 inv retr2 1 ps retr2 1

infer retr2 1 inv retr2 1 ps ps -trans(h1,1.2)
2 from p Piece s Piece-set

p s split ps retr2 1 inv retr2 1 s s
2.1 inv retr2 1 ps

mk-Fp LOC p SIZE p inv retr2 1 s inv retr2 1
2.2 retr2 1 inv retr2 1 ps

p retr2 1 inv retr2 1 s retr2 1
2.3 retr2 1 inv retr2 1 ps p s h2

infer retr2 1 inv retr2 1 ps ps split
3 retr2 1 inv retr2 1 ps ps set-ind(1,2)
infer fp Free2 retr2 1 fp ps -I

Refined operations

We now have to prove the domain and result proof obligations for the refinement. For
DISPOSE the domain rule is:
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fp Free2 ret Piece
locs of ret locs retr2 1 fp locs of ret locs2 fp

which suggests that we might start by proving the lemma:

fp Free2 locs retr2 1 fp locs2 fp

The proof of the lemma is as follows, using structural induction on the type Free2:

from fp Free2
1 from fp nil
1.1 retr2 1 fp retr2 1
1.2 locs retr2 1 fp locs
1.3 locs2 fp locs2,h1

infer locs retr2 1 fp locs2 fp -trans(1.2,1.3)
2 from l Loc n f Free2

fp mk-Fp l n f locs retr2 1 f locs2 f
2.1 retr2 1 fp mk-Piece l n retr2 1 f retr2 1
2.2 locs retr2 1 fp

l l n 1 locs retr2 1 f locs
2.3 locs retr2 1 fp

l l n 1 locs2 f h2
2.4 locs2 fp l l n 1 locs2 f locs2,h2

infer locs retr2 1 fp locs2 fp -trans(2.3,2.4)
infer locs retr2 1 fp locs2 fp Free2-ind

The domain rule for DISPOSE is now proved immediately from the lemma. The
result rule, which also follows immediately from the lemma, is:

fp fp Free2 ret Piece
pre-DISPOSE ret fp
locs2 fp locs2 fp locs of ret

locs retr2 1 fp locs retr2 1 fp locs of ret

For NEW the domain rule is:

fp Free2 req
p retr2 1 fp SIZE p req

f Fp FPSIZE f req is reachable f fp

A proof of this is:
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from fp Free2 req
1 f Fp is reachable f fp FPSIZE f req

p retr2 1 fp SIZE p req retr2 1
2 p retr2 1 fp SIZE p req

f Fp is reachable f fp FPSIZE f req -contrp
infer p retr2 1 fp SIZE p req
f Fp FPSIZE f req is reachable f fp -defn, ,deM

The result rule for NEW is:

fp fp Free2 req Nat res Piece
pre-NEW req retr2 1 fp
locs retr2 1 fp locs retr2 1 fp locs of res
locs of res locs retr2 1 fp
SIZE res req

locs2 fp locs2 fp locs of res
locs of res locs2 fp
SIZE res req

which follows immediately from the lemma proved earlier.
Since there are no initial states specified we have completed the data reification proof

for the development step from level 1 to level 2.

7.5 Using the heap to record its structure

Having achieved a state structure that will allow reasonably efficient procedures for NEW
and DISPOSE (or at least procedures that are an improvement on searching sets), there is
still the problem that in implementing this structure much storage will be used. We wish
instead to use the free storage as the space in which the information about its structure is
held. Hence in level 3 we model storage as a map from location to value, where a value
may also represent a location. Since each piece of free space must now store its length
and a pointer to the next, a new requirement is added that NEW and DISPOSE will not
work on pieces of length 1.

The retrieve function is:
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retr3 2 :Free3 Free2
retr3 2 start store

if start nil
then nil
else mk-Fp start store start retr3 2 store start 1 store

pre is ok3 start store
but as with level 2 it might be easier to use:

retr3 0 locs3

Neither of these retrieve functions will be adequate, of course, because of the ban on
pieces of length 1.

It should also be noted that this is the first level at which a location is anything other
than a natural number. In order to allow the heap to hold information about its structure
we have introduced the notion of storage. Now its presence in the state would allow NEW
and DISPOSE to change it arbitrarily, so we have added to the post-conditions of NEW3
and DISPOSE3 extra conjuncts to prevent them altering nonfree locations, i.e. locations
‘in use’ by some program. The conjunct for NEW3 says that any location that was in use
before NEW3 was invoked must remain in use with the same contents; the conjunct for
DISPOSE3 says that any location that was in before DISPOSE3 was invoked, and has
not just been disposed, must remain in use with the same contents. These constraints
might well be regarded as part of the requirements of the specification, but can only
be expressed once we have actually modelled storage. Such an inability to capture all
requirements at the most abstract level of specification is quite common.

Free3 Loc Store
inv start store is ok3 start store

Store Loc m

Piece :: LOC : Loc
SIZE :

Loc
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is ok3 : Loc Store Bool
is ok3 a store

if a nil
then true
else a a 1 dom store

store a nil
store a 1
store a 1 nil
a store a store a 1 is ok3 store a 1 store

/* Note the new restriction, carried into NEW3 and DISPOSE3, that the size of a piece
must be at least 2 */

NEW3 req: res:Piece
ext wr FREE : Free3
pre req 1

let start store free in
a dom store

store a nil
store a req store a req 1
is reachable3 a start store

post locs3 free locs3 free locs of res
locs of res locs3 free
SIZE res req
let start store free in
loc dom store locs3 start store

loc dom store store loc store loc

DISPOSE3 ret:Piece
ext wr FREE : Free3
pre SIZE ret 1

locs of ret locs3 free
post locs3 free locs3 free locs of ret

let start store free in
loc dom store locs3 start store

loc dom store store loc store loc
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is reachable3 :Loc Loc Store Bool
is reachable3 a start store

if start nil
then false
else if a start

then true
else is reachable3 a store start 1 store

pre is ok3 start store

locs3 : Loc Store Loc-set
locs3 start store

if start nil
then
else start start store start 1

locs3 store start 1 store
pre is ok3 start store

7.6 Providing explicit algorithms

NEW4 and DISPOSE4 are new versions of NEW and DISPOSE working on the level 3
state, but supplying explicit instead of implicit specifications. There is no algorithm for
any of the previous definitions of NEW and DISPOSE – the specifications are in terms
of the sets of locations represented and the state invariants. It is an interesting question
whether it would have been better to try to introduce these algorithms at level 2. In the
opinion of the author the algorithms are difficult to introduce, but would have been no
easier at level 2.

NEW4 req: res:Piece
ext wr FREE : Free3
pre req 1

let start store free in
a dom store

store a nil
store a req store a req 1
is reachable3 a start store
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post let start store free in
start if store start req

then store start 1
else start

store res remove4 nil start store req

remove4 : Loc Loc Store 1 Store Piece
remove4 prev current store n

if store current n store current n 1
then remove4 current store current 1 store n
else let store1 if store current n

then if prev nil
then store
else store† prev 1 store current 1

else store† current store current n
in

store1 mk-Piece current store current -n n
pre n 1

a dom store
store a nil
store a n store a n 1
is reachable3 a current store

prev nil current nil prev current
is ok3 prev store
is ok3 current store

DISPOSE4 ret:Piece
ext wr FREE : Free3
pre SIZE ret 1

locs of ret locs3 free
post let mk-Piece a s ret in

let start store free in
start if start nil

then a
else min start a

store insert nil start store a s
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insert : Loc Loc Store Loc 1 Store
insert prev current store a s

if current nil a current
then insert current store current 1 store a s
else let store1 store† a s a 1 current in

let store2 if prev nil
then store1
else store1† prev 1 a

in
let store3 if current nil a s current

then store2
else current current 1 store2 †

a s store2 current
a 1 store2 current 1

in
let store4 if prev nil prev store prev a

then store3
else a a 1 store3 †

prev store3 prev store3 a
prev 1 store3 a 1

in
store4

pre s 1
prev nil current nil prev current
is ok3 prev store
is ok3 current store

In this specification:

store1 has new piece hooked up to next.

store2 has new piece hooked up to previous one.

store3 has new piece merged with next if possible.

store4 has new piece merged with previous if possible.

DISPOSE4 is an implementation of DISPOSE3.

7.7 Further refinements

The removal of domain elements from the store map in DISPOSE4 is difficult to model,
and should be deleted on the basis that the presence of unreachable elements in the
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domain of the the map is irrelevant.
The pre-conditions for DISPOSE4 and NEW4 should be replaced by exception con-

ditions, and the exceptions raised at appropriate points in the algorithms. Note that this
is more than encapsulation in some operation whose body (for NEW , say) is effectively:

if pre-NEW req
then NEW req
else RAISE exception

since an implementation of this implies in general two searches for a suitable piece.
The type Loc should then be replaced by some range of values representing possible

heap locations. (This introduction of bounds is, of course, an inadequate refinement.)
An extra exception for exhaustion of heap space should also be added.

The operations could then be implemented in some suitable programming language,
though of course we would only be modelling heap space by some (presumably large)
array.

A development along these lines into Pascal has in fact been completed and is docu-
mented in [Eva86].

7.8 More interesting data structures

It could be argued that the data structures used are still fairly trivial. A more interesting
level 2 structure would use a B-tree instead of the linear recursive structure, and a further
refinement to the operations would be to keep the tree balanced. This involves a further
restriction on the minimum size of pieces to 3.

An even more interesting structure can be obtained by noting that the balanced B-
tree gives an O(log(n)) algorithm for DISPOSE but still leaves NEW as O(n), where n is
the number of pieces. If most NEW and DISPOSE operations are of the same size, or
from a small range of sizes, this should not be too much of a problem. If NEW is also
required to be O(log(n)) then some other structure might be used.
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Garbage Collection

Mario I. Wolczko

Like the preceding chapter, this specification is concerned with storage man-
agement. In this case, the topic of garbage collection algorithms is discussed.
Standard algorithms such as reference counting and mark-sweep are related
to an abstract VDM specification. These specifications show how to record
a body of knowledge about algorithms: VDM can be used to describe algo-
rithms at a level of abstraction which makes their reimplementation in various
languages straightforward.
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8.1 Introduction

A milestone was achieved in the history of the development of programming languages
with the introduction of automatic storage reclamation. In contrast to many lower-level
languages such as C and Pascal, languages like LISP and Smalltalk-801 relieve the pro-
grammer from the burden of storage management. In these languages the programmer
is free to create data structures at will, and the resources used by these data structures
will be reclaimed automatically by the run-time system when it can prove that they are
no longer required. Unusable data structures are known as garbage, and the task of
reclaiming garbage is more commonly known as garbage collection.2

It is of paramount concern that any implementation of a garbage collector be correct.
An incorrect garbage collector can fill memory with unreclaimable garbage, or, more
seriously, can reclaim data structures that are still in use. Clearly, the implications for a
system using such a collector are severe: data will be modified in ways which seem to
bear no relation to the program activity at the time. Indeed, a malfunctioning garbage
collector can render a system as unusable as malfunctioning hardware.

In principle, the task of a garbage collector is simple: it must detect garbage, and re-
claim the resources it uses it for future use. In practice, however, this is a nontrivial task,
especially when one considers efficiency. The aim of this chapter is to introduce a VDM
specification for the abstract problem of garbage collection, divorced from any imple-
mentation details, and then present several different reifications which lead to garbage
collection algorithms with different properties. By concentrating on the essence of each
algorithm using a formal notation, the reader can gain insight into the operation of the
algorithm, and its potential gains and drawbacks.

8.2 An abstract characterization of garbage collection

A garbage collector operates on a collection of objects, where each object may contain
references to other objects. Therefore, the entire collection of objects can be considered
as a directed graph, with each object as a node and each reference as an arc. Some of
the objects are distinguished by being roots: they can never become inaccessible, and
their storage cannot be reclaimed. The task of the garbage collector is to find all the
nodes in the graph which cannot be reached by traversing arcs from the root nodes, and
reclaiming their resources for future use.

In a real system, objects may contain all sorts of data in addition to references to
other objects: characters and numbers, for example. For the purposes of garbage col-

1Smalltalk-80 is a trademark of ParcPlace Systems, Inc.
2Early texts on automatic storage reclamation [Knu79] used the term ‘garbage collection’ to denote a

specific class of storage reclamation algorithms. Nowadays it is often used for all such algorithms, and in
this chapter the terms garbage collection and automatic storage reclamation are used interchangeably.
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lection these items are of no consequence. To model object references we introduce the
data type Oop (ordinary object pointer). Every object has its own unique Oop, and can
contain within itself other Oops referring to other objects. The particular set of Oops
is of no consequence at this stage in the specification; for the moment we will simply
assume that the set contains enough distinct values to assign one to each object in the
largest memory structure that we might be interested in. At the implementation level it
may be a subrange of the integers representing the available address space of a machine.

In addition to being identified by an Oop, the data within an object will most likely
be ordered, so that each datum can be accessed by position. However, the ordering of
references is of no consequence to the garbage collector; it is only concerned with what
is referenced. Hence, our initial model of an object might be a set of references to other
objects:

Object Oop-set

However, this model is in some sense ‘too abstract.’ When one considers the oper-
ations that take place on objects in a real system, one finds that it is important to know
how many times one object refers to another. In other words, the graph of objects should
be allowed to contain multiple arcs from one object to another. We shall say more about
this later.

Hence, our abstract model for an object is as a bag of references to other objects:

Object Bag Oop

There is no ordering defined on the references, but if a reference is added to a bag
more than once, it can be removed more than once. For a more complete exposition
of bags, see [Jon90]. We shall use several operations involving bags: add to add an
element to a bag, remove to remove an element from a bag, count to count the number
of occurrences of an element in a bag, to add bags together, and set to obtain the set
of elements in a bag. These are defined in the appendix.

At this stage we shall also define a number of auxiliary functions that operate on
objects. As the definition of an object is reified, the definitions of these functions will be
altered, but the interface will remain the same. Hence the set of functions can be thought
of as a small ‘object language.’

The first function simply tests whether one object refers to another:

refers to :Oop Object
refers to p obj count p obj 0

The next two add and remove a reference to an object, respectively:

add to obj :Oop Object Object
add to obj p obj add p obj
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remove from obj :Oop Object Object
remove from obj p obj remove p obj

Finally, we shall need to know which objects an object refers to:

all refs :Object Oop-set
all refs obj set obj

In addition to the object manipulation functions, we shall also define what the initial
state of a newly created object is:

init object init-Bag

The memory system will contain a collection of these objects, and distinguish some
of them as roots:

StateA :: mem : Oop m Object
roots : Oop-set

(The subscript A indicates that this is our abstract state. As it is reified in later
sections, the subscript will be altered.)

For example, given a state s StateA, and an Oop p, we can discover which objects
p references by looking up p in the memory of s: all refs mem s p (p must be in the
domain of mem s , of course).

Operations on the abstract state

Having defined the abstract state (the invariant follows at the end of this section), we
now come to the operations on that state. We need to be able to create a new object and
to modify an object. Collectively, these are known as the mutator operations:

create f creates a new object in the memory, installs a reference to it in the object
referred to by the Oop f , and returns the Oop of the new object.

add ref f t adds a reference from f to t.

remove ref f t removes a reference to t from f . It is here that the distinction
between objects as bags and sets is made: had the model for an object been a set
of Oops, a single remove ref application would have removed all references to t
from f . In reality, pointer manipulation operations do not have this property, and
references are added and removed one at a time.

Operations could also be provided to modify the set of roots. As these are not important
in this chapter, they will be omitted.
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It should be obvious that garbage can only come into being as the result of a remove
ref operation. Hence, we could state in the post-condition for remove ref that all garbage
be removed immediately. However, by placing in the invariant the restriction that no
garbage is ever in the state, we will make later development steps easier.

Here are the operations:

create from:Oop to:Oop
ext wr mem : Oop m Object
pre from dommem
post to dommem

mem mem† from add to obj to mem from to init object

The post-condition of create chooses to from the set of Oops that are not in use; this
allows an implementor as much freedom as possible in Oop allocation.

add ref from to:Oop
ext wr mem : Oop m Object
pre from to dommem
post mem mem† from add to obj to mem from

In the post-condition of remove ref we need only state that all objects remaining in
the state (except the one being altered) are unchanged; the invariant will take care of
garbage for us:

remove ref from to:Oop
ext wr mem : Oop m Object
pre from to dommem refers to to mem from
post mem from remove from obj to mem from

p dommem p from mem p mem p

The invariant is now defined to ensure that no garbage appears in the state.

inv-StateA mk-StateA mem roots
roots dommem no garbage roots mem

The test for absence of garbage states that the set of objects in the memory is pre-
cisely the set that is reachable from the roots:

no garbage roots mem reachable from roots mem dommem

Reachability is determined by following all references from the roots recursively
until no new objects are encountered. The set of objects encountered and recorded as
reachable is known as the visited set; those objects referenced from the visited objects
but not in the visited set are known as unvisited objects, and are visited in the next step
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of the recursion. When the unvisited set becomes empty, all accessible objects have been
traced, and are in the visited set.

reachable from :Oop-set Oop m Object Oop-set
reachable from roots mem visit roots mem

visit :Oop-set Oop-set Oop m Object Oop-set
visit visited unvisited mem

if unvisited
then visited
else let visited visited unvisited in

visit visited all refs mem p p unvisited visited mem

The state, invariant and operations describe an ideal system in which garbage is
reclaimed immediately it is created. This is an example of a specification for which
there is no known efficient implementation. All known garbage collection algorithms
either do not guarantee that all garbage is reclaimed or take time proportional to the
number of objects in the system to reclaim garbage. Clearly, having such behavior for
each remove ref operation will be unacceptable.

We need therefore to relax our constraint that no garbage ever appears in the state.
A ‘safe’ garbage collector is one that never reclaims active objects, and we can specify
safety properties by relaxing the invariant:

inv-State mk-State mem roots
roots dommem no dangling refs mem

In our new, less abstract state (the A subscript has disappeared), any number of
garbage objects may appear, but there must be no references to nonexistent objects.

no dangling refs : Oop m Object
no dangling refs mem p dommem all refs mem p dommem

We can relate this new state to the abstract one by means of a retrieve function that
discards all garbage:

retr :State StateA
retr mk-State mem roots

mk-StateA reachable from roots mem mem roots

Now that garbage may appear in the state, we need a separate operation to reclaim
it.

GC
ext wr mem : Oop m Object
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post dommem dommem p dommem mem p mem p

This specification states that the garbage collector may not introduce new objects,
and that all objects present after garbage collection must be unchanged. The post-
condition, taken in conjunction with the invariant, ensures that only garbage has been
removed from the state.

Note that the garbage collector can be very simple: it need not collect any garbage
at all! We have to be this lax because some garbage collectors do not guarantee that all
garbage is reclaimed.

The create, add ref and remove ref operations require stricter pre-conditions stating
that their arguments must not refer to garbage objects; these modifications are left as an
exercise for the reader.

8.3 The mark-sweep garbage collector

The principle behind a mark-sweep garbage collector is simple: in one phase all the
objects accessible from the root set are traced and marked (leaving inaccessible objects
unmarked); in a second phase, all unmarked objects are reclaimed. Several different
algorithms satisfy this specification (see [Knu79], pp. 413–420, and [Coh81]), differing
in how they trade time for space.

The definition of an object is altered to incorporate the mark bit:

Object :: body : Bag Oop
marked :

The object manipulation functions are suitably modified:

refers to :Oop Object
refers to p obj count p body obj 0

add to obj :Oop Object Object
add to obj p obj µ obj body add p body obj

remove from obj :Oop Object Object
remove from obj p obj µ obj body remove p body obj

all refs :Object Oop-set
all refs obj set body obj

init object mk-Object init-Bag false
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Given these definitions, the create and add ref specifications for the previous state,
State, can be used unchanged. The remove ref operation is defined so that it does not
attempt to reclaim any garbage:

remove ref from to:Oop
ext wr mem : Oop m Object
rd roots : Oop-set

pre from to reachable from roots mem refers to to mem from
post mem mem† from remove from obj to mem from

The mark and sweep operations are combined into a single GC operation by quoting
their individual post-conditions and using an intermediate state:

GC
ext wr mem : Oop m Object
rd roots : Oop-set

pre p dommem marked mem p
post mem Oop m Object

post-mark mem roots mem post-sweep mem roots mem

As is usual in mark-sweep garbage collectors, we have stated that the mark phase
must start with all objects unmarked, and the sweep phase must unmark all of the non-
garbage objects.

mark
ext wr mem : Oop m Object
rd roots : Oop-set

pre p dommem marked mem p
post mem mem† p µ mem p marked true

p reachable from roots mem

sweep
ext wr mem : Oop m Object
rd roots : Oop-set

pre p dommem p reachable from roots mem marked mem p
post let remaining p dommem marked mem p in

mem p µ mem p marked false p remaining
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8.4 Reference counters

The mark-sweep algorithm was the first garbage collection technique used. It reclaims
all garbage, but suffers from the problem that when invoked it takes time proportional
to the number of objects in the system. (More accurately, the first phase takes time pro-
portional to the number of nongarbage objects, while the second takes time proportional
to the total number of objects.) When used in an interactive system, this can cause a
disconcerting pause in activity.

The next collection scheme was introduced shortly after the mark-sweep scheme
[Col60, Knu79]. It has the advantage that it reclaims some garbage as soon as it is
created, but cannot reclaim all garbage (no known algorithm can do both efficiently).
The technique is simple: with each object is kept a count of the number of references to
it in the memory. As a reference is copied, the count is incremented; when a reference
is destroyed (by being overwritten or reclaimed), the count is decremented. Should the
count fall to zero then no other references to the object exist, and it can be immediately
reclaimed.

A self-referential structure, that is a collection of objects withOops p1 pn n 0
such that refers to pi 1 mem pi 1 i n and refers to p1 mem pn , will always
have positive reference counts, and so can never be reclaimed by the reference counting
technique.

To describe a reference counting system, we extend the definition of Object to in-
clude a nonzero count:

Object :: body : Bag Oop
RC : 1

The following functions increment and decrement respectively the reference count
of an object:

inc rc :Object Object
inc rc obj µ obj RC RC obj 1

dec rc :Object Object
dec rc obj µ obj RC RC obj 1
pre RC obj 1
When created, an object has a reference count of one:

init object mk-Object 1

The definition of a retrieve function from a reference-counted StateRC to the earlier
State is straightforward and left as an exercise for the reader. The invariant is somewhat
less obvious. In addition to stating that there are no ‘dangling’ references, we must also
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state that the reference counts are accurate:

inv-StateRC mk-StateRC mem roots
roots dommem
no dangling refs mem
ref counts accurate roots mem

For each object this is determined by summing the number of occurrences of an Oop
in all the object bodies in the memory and checking that the sum is equal to the object’s
reference count. Note that an extra reference is added for root objects.

ref counts accurate roots mem
p dommem

RC mem p if p roots then 1 else 0
+

q dommem
count p body mem q

To maintain the reference counts, add ref is modified to perform the appropriate
increment operation:

add ref from to:Oop
ext wr mem : Oop m Object
rd roots : Oop-set

pre from to reachable from roots mem
post let mem mem† from add to obj to mem from in

mem mem † to inc rc mem to

Note that the update to the memory must be done in two stages because of the pos-
sibility that from to.

Similarly, remove ref performs a decrement operation. However, if the count falls
to zero, then the object is freed, and the counts of all the objects referenced from the
freed object are decremented. This in turn may cause further freeing and decrementing.
The recursive decrement and freeing operation is captured by the dec function.

remove ref from to:Oop
ext wr mem : Oop m Object
rd roots : Oop-set

pre from to reachable from roots mem refers to to mem from
post mem dec add to init-Bag

mem† from remove from obj to mem from
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dec :Bag Oop Oop m Object Oop m Object
dec ptrs mem

if ptrs init-Bag
then mem
else let garbage p set ptrs RC mem p count p ptrs

left set ptrs garbage
mem garbage mem
mem mem † p µ mem p RC

RC mem p count p ptrs p left in
dec +
p garbage

body mem p mem

The dec function requires some explanation. At each step it is passed a bag, ptrs,
containing the Oops to have their counts decreased – the number of occurrences of an
Oop in the bag is the amount by which its count is to be decreased – and a memory,mem.
If the bag is empty, then mem is returned unchanged. Otherwise garbage is calculated
to be the set of Oops in mem whose reference count will fall to zero and hence become
garbage; left is the set of nongarbage pointers in ptrs. The garbage is excluded from
the memory (yielding mem ), and the reference counts of the Oops in left are adjusted.
Finally, dec is called recursively with the sums of the bags ofOops in the garbage objects
(we use a distributed form of between bags to perform this summation).

Using a free stack

The use of recursion in the dec function highlights the unbounded nature of recursive
freeing in the reference count scheme. When a large structure loses its last reference,
there may be a significant pause in normal processing due to the traversal of a large tree
of objects. To avoid this, at the penalty of slowing down object creation slightly, a free
stack may be used [Wei63]. When an object’s reference count falls to zero, it is added to
a set of objects available for reuse (known as the free stack). When an object is created,
should the free stack be nonempty and an object of suitable size be found within it, then
its storage is used for the new object. Before releasing the storage for reuse, all objects
referenced from within it have their counts decremented, and if any fall to zero they are
added to the free stack.

To model this, we modify the definition of Object so that objects may have reference
counts of zero:

Object :: body : Bag Oop
RC :

The free stack is then the set of objects in the memory with reference counts of zero.
(A further reification might model the set as an explicit component in the state.)
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The create operation checks the free stack for any eligible objects (note that we
ignore problems of size):

create from:Oop to:Oop
ext wr mem : Oop m Object
rd roots : Oop-set

pre from reachable from roots mem
post let mem mem† from add to obj to mem from to init object in

if p dommem RC mem p 0
then to dommem RC mem to 0

mem mem † p dec rc mem p p all refs mem to
else to dommem mem mem

The remove ref operation now simply decrements a single reference count (addition
to the free stack being implicit if the count falls to zero):

remove ref from to:Oop
ext wr mem : Oop m Object
rd roots : Oop-set

pre from to reachable from roots mem refers to to mem from
post let mem mem† from remove from obj to mem from in

mem mem † to dec rc mem to

8.5 Incremental mark-sweep

The main deficiency of the mark-sweep approach is that each garbage collection takes
a long time, leading to unexpected and unwelcome pauses in an interactive system. For
many years the only alternative was a reference count scheme, which suffered from the
problems that it could not reclaim cyclic structures, and imposed an overhead on every
pointer manipulation.

In the late 1970s a number of schemes to perform mark-sweep garbage collection
in parallel with mutation [Ste75, DLM 78] were proposed. These had the advantage of
removing the annoying pauses, but required a parallel processor to perform the garbage
collection. At about the same time Baker [Bak78] proposed a scheme for incremental
garbage collection that did not require a parallel processor, and yet was real-time: it
placed a small upper bound on the amount of time required for a garbage collection step.

In essence, Baker’s scheme encodes one of three states into the address of an object:

Visited objects have already been traced by the collector, and are known not to be
garbage.
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Unvisited objects are referenced from visited objects, but have not themselves been
traced. They are also known not to be garbage.

Untraced objects have not been encountered by the garbage collector at all, and may or
may not be garbage.

Baker’s algorithm traces all accessible objects, relocating each as it goes. When the
unvisited set becomes empty, then all live objects are in the visited set, and all objects in
the untraced set are garbage. Because the scheme is incremental, an object may become
garbage and remain in the visited set for some time, but will be reclaimed at the next
collection.

A formal description begins by adding to each object a component that describes to
which set it belongs:

Object :: body : Bag Oop
space : UNTRACED UNVISITED VISITED

The object manipulation functions are redefined to operate on the body part; suitable
definitions can be found in Section 8.3.

When an object is created it contains no references to other objects and is known not
to be garbage, and therefore is marked as visited.

init object mk-Object VISITED

Other than this change, the create operation is as it was in the abstract specification.
Similarly, the specification of remove ref from the mark-sweep collector applies to the
incremental scheme.

The major change occurs in add ref . If a reference is added from a visited object, f ,
to an untraced object, t, then t must be recorded as unvisited. Otherwise, at the end of
the marking phase the sole reference to t may occur in f , which was scanned before t
was added to it.

add ref from to:Oop
ext wr mem : Oop m Object
rd roots : Oop-set

pre from to reachable from roots mem
post mem mem† from add to obj to mem from

† if space mem from VISITED space mem to UNTRACED

then to µ mem to space UNVISITED
else

A garbage collection step chooses an unvisited object, p (it does not matter which),
marks it as visited, and marks all untraced objects referenced from p as unvisited. If
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there are no unvisited objects left, then the untraced ones are reclaimed and the visited
ones marked as untraced for the the next cycle of marking; root objects are marked as
unvisited.

GCstep
ext wr mem : Oop m Object
rd roots : Oop-set

post let unvisited p dommem space mem p UNVISITED in
if unvisited
then u unvisited

let untraced p all refs mem u
space mem p UNTRACED in

mem mem† u µ mem u space VISITED
† p µ mem p space UNVISITED p untraced

else mem p µ mem p space
if p roots then UNVISITED else UNTRACED

p dommem space mem p VISITED

In Baker’s version of this algorithm, when an object changed from untraced to visited
or unvisited it was copied into a different area of memory; the transition from unvisited
to visited did not require copying. However, every complete garbage collection cycle
required all accessible objects to be copied from one semispace to another (a beneficial
side-effect of this was the compaction of storage, an issue ignored in this chapter).

8.6 Generation scavenging

A development of the Baker algorithm, due to Lieberman and Hewitt [LH81], relied on
the observation that most garbage in a typical LISP system was created by the death of
short-lived objects. The Lieberman–Hewitt algorithm concentrates garbage collection
effort on young objects by dividing all objects into ages, with a semispace per age.
Younger semispaces are scanned more frequently than older ones. The reader may like
to try modifying the earlier definitions to incorporate these changes.

Ungar [Ung84] noticed that a typical Smalltalk-80 system suffered from the age
problem even more acutely than did LISP, with the vast majority of objects becoming
garbage soon after they were created. Hence, he simplified the Lieberman–Hewitt col-
lector by dividing objects into just two ages: new and old. Old objects are not garbage
collected at all, with all the activity concentrated on the new set. In order to ensure
that any new objects referenced from old ones are not prematurely reclaimed, a remem-
bered set records which old objects may contain references to new ones. The new and
remembered sets are part of the amended state:
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StateGS :: mem : Oop m Object
roots : Oop-set
new : Oop-set
remembered : Oop-set

As all garbage collection activity is concentrated on the new set, the invariant insists
that no new objects are roots. Otherwise, it is a straightforward extension of the earlier
invariant:

inv-StateGS mk-StateGS mem roots new remembered
roots new remembered dommem
no dangling refs mem
is-disjoint roots new
is-disjoint new remembered

The mutator operations must record the Oops of any old objects that may contain
references to new ones. This involves a test in the create and add ref operations, but
the remove ref operation does not perform any checks, as this would be expensive in an
implementation. Instead, the remembered set that is part of the state is a superset of the
true remembered set, which is recomputed when a garbage collection is performed:

create from:Oop to:Oop
ext wr mem : Oop m Object
rd roots : Oop-set
wr new : Oop-set
wr remembered : Oop-set

pre from reachable from roots mem
post to dommem

mem mem† from add to obj to mem from to init object
new new to
if from new
then remembered remembered
else remembered remembered from

add ref from to:Oop
ext wr mem : Oop m Object
rd roots : Oop-set
rd new : Oop-set
wr remembered : Oop-set

pre from to reachable from roots mem
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post mem mem† from add to obj to mem from
if from new to new
then remembered remembered from
else remembered remembered

The garbage collection operation finds all new objects reachable from the roots and
the remembered set, and discards the rest. In addition, any objects in the remembered
set which no longer refer to a new object are removed from the remembered set.

GC
ext wr mem : Oop m Object
rd roots : Oop-set
wr new : Oop-set
wr remembered : Oop-set

post new new reachable from roots remembered mem
remembered p remembered is-disjoint new all refs mem p
mem new new mem

Because of the presence of the remembered set, the test for reachability does not
require a sweep of all accessible objects – the sweep area can be confined to the new
objects. This is more apparent if the first line of the post-condition is recast in the
following, equivalent form:

new reachable fromGS roots remembered new mem

The reachable fromGS function need only take the part of the memory containing
the new objects as its argument:

reachable fromGS :Oop-set Oop m Object Oop-set
reachable fromGS r m visitGS m r

visitGS :Oop-set Oop m Object Oop-set Oop-set
visitGS visited mem unvisited

if unvisited
then visited
else let visited visited unvisited in

visitGS visited mem
all refs mem p dommem p unvisited visited

Of course, the scheme just presented suffers from the problem that the new set will
increase as new, long-lived objects survive collections. Hence, the aim of generation
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scavenging, that is to make the collection time imperceptible, will be lost.
To keep the size of the new set down, any new objects which survive a predetermined

number of collections are tenured: they move out of the new set and are no longer
eligible for reclamation.

In this scheme, each new object has a record of its ‘age’:

StateGS :: mem : Oop m Object
roots : Oop-set
new : Oop m

remembered : Oop-set

When created, an object has age zero:

create from:Oop to:Oop
ext wr mem : Oop m Object
rd roots : Oop-set
wr new : Oop m

wr remembered : Oop-set
pre from reachable from roots mem
post to dommem

mem mem† from add to obj to mem from to init object
new new to 0
if from domnew
then remembered remembered
else remembered remembered from

The add ref operation requires a small change to account for the modified definition
of new; this is left as an exercise. The GC operation increases the age of new objects
that survive collection, and tenures objects with age threshold.

GC
ext wr mem : Oop m Object
rd roots : Oop-set
wr new : Oop m

wr remembered : Oop-set
post let new reachable from roots remembered mem new in

new tenure new
remembered p remembered

is-disjoint dom new all refs mem p
mem dom new dom new mem
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tenure : Oop m Oop m

tenure new p new p 1 p dom new new p threshold

8.7 Deferred reference counting

The final scheme presented dates from before the Baker incremental collector, and is an
attempt to decrease the cost of reference counting. It was noticed that, for LISP systems
at least, most of the mutator activity occurs in the region of memory containing the
program variables, usually known as the stack. Performing a reference count operation
whenever a variable changes slows systems down by 20 percent, so the idea of a deferred
reference counting scheme was invented by Deutsch and Bobrow [DB76].

The basic idea is this: any references to objects from the stack are not included in
their reference counts. This enables the mutator to operate on the stack at full speed.
Objects not part of the stack are mutated in the usual way, performing reference count
operations. When the count of an object falls to zero, the Oop of the object is recorded
in a zero count table (ZCT). Periodically, to reclaim garbage, the stack is swept and
Oops in the ZCT that are not referenced from the stack are reclaimed. (The Deutsch–
Bobrow scheme also includes other features optimized for LISP usage, but these are not
dealt with in this chapter. One arises from the observation that most objects in a LISP
system are referenced only once, and hence storing only the reference counts of multiply
referenced objects saves space. The reader may like to reify the specification presented
to include this feature.)

Object is defined as it was for simple reference counting. The state is extended to
record which objects comprise the stack, and which are in the ZCT.3

StateDRC :: mem : Oop m Object
roots : Oop-set
stack : Oop-set
zct : Oop-set

The invariant for this state adds the property that all Oops in the ZCT have reference
counts of zero:

3In a typical LISP system the stack does not consist of objects, but activation records, which cannot be
referenced in the usual way by pointers. However, for the purposes of this specification we shall assume
that the stack is just a distinguished set of objects (as it is in a Smalltalk-80 system, for example).
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inv-StateDRC mk-StateDRC mem roots rc
roots stack zct dommem
no dangling refs mem
ref counts accurateDRC roots mem stack
p zct RC mem p 0

Note that it is not necessarily the case that all objects with a reference count of zero
are in the ZCT: an object that is part of the stack, but not referenced from a nonstack
object, will have a count of zero, but will not be in the ZCT. Entry into the ZCT occurs
primarily when the last reference to an object from a nonstack object disappears.

The accuracy of reference counts is determined by examining nonstack objects only
(cf. the definition of ref counts accurate in Section 8.4).

ref counts accurateDRC roots mem stack
p dommem

RC mem p if p roots then 1 else 0
+

q dommem stack
count p body mem q

The create operation distinguishes between references from stack and nonstack ob-
jects, and installs the newly allocated Oop in the ZCT if appropriate:

create from:Oop to:Oop
ext wr mem : Oop m Object
rd roots : Oop-set
rd stack : Oop-set
wr zct : Oop-set

pre from reachable from roots mem
post let rc if from stack then 0 else 1 in

mem mem† from add to obj to mem from to mk-Object rc
to dommem
zct if from stack then zct to else zct

The create operation creates a new object not on the stack. In systems where it is
possible to create an object on the stack a dual of this operation is required, or possibly
operations to move an object to and from the stack. These are left as exercises for the
reader.

The mutator operations are now defined. We have split them into two pairs, de-
pending on whether the object being mutated is on the stack or not. We could have as
easily made the test in the post-condition, but in practice the different cases can be dis-
tinguished statically and the overhead implied by the post-condition test can be avoided.
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Hence, add ref mutates a nonstack object, add ref s mutates an object on the stack,
and similarly for remove ref and remove ref s.

The post-conditions of the on-stack operations are the same as the abstract operations
defined in Section 8.2. This emphasizes that there is no additional overhead on these
operations imposed by deferred reference counting.

add ref s from to:Oop
ext wr mem : Oop m Object
rd roots : Oop-set
rd stack : Oop-set

pre from to reachable from roots mem from stack
post mem mem† from add to obj to mem from

remove ref s from to:Oop
ext wr mem : Oop m Object
rd roots : Oop-set
rd stack : Oop-set

pre from to reachable from roots mem
refers to to mem from from stack

post mem mem† from remove from obj to mem from

The off-stack operations modify the ZCT appropriately.

add ref from to:Oop
ext wr mem : Oop m Object
rd roots : Oop-set
rd stack : Oop-set
wr zct : Oop-set

pre from to reachable from roots mem from stack
post let mem mem† from add to obj to mem from in

mem mem † to inc rc mem to
zct zct to

remove ref from to:Oop
ext wr mem : Oop m Object
rd roots : Oop-set
rd stack : Oop-set
wr zct : Oop-set

pre from to reachable from roots mem
refers to mem from to from stack
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post let mem mem† from remove from obj to mem from in
mem mem † to dec rc mem to
zct if RC mem to 0 then zct to else zct

Finally, we come to the collection operation itself. This is similar to the recursive
freeing operation in Section 8.4, but has the added complexity of maintaining the ZCT
and searching the stack. The first stage of the operation is to identify garbage by finding
all entries in the ZCT that do not occur on the stack. The auxiliary function on stack
identifies whether a particular Oop occurs on the stack.

GC
ext wr mem : Oop m Object
rd roots : Oop-set
wr stack : Oop-set
wr zct : Oop-set

post let zct p zct on stack p stack mem in
let garbage zct zct in
zct stack mem free garbage zct stack mem

on stack :Oop Oop-set Oop m Object
on stack p stack mem q stack p all refs mem q
pre stack dommem
The free operation takes a set of Oops representing the garbage objects, computes a

bag ofOops, dec, representing the changes in counts of those objects referenced from the
garbage, and alters the reference counts accordingly. Any objects whose counts become
zero and are not on the stack are reclaimed in the next stage of the recursion. Meanwhile,
garbage objects are removed from the stack and ZCT, and the ZCT is recomputed.
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free :Oop-set Oop-set Oop-set Oop m Object
Oop-set Oop-set Oop m Object

free freed zct stack mem
if freed
then zct stack mem
else let dec +

p freed
body mem p

stack stack freed
mem freed mem †

p µ mem p RC
RC mem p count p dec p set dec

freed p set dec
RC mem p 0 on stack p stack mem

zct zct freed
p set dec

RC mem p 0 on stack p stack mem in
free freed stack zct mem

8.8 Summary

This chapter has presented a collection of specifications that describe different types of
garbage collection schemes. While by no means exhaustive, a wide variety of schemes
has been covered. Each specification can serve to help explain the scheme (although it
should be emphasized that many implementation issues have been glossed over) and can
also serve as the first step in a series of reifications towards an implementation.

The author thanks Cliff Jones and Ifor Williams for many illuminating and thought-
provoking discussions on the topic of garbage collection.

8.9 Appendix: bags

For reference, here is a complete specification of the bag operations used in this chapter.

Bag X X m
1

init-Bag

count :X Bag X
count el b if el dom b then b el else 0
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add :X Bag X Bag X
add el b b† el count el b 1

remove :X Bag X Bag X
remove el b if count el b 1

then el b
else b† el count el b 1

pre count el b 1

set :Bag X X-set
set b dom b

:Bag X Bag X Bag X
a b p count p a count p b p dom a dom b
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9

A Small Language Definition

Cliff B. Jones

The main stimulus for the inception of VDMwas the description of program-
ming languages. It is therefore appropriate that this book of case studies
should demonstrate the use of the BSI syntax for language description. A
limited amount of notation has to be introduced which has not been used in
other case studies but the main emphasis is on precisely the sort of modelling
which is familiar in other applications of VDM. This and the next chapter
present language descriptions. Here the task is a small procedural language
which could be thought of as a ‘micro Pascal’. This is the conventional area
of denotational semantic definitions whereas the next chapter (and to a certain
extent Chapter 11) are more novel applications of denotational semantics.

235
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9.1 Introduction

The preface of [BJMN87] explains the role played by formal descriptions of program-
ming languages in the development of VDM. Although not covered in [Jon90], the sub-
jects of programming language semantics, and implementations based thereon, remain
of crucial importance because of the danger that errors could be introduced into cor-
rect programs by erroneous compilers. Furthermore, formal descriptions present the
opportunity to define meaningful and useful reference points for programming language
standards. Not only can the formality provide a precise statement, but a suitably written
formal specification can also provide a useful starting point for systematic designs of
implementations.

This chapter presents a description of a small, hypothetical, procedural programming
language. The language is kept simple so that the main points can be illustrated in a
reasonable space. The reader is referred to [BJ82] for more realistic definitions including
ALGOL 60 and Pascal or to the references in the Teacher’s Notes associated with [Jon90]
for, inter alia, work on PL/I and Ada.

There are three more-or-less distinct approaches to fixing the semantics of a pro-
gramming language. The oldest approach is to write an abstract interpreter which gives
an operational semantics. An axiomatic semantics is a series of proof rules which per-
mit all possible facts to be deduced about valid observations on a program’s behavior.
Except for the fact that there has been no discussion of completeness, the inference rules
presented in [Jon90] are in this mould. For studying language concepts and relating im-
plementations to specifications, it is now widely accepted that a denotational semantics
is most useful. (A fuller discussion of these alternatives can be found in most books on
semantics – see, for example, Lucas’s chapter in [BJ82].)

It is obviously not appropriate to explain the method of denotational semantics in
any depth here. The basic idea is very simple: given a language L whose semantics is
to be defined, one has to provide a way of mapping any construct of L into a language
whose semantics are already understood and which, hopefully, is easy to manipulate al-
gebraically. For standard procedural languages, the denotations are likely to be functions
– in the simplest case – functions from states to states.

A full language description would contain:

A concrete syntax.

An abstract syntax.

Context conditions (restricting the class of abstract texts).

A set of understood semantic objects.
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A mapping from objects of the abstract syntax (which also satisfy the context
conditions) to semantic objects.

The issue of concrete syntax descriptions and the design of reasonable concrete syn-
tax is clearly very important but is not considered further here since it is a separate
concern.

There is a restriction on the semantic mapping known as the denotational rule. This
requires that the mapping respects the structure of the abstract syntax: denotations of
composite objects are built (only) from the denotations of their components, i.e. the
mapping is homomorphic. A fuller description of the denotational method the reader is
referred to [Sch86, Sto77] or, for VDM, to [BJ82].

There are several different orders in which a full language description can be pre-
sented: here some repetition is employed which should aid the reader – but would be
avoided in a reference document.

9.2 Abstract syntax

This section introduces a core language to which some extensions are considered in
Section 9.6. This abstract syntax describes a class of objects which are abstractions of
the concrete texts of programs. The language chosen for this exercise has a simple block
structure and includes standard ‘structured programming’ control constructs.

The abstract syntax is presented top (from Program) down (to variable reference).
The root node of the abstract syntax is:

Program :: Stmt

(A list of abbreviations is given at the end of this chapter.) The fact that the content of
a program is (only) a statement is deceptive; as is shown below, one of the possibilities
for a Stmt is that it is a block.

There are six forms of statement in the language:

Stmt Block If While Call Assign NULL

Block :: typem : Id m Sctype
procm : Id m Proc
body : Stmt

If :: test : Expr
th : Stmt
el : Stmt



238 9 A Small Language Definition

While :: test : Expr
body : Stmt

Call :: pr : Id
al : Varref

Assign :: lhs : Varref
rhs : Expr

The NULL statements have no contents; in fact they are only there to cover situations
like empty else-clauses in conditionals.

Procedures can be defined within blocks:

Proc :: fpl : Id
typem : Id m Sctype
body : Stmt

Sctype INT BOOL

Notice that parameters can only be scalars; this language does not allow procedures to
be passed as parameters.

Most of the interesting points about expressions can be made with only three simple
alternative forms:

Expr Infix Rhsref Const

Infix :: l : Expr
op : Operator
r : Expr

Operator PLUS OR LESSTHAN

Rhsref :: Varref

Const Scval

Varref :: Id

The set of scalar values (Scval) is defined in Section 9.4.
This syntax has not, of course, settled semantic questions like the parameter passing

mechanism: these topics are discussed in Section 9.5.
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9.3 Context conditions

The next part of a language definition should be the description of those conditions
which define the subset of Program to which semantics must be given. Experience with
denotational semantics descriptions has led to the separation of the context conditions
(sometimes called ‘static semantics’) from the main semantic mapping. The relevant
function is actually defined in Section 9.5 but this section lays the foundation.

The context conditions are very like data type invariants on objects defined by Program.
An abstract Program may or may not be ‘well-formed’ with respect to the correct use
of declared variables, etc. (The reason that these conditions can not be captured in the
abstract syntax are that it is essentially a context-free syntax.) The context conditions
themselves are defined by a recursive function, called WF, and a typing function called
TP. It is a convention that the names of these functions – in contrast to, say, [Jon90] –
are written with upper case letters. (In many definitions, the meaning functions, etc. are
only given one, overloaded, name.) These functions create and use a static environment
(Senv) which contains information derived from both the variable (Sctype) and procedure
declarations (Procattr). Objects of this static environment are maps:

Senv Id m Attr

Attr Sctype Procattr

A Procattr contains a list of the types of the parameters:

Procattr :: Sctype

Sctype see abstract syntax

The type of the context conditions is, in nearly all cases:

WF:Text Senv

9.4 Semantic objects

Fixing the semantic objects for this simple language is relatively straightforward. The
core idea for most procedural languages is to find an appropriate abstraction of their
store-like objects and then to reflect the imperative nature of the language by employing
‘transformations’ (i.e. functions from stores to stores) as the denotations. In a language
with no block structure or procedures, it would probably be possible to abstract store as a
mapping from the identifiers for variable names to their values. In the language presented
in Section 9.2 there are two features which make the choice more interesting. On the one
hand, the block structure makes it possible for one name to denote different variables
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in different scopes; on the other hand, the same variable can be denoted by different
identifiers (in the same scope) because the parameter passing is by variable. The standard
way of tackling this problem is to introduce – as an abstraction of machine locations – a
surrogate for each variable. These surrogates are normally known as locations and here
the set is called Scloc (since nonscalar locations are needed in the extensions discussed
in Section 9.6). The simple idea of mapping names to values can then be broken into
two maps: one from names to locations and the other from locations to values.

This is the most basic modelling decision in this definition. It remains to decide
where the two maps are to be held. Because it can be changed by any assignment
statement, it is natural to place the mapping from locations to values in the store. But
the association from names to locations only changes between scopes and this can be
clearly reflected by placing it in an environment parameter. Most meaning functions
then become functions from environments to functions from stores to stores. This sort
of higher-order function is very common in denotational semantic definitions.

Thus, the denotations of statements etc. are determined with respect to an environ-
ment (Env) which contains the denotations of all of the identifiers occurring in the text.
These denotations are either scalar locations (Scloc) or procedure denotations (Procden).
The parameter passing method in this section is by variable so the domain of the func-
tional procedure denotations is a sequence of scalar locations; the range is a store-to-
store transformation (Tr) which is defined below.

Env Id m Scloc Procden

Scloc arbitrary infinite set

Procden Scloc Tr

As for most imperative languages, the denotations of the statement constructs are trans-
formations (Tr) which are functions over Stores.

Tr Store Store

Notice that when the signature of Procden is expanded, it is seen to be a function which
yields functions as results.

The main semantic functions have the type:

M:Text Env Tr

A Store maps scalar locations to their values:

Store Scloc m Scval

Scval
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A number of useful auxiliary functions can be defined for a Store. (The parameter #
is used consistently for Store.) Access to, and change of, values are defined by:

contents :Scloc Store Scval
contents l "# # l

Here, the functional result of contents is defined by the use of a lambda expression.

assign :Scloc Scval Tr
assign l v "# #† l v

Remember that Tr is a functional type which is why a lambda definition is required.
New locations are allocated and initialized by a function called newlocs. This func-

tion takes a mapping from names to types as an argument and yields a function which
is like a transformation except that the function yields an additional result which is an
association from the required identifiers to their allocated locations. The type informa-
tion is required since the locations are also initialized. It is desirable not to tie newlocs
too tightly.1 Here, it is defined implicitly so as to under-determine which locations are
actually allocated. Rather than discuss post-conditions of higher-order functions, the
required properties are presented as an implication.

newlocs: Id m Sctype Store Store Id m Scloc
newlocs m # # ,

dom, domm is-disj rng , dom# is-oneone ,
# # , id 0 m id INT , id false m id BOOL

Locations are removed from store by:

epilogue :Scloc-set Tr
epilogue ls "# ls #

9.5 Mapping

The mapping from the abstract syntax to the semantic objects is the main part of the
definition. Experience with writing larger definitions has resulted in the move to an
order in which – rather than follow a strict separation of the parts of the definition – the
abstract syntax, context conditions, and semantic mapping are presented together. This
makes it possible to collect all of the relevant information about one language construct

1The reason for leaving the freedom is so that it becomes easier to prove correct various compiling
strategies. It is, however, a moot point whether newlocs is a function at all: this point is not pursued here –
see [HJ89] for further details.
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together in one place. This plan is followed here even though it results in repeating the
abstract syntax given in Section 9.2.

With such a recursive abstract syntax it is difficult to present the language in an order
such that the whole definition can be grasped in one pass. In a reference document, a
‘top-down’ order is likely to yield a more convenient presentation. Here a ‘bottom-up’
order is taken: the reader will find the abstract syntax of Section 9.2 useful to establish
the context of the low-level details until the higher-level semantic functions are encoun-
tered.

Variable references

The statement which sets the tone of procedural languages is the assignment (cf. Assign
in Section 9.2). In a simple case like x : y, the variable on the left-hand side of the
assignment must be evaluated to a location and that on the right to a value (ALGOL 68
‘dereferencing’). In this core language, which only has scalar variables, a variable refer-
ence is just an identifier:

Varref :: Id

The context condition requires that the identifier is known (the reference is in an ap-
propriate scope) and that it refers to a scalar variable (not a procedure). This is done by
checking the information stored in the static environment (in all of the context conditions
the parameter , is used for Senv):

WFVarref :Varref Senv
WFVarref mk-Varref id , id dom, , id Sctype

The use of so-called ‘Strachey brackets’ ( ) follows a convention in semantic defini-
tions: they set off arguments of the abstract syntax. It is also common practice to omit
parentheses around short arguments: thus WFVarref mk-Varref id , is the way that
the more familiar expression WFVarref mk-Varref id , is written in a denotational
semantic text.

In other context conditions, it will be necessary to determine the types of variable
references. This information is also obtained from the static environment:

TPVarref :Varref Senv Sctype
TPVarref mk-Varref id , , id

As indicated above, the denotation of a variable reference is the scalar location which is
stored in the environment (the meaning functions use Env – here, , is used for parameters
of type Env):
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MVarref :Varref Env Scloc
MVarref mk-Varref id , , id

Remember that this yields the location (not the value) corresponding to an identifier.

Expressions

Checking the abstract syntax for Assign shows that a Varref , which is to occur in an ex-
pression, is embedded in an object which is a Rhsref (in the example above, x : y, the
actual abstract object would be mk-Assign mk-Varref x mk-Rhsref mk-Varref y ).
So, the abstract syntax of references to variables is given by:

Rhsref :: Varref

The context condition simply uses that for the embedded variable reference:

WFRhsref :Rhsref Senv
WFRhsref mk-Rhsref vr , WFVarref vr ,

The same indirection is present in the case of the TP function:

TPRhsref :Rhsref Senv Sctype
TPRhsref mk-Rhsref vr , TPRhsref vr ,

The meaning function obtains the contents of the location as computed by MVarref :

MRhsref :Rhsref Env Store Scval
MRhsref mk-Rhsref vr , contents MVarref vr ,

This is what distinguishes a right-hand reference – whose denotation is a value – from a
left-hand reference – whose denotation is a location.

An even simpler form of expression is a constant:

Const Scval

Any c Const is well-formed:

WFConst :Const Senv
WFConst c , true

Its type is given by:

TPConst :Const Senv Sctype
TPConst c , if c then BOOL else INT
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Its denotation (in any environment) is the value of the constant:

MConst :Const Env Store Scval
MConst c , "# c

Notice that MConst has to be made to depend – in a trivial way – on the state, so that its
signature matches that of MExpr.

The relevant points about infix expressions can be illustrated with:

Infix :: l : Expr
op : Operator
r : Expr

Operator PLUS OR LESSTHAN

The well-formedness of infix expressions checks that the operator and operand types
match:

WFInfix : Infix Senv
WFInfix mk-Infix l op r ,

WFExpr l , WFExpr r ,
TPExpr l , TPExpr r , INT op PLUS LESSTHAN
TPExpr l , TPExpr r , BOOL op OR

The type of an infix expression is governed by the operator:

TPInfix : Infix Senv Sctype
TPInfix mk-Infix l op r ,

if op LESSTHAN OR then BOOL else INT

In order to determine the meaning of an infix expression, it is assumed that the meaning
of the operators is given by:

MOperator:Operator Scval Scval Scval

Then:

MInfix : Infix Env Store Scval
MInfix mk-Infix l op r ,

"# MOperator op MExpr l ,# MExpr r ,#

Notice that both operands (l r) can be evaluated in the same store (#) because there is
no feature in this language which can cause side-effects in expression evaluation.

This has covered the only three forms of expression in the language:

Expr Infix Rhsref Const
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The overall context condition can be defined by cases:

WFExpr :Expr Senv
WFExpr e , cases e of

mk-Infix l op r WFInfix e ,
mk-Rhsref vr WFRhsref e ,
otherwise WFConst e ,
end

The signatures of the other relevant functions are:

TPExpr:Expr Senv Sctype
MExpr:Expr Env Store Scval

Their definitions follow exactly the same case statement form and are not written out
here.

Statements

The preceding subsection has prepared everything needed for the assignment statement:

Assign :: lhs : Varref
rhs : Expr

An assignment statement which consists of a lhs and a rhs is well-formed in a static
environment , if, and only if: lhs is a well-formed Varref in ,; rhs is a well-formed
Expr in ,; and the scalar types found by TP (also in ,) for lhs and rhs are the same:

WFAssign :Assign Senv
WFAssign mk-Assign lhs rhs ,

WFVarref lhs , WFExpr rhs ,
TPVarref lhs , Sctype TPVarref lhs , TPExpr rhs ,

The denotation of an assignment statement which consists of a lhs and a rhs in an envi-
ronment , is a transformation (assign loc val Tr) which is determined by the deno-
tations of its constituents in ,. Notice that the value of an expression does rely on the
Store while the location denoted by a variable reference does not:

MAssign :Assign Env Tr
MAssign mk-Assign lhs rhs ,

"# assign MVarref lhs , MExpr rhs ,# #

The simplest form of statement in the language is the null statement (there is exactly
one such statement):
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NULL

Such an object is always (in any environment) well-formed:

WFNull :NULL Senv
WFNull NULL , true

The meaning of a null statement is the identity transformation:

MNull :NULL Env Tr
MNull NULL , IStore

Conditional statements contain other statements within them:

If :: test : Expr
th : Stmt
el : Stmt

The context condition validates the type of the test and checks the well-formedness of
the constituent statements:

WFIf : If Senv
WFIf mk-If test th el ,

WFExpr test , TPExpr test , BOOL WFStmt th , WFStmt el ,

The obvious way to show that the evaluation of the test precedes the execution of
one or other statement is to write:

MIf : If Env Tr
MIf mk-If test th el ,

"# let b MExpr test ,# in
if b then MStmt th ,# else MStmt el ,#

But this sort of ordering and passing of states occurs so often in denotational semantics
that a special def combinator has been provided in VDM which makes it possible to
present this as:

MIf mk-If test th el ,
def b:MExpr test ,;
if b then MStmt th , else MStmt el ,

The use of such ‘combinators’ can significantly increase the readability of large defini-
tions; it can also make it easier to see that the ‘denotational rule’ is being followed.

The abstract syntax for the repetitive construct is:
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While :: test : Expr
body : Stmt

Its well-formedness condition checks that the test expression has the appropriate type
and that the body is well-formed:

WFWhile :While Senv
WFWhile mk-While test body ,

WFExpr test , TPExpr test , BOOL WFStmt body ,

The meaning function again uses the def combinator but also needs to compute the least-
fixed point of the recursive definition of wh.

MWhile :While Env Tr
MWhile mk-While test body ,

let wh def b:MExpr test ,; if b then MStmt body ,;wh else IStore
in wh

The abstract syntax of call statements is:

Call :: pr : Id
al : Varref

The corresponding context conditions check that pr actually refers to a procedure and
that the types of al match the declared parameter types (which have been stored in
Procden):

WFCall :Call Senv
WFCall mk-Call pr al ,

pr dom, , pr Procattr
let mk-Procattr tl , pr in
len tl len al i inds tl TPVarref al i , tl i

The meaning function should be considered in relation to the type of Procden (cf. Sec-
tion 9.4) which shows that applying a Procden to a list of locations yields a transforma-
tion; the fact that the al of a Call is a list of variable references determines that they are
evaluated to locations:

MCall :Call Env Tr
MCall mk-Call pr al ,

let ll MVarref al i , i elems al in
let prden , pr in
prden ll
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Procedures

Before considering blocks, procedure declarations must be discussed. Their abstract
syntax is:

Proc :: fpl : Id
typem : Id m Sctype
body : Stmt

The context condition requires that no identifier is repeated in fpl and that each such
parameter name is given a type in typem; the body must be well-formed in a static envi-
ronment which is modified to include the parameters:

WFProc :Proc Senv
WFProc mk-Proc fpl tm s ,

is-uniques fpl elems fpl dom tm WFStmt s ,† tm

(Auxiliary functions like is-uniques are defined at the end of this chapter.) The context
conditions for Block need a procedure attribute for each procedure; this is computed by:

TPProc :Proc Procattr
TPProc mk-Proc fpl tm s mk-Procattr tm fpl

The meaning of a procedure declaration is a function (cf. Procden in Section 9.4) from
a sequence of scalar locations to a transformation:

MProc :Proc Env Procden
MProc mk-Proc fpl tm s ,

"ll MStmt s ,† fpl i ll i i inds fpl

It is essential to the normal meaning of procedures that the environment (,) in which
their denotations are determined is that of the declaring block. It is this which gives
languages with ALGOL-like block structure their ‘lexicographic naming’ idea. The pa-
rameter locations (ll) are derived in the calling environment.

Statement sequences

The body of a block is actually a sequence of statements so some extra functions are
required:

WFSeq :Stmt Senv
WFSeq sl , s elems sl WFStmt s ,
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The meaning of a sequence of statements is a transformation formed by composing the
meanings of the component statements:

MSeq :Stmt Env Tr
MSeq sl ,

"# if sl then # else MSeq tl sl , MStmt hd sl , #

Blocks

The construct for declaring variables and procedures is a Block, its abstract syntax is:

Block :: typem : Id m Sctype
procm : Id m Proc
body : Stmt

For blocks the context condition is:

WFBlock :Block Senv
WFBlock mk-Block tm pm sl ,

is-disj dom tm dom pm
pr rng pm WFProc pr dom pm , † tm
let prattrm pid TPProc pm pid pid dom pm in
WFSeq sl ,† tm†prattrm

This requires that the same name is not used for both a scalar variable and a procedure
in the same block; it also specifies that the components of a block must be well-formed
with respect to appropriate environments. The local declarations of both variables and
procedures are used to form a new static environment in which the well-formedness of
the body of the block is checked. Notice that this formulation prohibits recursion –
direct or indirect – because the well-formedness of each Proc is checked in a reduced
static environment.

The meaning function is:

MBlock :Block Env Tr
MBlock mk-Block tm pm sl ,

"# let # , newlocs tm # in
let , pid MProc pm pid ,†, pid dom pm in
let # MSeq sl ,†, †, # in
epilogue rng , #

The locations for the local variables (formed by newlocs) are put into , and are thus
available within procedures declared in the same block; local procedure denotations
are not because there is no recursion. The denotation of a Proc, pm pid , is found
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by MProc pm pid , † , . The creation of # captures the initialization of the local
variables and # is the state after the meaning of the block body has been elaborated –
this has to have the locations of the local variables removed before the meaning of the
block ( Tr) is complete.

The abstract syntax of Stmt shows that all of the cases have been defined:

Stmt Block If While Call Assign NULL

The meaning functions and context conditions:

WFStmt:Stmt Senv
MStmt:Stmt Env Tr

can again be defined by cases in terms of the functions defined above.

Programs

The overall structure in the language is a Program:

Program :: Stmt

The context conditions are defined for all constructs by a function called WF. For a
Program the definition is:

WFProgram :Program
WFProgram mk-Program s WFStmt s in INTG out INTG

This definition uses WFStmt which requires a static environment. The creation of
the initial Senv reflects the fact that the only identifiers used within a Program which
do not have to be declared in Blocks, or parameter lists, surrounding their use are in
and out. Were the language to have a collection of predefined functions and constants
(e.g. maxint), they would also be stored in the initial Senv.

By arranging for one input integer and one similar output value, the overall meaning
of a Program turns out to be a function:

MProgram :Program
MProgram mk-Program s in0

let #0 ,0 newlocs in INTG out INTG in
let # MStmt s ,0 #0 † ,0 in in0 in
# ,0 out

This represents a rather primitive view of communication with the outside world but,
clearly, more powerful input and output statements could be added to the language.
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9.6 Language extensions

This section describes how the language definition given above might be modified or
extended to cope with other language features.

Parameter passing

It is easy to change the language so as to make all parameter passing work by value.
The abstract syntax (cf. Section 9.2) need not be changed at all. (If – as in Pascal – the
programmer is to be given the choice between ‘by value’ and ‘by variable’ parameter
mechanisms, the abstract syntax of procedures must be extended to show which param-
eters are to be passed in which way.) The modified procedure denotations reflect the
type of the object to be passed at call time:

Procden Scval Tr

Although one need not change call statements, it is now possible to generalize the argu-
ments so that:

Call :: pr : Id
al : Expr

The context condition for call statements (WFCall) need only be changed so that the
expressions in al are handled. The changes necessary to the meaning function for Call
show the store explicitly since it is needed for expression evaluation:

MCall mk-Call pr al , #
let vl MExpr al i ,# i inds al in
let prden , pr in
prden vl #

The final change involves the semantics (Procden) of procedure declarations. Unlike the
by-variable case, locations must now be found for the fpl when the procedure is invoked
(and removed after execution of the body):

MProc :Proc Env Procden
MProc mk-Proc fpl tm s , vl #

let # , newlocs tm # in
let # # † , fpl i vl i i inds fpl in
let # MStmt s ,†, # in
epilogue rng , #

Parameter passing by value/result is interesting because it provides a way for a pro-
cedure to change the values of its arguments without creating the aliasing which com-
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plicates reasoning in the case of parameter passing by variable. The syntax of Call
statements reverts (i.e. arguments can only be variable references) to that in Section 9.2.
Procedure denotations also revert to:

Procden Scloc Tr

The meaning of call statements is identical with that in Section 9.5. The whole effect is
seen in the change to:

MProc :Proc Env Procden
MProc mk-Proc fpl tm s , ll #

let # , newlocs tm # in
let # # † , fpl i # ll i i inds fpl in
let # MStmt s ,†, # in
rng, # † ll i # , fpl i i inds fpl

Here, the key point is the copy back of the results after execution of the procedure body.

Multiple assignment

Suppose the language were extended to include a multiple assignment statement:

Stmt Massign

Massign :: lhs : Varref
rhs : Bexpr

This is a place where, if the ‘wrong’ choices are made, the semantics (i.e. language)
would become messy. Obviously the left-/right-hand sides want to be the same length.
The case for avoiding repeated identifiers (e.g. v1 v1 : true false) is strong. So a rea-
sonable context condition is:

WFMassign :Massign Senv
WFMassign mk-Massign lhs rhs ,

len lhs len rhs is-uniques lhs
i inds lhs

WFVarref lhs i , WFExpr rhs i ,
TPVarref lhs i , TPExpr rhs i ,

But there is still the open issue of when expressions are evaluated in relation to the
assignments. Does:

v1 : true;
v1 v2 : false v1
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set v2 to true or to false? Here a semantics which evaluates all of the right-hand side in
the same store and then makes all of the assignments is given (but the alternative is not
wrong, it just represents a different language):

MMassign :Massign Env Tr
MMassign mk-Massign lhs rhs , #

let locs MVarref lhs i , i inds lhs in
let vals MExpr rhs i ,# i inds rhs in
#† locs i vals i i inds lhs

Composite types

Pascal-like records provide one example of composite types. It is easy to extend the
syntax of Section 9.2 to cope with records whose fields are selected by identifiers:

Block :: typem : Id m Type
procm : Id m Proc
body : Stmt

Type Sctype Rectype

Rectype Id m Type

Notice that, because Rectype recurses back to Type, records can be nested to arbitrary
level. No context condition is given so that it is possible to use the same field selector at
different levels in the same record (e.g. a a INT ).

If records are only manipulable via their scalar components, it is easy to make the
requisite changes to the abstract syntax and context conditions. The interesting decision
relates to the handling of the record structure in Store Env. If scalar elements of records
are to be passable as (by variable) parameters, it is much easier to construct a definition
in which the structure of records is shown in the locations (rather than in the values).
Thus the environment is changed so as to make it possible to find scalar locations and
Store is kept as a map whose domain is Scloc.

Senv Id m Attr

Attr Type Procattr

Env Id m Loc Procden

Loc Scloc Recloc
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Recloc Id m Loc

Store Scloc m Scval

There is no need to change the context condition for Block (WFBlock) given in Sec-
tion 9.5. The major changes come with variable references:

Varref Scvarref Fldref

Scvarref :: Id

WFScvarref mk-Scvarref id , id dom, , id Sctype

TPScvarref mk-Scvarref id , , id

MScvarref :Scvarref Env Scloc
MScvarref mk-Scvarref id , , id

Fldref :: rec : Id
flds : Id

WFFldref :Fldref Senv
WFFldref mk-Fldref rec flds ,

rec dom, , rec Rectype match flds , rec

match : Id Type
match flds rtp

if flds
then rtp Sctype
else rtp Rectype hd flds dom rtp match tl flds rtp hd flds

TPFldref :Fldref Senv Sctype
TPFldref mk-Fldref rec flds , select flds , rec

select : Id Type Type
select flds rtp if flds then rtp else select tl flds rtp hd flds

MFldref :Fldref Env Scloc
MFldref mk-Fldref rec flds , selectd flds , rec
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The function selectd is identical in definition to select: some ML-like polymorphism
would allow one function to be used for both tasks. Notice that the meaning of a right-
hand-side reference is as before (M mk-Rhsref vr ,#).

It is now possible to sketch a semantic model for one-dimensional Arrays. The first
part is easy:

Varref Scvarref Arrayvarref

Scvarref :: Id

Arrayvarref :: arr : Id
ssc : Expr

Senv Id m Varattr Procattr

Varattr Sctype Arrayattr

Arrayattr :: Sctype

WFArrayvarref :Arrayvarref Senv
WFArrayvarref mk-Arrayvarref arr ssc ,

, arr Arrayattr TPExpr ssc , INT

It is important that the component relation (of the arrays) is placed in the Env so that
sublocations (or even ALGOL 68 style slices) can be passed as (by variable) arguments.
Thus:

Env Id m Loc

Loc Scloc Arrayloc

Arrayloc Scloc

Notice that this model assumes that arrays are indexed from 1. Further generaliza-
tions are not difficult but one must think about the (normal) regularity constraints on the
shape of Arrays.
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9.7 Appendix

Auxiliary functions

In common with other uses of VDM, it has been convenient to extract some auxiliary
functions whose definitions are given here.

is-disj :X-set X-set
is-disj s1 s2 e s1 e s2

is-uniques :X
is-uniques l i j inds l i j l i l j
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Abbreviations
Arrayloc array location
Attr attribute
ATTR attribute (of a procedure)
Const constant
disj disjoint
Env environment
Expr expression
Fldref field (of a record) reference
Id identifier
Loc location
Massign multiple assign
Proc procedure
Procattr procedure attribute
Procden procedure denotation
Recloc record location
Rectype record type
Rhsref reference (to a variable)
Scloc scalar location
Scval scalar value
Scvarref scalar variable reference
Sctype scalar type
Senv static environment
Stmt statement
Tr transformation
TP type (function)
Varref variable reference
WF well-formed (function)
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10

Object-oriented Languages

Mario I. Wolczko

Continuing with the language specification theme introduced in the last chap-
ter, Mario Wolczko examines what is meant by the term ‘object oriented’.
Firstly he identifies the essential features of these languages namely the ideas
of object, message, method and class. Following this an abstract syntax for
a hypothetical language is introduced and the semantics specified in the con-
ventional denotational style. Lastly, the notion of inheritance is briefly dis-
cussed and a specific model specified. The material in this chapter shows how
formal specification techniques can be used, at an early stage in the language
design process, to investigate the meaning of novel language features. Once
the meaning of these features has been decided upon a fuller language def-
inition exercise can be undertaken with some degree of confidence that the
essential structure of the language is well founded.

259
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10.1 Introduction

One of the earliest applications of VDM was to the formalization of programming lan-
guage semantics. The VDM approach to denotational semantics has been used to de-
scribe a wide variety of programming language features, and a substantial number of
real languages. In [BJ82], for example, can be found complete denotational descriptions
of Pascal and ALGOL-60.

In this chapter, VDM is used to investigate the semantics of object-oriented lan-
guages. Although the object-oriented approach has been around for two decades, it is
only recently that it has gained widespread attention and popularity. Moreover, there
is much confusion as to what exactly characterizes an object-oriented language. The
aim of this chapter is to present a semantic model of the core features of object-oriented
languages, so that any comparison between object-oriented and conventional languages
may be based on firmer foundations.

10.2 What is object-oriented programming?

Rather unsurprisingly, the most important thing about object-oriented programming is
the idea of an object. An object is a computational entity that can encapsulate both
behavior and state, and interacts by sending and receiving messages. Let us examine the
various facets of this statement in more detail.

First, objects encapsulate behavior. In most object-oriented languages a message to
an object will result in the invocation of a procedure. The particular procedure to be
executed will be determined by the object receiving the message, and not the sender
of the message. The message conveys intent, whilst the object determines how that
intention should be satisfied.

Second, objects encapsulate state. The only way to interact with an object is to send
it a message – there is no way to covertly manipulate the object’s state. An object may
choose to make some of its state visible in the way it responds to messages, but it need
not. It is worth emphasizing that the state of an object, i.e. its internal data, is independent
of its identity. Different objects can have the same internal state, and interactions with
one object need not affect any other.

How are these properties realized in object-oriented programming languages?1 The
state of an object is captured by the values of its internal variables, known as instance
variables. Every instance variable can refer to an object. Some, primitive objects, do not
have any instance variables, and are immutable, e.g. objects representing the integers.

1In this chapter we shall address mainstream object-oriented languages, such as Smalltalk, Simula and
Eiffel, and ignore the more unusual object-oriented models such as actor systems. For a more detailed
survey, see [Wol88].
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The behavior of an object is described by its response to a message. For each dif-
ferent sort of message, a method is defined – this is the procedure that will be activated
in response to that sort of message. A collection of methods can define completely the
behavior of an object. Usually such collections are named, and referred to as classes.
All objects instantiated from a class, and therefore having behavior defined by the class,
are known as instances of the class.

These, therefore, are the core concepts we need to describe: objects (including prim-
itive objects and those with instance variables), messages, methods and classes. We
shall do this by inventing a small and simple object-oriented language, and specifying
its semantics.

Modelling objects

The first stage is to model objects. We shall divide objects into two categories, primitive
and nonprimitive (or ‘plain’), and place them in an ‘object store.’ Each object will be
identified by a unique ‘handle’ known as an Oop (short for ‘object pointer’). These are
the keys to the object memory; indexing the store with an Oop will return the associated
object:

Object memory Oop m Object

Every object has two parts: a body for the ‘data part’, and a class identifier for the
behavior. We shall assume that classes are immutable, so that we need not represent
them directly in the object memory:

Object :: class : Class name
body : Object body

Class name :: Id

Plain objects associate a value with each instance variable; this value can refer to any
other object. Primitive objects stand for themselves. In our simple language, the only
sort of primitive object is an integer. In real languages, other objects, such as characters
and real numbers, might be primitives.

Object body Plain object Primitive object

Plain object Id m Oop

Primitive object

The following auxiliary functions are used to access and modify a plain object’s
instance variables:
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inst var : Id Oop Object memory Oop
inst var iv oop # body # oop iv

update inst var : Id Oop Oop Object memory Object memory
update inst var inst var oop value #

#† oop µ # oop body body # oop † inst var value

Methods and classes

The denotation of a method is a function that transforms the object memory. It takes as
parameters an Oop referring to the receiver of the associated message, a list of Oops rep-
resenting the arguments to the message, and an object memory, and returns a (possibly
modified) object memory and result Oop.

Method den Oop Oop Object memory Oop Object memory

The denotation of a class is a collection of method denotations, indexed by message
name. The name of a message is usually termed a selector.

Class den Selector m Method den

Computation proceeds by objects sending messages to each other. In response to a
message, an object will invoke a method, which in turn can access the instance variables
of that object, or send messages to other objects. Let us now examine the abstract syntax
of our simple language.

10.3 Abstract syntax

We will assume that at the commencement of execution the object memory is empty.
A single object of a designated class, known as the root class, will be created, and an
initiating expression will be evaluated. Normally, this expression will send a message to
the root object, which will in turn create more objects.

Thus, a program consists of a set of classes, one of which is nominated as the root
class, and an initiating expression:

Program :: Root : Class name
Init : Expression
Classes : Class map

Each class consists of a set of method definitions. Some methods are ‘primitive’
(such as the addition method between integer objects):

Class map Class name m Class body
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Class body Selector m Method Primitive method

However, most methods contain a body, which is a single expression, and a declara-
tion of the parameters to the method:

Method Method body

Method body :: Params : Ulist Id
Expr : Expression

The parameter list is a sequence of identifiers, no identifier appearing more than once
in the sequence:

Ulist X X

where

inv-Ulist X l card inds l card elems l

There are five basic types of expression, in addition to expressions which are the
sequential composition of subexpressions:

Expression Expression list Assignment Object name
Message New expr Literal object

Expression list :: Expression

Note that this is an expression-oriented, rather than statement-oriented language.
Every expression returns a value, but the value can be ignored.

An assignment evaluates an expression and assigns the result to a variable.

Assignment :: LHS : AVar id
RHS : Expression

There are three types of identifier accessible within a method:

Instance variables are used to access the mutable state of the object processing the
current message (the receiver)

Argument identifiers refer to the Oops passed with the current message

Temporary variables provide working store within a method.

Only instance and temporary variables can be assigned to within a method.

Arg id :: Id

Temp id :: Id
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Inst var id :: Id

AVar id Temp id Inst var id

In addition, the self keyword refers to the receiver.

Object name Var id SELF

Var id Arg id Temp id Inst var id

When sending a message, one expression is evaluated to determine which object
will receive the message, and other expressions can be evaluated to pass arguments to
the message. The message selector itself is determined from the program text.

Message :: Rcvr : Expression
Sel : Selector
Args : Expression

To create a new object, a ‘new-expression’ is evaluated, naming the class of object
to be created. The values of the instance variables of the new object will be undefined
initially.

New expr :: Class : Class name

Primitive objects cannot be created via a new-expression; they are created by being
named by a literal.

Literal object Int literal

Int literal ::

10.4 Semantics

Having described the syntax of the language, we can proceed to specify its semantics.
(For brevity, we shall omit a formal description of the context conditions, stating them
informally where appropriate.)

We require a collection of semantic functions that take the appropriate syntactic
elements, together with any relevant context, and map them to their denotations.

The denotation of the entire program will be the denotation of the initiating expres-
sion, in the context of the other classes. Supplying this expression with an initial, empty
store will yield the result of the program, which we will choose to be the final store,
together with the result of the expression.

Answer Oop Object memory
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MProgram :Program Answer
MProgram mk-Program rootc init classes

let ,0 c MClass body classes c ,0 c dom classes in
let root oop #0 create mk-Object rootc

!0 mk-DEnv root oop
result !r #r MExpression init ,0 !0 #0 in

result #r

SEnv Class name m Class den

The first line establishes the relevant context for the initiating expression. This is a
map containing the denotations of all the classes in the program, and is known as the
static environment. The use of ,0 on the right-hand side indicates that we are taking the
least fixed point of this expression [BJ82]. The second line creates the root object and
adds it to the empty store, and the last two lines evaluate the denotation of the initiating
expression in the initial store and return the result (the meaning of the !0 expression will
become clear below).

The denotation of a class is the composition of the denotations of its individual meth-
ods:

MClass body :Class body SEnv Class den
MClass body meths ,

sel MMethod meths sel sel , sel dommeths

The denotation of a primitive method is itself; MMethod body is used to describe
the denotation of a nonprimitive method.

MMethod : Method Primitive method Selector SEnv Method den
MMethod m sel , if m Primitive method

then m
else MMethod body m sel ,

Primitive method Method den

Within the execution of a method we need to record the values of the variables local
to that method (arguments and temporaries), as well as the receiver of the method. These
are collected together into a dynamic environment, and this is passed from expression to
expression within the method.

DEnv :: Rcvr : Oop
Params : Id m Oop
Temps : Id m Oop
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The following function can be used to set or update the value of a temporary:

update temp : Id Oop DEnv DEnv
update temp id value ! µ ! Temps Temps ! † id value

The denotation of a nonprimitive method is a function that creates an initial dynamic
environment (binding formal to actual parameters), and evaluates the body of the method
in that environment. The environment is discarded when the method returns.

MMethod body :Method body Selector SEnv Method den
MMethod body mk-Method body formals expr sel ,

"rcvr actuals #
let ! mk-DEnv rcvr bind args formals actuals

result ! # MExpression expr , ! # in
result #

bind args :Ulist Id Oop Id m Oop
bind args formals actuals formals i actuals i i inds formals

The denotations of the various types of expression are similar functions, but they
also take an environment parameter, and return a (possibly modified) environment in
addition to the result Oop and object memory.

The denotation of an Expression list is straightforward:2

MExpression :Expression SEnv DEnv Object memory
Oop DEnv Object memory

MExpression mk-Expression list exprs , ! #
let oop ! # MExpression hd exprs , ! # in
if len exprs 1 then oop ! #
else MExpression mk-Expression list tl exprs , ! #

An assignment expression updates either an instance variable of the receiver, or a
temporary in the dynamic environment:

MExpression mk-Assignment id rhs , ! #
let result ! # MExpression rhs , ! # in
cases id of
mk-Temp id t result update temp t result ! #
mk-Inst var id iv result ! update inst var iv Rcvr ! result #
end

2Most of these definitions could be shortened by the use of combinators [BJ82], but for simplicity the
explicit forms have been used.
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The various forms of object name extract values from the receiver or the dynamic
environment:

MExpression mk-Arg id id , ! # Params ! id ! #

MExpression mk-Temp id id , ! # Temps ! id ! #

MExpression mk-Inst var id id , ! #
inst var id Rcvr ! # ! #

MExpression SELF , ! # Rcvr ! ! #

Note that the value of an uninitialized temporary is undefined.
The crucial part of the definition is the semantics of message-sending. First, the

receiver and arguments must be determined:

MExpression mk-Message rcvr sel arglist , ! #
let rcvr oop ! # MExpression rcvr , ! #

actuals ! # MExpression list arglist , ! #
result # perform sel , rcvr oop actuals # in

result ! #

The following function evaluates a list of expressions, returning a list of results:

MExpression list :Expression SEnv DEnv Object memory
Oop DEnv Object memory

MExpression list el , ! #
if el
then ! #
else let val ! # MExpression hd el , ! #

val list ! # MExpression list tl el , ! # in
val val list ! #

Next, the perform function is given the receiver and argument Oops, and evaluates
the message by –

1. determining the class of the receiver;

2. looking up the denotation of that class in the static environment;

3. applying the denotation of the class to a selector to yield the denotation of the
appropriate method;

4. applying the denotation of the method to the relevant Oops and object memory.
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perform :Selector SEnv Oop Oop Object memory
Oop Object memory

perform sel , rcvr args # , class # rcvr sel rcvr args #

Creating a new object is straightforward. We use a nondeterministic specification for
the create function, because it does not matter which particular Oop is allocated to the
new object, only that it has not already been allocated.

MExpression mk-New expr class , ! #
let new oop # create mk-Object class # in
new oop ! #

create obj:Object new oop:Oop
ext wr # : Object memory
post new oop dom # # # new oop obj

The only unusual aspect of the semantics of literals is that the implementation can
choose to make a new object for the literal, or find an existing object with the same value.
Because literals are immutable, these options are equivalent.

MExpression mk-Int literal int , ! #
let oop # find or make immutable int Integer # in
oop ! #

find or make immutable:
Primitive object Class name Object memory Oop Object memory

find or make immutable value:Primitive object
class:Class name obj:Oop

ext wr # : Object memory
post # obj mk-Object class value # # obj # #

Finally, we give an example of a primitive method: integer addition. This function
simply finds or creates an integer object with the value that is the sum of its operands.

plus primitive :Primitive method
plus primitive

"rcvr oop arg oop #
find or make immutable body # rcvr oop body # arg oop

Integer #
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10.5 Inheritance

Inheritance is an important feature in object-oriented languages. However, it not an
essential feature, as some have argued [Str87]. For example, the simple language just
described is most certainly object-oriented, but does not have any form of inheritance.

There are many different inheritance schemes, but most seem to fall into one of two
camps: class-based or object-based. In class-based inheritance, a class may have a num-
ber of parent classes from which it inherits method definitions and instance structure. An
instance of such a class responds to the methods defined in that class, plus any inherited
from parent classes (or, in turn, their parents, and so on). Similarly, such an instance
will have the instance variables defined by the class in addition to any defined by an-
cestor classes. Interesting variations in design are used to resolve name clashes between
instance variables and method names in different ancestor classes [Wol88].

In object-based inheritance, an object can inherit directly from other objects. In
some languages, the pattern of inheritance can even be changed at run-time, whereas
inheritance between classes is usually static. In most languages with object-based inher-
itance a special form of message-sending, known as delegation, is used. As Lieberman
has shown [Lie86], delegation can be used to emulate class-based inheritance, but the
converse is not true.

To conclude this chapter, we will extend our tiny object-oriented language to include
delegation. This will give us a simple yet flexible form of inheritance.

10.6 Semantics of delegation

When one object delegates a message to another, it passes on the whole message, in-
cluding selector and arguments. Also passed, implicitly, is the identity of the delegating
object, known as the client. In responding to the message, the object being delegated
to can behave as if it were being sent the message in the normal way, but it can also
send a message to the client, asking for some sort of assistance. Delegation implies that
responsibility for completing the task is shared between the objects; they cooperate in
their response.

We shall distinguish between ordinary methods and delegating methods at the syn-
tactic level. A delegating method simply passes the entire message on to the object
named by one of the instance variables.

Method Method body Delegated method

Delegated method :: Id

The denotation of a method will have to take an extra argument, representing the
Oop of the client. This will also be stored in the dynamic environment, and will be
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accessible via a keyword, client, analogous to the keyword self.

Method den Oop Oop Oop Object memory Oop Object memory

DEnv :: Rcvr : Oop
Client : Oop
Params : Id m Oop
Temps : Id m Oop

Object name Var id SELF CLIENT

MExpression CLIENT , ! # Client ! ! #

A conventional message send sets self and client to be the same object; this requires
a small modification to MExpression, and a further change to perform to pass the client
Oop to the method denotation:

MExpression mk-Message rcvr sel arglist , ! #
let rcvr oop ! # MExpression rcvr , ! #

actuals ! # MExpression list arglist , ! #
result # perform sel , rcvr oop rcvr oop actuals # in

result ! #

perform :Selector SEnv Oop Oop Oop Object memory
Oop Object memory

perform sel , rcvr client args #
, class # rcvr sel rcvr client args #

Additionally, MMethod body is altered to save the client Oop in the dynamic envi-
ronment:

MMethod body :Method body Selector SEnv Method den
MMethod body mk-Method body formals expr sel ,

"rcvr client actuals #
let ! mk-DEnv rcvr client bind args formals actuals

result ! # MExpression expr , ! # in
result #

Finally, a meaning function for delegating methods is required. This simply evalu-
ates the message for the object being delegated to, passing on the client Oop:
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MMethod body :Delegated method Selector SEnv Method den
MMethod body mk-Delegated method id sel ,

"rcvr client actuals #
perform sel , inst var id rcvr # client actuals #

10.7 Other forms of inheritance

Extending the basic model to include delegation is not difficult. However, the description
of class-based inheritance poses other problems. There are at least two approaches:

In general, class-based object-oriented languages possess the property that any
class constructed using inheritance can be equivalently constructed without using
inheritance. Hence one approach is to convert any class that uses inheritance into
an equivalent class that does not, and then apply the simpler semantic function that
does not have to cope with inheritance [Wol88]. However, this approach cannot
be said to be truly denotational.

A second approach is to attempt to determine the meaning of a class by composing
the meanings of its ancestor classes [Kam88, Coo88]. However, at the time of
writing (1989), nobody had successfully applied this technique to a language with
multiple inheritance.

10.8 Summary

In this chapter we have illustrated how the basic mechanisms of object-oriented lan-
guages can be described using VDM:

Objects require a particular memory structure, based on two-level map (from Oop
to objects, and thence to Oops again).

Message-sending requires that the binding of messages to method denotations take
place on every message send.

Classes can be described as functions that interpret messages.

In addition we have shown how the simplest form of inheritance, namely delegation, can
be added to the basic model.
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Specification of a Dataflow
Architecture

Kevin D. Jones

This chapter introduces two interesting aspects of VDM specifications. Os-
tensibly, the paper describes a machine architecture and, as such, is the first
excursion into hardware description presented in this book. In spite of the use
of the word ‘software’ in the title of this book, this chapter fits the overall style
of contributions. In fact, it illustrates well the fact that a VDM specification
– written at the right level of abstraction – could be reified to either hardware
or software implementations. The particular machine discussed is the ‘tagged
dataflow’ architecture developed at Manchester University. The machine ex-
hibits a form of parallelism but this is reduced in the formal specification to
nondeterminism. The description strongly resembles the denotational seman-
tics descriptions in the two preceding chapters, but here the denotations have
to be relations in order to encompass the nondeterminism.

273
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11.1 Introduction

This chapter presents an outline of a semantic description of the Manchester Dataflow
Machine (MDFM) written in VDM with some extensions. The full description can be
found in [Jon86b], which includes the design of a nondeterminate applicative program-
ming language and the development of an associated compiler.

This work can be taken as illustrative of the extension of ‘traditional’ VDM meth-
ods to parallel – or, more generally, nondeterminate – environments. Dataflow machines
would seem to serve as a good example in this situation since they are inherently nonde-
terministic and seem likely to be of importance in the future due to commercial interest.

The rest of Section 11.1 provides an introduction to the ideas behind dataflow ma-
chines, in general, and the Manchester Dataflow Machine in particular. Section 11.2
describes the development of a denotational semantics for this machine. The complete
version is discussed in Section 11.3. Section 11.4 draws together some comments on
this work.

Dataflow machines

In order to understand the formal model that follows, this section gives some background
to the concepts involved in dataflow computing. For a more complete description, see
the publications of the Dataflow Group at Manchester University (e.g. [GW83]).

All dataflow machines are based on the theoretical concept of a dataflow graph. Such
a graph is a structure consisting of nodes and arcs. These represent operations and data
paths, respectively. Graphs are represented pictorially as shown in Figure 11.1.

When all the input tokens to some nodes are present, action can occur. This action,
called firing, consists of the ‘consumption’ of the input tokens, followed by the compu-
tation and ‘production’ of the corresponding output tokens. In Figure 11.1 nodes 1 and
4 are in a position to fire since their input tokens are present.

More formally, dataflow graphs are considered to be two-dimensional descriptions
of a partial ordering on computational events. They are structured by data dependency.
Nodes represent indivisible atomic actions. Arcs connect dependent nodes unidirection-
ally, showing the direction of dependency. They are connected to the input/output points
of nodes. Tokens are items of data passed along arcs. A node may execute only if all
of its inputs are available. This is referred to as the firing rule. It will, at some time in
the future, consume the tokens on the input arcs. Later, a result token is produced on the
output arc. This is the only constraint on execution, so it can be seen that all sequencing
is implicit in the model. This means that a central controller, such as the program counter
of the von Neumann model, is unnecessary. Variations on the model exist which affect
the exact definition of the firing rule, but all follow the above description to some extent.

The concept of a dataflow machine arose from considering direct execution of these
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1 2

3 4

Figure 11.1 An example of a dataflow graph

graphs. Data are represented as tokens actually moving along arcs. An architecture that
uses (a representation of) these graphs as its basic programs forms the basis of a dataflow
machine. The graph showing data dependencies does not enforce a linear ordering. It
can be seen how this partial order leads naturally to a parallel architecture. At any point
in time, more than one node may be in a position to fire. Any (or all) ready nodes may be
activated in parallel (since they are independent) provided there are sufficient processors
available.

The major difference between various implementations of the dataflow model can be
found in the way code reusability is dealt with. Reusable code causes a problem, since
it is necessary to preserve the context of tokens in order to ensure correct tokens are
matched together. One approach is to make all arcs first in first out (FIFO) queues. In the
extreme case, these queues are limited to a maximum length of one. This gives the static
approach to dataflow (using the terminology of [GW83]). This is capable of handling
re-usability in an iterative sense but does not naturally extend to recursion, since multiple
re-entry would cause difficulties. Recursion can be simulated by ‘copying’ portions of
the graph.

Alternatives to the queuing strategy have been proposed, usually in an attempt to
increase asyncronicity. In the Manchester Dataflow Machine [GW80], code is made
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truly re-entrant by forcing tokens to carry tagging information, to preserve matchings.
From a pragmatic point of view, the dynamic tagged approach seems to give certain
advantages in terms of available parallelism and quantity of code held. There is no
proliferation of program code by copying, and reuse is limited only by the number of
tags (sometimes called ‘colors’) available.

The Manchester Dataflow Machine

For a complete description of the MDFM, the reader is referred to the various papers
published by the Manchester Dataflow Group (e.g. [GW80]). The following is intended
to be a general introduction sufficient to enable the reader to understand the intention of
the formal semantics presented in the next section.

The MDFM is an example of a strongly-typed, tagged token architecture with multi-
ple processors. It permits re-entrant code and allows dynamic generation of graphs (i.e.
arcs can be created during execution changing the structure of the graph). The theoreti-
cal concept of a dataflow graph has been described above, so here we examine the way
in which the machine implements such graphs.

A graph is represented by storing its nodes, and sufficient information (at each node)
to define the arcs. Just as for the abstract graphs, nodes are considered to be the basic
entities. They are taken as basic operations of the machine and are represented by a
structure of the form:

Node :: Operator
Destination

An operator is a primitive operation of the machine e.g. DUP, BRA.1 A destination
is the ‘arc’ of the dataflow graph, i.e. it defines where output is to go.

The data items (tokens) within the machine are represented as:

Token :: Data
Label
Destination

The meaning of these fields is given below:

data gives the value (and type) of the token, e.g. an integer, a character, etc. See [Kir81]
for full list of types and values.

label is the tag used to identify the token uniquely. This actually consists of three sub-
fields which are used as:

1See [Kir81] for a complete list.
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Switch

Processing unit

P.E. n

P.E. 1...

Token queue Matching store

Node store

Host

Figure 11.2 The configuration of the Manchester DataFlow Machine

1. activation name – separates instantiations of re-entrant code in the case of
functions;

2. iteration level – used for iterative code;2

3. index – used for data structuring.

destination is used to identify the node to which the token is being sent, i.e. it implicitly
defines the data arcs. This field also includes other information which is described
below.

The machine is physically based on a ring structure. This is composed of a number
of independent units around which the data tokens (and composite structures) circulate.
The ring has the configuration shown in Figure 11.2.

Specific details such as number of bits in a token, catalog number of processing
elements, length of wire between units and other information vital to engineers will not
be given. Anyone interested to this level should consult [Gur82]. Next, each unit on the
ring is looked at in more detail.

1. The switch
This routes information to and from the host machine. It can be ignored if input

2Fields 1 and 2 are grouped together under the name color.
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is taken to be present in the ring and that output remains there. It is also used to
load the graph into the node store, using special instructions that identify tokens
as node store data, but this is not considered further.

2. The token queue
This unit is present for purely pragmatic reasons. It is used to buffer tokens. The
actual representation strategy has no effect and both a FIFO queue and a stack are
used interchangeably. This has no effect beyond some difference in processing
speed for particular sorts of programs.3

3. Matching store
This is a unique feature of the MDFM and gives the architecture a flexibility that
would not be found in a ‘pure’ dataflow machine. Assuming all nodes are binary,
a simplified description of the function of the matching store can be given as fol-
lows. When a token enters the matching store, a search is made within the store for
the matching token. A token matches if it has the same destination (i.e. is going
to the same node) and the labels are identical. If such a match is made, the pair
are packaged together into a group package and passed along the ring to the node
store. If no match is found then the incoming token is placed in the store to await
the arrival of its matching token. More complex matching facilities are available
and these are described later.

4. The node store
This unit holds the representation of the dataflow graph and can be taken to be
equivalent to the program store of a conventional machine. Each node of the graph
is stored, according to the representation described above, in a uniquely addressed
location. This representation, actually consisting of an operator code and a node
store address representing the arc to the next node, is loaded into the store from
the host. This is similar to the loading of a program in a conventional machine.
When a group package arrives from the token store, the relevant node is selected
according to the destination field of the incoming tokens. A copy of the operator
and the result destination are added to the package. This is known as an executable
package. It is then sent to the processing unit.

5. The processing unit
This is the actual computing unit of the machine. It consists of a number (up
to twenty in the current machine) of independent processing elements. Each is
capable of accepting an executable package, performing the specified operation

3That is not completely true. Changing the queue/stack switch could sometimes have an interesting
effect, since some local ‘wizards’ have been known to depend on properties of the queue to make ‘unsafe’
programs execute.
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and producing the result token with the appropriate destination field. This is then
passed on round the ring. It is in this area of the machine that true parallel pro-
cessing is found. Since the processing elements operate independently, they accept
incoming packages on an availability basis, in parallel.

In summary, the action of the MDFM (after initialization) is:

A token enters the matching store.

If the matching partner is not present within the store, the incoming token is placed
in the store to wait.

If the matching token is found, then all inputs to a particular node are present and
that node is eligible to fire. The tokens are grouped together and sent to the node
store.

The relevant operator and the result destination are picked up.

This package goes to the processing unit where it is executed by one of the pro-
cessing elements, producing a result. This is sent back around the ring to continue
the process.

The termination of a program, executed on this machine can occur in one of two ways.
The first way is clean termination. In this case, all tokens have left the ring (i.e. have been
given destinations in the host and so are switched out). Termination occurs when there
are no tokens left anywhere in the ring and the host machine has received all expected
output. In the second case,4 output is handled as above but the difference is that tokens
are still present in the ring. As will be seen below, use of special matching functions can
cause tokens to be left in the matching store with no possibility of a matching token ever
arriving. In this case, the program is said to terminate when all tokens left in the ring
are stored in the matching store (i.e. there is no chance of a match, and so no possibility
of any further action). It is intended that good examples of dataflow programs leave the
store empty. A dataflow program which does so is said to be well-formed.

As was mentioned earlier, one interesting feature of the MDFM is the fact that
dataflow arcs can be generated dynamically, i.e. during execution. The mechanism for
handling this is the provision of primitive operations to extract and set the destination
fields of tokens. In fact, destinations, colors, etc. can generally be handled as data values.
(For precise details, see [Kir81].)

The above description of the operation and structure of the MDFM is sufficient for
a general understanding of the machine. However, it does contain one major simplifica-
tion. In reality, the matching store may be used in a more complex manner.

4I suppose this could be called unclean termination – but usually it is politely ignored.
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Matching

The matching process described above is the default action of the store. This is known
as extract wait EW since its function is to extract a token if there is a match and to
cause a token to wait otherwise. This is sufficient for almost all ‘normal’ programming
and represents pure dataflow. However, there are cases, such as explicit nondeterminate
programming, where other actions may be desirable. To facilitate this, the action of the
matching store can be controlled explicitly by use of a matching function carried by the
incoming token. This matching function specifies the action to be taken by the matching
store, both in the case of a match and a failure to match. These are usually denoted by a
two-letter code, the first denoting the match action and the second denotes the fail action
(as in EW above). This code is carried in the token’s destination field, along with the
(previously described) node address.

Before going into the detail of matching, it is necessary to give a more complete
description of a token. In fact, the destination field contains a further subfield known as
the input point. This specifies whether the token is the right or left operand of the node
to which it is sent. This also explains the many–one matching situation mentioned in
defer, below, in that two tokens with the same input point could arrive before the match-
ing token with the opposite input point. The situation where two tokens with identical
destination fields are both present in the store is forbidden in the MDFM (since a true
matching token would have the opposite input point) and is known as a matching store
clash. The matching function defer exists to avoid such a clash. In dataflow terminology,
a program is said to be unsafe if there is the possibility of store clashes and safe if there
is no such possibility.

In the current implementation, there are four possible match actions and four possi-
ble fail actions. These are listed below.

Match action

1. Extract
The matching token is removed from the store, combined with the incoming token
to form a group package and passed on to the node store.

2. Preserve
A copy of the matching token (present in the store) is taken to form the group
package but the stored token is not removed from the store.

3. Increment
As preserve, except the token in store has its value field increased by one.

4. Decrement
As increment, except the field is decreased as opposed to being increased.
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Fail action

1. Wait
The incoming token is placed in the store to wait for a match. This is the normal
way of placing a token in the matching store.

2. Defer
The incoming token is not stored but is passed back to the token queue (via the
rest of the ring but in transparent fashion) to be resubmitted. This is used to avoid
store clashes when many tokens could potentially match.

3. Abort
The incoming token is not stored but it is grouped with a special EMPTY token
and passed on. This is usually used to control explicit nondeterminacy.

4. Generate
The action of generate is identical to abort except that a copy of the incoming token
with its input point is stored. This means future tokens with identical destinations
to the original incoming token will find a match. This again finds its main usage
in situations involving nondeterminacy.

There is also a further matching function, bypass BY , which simply allows the token
to pass through the store unaffected. This is used for input to unary nodes where no
matching is required.

Not all possible combinations of available matching functions are implemented. The
currently available combinations are:

1. Extract wait EW

2. Bypass BY

3. Extract defer ED

4. Preserve defer PD

5. Increment defer ID

6. Decrement defer DD

7. Extract abort EA

8. Preserve generate PG
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For a more complete description of the function and usage of matching functions on the
MDFM, the reader is referred to [Bus83].

By the use of special matching functions, it is possible to deviate considerably from
the model of pure dataflow. As Section 11.3 illustrates, this causes increased complexity
in the formal semantics of the architecture.

11.2 The development of a denotational semantics

One of the goals of the work reported here is to produce a denotational semantics of
the MDFM at a sufficiently low level to capture all the relevant detail of the machine,
including matching functions.

The semantics of a simple dataflow machine

The most suitable approach was deemed to be the production of a denotational seman-
tics, giving meaning at the level of a program within the machine (i.e. a Node store).

It is necessary to decide on a suitable denotation, since the nondeterminism inherent
in the machine means the usual denotation of continuous functions cannot be used. It
was decided that the extension to powerdomains [Plo76] was unnecessary in this case.
An adequate semantics could be given using relations as denotations, following [Par80].
So the basic approach is to define the semantics of the machine in terms of a fixed point
over a relation on a set of tokens, characterizing the state of the machine.5

In order to facilitate the understanding of the formal semantics, a greatly simplified
version of the machine is taken as a starting point. Additional complexity is added in
stages, eventually leading to the complete MDFM. The presentation below follows that
development.6

The first machine is greatly simplified. Its programs consist of pure, loop-free
dataflow graphs with all nodes being binary input/unary output.7

The basic computation is performed by a Node – representing the basic program ele-
ments of the machine. Each Node consists of anOperator, which is a function describing
the computation, and a Destination specifying to where the result should be sent:

Node :: O : Operator
D : Destination

5See [Sch86] for details on fixed points.
6The set constructor is taken to denote the powerset and is not restricted to the finite cases. Any extra

notation used to deal with relational concepts, generally follows [Jon81]. To avoid confusion due to the use
of µ as both a fixed point operator and record update operator in previous VDM related work, the former is
represented as fix .

7For convenience, the term ‘program’ will be used to refer to the graph representation held in the node
store.
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Operator Value Value Value
A Destination contains the Node address to which the value is to be sent plus an

Input point. 8

Destination :: NA : Node address
IP : Input point

The meaning of an individual Node is defined (by the function MN ) in terms of
the application of its operator to the values in a set of appropriate input Tokens and the
creation of a new Token containing the result sent to the given Destination.

MN :Node Token-set Token
MN mk-Node o d mk-Token v1 d1 mk-Token v2 d2

mk-Token o v1 v2 d

A program is represented by a Node store, which is a collection of Nodes indexed
by their addresses.

Node store Node address m Node
A subsidiary function ips is used to identify the Tokens destined for a particular

Node.

ips :Node address Token-set Token-set
ips d ts t ts NA D t d

The meaning of a ‘program’ is defined as the fixed point of a relation over token sets.
The basis of this expression are those sets of Tokens in which no further computation is
possible. 9 Any Node which has two input Tokens can be ‘fired’, i.e. the MN function
can apply. To allow for the parallelism in the machine (which is ‘side-effect’ free), all
such Nodes can fire at once. This is modelled by use of a distributed union:

MP :Node store Token-set Token-set -set
MP ns

fix R ts ts d dom ns card ips d ts 2
ts ts ts fs MN ns d fs ts R

d dom ns fs ips d ts card fs 2

The above formulae can be interpreted as follows. A meaning function MP is
given from a program to a relation on token sets. The meaning of a program is found by

8At this level of simplicity, input points are not checked. However, if they were not included, two tokens
with identical values input to a node would be coalesced by the set construction, preventing valid firings
occurring. Since the set construction is required in later definitions, it does not seem appropriate to use
(say) a pair construct here.

9In this simple case, that means there are no Nodes which have two input Tokens.
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ADD ADD

MUL

Figure 11.3 A simple example

building a fixed point, backwards from terminated states. The basis for the construction
is the set of states that do not change (i.e. have no nodes that could possibly fire). States
that can be arrived at by an eligible node firing are added at each step. This is done for
all eligible nodes and the distributed union is taken.

The firing of a node is represented by the removing of its input tokens from, and
adding its result tokens to, the state. The result of a particular node firing is given by
the meaning function MN on given node address. This is defined to be the construction
of a result token which has the result destination and a value given by the node operator
being applied to the input values. The input set ips of the node is generated, giving the
candidates for firing.

This gives the general idea of the way in which the semantics is developed. In order
to gain a better grasp of the formalism, and the way it ‘works’ on a dataflow program, it
is worth examining a small example.

Consider the graph to calculate a b c d , as shown in Figure 11.3. If we look
at how this graph would be represented, we get to following node store:10

ns 1 3 2 3 3 out
10For clarity, constructors and input points are ignored.
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where 1, 2 and 3 are destinations (representing the node store addresses). out is just
meant to represent a destination that is not within the graph being considered.

Assume the initial token set is:

ts0 vala 1 valb 1 valc 2 vald 2

The construction of the relation is based on the ‘final’ states (i.e. those which will
not transform further). It can be seen that the relation must allow the following actions.
At the first step, either node 1 or node 2 could fire giving:

R 1 ts0 ts1 tso ts2

where ts1 results from node 1 firing, i.e.:

ts1 vala b 3 valc 2 vald 2

and ts2 results from node 2 firing, i.e.:

ts2 vala 1 valb 1 valc d 3

derived from theMN function on the + operator in each case.
At the next step only 1 or 2, depending on which has not already fired, is eligible to

fire, and so on.
So, it can be seen why the meaning is given as a distributed union within a fixed-

point construction. The fixed point builds the sequences of token sets produced as each
action takes place in time. Each future action is enabled by the tokens produced at
the current step. The starting point for the construction is the set of tokens for which
no action takes place. This undergoes the identity transformation. Each step in the
construction represents a firing action taking place. The union operation allows for many
nondeterministic choices of which of the eligible nodes actually fires at any particular
step. In other words, all possible computation paths are included in the expression.

This should enable an intuitive grasp of the semantics. More complex examples are
not presented in detail as they very quickly become tedious.

The semantics of a more general dataflow machine

For this version of the machine, some of the restrictions are removed. Specifically, labels
are added to tokens and nodes are generalized to n-input, n-output.

The major modification needed is a more complex means of checking if a node is
eligible to fire. It is now possible to have more than one set of inputs to a node. There
needs to be a means of keeping these sets distinct. To deal with this, a label field is added
to tokens:
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Token :: V : Value
D : Destination
L : Label

A Node is extended to contain information about the number of expected inputs and
the output Destination is generalized to a set:

Node :: O : Operator
D : Destination-set

Operators now contain details of their arity in addition to the Function.

Operator :: F : Function
NIP :

Function:Token-set Destination-set Token-set
Since the definitions are seen to be becoming longer, a slightly different style of

definition is used forMP . The identity relation over the set s is written as Es , following
[Jon81]. The relation is now defined in terms of relational composition (; ) over R .
This combinator has the following type:

; : Token-set Token-set -set Token-set Token-set -set
Token-set Token-set -set

is normally used in an infix form and has the usual meaning for composition. Using the
following operators:

MP :Node store Token-set Token-set -set
MP ns fix R Es MN ns d d ; R d dom ns
where
let n NIP o in
s ts Token-set d dom ns rdys d ts n

the meaning of a single node firing is extended to the relational type to allow use of
composition:

MN :Node Node address Token-set Token-set -set
MN mk-Node o nd d

let f F o
and
n NIP o in

Es ts ts rs f rs nd rs rdys d ts n ts Token-set
where

s ts Token-set rdys d ts n
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The function rdys extracts those sets of Tokens which constitute complete input sets
to the given Node:

rdys :Nodeaddress Token-set Token-set -set
rdys d ts nip

rts ts t1 t2 rts L t1 L t2 NA D t1 d card rts nip

Most of this definition should be easily understood since it does not differ very much
from the earlier definition above. The noticeable additions are the checking for a given
cardinality on a nodes input set as opposed to the default of two in a binary case and the
multiple level of choice on the rdys function. This is due to the fact that it is necessary,
in the first instance, to select all possible ready sets to the given node and to take the
distributed union of the result of any of these being used. This gives the desired result at
theMN level.

The use ofMN and ; (relational composition) within the definition ofMP make it
easier to see how the composition is used to build fixed point. This notation is maintained
for the later definitions.

Termination

Before increasing the complexity of the machine any further, a significant technical diffi-
culty needs to be considered. It is well known that problems are encountered when using
relations as a denotation (see [Jon73] for example), particularly due to relational compo-
sition. This is most easily illustrated by the case of distinguishing between a b and
a b a , when nontermination is a possible result. (The symbol for bottom is

used in its traditional sense to represent nontermination, i.e. undefined result.) To solve
this problem, the approach of [Par80] is followed, where the denotation of a program is
given as a pair of functions:

1. The meaning function as before.

2. A second function giving the set of inputs over which termination is guaranteed.

The termination function appropriate to the previous definition is:11

TP :Node store Token-set -set
TP ns fix S termset ns

ts na dom ns ts tsMN ns na na ts ts S

11The following conventions simplify considerations of input/output: tokens which are addressed to a
destination not within the node store (i.e. NA D t dom ns) are assumed to be output; it is assumed that
any program which has a state composed entirely of output tokens has terminated.



288 11 Specification of a Dataflow Architecture

The function termset generates sets of Tokens which are all terminated:

termset :Node store Token-set -set
termset ns ts t ts D t dom ns

The termination function TP is also defined in terms of a fixed point. This is
built over the possible token sets. An informal explanation of the derivation of this
function can be given as follows. The starting point is given by the function termset
(i.e. those states containing only tokens that can not be modified further since they have
destinations that do not apply to any nodes in the node store). The fixed point is then
built by adding all states which must yield one of these states whichever node fires, and
so on.

This definition is as far as it is reasonable to progress using an abstract machine.
Further steps are necessary to consider the precise details found in the MDFM.

11.3 The formal semantics of the MDFM

To give the semantics of the complete machine, it is necessary to work at a slightly less
abstract level. Some of the abstractions used previously need to be removed as they hide
information important at this level. For example, previous definitions used a function
from Token-set to Token-set to represent primitive operators. This is not sufficiently de-
tailed to characterize the machine exactly and so is replaced by enumeration of available
operators. These operators do not conform exactly to those present in the Manchester
hardware but represent a somewhat idealized representation of them. This decision is
justified on the grounds of simplicity. 12 Most of the modifications made are of this
nature.

As before, the new definition is built by expanding the previous definition where
possible. However, due to the increasing length, a slightly different style of definition,
making use of more subsidiary functions is adopted making it necessary to modify some
of the earlier work.

More significantly, matching functions and associated matching actions are intro-
duced. As can be seen below, this causes some increase in the complexity of the defi-
nition. This is caused by the fact that it is no longer possible to represent nonmatching
as the identity relation. Previously, nonmatching was equivalent to nothing happening
and firing meant tokens were consumed. Special matching may introduce extra tokens,
both for success and fail cases. This means further checking of the state and additional
processes for firing have to be added.

However, a simplification is also possible. Since the MDFM is restricted to either
unary or binary nodes, it is no longer necessary for nodes to hold information about the
12Given that the actual instruction set is microcodable, this is reasonable even from a practical viewpoint.
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number of expected inputs as this is deducible from inspection of the matching function
of the incoming token (unary if BY; binary otherwise (remembering Section 11.1)).

A list of differences from the previous definition is given below along with an indi-
cation of the reason for the modification.

1. Type checking and error detail are added – these use the extra information carried
by tokens to perform some error checking.

2. Tokens carry type information – this is necessary to reflect the ‘strong typing’
present in the machine.

3. Labels are expanded – this is to allow labels to be used both to separate tokens
in multiple instantiations of a piece of graph and to separate elements of a data
structure. 13

4. Matching functions are included in destinations to enable matching actions to be
considered.

5. Operators are made explicit – this is done to allow a more precise characterization
of the actual machine. Not all implemented operators are included.

6. Alternative result destinations are included – this addition is necessary to deal
with branching and switching nodes. In fact, the hardware only gives a restricted
version of this facility but it can be achieved using DUP nodes.

7. Literals are added to nodes – that is, constant values could be attached to one input
of a binary node removing the need to pass in fixed constants.

8. The identity relation used in previous definitions to represent ‘no firing’ is replaced
by an operator allowing for deferred failures – this is forced by the fact that defer
and wait have a slightly different action. The matching functions of waiting tokens
are not considered again (they are within the store). On the other hand, a deferred
token is represented as if the defer had not occurred.

9. The test of a node’s readiness to fire is more complex. It is no longer enough to
simply test if the cardinality of the ready set is equal to the number of expected
inputs since action is also required in the case of some failures involving special
matching functions.

10. The meaning function for nodes MN is rewritten – this is again made necessary
by the possibility of failure actions.

13Only two fields are given since the third field is used in practice to separate a special case of multiple
instantiation.
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11. An additional meaning function is included MOP – this is used in conjunction
with the enumerated set to define the available primitive operations.

12. Test and special action functions are added – to deal with matching functions.

13. One further complexity is introduced by the use of the GCL node. This node
returns a unique identifier (color) each time it fires. In the machine, this is pos-
sible by the use of a global variable containing a set of unused colors. Given the
applicative style of the definition, this is difficult to reflect here without the extra
complexity of passing an extra parameter through all levels of the definition. In or-
der to avoid this, the notation is abused and an external variable is used, following
the operation definition style of VDM.

As can be seen most of the above present no particular difficulties. The exception is
the treatment of matching functions, which is explained in detail below.

It is not feasible to present the full definition here, it can be found in [Jon86b]. The
following is a skeleton of the complete definition which serves to illustrate the structure.

The complete definition

The basic types are extended to contain complete information.

Token :: V : Value
TY : Type
L : Label
D : Destination

Type = ”Machine types e.g.” INT,COLOR

Label :: C : Color
I : Index

Destination :: NA : Node address
MF : Matching function
IP : Input point

Matching function = EW,. . . ,EA
...

Node :: O : Operator
D : Nextdestinations
LIT : Literal
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Operator = ”Primitive Machine Operations”
...

The meaning of a program is largely as before. The extension is to allow a more
general test for an action occurring, to allow for special matching functions:

MP :Node store Token-set Token-set -set
MP ns fix R nfail s MN ns na na ; R na dom ns
where
s ts Token-set na dom ns is action ts na

The termination function is also similar to the previous definition:

TP :Node store Token-set -set
TP ns fix S baseset ns

ts domMN ns na na ts tsMN ns na na ts
ts S na dom ns

TheMN function now has to allow for special failures as well as normal firing:

MN :Node Node address Token-set Token-set -set
MN mk-Node op nd l na

ident na fireaction na op nd l failaction na op nd

The meaning of an Operator is given by MOP . This function also generates any
extra tokens caused by special success matching:

MOP :Operator Token-set Nextdestinations Literal Token-set
MOP op ts ds l

the result of performing the operation plus extra match tokens

The rest of the definition consists of subsidiary functions handing the details of this
scheme.

As was mentioned above, most of the extra complexity in this definition is caused by
the mechanisms added to handle matching functions. To facilitate the understanding of
this, an informal explanation of the way in which matching is modelled is given below.

In the previous definitions, matching was implicitly extract wait, i.e. pure dataflow.
This resulted in the simple mechanism of removing tokens from the state when find-
ing matches, and performing an identity transformation in the case of waiting. In the
complete definition, the matching functions are divided into three general cases:

1. Successful matching actions.

2. Normal failing actions, i.e. wait and defer.
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3. Special fail actions.

The first case, that of successful matching, is dealt with by an extra section to theMOP
function. (In some sense, successful matching and firing could legitimately be regarded
as closely linked since all tokens succeeding in matching immediately proceed to fire.)
Extra tokens are generated and added to the state to represent the effect of special match-
ings. In the case of extract, no extra tokens are generated. (Firing tokens are consumed
in the fireaction function.) Preserve causes a copy of the waiting token (identified by the
NILmatching function) to be added to the state. Increment and decrement cause a token
with the appropriately adjusted value to be generated.

Normal failing, i.e. failures that do not ‘change’ the state, is handled by the nfail
operator. The reason for the quotes in the previous sentence is the fact that wait does
require a slight modification to the state. It is necessary to identify the token as having
undergone a failed matching, i.e. being resident in the store, for subsequent successful
matchings. To enable this, the matching function of the waiting token is replaced with
NIL. This is necessary to avoid the selection of the wrong token’s succeed function
on subsequent matches. The defer action leaves the state completely unchanged. This
would be expected since it is primarily an ‘engineering’ solution to a problem and could
be imagined to have the meaning ‘forget that ever happened and try again later’.

The final case, that the fail matching functions requiring special action, is a little
more complex. This condition is detected by the test function failaction. This uses the
function specialfail to examine the state for incomplete input sets containing a token
which has a matching function that is a member of the Failmf set. The function failres
uses the subsidiary function ft to generate the appropriate new token, i.e. an EMPTY
token for abort and an inverted token for generate.

This completes the record of the derivation of the formal semantics for the MDFM.
The full definition contains some simplifications of the actual machine but these were
simply to reduce the length of the definitions to a manageable size. All of the important
characteristics have been described and the complete detail could be included at the cost
of increased bulk. It should be noted that the definition is, in some sense, parameterized
on certain features to the level of theMOP function. To give a semantics for a different
version of the same machine, e.g. with different matching functions, the same general
definition could be used. To make this definition fully parameterized on these sets, it
would be necessary to add another level of function below MOP to deal with matching
separately.

11.4 Conclusions

This work shows a complete model for an existing piece of hardware. This is, of course,
not the ideal way to proceed: it would have been better to have designed the ‘implemen-
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tation’ from the ‘specification’. However, working from a real example brings out some
interesting points.

As can be seen from [Jon86b], a model which deals with the intricacies of the ‘real
world’ is far from ideal from the point of view of reasoning about the system. It would
have been convenient to have a more abstract model (of which the model in Section 11.3
was a verified refinement) to reason about.

As can be seen from the above, there is not a great deal of difference between the
model of a parallel machine given here and the more common sequential machines seen
previously. The major differences come at the level of the structure required to model
the parallelism: relations in place of functions. The other modification made to the
specification language in this work is to allow explicit use of the fixed point operator
fix since this made to construction of the proofs (in [Jon86b]) easier. It should still be
recognizable as VDM.
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Formally Describing Interactive
Systems

Lynn S. Marshall

The specification and design of user interfaces is an extremely challenging
subject area. Not only does it involve the difficult aesthetic and human fac-
tor issues associated with layout, use of color, information display, structure
hierarchy, ease of use, learning efficiency, etc. but it also requires the precise
specification of the dialog structure between the user and the system. Dialog
specification is important because it provides an abstract representation of the
legal set of interactions between the user and the system allowing properties
such as dialog consistency, safety, liveness and security to be analyzed. This
chapter addresses the development of a formal system for the specification of
user interfaces. Its first part discusses the use of VDM and statecharts for this
purpose. Interaction between a user and a system may be viewed as a flow of
control between operations. Operations are specified in VDM and the flow
of control is specified using statecharts. To prove properties about the dialog,
the meaning of statecharts must be established and proof rules derived. These
issues are tackled in the second half of the paper and a number of proofs
demonstrated. The VDM used in this chapter does not conform strictly to
the standard. The semantics of pre-conditions have been changed, statechart
labels have been introduced and are used within the VDM operation speci-
fications. In addition a number of abbreviations have been introduced; for
instance only abbreviated ext clauses are used. This study should be viewed
as showing how a formal system may be extended rather than as an example
of the use of standard VDM.

295
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12.1 Introduction

Computer science is a relatively young field. Just a few decades ago there were only
a few computers in existence. They were very expensive, owned by large companies,
and used only by specially trained personnel. Today, smaller computers are generally
available and the use of computers of all sizes is widespread. As the number of appli-
cations for computers grows, the need for hardware and software to function correctly
becomes critical. Formal methods have emerged to assist in this area. The term ‘formal
methods’ encompasses both formal description and verified design. Formal description
involves the use of a mathematical notation to define the function of a system, while
verified designs use formal reification techniques for developing systems in a way which
can be proved correct with respect to the formal description. Since computer systems
are used by workers in all disciplines, the area of user interface design has become very
important. Not only must computer users get the correct results, it should also be easy
for them to obtain these results. The area of user interface design is in its infancy and
few concrete guidelines exist. Perhaps the application of formal description methods to
user interface design will provide new insights into both fields.

The user interface

Many computer systems are of an interactive nature. At each stage of the interaction the
user enters some input and the computer responds to it. The component of the interactive
system which acts as an interpreter between the user and the underlying application
program is the user interface:

USER INTERFACE

?

APPLICATION

01101

The user interface controls who has the initiative at any stage in the dialog. It translates
the user’s request into a form the application will accept and the application’s reply into
a form that the user can understand. The role of the interface is to allow the user to
utilize software with a minimum of effort.

The user interface is given many different names in the literature. These include user
computer interface, human/computer interface (HCI), computer/human interface (CHI),
human/computer dialog, human/machine interface, man/machine interface (MMI), and
interactive dialog. The term user interface was chosen for brevity. It is understood that
the user is interfacing with a computer. Also, this name does not unnecessarily restrict
the users of the system to humans and/or males.
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By any name, a good interface is an essential part of any system. Even an excellent
system will be useless without an adequate interface. The user interface should be easy
to learn and easy to use. It should be simple and reliable, yet flexible and transparent to
the user. The interface should also be consistent and efficient, and as independent of the
application as is feasible. Clear documentation and diagnostics are vital. However, these
qualities are hard to define and measure. Also, many design choices are unclear. The
user’s reaction to various user interfaces is difficult to appraise. User interface design
may need to take into account the different users of the system, the applications that
the users need to access, and the input and output devices available. The fact that the
user interface is dependent on so many system-specific details adds to the difficulty in
proposing design guidelines.

Due to these problems, user interface design is not an exact science. There remains
much disagreement and many unknown quantities. Currently, user interface design re-
mains an iterative procedure utilizing social scientists and psychologists in an attempt
to develop systems acceptable to the user community. See Section 12.2 for a further
discussion of user interface design.

Formal description methods

Describing a system formally involves the use of a mathematical notation. In this way a
precise description of a system’s function can be given. A formal description is abstract.
It describes what a system does without stating how this should be accomplished. Given
a formal description, properties of the system can be formally stated and, provided the
notation has a sound mathematical basis, proved. Once the system designer is satisfied
with the description he can have confidence in any system constructed from it. A formal
description of a system is valuable to both system designers and users. It is a precise
standard for an implementation. It provides useful documentation for the user, and it can
be used as a tool in system analysis and design. A formal description is a functional or
semantic definition in that it describes what a system does.

A formal description is often referred to in the literature as a formal specification.
This term is avoided as it can be misleading. Although a particular formal description
may be adopted as the specification of a system, not all formal descriptions are neces-
sarily specifications. Note that while it may be possible to prove that a system satisfies a
formal description, no formal comparison can be made between this description and the
original informal system specification.

A formal description should be understandable, testable and maintainable, but not
necessarily optimal. It should be complete, consistent, unambiguous and nonredundant.
The method should be concise and readable, but capable of coping with new technology
and radical principles.

Some authors argue that a system description can benefit from being slightly infor-
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mal. Informal descriptions may be easier to write and understand, and can be useful in
some instances, but, for a description notation to be used for analyzing properties of the
proposed system, a formal mathematical basis is necessary.

Many researchers feel that an executable description method is best as it allows rapid
prototyping of the description and iterative system design. However, an executable de-
scription language leads to ‘program-like’ thinking and discourages abstractness, the
major aim of a formal description.

Formal methods are currently employed mainly for describing and proving proper-
ties of noninteractive, or static, systems. Error handling is not as vital in a static system
as in an interactive system. Due to this, the formal description usually deals only with
valid input, leaving the interception of invalid input and production of error messages
to the implementor. Even if an interactive system is considered, the formal description
usually considers only the application, ignoring the user interface along with key issues
like error handling, on-line help information, and interrupts.

Formal methods and the user interface

The aim of this chapter is to discover a formal technique which meets the requirements
outlined below and is suitable for describing the user interface of an interactive system.
The user interface introduces new challenges to the area of formal description. The in-
teractive nature of the interface makes the flow of control a vital aspect. Error handling,
on-line assistance, interrupts, and response time are issues not dealt with in the formal
description of a static system or application. While some portion of the user interface
description may need to be dependent on the input device, interface style, and/or appli-
cation, it would be ideal if a large part of the interface description was standard.

A formal description of an interactive system and its user interface will be most
helpful if it is a tool both for the user interface designer or design team, and for the users
of the proposed system. To be of use to both these groups the notation must be both
rigorous and easy to understand. The user wants a general feel for how the system and
its operations can be used, while the designer must know what capabilities he must build
into the system.

To both the user and designer, questions such as ‘what happens next?’ and ‘what
happens after X?’ are of vital importance. This flow of control within the system should
be determined by a glance at the user interface description. To allow the user interface
designer to consider only the user interface or a portion thereof, a split of the formal de-
scription into manageable sections will be necessary, especially in a large and complex
system. Dividing the description into various levels, each giving more and more de-
tail, would be appropriate, as would be a modular presentation of the description which
separates the various components of the system and the user interface.

At the same time the notation should be simple, concise and understandable. It
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should not be necessary to have much special training to follow the description. Also,
the formal description must be abstract. While the flow of control is important for illus-
trating the overall effects of the user interface, the description should not impose order
when it is unnecessary. Finally, a sound basis in mathematics is needed for the nota-
tion to be rigorous enough for claims concerning properties of the user interface to be
formally verified.

Introducing a formal notation will not suddenly cause all user interfaces which have
been described using this technique to be ideal. However, a formal description tech-
nique which can easily express the user interface of an interactive system should reduce
the need for iterative user interface design. If the use of formal methods can help in
the construction of user interfaces or in the determination of what makes a good user
interface, research in this area is worthwhile.

Synopsis

Section 12.2 describes the current research in user interface design and examines ways in
which formal methods can be of use. Section 12.3 describes the adopted approach, while
an example using the proposed approach is presented in Section 12.4. The semantics of
the method and sample proofs are given in Sections 12.5 and 12.6. Section 12.7 gives
the conclusions and suggestions for further work. Further details, additional examples
and many more references are contained in [Mar86].

12.2 Formal methods and the user interface

This section examines how formal methods can best be applied to assist in the design of
user interfaces.

User interface design

Many researchers are attempting to find ways of improving user interface design. Cur-
rently, however, most interfaces are designed in a haphazard manner. Many authors
lament the lack of methods and tools to aid in user interface design, or claim that much
of the research is too philosophical to be of any help. Some researchers set extremely
optimistic goals involving analyzing the communication facilities of the human brain
and applying the findings to user interface design.

As discussed in Section 12.1, researchers have not yet reached agreement over the
necessary characteristics of a user interface. An abundance of adjectives appear in the
literature containing user interface guidelines. These include considerate, courteous,
respectful, and helpful; reliable, adaptable, and easy to use; compatible and brief; ef-
ficient; flexible, transparent, and easy to learn; and understandable, simple, consistent,
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clear, and versatile. The term ‘user-friendly’ is often mentioned though numerous re-
searchers agree that its meaning is unclear. How ‘friendly’ an interface is depends on
the task and the user. The ease of use of a system depends on various factors. Also,
there is a trade-off between ease of learning and ease of use. Recommendations for user
interface design often conflict thus making the user interface designer’s task a difficult
one.

Formal description of user interface properties

Many of the issues arising in interactive computer graphics are related to those of user
interface design. One area examined in Chapter 13 is that of describing the represen-
tation of a straight line on a raster device. It is possible to formally describe various
properties which must be met by any reasonable approximation to such a straight line.
A description such as this is ideal in that it is abstract, very general, easy to understand,
and useful. Formal verification techniques can be applied to any line drawing algorithm
to ensure that it satisfies the required properties.

Often, a formal description supplies constraints on a system, rather than giving a
complete definition [GH86]. Unfortunately, research in user interface design has not yet
reached the stage where this technique can be successfully applied. [GHW82] recom-
mends formally stating as many constraints as possible and the generative user engineer-
ing principles (gueps) proposed in [HT85] aim to do this. However, due to disagreement
over various features and the informality of properties proposed for the user interface,
formalizing a complete set of guidelines is not currently feasible.

Considering the user interface in isolation

Since it is not appropriate to try to describe the desirable properties of any user in-
terface perhaps a technique for describing the user interface of a particular interactive
system would be helpful. If formal descriptions were formulated for each of the user,
application, and user interface they could then be considered separately or together to
prove properties concerning the system. However, when designing the user interface it is
not always possible to consider the interface independently of the particular interactive
system. Often the application, user, devices, and required interface style are major con-
siderations in design decisions. The designer often wants to exploit these characteristics
to get the best interface possible. Current research in the area of user interface man-
agement systems (UIMSs) [BLSS83, GE84] encourages separation of the user interface
from the application. However, researchers often admit that this is not always attainable
and a UIMS is usually only partially independent of the rest of the system.

Discussions of user interface dependence and independence occur frequently in the
literature. One paper [BLSS83] suggests that the user interface should be as independent
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as possible of the input and output devices, language, machine, and interaction tech-
nique. [OD83] opts for application independence and device dependence. Some authors
also recommend device dependence [Bae80, NS81], while another [HT85] suggests that
the user interface should be user dependent. It is possible that these discrepancies can be
explained by considering the amount of detail in each author’s view of the user interface.
However, a technique for describing the user interface alone could well prove inadequate
to aid in user interface design.

Formal description of an interactive system

Thus neither describing a list of properties of the ideal user interface, nor developing a
technique to describe just the user interface of a system seems profitable. It was finally
decided that the best way to advance the use of formal methods in user interface design
would be to discover or develop a formal description notation appropriate for the entire
interactive system, with emphasis on the user interface.

12.3 Approach

The required properties of the formal description technique are the following:

flow of control. The user interface governs the flow of control within an interactive sys-
tem. The formal description should clearly illustrate this general, or top level, view
of the interactive system.

levels. To allow the system designer or user to look at the formal description in as much
or as little detail as desired, the description should be split into levels ranging
from the top level flow of control discussed above, to the details of each operation
within the system.

modular. All but the top level of the formal description should be modular. This will
enable the design of each operation to be considered in isolation.

concise. The notation should allow the necessary concepts to be expressed in a concise
manner. A notation which is clumsy or verbose will unnecessarily lengthen the
description.

understandable. The formal description technique should be easy to understand. As
well as satisfying the points above, the notation should be as clear and simple as
possible.

abstract. While a user interface may be partially dependent on the particular interactive
system, the description should still remain abstract. The formal description should
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not dictate any issues which need not be resolved until the implementation stage.
Although the top level flow of control is vital to the design of the system, it is
often the case that, at lower levels, the ordering of certain events is immaterial at
the description stage.

sound. To allow formal proofs of correctness to be carried out, the description technique
should have a sound mathematical basis.

VDM [Jon90] uses pre- and post-conditions for the abstract description of opera-
tions. This method satisfies all of the requirements except that it is inadequate for illus-
trating the flow of control. The best formal description method for showing the top level
flow of control are transition-state diagrams (TSDs). In fact, statecharts [Har84], a form
of extended TSD, seem to be the best choice. The chosen approach is a combination
of statecharts and VDM operations. A statechart describes the toplevel flow of control
between the operations of the system, while each operation is described by a pre- and a
post-condition. The details of the approach are described below. Note that a restricted
form of statechart is used to enable the semantics of the method to be fully described.

Statecharts

A statechart shows the flow of control of a system. A statechart can be any one of the
following.

Operation. A simple operation is illustrated:

OP

Composition. A sequential composition of two statecharts, S S1;S2, is illustrated:

S

S1 S2
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Selection. The selection of at most one statechart from a list.
IF if c1 then S1 c2 then S2 cn then Sn fi:

IF

C
c1 c2 ... cn

S1 S2 Sn

Loop. A looping construct, LP loop S1 if c exit S2 pool:

LP

S1 C
c

S2

Wait. Wait for a condition to become true. The wait construct assumes that there is
something outside the system which can effect the state. This construction is
normally used to wait for the user to enter input before attempting to read it in. The
need for this construct is explained later in this section. wait c tiaw is illustrated:

W
c

A statechart must not attempt to force an operation to occur when its pre-condition
is not satisfied. Any labels on the statechart (e.g. ‘c’ above) must be defined in terms of
the data types in the state. It is often convenient to use these labels in the pre-condition
of the corresponding operations.

Logon example

Basic logon

This example involves a user attempting to logon to a computer system. The user can
type ahead but the input queue is restricted and if he exceeds the queue length his input is
discarded. If the entered user name is invalid a message is printed. The logon terminates
when the user enters a valid name.
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User interface statechart

LOGON

UGET
UPW

UPR W
input

URD

MSG

C
valid
input

LOGON = loop UGET if valid input exit MSG pool
UGET = UPW ; UREAD
UPW = UPRMT ; wait input tiaw

User statechart

USER
INPT C

tr

USER = loop INPT pool

State

State :: uprompt : String prompt for user name (cn)
invmsg : String invalid message (cn)
users : Word-set valid users (cn)
qlen : 1 maximum input queue length (cn)
input : String input queue
curuser : Word current user name
screen : Text output to screen
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Text String

String Word

Word Letter

Char Letter Space

Invariant

len input qlen

Statechart label definitions

valid input curuser users
input input
tr true

Operations

Set the initial values of the state. Note that the constant (cn) portion of the state is
dependent on the system and the values given below illustrate one possible choice:

INIT
ext cn uprompt invmsg users qlen
wr input curuser screen

post uprompt Login: invmsg Invalid, login
users Tom, Dick, Harriet qlen 50 input
curuser ‘’ screen

The prompt is displayed on the screen:

UPRMT
ext cn uprompt
wr screen

post screen addstr screen uprompt



306 12 Formally Describing Interactive Systems

The user can enter a word at any time. The word is displayed and, provided the input
queue is not full, added to the input queue:

INPT
ext cn qlen
wr input screen

post w Word
input if len input qlen

then input w
else input

screen addstr screen w

If there is input it is moved to the current user field:

UREAD
ext wr input curuser
pre input
post curuser hd input input tl input

If the user name entered is invalid a message is printed:

MSG
ext cn invmsg users
rd curuser
wr screen

pre valid input
post screen addstr screen invmsg

Function

Add a string to some text:

addstr :Text String Text
addstr t s t s

Quoting operation example

If the screen in the preceding example may be optionally cleared whenever a new string
is added, then the addstr function would no longer be adequate. Instead, a DISP opera-
tion could be defined as follows.
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Display information on the screen. The screen may be cleared first:

DISP S:String
ext wr screen
post screen screen s s

The operations using addstr would be redefined to quote DISP. For example, the prompt
is displayed on the screen:

UPRMT
ext cn uprompt
wr screen

post post-DISP uprompt screen screen

Splitting the formal description

When splitting the description into levels, statecharts seem suited only to the outmost
level, with pre- and post-conditions for the second level and, if necessary, functions
giving even more detail. In splitting the formal description between the top two layers
the major consideration is how the flow of control can best be illustrated. If the user
interface wants to display a prompt and then read in a value entered by the user the
interface must PRMT then READ. However, if the interface must store a value (for future
use) and display a message, then STORE and DISP is more appropriate as the order is
immaterial.

In the former case, PRMT then READ, it is best to use a statechart:

P&R

PR RD

However, for STORE and DISP a single operation is appropriate. Store and display the
input:

STORE & DISP
ext rd input message
wr save disp

pre input nil
post save input disp disp message

Applying this type of reasoning allows each notation to be employed when it is most
suitable.
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Discussion of wait

The LOGON example shows the user and user interface as separate processes (each has
its own statechart) while the application is tied in with the user interface. This repre-
sentation is chosen since it is realistic. The user interface can control the application
program but it is not always possible or desirable for the user interface to control the
user. Neither is it plausible for the user to have complete control over the user interface.

The wait construct described is a tie between the user and interface:

W
input

It is employed when it is necessary for the user interface to wait for input. This construct
was chosen as it indicates that there may be a time delay, and because it keeps the user
and interface as independent as possible.

Other representations exist. For example, since INPT is the only operation which can
make ‘input’ true, another statechart is:

WI
input
C INPT

However, this statechart obscures any time delay that may occur, and there is no clear
indication that the INPT operation may also occur at any other time.

12.4 Example

The LOGON example of Section 12.3 can quite easily be extended.

Add password

The user must enter a password after entering his user name. The password is not dis-
played on the screen, and any input entered before the password prompt appears is dis-
carded. The interface statechart is updated. The user’s statechart does not change. users
becomes a map. pprompt, echo and curpswd are added to the state, and the definition
of ‘valid input’ changes. The operations INIT and MSG are updated, and PPRMT and
PREAD are added.
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Statechart

LOGON

C
valid
input

MSG

GET
PGET

PPW

PPR W
input

PRD

UGET
UPW

UPR W
input

URD

State

State :: uprompt : String
pprompt : String prompt for password (cn)
invmsg : String
users : Word m Word valid user/passwords (cn)
qlen : 1
input : String
echo : echo flag
curuser : Word
curpswd : Word current password
screen : Text

Invariant

len input qlen

Statechart label

valid input curuser dom users curpswd users curuser
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Operations

Set the initial values of the state. Note that the constant (cn) portion of the state is
dependent on the system and the values given below illustrate one possible choice:

INIT
ext cn uprompt pprompt invmsg users qlen
wr input echo curuser curpswd screen

post uprompt Login: pprompt Password:
invmsg Invalid, login., Try, again.
users Tom se3cx Dick fred Harriet hello
qlen 50 input echo curuser ‘’
curpswd ‘’ screen

The password prompt is displayed on the screen, input is flushed, and echoing is turned
off:

PPRMT
ext cn pprompt
wr input echo screen

post echo input screen addstr screen pprompt

If there is input it is moved to the current password field and echoing is turned on:

PREAD
ext wr input echo curpswd
pre input
post echo curpswd hd input input tl input

If the user name and/or password entered are invalid a message is printed:

MSG
ext cn invmsg users
rd curuser curpswd
wr screen

pre valid input
post screen addstr screen invmsg

Add limit

The user has only a certain number of tries to login. Once this limit is exceeded the
keyboard is locked for a certain length of time. The interface statechart is updated. A
clock which ticks continuously is introduced. This is another process illustrated by the
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CLOCK statechart. The user’s statechart does not change. trylimit, locktime, trynum,
and time are added to the state. The definitions of ‘limit’ and ‘unlock’ are given. The
operations INIT and MSG change, while LOCK and TICK are added.

Interface statechart

LOGON

C
limit

LKW

LCK W
unlock

TRY

C (valid
input
limit)

MSG

GET
PGET

PPW

PPR W
input

PRD

UGET
UPW

UPR W
input

URD

Clock statechart

CLOCK

TICK C
tr
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State

State :: uprompt : String
pprompt : String
invmsg : String
users : Word m Word
echo :
trylimit : 1 maximum number of tries (cn)
locktime : 1 length of time of keyboard lock (cn)
qlen : 1
input : String
curuser : Word
curpswd : Word
screen : Text
trynum : 1 number of tries
time : time since last reset

Statechart labels

limit trynum trylimit
unlock time locktime

Operations

Set the initial values of the state. Again, the constant (cn) portion of the state is dependent
on the system and the values given below are just an example:

INIT
ext cn uprompt pprompt invmsg users trylimit locktime qlen
wr input echo curuser curpswd screen trynum time

post uprompt Login: pprompt Password:
invmsg Invalid,login.,Try,again.
users Tom se3cx Dick fred Harriet hello
trylimit 5 locktime 1800 qlen 50 input echo
curuser ‘’ curpswd ‘’ screen trynum 1 time 0
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If the user name and/or password entered are invalid a message is printed:

MSG
ext cn invmsg users
rd curuser curpswd
wr screen trynum

pre valid input limit

post screen addstr screen invmsg trynum trynum 1

Reset the time to indicate the beginning of keyboard lock, and reset the try number:

LOCK
ext cn trylimit
wr trynum time

pre limit
post trynum 1 time 0

Clock ticks continuously:

TICK
ext wr time
post time time 1

Add timeout

If the user pauses too long between typing his user name and password he must re-enter
his user name. The interface statechart changes accordingly. It is illustrated in two parts
to make it easier to read. The user and clock statecharts do not change. timelimit is
added to the state. The definition of ‘timeout’ is given. The operations INIT and PPRMT
change.

Statecharts

LOGON

C limit

LKW

LCK W
unlock

TRY

C (valid
input
limit)

MSG

GET
(below)
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GET

PRD

UPGET

C

input

UPPW
PPW

PPR W
timeout
input

UGET
UPW

UPR W
input

URD

State

State :: uprompt : String
pprompt : String
invmsg : String
users : Word m Word
echo :
trylimit : 1
timelimit : 1 time limit for entering password (cn)
locktime : 1
qlen : 1
input : String
curuser : Word
curpswd : Word
screen : Text
trynum : 1
time :

Statechart label

timeout time timelimit
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Operations

Set the initial values of the state. Again, the constant (cn) portion of the state is dependent
on the system and the values given below are just an example:

INIT
ext cn uprompt pprompt invmsg users trylimit timelimit locktime qlen
wr input echo curuser curpswd screen trynum time

post uprompt Login: pprompt Password:
invmsg Invalid,login.,Try,again.
users Tom se3cx Dick fred Harriet hello
trylimit 5 timelimit 30 locktime 1800 qlen 50
input echo curuser ‘’ curpswd ‘’
screen trynum 1 time 0

The password prompt is displayed on the screen, the time reset, input flushed, and echo-
ing turned off:

PPRMT
ext cn pprompt
wr input echo screen time

post echo input screen addstr screen pprompt time 0

12.5 Semantics

Definitions

Let S be a set and R be a relation. Then:

S R s s R s S S R s s R s S
R S s s R s S R S s s R s S
R2 R;R R i 0Ri
R i 0Ri I R I s s s %
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Semantic model

The underlying semantic model of the formal description notation assumes a global state,
%. The semantics of a description are given by a function defining the termination set:

T : Desc P %

giving all states in which the given description can be sensibly applied, and by a
function describing the meaning relation:

M : Desc P % %

giving pairs of initial and final states related to each other by the description. For a
description to be implementable it is necessary that:

(1) TS domM S

Note that T I % andM I I .
The termination and meaning functions can also be applied to expressions:

T : Expr P %

gives all states in which the given expression can be evaluated.

M : Expr %

gives the value of the expression in the states for which it is defined. Again it is
necessary that:

T e domM e

Let c be a boolean expression. Then we can define:

C dom T c M c true
C dom T c M c true

C % C

For the description to be implementable it must be the case that:

C C

For the operations described by pre- and post-conditions, any state allowed by the pre-
condition should be described in the post-condition:

op description # % pre-op # # % post-op # #
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To allow for systematic program development from the description a method of reifying
the description is needed. A reification, S , of a description, S , is said to satisfy the
description provided:

(2) S sat S
i.e. T S T S
(S terminates whenever S does)

and T S M S M S
(over the termination set of S the meaning of S is contained in the meaning of S)

So if we claim to have found the meaning relation and termination set for a statechart
construct we need to show that:

(I) T cons domM cons
(II) cons sat cons

provided these two clauses are true for each statechart within the construct.
The following sections present the termination sets and meaning relations for the

statechart constructs.

Concatenation

S

S1 S2

Written:

S1;S2

Claim:

The meaning relation and termination set for concatenation are:

M S1;S2 M S1 ;M S2
T S1;S2 T S1 dom M S1 T S2
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Have:

Here the substatecharts are S1 and S2, so we assume that (1) and (2) are true
for these two statecharts:

A. T S1 domM S1 and
B. T S2 domM S2 by (1)

S1 sat S1 by (2) i.e.:
C. T S1 T S1 and
D. T S1 M S1 M S1

S2 sat S2 by (2) i.e.:
E. T S2 T S2 and
F. T S2 M S2 M S2

Prove:

Now we can prove (I) and (II) by proving 1., 2., and 3.:

(I) T S1;S2 domM S1;S2 or:
1 T S1 dom M S1 T S2 dom M S1 ;M S2
(II) S1;S2 sat S1;S2 i.e.:

T S1;S2 T S1;S2 and T S1;S2 M S1;S2 M S1;S2 or:
2 T S1 dom M S1 T S2 T S1 dom M S1 T S2 and
3 T S1 dom M S1 T S2 M S1 ;M S2 M S1 ;M S2

Note 1:

Proving this here will simplify proof 1.

T S1 dom M S1 T S2 dom T S1 M S1 T S2
Intuitively, the set of initial states for which S1;S2 always terminates is con-
tained in the set of initial states for which S1;S2 could terminate:

Note 1 proof:

T S1 dom M S1 T S2
a T S1 dom T S1 M S1 T S2 by defn.
b dom T S1 M S1 dom T S1 M S1 T S2 by A
c dom T S1 M S1 T S1 M S1 T S2 by defn. dom
d dom T S1 M S1 T S2 by defn.
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Proof 1:

T S1 dom M S1 T S2 dom M S1 ;M S2 :

T S1 dom M S1 T S2
a dom T S1 M S1 T S2 by Note 1.
b dom M S1 T S2 by defn.
c dom M S1 domM S2 by B
d dom M S1 ;M S2 by defn.

Proof 2:

T S1 dom M S1 T S2 T S1 dom M S1 T S2 :

T S1 dom M S1 T S2
a T S1 dom M S1 T S2 by defn. and D
b T S1 dom M S1 T S2 by defn. and E
c T S1 dom M S1 T S2 by C

Proof 3:

T S1 dom M S1 T S2 M S1 ;M S2 M S1 ;M S2 :

T S1 dom M S1 T S2 M S1 ;M S2
a T S1 dom M S1 T S2 T S1 M S1 ;M S2

by defn.
b T S1 dom M S1 T S2 M S1 ;M S2 by D
c T S1 dom M S1 T S2 M S1 T S2 ;M S2

by defn.
d T S1 dom M S1 T S2 M S1 ;T S2 M S2

by defn.
e T S1 dom M S1 T S2 M S1 ;M S2 by F
f M S1 ;M S2 by defn.
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If

IF

C
c1 c2 ... cn

S1 S2 Sn

Written:

IF if c1 then S1;c2 then S2; ;cn then Sn fi
IF if c1 then S1;c2 then S2; ;cn then Sn fi

Claim:

M IF Ci M Si Ci I
T IF Ci T Si T ci

Have:

A T Si domM Si
Si sat Si i.e.:
B T Si T Si and
C T Si M Si M Si

Prove:

(I) T IF domM IF or:
1 Ci T Si T ci dom Ci M Si Ci I
(II) IF sat IF i.e.:

T IF T IF and T IF M IF M IF or:
2 Ci T Si T ci Ci T Si T ci and
3 Ci T Si T ci Ci M Si Ci I

Ci M Si Ci I
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Note 2:

Ci T Si T ci Ci T Si Ci

Intuitively, the set of states in which all the conditions can be evaluated and
the branches corresponding to all true conditions terminate is contained in
the set of states in which some true branch will terminate or no condition is
true.

Note 2 proof:

Ci T Si T ci

a Ci T Si by defn.
b % Ci T Si by defn.
c % Ci Ci T Si by defn.
d % Ci Ci T Si by defn.
e Ci T Si Ci by defn.
f Ci T Si Ci by defn.

Proof 1:

Ci T Si T ci dom Ci M Si Ci I :

Ci T Si T ci
a Ci T Si Ci by Note 2.
b Ci domM Si Ci by A
c domCi M Si Ci by defn. dom
d domCi M Si domCi I by defn. dom
e dom Ci M Si Ci I by defn. dom

Proof 2:

Ci T Si T ci Ci T Si T ci :

Ci T Si T ci
Ci T Si T ci by defn. and B
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Proof 3:

Ci T Si T ci Ci M Si Ci I
Ci M Si Ci I :

Ci T Si T ci Ci M Si Ci I

a Ci T Si Ci Ci M Si Ci I by Note 2.

b Ci T Si Ci M Si Ci Ci I
by defn.

c Ci M Si Ci Ci I by C
d Ci M Si Ci I by defn.

While

WH

S

C c

Written:

WH while c do S
WH while c do S

Claim:

M WH fix "r C I C M S ;r

T WH fix "s C C T S dom M S s

Note that T WH is not --continuous. Also, C is total (i.e. C % C
C̄).

Have:

A T S domM S
S sat S i.e.:
B T S T S and
C T S M S M S
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Prove:

(I) & 1 T WH domM WH
(II) WH sat WH i.e.:

T WH T WH or

2 fix "s C C T S dom M S s

fix "s C C T S dom M S s and

3 T WH M WH M WH

Proof 1:

T WH domM WH :

Let: F s C dom C M S s
then: F C
and: F n 1 F F n C dom C M S F n

Let: G r C I C M S ;r
then: G C I
and: Gn 1 G Gn C I C M S ;Gn

Claim: n 0F n dom n 0Gn

To prove this we will use induction:
Show: F n domGn n 0
By induction on n:
Case n 0: F 0 domG0

Case n 1: F C dom C I domG
Assume true for n and prove for n 1:
F n domGn and Prove: F n 1 domGn 1

F n 1 C dom C M S F n

a C dom C M S domGn by induction hypothesis.
b C dom C M S ;Gn by defn. dom
c dom C I C M S ;Gn by defn. dom
d domGn 1

So: F n domGn n 0
thus: n 0F n dom n 0Gn
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Now: T WH

a fix "s C C T S dom M S s

b fix "s C dom C T S M S s by Note 1.

c fix "s C dom C M S s by defn. A
d n 0F n by defn. fix
e dom n 0Gn by Claim.
f domM WH by defn. fix

Proof 2:

fix "s C C T S dom M S s

fix "s C C T S dom M S s :

fix "s C C T S dom M S s

a fix "s C C T S dom M S s by C

b fix "s C C T S dom M S s by B

Proof 3:

T WH M WH M WH :

Now: T WH fix "s C C T S dom M S s

C T S by defn. fix
and: C C by assumption.
So: T WH C I C M S ;r

T WH C I C M S ;r by C.
And: T WH M WH T WH M WH by defn. fix M
Thus: T WH M WH M WH by A
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Loop

LP

S1 C
c

S2

Written:

LP loop S1 if c exit S2 pool
LP loop S1 if c exit S2 pool

Define:

Here is the definition of LP in terms of concatenation and while:

LP S1; while c do S2;S1
LP S1; while c do S2;S1

Have:

The meaning relation and the termination set for loop are determined from
those for concatenation and while.

M LP M S1 ;fix "r C I C M S2 ;M S1 ;r :

M LP
a M S1; while c do S2;S1 by defn. above.
b M S1 ;M while c do S2;S1 by defn.M S1;S2
c M S1 ;fix "r C I C M S2;S1 ;r by defn.M WH

d M S1 ;fix "r C I C M S2 ;M S1 ;r by defn.M S1;S2
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T LP T S1 dom M S1 fix "s C

C T S2 dom M S2 T S1 M S2 ;M S1 s :

T LP
a T S1; while c do S2;S1 by defn. above.
b T S1 dom M S1 T while c do S2;S1 by defn. T S1;S2
c T S1 dom M S1 fix "s C

C T S2;S1 dom M S2;S1 s by defn. T WH

d T S1 dom M S1 fix "s C

C T S2 dom M S2 T S1 dom M S2 ;M S1 s

by defn. T S1;S2 M S1;S2
e T S1 dom M S1 fix "s C

C T S2 dom M S2 T S1 dom M S2 ;M S1 s
by defn.

f T S1 dom M S1 fix R"s C

C T S2 dom M S2 T S1 dom M S2 ;M S1 s
by defn.

g T S1 dom M S1 fix "s C

C T S2 dom M S2 T S1 M S2 ;M S1 s

by defn. dom

Now:

Since we have already completed the necessary proofs:

1 T LP domM LP and
2 LP sat LP

follow from the proofs for concatenation and while.
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Wait

W
c

Written:

WT wait c tiaw

We assume that C is total and that there is a unique user action, U, which
will make C become true. We also assume that the user eventually performs
U.

Define:

Based on the assumption we can define WT in terms of if:

WT if c then U fi
WT if c then U fi

Have:

M WT C M U C I :

M WT
a M if c then U fi by defn. above.
b C M U C I by defn.M IF

T WT C T U :

T WT
a T if c then U fi by defn. above.
b C T U T C by defn. T IF
c C T U by defn. c
d C C T U by defn.
e C T U by defn.

Now:

1 T WT domM WT and
2 WT sat WT
follow from the proofs for if.
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Proof rules

P S R

means: if # P and S is performed on # then S will terminate, and if the resulting
state is # then # # R.
Alternatively this can be read as:

If the predicate P is true then S will terminate and when S terminates the
predicate R will be true. i.e. S satisfies P R .

This can also be written:

S sat P R

Note that, although the same notation is used to represent both the predicate and the set
of values which satisfy the predicate, no confusion should arise.
P S R can be taken to mean:

P T S P M S R

If a further condition is placed on the final state as in P S R P there is then an
additional requirement:

rng P M S P or: P M S P M S P

The following sections give the proof rules for the statechart constructs.

Concatenation rule

Claim:

Here we claim that if the first two clauses are true then the third is also true:

P1 S1 R1 P2 ; P2 S2 R2 P1 S1;S2 R1;R2

Have:

Here the first two clauses are expanded using the definitions above:

P1 S1 R1 P2 a P1 T S1 b P1 M S1 R1
c P1 M S1 P1 M S1 P2

P2 S2 R2 d P2 T S2 e P2 M S2 R2
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Show:

The third clause is expanded showing the two parts we must prove:

P1 S1;S2 R1;R2 P1 T S1;S2 P1 M S1;S2 R1;R2
1 P1 T S1 dom M S1 T S2
2 P1 M S1 ;M S2 R1;R2

Proofs:

1 P1 T S1 dom M S1 T S2 :

Now:M S1 T S2
a M S1 P2 by (d).
b P1 M S1 P2 by defn.
c P1 M S1 P2 P2 by (c).
d by defn.
So: T S1 T S1 dom M S1 T S2
Thus: P1 T S1 dom M S1 T S2 by (a).

2 P1 M S1 ;M S2 R1;R2 :

P1 M S1 ;M S2
a R1 P2;M S2 by (b).
b R1;P2 M S2 by defn. ;
c R1;R2 by (e).

If rule

Claim:

P Ci Si R ; P i Ci I R ; P T ci P if ci then Si fi R

Have:

P Ci Si R a P Ci T Si b P Ci M Si R
P i Ci I R c P Ci M I R
d P T ci

Show:

P if ci then Si fi R P T IF P M IF R
1 P Ci T Si T ci
2 P Ci M Si Ci I R
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Proofs:

1 P Ci T Si T ci :

Now: Ci T Si
a Ci P Ci by (a).
b Ci P by defn.
c P by defn.
So: P Ci T Si by defn.
Now: P T ci by d
Thus: P Ci T Si T ci

2 P Ci M Si Ci I R :

P Ci M Si Ci I
a P Ci M Si P Ci I by defn.
b P Ci M Si P Ci I by defn.
c P Ci M Si P Ci I by defn.
d R P Ci I by (b).
e R R by (c).
f R by defn.

While rule

Claim:

P C S R P ; R transitive and well-founded
P while c do S R P C

Have:

P C S R P a P C T S b P C M S R
c P C M S P C M S P

R transitive d R;R R
R well-founded no infinite chains.

This allows a special type of induction (see (1). below).

Show:

P while c do S R P C 1 P T WH
2 P M WH R 3 P M WH P M WH P C
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Proofs:

1 P T WH

By induction on R (well-founded and transitive).
Prove:
A P domR T WH
B R R T WH

P domR C C T S dom M S T WH

A P domR T WH :
Note: P domR C
Proof:
P domR C
a P C domR by defn.
b dom P C M S domR by a
c domR domR by b
d by defn.
So: P domR C since C total.

T WH by defn. T WH
as desired.

B Assume: R R T WH
Prove: P domR C C T S dom M S T WH
Case B(i) Assume: C % C :
P domR
a P domR C by assumption.
b C d̀efn.
c C C T S dom M S T WH by defn.
as desired.
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Case B(ii) Assume: C :
Claim 1: P domR C T S :
P domR C
a P C by defn.
b T S by (a).

Claim 2: dom T S M S T WH :
Have: P C M S R by b
and: R R T WH by assumption.
Thus: P C M S P C M S T WH by defn.
and: T S M S T S M S T WH by Claim 1.
or: T S M S T WH by defn.
Therefore: dom T S M S T WH by defn. dom

P domR C
a T S by Claim 1.
b C T S by defn.
c C T S dom T S M S T WH by Claim 2.
d C T S dom M S T WH by defn.
e C C T S dom M S T WH by defn.
as desired.

2 P fix "r C I C M S ;r R :

Proof by Scott induction on r sinceM is continuous.
Assume: P r R
Prove:
A P R
B P C I C M S ;r R

A P R :
P R
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B P C I C M S ;r R :
P C I C M S ;r
a P C I P C M S ;r by defn.
b P C I P C M S ;r by defn.
c P C I P C M S ;r by defn.
d I P C M S ;r by defn.
e I R P;r by (b).
f I R;P r by defn. ;
g I R;R by assumption.
h I R by defn. R
i R by defn. R
as desired.

3 P M WH P M WH P C :

Proof by Scott induction on r sinceM is continuous.
Assume: P r P r P C
Prove:
A P P P C
B P C I C M S ;r

P C I C M S ;r P C

A P P P C :
P P P C
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B P C I C M S ;r
P C I C M S ;r P C :

P C I C M S ;r
a P C I P C M S ;r by defn.
b P C I P C M S ;r by defn.
c P C I P C M S ;r by defn.
d P C I P C P C M S ;r by defn. I
e P C I P C P C M S P;r by c
f P C I P C P C M S ;P r by defn. ;
g P C I P C P C M S ;P r P C

by assumption.
h P C I P C M S ;P r P C by defn.
i P C I P C M S ;P r P C by defn.
j P C I C M S ;P r P C by defn.
k P C I C M S ;r P C by c
as desired.

Loop rule

Claim:

P1 S1 R1 P2 ; P2 C S2 R2 P1 ;
R2;R1 transitive and well founded

P1 loop S1 if c exit S2 pool R1; R2;R1 P2 C

Proof:

P1 S1 R1 P2 ; P2 C S2 R2 P1
a P1 S1 R1 P2 ; P2 C S2;S1 R2;R1 P2

by concatenation rule.
b P1 S1 R1 P2 ; P2 while c do S2;S1 R2;R1 P2 C

by while rule.
c P1 S1; while c do S2;S1 R1; R2;R1 P2 C

by concatenation rule.
d P1 loop S1 if c exit S2 pool R1; R2;R1 P2 C by defn. loop.

Wait rule

Claim:

P C I R C ; P C U R C ; T c % P wait c tiaw R C
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Proof:

P C I R C ; P C U R C ; T c %
a P C I R C ; P C U R C ; P T c by defn. %
b P if c then U fi R C by if rule.
c P wait c tiaw R C by defn. wait.

12.6 Proofs

A major advantage of the use of a formal technique for describing the user interface, as
opposed to an informal design method, is that properties of the interface can be formally
stated and proved. It is difficult to design and assess experiments to evaluate an interface,
though some researchers suggest or attempt this [BK82, Pen82, Rei83, SR82]. Other
researchers have attempted proofs using a formal description method [And85, Fol81,
Jac84, Rei82], but little work has been done in this area, mainly due to the problems in
formally representing general user interface properties.

This chapter presents a few examples of proofs that can be carried out using the
suggested formal description method.

Simple properties of the interface

While exactly what comprises a ‘good’ user interface is unknown, there are many simple
properties that a designer might want to look for in his formal description. Due to the
nature of the description method, many simple properties which could be hidden in other
methods and require a complicated proof become quite obvious here. Many properties of
the example of Section 12.4 are apparent from the formal description. These properties
include such things as:
1. The user is always prompted for input.

2. However, the user can type ahead.

3. An error message is printed if and only if invalid input is encountered.

4. The user must give a valid user name and password to successfully login.
A quick glance at the statechart and operation pre- and post-conditions will show

the validity of claims such as these. The fact that many of these properties are very easy
to check indicates that this method is wellsuited to the description of user interfaces.

Other properties of the interface

There are many other, more complicated, properties that a designer may want to look for
in an interface. The following are examples.
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Queue length proof

A designer may want to ensure that the input queue will never overflow the space allo-
cated to it. Here is a proof that the input queue in the LOGON example of Section 12.3
never exceeds qlen.
Show len inq qlen
Now: qlen 1 so 1 qlen

Initially inq so len inq 0 1 qlen
Only the user can add things to the input queue; this is done using the operation INPT.
Now the pre-condition of INPT requires that len inq qlen. The post-condition of INPT
contains:
w Word inq inq w
so len inq

a len inq len w
b len inq 1
c qlen 1
d qlen as required.

Termination

Logon termination

In the verification of application programs many proofs are concerned with the success-
ful termination of looping constructs. In a secure user interface, part of the interface may
be concerned with preventing unauthorized users from completing the logon procedure.

The LOGON example presented in Section 12.3 is an example of a case where a user
may never successfully complete the logon task, and thus the logon ‘loop’ will never
terminate.

However, it is interesting to note that under certain restrictions it is possible to prove
that the user will eventually enter a valid user name. The conditions require that there
is some measure of the user, such as his knowledge, which will increase each time an
error message is presented. Provided that there is a limit to how knowledgeable the user
can become, he must eventually enter a correct user name (otherwise he would become
infinitely knowledgeable). While this may not be a very realistic example, it illustrates
a type of proof that may be carried out.

Loop proof

Section 12.4 contains an extension to the original LOGON example in which the user
has only a given number of tries before the keyboard is locked for a period of time. In
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this case it is possible to prove that if a user attempts to logon either he will success-
fully logon or the keyboard will eventually be locked, i.e., the TRY statechart always
terminates.

From the VDM presented it is easy to see that:
true UPRMT true and input UREAD true

From the definition of wait, and the existence of the INPT operation:
true wait input tiaw input

Now: UPW UPRMT ; wait input tiaw
So: true UPW input by the concatenation rule.

Also: UGET UPW ; UREAD
So: true UGET true by the concatenation rule.

Similarly: true PGET true

Now: GET UGET ; PGET
And: true GET true by the concatenation rule.

From the VDM:
valid input limit MSG trynum trynum trylimit

and trynum trynum trylimit is transitive and well-founded.

Applying the while rule to GET and MSG gives:
true loop GET if valid input limit exit MSG pool

trynum trynum trylimit valid input limit

Now: TRY loop GET if valid input limit exit MSG pool
And: limit trynum trylimit
So: true TRY trynum trynum trylimit valid input trynum trylimit
Or: true TRY trynum trylimit valid input trynum trylimit

Thus TRY always terminates. From the proof it is easy to see that when TRY termi-
nates, either the user has entered valid input before exceeding the permitted number of
attempts, or he has exceeded the limit.
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12.7 Conclusions

Formal description and user interface design are both new and rapidly changing fields
in which there is much ongoing research. This study aims to show how formal de-
scription methods can be used to aid in user interface design. It is argued that it is not
currently feasible to formally describe the set of properties that any user interface should
have. User interface research has not yet reached a stage where this approach is fruit-
ful. Also, it is not often possible to define the user interface totally independently of the
other components of the interactive system. Usually the user interface designer wants to
take advantage of various characteristics peculiar to the particular interactive system for
which the user interface is intended. Thus a formal technique has been developed for the
description of interactive systems with emphasis on the user interface.

The proposed method is a new hybrid formal notation which combines statecharts
with pre- and post-conditions. A statechart outlines the flow of control between the
operations within the system, and each operation is described using pre- and post-
conditions. This formal description technique meets the criteria outlined at the beginning
of Section 12.3. It deals with those parts of a system which are crucial in an interactive
environment: error handling, help information, and interrupts. It emphasizes the top
level flow of control and describes the system in levels. (The method does not dictate a
level of abstraction, and ground rules for suitable levels are a subject for research.) Each
operation is described separately in a modular fashion. The notation used is concise and
abstract, yet easy to understand. The technique is also mathematically sound, enabling
it to be used to prove various properties of the interactive system.

Since this method has only been applied to a few examples, exploration of further
examples is needed. Perhaps timing considerations could be added to allow for the
description of concepts such as response time. More research is also needed to perfect
and possibly extend the suggested formal description technique to deal with all possible
interfaces and interface styles.



13

Line Representations on Graphics
Devices

Lynn S. Marshall

This chapter contains an unusual specification. The task is to describe the
output which is required on a raster graphics device when lines are to be pro-
jected. As the author relates, the starting point was an informal specification
which represented nothing more precise than wishful thinking. An interest-
ing aspect of the specification is the need to underspecify the result because of
the range of devices which have to be covered. The chapter contains both the
specification and a discussion of implementations. These latter are justified
(with respect to the specification) at a level closer to normal mathematical
reasoning (rather than the formal proofs of steps of reification).

339
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13.1 Introduction

Formal description is a useful tool in many areas of computer science since it allows the
aims of a computer system to be clearly and unambiguously expressed and statements
concerning the system to be formally proven. The formal description of computer graph-
ics systems is in its infancy. Research in this field has been pioneered by Carson [Car74],
Gnatz [Gna], and Mallgren [Mal83] and is of great potential help.

Graphical data are usually in the form of images composed of various drawing prim-
itives such as points, lines and text. Most graphical devices are unable to represent draw-
ing primitives exactly and thus must produce an approximation to the ideal. This makes
the use of conventional program verification tools, such as a test driver, very difficult.
The Graphical Kernel System (GKS) is the new international standard for twodimen-
sional interactive computer graphics (ISO 7942). Work in designing test suites for GKS
implementations is certainly not straightforward, and work on a formal description of
GKS is under way [DFM84, DFM88, Mar84b, Rug88].

A formal description of the approximation to an image that a given computer graph-
ics device should display will be useful in proving that the various devices in a com-
puter graphics system function correctly. The idea of specifying what comprises a valid
approximation to some ideal picture on a given graphics device has been deliberately
ignored in previous research in the formal description of graphics. Mallgren [Mal83]
says, ‘The display system is assumed to provide a recognizable approximation to this
representative picture.’, while Carson [Car74] admits, ‘Of course, someone must even-
tually describe how a line should look but we could treat this as a binding issue, not a
specification issue.’ However, it seems meaningless to maintain that a graphics program
is functioning correctly unless it produces recognizable output. Carson [Car74] notes
the following:

At one extreme, nothing at all is said about the actual effects on a display
surface when an output primitive is drawn. This would enable any vendor
to claim that almost any implementation conformed to the standard, since
it would be impossible to test implementations. At the other extreme, the
specification could completely describe the effects of output primitives

in terms of parameters such as addressability, color, hardware, text fonts,
etc. that apply to typical display devices. Unfortunately, any parameter
set considered by the specifiers places unfair restrictions on manufacturers
of certain classes of display devices. Furthermore, fixed parameters would
inhibit the degree of technological flexibility available to implementors.

Thus, it is necessary to devise a formal description that will permit the display of any
one of a range of approximation to a picture thus allowing any reasonable output, but
only reasonable output.
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Section 13.2 of this chapter discusses graphics devices and their capabilities, and
Section 13.3 describes line and their attributes. In Section 13.4 a formal description of
thin solid lines is given, while Section 13.5 describes various line drawing algorithms,
and Section 13.6 is a proof that Bresenham’s line drawing algorithm satisfies this de-
scription. Section 13.7 suggests some extensions and Section 13.8 gives an extended
formal description for thick solid lines. A proof that a sample thick line drawing al-
gorithm satisfies the formal description is presented in Section 13.9, and a discussion
of ideas for further research and conclusions follow in Sections 13.10 and 13.11. The
appendix, shows a sample line plotted by various line drawing algorithms. Further ref-
erences can be found in [Mar84a, Mar85].

13.2 Graphics devices

The two major graphical display device types are the vector device and the raster device.
A picture on a vector device is composed of straight line segments, while on a raster
device the picture is made up of picture elements, or pixels, at fixed positions. Vector
drawing displays and pen plotters are examples of vector devices. Raster devices include
raster displays, laser printers, and electrostatic plotters. The graphics device model to be
used initially is that of a raster device since drawing lines on vector devices is simpler.

A graphics device displays images in a number of colors. It may be capable of
depicting thousands of colors, a range from black to white, or possibly just two colors
(binary). For simplicity the initial model of a raster device is limited to two colors: a
background color (OFF) and a foreground color (ON). The display surface is composed
of pixels, each one unit square with its centre having integer coordinates. Each pixel on
the screen of the device may be either ON or OFF, and the pixels approximating the line
are those to which the foreground color is assigned.

13.3 Lines

A straight line to be displayed on a graphical device usually has a number of associated
parameters. It must have a startpoint, an endpoint, a width, a line-type, and a color. The
line can be any length, have any slope, be thick or thin, solid or broken, and can be drawn
in any available color. Since the pixels of the raster device lie in a grid formation, the
device must produce an approximation to the line to be displayed. Thus, the represen-
tation of a line on a raster device is nontrivial. The initial description defines thin solid
lines having integral endpoints.
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13.4 Straight solid thin lines with integral endpoints on a two-
color raster device

What properties should the approximation to a line on a raster device have? As stated
earlier, the properties given should be specific enough to allow only reasonable approx-
imations but general enough to allow any reasonable approximation. Thus it is inap-
propriate to specify an exact algorithm since a range of approximations is permitted.
Neither is it appropriate for the representation to be entirely implementation-dependent
as the role of the formal description is to limit the implementor.

Properties

The following are some intuitive ideas concerning the approximation to a straight line
on a raster device:

1. If a pixel is ON it must be ‘close’ to the line (i.e. no pixel that is very far from the
line should be ON).

2. If a pixel is ‘very close’ to the line it must be ON (i.e. no pixel that is very close to
the line should be OFF).

3. If two pixels are in the same row or column, on the same side of the line, and the
further of the two from the line is ON then the closer of the two must also be ON.

4. The pixels which are ON form a connected region with no holes or bends.

Formal description

Data types

A line on the screen with integral endpoints:

Line :: P1 : Pixel
P2 : Pixel

inv mk-Line p1 p2 p1 p2

A pixel on the screen:

Pixel :: X : x
Y : y

x: where integral x-range of screen
y: where integral y-range of screen
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The set of pixels turned on when approximating a line:

Pixel set:Pixel-set

A line 2 :

Realline :: P1 : Point
P2 : Point

inv mk-Realline p1 p2 p1 p2

A point 2 :

Point :: X :
Y :

where:

: reals
: reals 0 2 : Cartesian plane
0 1 : reals 0 1 0 1 : reals 0 1
: integers : Booleans

Note that Pixel is treated as a subset of Point. Thus any function accepting a Point as a
parameter will also accept a Pixel (but not vice versa).

Make functions

Make functions are used to form instances of all multiple component data types, except
the form x y is always assumed to be of type Point (or Pixel).

Point functions

The following are functions defined with points as one or more of the parameters.
Addition:

p : Point Point Point
p1 p p2 X p1 X p2 Y p1 Y p2

Subtraction:

p : Point Point Point
p1 p p2 X p1 X p2 Y p1 Y p2
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Multiplication:

p : Point Point
c p p c X p c Y p

p : Point Point Point
p1 p p2 X p1 X p2 Y p1 Y p2

Less than:

p : Point Point
p1 p p2 X p1 X p2 Y p1 Y p2

Less than or equal to:

p : Point Point
p1 p p2 X p1 X p2 Y p1 Y p2

Summation:
n

+
i 1

p i : Point Point Point Point
n

+
i 1

ppi +n
i 1X pi +n

i 1Y pi

Absolute value:

p : Point Point
p p X p Y p

Line function

Equality:

l : Realline Realline
l1 l l2 P1 l1 P1 l2 P2 l1 P2 l2

P1 l1 P2 l2 P2 l1 P1 l2
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Function descriptions

Is the approximation to the given line valid and within a tolerance of !?

validapprox :Pixel set Line
validapprox pixset line !

pix pixset withintol pix line !
if a pixel in ON it is ‘close’ to the line
pix Pixel nearline pix line pix pixset
if a pixel is ‘very near’ the line it is ON

closrptson pixset line
any pixel closer to the line than a pixel that is ON is ON

validpic pixset
the pixel formation is valid

Is the pixel within the given tolerance of the line?

withintol :Pixel Line
withintol pix line ! p Point onlineseg p line maxdist pix p !

Is the point on the line segment?

onlineseg :Point Line
onlineseg p line ! 0 1 p P1 line p ! p . line

What is the difference between the endpoints of the line?

. :Line Point

. line P2 line p P1 line

What is the maximum horizontal or vertical distance between the two points?

maxdist :Point Point
maxdist p1 p2 max X p1 X p2 Y p1 Y p2

What is the maximum of the set?

max : -set
max s /a s b s a b
pre s

Is the pixel very close to the line?

nearline :Pixel Line
nearline pix line endpt pix line linethru pix line
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Is the pixel an endpoint of the line?

endpt :Pixel Line
endpt pix line pix P1 line pix P2 line

Does the line run right through the pixel?

linethru :Pixel Line
linethru pix line

p1 p2 Point onlineseg p1 line onlineseg p2 line
adjcorn p1 p2 pix
onreallineseg p1 leftbord pix onreallineseg p2 rightbord pix
onreallineseg p1 botbord pix onreallineseg p2 topbord pix

Are the two points adjacent corners of the pixel?

adjcorn :Point Point Pixel
adjcorn p1 p2 pix

let rline mk Realline p1 p2 in
rline l leftbord pix rline l rightbord pix
rline l botbord pix rline l topbord pix

What is the left border of the pixel?

leftbord :Pixel Realline
leftbord pix mk Realline pix p

1
2

1
2 pix p

1
2
1
2

What is the right border of the pixel?

rightbord :Pixel Realline
rightbord pix mk Realline pix p

1
2

1
2 pix p

1
2
1
2

What is the bottom border of the pixel?

botbord :Pixel Realline
botbord pix mk Realline pix p

1
2

1
2 pix p

1
2

1
2

What is the top border of the pixel?

topbord :Pixel Realline
topbord pix mk Realline pix p

1
2
1
2 pix p

1
2
1
2

Is the point on the given real line segment?
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onreallineseg :Point Realline
onreallineseg p rline ! 0 1 p P1 rline p ! p .r rline
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What is the difference between the endpoints of the real line?

.r :Realline Point

.r rline P2 rline p P1 rline

Are all pixels closer to the line that an ON pixel ON?

closrptson :Pixel set Line
closrptson pixset line

pix1 pix2 Pixel samexory pix1 pix2 oppsides pix1 pix2 line
closrl pix1 pix2 line pix2 pixset pix1 pixset

Are the two pixels in the same row or column?

samexory :Pixel Pixel
samexory pix1 pix2 mindist pix1 pix2 0

What is the minimum horizontal or vertical distance between the two points?

mindist :Point Point
mindist p1 p2 min X p1 X p2 Y p1 Y p2

What is the minimum of the set?

min : -set
min s /a s b s a b
pre s

Are the pixels on opposite sides of the line?

oppsides :Pixel Pixel Line
oppsides pix1 pix2 line pix1 pix2

p Point inlineseg p mk Line pix1 pix2 online p line

Is the point a nonendpoint of the line segment?

inlineseg :Point Line
inlineseg p line ! 0 1 p P1 line p ! p. line

Is the point on the line?

online :Point Line
online p line ! p P1 line p ! p. line
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Is the first pixel closer to the line than the second?

closrl :Pixel Pixel Line
closrl pix1 pix2 line

! withintol pix1 line ! withintol pix2 line !

Is the pixel formation valid?

validpic :Pixel set
validpic pixset validrows pixset validcols pixset

Are the rows of the display valid?
(i.e. do only rows in a continuous range contain ON pixels and is each of these rows
valid?)

validrows :Pixel set
validrows pixset y1 y2 y y1 y2

y y y1 y2 x x x y pixset
y y1 y2 validrow pixset y

Is this row of the display valid?
(i.e. does this row have only one continuous range of pixels ON?)

validrow :Pixel set y
validrow pixset y x1 x2 x x1 x2

x x x1 x2 x y pixset
x x1 x2 x y pixset

Are the columns of the display valid?
(i.e. do only columns in a continuous range contain ON pixels and is each of these
columns valid?)

validcols :Pixel set
validcols pixset x1 x2 x x1 x2

x x x1 x2 y y x y pixset
x x1 x2 validcol pixset x

Is this column of the display valid?
(i.e. does this column have only one continuous range of pixels ON?)

validcol :Pixel set x
validcol pixset x y1 y2 y y1 y2

y y y1 y2 x y pixset
y y1 y2 x y pixset
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13.5 Thin line drawing algorithms

If the formal description is reasonable, any of the common line drawing algorithms
should satisfy it. Also, the description should be easy to extend. An outline of a variety
of thin line drawing algorithms follows. Each of these algorithms satisfies the above
description. The pixel set for each algorithm and the appropriate tolerance is given.

Bresenham’s simple digital differential analysis (DDA) and chain code algo-
rithms

For any given line these three algorithms produce the same approximation by sampling
the line once per row or column and turning on the closest pixel to the sampled point.
Whether the line is sampled by row or by column is based on the slope of the line and
selected so that the maximum number of points will be sampled. The simple DDA algo-
rithm [NS81] is the most straightforward. Bresenham’s algorithm [Bre65] is optimized
to use only integer arithmetic, and the chain code algorithm [RW76] stores the resulting
line as a series of integers modulo 7, representing the eight different directions to an
adjacent pixel.

The line is related to the pixel set by:

let N maxdist P1 line P2 line in
pix pixset n 0 N pix P1 line p roundp n

N p. line

roundp :Point Pixel
roundp p round X p round Y p

round :
round r / i r 1

2 i r 1
2

These algorithms always turn on pixels which the line at least touches, and thus have
a tolerance of 12 .

Symmetric DDA algorithm

The Symmetric DDA algorithm [NS81] is similar to the simple DDA algorithm, but
samples the line more frequently. The length of the line determines the number of times
the line is sampled. To make the notation simpler the following abbreviations are used:

.x for X . line and .y for Y . line
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The length of the line is usually approximated by:

max .x .y 1
2 min .x .y

since .x2 .y2 is expensive to compute. Also, for efficiency reasons, the number
of steps is chosen to be a power of two. Thus the number of sampled points is 2n 1 ,
where n is the smallest n such that:

2n max .x .y 1
2 min .x .y

The Symmetric DDA algorithm gives a more equal density to approximations to
lines of different slopes than the Simple DDA.

The line is related to the pixel set by:

let N minvalidn line in
pix pixset n 0 N pix P1 line p roundp n

N p. line

minvalidn :Line
minvalidn line

/n validn n line m validn m line n m

validn : Line
validn n line k n 2k

n maxdist P1 line P2 line 1
2 mindist P1 line P2 line

The Symmetric DDA algorithm always turn on pixels touched by the line and thus
has a tolerance of 12 .

All pixels touched algorithm

It is easy, theoretically, to imagine a line drawing algorithm which samples the line
‘everywhere’ thus turning on all pixels touched by the line. Of course, this could only
be implemented approximately and would be inefficient.

The line is related to the pixel set by:

pix pixset p Point onlineseg p line pix roundp p

This algorithm also has a tolerance of 12 .

Brons’ chain code algorithm

The chain code algorithm presented by Brons [Bro74] produces a line similar but not
identical to the chain code algorithm discussed earlier. The chain code is produced in a
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recursive manner, giving successive approximations to the line until the ‘best’ approxi-
mation is achieved.

It is not possible to give a simple nonrecursive description of this algorithm! Brons’
chain code algorithm is often identical to the standard Chain Code algorithm. How-
ever, in cases with .x n , and .y 1 , it gives approximations with a tolerance
approaching 1.

Binary rate multiplier (BRM) algorithm

The BRM algorithm [NS73] was once a popular line drawing algorithm due to its speed.
However, it tends to produce rather inaccurate approximations and thus, with the ad-
vent of more accurate and fast algorithms it is now rarely used. It is based on binary
arithmetic. Both .x and .y are expressed in binary notation using n bits. The point
x1 y1 is turned ON and a binary clock then counts from 0 to 2n 1 . At each stage, x
is incremented if and only if the bit changing from 0 to 1 in the counter is 1 in the binary
representation of .x . The same applies to y. Each time x, y or both change the new
pixel is turned ON.

The line is related to the pixel set by:

let n minvalidn line

i 1 n ci 0 0 0 1 1 0 1 1 . line p

n

+
i 1

p2i 1
p ci in

pix pixset d 0 2n 1

pix P1 line p signp line p

n

+
i 1

proundp d
2n 1 i p ci

validn : Line
validn n line 2n maxdist P1 line P2 line

signp :Line Point
signp line sign X . line sign X . line

sign :
sign a if a a then 1 else 1

The BRM algorithm can be very inaccurate, especially for lines with .x equal to the
reflection of .y in binary notation. The tolerance for this algorithm is approximately 2.

See the appendix to this chapter for a sample line and the approximations produced by
these line drawing algorithms.
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13.6 Proof for Bresenham’s algorithm

Note that throughout this section the following abbreviations are used:

P1 for P1 line
X1 for X P1 line Y1 for Y P1 line
. for . line
.x for X . line .y for Y . line
R for round Rp for roundp
N for max .x .y

Part 1

pix pixset withintol pix line 1
2 :

pix pixset n 0 N pix P1 p Rp n
N p.

Now,

p P1 p
n
N p.

is on the line segment, since 0 n
N 1 . And either .x

N or .y
N is an integer, as

N .x or .y . Thus:

maxdist pix p R X p X p or R Y p Y p

and so maxdist pix p 1
2 , and the ON pixel is within

1
2 of the line as desired.

Part 2

pix Pixel nearline pix line pix pixset :

nearline pix line endpt pix line linethru pix line

Now if the pixel is an endpoint of the line, it will be ON (cases n 0 and n N ). If the
line runs right through the pixel, there are two cases:
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Case 1

N .x :

The line runs through the pixel in a horizontal direction, and we have that the point:

X pix Y pix ! for ! 1
2
1
2

is on the line. Since N .x this column will be sampled, and this pixel will be
turned ON since:

R Y pix ! Y pix R ! Y pix

Case 2

N .y :

The line runs through the pixel in a vertical direction, and the point:

X pix ! Y pix for ! 1
2
1
2

is on the line. This row will be sampled, and since:

R X pix ! X pix

this pixel will be turned ON.

Part 3

closrptson pixset line :

closrptson pixset line pix1 pix2 Pixel
samexory pix1 pix2 oppsides pix1 pix2 line
closrl pix1 pix2 line pix2 pixset pix1 pixset

Assume such pix1 and pix2 do exist:
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Case 1

N .x , samexory pix1 pix2 :

Since N .x , only one pixel is turned ON in each column, so we can assume that pix1
and pix2 are in the same row. Without loss of generality, assume that .x is positive and
that pix1 and pix2 are adjacent. Then since pix2 is ON:

X pix2 X1 n and Y pix2 Y1 R n .y
.x

And thus:

X pix1 X1 n 1 and Y pix1 Y1 R n .y
.x

Now pix1 and pix2 are on the same side of the line and pix1 is closer to the line than
pix2. So, the line must cross the line x X pix1 between:

Y pix1 and Y pix1 1
2 or Y pix1 and Y pix1 1

2

So:

R n 1 .y
.x R n .y

.x

and pix1 will be ON. Thus it is true that no such pix1 and pix2 exist, and the above is
satisfied.

Case 2

N .y , samexory pix1 pix2 :

Similar to Case 1, with the rows and columns interchanged.

Part 4

validpic pixset :

validpic pixset validrows pixset validcols pixset

Bresenham’s algorithm only turns on pixels in rows and columns between p1 and p2, and
it turns on at least one pixel in each of these, due to the choice of N. Thus, it is necessary
only to check that each of these rows and columns is valid.



356 13 Line Representations on Graphics Devices

Case 1

N .x :

Only one pixel will be turned on in each column, so the columns are valid. Assume we
have an invalid row, i.e. two pixels in a row are ON, but one in between them is OFF. So:

n m p1 P1 p Rp n
.x p.line p2 P1 p Rp n m

.x p .line

Since p1 and p2 are in the same row:

R n .y
.x R n m .y

.x

and thus:

i 0 m R n i .y
.x R n .y

.x

So all pixels in the row between p1 and p2 will be ON, and the row must be valid.

Case 2

N .y :

The argument is the same as in Case 1, with the roles of the rows and columns reversed.
Thus Bresenham’s algorithm satisfies this formal description of thin solid lines.

13.7 Extensions to the formal description

Vector devices

Although the drawing primitive on a vector device is a line, a vector device is still not
able to reproduce all lines exactly. The lines that it can produce are limited by the
addressing resolution of the device. Thus, if the pixel size is set equal to the resolution
of the vector device the model presented will also be appropriate for vector devices.
There may be some parts of the description that are redundant for a vector device. For
example, closrptson should always be true. But the description will still suffice.

Lines with nonintegral endpoints

The formal description can easily be changed to allow for lines with nonintegral end-
points by using Realline everywhere instead of Line. It might be desirable to impose an
additional condition on validapprox to ensure that the pixels containing the endpoints
are turned on under certain conditions, but this is probably unnecessary.
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Thick lines

It is quite easy to extend the thin solid line description to one for solid lines of thickness
t. One question that arises is how the endpoints of the thick line should be treated, as
both round-end and square-end models for thick lines exist. Another requirement that
should be added to the description is that any pixel entirely covered by the thick line
should be ON.
A formal description including these extensions is presented in the next section.

13.8 Straight solid thick lines on a two-color device

This is an extension of Section 13.4 to cover vector devices, lines with nonintegral end-
points, and thick lines. Changes from the thin line description include replacing Line
with Realline to avoid the integral endpoint restriction, and introducing thick lines. The
list of properties to specify, the make functions, and the point and line operations are un-
changed. New data types are added, some existing functions are modified, and additional
functions are introduced.

Formal description

New data types

A thick line:

Thkline :: LIN : Realline
THK : R

A circle:

Circle :: CEN : Point
RAD : R
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New and changed function definitions

Is the approximation to the given thick line valid and within a tolerance of !?

validapprox :Pixel set Thkline
validapprox pixset thkline !

pix pixset withintol pix thkline !
if a pixel in ON it is ‘close’ to the line
pix Pixel nearline pix thkline pix pixset
if a pixel is ‘very near’ the line it is ON

closrptson pixset LIN thkline
any pixel closer to the line than a pixel that is ON is ON

validpic pixset
the pixel formation is valid

Is the pixel within the given tolerance of the line?

withintol :Pixel Thkline
withintol pix thkline !

p Point onthklineseg p thkline maxdist pix p !

Is the point on the thick line segment?

onthklineseg :Point Thkline
onthklineseg p thkline

Square Ends Model:
line Realline parline line thkline onreallineseg p line

Round Ends Model:
inter mk circle p THK thkline

2 LIN thkline

Is the real line a stroke of the thick line?

parline :Realline Thkline
parline line thkline

eucldist P1 line P1 LIN thkline eucldist P2 line P2 LIN thkline
eucldist P1 line P1 LIN thkline THK thkline

2
eucldist P1 line P2 line eucldist P1 LIN thkline P2 LIN thkline

What is the Euclidean distance between the two points?

eucldist :Point Point R

eucldist p1 p2 X p1 X p2 2 Y p1 Y p2 2
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Do the circle and line intersect?

inter :Circle Realline
inter circle line p Point oncircle p circle onreallineseg p line

Is the point on the circle?

oncircle :Point Circle
oncircle p circle eucldist p CEN circle RAD circle

Is the pixel very close to the thick line?

nearline :Pixel Thkline
nearline pix thkline

endpt pix LIN thkline linethru pix LIN thkline
thklinecov pix thkline

Is the pixel an endpoint of the line?

endpt :Pixel Realline
endpt pix line pix P1 line pix P2 line

Does the line run right through the pixel?

linethru :Pixel Realline
linethru pix line

p1 p2 Point onreallineseg p1 line onreallineseg p2 line
adjcorn p1 p2 pix
onreallineseg p1 leftbord pix onreallineseg p2 rightbord pix
onreallineseg p1 botbord pix onreallineseg p2 topbord pix

Is the pixel covered by the thick line?

thklinecov :Pixel Thkline
thklinecov pix thkline p pixcorners pix onthklineseg p thkline

What are the corners of the pixel?

pixcorners :Pixel Point-set
pixcorners pix X pix 1

2 Y pix 1
2 X pix 1

2 Y pix 1
2

X pix 1
2 Y pix 1

2 X pix 1
2 Y pix 1

2

Are the pixels on opposite sides of the line?
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oppsides :Pixel Pixel Realline
oppsides pix1 pix2 line pix1 pix2

p Point inreallineseg p mk Realline pix1 pix2 onrealline p line
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Is the point a nonendpoint of the real line segment?

inreallineseg :Point Realline
inreallineseg p line ! 0 1 p P1 line p ! p.r line

Is the point on the real line?

onrealline :Point Realline
onrealline p line ! p P1 line p ! p.r line

Is the first pixel closer to the real line than the second?

closrl :Pixel Pixel Realline
closrl pix1 pix2 line

! withintol pix1 line ! withintol pix2 line !

13.9 Proof for a thick line drawing algorithm

Any reasonable thick solid line drawing algorithm should satisfy the above formal de-
scription. Although most computer graphics textbooks present algorithms only for thin
line drawing, it should be possible to devise a fairly simple thick line drawing algorithm
and show that it satisfies the given description.

A thick line drawing algorithm

A possible thick line drawing algorithm is one which turns on all pixels touched, similar
to the thin line drawing algorithm described in Section 13.5. The model of the thick line
to be used in this example is the round-end model. Like its thick line counterpart, this is
an inefficient algorithm and would have to be implemented approximately.

Pixels turned ON by the algorithm

The line is related to the pixel set by:

pix pixset p Point onthklineseg p thkline pix roundp p

Algorithm tolerance

Since this algorithm turns on only pixels containing a point of the line, its tolerance, like
that of many of the thin line drawing algorithms discussed, is 12 .
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Proof for the algorithm

Part 1

pix pixset withintol pix thkline 1
2 :

In fact, pix pixset withintol pix thkline 1
2 :

pix pixset
p Point onthklineseg p thkline pix Rp p
p Point onthklineseg p thkline X pix R X p Y pix R Y p
p Point onthklineseg p thkline
X pix X p 1

2 Y pix Y p 1
2

p Point onthklineseg p thkline
max X pix X p Y pix Y p 1

2
p Point onthklineseg p thkline maxdist pix p 1

2
withintol pix thkline 1

2
Thus a pixel is ON iff it is within a tolerance of 12 as desired.

Part 2

pix Pixel nearline pix thkline pix pixset :

nearline pix thkline endpt pix LIN thkline
linethru pix LIN thkline thklinecov pix thkline

If the pixel is the endpoint of the line, or if the line passes through or covers the pixel,
then the pixel must contain a point of the line and is therefore ON as shown in part 1,
above.

Part 3

closrptson pixset thkline :

No pixel closer to the line than an ON pixel can be OFF, since a pixel is ON iff it is no
more than 12 away from the line.

Part 4

validpic pixset :

Since all the pixels touched by the line are ON, these will form a totally connected
pattern, and thus a valid picture (no holes).



13.10 Ideas for further research 363

Thus this simple thick line drawing algorithm satisfies the formal description for thick
lines.

13.10 Ideas for further research

Related research

Although none of the recent formal description of computer graphics systems research
has discussed the properties of the approximation to a line on a graphics device, work
was carried out in the 1960s and 1970s concerning the representation of solid thin lines
on raster or incremental plotter devices [Fre70]. The model used to describe a line is
to number the eight pixels adjacent to a given pixel from 0 to 7 in a counterclockwise
direction starting with the pixel on the right. An approximation to a thin line, called the
chain code, is then given by a sequence of numbers indicating the direction to proceed
from each pixel of the approximation. Freeman [Fre70] notes:

All chains of straight lines must possess the following three specific prop-
erties:

1. The code is made up of at most two elements differing by 1 modulo 8.
2. One of the two elements always appears singly.
3. The occurrences of the singly occurring element are as uniformly spaced
as possible.

Rosenfeld [Ros74] proves that the above is satisfied if and only if the chain code has
the chord property. That is, if and only if for every point, p, of a line segment between
two pixels which are ON, there is an ON pixel, pix, such that maxdist p pix 1. No
extensions are given for thick lines.

While this area has been ignored for some time, raster displays and operations on
them are again being researched. Guibas and Stolfi [GS82] explain that it has been
believed that ‘the graphics programmer should be spared the pain’ of dealing with raster
images, but it is now being realized that raster images ‘should be given full citizenship in
the world of computer science’. They discuss a function, LINE p1 p2 w , which draws
a line of thickness w from p1 to p2, but note that, ‘the exact definition of this shape,
particularly at the two endpoints, is application-dependent’.

Alternative approaches

The work presented in this chapter is all based on the model introduced in Section 13.2.
If a different model from that of the square pixel is used, new insight into the proper-
ties of output primitives on graphics devices might be obtained. One idea is to look at
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different tessellations of the Cartesian plane. What would the description look like if
hexagonal pixels, for example, were used? The concepts of rows, columns, and adjacent
pixels would need to be examined.

Another approach might involve the splitting of the description into two parts; the
local and global properties of the line. Local and global properties are discussed by
Guibas and Stolfi [GS82]. A local property is one that can be checked for each pixel or
small piece of the approximation. Such as:

If a pixel is ON it is ‘close’ to the line.

On the other hand, a global property is one requiring the entire approximation to be
considered as a whole. For example:

The line ‘looks’ straight.

Examining the formal description in this way may present new ideas.
The choice of distance function can also influence the description. Although the

maximum horizontal or vertical distance between two points conforms to the square
pixel model, the Euclidean distance function is introduced when thick lines are consid-
ered. A different choice of distance function may simplify the description or suggest a
new model.

Further properties of solid straight lines

There are many additional properties of a solid straight line that could supplement or
replace some of those given in the description. It is desirable to come up with a simple
formal description and, at the same time, keep it both specific and general enough to
encompass all reasonable approximations. One property that the approximation should
have is that the line should look straight. This idea is incorporated in the validpic portion
of the description. However, perhaps a better formulation of this notion can be given.
For example, for a device with a very high precision, it may not be necessary to require
that there are no ‘holes’ in the approximation, as a small hole would be undetectable to
the human eye.

Other properties which are desirable in line drawing algorithms are:

A line produced has constant density.

All lines produced have the same density.

The line from p1 to p2 is identical to the line from p2 to p1.

However, these properties are not possessed by some of the commonly used algorithms.
A line produced by the BRM algorithm may not be of constant density. For Bresenham’s
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algorithm, the density of the line depends on its slope, and, unless the algorithm is
adjusted slightly, lines drawn in opposite directions may differ. It may be desirable to
try to incorporate relaxations of these conditions into the description. For example:

A line produced has ‘nearly’ constant density.

All lines produced have ‘approximately’ the same density.

The line from p1 to p2 is ‘close’ to the line from p2 to p1.

Further extensions to the formal description

It would be interesting to give a formal description for a dashed line. Dashed lines are
usually defined as sections of ink and space. One approach would be to split the line
up into a collection of short lines, each specified as a solid line. However, as the part of
the ink-space pattern to start with may be implementation dependent, this becomes quite
complicated.

Another extension would include the description of gray-scale lines on a gray-scale
or multicolor device. In a gray-scale algorithm, each pixel is set to an appropriate shade
depending on the portion of it covered by the line. Anti-aliasing is even more compli-
cated as a filtering pattern is used, along with a selection of colors, to smooth the edges
of the line and preventing them from appearing to be jagged.

Once the description of a line on a graphics device is complete there are many other
drawing primitives to consider, including marker, filled area, and text. Furthermore
since a picture is rarely composed of a single primitive, it is necessary to look at all
the primitives within a picture and decide how to deal with those that overlap, espe-
cially on a device with many colors. This problem is discussed by Carson [Car74], and
Mallgren [Mal83]. These so-called combining functions should be specified in a formal
description of the properties of a graphics device, thus giving an allowable range for the
appearance of the final picture, as well as for each primitive within the picture.

Another area for research is the formal description of the behavior of graphics input
devices.

13.11 Conclusions

When a new graphics device is produced, it is necessary to be certain that it functions
correctly. Although the formal descriptions presented here are only the tip of the iceberg
with regards to that of a complete graphics device, it is encouraging that such descrip-
tions can be produced, and actually used, to prove that algorithms for drawing graphical
primitives produce reasonable results.
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13.12 Appendix: sample line

The following diagrams show how the various thin line drawing algorithms discussed in
Section 13.5 approximate the line from 0 0 to 21 10 . This line was chosen since it
accentuates the differences between the line drawing algorithms.

0 3 6 9 x 12 15 18 21
0

2

4
y
6

8

10

The line to be approximated, running from (0,0) to (21,10).

0 3 6 9 x 12 15 18 21
0

2

4
y
6

8

10

Approximation produced by Bresenham’s, the simple DDA, and chain code algorithms.
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0 3 6 9 x 12 15 18 21
0
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The symmetric DDA algorithm turns on all the pixels turned on by the simple DDA, and
some additional ones.

0 3 6 9 x 12 15 18 21
0
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4
y
6

8

10

The all pixels touched algorithm turns on all the pixels turned on by the symmetric DDA,
and more.
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0 3 6 9 x 12 15 18 21
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Brons’ chain code algorithm is identical to the chain code algorithm except in column
20.
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The BRM algorithm is quite inaccurate when approximating this line, since in binary
form .x .y .
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Glossary of Notation

The following sections provide a brief summary of the VDM notation. A detailed text
book description of the language may be found in [Jon90].

A.1 Lexical conventions

The specifications collected together in this book have been written over the last six years
and thus embody a variety of styles and conventions. While the editors have endeavored
to impose a consistent lexical and notational style on the specifications, considerable
variations still remain as it has not been practicable for these to be completely removed.
In order to provide some help to the reader various of these conventions are discussed
below.

1. Operation names. Operation names are given as either upper case or lower case
letters. The first character should be a letter which may then be followed by one
or more letters, digits, dashes or underscores. For example, the following are
examples of operation names: NEW , create, GC, remove ref , ADD-VALUE.

2. Function names. Three broad conventions may be discerned:

(a) The names of functions are usually given as sequences of lower case letters,
digits, underscores or dashes; names should start with a lower case character.
Subscripting may be employed at the end of a function name. The following
examples illustrate this convention: inv-StateDRC , circular, get name, f2, g.

(b) The second form of naming functions involves an infix or mixfix notation.
For example , divides , p . This form is described in Jones [Jon90].

(c) The final naming form appears in those case studies involving the denota-
tional definition of language constructs. Here functions are defined over
the types of particular language constructs and the specification style re-
quires the construction of functions which determine if a particular construct
is Well Formed and, for well-formed constructs, yield its TyPe. In these,

369
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and similar, cases we find functions of the following form being defined:
WFConst, TPConst,MProgram, etc.

3. Type names. Two conventions may be identified:

(a) Standard built-in types are shown as expected, thus , , x m y, etc.
(b) User defined types start with an upper case letter which is followed by one or

more lower case letters, digits, underscores, dashes, etc.; subscripts may be
used at the end of a type name. The following are examples of type names:
Student name, Tp1.

4. Variable names. Variable names start with a lower case letter which may then
be followed by zero or more lower case letters, digits, underscores, dashes, etc.
Subscripts may once again be used at the end of a variable name. For example:
x1, y, partitions, student name.

5. Selector names. Selector names follow the same rules as for function names: re-
member they are sometimes refered to a selector functions or projection functions.
However, they are sometimes expressed using sequences of upper case characters.
For example:

Object :: body : Bag Oop
RC :

A.2 Functions
The Di and R are types
ER R
f :D1 D2 R Function definition signature
f d1 d2 ER Function definition

f d1:D1 d2:D2 r:R Function specification
pre d1 d2 Pre-condition

post d1 d2 r Post-condition
f d Application
f1 f2 Function composition
f n Function iteration
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A.3 Operation specification

State – a specification state type
% # # State inv-State # – set of states
# # % – initial and final state values
The Ti are types.
OP p1:T1 p2:T2 r:Tr Signature
ext rd e1:T1 Read/write state
wr e2:T2 Access declarations
pre p1 p2 e1 e2 Pre-condition
post p1 p2 e1 e2 e2 r Post-condition
pre-OP p1 p2 # Operation Quotation
post-OP p1 p2 # # r

A.4 Logic

E E1 E2 are truth valued expressions
S is a set, T is a type
x S

true false
E1 Negation

E1 E2 Conjunction
E1 E2 Disjunction
E1 E2 Implication
E1 E2 Equivalence
E1 E2 Equals
E1 E2 Not Equals
x S E Universal quantification
x:T E
x S E Existential quantification
x:T E
!x S E Unique existence
!x:T E

A.5 Trivial types

not yet defined Set of distinguished values
Equals
Not Equals
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A.6 Union type

Type Type nil
Type nil as above

A.7 Numbers
n n1 n2 – numeric expressions or terms

0 1 2
1 1 2

-1 0 1
Rational Numbers
Real Numbers

n Unary Plus
n Unary Minus

n1 n2 Binary Plus
n1 n2 Binary Minus
n1 n2 Multiplication
n1 n2 Division
n1 n2 Less Than
n1 n2 Less Than or Equals
n1 n2 Equals
n1 n2 Not Equals
n1 n2 Greater Than or Equals
n1 n2 Greater Than
n1 rem n2 Remainder
n1 mod n2 Modulus
abs n Absolute Value
n1 n2 Exponentiation

n1 divides n2 Integer Division
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A.8 Sets

The table below lists the operators appropriate to the set data type. Figure A.1 shows
the signatures of the operatorss using what is called an ADJ diagram. In these diagrams
the ovals denote data types, in most cases generic in some type, while the arcs associate
operators with argument and result data types.

(T-set)-set T-set

T

, card

, ,

, ,

Figure A.1 ADJ diagram for the set operators.
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T is the type over which the set is defined
S S1 S2 are sets
SS is a set of sets
x S
p x is a predicate involving x
i j

T-set Finite Power Set
a b c Set Enumeration

x S p x Set Comprehension
i j Subset of Integers

Empty set
x S Element of
x S Not an Element of
S1 S2 Equals
S1 S2 Not Equals
S1 S2 Union
S1 S2 Intersection

SS Distributive Union
SS Distributive Intersection

S1 S2 Difference
S1 S2 Strict Subset
S1 S2 Subset
card S Cardinality of a set

/x S p x Iota function

A.9 Records
t x Types
r r1 r2 R type
s is a selector function
R type: :s:Types Composite Object

mk-R type x y z Constructor
s r Selector Function

µ r s t Modify a Composite Object
r1 r2 Equals
r1 r2 Not Equals
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A.10 Maps

The map operators are recorded in the following table and the ADJ diagram is shown in
Figure A.2.

D-set D m R
D m R

R-set

D R

dom rng

,

,

()

†,

Figure A.2 ADJ diagram for the map operators.
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D is the Domain type
R is the Range type
d d1 d2 R
m d f d r1 r2 R
M M1 M2 are maps
Sd D Sr R
n 1

D m R Finite Maps
D m R Bi-directional Finite Maps

d1 r1 d2 r2 Map Enumeration
d f d D R p d Map Comprehension

Empty Map
M1 M2 Equals
M1 M2 Not Equals
M d Map Application
M-1 Map Inverse
domM Domain, domM D
rngM Range, rngM R
Sd M Domain Restriction
Sd M Domain Subtraction
M Sr Range Restriction
M Sr Range Subtraction
M1 †M2 Overwriting
M1 M2 Union
M1 M2 Composition
M n Iteration



Glossary of Notation 377

A.11 Sequences

The table below shows the sequence operators and the ADJ diagram for these operators
is given in Figure A.3.

T
T

T
T T

-set T-set

dconc len

hd

tl

inds , dom elems , rng,

Figure A.3 ADJ diagram for the sequence operators.
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T is the type over which the sequence is defined
L L1 L2 are sequences
n 1 n domL
i j

T Finite Sequence
T Non-empty Finite Sequence

a b c d Sequence Enumeration
Empty Sequence

L1 L2 Equals
L1 L2 Not Equals
L n Sequence Application
lenL Length
L1 L2 Concatentation
dconcL2 Distributed Concatenation
hdL Head
tl L Tail
domL Domain
rngL Range
indsL Indices. Same as domL
elems L Elements. Same as rng L
L i j Sub-sequence

A.12 Conditional expressions

E1 is a truth valued expression
E2 E3 – expressions of the same type
if E1 then E2 else E3 Conditional Expression
cases select x of Cases Construct

nil
otherwise x

end

A.13 Local definition
y T
let x E1 in E2
let mk-T y in E
let z S in E
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A.14 Lambda expressions

"-notation is derived from the "-calculus, a formal system used for studying the defini-
tion of functions and their application. We have already seen how function definitions
are produced. For example:

double :
double x 2 x

"-notation allows us to keep distinct the ideas of defining a function, as an object
which can be manipulated directly, and the naming of the function. For instance we can
define an unnamed instance of the double function using "-notation as follows:

"x 2 x

Given this definition we can then name the function as follows:

let double "x 2 x in

Application involves applying a function to an argument. Using double again we can
apply the function to the value 2 as follows double 2 which clearly yields 4. Similarly
we can apply the "-expression as follows:

"x 2 x 2

which once again yields the value 4.
The form of a "-expression is as follows:

"variable list Expression

where the variables declared in variable list should appear within Expression.
Consider the simple function which takes two integer arguments and produces the

sum as a result. This function may be specified as follows:

"x y x y

As mentioned above "-notation allows us to introduce unnamed functions which can
then be manipulated in their own right. Clearly we can define functions which accept
functions as arguments and can yield functions as results. For example, the function
apply accepts a function as an argument and yields a function. This resultant function
can, in turn, be applied to an appropriately typed value to yield a result.

let apply "f "x f x in

Applying apply to double results in the following manipulations:
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apply double "x double x
apply double 4 "x double x 4 double 4 8

Alternatively, the apply function may be defined in the following manner using the
more conventional function definition style. As we are not using polymorphic types in
the book the type of the function apply has to be declared fully so that apply double is
correctly typed:

apply :
apply f "x f

An appropriate discussion of "-notation and the "-calculus may be found in Schmidt
[Sch86].

A.15 Development proof obligations

Implementability proof obligation

# %

pre-OP # # % post-OP # #

The check that we need to make for each individual operation is that it can be imple-
mented: Thus, there must exist a final state (which satisfies the invariant) such that the
post condition of the operation can be satisfied. This proof obligation, known as the
implementability (or satisfiability) proof obligation, has to be discharged for each oper-
ation.

Adequacy proof obligation

a A
r R ret r a

The adequacy proof obligation asserts that every possible state value in our abstract
model has at least one representation in our reified model. The function ret (retrieve
function) is provided to transform representations of type R to representations of type A.

Operation modelling proof obligation - domain rule

r R
pre-OPA ret r pre-OPR r
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The domain rule states that every reified state that satisfies the pre-condition of the
abstract operation, when viewed through the retrieve function, should also satisfy the
pre-condition of the reified operation, i.e. the reified operation must not be more restric-
tive, that is defined on fewer states, than the abstract operation.

Operation modelling proof obligation - result rule

r r R
pre-OPA ret r post-OPR r r

post-OPA ret r retr r

The second operation modelling proof obligation, called the result rule, derives from
an analysis of final states (states arising from the invocation of an operation). Here we
will talk about state pairs ( r ,r) (initial and final states respectively) at the reified state
level. Given that the initial state, when viewed through the retrieve function, satisfies the
pre-condition of the abstract operation and that the state pair satisfy the post-condition of
the the reified operation then the two states, when viewed through the retrieve function,
will produce a state pair that will satisfy the post-condition of the abstract operation. In
this case the reified operation specifications are being restricted to producing final states
which have abstract representations, that is, no final states should be produced at the
reified level which do not have abstract representations.
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