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Foreword to the First Edition

It is well known that ninety-nine percent of the world’s problems are not susceptible to
solution by scientific research. It is widely believed that ninety-nine percent of scientific
research is not relevant to the problems of the real world. Yet the whole achievement and
promise of modern technological society rests on the minute fraction of those scientific
discoveries which are both useful and true.

The problems involved in the development and use of computer programs are well
described and well appreciated, particularly by those who have suffered from them. Ef-
forts of many researchers have been devoted to elucidate the theoretical basis of com-
puter programming. This book shows how the results of the research are immediately
and directly relevant in practical solution of the real problems of programming. By the
clarity of its exposition, it makes the solution accessible to every student of computing
science and to every professional programmer. A rigorous approach to software devel-
opment will enable our society to reap the full benefit promised by the invention of the
electronic digital computer.

Read it, study it, learn from it, enjoy it; but above all, put its lessons into practice.

C.A.R. Hoare
Oxford






Preface

... the main achievement of the Alvey Software
Engineering Programme is the success with which
‘Formal Methods' from the academic world have
been pulled through to industrial use. The
implications of this achievement are difficult to
overestimate, for these Formal Methods are the
route to much better software writing, and the
economic consequences will be considerable — on a
par with those of the revolution in civil engineering
in the last century.

Brian Oakley

The aim of this book is to contribute to the wider use of formal methods in the specifica-
tion and design of computer systems. VDM was developed in an industrial environment
and is one of the most widely used formal methods. VDM is used in this book because
it has achieved a level of maturity and acceptance: it has been taught for many years
and has been used in a wide variety of applications. Furthermore, the British Standards
Institution (BSI) work on developing a standard for VDM has been one of the stimuli
for this revised edition.

This book teaches a particular systematic approach to software development concen-
trating on the stages from specification through design to implementation. Théoterm
mal methodembraces formal specification and verified design. Many aspects of a com-
puter system must be specified including performance and cost. In this book attention
is focused orfunctional specificatioffi.e. what the system does); the tespecification
is, however, used below without qualification for brevity. Formal specifications employ

Xi



Xii Preface

mathematical notation in order to achieve both precision and conciseness. A specifica-
tion should be much shorter than a corresponding implementation. The key to brevity is
abstraction The specification of a system should abstract away issues which relate to
implementation rather than to the intended behaviour of a computer system. The mean-
ing of the operations are specified abstractly by recording properties which they should
possess. Listing a collection of properties is one way in which a specification can be
much shorter than an implementation. Another key technique for making specifications
more concise than their implementations is to use abstract data objects which match the
system being specified. This can be contrasted to the use of data objects which belong
to the machine or language on which the system is to be implemented. The latter are the
subject of implementations and should be avoided in specifications.

The other major aspect of formal methods is verified design. The idea that programs
are mathematical texts opens up the possibility of reasoning about their formal relation-
ship to specifications. Arguments can be constructed which, unlike the use of test cases,
establish properties of programs in all cases. Verified design uses the concept of proof
as a way of checking design steps. Steps in a systematic development can be based on,
and verified against, a formal specification. This makes it possible to use proofs dur-
ing the development process and to detect errors before work is based on a mistaken
design step. The elimination of errors as early as possible is a key to improving the
productivity of the development process and is a major argument for employing formal
methods on industrial-sized applications. There is, of course, a difficulty in presenting
the case for more formal methods in a textbook: the examples here are small and can
be handled byad hocmethods whereas the case for formality becomes strong on exam-
ples which are too large to be handled by traditional methods. The experience of other
engineering disciplines supports the need to use soundly based methods on major tasks
and the same experience is beginning to be gathered in the computer industry. One of
the major rewards of employing formal methods in the development process is that the
documentation created ensures that the systems are much easier to maintain.

The development of any large system has to be preceded by a specification of what
is required. Without such a specification, the system’s developers will have no firm
statement of the needs of the would-be users of the system; these users will be the ones
who, in more ways than one, are likely to pay for the inevitable misunderstandings. The
need for precise specifications is accepted in most engineering disciplines. Computer
systems are in no less need of precision than other engineering tasks. Unfortunately,
the current practice in the software industry is to rely on specifications which use a
mixture of informal text and pictures. Clear use of natural language obviously has a
place in describing systems — but English cannot be relied upon as the sole specification
language. In order to achieve precision, a specification must be written in a language
which has a formal basis. Before the publication of the ALGOL report, the syntax
of programming languages was givendd hocways. Since the BNFBackus-Naur
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Form) notation has been fully understood, no sensible language designer has described
syntax in English sentences — however carefully written. The use of formal syntax meta-
languages such as BNF has also made it possible to construct tools like parser generators.
This history is encouraging but system description requires the specification of semantics
as well as syntax. This book is intended to contribute to a parallel development for full
semantic descriptions. Some notation and conventions beyond standard mathematics
are useful in writing formal specifications. The VDM notation has itself been carefully
defined. This has made it possible, for example, to establish the soundness of the proof
rules for program design steps. VDM is not a closed body of material. An understanding
of the underlying concepts makes it possible to introduce new notation (e.g. relations) if
required for some class of applications. The more fluid areas of formal methods research
tackle subjects like parallelism and are not addressed in this book.

This book is intended to be the basis of courses on formal methods. The material
originally evolved from courses in industry. The first edition of the book has been used
at university undergraduate level and in industrial courses. The only prerequisites are
a knowledge of programming and some familiarity with discrete mathematics. The no-
tation of both logic and set theory are reviewed but a reader who is totally unfamiliar
with this material should first study a textbook suctsas$ Theory and Related Topizg
S. Lipschutz published by McGraw-Hill.

The objective of this book is to bring students to the point where they can write and
reason about small specifications written in — for example — VDM and read large specifi-
cations. Exposure to larger specifications and developments can be obtaingdiafsem
Studies in Systematic Software Developmealso published by Prentice Hall Interna-
tional — studying such case studies will better equip people to tackle larger specifications
themselves.

This edition contains eleven technical chapters. The first seven chapters are con-
cerned with the specification notation but also include material on proofs about specifi-
cations themselves. Chapters 8—11 describe the material on verified design. The chapters
are divided into numbered sections and the main ideas of a section can normally be pre-
sented in a one-hour lecture. The approach taken is formal with an emphasis on proof.
It is possible to understand the material on specifications without following all of the
proofs and one way of providing a short course is to omit Sections 1.3, 2.3, 3.2, 3.3,
4.2,5.2,6.2, 7.2, and Chapters 8 to 11. However the study of proofs is rewarding, and
experience shows that the specification notation is better understood if practice is gained
with its manipulation via proofs. The study of a proof also deepens the appreciation of,
and reinforces one’s memory of, a theorem. Therefore, one should not omit the material
in, for example, Sections 1.3 and 2.3 lightly because of the need to reinforce the proper-
ties of the logical operators. Chapter 12 contains a personal postscript. It has been said
of the first edition that there are people for whom this is the only part of the book they
have read. On balance, | should prefer that this happened more often than that a student
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should read the technical material but ignore the postscript.

The exercises are an integral part of the material and should be attempted by any
reader who hopes to be able to use the methods described. Those exercises marked with
an asterisk are more difficult and open-ended: they are best tackled in a group effort
with some guidance available. Some mathematical comments which can be ignored —
at least at first reading — are printed as footnotes. A Glossary of Symbols is provided in
Appendix A. Technical terms are italicized at the point of introduction and are described
in the Glossary of Terms (Appendix B). Appendices C—E contain summaries of tech-
nical material which is developed in the course of the book. Appendix F contains the
relevant parts of the evolving BSI standard for VDM — it defines the concrete syntax of
the notation used in this book (and [JS90]). As well as a bibliography, separate indices
are given for functions/operations, types and general terms.

A set of Teacher's Notess being printed which contains supporting material includ-
ing answers to the unstarred exercises: these notes can be obtained from the publisher.

This is a major revision of the first edition of the book which both expands and
simplifies the earlier treatment. A number of technical changes (which are discussed in
the Teacher’s Notgshave made it possible to simplify the proofs used. The material on
logic notation and proofs has been streamlined. Chapter 10 — which addresses operation
decomposition — has been completely rewritten and expanded; and the new Chapter 11
contains a small case study which indicates the way in which the steps of the VDM
method relate to each other.
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Logic of Propositions

It is reasonable to hope that the relationship
between computation and mathematical logic will
be as fruitful in the next century as that between
analysis and physics in the last. The development
of this relationship demands a concern both for
applications and for elegance.

John McCarthy

When writing formal specifications for computer systems, it is useful to adopt notation
from established branches of mathematics. One of the most valuable bodies of notation
is that of mathematical logic. A reason for the importance of logic notation is the central
role it plays in the notion of proof. The use of specifications in the justification of design
is described in Chapters 8 and 10. But, even when considering specifications on their
own, there are a number of proofs to be performed. In this chapter, the basic ideas
of propositional calculus are reviewed. After introducing the language, the concept of
formal proof is introduced in Section 1.2 and expanded in Sections 1.3 (and, later, in
Section 2.3).

1.1 Propositional operators

Propositions

A propositionis an expression which can have the value true or false. Thus, under the
usual interpretation of arithmetic symbalst 3 = 5 is true, bu2 + 2 = 5 is false. One



2 1 Logic of Propositions

way of forming propositions is, as in these examples, by writing relational operators (e.g.
=,<,<) between arithmetitermsbuilt up from, amongst other things, constants and
operators. Another way of forming propositions is by using the truth-valued functions
which are discussed in more detail in Section 2.1; for now, an intuitive reading of such
function applications should suffice — thissprime(7) is true providing that the truth-
valued functionis-prime has the value true for exactly those natural numbers which are
normally considered to be primes; whereéagrime(8) is false.

The language which can be built by such propositions is rather limited if truths can
only be stated about constants. One way to extend the language is to permit variables
to occur in terms. The truth of expressions like+ i = 5 depends on the value of
i. Such expressions are callpredicatesn this book. The identifiei, in the example
above, is said to be free variable and the interpretation for such free variables must
come from their context. The truth of a predicate depends on the interpretation of its free
variables; the example above is true only in contexts whésdound to the value 3. A
number of different ways of providing contexts, or bindings, for free variables are given
in subsequent sections.

Operators

Propositions and predicates can be thought of as truth-valued expressions. Predicates
simplify to propositions when their free variables are replaced by values. This section
discusses the operators which are used to form composite truth-valued expressions; the
operators are known ggopositionaloperators. For example:

(2+3=5)V (2+2=05)

is a true proposition built by combining two simpler (constituent) propositions with a
symbol which can be read as ‘or’. Such propositional operators can be compared with
familiar arithmetic operatorsH,+ etc). Just like their arithmetic counterparts, proposi-
tional operators can be used in combinations to form long (or deeply nested) expressions;
furthermore, they share the property that there are general laws about equivalence of ex-
pressions. Thus:

r+y=y+t+z
is the commutative law for addition and:
iV E & EBVE

could express the fact that ‘or’ is commutative.

Such laws apply even when predicates, or more complex logical expressions, are
written in place ofE; and E». In general, theF; can be thought of as meta-variables
which can be replaced by arbitrary logical expressions (in this section, truth-valued ex-
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pressions built up from propositions; later, the constituents can be predicates).

Whereas arithmetic expressions are concerned with an infinite set of numeric val-
ues, propositions — when successfully evaluated — yield one of the two truth values. In
recognition of the key role that George Boole played in the development of logic, these
are often calledBoolean valuesThis set is:

B = {true, false}

(The termlogical valueis also used below.) The typography of the Boolean vatue
distinguishes it from the word ‘true’ used in a normal sentence. Strictly one should write
' F; evaluates tarue’; but, unless a special point has to be made, the bridfgers true’
is used.

The fact that the set of Boolean values is finite provides a very simple way of ex-
pressing the meaning of logical operatairsith tablescan be used to display the value
of a compound proposition for all combinations of the possible values of constituent
propositions. The reader is assumed to be familiar with the normal (two-valued) truth
tables; the topic of truth tables is resumed in Section 3.3.

Some terminology is useful. An expression whose principal operator is ‘or’ is called
adisjunction Logical expressions whose principal operator is ‘and’ are calteqgunc-
tions A negationis a logical expression whose principal operator is the symbpFgr
‘not’. An implicationis a logical expression whose principal operator is ‘impliesfs
left-hand side is known as tlentecedenénd its right-hand side as tltensequent

It is possible to investigate properties of propositional operators via truth tables or
‘models’. One useful law is that; = FE» has, for any propositions;, the same value
as— F» = - Ejy. This equivalence can be verified on a two-valued model as follows:

El E2 E1 = E2 - El - EQ - E2 = T El
true | true true false | false true

true | false false false | true false
false | true true true | false true
false | false true true | true true

Two logical expressions which have the same logical values are saiddqubealent
The basic truth tables are used in a step-by-step evaluation of larger expressions in the
same way that complex arithmetic expressions are evaluated one step at a time. For
example, in forming the column fof F», = — Ey, the operands of the implication are
both negations.

The logical expression corresponding to the assertion of equality between arithmetic
expressions is thequivalence Remember that, although the operator does yield the

Himplications cause more confusion than the other constructs. Perhaps the easiest way to overcome the
difficulty is to remember that)y, = E- is equivalentto- E; V Es.
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operator read as priority
- not highest
A and
V or
= implies
& is equivalent to| lowest

Figure 1.1 Propositional operators and their precedence

valuetrue exactly when the operands have the same value, a special sy@pid (sed
to show that the equality is between Boolean values.

A list of the propositional operators is given in Figure 1.1. Just as in the construc-
tion of arithmetic expressions, the need for parentheses can be reduced by ranking the
precedence of the operators. This order is also shown. In fact, the high precedence of
the ‘not’ operator is used in examples above. More useful examples, such as writing:

- VE = E3ANEyV Ej
for:
(mE1) V E2) = ((B3N\ Ey)V Es)

are encountered below.

Tautologies

Having established the language of propositional logic, it is possible to discuss general
properties of expressions. Some logical expressions evaluataetdor all possible
values of their constituent propositions. Such expressions are dalléologies A
simple example is:

E; = (false = E»)

The statement that an expression is a tautologyudgemenabout the expression; such
claims are noper seconstructs of propositional logic. An obvious way of checking
whether an expression is a tautology is by the construction of a truth table. One can,
however, reason informally about such expressions. For example:

the inner implication, which is the consequent of the principal implication,
would be true for any value af», thus the overall expression must be true
for any value ofF;.
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With practice, such arguments can be conducted safely on quite complex expressions.
However, the final security for such arguments is that a completely formal check is pos-
sible: Section 1.3 provides a method which relies on the construction of formal proofs.

Some expressions which are not tautologies are false for all values of their con-
stituent expressions: these are caltedtradictions For example:

E V true = E A false

is a trivial contradiction. Expressions which may be false or true, depending on their
constituent propositions, are said todmntingent For contingent expressions, the sets
of values — of their constituent propositions — for which they are true can be found. For
example:

L = EBNANE

is true in any ‘world’ whereF; is false or Es is true (or both). Each row of a truth table
corresponds to a world. A tautology is an expression in which the result is true in every
row; a contradiction has the result false in every row; and a contingent expression has
some results true and others false.

Exercise 1.1.1 Replace the question marks with a Boolean value to make the following
pairs of expressions equivalent:

EN? E
EN? false
?7 = FE true
E =7 true
7= F FE
EF =7 -FE

Write analogous rules to the first two for ‘or’.

Exercise 1.1.2 Replace the question marks below by propositional operators so as to
make the pairs of expressions equivalent (if in doubt, check using truth tables):

FEy N By E 7By

I AN (EQ VAN Eg) (E1 ? Eg) ? B3
El/\(EQ\/Eg) By 7E,TE T By
—|(E1\/E2) TEL? 7T Ey

- F Tk
E1 = EQ 7E2 = ?El
i & Es (El ? EQ) VAN (E2 ? El)

Commutative and associative laws for conjunctions are given in the first and second
cases. Write the equivalent laws for disjunctions.
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Why are no parentheses required in the right-hand expression in the third line? This
case shows the law for distributing ‘and’ over ‘or’. Write the distributive law for ‘or’
over ‘and’.

Exercise 1.1.3 (*) Inferences about conditional logical expressions follow from:

E if £ then Ep else Es
true Ey
false Es

Conditional expressions can be used to define each of the propositional operators. Write
the five definitions.

Sequents
A tautology is, in fact, a special case o$equent
I' - FE

(where! is a list of logical expressions). Such a sequent records a judgement about the
constituent logical expressions: it asserts thatan be deduced fromi. Such formal

proofs are introduced in the next section. FTheymbol is often called &rnstile The

validity of sequents can be checked using truth tables. Onchyjhethesegelements

of the list on the left of the turnstile) of the sequent have been evaluatedhticiusion
(right-hand side) need only be evaluated in those rows where the hypotheses are all true.
The truth table forEy A (E; V Es) = Ey A Es vV E; A Es, is given in Figure 1.2.
Notice that this example needs a truth table with eight rows (because there are three sub-
expressions), but that the conclusion of the sequent need not be evaluated for the last five
rows. Itis, however, also possible to reason informally. Considering the above sequent
one can argue:

For a sequent to be false there must be some world where its hypothesis is
true and its conclusion false; B, A (E2 Vv E3) is true, bothE; and at least

one of B, or B3 must be true; thus, eithéf; A E, or By A E3 (or both) must

be true; therefore no world can be found in which the conclusion is false
while the hypothesis is true.

Further examples of sequents are:

B & E H B = E
FiNEy - By & Ey
= (E1 V EQ) FE & B
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B Es E3 By N (E2 V Eg) EiNEyV By N Es
true | true | true true true
true | true | false true true
true | false | true true true
true | false | false false —
false | true | true false —
false | true | false false —
false | false | true false —
false | false | false false —

Figure 1.2 Example of sequent evaluation

A tautology is simply a sequent with no hypotheses — for example:
By = (false = E»)

Sequents can be formed with several hypotheses — in such cases they are separated by
commas — thus:

By, EbV Es - EyNEyV By N\ B3
El, E2 F E1 = E2
—\El, —\E2 [ IR EQ

There is a connection between the judgement that something is deducible (written
with F) and the implication (an expression of propositional calculus written s4jhin
fact, in classical logic the symbols turn out to be almost interchangeable. However, this
is a result (the deduction theorem) which logic textbooks come to only after a thorough
review of the different levels of language involved. In the full logic used in VDM,
implications and sequents are anywayt interchangeableso it is even more important
to understand the distinction. The implies symbol is a logical operator whose meaning is
given by its truth table; implications can be nested giving rise to several occurrences of
= in one expression. A sequent is a statement or judgement about logical expressions:
it records that the conclusion can be deduced from the hypotheses. With respect to the
language of propositional (later, predicate) logic, the turnstile is a meta-symbol and sub-
expressions containing turnstiles can not be used in forming larger logical expressions.

An example can be given to illustrate a rigorous argument. Two ways of stating that
r is the absolute value afare:

2The technical details of this point are explored in Section 3.3.
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1< OAr=—tVi>0Ar=:
(i<0 =>r==)A(HE>0 = r=1)

To express that the second is a consequence of the first, write:
ExNEsV-ENEs + (By = E)AN(-E = Ej)

or, treating implication as an abbreviation:
EixNEsV —-FEyNEs b (mE V E) A (E V E3)

In the case thal); A Es is true, the first conjunct of the conclusion is true (becalise
is the second disjunct) and so is the second conjunct (bedauisethe first disjunct);
therefore the conjunction is true; the case-fak; A E3 is similar.

The language which is built up from proposition variablés)(and the proposi-
tional operators is known as tipgopositional logic This notation, together with rules
for determining the truth of its expressions, forms piiepositional calculusA logical
calculus in which the truth or falsity of any expression can be calculated is saidi& be
cidable The propositional calculus is decidable since there is a procedure to determine
whether a sequent is true or not: it is only necessary to construct the truth table and eval-
uate the expressions using the truth tables given above. The truth tables provide a way
in which propositional expressions can be evaluated. An alternative way of generating
true statements is by selecting a small set of such statements from which all others can
be generated,; this is the proof-theoretic approach which occupies the rest of this chapter.

Exercise 1.1.4 Check which of the following represent true judgements (use truth ta-
bles or a rigorous argument recording any other results on which the argument relies):

FyV Ey By

E\, B, - E;

EiNEy - BV Ey

EiV Es - E1 N Ey

E2 F E1 = EQ

-+ E = E

E1 = EQ, E1 F E2

- F = (El VAN EQ)

B F - (E1 vV EQ)

El/\(EQ = Eg) F Ei1ANEy, & FEy N Ej

E1/\E2<:>E1/\E3|_E1/\(E2<:>E3)
Exercise 1.1.5 (*) Write a truth table for an ‘exclusive or’ operator (i.e. similar to ‘or’
except that the result ialse if both of the operands angue). Record some properties
(as sequents) of this operator including its relation to equivalence.
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1.2 Concept of proof

Section 1.1 mentions one way of formally verifying propositional expressions: truth
tables provide a model theory for propositional calculus. Section 1.3 providesoa
theoryfor propositional calculus; in Section 2.3, this is extended to cover the predicate
calculus. The combined proof theory is used throughout this book as proofs form a
central part of the program development method described. One property of a formal
specification is that proofs can be written which clarify its consequences; Chapters 8
to 11 use formal specifications as the basis of design: design steps give rise to ‘proof
obligations’. Once the formal methods are understood, most proof obligations can be
discharged by rigorous arguments. Such arguments are, however, only safe if they are
undertaken with a knowledge of how a formal proof could be constructed. Itis, therefore,
necessary to gain practice in the construction of such formal proofs. Furthermore, a
study of the inference rules deepens one’s understanding of the logical operators.

What is a proof?

It should be clear that the claim that something has been proved must eliminate doubt.
Unfortunately, informal arguments cannot create such certainty. To provide a point of
reference, consider the truth tables for propositional calculus discussed in Section 1.1. It
is easy to construct a program to mechanize these in a way which determines the validity
of sequents. Providing this program is correct, doubt about the validity of a sequent can
always be eliminated by running the program. Foremost amongst the requirements for
proofs, then, is that they should ensure certainty. In order to achieve this level of certainty
with a proof, it is necessary to reduce proof construction to a ‘game with symbols’: each
proof step must depend only on known (or proven) facts and be justified by one of a fixed
set of inference rules. The inference rules themselves must require only the mechanical
rearrangement of symbols. Such proofs are cdtieahal.

Butin order for them to be useful it must also be natural to both read and write proofs.
It is difficult to be precise about what constitutes a natural proof. When an argument is
presented informally, large steps are made without detailed justification. This is not, in
itself, wrong. The aim of informal proof is to indicate how a proof could be constructed:
the major steps are given in the knowledge that further details could be provided if these
major steps are in doubt. Clearly, it is desirable that some overview of a formal proof
can be achieved.

Another aspect of what constitutes a natural proof concerns the crucial distinction
between the discovery and presentation of a proof. A proof is often found by working
back from the goal; sub-goals are created and discharged until the sub-goals correspond
to known facts. In order to show how the steps relate, it is normal to present an argument
working forwards from the known facts towards the goal. This forward presentation is
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easier to read. But when readers become writers, it is unfortunate if they must learn to
discover proofs one way and document their steps in a different order.

The style of proof presented in this chapter is known in logic textbooks as ‘natural
deduction’. The proofs are formal in the sense above. The inference rules essentially
show how to generate true sequents from others. One claim to the adjective ‘natural’ is
that there are introduction and elimination rules for each operator; more importantly the
presentations enable a reader to understand the main steps in a proofrantigifer
constructs present the detailed arguments for the major justification. The question of
discovery (backward, goal-directed) versus presentation (forward) of proofs is not as
easy to illustrate in a book as it is on the blackboard. The experience of teaching nat-
ural deduction proofs is, however, very encouraging and a style of proof discovery is
investigated in some of the examples below.

Inference rules

Consider, for example, an inference rule for the introduction of a disjunction:
Ey

- Ey Vv Ey

This states that, under the assumption that some logical expre&sidms been proved,
then — as a conclusion — a disjunction of that logical expression with any other is also
true (proved). As above, thB; stand for arbitrary logical expressions: the rule is, in
fact, a schema for many inferences. Thus, if at some point in a pwofz, f(z)) has
been established, thenpre(z) V post(z, f(x)) and thus (treating implication as an
abbreviationlpre(z) = post(z,f(z)) is also true. There is a similar inference rule:

Ey

- Ey Vv Ey

These two inference rules can be expressed together as:
E,

[ S

The name Y-I) is a reminder that this rule justifies the introduction of disjunctions.
Notice that the side condition shows that the known expression can be either the first or
the second disjunct because the assumption is shouviiiy. aghe validity of such a rule
follows from the truth tables: the resulting disjunction must be true in all worlds where
one of its disjuncts is true. But the inference rule both corresponds to and strengthens
one’s intuition about the operator. This inference rule, and the ones which follow, are
mechanical in the sense that they can be readily checked: if it is claimed that a step of a
proof follows by ‘or introduction’ from an earlier step, then one or other of the disjuncts
must exactly match the earlier expression.
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In general, an inference rule has a list of hypotheses and a conclusion separated by
a horizontal line. The rules contain expressions whose operands are the meta-variables
(F;) discussed above and this brings with it the notion of fataschingthe expressions
in the sense that there is a substitution (from meta-variables to expressions) which makes
the expressions in the rules match the facts. If existing facts can be found which match
(under a consistent substitution) each of the hypotheses, then a new fact can be generated
which matches the conclusion. The use of the matching concept should be obvious but
note that, when steps involve complex expressions, matching must observe the structure
of an expression as determined by the priority of its operators. husg \V r matches
Ey, v E; butnotFE; A E, because ‘and’ binds A ¢ to an operand of the weaker ‘or’. In
complex cases the reader might find it useful to insert extra parentheses.

How can conjunctions be generated in a proof? The ‘and introduction’ rule is:

Ey; Ep

- i N By

Here, there are two hypotheses separated by a semicolon. If there are several hypotheses
for an inference rule, they can be matched in any order with existing lines in a proof.
The skeleton proof shown on page 12 shows how the matching for both of these rules
works. (The line numbering is for illustration only.) Assuming that lines 5 and 6 have
been established, the I rule can be used to establish line 8 — the justification on the
right of the line shows both the name of the inference rule and the lines to which it is
being applied; the\-I rule is applied to lines 9 and 8 to justify line 10.) There are con-
nections between inference rules and sequents which are discussed below. The reason
that semicolons are used to separate hypotheses of inference rules (rather than commas
as in sequents) is that some inference rules require sequents as hypotheses. The ‘and
introduction’ inference rule states that, in order to concligle. E», the conjuncts must
both be proved separately. As one would expect, there is more work to be done to justify
a conjunction than a disjunction. On the other hand, precisely because a conjunction is
stronger, the rule which permits elimination of a conjunctionK) shows that either
conjunct is true:

Ey N Ey

1§i§2

]

Line 9 in the skeleton proof on page 12 is formed/by.

Boxed proofs

Sequents can be used to show how the proof rules, which are given above, give rise to
deductions. Thus, for example, if:

I'+»p
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from ...
S p
6 rAs
8 »pVyg v-1(5)
9 r N-E(6)
10 rA(pVyq) N-1(9,8)
infer ...

Skeleton proof

1 pAg A-E(h)
2 p N-E(1)
3 ¢ N-E(1)
4 r N-E(h)
5 qnAT N-1(3,4)
infer p A (¢ A1) A-1(2,5)

Associativity of conjunction

has been proven, thenI can be used to generate:
I'-pVyg

A list of sequents can be used to record a whole proof but when more than one hypothesis
is involved, the presentation becomes clumsy. The natural deduction style, which is
explained in detail in the next section, shows the dependencies on hypotheses at the
head of a box beginning with the keywditdm; the overall goal closes the box with the

3The objective is to find enough inference rules so that all true statements of the model theory can be
proven. That this is even achievable is not obvious. In fact, the notions of validity and provability are
equivalent in a sense which is discussed in Section 3.3.
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keywordinfer; all of the numbered lines within the box are true under the assumptions
of the embracindgrom/infer constructs. As an example of such a proof, ‘and’ is shown
to be associative. Aassociativeoperator is one for which:

(z opy)opz=uazop(yopz)
For ‘and’ it is necessary to show that:
(pAg)AT EpA(gAT)

Thus the proof of this part of the associativity result for ‘and’ is presented in the natural

deduction style on page 12. Such ‘boxed proofs’ recur throughout the remainder of the
book. The sequent to be proved is shown as the outerfrmsfinfer construct and

the lines between show how the conclusion follows from the hypotheses. Each line is
justified by writing, on the right, the inference rule which is used; in parentheses are
listed either the line numbers or ‘h’ (for the hypothesis) of the expressions to which the

rule is applied.

The earlier discussion about forward versus backward proof presentation can be seen
in the associativity of conjunction example — although it is clearer on the less obvious
results of the next section. The preceding discussion has been in terms of working for-
ward from the known facts. But it would be possible to look at the form of the overall
goal and generate (what became) lines 2 and 5 as sub-goals; lines 3 and 4 are then sub-
goals to achieve line 5, and the ‘and elimination’ steps then become the obvious way of
achieving the set of collected sub-goals. Such proofs could, of course, be presented in
the reverse order (e.g. ager/from). This is not done because one is writing proofs in
order that they can be read. As pointed out above, it is easier to understand an argument
which proceeds from known facts towards a goal.

The use of the rules as ‘tactics’ for decomposing a goal should not be viewed as an
algorithm to generate proofs. As collections of derived rules are built up, many rules are
applicable; some of them would lead to blind alleys.

The rules of the natural deduction game are that new lines can only be generated
from earlier lines in the same, or some enclodirgn/infer. As when generating truth
tables, any logical expression can be substituted foEth&Vhen proof rules are used in
reasoning about programs, specific propositions are substituted fék the the proof
of the associativity of ‘and’, no specific propositions are used and thus the proof that:

pA(gAT) E (PAG AT
justifies a new (derived) inference rule which can be used in subsequent proofs:

:}/\—assl Ey A (E2 A Eg)
E (E1 A Eg) N F3




14 1 Logic of Propositions

For such elementary results, the level of detail needed here appears to be excessive.
It is, however, worth remembering that a simple arithmetic result (ke j) + k& =
(k+7)+1i would take several steps of commutativity and associativity to justify formally.

Another example where the reader should be familiar with the necessary formality
is the use of concrete syntax descriptions of languages. Appendix F gives syntax rules
for VDM and it can be seen thatA (¢ A r) is a ‘binary expression’. To emphasize the
link between this idea and the inference rules of logic, notice that the syntax rules could
be written:

taxl -
@ A: binaryoperator

Eq: expression; op: binaryoperator; Fs: expression
syntax2 : -
EyopFEs: infixexpression

and so on.

1.3 Proofs in propositional calculus

The entire proof theory of propositional calculus can be based on very few rules. In
order to minimize this number, this section treats as basic only ‘or’ and ‘not’ and defines
the other operators in terms of these basic ones. An increasingly useful proof theory
is constructed by justifyinglerived rules Among other things, these rules facilitate
manipulation of the defined operators ‘and’, ‘implies’ and ‘equivalence’ (all of the rules
— basic and derived — needed in subsequent chapters are given in Appendix C).

Axiom 1.1 (V-I) The basic rules include one for introducing disjunctions:

Axiom 1.2 (- V-I) Negated disjunctions are introdudeby a rule which has two
hypotheses. Intuitively, to know that neith&; nor E» are true, they must both be
shown to be impossible:

o —Fy By
- (E1 V EQ)
Axiom 1.3 (V-FE) The task of eliminating a disjunction involves reasoning by cases.
If some resultE’ can be deduced frol; and, independently, frorB,, then — if it can be
shown thatF; v FEs holds —F must be true (without assumptions). Reading this axiom

4The need for rules which combine ‘not’ and ‘or’ is discussed in Section 3.3.
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in a goal-directed way: one way to conclufes to split the task into two cases and to
show that their disjunction always holds and tfatollows from either disjunct:
EyVEy, By - E; Eb H E

E

B

E

Notice that the necessary subsidiary proofs are shown in the hypothesis as sequents. This
rule gives rise to nesteflom /infer constructs in proofs (see the proof of the commuta-
tivity of ‘or’ on page 16 for an example).

Axiom 1.4 (- V-FE) Eliminating a negated disjunction is easy; neither of the disjuncts
can be true if their disjunction has been proved to be impossible:
= (El V Eg)

\% 1<:<2
—\EZ- -

T

Double negations cancel each other in this logic so that two simple inference rules are:

7 E
L ]

E _|_\E
- E

Axiom 1.5 (——-I/E) These two rules can be combined using a notation (a double
horizontal line) for bi-directional rules which shows that it is valid to make the inference
in either direction:

~—-I/E

—/

i

Other rules (notablyontr) are discussed when needed below.

Proving commutativity

The first formal proof to be undertaken in this section shows that ‘or’ is commutative
(F1 V Es B Es V E1). In contrast to the proof in the preceding section, this result and
its proof usek; for the propositions. The reader should check carefully the matches of
these identifiers with the (similar) identifiers in the inference rules. The proof is given on
page 16. Notice that this proof nestsm/infer constructs; as with the overall proof, the
inner constructs correspond to sequents and any steps within them to their justification.
Here, the innefrom/infer constructs represent subsidiary proofs of:

i+ B3V E;
Es - EyV E;
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from E; V By
1 from Ej

infer By V Ey \/—I(hl)
2 from Es

infer E5 V Ey \/—[(hZ)
infer Fo V By Vv-FE(h,1,2)

Commutativity of disjunctiony-comm

from (E1 V E3) V Ej3
1 from F; V Ey
1.1 from E;
infer By V (E2 vV Eg) \/—[(hll)
1.2 from Esy
121 E> Vv E3 Vv-1(h1.2)
infer £y V (Ey V E3) v-1(1.2.1)
infer By V (Ey V E3) v-F(h1,1.1,1.2)
2 from Ej
2.1 E, Vv Ej v-1(h2)
infer £y V (Ey V Ej) Vv-1(2.1)
infer By V (E2 \Y Eg) v-£(h,1,2)
Associativity of disjunction (first part)v-ass

These are then used in the final ‘or elimination’. Notice that a reference to the number
of an innerfrom/infer construct (e.g. 1) refers to the implied sequent; the hypotheses of
afrom/infer construct can be referred to (cf. justification of the infer in 1) as h1.
Since the commutativity proof is general i}, a derived inference rule is made
available for future proofs:
BV Ey

[Vecamn Fp -
Vecomm 2

2
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Derived rules can make proofs much clearer. Such derived rules are not, however,
theoretically necessary since it would always be possible to generate appropriate addi-
tional steps in place of the use of the derived rule. In practice, they are needed to create
a more natural level of reasoning.

Finding proofs
Another proof which relies heavily on- £ is that for the associativity of ‘or’:
(El V EQ) VEs+F EV (EQ \Y E3)

This proof is shown on page 16 and presents the opportunity to say more about the
structure of natural deduction proofs. Clearly, the outermost box corresponds to the
required sequent. Within thfeom /infer is a list of (numbered) lines which comprise a
proof. The line numbering reflects the nesting of proofs. An irfren/infer construct

is given one line number. In addition to its hypotheses written inftbw@ line, those

of any embracindrom /infer construct can be used. Thus the subsidiary proof labelled
‘line 1’ represents:

(El\/Eg)\/Eg, FyV Ey El\/(EQ\/Eg)

and the five lines contained in ifeom /infer construct, represent its proof: each line in
the proof corresponds to a true sequent.

The associativity proof on page 16 also provides an example in terms of which it is
possible to give some indication of how natural deduction proofs are discovered. The
overall goal is:

from (E1 V E3) V Ej3

infer By V (E2 \Y Eg) ?

Outer sequent

The question mark in the justification position of a line shows that it is yet to be proved.
When a result has to be proved based on an assumption which is a disjunction, it is worth
trying to prove the desired result from each disjunct (thus setting up afitgl. Here,

this case distinction heuristic gives rise to the nesting:
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from (E; V E3) V E3
3 from B, V Ey

infer By V (E2 V E3) ?

7 from Ej3
infer By V (E2 vV Eg) ?
infer By V (E2 V Eg) \/—E(h,3,7)

Split by cases

There is a problem with numbering the lines when constructing a proof since other steps
might have to be introduced. Here 3 and 7 are used to leave space since there might be
other lines to be inserted prior to 3 or between the nested constructs 3 and 7. There is no
necessity when searching for a proof to tackle the sub-goals in a fixed order; here, it is
quite permissible to tackle sub-goal 7 first. One advantage of writing — in the justification

— the applications of proof rules as though they were functions is that the applications
can be nested; thus, the justification for the conclusion of 7 can be filled in as follows:

from (El V Eg) V E3
3 from F; V By

infer By V (E2 vV Eg) ?

7 from Ej
infer By V (Ey V E3) V-1(Vv-1(h7))
infer £y V (Ey V E3) Vv-FE(h,3,7)

Completion of one case

This should be compared with the construct labelled 2 in the complete proof on page 16.
The only open step is now that labelled 3; since h3 is a disjunction, it is again subjected
to (case) decomposition by ‘or elimination’:
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from (E; V E3) V E3
3 from B, V Ey
3.2 from £
infer £y V (E2 V Eg) ?
34 from Es
infer £ V (EQ V Eg) ?
infer By V (Ey V E3) Vv-F(h3,3.2,3.4)
7 from Ej
infer £y V (Ey V E3) V-1(v-1(h7))
infer £y V (Ey V E3) V-FE(h,3,7)
Nested case split

The relationship of this stage of the discovery process to the associativity proof given on
page 16 should be clear.

One of the advantages of the natural deduction style is that the proofs can be read,
from the outer level, inwards. With practice, this also becomes a way of constructing
proofs. But the hints given are no more than heuristics: insight is needed in order to
discover good proofs.

Exercise 1.3.1 The proof on page 16 only justifies one direction of the bi-directional
associativity rule: prove the other half (i, vV (Ex V E3) & (E; V Ez) V E3). This
can be done either by aping the earlier proof or by using commutativityo(nm) and

the existing result.

Derived rules

Combining the result of Exercise 1.3.1 with the proof on page 16, the two parts of the
associativity proof justify the following (bi-directional) derived rule.

Lemma 1.6 (V-ass) Disjunction is associative:
BV Ey) V E:
Famp 2

Ey v (EQ V Eg)
Having established associativity, it is now possible to omit parentheses in expres-
sions involving ‘or’ (at the same level). Thus, rather than write either:
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(Er V Ep) V Ej

or:
Ey Vv (Ey V E3)

it is permissible to write:
EiV EyV Ej

Furthermore, the ‘or’ introduction and elimination rules can be generalized as follows:

V-1 b 1<i<n
EyV---VE, — ~

By 0By

BE\V--VE,; B+ E;--;E +E

V-E 5

~(BLV -V Ey)
—~ B

- V-FE 1<i<n

Many of the results established in this section are familiar from Section 1.1. It must,
however, be realized that the proofs here are in no way argued from the truth tables: the
formal proofs are conducted purely by playing the game with symbols. The certainty of
correctness comes, here, from the fact that the game can be mechanized — a program can
be written to check such proofs.

Defining conjunctions

Rule 1.7 (A-defn) The ‘and’ operator can be introduced to the logic by the definition:
- (—\ Ey V= EQ)

A-defn |
F1 N\ Ey

Notice that this is a bi-directional rule. Having defined ‘and’, rules for its manipulation
can be derived.

Lemma 1.8 (A-I) Thus a proof is given on page 21 of:

= Ey; By
Ey N Ey
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from Eq; Es

1 - B = =-I(h)
2 - By - —I(h)
3 - (= E; V 1 Ey) - V-1(1,2)
infer By A Es N-defn(3)

Introduction of conjunctionA-1

from ﬂ(El/\EQ); -FE+F E;,=-FE - FE

1 - (= Ey V- Ey) A-defn(h)
2 -V Ey —|—|—E(1)
infer £ V-FE(2,h,h)

Eliminating negated conjunctions:i A-E

Here, the proof discovery process uses the only rule available to tackle the conclusion;
this gives rise to the sub-goal at line 3. Line 3, in turn, matches-thel rule which
gives rise to sub-goals 1 and 2; these are obvious candidates ferthErule.

Exercise 1.3.2 ProveE; A E> - E; for1 <4 < 2. (Hint: expand the conjunction and
then use- vV-F and——-F).

Exercise 1.3.3 Prove— E; = —(E; A\ Es) for 1 < i < 2. (Hint: begin by using/-I1
and——-1).

More proofs about conjunctions

Exercises 1.3.2 and 1.3.3 justify the derived rules known-dsand— A-1.

Lemma 1.9 (— A-E) The next rule to be justified (see page 21) is:

ﬂ(El/\EQ); -FE+ E;,-FE - FE
- A-E E

Notice how thev- E uses the two sequents given in the overall hypothesis.
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It is important to observe that the inference rules must not, in general, be applied to
inner expressions; the hypotheses of deduction rules are intended to match whole lines in
the proof (not arbitrary sub-expressions thereof). Ignoring this rule can result in invalid
arguments. An exception to this restriction is that the definition rules (e.dgfn)
can be applied to arbitrary sub-expressions. (There are also special substitution rules —
e.g.V-subs — derived below.)

The next two lemmas can both can be justified by repeated usetbandA-1.

Lemma 1.10 (A-comm) The commutativity of ‘and’:
Ei N Es

(Recamin |-p
[Fecomm |

2

Lemma 1.11 (A-ass) The associativity of ‘and’:

I AN (Eg VAN Eg)
A- ‘
s (Ex N E2) AN E3

As with disjunctions, this justifies the use of the more general rules:

Ey; o5 By
iy yenyy:s

- F; 4
= A-1 —\(El/\/\En) 1<i<n

E A---NE,
N-E 1<i<n
E;

-(EAN---NEy); By F E; - mE, F E
FE

“A-E

There are many different ways of proving more advanced results. Although brevity
is not itself the main touchstone of style, short proofs are often clearer than long ones.

Lemma 1.12 (A-subs) A very helpful inference rule which provides a valid way of
applying rules on inner sub-expressions is:

~ous E\A---ANEAN---NE,

Its justification applies\-E n times, the sequent from the hypotheses of the rule, and
then n applications ofA-1. This rule can be used as, for examplesubs(Vv-I) to
deduce:
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from Ey V E3 A B3

1 from E;
1.1 B v By v-I(hl)
1.2 Ey Vv Ej Vv-1(h1)

infer (E1 \Y EQ) A (El V Eg) /\—[(11,12)
2 from Fs N Ej

2.1 (El V EQ) A Es N-subs(V-T)(h2)
infer (B} V Ex) A (Ey V E3)A-subs(V-1)(2.1
infer (E1 V Eg) VAN (E1 vV E3) \/-E(h,l,Z)

Distributivity of ‘or’ over ‘and’: vV A-dist

FEyNEy N Es F El/\(EQ\/E)/\E3

Lemma 1.13 (V-subs) Similarly, there is a derived rule:

—— BV VE NV E; B FE
[v-subs] ELV---VEV---V E,

Its justification uses/-1 in n — 1 subsidiary proofs; with the sequent in one; followed
by a finalVv-E step.

Lemma 1.14 The left distributive laws of propositional calculus are:

FyV Ey N\ B3
V A-dist |

(El V EQ) A (El Vv Ed)

El/\(EQ\/Eg)
EiNEyV By N Es

AV-dist |

The general pattern of these proofs is similar; an example is shown on page 23. Distri-
bution from the right is easy to prove — it relies on left distribution and commutativity.

Exercise 1.3.4 Prove(E; V Ex) A (E1 V E3) = Ey V (Ea A E3). (Hint: remember to
set up the final/- F).

Exercise 1.3.5 ProveE; A (E2 V E3) & Ey A Ey V Ey A Es. (Hint: useA-E to find a
disjunction on which to base an E).

Exercise 1.3.6 ProveEy AN Es V F1 A Es B Ep A (E2 V Eg)
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de Morgan’s laws

Some of these elementary proofs are surprisingly lengthy but, having built up useful
derived rules, proofs of more interesting results do not get significantly longer. In par-
ticular, the proofs of de Morgan’s laws are very short.

Exercise 1.3.7 Prove the results necessary to justify de Morgan’s laws.

—|(E1\/E2)
- F1 AN Ey

V-deM

—|(E1/\E2)
-k V- Ey

N-deM

Remember that both directions must be proved for bi-directional rules.
Defining implication

Rule 1.15 (=-defn) Implication can be defined:
- F VvV Ey

E1:>E2

A key result about implication is known asodus ponensts proof (see below) relies
on a contradiction rule.

Axiom 1.16 (contr) The basic inference rule used is:
Ey; — By

2

The contradiction dontr) rule only makes sense in an environment with other assump-
tions: if, under some assumptions, bdihand its negation can be deduced, then there
must be some contradiction in the assumptions and anything can be deduced.

Lemma 1.17 (=-FE) The law known asnodus ponensan be viewed as a way of
eliminating implications:
E1 = EQ; E1

=_E 5

The proof ofmodus ponenis on page 25. Notice how the final step of the construct 3
uses the contradiction rule.

In classical propositional calculus, it can be shown thdiifcan be proved under
the assumptiort;, (i.e. By + E»), then + E; = FE5 holds. This is called the
‘deduction theorem’. Section 3.3 explains why — in order to handle partial functions —




1.3 Prootfs in propositional calculus 25

from I EQ; By

1 - FEV Ey = -defn(h)
2 E h
3 from = E;

infer Eo contr(2,h3)
4 from Es

infer Eq h4
infer Fo v-£(1,3,4)

Modus ponens=--F

the logic used in this book does not admit all truths of classical logic. In the case of the
deduction theorem, only a weaker form is valid which relies on the assumption of the
‘excluded middle’ forEy:

EiV - FE;
This claim is written — with delta standing for ‘defined’ — a$F; ).

Lemma 1.18 (=-1) The deduction theorem (here) is:
Ey = Es; 6(Ey)

C}:%I Fy = Ey

As the name of the inference rule suggests, it can be used to introduce implications; its
justification is shown on page 26. Line 2.1 is justified by showing the use of the inference
rule which is given in the hypothesis.

There is (literally) no end of results which can be established.

Lemma 1.19 An interesting result is:

C}Ll 19 iV Ey = Ej
: (El = Eg)/\(EQ = Eg)

Notice that, since no conveniently short name is available for this rule, ibhigdeen
given a Lemma number (L1.19) to which subsequent proofs can refer.

Lemma 1.20 Another result used below is:

B = (B, = E
L1.20; ! ( 2 3)
EiNEy, = Ej
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from E1 F EQ; 5(E1)
1 Ey Vv -E h, o
2 from F;
2.1 B h, h2
infer = Ey V Fo v-1(2.1)
3 from = E;
infer = By V By \/—I(h3)
4 -EVE V-FE(1,2,3)
infer By = F» =-defn(4)
Deduction theorem=--1

Defining equivalence

Rule 1.21 (&-defn) The final operator in the logic is also introduced by a definition:

(E1 = EQ)/\(EQ = El)
E & Es

&-defn |

An extensive set of derived rufes given in Appendix C; they are arranged for easy
use rather than in the order in which their proofs have been given. It is legitimate to use
any of these rules in proofs of results in subsequent sections.

Exercise 1.3.8 The proofs that certain vacuous implications hold are straightforward;
prove the results necessary to establish:

- B

Es
1 = F»

Swct}

Exercise 1.3.9 Prove the result necessary to establish that the contrapositive of an im-
plication holds:

F = E

=-contrp —|E2 = —|E1

5The full axiomatization is given in th&acher’s Notes
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Exercise 1.3.10 Prove Lemmas 1.19 and 1.20.

Exercise 1.3.11 Prove the results which justify:
FEy N By

g e
ey mEiEial R
. E1 g E2

E1 ~ EQ
- E|
FiNEy NV -~ FEy AN Ey

A& -dist B A (E2 s E3)
(E1 A EQ) = (El A Eg)

Generate a counter-example (truth values) which shows that the following sequent does
not hold:

(El /\Eg) = (El /\Eg) F Ei A (E2 = Eg)
Prove the result to justify:
El \ E2 - E1 V E3

V<& -dist BV (Ez = Eg)

Exercise 1.3.12 (*) Write inference rules for the ‘exclusive or’ operator of Exer-
cise 1.1.5 on page 8 and develop a theory which includes some distribution properties.
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2

Reasoning about Predicates

In science nothing capable of proof ought to be
accepted without proof.
Richard Dedekind

This chapter extends the logical notation of the preceding chapter to cover predicate
calculus. It begins by introducing ways of building interesting logical expressions from
truth-valued functions. Section 2.2 describes the essential extension (quantifiers) to the
logical notation and the final section gives an overview of the relevant proof methods.

2.1 Truth-valued functions

Signatures

A functionis a mathematical abstraction of a familiar concept: a mapping between two
sets of values. The domain of a function is a set of values to which it can be applied;
applicationof a function to a value in its domain yields a result value. For example
square(3) = 9 and gcd(18,42) = 6. The value3 is in the domain of the function
square and applyingsquare to 3 yields the resul®; in such an applicatior3 is also
referred to as thargumentof the functionsquare. The functionged (greatest common
divisor or highest common factor) is applied to pairs of numbers.

For any function, it is useful to record itomain(i.e. the specified set of values
to which the function can be applied) arehge (i.e. the specified set of values which
contains the results of function application). Tignatureof a function is written with
the domain and range sets separated by an arrow:

29
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square: Z — N

The domain of a function of more than one argumeésigiven as a list all of the argument
sets separated by crosses.

gcd: N1 X N1 — N1
Where the special symbols name the following (infinite) sets:

Ny = {1,2,...}
N=1{0,1,2,..}
z={..,-1,01,...}

Notice that the signature uses the names of#tisof values (e.g. the integerg, for the
domain ofsquare; the natural numbers$y, for its range); the values to which a function
is applied arelement®f the set shown as the domain and the resultel@ment®f the
set shown as the range.

Some functions are used so frequently that it is convenient to avoid parentheses
when they are applied to their arguments. This is particularly appropriate if algebraic
properties become more apparent by writing functiongerators Thus 2 + 3 is
preferred to add(2,3) oreven +(2,3) and the use of infix operators makes the distributive
law:

ix(j+k)=ixj+ixk
clearer. The signature of such functions might be written:
add: ZxZ —Z

But they will be used in infix operators.
As well as the obvious arithmetic operators, the examples in this chapter use the
modulus operator which yields the remainder after integer division:

7mod2=1
27 mod 3 =0

Its signature is:
mod: N x N; — N

The decision as to whether a particular operator should be presented in infix stydd (j)

as opposed to writing it as a function with parentheses around its argumentsi(;))

is purely one of convenience; similarly, there is no deep significance in the adoption of
some special symbol as opposed to a keyword (irsdhe serif fount).

'Such functions can be viewed as taking one argument from a Cartesian product.
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A truth-valued functioris one whose range is the Boolean, or truth value, set. The
function which characterizes the prime numbers has the signature:

is-prime: Ny — B

This truth-valued function is defined formally in Section 2.2.
An expression which contains the application of a truth-valued function to an ele-
ment of its domain forms a proposition. Thus:

is-prime(7)

is-prime(23)

- is-prime(8)

is-prime(7) V is-prime(8) V is-prime(9)

are true propositions.

Defining functions

Functions can be defined in terms of already understood functions (or operators) and
constants; in addition, the expressions in such direct definitions use parameter names
in an obvious way. For example the signature and direct definitiasy@ire can be
written:

square :Z — N
square(i) 2 ixi

In order to distinguish the direct definition of a function from propositions which might
involve equality (e.gsquare(2) = 4), a Greek deltad) is combined with the equality
sign to give the definition symbol4 ).

In addition to known functions, certain other constructs are available to form direct
function definitions. For example, conditional expressions can be used in an obvious
way to write:

abs :Z — N
abs(i) £ ifi <0 then —i else i

Another simple device is to udet to define a value. Thus the absolute value of the
product of two integers could be found by:

absprod :Z x Z — N
absprod(i,j) 2
let k=147 in
if £ <0 then —Fk else k
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Extensions to the language for direct function definition (e.g. cases, recursion) are intro-
duced below as they are required.

Such direct definitions can be written for truth-valued functions. Thusndd is
understood, a truth-valued function (operator) which indicates whether its first argument
divides its second without remainder, can be defined:

divides :N1 x N — B
divides(i,7) & jmodi=0

But, since this is useful as an infix operatdiyides(i, j) is writtens divides j.
Other examples include:

is-even :N — B
is-even(i) £ 2 divides i

1s-odd :N — B
is-odd(i) £ —is-even(i)

is-common-divisor :N x N x Ny — B
is-common-divisor(i,j,d) £ d divides i A d divides j

Notice how these definitions are built up on previously defined functions. The separation
and naming of separate concepts plays an important part in the construction of large
(understandable) specifications.

Values (in its domain) for which a truth-valued function yietdse, are said tsatisfy
the function. Thus 7 satisfies-prime, 6 satisfiesis-cven, and the triple of values
(42,18,6) satisfiess-common-divisor.

One way in which a free identifier in a proposition becomes bound to a value is by
the application of a function to some value. Thus:

less-than-three :N — B
less-than-three(i) £ i <3

is a definition of a truth-valued function whose applicatior2 trompletes the proposi-
tion; it evaluates tarue and thus is said to satisfyess-than-three.

Exercise 2.1.1 Define a truth-valued function:

is-hexable : Z — B
is-hexable(i) &

which determines whether a number can be represented as a single hexadecimal digit.
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Exercise 2.1.2 Define a truth-valued function which checks if its (integer) arguhent
corresponds to a leap year:

is-leapyr :N — B
is-leapyr(i) 2

Exercise 2.1.3 Define a truth-valued function which determines whether its third argu-
ment is a common multiple of its other two arguments. (Hint: remember to use other
functions in order to make it easier to understand.)

Exercise 2.1.4 It is often useful to employ an inverse operation to specify a function.
This topic is covered in Chapter 3, but the reader should be able to see how a ‘post-
condition’ can be used to relate the inputs to the outputs of a function. Thus:

post-sub(i,j, k) £ i=j+k

is a truth-valued function which can be used to check that i — j. Define (without
using a square root operator) a truth-valued function:

post-sqrt :N x Z — B
post-sqrt(i,r) -2

such that bothpost-sqrt(9, 3) and — post-sqrt(9,4) are true (decide what to do about
expressions likgost-sqrt(9, —3) andpost-sqrt(8, 7)).

Exercise 2.1.5 Define a truth-valued function which determines whether a quotient
and remainder represent a valid result for division ooy ;. Complete (without using
division):

post-idiv :N x Ny x Nx N — B
post-idiv(i,j, q,r) 2

such that:

post-idiv(7,2,3,1)
= post-idiv(7,2,2,3)

Exercise 2.1.6 (*) Some indication of the variety of ways in which inference rules can

be used is given at the end of Section 1.2 by the alternative presentation of a concrete
syntax. Itis also possible to present the type information as inference rules rather than
in function signatures. Create some inference rules for this purpose and show how they
can be used to infer the types of expressions.

Zgtrictly, the simple algorithm should be limited so as to avoid, for example, difficulties of the revision
of the calendar in September 1752: such issues are ignored here.
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2.2 Quantifiers

The existential quantifier

The language for building logical expressions can be extended by including quantifiers.
Their presentation in this section differs from the way in which the propositional op-
erators are introduced in Section 1.1: there, a rich set of equivalences and a simple
evaluation mechanism (i.e. truth tables) made it interesting to study the propositional
operators with arbitrary logical expressions; here, the quantifiers are discussed with spe-
cific truth-valued functions and only a limited set of derived rules is developed for use
in subsequent chapters.

Quantifiers extend the expressive power of the logical notation but can be motivated
as abbreviations. The disjunctiag-prime(7) V is-prime(8) V is-prime(9) can be
written:

3i € {7,8,9} - is-prime(i)
This quantified expression can be read as:

there exists a value in the sgt, 8,9} which satisfies the truth-valued func-
tion is-prime

The expression consists of axistential quantifie(d); a bound identifier(i); a con-
straint (¢ {...}); and, after the raised dot,ldy. Any free occurrences of the bound
identifier within the body become bound in the quantified expression. All such occur-
rences refer to the bound identifier. Quantifiers thus provide another way of defining a
context for free identifiers.

For finite sets, an existentially quantified expression can be expanded into a disjunc-
tion with one disjunct for each member of the set. This is a useful reminder talraad
‘there exists one or more’. Thus:

3i € {11,12,13} - is-odd(1)
is true because it is equivalent to:
is-odd(11) V is-odd(12) V is-odd(13)

The reason that quantifiers extend the expressive power of the logic is that the sets in
the constraint of a quantified expression can be infinite. Such an expression abbreviates
a disjunction which could never be completely written out. For example:

Ji € Ny - is-prime(i)
or:

Ji € Ny - —is-prime(2° — 1)
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express facts about prime numbers.

One way of establishing the existence of a quantity with a certain property is by ex-
hibiting one. Thus the truth of the preceding existentially quantified expressions follows
from:

is-prime(7)
—is-prime(28 — 1)

To be consistent with the position about the verification of existentially quantified
expressions, any expression which is existentially quantified over the empty set must be
false. Thus, for any truth-valued functign

—Jdze{} p(x)

Existentially quantified expressions can be used in definitions of truth-valued func-
tions. Thus the familiar ‘less than’ relation on integers (normally written j) could
be defined:

lessthan :Z xZ — B
lessthan(i,j) 2 JkeNi-i+k=j

The preceding section usesiod as a given function. Although further notation is
needed to provide a definition, a useful property can be stated:

imodj=r = dmeN-mxj+r=1

Many textbooks on logic do not use the constraint part of quantified expressions.
This is acceptable where the whole text is concerned with one type of value. Program
specifications are, however, frequently concerned with many different types of values
and it is then wise to make the constraint explicit in order to avoid confusion (e.g. claim-
ing that no value can be doubled to yield an odd number and then being confronted
with 1.5).

Universal quantifiers

Just as some disjunctions can be viewed as existentially quantified expressions, a con-
junction such as:

is-even(2) A is-even(4) N is-even(6)
can be written as aniversally quantifieegxpression:
Vi€ {2,4,6} - is-even(i)

Here again, the increase in expressive power comes from universal quantification over
infinite sets. For example:
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Vi € N - is-even(2 * 1)

Vi € N-is-even(i) = is-odd(i+ 1)

VieN-VjeN;-0<(imodj)<j

The truth-valued functionis-prime which is used above can be directly defined by
using quantifiers. The general idea of a prime number is one whose only divisdrs are

and the number itself. This is easy to express but care is necessary with the end cases:
both1 and2 have the stated property. Disallowing the former, but not the latter, leads to:

is-prime :N — B
is-prime(i) 2 i #1AVd €N;-ddivides i = d=1Vd=i

The question of universal quantification over the empty set must be considered. Itis
necessary to adopt the position that, for any

vz c{}-p(z)

is true. The intuition behind this is less obvious than with the existential quantifier —
although one could argue that there could not be any counter-examples that could make
p(x) false in the empty set. One could also argue as follows — suppose:

Ve e X - p(x)

were true for someX and p, then removing one element froiki should not change

the value of the quantified expression even when the last element is removed. More
convincing than either of these general arguments is seeing how conveniently this end-
case works in practice. For exampie,prime could be defined:

is-prime(i) 2 i #1AVd €{2,...,i— 1} —(d divides 1)
Where:
{2,...,i—1}

is the set of integers which are greater than one and less tirathe case that is one
or two, this set is empty and the truth of the quantified expression over the empty set
gives the required result.

Multiple quantifiers

Where they are all the same, multiple quantifiers and bound sets can be combined. Thus:
VieN-Vj €N-p(i,j)
VjieN-VieN-p(i,j)
VieN,jeN-p(i,j)
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all have the same meaning. In fact, where a logical expression contains variables which
are not bound, they are considered to be bound by a universal quantifier at the outermost
level. Thus, where the types are obviaus: i + 1 can be considered to be shorthand
forVieN-i <i+1.

It is possible to build up expressions using both existential and universal quantifiers.
For example:

Vi,jeN-1<j = FkeN-i+k=j
Vie N-3j € N-i <jAis-prime(j)
Ji,j € N-Vd € Ny - is-common-divisor(i,j,d) = d=1

all express true facts about natural numbers. It is important, however, to realize that
inversion of differing quantifiers can change the truth of an expression. Consider:

VieN-JieN-i=j
This is clearly true, whereas:
JieN-VjeN-i=j
is false. In general:
(FieN-VjeN-p(i,7)) = (VjeN-JFieN-p(i,7))

is true but the right-to-left implication is not.

As with the priority of propositional operators, it is possible to reduce the need for
parentheses by adopting some conventions. The body of a quantified expression is con-
sidered throughout this book to extend as far to the right as possible — thus:

Vm,neN-(m=nV (3peZ-(p#0Am+p=n)))
can be written:
YmneN-m=nVIdpeZ-p£0Am+p=n

The bound variables in a closed quantified expression are like the variables in a
program in that they can be changed (systematically) without changing the meaning of
the expression. Thus, the preceding expression is equivalent to:

Vi,jeN-i=jVvIkeZ - k#0Ni+k=j

When changing bound variables, it is necessary to ensure that the meaning is not changed
by using an identifier which already occurs free.

Given that universal and existential quantification are (respectively) generalized con-
junctions and disjunctions, the following forms of de Morgan’s laws should come as no
surprise:
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Vze X -p(z)) & —~(Fre X —p(x))

(Ve X -p(x)) & (ze X -px))

These laws permit some simple equivalence proofs to be conducted:

(Vi € Ny -3j € Ny -i < j Ads-prime(5))

& 1 (FeeNy-— (35 € Ny-i <j Ads-prime(j)))
< = (FieN;-VjeN-—(i <jAis-prime(])))
& 2 (FieNy-VjeNy-j <iV-is-prime(j))
& —(3i €Ny -V €Ny -is-prime(j) = j <1)

Having accepted that corresponds to ‘there exists one or more’, there are occasions
where it is useful to be able to express ‘there exists exactly one’. This is writteéh as
For example:

Vi,7 € Ny -

is-prime (i) A is-prime(j) N i # j
= 3Jl'd € Ny - is-common-divisor(i,j, d)
This quantifier:

ANz e X p(x)
can be defined as an abbreviation for:

JreX -ple)ANVye X -p(y) = z=y

All of the laws of the propositional calculus (cf. Section 1.3) remain true when gen-
eral logical expressions (i.e. including quantified expressions) are substituted fgr. the
The language which is now available (propositional operators, truth-valued functions
and quantified expressions) is known ashedicate calculus

Exercise 2.2.1 Which of the following expressions are true?

JieN-i=i
VieN-i=i
FieN-i#i

di,5 €Ny -imodj > j

3Strictly, in this book, only the first-order predicate calculus is used. This means that variables are only
quantified over simple values like natural numbers — names of truth-valued functions are not quantified.
It is observed above that the truth of sentences in the propositional calculus is decidable (cf. checking by
truth tables). Although itis less obvious, there are semi-decision procedures for the pure predicate calculus;
the truth of sentences in the predicate calculus with interpreted functions and equality is, however, not
decidable.
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Vi€Z-3jezZ i+j=0
JjezZ-VieZ -i+5=0

Vi, j €EN-i#j
VieN-JjeN-j=¢—1
VieN-JGeN-i<j<2xiAis-odd(j)
Vi € Ny - —is-prime(4 * 7)
VieN-3j € N-j <3 Ads-leapyr(i + 7)

AieN-i=1
NieZ-ixi=1
Exercise 2.2.2 Express, using quantifiers, the fact that there is not a largest integer.

Exercise 2.2.3 Define — with quantifiers (but without using ordering operators) — a
truth-valued function corresponding to % j):

greatereq :Z x Z — B
greatereq(i,j) 2

Exercise 2.2.4 The function,sign, yields a value in the set:

{-1,0,1}

depending on whether its argument is negative, zero, or strictly positive. Write a defini-
tion and record some properties afmn.

Exercise 2.2.5 (*) An extended modulus operator can be applied to negative (as well
as positive) numbers. There are various forms of this operator. Mathematically, it is
convenient to ensure that:

mmod n+ (m-+n)xn=m

where— is an integer division operator. Define this operator.

2.3 Proofs in the predicate calculus

The development of the proof rules for the predicate calculus can be based on one of
the quantifiers and the notion of equality. In this respect the way in which the theory
is presented is very similar to that of Section 1.3. There are, however, some technical
problems with free variables and their substitution which make the development of the
derived rules somewhat more difficult than for the propositional calculus. Relatively few
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rules about quantifiers are needed in the chapters which follow. This section develops
those which are required; a wider-ranging set of rules is given in Appendix C.

Substitution

A preliminary to the presentation of any rules is the establishment of some conventions
on the use of letters. Letters at the end of the alphahett€.) are used for variables.
The convention to usé&; for logical expressions is maintained, but is extended to show
specific free variables; thus(z) has the variable occurring free. It is explained above
that terms are expressions (suct2as3); the letters — possibly subscripted —is used to
denote terms.

An essential notion is that of syntactic substitution. The expresgitfyz) is
formed by substituting all free occurrences of the variabley the terms. Thus 7
can be substituted far as follows:

(x=3+4)(7/z) = (T=3+4)
But the restriction that this syntactic operation only affects free variables ensures that:
VeeX -z=2)(7/z) = VeeX z=uzx)

There is a more ticklish problem with substitution concerningddugtureof a variable.
In making the substitution:

(y=10VvVz eN-z#10 = z#y)(z/y)

the change fromy to z should not cause a confusion between the free and bound vari-
ables. In such a case, it is sufficient to remember that bound variables can be systemati-
cally changed so that:

VeeN-z#£10 = z#y
and:
VieN-i#£10 = i#y

are equivalent. In a case where a free variable would be captured by a substitution, the
danger is avoided by preceding the substitution with a suitable systematic change to the
bound variable in question. Thus, the substitution above might yield:

r=10VVieN-i#£10 = i#=x

Although these technicalities of substitution are important, the need to rely on them can
be minimized by a careful choice of variables.
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Reasoning about quantifiers

It would be possible to take either the existential or the universal quantifier as basic and
define the other in terms of the basic one. Having used the disjunction as one of the
basic forms for the presentation of the propositional calculus, it is natural to take the
existential quantifier first. An obvious example of the rule for the introduction of this
guantifier is:

7 € Ny, is-prime(7) b 3i € Ny - is-prime(i)

This states that knowing the type of the term (7) and knowing that it possesses a par-
ticular property {s-prime) establishes that there exist (one or more) values of the type
which satisfy the property.

Axiom 2.1 (3-1I) In general:

If the reader compares this rule with that for/, it can be seen as a natural generaliza-
tion. The conclusion of the proof rule is essentially a disjunction over all of the elements
of X'; the second hypothesis establishes that the property does hold for some element of
X. (Notice that the first hypothesis establishes that the(sistnot empty.)

The form of thev-E rule shows that a conclusion which follows from a number of
expressions also follows from their disjunction. The general idea ofitherule is the
same. The need to show th&tfollows from each possible value i is avoided by a
subtle use of free variables.

Axiom 2.2 (3-E) Thus:
- dee X -E(z); ye X,E(y/z) b Ey

3- is arbitrar

The restriction thay is arbitrary requires that it is a variable which has not occurred in
earlier proof steps; it should also be the case thdbes not occur as a free variable in
E;. These restrictions prevent invalid inferences.

A comparison with the development of the propositional calculus should again sug-
gest the need for rules concerning negated forms of existentially quantified expressions.

Axiom 2.3 For the existential quantifier, these rules are:

reX F —-E(z)
[=3-1] - (3x € X - E(x))

“(dre X -E);,seX

Rl ~E(s/)
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The relationship between these rules and those for disjunction should be obvious when
existential quantification (over finite sets) is viewed as an abbreviation for disjunction.

Defining universal quantification

Rule 2.4 (V-defn) The definition of the universal quantifier is given by the rule:
- (3zr e X --E(x))

V-defn |
IE Ve e X - E(z)

This gives rise to the two generalized forms of de Morgan’s law.

Lemma 2.5 (3-deM) For existential quantifiers:
-~ (Jz e X-E(x))
Ve e X -—E(x)

I-deM

Lemma 2.6 (V-deM) For universal quantifiers:
- (Vx € X - E(x))
dr e X - - E(x)

V-deM

These can be proved as derived rules.
Given the basic definition, it is possible to derive the introduction and elimination
rules for the universal quantifier.

Lemma 2.7 (V-1)
I eX + E(x)
— Vz € X - E(x)
is proved on page 43.

Lemma 2.8 (V-F)
Vee X -E(z); se€ X

[v-£] E(s/x)

is justified on page 43.

All of the rules for universal quantifiers are natural generalizations of the correspond-
ing rules for conjunctions.

Lemma 2.9 presents some significant derived rules concerning the distribution of the
two quantifiers over conjunctions and disjunctions.

Lemma 2.9
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fromz € X  p(z)
1 fromzelX

1.1 p(z) h,h1

infer —\—‘p(I) —|—|—I(1.1)
2 —dzeX- -px) -3-1(1)
infer Vo € X - p(x) V-defn(2)

Universal quantifier introduction-1

fromVz € X -p(z);s € X

1 —-3dzeX- —px) V-defn(h)
2 —-p(s/x) -~3-E(h,1)
infer p(s/x) - —-E(2)

Universal quantifier eliminationv-E£

' Jz € X - Ey(z) V Ex(x)
@ (Fz e X -Ei(z)) vV (Fz € X - Ex(x))

A Jz € X - Ey(z) A By(z)
(3 A-dist | 3z € X.El(x))i\(ﬂx €2XE2(93))

— (Vz € X - Ei(z)) V (Vo € X - Ex(2))
@ V.TGB(-El(l‘)\/EQ(l‘) :

— (Vz € X - Ei(2)) AN(Vz € X - Ex(x))
@ V.TGX-E1($)/\E2($)

The reader should understand why the converses/ofdist andVV-dist do not
hold. Other useful derived rules are presented in Appendix C; The full axiomatization is
given in theTeacher’'s Notes

There are fewer exercises here than in Chapter 1 since subsequent sections provide
ample examples of the use of the rules, and the development of the predicate calculus
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itself is not the immediate object.

Exercise 2.3.1
Prove the derived rules fefv-1 and—Vv-E:

s€ X; 7 E(s/x)
[ow-1] -~ (Vz e X - E(x))

~(Ve e X - Ei(z)); ye X,~E(y/z) b By

-V-E
Es

y is arbitrary

Exercise 2.3.2 (*) Prove the derived rules fat V- dist, 3 A-dist, VV-dist andV A-dist
(remember to prove both forms of bi-directional rules).
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Functions and Operations

The advantages of implicit definition over
construction are roughly those of theft over honest
toil.

B. Russell

Several functions are defined above in a direct way. In this chapter, an implicit specifica-
tion style for functions and programs is introduced. Such implicit specifications abstract
away from the detail of how a result is to be computed: they document only the required
properties of the result. Being a standard part of mathematics, it is functions which are
treated in the first section. This mathematically familiar area provides the opportunity to
illustrate the fact that implicit specifications can often be more concise than implementa-
tions (i.e. direct definitions). The second section of this chapter is concerned with proofs
that direct definitions satisfy implicit specifications. In order to keep the reliance on new
concepts to a minimum, most of the examples are concerned with natural numbers and
their operators. Later chapters of the book extend the range of data types. Section 3.3
reviews the reasons why the logical system which is used in this book is weaker than
classical logic as presented in most textbooks: the system for dealing with partial func-
tions is explained in detail. (Some readers may choose to read only the first part of
this somewhat technical section.) The final section of this chapter extends the implicit
specification notation to handle programs.

45
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3.1 Implicit specification of functions

Reasons for being implicit

An implicit specificatiorstateswhatis to be computed whereas the direct definitions in
previous chapters sholow a result can be computed. (In programming terms, the di-
rect definition is being treated as an implementation which has to be shown to satisfy the
implicit specification.) There are several reasons for wanting to record an implicit spec-
ification. Perhaps the most obvious reason is that the specification is often significantly
shorter than a direct definition. For example, a direct definition of, say, the Newton-
Raphson approximation algorithm is much longer and harder to understand than stating
that the result of a square root function should be such that when squared it differs from
the argument by at most some tolerance.

It must, however, be conceded that such convenient algebraic properties do not al-
ways exist. Because of the way in which UK income tax is calculated, for example,
even the specification of a function which determines tax deductions is very algorithmic.
However, implicit specifications are often significantly more concise than implementa-
tions, and thinking in terms of specifications leads one to capitalize on this conciseness
whenever possible. For significant problems there is a spectrum of specifications ranging
from the very abstract to something which essentially describes the implementation. The
full range of this spectrum becomes clear when data objects are discussed in subsequent
chapters. One advantage of finding a specification far from the algorithmic end of the
spectrum is that it may expose a range of alternative implementations.

An implicit specification is a way of recording a functional requirement without
commitment to a particular method of calculation. Another attribute of such a specifica-
tion is that it can state the properties of the required result in a way which is understand-
able to the user. For example, the user of the square root function can be expected to be
interested in the property of the final answer and to wish to leave the details of the cho-
sen implementation to the developer. There is, however, an attendant danger in implicit
specification. Taking the same example again, the property as stated above would allow
for either the negative or the positive root to be generated. This may be what is required;
if not, it is easy to see how additional properties can be stated. An implicit specification
must be such thall of the properties on which users wish to rely are consequences of
the specification: the user should rely only on the specification (and its consequences).

There are two remaining arguments for recording implicit specifications. The points
are more subtle but, in practical applications, very important. Whereas any particular
algorithm will yield a specific result, a specification can state a range of acceptable
results. Square root (over real numbers with a tolerance) provides a good example.
Furthermore, implicit specifications provide an explicit place for recording assumptions
about arguments. Many computer programs are designed under assumptions on their
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inputs and operating environment. The square root example could again be pressed into
service by saying that its argument must be a positive real number (if the result is also to
be a real number); but more interesting examples below illustrate how assumptions often
concern the relationships between values. A specification can provide a way of making
explicit those assumptions (pre-conditions) which are otherwise hidden consequences of
an algorithm.

Format of implicit function specification

A function which is to yield the maximum number from the set of numbers to which it
is applied gives:

maxs({3,7,1}) =7
Its specification might be written:

maxs (s:N-set) N

pre s # { }

post re sAVies-i<r

The first line of this specification defines the signature of the function. The syntax here
is slightly different from that of Chapter 2: in implicit specifications the style is inten-
tionally closer to that of programming languages like Pascal. Names are given to both
arguments and results. The names are followed by their types. ntlstakes a finite
set of natural numbers as its argument (Chapter 4 presents set notation in detail) and
yields a single natural number as result. The names given are the link to the pre- and
post-conditions: the identifiers used within these two truth-valued functions refer to the
values of the objects which are named in the first line.

The pre-conditionof a function records assumptions about the arguments to which
it is to be applied. For this example, its type is:

pre-maxs: N-set — B

Notice how the keyworgre is used in the specification but that a name is formed (in an
obvious way) for the pre-condition if it is to be used out of context.

The pre-condition shows thatazs is a partial functionwhich is required to be
defined only when it is applied to non-empty sets. The post-condition requires that the
result must be a member of the argument set and that no number in that set exceeds the
result. The type of the post-condition for this example is:

post-mazxs: N-set x N — B

Notice that:
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pre-mazs({3,7,1}) < true
post-mazs({3,7,1},7) & true

Writing a direct definition ofmazs would pose a number of problems which are
worth considering so as better to appreciate the implicit specification. The first problem
would be one of naming. To write:

mazs(s) 2

means that no name is available for the résati that multiple properties cannot be
written. One indirect way to provide such a name is to write:

maxs(s) =r = resAVies-i<r

This is, in fact, an indication of the origin of post-conditions. A direct definition can be
given by using recursion:

mazs(s) 2
let 2 € s in
ifcards =1
then ¢
else max (i, maxs(s — {i}))

But this introduces a number of problems: leaving asidenthe function for the mo-
ment, the arbitrary choiéamplied in thelet is unusual; the algorithm shown does not
expose the essential properties of the result clearly; the fact that the function is partial is
now a hidden property. Clearly, this is an example where the implicit specification is a
useful description of the intended function.

The function which yields the larger of two integers might be specified:

mazx (1:2,5:2) r:Z
pre true
post (r=iVr=j)Ai<rAj<r

Here there are no assumptions on the arguments (other than their type) and the pre-
condition istrue. As with mazs, the post-condition lists several conjoined properties. In
this simple example, the direct definition:

maz(i,j) £ ifi<j thenj else i

is no longer (nor more opaque) than the specification. In general, however, decomposing
a post-condition into separate (conjoined) expressions results in a very clear specification
which presents the required properties of the results in a way a user will appreciate. For

'One could use the iota)(description binding.
2The subject of under-determined functions is discussed at the end of Section 3.2.
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f (p: Tp) r: Tr
pre n--p--.
postp/]ﬂ

Figure 3.1 Format of function specification

example, it is convenient, in specifying a sort routine, to separate the properties of the
order of the result and the necessity for the result to be a permutation of the starting
sequence.

Figure 3.1 gives the general format of an implicit function specification as used in
this book. The truth-valued pre-condition can refer only to the values of the parameters;
the post-condition normally refers to the values of both parameters and result. The names
are bound by the variable names in the signature of the specification. (Because of the
need to refer to arguments, as well as results, the name ‘post-condition’ is not ideal, but
convention has established the term and it is used throughout this book.)

Meaning of implicit specification

Informally, such a specification requires that, to be correct with respect to the specifi-
cation, a function must — when applied to arguments (of the right type) which satisfy
the pre-condition — yield a result (of the right type) which satisfies the post-condition.
This statement, and the requisite proof style, are presented formally in the next section.
Notice that, for values which doot satisfy the pre-condition, nothing can be assumed
about the result.

It is possible to write contradictory specifications which cannot be satisfied. Infor-
mally, it is clear that a specification must avoid this error; the notiosatikfiabilityis
used below to formalize this.

In order to specify a function which can yield any element of a set, it is necessary
only to remove one of the conjuncts of the post-conditiomafrs — thus:

arbs (s:N-set) N
pre s # { }

post r € s

Just as with the earlier discussion of square root, any algorithm would determine a par-
ticular result; the implicit specification indicates the permitted range of results.

Implicit specifications can — as has been seen above — also use quantifiers: this often
avoids the use of recursion required in a direct definition. For example:
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ged (12N, 7:Np) 7Ny
pre true
post is-common-divisor(i,j,r) A
—3s € Ny - is-common-divisor(i,j,s) N s > r

Thus the advantages of implicit specification over direct definition include:

e direct description of (multiple) properties which are of interest to the user;

characterizing a set of possible results by a post-condition;

explicit record (by Boolean expression) of the pre-condition;

less commitment to a specific algorithm;

provision of a name for the result.

Where none of these points apply, a direct definition can be written. Indeed, since pre-
and post-conditions are themselves (truth-valued) functions, it is clear that one must
resort somewhere to direct definition or face an infinite regress.

Exercise 3.1.1 Write an implicit specification of a function which yields the minimum
value from a set of integers.

Exercise 3.1.2 Write an implicit specification of a function which performs integer
subtraction. Just as one teaches children, base the post-condition on the idea of ‘the
number which would have to be addedjtto get:'.

Exercise 3.1.3 What change would be made to the preceding specification to ensure
that neither zero nor negative numbers occur as arguments or results.

Exercise 3.1.4 Write an implicit specification of a function which yields the absolute
value of an integer. Do not use a conditional expression in the post-condition.

Exercise 3.1.5 Specify a function which yields the smallest common multiple of two
natural numbers. Build up useful subsidiary functions to make the specification read-
able.

Exercise 3.1.6  Specify the mod function (over positive integers).

Exercise 3.1.7 Proofs that direct definitions satisfy implicit specifications are consid-
ered below. For now check the following implementations against your specification and
give a counter-example (test case value) if they are wrong.

For integer subtraction:

sub(i,j) 2 2x%i/j
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For natural number subtraction (cf. Exercise 3.1.3):
subp(i,j) & ifi=7j then 0 else 1+ subp(i,j+ 1)

Would this be correct for the earlier case (Exercise 3.1.2)?
For absolute value (cf. Exercise 3.1.4):
abs(i) 2 maz(i,—1i)
For smallest common multiple (cf. Exercise 3.1.5):
sem(i,j) B ixj

3.2 Correctness proofs

Satisfaction notion

A direct definition of a function is said teatisfyan implicit specification if, for all argu-
ments of the required type which satisfy the pre-condition, the evaluation of the direct
definition yields results which are of the required type and satisfy the post-condition.
This can be stated formally aspoof obligationwhich must be discharged in order

to justify the claim of satisfaction. For the implicit specification given in Figure 3.1
on page 49, the pre- and post-conditions are truth-valued functions with the following
names and signatures:

pre-f: Tp — B
post-f: Tp x Tr — B

The keyword form in implicit function specifications provides a shorthand way of pre-
senting these truth-valued functions. When used in logical expressions, they are handled
just as if they had been given direct definitions:

pre-f(p)é...p...
post-f(p,r) L -ip-vir--.

Proof obligation 3.1 A direct definition:

f:Tp— Tr
fi) A

satisfies the specification if (and only if):

Vp € Tp-pre-f(p) = f(p) € Tr A post-f(p,f(p))
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fromz € R

1 pi(z)=3.141 R3.2(h)
2 3.141 e R R
3 pi(z) eR =-subs(2,1)
4  abs(m—3.141) <1072 R
5  abs(m — pi(r)) <1072 =-subs(4,1)
6  post-pi(z, pi(z)) post-pi(h,3,5)
7 pi(xz) € RA post-pi(z, pi(x)) N-1(3,6)
infer pre-pi(z) = pi(z) € R A post-pi(z, pi(z))= vac-I(7

Theorem 3.3p: (sequent form)

Thus the recursive function forazs in the preceding section satisfies its specification;
the same function also satisfies the specificatiomd$. The concern in this section is
with the construction of formal proofs of such statements.

Notice that the oft-used phrase ! is correct’ should really be interpreted as.'
satisfies the .. specification’. Without reference to a specification, the notion of cor-
rectness has no meaning.

The proof obligation for satisfaction, which is given above, makes the role of the
pre-condition explicit: for argument values which do not satisfy the pre-condition, no
constraint is placed on the implementation by the specification. Thus the overall spec-
ification is satisfied by an implementation regardless of the results which it produces
for those arguments which fail to satisfy the pre-condition; the requirement is that the
results are acceptable for those arguments which do satisfy the pre-condition. Similarly,
a direct definition, which produces — for each argument — any answer which lies in the
range of answers defined by the post-condition, satisfies the specification. Perhaps the
most surprising consequence of the proof obligation is that the direct definition is al-
lowed to produce no result (i.e. to be undefined) on arguments which do not satisfy the
pre-condition.

The first examples of formal proofs are very simple in order to exhibit the general
form of proof. UsingR for the set of real numbers, a constant functigrcan be speci-
fied:

pi (y:R) R
pre true
post abs(m — r) < 1072
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The argumeny happens to play no part in the post-condition and could have been omit-
ted since the function yields the same result for any argument; it is included only to
make the form of the proof obligation easier to relate to the general case. A (rather
crude) direct definition might be:

pi(y) £ 3.141

In order to reason about such direct definitions it is necessary to use them in proofs.
The smoothest transition from function definitions to proofs is to provide inference rule
presentations for any direct definitions.

Rule 3.2 The rule forpi is:

R3.2 yeR
— pi(y) =3.141

Theorem 3.3 The appropriate instance of proof obligation 3.1 is:
Vz € R pre-pi(z) = pi(z) € RA post-pi(z, pi(x))

The consequent of Theorem 3.3 has a universal quantifier; an obvious strategy is to
prove the validity of the following sequent:

z € R F pre-pi(z) = pi(z) € RA post-pi(z, pi(z))

then the actual result follows from the! rule:

from z € R - pre-pi(z) = pi(z) € R A post-pi(z, pi(z))
infer Vo € R - pre-pi(z) = pi(z) € R A post-pi(z,pi(z))  V-I(h)

Theorem 3.3pi

Here, the sequent form of the result is proved separately. Clearly, the universal quantifier
could be introduced in the same proof but this would result in a deeper nesting than is
necessary. In the proofs below, only the sequent form is proved because the quantified
form would always follow in the same way.

The use of different identifiers in the specification and the proof obligation is delib-
erate: in the first two examples it is done to clarify the substitutions being performed.
The proof of the sequent form is shown on page 52. In this proof of the sequent form of
Theorem 3.3, appeals to the definitions of plest clause of the implicit specification are
shown agpost-pi, etc.: they are essentially unfoldings of those definitions with specific
arguments. Thus, line 5 is an exact expansion of line 6; but notice that the justification
of line 6 also refers to the hypothesis and to line 3 in order to establish that the argu-
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ments are of appropriate type. The other new form of justification which is used here
is the=-subs used to justify lines 3 and 5. This substitution of a term — by one known
to be equal to it — is intuitively simple. Notice, however, that if there is more than one
occurrence it isiotnecessary to make all possible substitutions.

Axiom 3.4 (=-subs) So:

Fa] =i B
—=-5Uubs E

2

where the expressiof; is obtained from£; by substitutingone or moreoccurrences
of s by s’.

Analyzing a proof

The general form of all of the proofs in this section is to make heavy use of the definitions
and facts about the data types being manipulated with relatively little use of complex
logical properties. Before seeking to understand how this proof could be discovered,
the validity of the individual steps should be understood. Line 1 introduces to the proof
on page 52 the knowledge about the functiarin the planned way by using R3.2 (the
appeal to the hypothesis reflects the fact that the rule only applies to arguments of the
correct type); lines 2 and 4 simply introduce facts about the underlying data type (real
numbers); line 3 follows by substituting the left-hand side of the equality in line 1 for
its right-hand side where the latter occurs in line 2; lines 4 and 5 are constructed in
a similar way to lines 2-3; line 6 uses the definitiongokt-pi implied by the post-
condition of the specification ofi (remember that the appeals to the hypothesis and
line 3 are to establish types); line 7 and the final conclusion use derived inference rules
of propositional calculus.

But how was this proof found? It is possible to construct the natural deduction proof
fairly mechanically. Begin by writing the chosen sequent as:

fromz € R
infer pre-pi(z) = pi(xz) € R A post-pi(z, pi(x)) ?

Theorem 3.3 (first step)

Considering the goal, there are a collection of inference rules which could create an im-
plication. The obvious rule would be--1, but, noticing the special case that-pi(z)
is true, prompts the selection ef vac-1 to create:
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fromz € R

k  pi(z) € RA post-pi(z, pi(z)) ?
infer pre-pi(z) = pi(xz) € RA post-pi(z, pi(z))= vac-1(K

Theorem 3.3 (second step)

Line k (there is clearly a numbering problem when working backwards!) is a conjunction
and the obvious rule for its creation/s/, thus:

from z € R

i pi(z) €R ?
i post-pi(z, pi(z)) ?
kK  pi(z) € RA post-pi(z, pi(z)) A-1(1,])

infer pre-pi(z) = pi(xz) € RA post-pi(z, pi(z))= vac-1(K

Theorem 3.3 (third step)

The reader should now be able to see how such a proof would be completed. The advan-
tage of proceeding in this way is that the open justifications clearly mark the remaining
work. The problem with this style when tackled with pen and ink is knowing how much
space to leave: this results in excessive use of a waste-paper basket! A text editor can
be used to some advantage, but special-purpose proof editors (see [BM79, Lin88, JL88,
RT89]) can offer much more support.

More examples

Subsequent proofs are, for obvious reasons, presented only in their final form (further-
more, only the sequent form is given) and comments on their discovery are made only
when some new feature is present. The reader should, however, use the technique of
working back from a goal when undertaking the exercises.

In order to illustrate the role of non-trivial pre-conditions the following simple spec-
ification is used:

foo (i:N,j:N) r:N
pre i = 2
post r =2xj
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from m,n € N
1 from m = 2

1.1 foo(m,n) =mx*n R3.5(h)
1.2 mxn €N N,h
1.3 foo(m,n) € N =-subs(1.2,1.1)
1.4 foo(m,n) =2x%n =-subs(hl,1.1)
1.5 post-foo(m, n, foo(m, n)) post-foo(h,1.3,1.4)

infer foo(m, n) € N A post-foo(m, n, foo(m,n)) N-1(1.3,1.5)
2 d(m=2) h
3 m=2 = foo(m,n) e N A post-foo(m,n, foo(m,n)) =-1(1,2)

infer pre-foo(m,n) = foo(m,n) € N A post-foo(m, n, foo(m, n)) pre-foo(h,3)

Theorem 3.6 oo

together with the direct definition:

foo(i,j) & ixj
Rule 3.5 The rule form of which is:

R3E 1,7 €N
S o003,

i,§) =i%]

Theorem 3.6 The sequent form of proof obligation 3.1 becomes:

m,n €N F
pre-foo(m,n) = foo(m,n) € N A post-foo(m, n, foo(m,n))

This proof obligation is discharged on page 56. Its proof is similar to thapfobut
its discovery does result in ag-1 because the goal is an implication which has a non-
trivial antecedent.

It is not necessary to produce all proofs at such a fine level of detail. In particular,
the substitution steps can be handled less formally (once again, given the proviso that the
formal steps can be created should doubt arise). The proof on page 56 might be written
as:
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from m,n € N

1 m=2 = m+sneNAmsn=2xn N,h
2 m=2 = foo(m,n) € NA foo(m,n) =2xn 1,R3.5
infer pre-foo(m,n) = foo(m,n) € N A post-foo(m, n, foo(m, n))

Theorem 3.6: outline proof

Exercise 3.2.1 Prove that the specification:

double (z:2Z) r:Z
post r =2xx

is satisfied by:

double(z) & z+u
Remember to present the rule form of the direct definition.
Exercise 3.2.2 Prove that the specification:

conv (f:R) ¢:R
post cx9/5+32=f

is satisfied by:

conv(f) & (f+40)*5/9—40

Exercise 3.2.3 Prove that the specification:

choose (i:N) j:N
pre t =3V 1i=28
post (=3 = j=8)A(i=8 = j=3)

is satisfied by:
choose(i) £ 11—

Notice that this proof doesot require case analysis.

Case analysis

Direct definitions of functions can also use conditional expressions. An example is the
direct definition of thenaz function:
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maz(i,j) £ ifi<j thenj else i
For this, two inference rules are needed but they are given the same number.

Rule 3.7 The rules are:

7 i<
@%]6 Y

maz(i,j) = j

ieziici
R3.7Z] J Z

maz(i,j) =1
The implicit specification is:

mazx (1:2,j:2Z) r:Z
pre true
post (r=iVr=j)Ai<rAj<r

Theorem 3.8 The proof obligation is:

i,] €Z

pre-max(i,j) = max(i,j) € Z A post-max(i,j, mazx(i,j))

The proof of this sequent is given on page 59. As before, the reader should first check
the forward steps in this proof. The generation of this proof introduces one new tactic.
Line 4 is generated (as im) by noticing that the pre-condition is true. In the proof of
pi the analysis could proceed because the definition of the function is straightforward,;
here, the expansion afiaz is a long expression which requires simplification. The best
way to simplify a conditional is by case analysis. Here, the case distinction is obvious
and the sub-goals generated are lines 2 and 3 (and the subsidiary line 1). Once these are
identified, the proof is straightforward.

The proofs so far are presented with a great deal of detail. The level of detail can be
chosen to suit the problem in hand and, in later proofs, several inference steps are per-
formed in a single line. Furthermore, as the reader becomes confident in the construction
of such proofs, only the outer levels of a proof need be recorded; the inner steps can be
completed if doubt arises. The key point about such (rigorous) proof outlines is that it is
clear what needs to be done to extend them to formal proofs — for this reason, errors are
less likely.

In the following specification:

abs (i:Z) r:Z
post 0 <7 A(r=1Vr=—i
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from m,n € Z
1 m<nvVm>n Z,h
2 fromm <n
2.1 mazx(m,n) =n R3.7(h,h2)
2.2 mazx(m,n) € Z =-subs(2.1,h)
2.3 (n=mVn=n)Am<nAn<n Z,h,h2nv
2.4 post-maz(m,n,n) post-mazx(h,2.3)
25 post-mazx(m, n, maz(m,n)) =-subs(2.4,2.1)
infer max(m,n) € Z A post-maz(m, n, maz(m,n)) N-1(2.2,2.5)
3 fromm>n
3.1 maz(m,n) =m R3.7(h,h3)
3.2 mazx(m,n) € Z =-subs(3.1,h)
3.3 (m=mVm=n)Am<mAn<m Z,h,h3AV
3.4 post-mazx(m, n, m) post-maz(h,3.3)
35 post-mazx(m, n, maz(m,n)) =-subs(3.4,3.1)
infer maxz(m,n) € Z A post-maz(m, n, maz(m,n)) N-1(3.2,3.5)
4  maz(m,n) € Z A post-maz(m,n, maz(m,n) V-£(1,2,3)
infer pre-mazx(m,n) = = vac-1(4)
mazx(m,n) € Z A post-mazx(m,n, maz(m, n))
Theorem 3.8max

the pre-condition which isrue is omitted; thinking of the pre-condition as permission

to ignore certain argument combinations, its omission indicates that the implementation
must cater for any arguments (of the required types). Similarly, the proof obligation can
be simplified to reflect the fact th& andtrue = F are equivalent expressions.

Exercise 3.2.4 Prove that the specification:

abs (i:Z) r:Z
post 0 <7 A(r=1iVr=—i

is satisfied by:

abs(i) £ ifi <0 then —i else i

Exercise 3.2.5 The sign function can be specified:
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sign (i:Z) r:Z
post i =0Ar=0Vi<O0OAr=—-1VvVi>0Ar=1

Write a direct definition and prove that it satisfies the specification.

Using the specification of a subsidiary function

The specification ofibs is given in Exercise 3.2.4.

Theorem 3.9 Thus any proposed implementation must be such that:
i €Z & abs(i) € Z A post-abs(i, abs(1))

A direct definition which uses conditional expressions and arithmetic operators is con-
sidered in Exercise 3.2.4. Suppose, however, that the following implementation were to
be considered:

abs(i) & maz(i,—i)

It would, of course, be possible to expand out the right-hand side of this definition by
using the direct definition ofnaxz. But in the development of programs, a high-level
design step introduces components (via specifications) whose development follows the
justification of the design step. The first hint of how this works can be given by making
the proof rely only on the implicit specification, rather than the direct definitiomof.

Rule 3.10 As normal, the rule is:

R3.10 ic2

abs(i) = max (i, —1)

The proof of Theorem 3.9 is shown on page 61.
The relationship between the range type of a function and the post-condition can be
understood by studying this example. If the signature were changed to:

abs(i:Z)r:N

the first conjunct opost-abs could be omitted. The overall proof task would not, how-
ever, change because it is still necessary to show that the result is of the appropriate
type: it would simply be necessary to rearrange the steps. Thus the choice of whether to
show constraints by type information or by clauses in a post-condition can be made on
pragmatic grounds.

Exercise 3.2.6  Given the specification:

mult (i:2,5:2) r:Z
post 7 =1 % j
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fromieZ

1 —1€”Z Z,h
2 mazx(i,—1i) € Z max,h,1
3 abs(i) = max(i,—1) R3.10(h)
4  abs(i)eZ =-subs(3,2)
5  (maz(i,—i) =1V maz(i,—i) = —i)A post-mazx(h,1)

i < maz(i,—i) A —i < maz(i,—1)
6 0<maz(i,—1) Z,5
7 post-abs(i, mazx(i,—1i)) post-abs(h,2,6,5)
8  post-abs(i, abs(i)) =-subs(3,7)
infer abs(i) € Z A post-abs(i, abs(7)) N-1(4,8)
Theorem 3.9ubs
prove that:

mult(i,j) £ if i >0 then multp(i,j) else multp(—i, —j)

satisfies the specification. In making this proof the following properties«@atp should
be assumed:

multp (i:2,5:2) r:Z
pre 1 > 0
post 7 =1 % j

Induction

The most powerful way of building up (direct definitions of) functions is by using re-
cursion. Arecursive definitiorof a function is one in which the right-hand side of the
definition uses the function which is being defined. Speaking operationally, such defini-
tions have to terminate and this is normally achieved by placing the recursive reference
in a conditional expression. In addition to the conditional expression and the function
being defined, the right-hand side can, of course, use any previously known functions.
Recursive definitions facilitate the construction of powerful functions from the most
humble beginnings. Each of the data types in the succeeding chapters starts with a simple
set of basic constructing functions generatorsand then builds other operators and/or
functions over these generators. For natural numbers, the generators are very simple:
zero is a natural number and teaccessofunction (succ) generates natural numbers
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from natural numbers. Thus:

0: N

succ: N— N

Clearly, one can think of these as the value zero and the function ‘plus one’. The num-
ber for which the normal (Arabic) symbol is 2 is the resultsatc(succ(0)). Such a
unary notation would be rather clumsy for larger constants, but Osandprovide a
minimal basis for arithmetic. They enable any of the infinite set of (finite) numbers to
be generated.

The inverse okucc is a (partial)predecessofunction. This can be characterized by
an axiom.

Axiom 3.11 Becausered(0) is not defined, the only property is:

A3.11 teN

pred(succ(i)) =i

General addition (oveX) can be defined by a recursive function:

add :N xN — N
add(i,j) £ ifi =0 then j else succ(add( pred(i),j))

or, in less pedantic style:
add(i,j) £ ifi=0 thenj else add(i —1,5)+1
This can be rendered into inference rules as follows.
Rule 3.12 The non-recursive part of the conditional offers no surprise:
add(0,75) = j

Rule 3.13 From the earlier treatment of conditional expressions, the reader should ex-
pect a rule of the form:

(1 i,jEN; i £0
=3 0dd(i,j) = add(i — 1,7) + 1

For a total function likeadd there is no problem but it is shown in the next section that
appropriate rules for partial functions use the recursive call in the hypothesis. This form
is used here for uniformity:

i, €EN; i £0; add(i —1,7) =k
[R313) add(i,j) = k+1

Given general addition, multiplication of natural numbers can be defined:
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multp :N x N — N
multp(i,7) 2 if i =0 then 0 else multp(i —1,7) +J

Further functions, such as exponentiation, can be built up in the same way.

But what of proofs about such recursive definitions? An attempt to proceed with
only the tools available so far would show that, for proofs about arbitrary valube
rule R3.13 offers no way of eliminating the name of the functiatdd). The proof
technique which is used to reason about elements from infinite setdustion The
form of induction rule for natural numbers which suits most of the purposes fere
expressed in terms of proving some propertipr any natural number.

Axiom 3.14 As above, the emphasis is put on proving a sequert \l - p(n)) rather
than a quantified expressiovi7{ € N - p(n)) since the latter can always be obtained by
a step usingy/-1. To prove some property: N — B holds for all natural numbers, the
induction axiom is:

p(0);

@ neN, p(n) F p(n+1)
. neN F p(n)

This rule gets used in proofs of the following shape (the induction step has been written
usingm — rather tham — as a local variable to emphasize its independence):

from n € N

i p(0)
j from m € N, p(m)

infer p(m + 1)
infer p(n) N-ind(i,j)

Skeleton induction proof

Such a proof is called aimductive proof the steps to establigh(0) are thebase case
and thefrom/infer to provep(n) + p(n + 1) is theinduction step It is important
to understand the roles of the variopsssertions which arise. Th&n) which is the
hypothesis of the inductive step is an assumption; the consequent of that same inner

3The use of a sequent as consequent is unconventional but suits the boxed proofs best; similarly, em-
ploying a sequent — rather than an implication — in the inductive step fits with the logic described in the next
section.
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fromn € N
sumn(
sumn(
0=0%(0+1)/2

1 =0
2 €N
3
4  sumn(0)=0x(0+1)/2
5
6

0)
0)

post-sumn(0, sumn(0))
sumn(0) € N A post-sumn (0, sumn(0))

7.1 n+10

7.2 n+1eN

7.3 sumn(n) =n*(n+1)/2

7.4 sumn(n +1) =

7.5 sumn(n+1) € N

7.6 sumn(n+1)=(n+1)x(n+2)/2
7.7 post-sumn(n + 1, sumn(n + 1))

infer sumn(n) € N A post-sumn(n, sumn(n))

Theorem 3.17sumn

7 from n € N, sumn(n) € N, post-sumn(n, sumn(n))

n+1+nx(n+1)/2 R3.16(7.2,7.1,7.3)

R3.15

1,N

N
=-subs(3,1)
post-sumn,4

A-I(2,5)

h7N
h7N
post-sumn,in7

7.4N
7.4N

post-sumn, 7.6

infer sumn(n + 1) € N A post-sumn(n + 1, sumn(n + 1))A-1(7.8,7.7)

N-ind(6,7)

from/infer (p(n + 1)) has only been proved under the assumption. The fi(va) of the
outerfrom/infer has been proven (by induction) for an arbitrary natural number.

Many people have a feeling of unease when they first encounter inductive reasoning.
One way to gain confidence in inductive proofs is to view them as recipasdating
proofs for arbitrary natural numbers. Suppose someone were to challenge a property
which had been proved by induction. If they doubt that the property is true for a specific

number, say 7, a proof could be generated by:

e copying out the proof 0p(0);

e generating 7 versions of the inductive step substituting successive natural numbers

in each case.

The resulting proof would be long and tedious but would show i@} held without
appeal toN-ind: the inductive proof can be used as a recipe for generating a proof for
any natural number. This claim relies on the fact that any natural number is finite (even

though there is an infinite set of such numbers).
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The earlier examples afdd andmultp are used in proofs which are the subject of
exercises below. The first example used here is a funetiot: which is intended to
compute the sum of the firgt natural numbers. Its definition is written (recursively) as:

sumn :N — N
sumn(n) £ if n=0 then 0 else n + sumn(n — 1)

This can be expressed as two inference rules.

Rule 3.15 The base case is:
sumn(0) =0

Rule 3.16 The recursive case is:
[Ra.16] n€N; n#0; sumn(n—1) =k

sumn(n) =n+k
To show that this possesses the known arithmetic property, it is ‘specified’ by:

sumn (n:N) r:N
post r =nx*(n+1)/2

This gives rise to its proof obligation.
Theorem 3.17 The sequent form is:
n € N F sumn(n) € N A post-sumn(n, sumn(n))

The required proof is given on page 64. Notice that jghaf N-ind (p: N — B)
is sumn(n) € N A post-sumn(n, sumn(n)). Once again, the proof is presented in the
easiest order for reading. Its discovery results from ublngd to generate both line 6
and the subsidiary proof numbered 7; the detailed steps are routine with the algebra
from 7.4 to 7.6 being the core of the induction argument. (Notice that the appeal in
line 7.3 to the hypothesis of base 7 emphasizes that it is an inductive hypothesis by
writing ‘ih7’.)

An inductive proof can be used to show that a recursively defined function, for squar-
ing a number, satisfies the implicit specification:

sq (i:N) r:N
post r = 72

Given the definition:

sqg:N— N
sq(i) £ ifi=0 then O else 2xi— 1+ sq(i —1)
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The inference rules are;

Rule 3.18 For the base case:
5q(0) =0

Rule 3.19 For the recursive case:

ie€N; i #£0; sq(i —1) =k
[Ra.19 sq(i) =2xi—1+k

Theorem 3.20 The proof obligation is:
n €N F sq(n) € NA post-sq(n, sq(n))

The proof is shown on page 67. Lines 1 to 6 constitute the basis of the proof and the
inductive step is labelled 7. The sub-goals are generated by applying the induction rule.

Exercise 3.2.7 Prove the general addition functiard satisfies the specification:

add (i:N,j:N) N
post r =14+

Base the inductive proof on the rules 3.12 and 3.13.

Exercise 3.2.8 The rules of the preceding exercise were written for the ‘less pedantic’
form of the recursive definition aidd. Write a pair of rules (which should use neither
+ nor —) for the definition ofadd. This shows more clearly how recursion builds up the
language of functions over natural numbers from just its generators .

Exercise 3.2.9 Show that the recursive definition afultp given in this section satisfies
the specification:

multp (i:N,j:N) r:N
post r =14 xj

More about induction

There are a few extra points which are worth noting about induction over the natural
numbers because induction is to be a crucial tool in handling the data types presented
in later chapters. It is explained above that induction is needed because the set of nat-
ural numbersN) is infinite. But each member of that set is a finite number; it is the
unbounded sizef the numbers which requires inductive proofs.

There are also forms of induction rule other tHdnnd. For example, an almost
mechanical rewriting yields:
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fromn € N
1  s¢(0)=0 R3.18
2  sq(0)eN 1,N
3 0=0? N
4 sq(0) =0? =-subs(3,1)
5  post-sq(0, sq(0)) post-sq(4)
6  sq(0) € NA post-sq(0, sq(0)) N-1(2,5)
7  fromn €N, sq(n) €N, post-sq(n, sq(n))
7.1 sq(n) = n? post-sq(in7)
7.2 n+1¢eN; N,h7
7.3 (n+1)2€eN N,7.2
7.4 (n+1)2=n2+2%n+1 N,h7
7.5 =sq(n)+2xn+1 =-subs(7.4,7.1)
7.6 = sq(n +1) R3.19(7.2,7.5)
7.7 s¢(n+1)eN =-subs(7.6,7.3)
7.8 post-sq(n + 1, sq(n + 1)) post-sq(7.2,7.7,7.6)
infer sq(n +1) € NA post-sq(n+1,sq(n+1))  A-I(7.7,7.8)
infer sq(n) € N A post-sq(n, sq(n)) N-ind(6,7)
Theorem 3.205s¢

Axiom 3.21 An induction rule which relies on the presencepoeédecessor
p(0);

—_meNup(n—1) F pln)
@ neN F p(n)

Both N-ind andN-indp rely on only one step aduccessqra more powerful rule is one

which permits the assumption that the required propertys true of all predecessors

of the number for whichp(n) is the goal of the inductive step. Paradoxically, this rule
appears simpler than its cousins because the base case becomes a special case of the
inductive step.

Axiom 3.22 The so-calledgomplete inductiomule is:

— neN, (VmeN-m<n = p(m)) F pn)
N-cind
neNF p(n)

There are also two subtleties of implicit specifications which are worth emphasizing.
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Where an implicit specification, or rather its post-condition, under-determines the result
of a function; it is required that the implementation is a function. Therefore it can always
be assumed that = y = f(z) = f(y) for anyf. (Section 3.4 shows that a truly
non-deterministic approach is taken to the specifications of operations.)

The converse situation is where the post-condition admits no valid answer. Such self-
contradictory post-conditions are a risk which hide behind the ‘advantages’ of implicit
definitions (cf. Russell's quote at the beginning of this chapter). Strictly, each implicit
function specification should be shown todaisfiable

Vd € D -pre-f(d) = 3r € R - post-f(d, )

This has not been done here because of the straightforward form of most of the specifi-
cations. The topic of satisfiability is taken up in Section 5.2, in the context of operations,
when there is a greater danger of error.

Exercise 3.2.10 (*) Use the ruleN-cind to prove that:

multp :N x N — N
multp(i,j) &
if i =0 then 0O else if is-cven(i) then 2 x multp(i/2,7) else j + multp(i —1,7)

satisfies the specification given earlier in this section. Develop other algorithms which
require proofs by complete induction because they split a task into parts which give rise
to recursive calls on other than predecessors of the parameter of the function.

3.3 Reasoning about partial functions

Partial functions

A total function yields a result for any argument in the domain — as given in the signature
— of the function. Functions which do not meet this requirement (i.e. do not always yield
a result) are calleghartial. Many of the standard fields of mathematics assume that
all functions are total whereas partial functions arise naturally in software applications.
The importance of partial functions has been recognized above by recording their pre-
conditions. This section reviews the impact of partial functions on the logic used to
reason about them.

Partial functions are distinguished here by recording a non-trivial pre-condition. If
the domain is a single set, it is straightforward to define a restricted set which includes
only those elements which satisfy the pre-condition; the function then becomes total over
the restricted set. The more interesting pre-conditions are those which relate different
parameters: in such cases, it is less natumimake functions total.

4Such pre-conditions require defining Cartesian products and restrictions thereon.



3.3 Reasoning about partial functions 69

Consider the following example:

subp (i:2,5:Z) r:Z
pre 1 > j
post r=1—j

Informally, it is clear that this specification is satisfied by the recursive function:
subp(i,j) £ ifi=7 then 0 else subp(i,j+1)+1

As discussed earlier, terms can be formed by applying a function to arguments of the
appropriate type. Thusubp(5,3) is a term (whose value is 2). There is, however, a
problem with terms built from functions where the arguments do not satisfy the pre-
condition of the function: what, for example, is to be made of the tezbp(3,5)? In
programming terms, it could be said thatyp fails to terminate; here, it fits the context
better to say that the term does not denote a value. This leads to problemsbyith ;)
since the question of whether or not this term denotes a value depends on the values (as
provided by the context) ofand.

The quantifier form of proof obligation 3.1 feubp is:

Vi,jeZ-
pre-subp(i,j) = subp(i,j) € N A post-subp(i,j, subp(i,j))

which expands into:
Vi,jeZ-i>j = subp(i,j) € NAsubp(i,j)=1i—j

When the antecedent of the implication is false, the term involyirig does not denote

a natural number. It is tempting to say that this problem can be ignored because the
implication could be considered to be true whenever its antecedent is false (regardless
of the consequent). This is, in fact, one property of the logic studied here. However,
the whole topic has to be put on a firm footing — for example, something must be done
about the fact that the standard (two-valued) truth tables mentioned in Section 1.1 make
no mention of propositions which fail to denote a Boolean value. Note that using the
definition of implication does not resolve the problem since:

Vi,jeZ-i<jVsubp(i,j) € NAsubp(i,j)=1—j

has an undefined term in its second disjunct when its first is true.

Many more examples arise in this book where terms fail to denote values and the
challenge is to provide a logical system which handles this problem. Far from being a
contrived difficulty, this is a common feature of programs (and the fragments from which
they are built). Loop constructs may fail to terminate for some input values and the logic
to be used in their proofs must have a way of discussing the set over which the loop can
be safely used.
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Truth tables

If terms fail to denote values (and hence propositions fail to denote truth values) what
meaning is to be given to the logical operators? The approach adopted here is to extend
the meaning of the operators in a specific way. In order to explain the extension, truth
tables are used to indicate a model theory. In these tables, the absence of a value is
marked byx; but there is no sense in which this is a new value — it is just a reminder
that no value is available. Because nine cases must now be considered, the truth tables
are presented in a compact square style in preference to the series of columns used in
Section 1.1. The extended truth table for disjunction is:

vV true * false

true | true | true | true
* true * *
false | true * false

In a sense which is made formal below, this is the ‘most generous’ extension of the two-
valued truth table in that a result is given whenever possible. Notice that the truth table
is symmetrical, as also is that for conjunction:

A true * false
true | true * false
* * * false
false | false | false | false

Properties such as commutativity are natural consequences of the symmetry of these
tables. The table for negation is:

_
true | false
* *
false | true

The truth tables for implication and equivalence are derived by viewing them as the
normal abbreviations:

= | true * false
true | true * false

* true * *
false | true | true | true
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& | true | x | false
true | true | % | false
k * * *
false | false | * | true

The reader should observe that the truth table for implication resolves the problem
encountered above. When the antecedent of the proof obligationdpris false, the
whole implication is true even though a term in the consequent has no value.

It is useful to think of these operators being evaluated by a program which has access
to the parallel evaluation of its operands. As soon as a result is available for one operand,
it is considered; if the single result determines the overall result (e.g. one true for a
disjunction), evaluation ceases and the (determined) result is returned.

A more mathematical characterization of the chosen tables can be given. The de-
scription in terms of a parallel program has the property that any result, delivered on
the basis of incomplete information, will not be wrong however the information is com-
pleted (e.g. having one true operand for a disjunction, it does not matter whether the
other operand evaluates to true or false). The concept;afduld becomey, if evalu-
ated further’ defines an ordering relation. For the Boolean values this can be written:

* < true
* < false

This is pictured in Figure 3.2. A function is said to benotonen an ordering if it
respects the ordering in the sense that larger arguments give rise to larger results. That
is, f is monotone if — and only if:

a=b = f(a) Xf(b)

For example, given the obvious ordering on the integexsfddition is monotone in both

of its operands while subtraction is monotone only in its first operand. The truth tables
which are given above are monotonic extensions of the classical (two-valued) tables. In
fact, they are the strongest such tables which do not contradict the (two-valued) tables
of classical logic.

Proof theory

What, however, is to be the proof theory for this logic of partial functions (LPF)? The
proof theory introduced in Chapters 1 and 2 is designed for this logic! That proof the-
ory is consistent with the normal (two-valued) logic but cannot prove all results — it
is incomplete; for LPF, whose model theory is sketched above, the axiomatization is
completg(i.e. all true statements can be provéd).

®It is an important property of a notation that it can express sufficient things. For the standard logic,
‘or’ and ‘not’ are expressively completa that, with just these two operators, any truth table can be gen-
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true false

IA
IA

*

Figure 3.2 Ordering for truth values

All results proved using the logic introduced above are, then, true in classical logic.
Given the full axiomatization in th&eacher’'s Notesall results which are true of the
LPF model can be proved. The essential difference between LPF and classical logic is
that some results which are true in the latter can not be proved in LPF. The most obvious
difference between LPF and classical logic is that the so-called ‘law of the excluded
middle’ does not hold in the former. Looking at the truth table for ‘not’ makes it clear
that:

Ev-FE

need not be true since it relies @ghdenoting a value. A simple example of why this
weakness is considered a virtue is that with partial functions (e.g. division) there is no
reason to expect:

5/0=1Vv5/0#1
to be true. On the other hand, a property like:
VieR-z=0Vz/z=1

is true in LPF and can be proved without difficulty — see page 73.

The lack of the law of the excluded middle is an intended weakness in LPF. It does,
however, make certain proofs more difficult than in classical logic. For example, a
slightly shorter proof of:

(E1VE2)/\(E1\/E3) F BV Es N B3

than that needed in LPF is possible in classical logic. The same point explains the
need for a longer axiomatization for LPF than is needed for classical logic: without the

erated. The whollyrue (respectivelyfalse) tables can be represented by logical expressions. Because (in
LPF) these constants cannot be generated in this way, two constants must be explicitly brought into the
axiomatization of LPF.
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from z € R
1 2=0Vz2#0 hR
2 fromz=0
inffere =0V z/z=1 Vv-1(h2)
3 fromz#0
3.1 z/x =1 R,h,h3
inffere =0V z/z=1 v-1(3.1)
inffere =0V az/z=1 V-F(1,2,3)
lllustrative LPF proof

- V-FE/-V-I rules the system would not be complete; in classical logic these properties
follow from the law of the excluded middle.

Since the law of the excluded middle does not hold, nor does> E: it does not
have a value iF does not. This has the deeper consequence that the so-called ‘deduction
theorem’ of classical logic does not hold; knowing:

E, + F
does not justify:
F B = Es

unless it is also known thd; is defined (i.ed(Fy)).

Many of the tautologies of classical logic are not true in LPF. This is a direct con-
sequence of the need, in LPF, for expressions to be defined. It is a pleasing property
of LPF that true judgements can be formed from the tautologies of classical logic by
writing §(E;) to the left of the turnstile for each proposition. Thus one can in LPF make
the reliance on definedness explicit by presenting judgements (sequents) with exactly
the required( E;) assumptions.

Notions of equality

Proofs in preceding sections have imported information about function definitions into
proofs by using inference rules. It is now possible to clarify why this approach fits well
with LPF. Consider again the definition:
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subp(i,j) £ ifi=7 then 0 else subp(i,j+1)+1

The equality writterwithin such direct definitions (e.g. asin= j) is ‘weak’ in the sense

that it is undefined if either of its operands is undefined. This is, in fact, the only rea-
sonable interpretation for something which must clearly be computable. But this weak
equality is not, in general, adequate for the interpretation of the definitions themselves.
Given the definition above, the tersabp(3,5) is identical in value tosubp(3,6) + 1

even though both terms are undefined. The definition has been written with a special
symbol(2 ) as a reminder that only one definition should occur for any function; in
general, there is a relational operator for this stronger equality)( The tables which
follow contrast these two notions. Here, the undefined values are indexed by their type

(e.g.*N).

0 | true | false | false *B
1 | false | true | false *B
2 | false | false | true *B
*N | *B *B *B *B

The truth-table for the non-strict operator can be written as:

0 true | false | false false
1 false | true | false false
2 false | false | true false
*N false | false | false true

It should be clear that strong equality€) is not monotonic: it is never useslithin
function definitions The bound variables of quantifiers range only over the proper
elements (not) of sets.

Reverting again to theubp example, it is possible to explain in more detail the
form of the inference rules which have to be created for partial functions. If the direct
definition of subp itself is used in a proof, it would introduce a strong equality=() and
complicate the proof since the required result (cf. proof obligation 3.1) contains a weak
equality &) and the proof would be complicated by virtue of having to reason about

5The current formulation of LPF has gone to pains to avoid — in normal proofs — reasoning about two
notions of equality. Also, other non-monotonic operators (é\gare only used in meta-proofs such as
those which justify the inference rule creation from function definitions.
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from i,j € Z

1 1—0=1 h,Z

2 subp(i,i) =0 h, R3.23

3 subp(i,i—0)=0 =-subs(1,2)

4  fromn € N; subp(i,i —n)=mn

4.1 i—(nt+1)ez h, h4,Z

4.2 iti—(n+1) h, h4,Z
infer subp(i,i —(n+1)) =n+1 h,4.1,4.2,ih4, R3.24

5 VneN-subp(i,i—n)=mn V-I(N-ind(3, 4))

6 fromi>j

6.1 (i—j) €N N, h6
infer subp(i,j) =1i—j v-E(5, 6.1),Z

7 83 >j) h,Z

infer i >j = subp(i,j)=1i—7 =-1(6,7)

Proof aboutsubp function

two notions of equality. Formulating the inference rule for the non-recursive case of the
conditional expression in the definition efbp presents no difficulty because all of the
terms are defined.

Rule 3.23 Thus:

R3.23 ieZ

subp(i, i) =0

As mentioned on page 62, care is required with the recursive case. If the rule is presented
with a weak equality in the hypothesis, it behaves exactly as the operational understand-
ing of the function leads one to expect: conclusions about continued applications can
only be drawn if the next lower case is actually defined.

Rule 3.24 Thus:

[Ra2d] i, i € Z; i) # .12;.8ubp(.zl’ i+ 1) = i
subp (i1, ip) = i3 + 1
These rules can be used to create the proof on page 75 which can then be subjected to

V-1 to justify the expression which was considered problematic at the beginning of this
section.
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Exercise 3.3.1 Check that the truth tables for the propositional operators are mono-
tonic.

Exercise 3.3.2 Propositional operators can be defined by conditional expressions as
discussed in Exercise 1.1.3 on page 6. Draw up the truth tables for these operators.
Contrast these truth tables with the symmetrical ones defined above; why cannot the
conditional expressions form the symmetrical tables?

Exercise 3.3.3 Section 1.1 included an informal argument for the following sequent:
EiNE,V -FEANE; F (E1 = EZ)/\(_\El = Eg)

Produce a formal proof of this.
Consider the reverse sequent:

(El = EQ)/\(_|E1 = Eg) F By NANEyV - Ep A Ej

why can this not be proved? What single additional assumption makes the proof possi-
ble?

Exercise 3.3.4 A true sequent of classical logic is:
E1 = (EQ = Eg) ~ (E1 = EQ) = (El = Eg)
Show that this is not true in LPF and discuss what change makes it true.

Exercise 3.3.5 Consider the following sequents and indicate additional assumptions
which permit their proofs (which should then be written):

E1V(E2 = E3) F LV E & EVE;s
El\/_‘(EQ = Eg) [ —|(E1\/E2 =4 E1VE3)

3.4 Implicit specification of operations

Operations

The form of implicit specification introduced in Section 3.1 covers mathematical func-
tions which manipulate numbers. In two respects, these specifications need to be ex-
tended in order to cope with the tasks faced by most programmers. The major extension
is to cope with the fact that the majority of interesting programs manipulate complex
data structures. It would be a mistake to write specifications in terms of the data types
of some specific programming language; mathematical abstractions can be used to de-
scribe the function of a program without forcing the specification to handle the efficiency
considerations which cause the programs themselves to become complicated. Chapter 4
introduces the first of these abstractions: set notation is shown to be a useful tool for
writing some specifications. Further collections of notation are covered in Chapters 5
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to 7. In contrast, the transition from mathematical functions to programs requires only a
minor extension, which is described in this section, to the implicit specification notation
of Section 3.1. Programs, as distinct from functions, can be characterized by observing
that their execution is affected by, and in turn affectstade Enthusiasts for functional
programming would argue that states and side effects bring much avoidable complexity.
On the other hand, the restriction to functions necessitates making copies of those data
structures which require modification. The efficiency implications of this copying are
not acceptable to today’s mainstream computing practitioners and this situation appears
unlikely to change until new, special-purpose, machine architectures are developed. Itis
not the intention here to take a dogmatic position on functional versus procedural pro-
gramming styles. This section shows that the notational extension from the former to
cope with the latter is minor. More importantly, the more extensive material on data
structures transcends the distinction.

Specifications can be written for whole programs, parts thereof, or even — as exer-
cises in the notation — single statements. The most common practical use (i.e. not just
for exercises) of such specifications is for something of about the size of a procedure in
a programming language. A generic name is needed for these different objects — here
the wordoperationis used to cover any piece of program-like text. The concern in this
section is, then, with the implicit specification of operations.

Functions provide a fixed mapping from input to output. For example:

double(i) 2 2xi

yields 4 when applied to 2 whether it has previously been applied to 99 or not. Opera-
tions have a (hidden) state which can be used to record values which affect subsequent
results. For example, an accumulator operation which outputs the sum of all inputs,
might respond to the first input of 2 with 2; to 99 with 101; and to a second 2 with 103.

The stateof an operation is the collection of external variables which it can access
and change. Thus, for a Pascal procedure, it would be those non-local variables of
the procedure which affect, or are affected by, execution of the procedure; for a whole
program, the state might be a database.

Specifying a calculator

As an introductory example, consider a collection of operations for a simple calculator.
The state here consists of a single external variable which is a regigtgcéntaining a
natural number. This external variable is the link between the operations. An operation
which stores its argument into this register is:

LOAD (i:N)
ext wr reg : N
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post reg = 1%

By convention, the names of operations are written in upper-case letters. The first line of
an operation specification is similar to that for a function. The second part records those
entities to which an operation has externatt] access: variable names are preceded by
an indication of whether access is read only) (or read and writevr); the name of
each variable is followed by its type. The post-condition is a truth-valued function of the
parameters and the values of the external variables — in this case the vatgeafter
execution of the operation. Thus the post-condition requires thalk ¢théD operation
stores the value of its parameter into the register.

An operation which requires read only access to the register is:

SHOW () r:N
ext rd reg : N

post 7 = r?g

Here, the post-condition refers to the value-@f prior to the execution of the operation.
Such values are marked with a backward-pointing hook. In this case, since the operation
only has read access, it would have made no difference had the hook been omitted. The
convention below is, in fact, to omit the hook on read-only variables, thus:

SHOW () r:N
extrd reg : N
post r = regq

In order to clarify the difference between the access mades/() to external variables,
the reader should understand that an equivalent specification would be:

SHOW () r:N

ext wr reg : N
post reqg = @ AT = reg

The first conjunct in the post-condition is necessary since the operation is marked here
as having write access and the final value would otherwise be unconstrained.
A simple incrementing operation can be specified:

ADD (i:N)

ext wr reg : N

post reg = /@} +1
None of the operations OAD, SHOW or ADD have pre-conditions. The convention
that omitted pre-conditions are assumed tatoe is adopted from function specifica-

tions. A pre-condition is required for the operation which performs integer division by
its parameter — yielding the result as answer and leaving the remainder in the register:
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OP (p: Tp) r: Tr
extrd v : T7,

wr vy . Ty
Pre «--p-- Uy

A

post prvl UQ T"UQ
Figure 3.3 Format of operation specification

DIVIDE (d:N) r:N

ext wr reg © N

pre d #0

postd*r%—reg:;?g A reg < d

The identifiers in the pre-condition are undecorated although they refer to the values
prior to execution of the operation. If the pre-condition is thought of as being placed
before the operation and the post-condition after the operation (cf. Figure 3.3), the un-
decorated values apply — in both cases — to the values of the variables at the position of
the logical expressioh.

The states referred to in a post-condition are those prior to and after execution of an
operation: any internal states which arise are of no concern to the specification.

One danger with simple examples — in particular with deterministic operations — is
that the post-conditions appear to be rather like assignment statements. It is important
thatpost-ADD is read as a logical expression which asserts a relationship between val-
ues. Fortunately, more interesting examples make this point cleasstnDIVIDE the
technique of characterizing a result by conjoined conditions is adopted from function
specifications.

The choice between making entities part of the state or of having additional param-
eters or results is up to the user. Essentially the state of a collection of operations is a
hidden data type whose behaviour can be observed via the visible types used as input and
output to the operations. So the use of the external clause is governed by the application:
it facilitates a distinction in the specification between parameters and variables which
are accessed by side effect. In the calculator example, it would be possible to replace the
entities involved in the parameters/result by external variables. The decision as to where
entities should appear is a pragmatic one. All parameters are assumed here to be passed
by value.

"The other reasons for this convention become clear in Chapter 10 where proof obligations for operation
decomposition are considered.
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rd vi: 17 wr vy: Ty

Figure 3.4 Picture of operation specification

The collection of operations for the calculator can be collected into a module. The
syntax for modules is introduced in Chapter 9; for most of this book, such grouping is
performed informally by the surrounding text. One thing that the module syntax provides
is a way of defining initial states. In the textual descriptions of collections of operations,
the initial state is normally identified by introducing a variable subscripted with zero.
Thus, if the initial state for the calculator module contains a zero:

rego = 0

A format for specifications of individual operations is indicated in Figure 3.3. Com-
paring this with Figure 3.4, the pre-condition defines the expected starting conditions for
OP —itis, in general, a truth-valued function of the input parameters and the values of
the external variables before the operation. None of these identifiers are decorated. The
post-condition is a truth-valued function of the parameters, results, values of all external
variables prior to execution of the operation and (for read/write variables) their values
after the operation. Since there is, in post-conditions, a need to distinguish between two
values for write variables, the value before execution of the operation is decorated with
a hook. In both pre- and post-conditions, the undecorated identifiers refer to the val-
ues ‘where the condition applies’. The identifiers within the pre- and post-conditions,
whether hooked or not, become bound within the operation specification by the variable
names.

It is conceded in Section 3.1 that the choice of the term ‘post-condition’ is not en-
tirely apposite. With operations, the post-conditions are truth-valued functions of the
values of the state before and after the operation: the use of ‘post’ suggests when it is
expected to hold (i.e. after execution). It is as well to follow common usage rather than
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coin some new term like ‘input/output relation’.
Many different sequences of operations can result in the same state. For example,
reg would have the value 1 after any of the following sequences:

LOAD(1)
LOAD(0); ADD(1)
LOAD(7); DIVIDE(3)

Looking just at the state, there is no way of knowing which operations led to its current
value. The important property is that this value determines the effect of the next oper-
ation: the history itself is not importafit.As more complex applications are studied,

the task of eliminating irrelevant detail (about the history of operations) from the state
becomes important. Itis precisely because the state contains the essential details of what
does affect subsequent behaviour that it is an aid to perspicuous specifications. It is the
need to refer to two states, in operation specifications, which necessitates some distin-
guishing decoration (here hooks for old values). With functions this could be avoided,
as inpost-f(n, f(n)), becausg (n) is an expression for the result. It must be accepted
that functions are more tractable mathematical objects than operations. One way to try
to hide the difference is to regard operations as functions over the history of all state
changes. This can be done. But this hides the fact that different histories give rise to
situations which are not detectably different. The experience in the ‘VDM school’ is
that clearer specifications result from a direct acceptance of the notion of state.

Specifying parts of a program

Another example (computing factorial) can be used to relate the specification format of
Figure 3.3 to programs. Informally, it is clear that the specification:

FACT
extwrn : N,
wr fn : N

post fn = n!
is satisfied by the following fragment of program:
fm=1;
while n # 0 do
(fn:=fn*n;

n:=n-—1)

8Mathematically, one could say that the state induces an equivalence class on histories. An extreme
choice of state could just store all operations executed. The process of abstraction fixes what is irrelevant in
the history and should yield a state which captures only that information which influences future operations.
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Notice that the program has write access to the varialet that its final value is not
constrained by the post-condition — it is, therefore, important that the initial value of
is used in the post-condition.

This informal notion of a piece of program satisfying a specification can be made
completely formal: Chapter 10 gives rules for such proofs and extends the notion of
satisfaction to cope with designs (or other specifications) satisfying specifications. As
an exercise, one can show how the factorial program might be developed from its spec-
ification. The overall taskHACT) could be decomposed into an initializatiolV{{ T')
and a loop L OOP); the initialization can be specified:

INIT
ext wr fn © N
post fn =1

Here, the variable: is not mentioned as an external. Showing which state variables are
left unchanged by an operation is sometimes known afrdimee problem In this style

of specification, a variable which is either not mentioned, or shown as read only, in the
operation specification cannot be changed by that operation.

There are many possible specifications i@ OP. There is a temptation to use a
pre-condition offn = 1 but this is not really required. It is possible to write a more
general specification (i.e. one involving fewer assumptions) which specializes to the
required effect in the context of the above initialization:

LOOP
extwrn : N,
wr fn @ N

A
post fn = fn * !

The technigues in Chapter 10 could be used to prove that the sequential combination of
the specifications fofNIT and LOOP satisfy that forFACT .

The next step of development would be to decompb&P into smaller steps.
The design might be:

while n # 0 do BODY

It is possible to give, to the body of the loop, a specification which does not constrain
implementation to the specific two statements used above. What is really required by
the loop is that the product of the variafeand the factorial of the value of remains
constant; it is also necessary to avoid the trivial implementation which does nothing: the
second conjunct of the post-condition BBODY requires that the value of decreases.

In order to ensure that this is possible (given the type)dhe pre-condition is required:

BODY
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ext wrn N,
wr fn @ N
pre n >0

A
post fnxnl=fnx nlAn<'m

One important property of implicit specifications is to avoid implementation commit-
ments. Even on this small examplODY is specified so as to allow different imple-
mentations (e.gn could be decreased by more thgn However, the two statements in
the code above can also be seen to satisfy the specification.

As might be expected, implicit specification brings certain problems — the need to
find a suitable pre-condition faBODY demonstrates the need for a check that a specifi-
cation issatisfiable This point is picked up in Section 5.3, where it is treated as a formal
proof obligation.

All of the arithmetic examples of the preceding chapter could be rewritten as opera-
tions rather than functions but many would be not be instructive. The greatest common
divisor problem, however, does exhibit some useful points:

GCD
ext wr m . Ny,
wrn . Njp

- .. L L
post is-common-divisor(m, n,m) A
= 3d € Ny - is—common—dimsor(%, L, d)ANd>m

Notice that the result is left as the final valuesaf The usefulness of building up a
post-condition from separate conjuncts can again be seen. Itis also important to observe
the interaction between the external clause and the post-condition: the final value of

is not constrained other than by its type. Any temptation to claim that a specification is
inefficient must be resisted. The assertipri- GCD could be thought of as implying a
massive search in an implementation. The purpose of a specification is to constrain the
results; its efficiency should be measured in terms of its ease of comprehension.

The case for implicitly specifying operations, rather than giving their implementa-
tions, is loaded heavily towards specification. All of the reasons which make it clearer
to use implicit specifications of functions (e.g. range of results, explicit pre-condition)
recur. But for operations, there is an additional argument: sequences of statements are
not normal mathematical expressions. In general, the equivalence of two such sequences
has to be proved by mapping both of them to some common mathematical domain. For
this reason, it is far easier to show that a sequence of statements satisfies a specification
than it is to show that two sequences of statements compute the same result. Indeed, two
programs could both satisfy the same specificatiombtibe equivalent!

In this chapter there are several examples where specifications can be made clearer
by defining a sequence of functions each in terms of the preceding ones. It is also
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desirable to structure the specifications of operations. This has been done above by
using functions in pre- and post-conditions. It should be obvious that it is not possible to
use an operation, as such, in the pre- or post-condition of another operation: these latter
are logical expressions and a state-changing operation has no meaning in such a context.
This having been said, Section 9.1 introduces a way in which the |lcgpeaificatiorof

one operation can be used in the specification of another.

The specification of non-deterministic operations takes over another technique from
function specification and makes the role of post-conditions for operations clear. Loosely
specified functions (i.e. those with post-conditions which do not determine a unique
result) can only be implemented by deterministic functions. For operations, there is
good reason to take the alternative position: implementations of operations can be non-
deterministic. In languages with parallelism or explicit non-deterministic constructs, the
need for this is obvious. There are also more subtle reasons for permitting the non-
deterministic view. All that really need concern the reader for now is that the proof rules
presented do cope with this interpretation.

Exercise 3.4.1 Specify an operation which subtracts the initial valuenofrom m,
where both are treated as external variables.

Exercise 3.4.2 Specify an operation which has write access to two variables+«(say
andn); although both variables can be changed, it is required that the sum of their final
values is the same as the sum of their initial values — furthermore, the operation should
decrease the value in. Assume that both variables are natural numbers.

Exercise 3.4.3 Specify the operation of integer division. There are to be three external
variables. The initial value (integer) im is to be divided by the initial value (integer)
in n; the quotient is to be put into registei(integer) and the remainder left in. Make
restrictions ornm andn to make the task easier. Do not use divisionrabd in the
post-condition.

Respecify the operation so thatis a parameter and the quotient is given as output
from the operation.

Exercise 3.4.4 Another program for factorial (using a temporary variabbnd avoid-
ing changes ta) is:

=1,

t:=0;

while ¢t # n do
(t:=t+1;
fn:i=fnxt)

Sketch (as above) how it might have been developed.
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Set Notation

By relieving the brain of all unnecessary work, a
good notation sets it free to concentrate on more
advanced problems, and in effect increases the
mental power of the race.

A. N. Whitehead

The numeric data considered so far provides an introduction to the key concepts of spec-
ification and proof. However, many systems programs, or commercial applications, do
relatively little calculation; the essential purpose of such programs is the manipulation of
data structures. Attention is now turned to specification and proof techniques relating to
data structures. This, and the next three chapters show how abstraction on data structures
plays a crucial part in writing succinct specifications.

Clearly, one would not wish to specify large systems at the bit and byte level. Most
high-level programming languages tend to focus on those data structures which can be
implemented efficiently: APL provides a rich set of array operations, LISP provides list-
processing facilities. In a specification language, it would be a mistake to favour one
specific programming language. Rather, a specification language should be rich enough
to model a wide range of problems prior to any commitment to a particular programming
language.

There is, however, a more important influence on the choice of data types in spec-
ification languages. Programming languages implement those structures which can be
mapped efficiently onto the target machine. In writing specifications, concern should be
focused on the task being specified and not on its eventual implementation. In general,
it is possible to achieve concise specifications by using data types, like sets, which are

85
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more abstract than those, like arrays, which are governed by implementation efficiency
considerations.

Such abstraction is, of course, possible only at the specification level — the eventual
implementation must accept the constraints of the implementation machine. (Strictly,
one should say here, the constraints of the implementation language. It is, however, true
that most languages simply transmit the constraints of the underlying machines.) Data
reification is considered in Chapter 8 — this can be seen as a process of making com-
mitments which achieve efficiency by capitalizing on context. In writing specifications,
whenever a trade-off between efficiency and clarity has to be made, preference is always
given to the latter.

This chapter begins by reviewing set notation informally; Section 4.2 cements the
understanding by developing a proof theory; Sections 4.3 and 4.4 develop the use of set
notation in specifications.

4.1 Set notation

A spell-checker specification

Later sections show the use of set notation in specifications, but basic set notation should
be familiar enough to make a simple introductory example readable. Consider the task of
checking a large text file against a dictionary of known words. Such a program is useful
in the location of possible spelling errors. There are, of course, many representation
details about the text file to be resolved. But the crucial design decisions undoubtedly
concern the representation of the dictionary. If this is to store tens of thousands of words
in a way which facilitates efficient searching, some ingenuity is required in design —
this issue is returned to in Chapter 8 as an example of data reification. Applying the
dictum of abstraction, the representation issue can — and should — be postponed. For a
specification the only concern is with a finite, unordered collection of distinct words —
the state of this system can be presented as:

Word-set

Even Word need not be further defined at this point. Apart from the detail that the
required notation is not covered until Chapter 7, there is a positive advantage in postpon-
ing this implementation-specific information: the specification is thereby made more
abstract. The operation which must be invoked once per word in the text should return
true if, and only if, its argument is a member of the state; its specification is:

CHECKWORD (w: Word) b:B
ext rd dict : Word-set
post b < w € dict
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Notice thatw € dict yields a truth value and thus the equality with the Boolean result,
b, is defined using the equivalence operator.
The initial state for the system might be the empty set of words:

dicty = { }
An operation to add one word to a dictionary can be specified:

ADDWORD (w: Word)
ext wr dict : Word-set
pre w ¢ dict

post dict = dict U {w}

This specification appears simple precisely because an apposite data type is used in
defining its state. In terms of data structures usable in, for example, Pascal, the defi-
nition would be far longer and less clear. Of course, such representation details have
to be faced in the design process but a concise specification is achieved by postponing
implementation details.

It is interesting to note that the pre-conditionADDWORD is not necessary at the
set level of description. It might, however, be important for the implementation and this
justifies its being recorded. It can be a mistake to become so involved in the abstraction
that the needs of the implementation are entirely ignored. In fact, the crucial decision
here is whether or not the user accepts this limitation.

Notation

The specification above has used a little set notation — as have earlier chapters. It is now
necessary to examine this notation in more detailsefis an unordered collection of
distinct objects; set values are marked by braces, thus:

{a,b} ={b,a}

The fact that the values are distinct means that there is no concept of the number of
occurrences of an element in a set — elements are either preemtabsent¢). Thus:

a€{a, b}
¢ ¢ {a, b}

Notice that a set containing one element is distinct from that element:
{a} #a

The sets above are formed by simple enumeration of their elements; sets can also be
defined byset comprehensionthis defines a set which contains all elements satisfying
some property — thus:
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{iez|1<i<3}={1,2,3}
re{ye Y |p(y)} & €Y Ap(z)

The need for a set containing an interval of the integers is common enough to justify a
special notation:

{i,o. o ky={jeZ]i<j<k}
{1,...,3} ={1,2,3}
(2.2} = {2}

But:
j<i = {i,....j}={}
Where{ } is the empty set.

Itis possible to relax the set comprehension notation in the case that types are obvious —
write:

{f@) [ p(i)}
wheref is a total function orD, meaning:
ze{f(1)|p(i)} & FieD-p(i)Az=Ff(i)

A way of forming new set types is to use theet' constructor applied to (the names of)
known sets, for example:

B-set = {{ }, {true}, {false}, {true, false} }
Providing BS is finite:
BS-set={S | S C BS}

The X -set constructor yields only finite subsets of its base &et, just as with natural
numbers, there can be an infinite set of such subsets. One argument for this restriction
is that it is rare, in writing specifications, that infinite sets — as such — are manipulated.
Since computer stores are themselves finite it would only be possible to perform such
manipulation indirectly via some finite representation. The restriction to finite values
also facilitates inductive proofs (see page 94).

The distinction between sets and their elements is crucial. Noticetisat defines
a set of sets. The signaturembizs is:

maxs: N-set — N

This function can be applied to the elements of its domain, for example:

If the base set is infinite, this is not the same as the power set which yields the set of all subsets; for
finite base setsset is identical with power set.



4.1 Set notation 89

{1,7,17} € N-set
It yields an element of its range:
17eN

The operators which apply to operands which are sets are first discussed by example
and logical expressions. Suppasees, etc. are expressions which evaluate to sets,
evaluates to a set of sets, and:

Sy =Aa,b,c}
S2 = {C, d}

The union of two sets is a set containing the elements of both sets (ignoring which set
the elements come from and whether they are present in only one set or both):

S1U S = {a,b,c, d}
It can be defined:
ertUes={z |z €€ VzIE€Ee}

A natural generalization of this operator is tistributed unionof a set of sets. This
unary (prefix) operator yields all of the elements present in any of the sets which are
contained in its operand:

U{S1,{e}, S2,{}} ={a,b,c,d, e}
It can be defined:
Uss={z|Jeecss-z e}

Theintersectionof two sets is a set which contains those elements common to the two
sets:

S1 NSy = {C}
It can be defined:
esNe={x|z€e; Nz € e}

Thedifferenceof two sets is that set which contains the elements of the first operand that
are not present in the second operand:

Sl - S? = {Cl, b}
It can be defined:

ee—e={z|rce ANz ¢ e}
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The operators above all yield values which are sets. Other operators yield Boolean
results and can be used to test for properties of sets. Membership tests are used above:

a €8]
d¢ s

One set is aubsedf (or is equal to) another if the second operand contains all elements
of the first:

{c} €5
51 C S5
51 C (Sl USQ)
{} %

It can be defined:
e1Ce & (Vxee-z€e)

Unqualified use of the word ‘subset’ in this book implies that equality is subsumed.
Proper subseéxcludes the case of equality:

{}c s
{a, b} c S5
—|(Sl C Sl)

It can be defined:

e1Cer < e CeaN(eaCoe)
Set equality can be defined:

e1=e & e CeNeCe

These operators are analogous to the ordering operators on nurdberaid=). The
subset operator is not, however, total: theregrand.S; such that:

ﬂ(SZQSjvSJQSZ)

Thecardinality of a (finite) set is the number of elements in the set:

card 51 =3
card S5 = 2
card{} =0

A group of computer scientists who investigated an algebraic view of data types
dubbed themselves the ‘ADJ group’. They used a graphical notation for describing the
signatures of operators and ADJ diagramof the set operators is shown in Figure 4.1.

In such diagrams, the ovals denote data types; the arcs from ovals to operators show the
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Y

card
(X-set)-set Y X-set > N
) A

Figure 4.1 ADJ diagram of set operators

types of the operands; and those arcs from operators to ovals show the type of the result.
Thus Figure 4.1 shows thathas the typeX x X-set — B.

Priorities are placed on the logical operators in order to minimize the parentheses
required in complex expressions. There is an obvious argument for mirroring the priority
of AV by makingn higher priority tharu — thus:

S1 NSy U S;3
means.:
(Sl N SQ) U S3

There is less agreement in textbooks about what should be done beyond this. The prob-
lem, which can be seen on the ADJ diagram, is that the operators yield results of different
types. In general below, parentheses are used to make expressions like:

(AuB)C C
z € (AUB)

clear. The set (or arithmetic) operators are assumed to be of higher priority than the
logical operators.
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Exercise 4.1.1 Write down the values of:

{a,c} N{c,d,a}

{a,c} —{c,d,a}

card {z? | z € {—1,...,+1}}
5€{3,...,7}

(7,....,3}
{ieN|i%ec{4,9}}
{ieZ]|i®=1i}

U{{a, b}, {},{b, c}, {d}}
U{}

Exercise 4.1.2 Write set comprehension expressions for:

¢ the set of integers greater than 100 and less than 200 which are exactly divisible
by 9;

e the set of prime numbers in the same range.

Show the subset relationships betwégrz andNj.

Exercise 4.1.3 Complete the following by replacing the question mark so as to generate
a true statement about sets (assume that the types are sensible):

eUe=7
en{} =7
(61g62) = (61—62:?)
eNe=7
eU{} =7
e1 CeaNeaCes = e17e3

{}7e

card (e 7 ey) = card e; + card ea — card (e1 N e2)
(61 — 62) MNe3 = (61 ? 63) )
61—(61—62)261?62

U{Ues} =7es

Exercise 4.1.4 Write out the commutative and associative laws for intersection; and
the distributive laws for intersection over union.

Exercise 4.1.5 Define a predicate:
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is-disj : X-set x X-set — B
is-disj(s1,82) 2

which yieldstrue if, and only if, the two sets have no common elements (i.e. they are
disjoint).

Exercise 4.1.6 Define a distributed intersection operator — is a pre-condition required?
Exercise 4.1.7 (*) A symmetric difference operator can be defined:

510 8 = (s1Us2) — (51N s2)
Complete the following expressions so that they are true:

81682:{} = 51789
5168 =7

5178 C 5198

$1 0 8 = 878
51682:(81—82)?(82—81)
519(519 %) ="

4.2 Reasoning about sets

Given the intuitive understanding of set operators from the preceding section, the next
step is to be able to construct proofs about sets. As this section progresses, the proofs
begin to contain less formal detail than in Section 3.2: the proofs are rigorous without
being completely formal.

Induction based on set generators

Inductive proofs about the natural numbers are based on the generatdrsitidsu.cc).

Proofs about finite sets can be based on very similar inductive fulésre again the
crucial step is to recognize the generators for sets — these are the empy)sand

an (infix) insertion operator() which adds an element to a set (its typeXisx X-set

— X-set). This insertion operator ignly used in the construction of, and proofs about,

the inductive structure of sets — one would normally use set union with a unit set. The
intuition behind these generators is that any finite set can be represented by an expression
of the form:

10 (20 (...0{})

2t is possible to prove many properties of sets by induction on their cardinality. This reduces induction
on sets to induction on the natural numbers. But the consistent approach of studying the generators for each
data type results in clearer proofs.
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Axiom 4.1 The factthat the elements of a set are unordered is reflected by the following
commutativity property of the insertion operator:

e1,e0 € X; s € X-set

e} S ao) = a0 (@o

Axiom 4.2 Similarly, the fact that sets do not contain duplicate elements is reflected
by its property of absorption:

e€ X; s € X-set
®-abs
e®(e@s)=e®s
Notice that these two properties imply that the intuitive representations of sets are not

unique: syntactically different expressions (eg® (e2 ® (e2®{})), e2® (e1 ®{ }))
stand for the same set value.

Axiom 4.3 The set induction rule which is suggested by the generaisirs

p({});
— ec X, s€ X-set, p(s) - p(e®s)
Set-ind
s € X-set - p(s)

This leads to proofs of the same shape as Witind and it again relies on the finiteness

of the possible values. As with the natural numbers, set operators can be defined by re-
cursive functions over the generators. One way of making proofs about sets less tedious
than those about natural numbers is to give the information about operators directly in
terms of inference rules. Thus, fof the rules are as follows.

Rule 4.4 A basis (J-b) and an inductive rule(-7) are given:
-b
Vo=0

s € X-set, ss € (X-set)-set
Ij U(s®ss)=sUlss

Inductive proofs of set properties

Lemma4.5 The ruleU-b shows thaty absorbs empty sets as left operand; a proof must
be given that the same happens on the right:

3This rule could be strengthened by adding s as a hypothesis to the induction step; this is not done
here since it is covered by the alternative rule given on page 99.

4Strictly, the set operators are parameterized on the type of the set elements — this point is not treated
formally here.
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from s € X-set
1 (yu{t=1{} b
2 fromee X, s € X-set, s U{} =9
2.1 (e@s))U{}=e0(s1U{}) U-4
infer (e®s1)U{} =€ s =-subs(ih2,2.1)
infer sU{}=s Set-ind(1,2)
Lemma 4.5

from s1, s9, 53 € X-set
1 ({ } U 82) U s3

= 5o U s3 U-b

2 :{}U(82U83) U-b

3 fromee X, se X-set, (sUs)Usz3=sU(s2Us3)
31 ((e®s)Usa) U sz

=(e®(sUs))Uss3 U-1

3.2 =e® ((sUs2)Us3) U-4

33 =e®(sU(s2Us3)) ih2

infer =(e®s)U(s2Us3) U-4

infer (s1 U s2) U sz = s1 U (s2U s3) Set-ind(2,3)

Lemma 4.6:U-ass

s € X-set
— sU{}=s
Lemma 4.6 (U-ass) Set union is associative:

s1, 89, 83 € X-set
[-ass} (51 Us2)Usz =81 U(s2Us3)

Lemma 4.7 (U-comm) Set union is commutative:

U-comm

81,8 € X-set
81U S = 89U 81
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Lemma 4.8 (U-idem) Set union is idempotent:
4 s € X-set
sUs=s
Lemma 4.9 Distributed union distributes over union as follows:

@ 581, 882 € (X-set)-set
— U(ss1 Ussa) = U ss1 UU ss2

The proof for Lemma 4.5 is straightforward and is given on page 95. Detail is omitted
in these proofs by abbreviating the justifications: references to lines which provide type
information, are dropped. Clearly, the writer of a proof should have checked the steps
and a reviewer who is in doubt can ask for the details to be provided. Just as with the
proofs in Section 3.2, the presentation here is given in the order for reading. This proof
is actually best found by writing:

e the outerfrom/infer;

e line 1 and the innefrom/infer (2) are generated by the induction rule; this now
permits the final justification to be given;

e the justification of line 1,
e completion of the innefrom/infer.

This way of generating proofs is quite general but it is not always immediately obvious
which variable to use in the induction. A proof thation is associative (Lemma 4.6)
is given (by induction ors;) on page 95. Here again, the induction rule has been used
to generate the sub-goals (1 and 3). What is more difficult in this proof is to choose
the variable over which induction is to be performed. Often it is necessary to make a
few experiments before it becomes clear which of the possible choices best decomposes
the proof task. In addition to not referring to all of the type assumptions, another way
of shortening proofs is used here. It is common in reasoning about data types to need
many steps of substitution of equal expressicass:bs). In the proof of Lemma 4.5
this is shown explicitly. Here, lines 1 and 2 follow by-subs but only the subsidiary
equality is cited. Lines 3.1 to the conclusion of the inner box represent another chain of
equalities.

Using the commutative property df, it is possible to prove thainion is commu-
tative (Lemma 4.7). A preliminary lemma and the main proof are given on page 97. The
separation of the lemma avoids the need for a nested induction. The idempotence of
union (Lemma 4.8), which relies on the absorptive property o proved on page 98.

Exercise 4.2.1 Define (over the generators — as with union above) set intersection and
prove:
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from e € X, s1,8 € X-set
1 eo0({}Us)

infer e ® (s1 U $2) = 51U (e ® 82)

from s1, 50 € X-set
1 {}USQZSQU{}

2.1 (e®s)U sy
=e®(sUs)
2.2 =e®(52Us)
infer =s5U(e®s)

infer 51 U 8o = s U 81

Lemma 4.7:U-comm

=e® S
2 —{JU(eos)
3 frome e X, s€ X-set, e® (sUs) =sU(e® s2)
3.1 e® ((e2®s)Us2)
=e® (20 (sUs))

3.2 = 62@(6@(SU82))
3.3 =e O (sU(e® s))

infer =(e2®s)U(e® s2)

2 fromee X, s€ X-set, sUsys=s3Us

Set-ind(1,2)

U-b
U-b

U-1
®-comm
ih3

U-1
Set-ind(2,3)

U-b, L4.5

U-1
ih2
Lemma

sn{}={}

Also prove its associativity, commutativity, and idempotence as well as the distribu-

tion of union over intersection andce versa

Exercise 4.2.2 Define the distributed union operator and prove:

WH{Uss} =Uss
Also prove Lemma 4.9.
Exercise 4.2.3 Define set difference and prove:

(Sl —52)053 = (Sl ﬂ53) — 5
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from s € X-set
1 {Ju{}={} b
2 fromee X, s € X-set, sUs=s
2.1 (e@s)U(e®s)
=e®(sU(e®s)) U-%
2.2 =e®((e®s)Us) U-comm
2.3 =e®(e®(sUs)) U-i
2.4 =e®(sUs) ©-abs
infer =e®s ih2
infer sUs = s Set-ind(1,2)
Lemma 4.8:U-idem

Exercise 4.2.4 (*) Define and develop a useful theory of the symmetric difference
operator for sets (cf. Exercise 4.1.7 on page 93).

Exercise 4.2.5 (*) Exercise 2.1.6 on page 33 discusses the idea of reasoning about
types. Rather than give signatures for the derived (set) operators, it would be possible to
infer their types from the rules of generation. BasedJsehanduU-i, infer that

s 81,82 € X-set
IE (81 U 82) € X-set

Proofs about membership

It is possible to characterize the set membership operator by inference rules and thus
provide the basis for formal proofs which include this operator. The basic facts about
membership are:

@—\EleEX‘ee{}

E e, € X, s € X-set

-l

e1€E(ea®s) & eg=e Ve €s
It is now possible to prove properties like:

Lemma 4.10
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z € (51U s2)
TESVIES

L4.10¢

Below, it is necessary to prove properties of the form:
Vo e{z € X |[p(z)}-q(z)

It should be clear that this is equivalent to:

Vee X -p(z) = q(z)
Similarly:

dre{ze X |[p(z)}-q(z)
is equivalent to:

dz e X -p(z) A q(x)

With the natural numbers, a second form of the induction rule is available once
subtraction has been introduced-{ndp). The rule has an inductive step which shows
thatp inherits fromn — 1 to n. It is not the intention here to develop the whole of the set
notation formally, but — once set difference has been covered — the following induction
rule can be used.

Axiom 4.11

p({});
(Seind2] s€ X-set, e€ s, p(s—{e}) F p(s)

s € X-set - p(s)

Notice that the validity of this rule relies om-abs and ®-comm. It would also be
possible to present a complete induction rule for sets.

4.3 Theories of data types

Importance of theories

The preceding section has established a theory of sets which can be used throughout the
remainder of this book. Whenever a new class of objects arises, it is worth investigating
its properties. In effect, theoryof the new objects is created which gathers together
useful results about the objects. Of course, for the well-known basic types like sets,
standard mathematical texts may be consulted. The advantage of building such a theory
for other types, as they arise, is that the collection of results is then available for any
use of that type. Several authors (including [Jon79]) have recognized the crucial role
that the development of theories will play in making more widespread the use of formal
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methods.

Partitions

As an example of such a theory, this section outlines some results about the concept of
Partition. This theory is used in a specification in the next section; there, a motivation
for the specific example is given. In this section, the theory is developed abstractly. If
this makes the material too difficult to absorb, the reader should skim it now and then
return when the results are needed in Section 4.4.

A set (of, sayN) is partitionedif it is split into (a set of) disjoint subsets. Thus:

Partition = { p € (N-set)-set | inv-Partition(p)}
Where:

inv-Partition : (N-set)-set — B
inv-Partition(p) £ is-prdisj(p) AN{} & p

Pairwise disjointness is defined by:

is-prdisj : (N-set)-set — B

is-prdisj(ss) £ Vsi, s € 858 = 89V is-disj(s1, 52)
(A full discussion of, and notation for, such data type invariants is contained in Sec-
tion 5.2. The exclusion of the empty set is a technicality which is explained in Chap-

ter 11: for now, it should just be accepted.)
An example of aPartition is:

{{3,6},{5},{1,2,7}}

Notice that elements aPartition are sets of sets — the collection of all partitions is, of
course, a set of such objects. Thus:

{pa, o} C Partition
pa = {{1},{2}}
po = {{1,2}}

In p,, which is a ‘fine’ partition, each element is in a unit set; in the ‘coagge’all
elements are in the same set. But:

(1,2}, {1}} € (N-set)-set

is not aPartition because it fails to satisfyhv- Partition.
Given the definition ofPartition it is possible to prove that certain properties hold.

Lemma 4.12 The trivial empty partition satisfies the invariant:
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[EXE] {} € Partition

Lemma 4.13 A simple way of extending partitions is given by:

@ p € Partition; e € N; e ¢ Up
' (pU{{e}}) € Partition

Although these results might appear obvious, it is interesting to see how their proofs
can be formalized. Both boxed proofs follow the same pattern: firstly the type of the
required expression is established; then it is shown that the expression satisfies each
clause ofinv- Partition. Notice, in the proof of Lemma 4.13 on page 102, how lines 2
and 3 establish the need for the double set of braces around the elenterthe same
proof, one can observe how properties of the more basic data types are brought into play.
Line 9 for example relies on the property & theory that:

eéd s ed s
e ¢ (s1Us2)
While line 5 uses:

egUp
Vs € p-is-disj({e},s)

In a mechanized theorem proving system each of these properties would be spelled out.
Partitions can be generated from one another by merging sets which satisfy truth-
valued functions:

merge : Partition X (N-set — B) — Partition
merge(p,t) 2 {se€p|-t(s)}u{U{sep|t(s)}}
So, for example, if:
t(s) & -is-disj(s,{2,3})
then:
merge({{1,2,7},{5},{6,3}}, )
= {{5}} U{U{{1,2,7},{6,3}}}

= {{5}} U {{17 2,3,6, 7}}
= {{5}, {1, 2,3,6, 7}}

In order to know that this works in general, it is necessary to show that the following
lemma holds.

Lemma 4.14 Merging preserves the property of beindartition.:
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from defns

1  {} € (N-set)-set Set
2 Vsi,s0€{} 51 =52 Vis-disj(si, s2) 4
3 is-prdisj({}) is-prdisj,2
4 VeeN-set-e¢{} {}
5 {} €& N-set Set
6 {r¢d{} V-E(4,5)
infer { } € Partition Partition,1,3,6

Lemma 4.12

from p € Partition, e € N, e ¢ (Jp

1  p e (N-set)-set h,Partition
2 {{e}} € (N-set)-set h,Set
3  (pu{{e}}) € (N-set)-set 1,2y
4 is-prdisj(p) h,Partition
5 Vsep-is-disj({e},s) h,Set
6 is-prdisj(pU{{e}}) 4,5is-prdisj
7 {}é¢p h,Partition
8 {ré{{e}} Set
9 {}¢(pu{{e}}) 7,8,5¢t
infer (p U {{e}}) € Partition Partition,3,6,9

Lemma 4.13

(a4 p € Partition; (t: N-set — B); Is € p - t(s); p’ = merge(p,t)
: p' € Partition

Notice that the third hypothesis avoids the danger of generating an empty;seiNo
proof of this is given here but a closely related proof (Lemma 11.1) is given on page 263.

It would be dishonest to camouflage the fact that this ‘theory’ was actually extracted
from an initial attempt at the specification of the equivalence relation problem which
is discussed in the next section. This admission does not undermine the arguments for
collecting together such bodies of knowledge. Only when extensive collections are avail-
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able will it be reasonable to expect that new problems will be encountered which gain
major support from what others have done.

Exercise 4.3.1 (*) This exercise concerns the theaPyrtition.

e Specify a function which, given a set of objects frolywill return a set containing
a partition of the input set into two sets whose sizes differ by at most one.

e Show that the coarsest partition of any finite subseé\ shtisfiesinv- Partition.

e Argue informally that{ } ¢ p AVxeUp-3I'se€p- -z € sis an equivalent
formulation of inv- Partition.

¢ Define a function which can split sets (with two or more elements)Bi@ition
and show that it preservésuv- Partition.

4.4 Specifications

The reader should now have a thorough grasp of set notation and some facility with
its manipulation in proofs. It would be worth looking back at the specification of the
spelling checker in Section 4.1 to ensure that its details are fully understood.

A buffer pool

Another simple specification which uses only sets is for a resource manager program.
Suppose that the resource is a pool of buffers. Each buffer might be identified by a buffer
identifier which could, in the actual implementation, be an address. This level of detail
need not be decided in the initial specification and the buffer identifiers are shown as a
set Bid. Again, in the likely representation, the free buffers might be organized into a
free list. The specification can ignore such representation details and build around an
unused setys). An operation which resets the collection of free buffers is:

SETUP (s: Bid-set)
ext wr us . Bid-set
post us = s

A free buffer can be obtained by the operation:

OBTAIN () r: Bid
ext wr us . Bid-set

pre us # { }

post r € us A us = us — {r}
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Notice that this post-condition does not determine which buffer is to be allocated: the
specification is non-deterministic. The operation which releases a buffer is:

RELEASE (b: Bid)
ext wr us . Bid-set
pre b ¢ us

post us = us U {b}

Census data base

This example illustrates how properties of operations are important in understanding
specifications. A database is to be set up which records people’s sex and marital status.
One possible way of modelling the information is to have three sets: one each for male,
female and married namesN¢me is used as a primitive set — in a real system some
form of unique identifier would be used. Thus, no name change is shown on marriage.)
In the initial state, all three sets would be empty. One interrogation operation, and two
which update the database, are specified:

MARMALE () rs: Name-set

ext rd male . Name-set,
rd married @ Name-set

post rs = male N married

NEWFEM (f: Name)

ext wr female . Name-set,
rd male : Name-set

pre f & ( female U male)

post female = female U {f}

MARRIAGE (m: Name, f: Name)
ext rd male . Name-set,
rd female . Name-set,
wr married . Name-set
pre m € (male — married) A f € ( female — married)

post married = married U {m, f}

In each of these operations, external variables are marked as ‘read only’ where they
cannot be changed.

There are certain properties of the operations in this model. For examplegtiré:d
set is always a subset of the union of the other two sets e and female sets are
always disjoint. Such properties aresariantson the state and are discussed in Sec-
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tion 5.2.

Another point which is taken up in subsequent chapters is the choice of the most
appropriate model for a particular specification. That given above, for example, is cho-
sen for pedagogic reasons — the notation of Chapter 6 makes it possible to provide a
model with simpler invariants. Even with the set notation alone, other models could be
employed — one such is suggested in Exercise 4.4.4 below.

Exercise 4.4.1 The spell checking program of Section 4.1 would probably need an
operation which inserted many words into a dictionary at once. Specify an operation
which takes a set of words as arguments, adds all new ones to the dictionary and returns
all duplicates as result.

Exercise 4.4.2 A system is to be specified which keeps track of which people are in a
secure area — ignore how the operations are invoked (perhaps via a badge reader?) and
assume that no two people have the same name. Specify operatidgisTdtR, EXIT,
ISPRESENT. Also show the initial state.

Exercise 4.4.3 A system is to be specified which keeps track of which students have
done an example class. Specify operations which can be used to:

e record the enrollment of a student (only enrolled students can have the next oper-
ation performed);

¢ record the fact that a student has successfully completed the examples;
e output the names of those students who have, so far, completed the examples.

Also show the initial state.

Exercise 4.4.4 Respecify the three operations in the text relating to the recording of
people based on a model:

singfem: Name-set
marfem: Name-set
singmale: Name-set
marmale: Name-set

What invariants hold over these sets?

Recording equivalence relations

An interesting example which can be handled with sets alone concerns the creation and
interrogation of a database which records equivalence relations. Before discussing the
specification, some motivation is offered. Compilers for high-level languages of the
ALGOL family frequently have to map programs with many variables onto machines in
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Property | Definition Examples
Reflexive | zRx =<,>
Symmetric| zRy = yRzx =,#
Transitive | zRy A yRz = zRz | =, <, <,>,>

Figure 4.2 Properties of relations over integers

which some store access times (e.g. for registers) are much faster than others. Storing
variables in registers can considerably improve the performance of the created object
programs especially if they are used to index arrays. There is, however, a trap which
must be carefully avoided. Distinct variable names can be made to refer to the same
location in store. This happens when variables are passed by location in Pascal (i.e. to
var parameters) or ‘by name’ in ALGOL. Any change made to one variable must be
reflected in that variable’s surrogates. A compiler writer therefore might need to keep
track of a relation between variables which might be known as ‘could share storage’ and
to ensure that appropriate register-to-store operations follow updates. The use of ‘could’
indicates that this check should be fail-safe. Now, if both variable pdirsnd B) and

(B and ) could share storage then clearly &énd C) could also share storage. This is

one of the properties of an equivalence relation.

The form of relation being considered here records connections over elements of a
set® If R is a relation,zRy can be written to state that the pair of elementsdy)
stand in the relatiofi. There are a number of properties which are, or are not, possessed
by different kinds of relations. A relatioR is said to beransitiveif when zRy andyRz,
thenzRz necessarily holds. Figure 4.2 shows which relations over the integers possess
the properties being discussed; the reader should use these to confirm the intuition of the
properties (note, in particular, that inequality is not transitive). A relalossymmetric
if wheneverzRy, thenyRx. A relation R is reflexiveif for all elementsz, thenzRxz. A
relation is arequivalence relatiofif it is reflexive, symmetric and transitive. Referring
to Figure 4.2, it can be seen that equality is the only equivalence relation shown there.
The reader should be able to see that the ‘could share storage’ relation over variables is
an equivalence relation.

There are very many applications of such relations in computing including, for ex-
ample, codebreaking. The applications in graph processing involve relations over very
large sets. (The compiler example might involve relatively small sets.) The reader might
like to spend some time thinking about how to represent the relation so that it can be

SMathematically, such a relation is a subset of the Cartesian product of two instances of the set.
Qther notational styles for stating this inclufle y) € R andR: z +— y.
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gueried and updated efficiently. But for now, the real concern is to obtain a clear spec-
ification which defines exactly what the system does without getting involved in the
implementation problems. The key to such a specification is to use a state containing a
Partition (namedp). The initial value of this variable stores no elemenig:= { }.
The fact thatpg is a Partition is the import of Lemma 4.12 on page 100. An operation
which gives as its result the set of elements which currently occur in any equivalence
group is:

ELS () r:N-set

ext rd p . Partition

post r=p
Notice that this operation only has read accegs tibs satisfiability therefore relies only
on the types matching in the post-conditionfofS: sincel p does yield a\-set the

operation is satisfiable. A simple state changing operation is one which adds an element
as an isolated equivalence group:

ADD (e:N)

ext wr p . Partition

pree¢ Up

post p = p U {{e}}
Here the satisfiability consideration is less obvious. To know that the combination of the
type information Partition) and the post-condition fad DD do not contradict, needs
the result in Lemma 4.13 on page 101 from which it follows that:

Ve € N, T € Partition -
pre-ADDe, T) = dp € Partition - post-ADD (e, ?,p)
Another operation which only has read access $hhows the equivalent elements to any
given element:

GROUP (e:N) r:N-set
ext rd p . Partition
preecUp
postrepAecr
Its satisfiability proof obligation is:

Ve € N, p € Partition -
pre-GROUP(e,p) = 3r € N-set - post-GROUP (e, p, )

This again requires only a type check. The operation wii¢hN/ATFEs two elements
(along with their equivalent elements) is:
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EQUATE (e1:N, ex:N)

ext wr p : Partition

pre e;,e2 € Up

postp={sepler¢shedstU{U{scD |ecsVecs}

Its satisfiability proof obligation is:

Ve, e € N,T € Partition -
pre-EQUATE (e1, e2, )
= dp € Partition - post-EQUATE (e, e, ?,p)

This relies on Lemma 4.14 which was stated — but not proved — on page 101. (Again,
see Chapter 11 for a closely analogous example which is proved.) Notice that the pre-
condition establishes the third hypothesis of the lemma.

One virtue of this set-based specification is that it is much more succinct than a
description based on an implementation. But a more important property is that, because
the algebra of the underlying objects is established, it is possible to make deductions
about a specification more readily than reasoning about contorted details of a particular
representation. It is, for example, easy to prove:

p € Partition; e € |Jp; post-GROUP(e,p,r) - e€r

which asserts that the argument givenG&®OUP will also be a member of the set
returned as a result. Or, again:

p1, p2 € Partition; e, e’ € N; e & Upr;
e/ € Up1; post-ADD(e, p1, p2); post-GROUP (e, pa,r) F
e¢r

The collection and verification of such properties goes some way towards validating
the formal specification against the (informal) understanding of the requirements for the
system.

Exercise 4.4.5 Express the last inference rule in words and write some inference rules
which express other properties of (combinations of) the operations. Do not feel obliged
to provide formal proofs at this time.

Exercise 4.4.6 Respecify the equivalence relation problem so thatAllH/ATE and
GROUP operations take a set of elements as input.
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Composite Objects and Invariants

We always require an outside point to stand on, in
order to apply the lever of criticism.
C. G. Jung

Sets are only one item in the collection from which abstract descriptions of objects can
be built. Chapters 6 and 7 introduce further familiar mathematical constructs. In this
chapter, a way of forming multicomponent objects is described. In many respects these
composite objects are like the records of Pascal or the structures of PL/I; since, however,
the properties of composite objects are not exactly the same as for records, a syntax is
chosen which differs from that used in programming languages. As with the objects
discussed above, an (inductive) proof method is given which facilitates proofs about
composite objects. In Section 5.2, data type invariants are discussed in detail. Section 5.3
provides amplification of the concept of states and some related proof obligations.

5.1 Notation

Constructors

Whereas instances of set objects are written using braces, the composite values consid-
ered in this chapter are created by so-catieake-functions A composite objechas a
number of fields; each such field has a valuenake-functionwhen applied to appro-

priate values for the fields, yields a value of the composite type. The notation to define
composite types is explained below. Suppose, for now, that some composite type has
been defined such that each object contains a form of date. The type isiRalled the

109
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first field contains a day and the second the year; the relevant make-function might have
the signature:

mk-Datec: {1,...,366} x N — Datec

A make-function is specific to a type: its name is formed by prefixitig to the name
of the type.
A useful property of make-functions is that they yield a tagged Vagieh that
no two different make-functions can ever yield the same value. Thus if two sorts of
temperature measurements are to be manipulated, one might have:

mk-Fahrenheit: R — Fahrenheit
mk-Celsius: R — Celsius

Even though each of these types has one field, and the field contains a real number in
each case, the typdahrenheit and Celsius are disjoint (i.e.mk-Fahrenheit(0) #
mk-Celsius(0)). It is then possible to form the union type containing béthrenheit
and Celsius without them becoming confused.

A particular make-function yields distinct results (composite values) for different
arguments (i.emk- Celsius(0) # mk- Celsius(1)).

Decomposing objects

One way of decomposing composite values is by selectors. The definitions of such
selectors are described below with the notation for defining the composite type itself.
For now, assume that the selectalgy and year have been associated with the two
fields of Datec — then:

day(mk-Datec(7,1979)) =7
year(mk-Datec(117,1989)) = 1989

Suchselectors are functions which can be applied to composite values to yield the
component values. Thus their signatures are:

day: Datec — {1,...,366}
year: Datec — N
There are several other ways of decomposing composite values; each uses the name

of the make-function in a context which makes it possible to associate names with the
sub-components of a value. A notation used above for defining local values is:

YIn fact, a reasonable model for VDM’s composite objects is a Cartesian product with a tag. The
explanation of the properties of composite objects avoids the need to discuss the model. In particular, the
selectors of composite objects can be given more meaningful names than the numeric selectors of tuples.

2The selectors serve as projection functions and make-functions as injections.
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The expression to the right of the equality sign is evaluated and its value is associated
with i, this value ofi is used in evaluating the expression to the righihothelet con-

struct provides a binding for free occurrences of the final expression. This notation

can be extended in an obvious way so that it might be said to decompose composite val-
ues. Suppose that a function is to be defined whose domdintig: and the definition

of the function requires names for the values of the components. The function could be
defined, using selectors:

inv-Datec : Datec — B
inv-Datec(dt) £ is-leapyr(year(dt)) V day(dt) < 365

Using the extension dét, this can be written:

inv-Datec(dt) &
let mk-Datec(d,y) = dt in is-leapyr(y) V d < 365

Thelet construct, in a sense, decompoge$dy associating names with the values of its
fields. The frequency with which such decompositions occur on parameters of functions
prompts the use of the make-functions directly in the parameter list. Thus an equivalent
effect can be achieved by writing:

inv-Datec(mk-Datec(d,y)) £ is-leapyr(y) V d < 365

The tagging property of make-functions can be used to support a usséslcon-
struct. A function which reduces either form of temperature &e&ius value might be
written:

norm-temp : (Fahrenheit U Celsius) — Celsius

norm-temp(t) £ if t € Fahrenheit
then let mk-Fahrenheit(v) =t in mk-Celsius((v — 32) x5/9)
else ¢

This is rather cumbersome and an obviotisés' notation can be used which, as in a
parameter list, names the components of a composite object:

norm-temp(t) £ cases t of
mk-Fahrenheit(v) — mk-Celsius((v — 32) % 5/9),
mk-Celsius(v) — — 1
end

At first sight, the range of ways for decomposing composite objects might appear
excessive. However, it is normally easy to choose the most economical alternative. For
example, it is briefer to use selector functions than decompose an objedtwiftanly
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a few fields of a multicomponent object are referred to within the function; if, on the
other hand, all fields are referred to, it is simpler to name them all at oncktinlano
reference is made in the body of a function to the value of the entire object, deich a
can be avoided and the decomposition made in the parameter list. Decomposition via the
cases construct is obviously of use when several options are to be resolved. Although the
notations can be used interchangeably, brevity and clarity result from careful selection.

Defining composite types

The definition of composite types is now considered. While classes of values of type set
are defined by theset constructor, theomposite types defined — for théatec example
above:

compose Datec of
day : {1,...,366},
year @ N
end
In general, the name of the type (and thus of its make-function) is written between the
compose andof; after theof is written the information about fields — for each field, the
name of its selector is followed by the type of value. Similarly:

compose Fahrenheit of
v . R
end

compose Celsius of
v ! R
end

If it is clear that values in a composite type are never going to be decomposed by selec-
tors, the selector names can be omitted altogether in the definition. Thus, it is possible
to write:

compose Celsius of R end
The corresponding sets of objects defined are:

{mk-Datec(d,y) | d € {1,...,366} Ay € N}
{mk-Fahrenheit(v) | v € R}
{mk-Celsius(v) | v € R}

From the properties of make-functions, it follows that:

is-disj(Fahrenheit, Celsius)
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Definitions of composite types can be used in any suitable context. Thus, one could
write:

(compose Datec of --- end)-set
However, the most common context is just to associate a name with the set:
Datec = compose Datec of - - - end

This name is often the same as the constructor name. The frequency of this special case
justifies an abbreviation. The above definition can be written:

Datec :: day : {1,...,366}
year : N

The:: symbol can be read as ‘is composed of’; the following two definitions are equiv-
alent:

Name = ---

Name = compose Name of --- end

The:: is actually used far more often than ttempose form in the sequel.
Names for types can be introduced in definitions to add clarity. For example, the
definition given above could be written:

Datec :: day : Day
year . Year

Day ={1,...,366}

Year = N

Since these are simple set equalities, the definitiod3wgfand Year have not, however,
been tagged by constructors — thus:

7 € (Day N Year)

Modifying composite objects

The functions associated with composite objects (make-functions and selectors so far)
are unlike the operators on sets in that the latter are general whereas those for composite
objects are specific to a type. Thus the ADJ diagram given in Figure 5.1 relates solely
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day year

pd

Datec

Y
A

(-, day — ) p(-, year — )

mk-Datec

Figure 5.1 ADJ diagram oDatec operators

to the Datec example. Only one other functidis defined for composite objects: the
function provides a way of creating a composite value, which differs only in one field,
from another; thus:

dt = mk-Datec(17,1927)
p(dt, day — 29) = mk-Datec(29, 1927)
wu(dt, year — 1937) = mk-Datec(17,1937)

Concrete syntax notations (e.g. BNF) which can be used to define the set of strings of
a language are discussed in Section 1.2.aRAstract syntaxs similar in many respects
but defines a set of objects which contain only the essential information but do not retain
the syntactic marks (e.g.=, ;) which play a part in parsing strings. The definition of the
semantics of programming languages uses an abstract syntax in order to avoid irrelevant
detail. In fact, one of the reasons that the uniqueness property of make-functions had
to be adopted was to simplify the description of the abstract syntax of programming
languages. Both theet andcompose constructs are used in describing abstract syntax
and many examples occur below. In spite of the differences, certain aspects of concrete

3Strictly, there is a whole family of: functions — one for each composite type. However, singe a
function cannot change the type of a composite object, no confusion arjgés ifsed as a generic name.
The 1 function could be generalized to change more than one field at a time. This is not needed in the
current book.
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syntax notation carry over naturally to the description of abstract syntax. [ Thé
notation for marking things as optional is taken over from concrete syntax along with
the idea of distinguishing elementary values by fount change (here seinLSCAPS).
Thus:

Month = {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, Nov, DEC}
Record :: day : {1,...,366}

year . N
valid : [ERROR

The brackets denoting optional items can be read as:
[Set] = Set U {nil}
Thus, an omitted field is marked by thé value and:

mk-Record (366, 1984, nil) € Record
mk-Record (366, 1983, ERROR) € Record

Notice also that in thé&ecord example the concrete syntax convention of letting a single
value be interpreted as a set has been adopted.
Naming conventions

A number of naming conventions are being followed in the examples in this book —
although not strictly part of the notation, conformance to some stated set of conventions
can significantly aid the readability of large specifications. The conventions here are:

e names of types are printed in italics and have their first letter in upper case and
the rest of the name in lower case (elQatec) — exceptions are standard names
for certain mathematical sets (e) which are distinguished by being in special
founts;

e names of functions (and thus selectors) are in all lower case italic letters;
e names of operations are in all upper case italic letters;

e elementary values (e.g.RROR) are in a ‘small caps’ fount.

Data type invariants

The topic of data type invariants which is touched upon above, is now explored more
fully. The day field of Datec is restricted to show that, for instanc$9 can never be
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a value. This sub-range concept is useful but does not solve the problem of restrict-
ing values of composite objects. In several places above (and very many below) it is
necessary to show that certain combinations of field values cannot Bxase type in-
variantsare truth-valued functions which can be used to record such restrictions. The
function inv- Datec discussed above is an obvious invariant on dates. It is convenient to
write such restrictions as part of the type definition with a keyward) to separate the
invariant — thus:

Datec . day : Day
year . Year
inv (mk-Datec(d,y)) 2 is-leapyr(y) V d < 365

defines the set:

{mk-Datec(d,y) | d € Day N\ y € Year A inv-Datec(mk-Datec(d,y))}
Where:

inv-Datec(mk-Datec(d,y)) £ is-leapyr(y) V d < 365

Here, just as with pre- and post-conditions, the keyword gives rise to a truth-valued
functioninv- Datec which can be used elsewhere. Naid objects ofDatec are those
which, as well as belonging to the composite type, also satiafyDatec. Thus:

d € Datec

is taken to imply that the invariant is satisfiéd.
Referring back to the example of Section 4.3 which was written:

Partition = { p € (N-set)-set | inv-Partition(p)}
This can be given in the keyword form as:

Partition = (N-set)-set

inv inv-Partition( p)

The Datec example is typical of the way in which data type invariants arise. Neat
mathematical abstractions tend to fit regular situations; some objects which are to be
modelled are ragged and do not immediately fit such an abstraction. The truth-valued
function which is used as the data type invariant cuts out those elements which do not
arise in reality. Section 5.3 shows how invariants are also useful on composite objects

4This has a profound consequence for the type mechanism of the notation. In programming languages,
it is normal to associate type checking with a simple compiler algorithm. The inclusion of a sub-typing
mechanism which allows truth-valued functions forces the type checking here to rely on proofs. The next
section shows how such proof obligations are generated and discharged.
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used as states.
Some interesting data types can be defined with the aid of recursion. It is possible to
write recursive abstract syntax definitiorach as:

Llist = [Llistel]

Llistel 2 hd : N
tl : Llist

These objects are reminiscent of the simplest lists in a list programming language; el-
ements ofLlist can benil; non-il elements are of typélistel and contain a head and
a tail where the latter is ani| or non+il element of)Llist. Just as with sets, there is a
clear argument for restricting attention to finite objects and it is assumed that all objects
satisfying a recursive composite object definition are finite (but, of course, there is an
infinite set of such objects because their size is unbounded). It can be useful to think of
such objects as trees (notice that cycles cannot be generated by the chosen constructors);
Figure 5.2 pictures some elementsidfst.

A function which sums the elements of such a list can be written:

lsum : Llist — N
Isum(t) £ casest of

nil — 0,
mk-Llistel(hd, tl) — hd + lsum(tl)
end

Notice that this recursive function is well-defined (i.e. it terminates) only because all
elements ofl.list are finite.

Further examples of recursive definitions are given in the next section; these are
presented with their invariants and a discussion of the relevant proof methods.

Exercise 5.1.1 Given:

Date . year . N
month : Month
day  :{1,...,31}

Write the signature ofnk-Date and of the selectors.

Usemk-Date to construct an object with an interesting date.

Define a truth-valued function which determines whether the first ofibwizs is
earlier than a second. Three versions should be given using (respectively) selec-
tors, let, and puttingmk- Date in the parameter list.

Write a data type invariant fabate.
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5 nil

4 nil

Figure 5.2 Elements dblist

e Use au function to modify the ‘interesting date’.

Exercise 5.1.2 Define a composite object which could be used to store the time of day
to the nearest second. Why is no data type invariant required? Give the signature of a
function which modifies the minute field dfime.

Exercise 5.1.3 Given a specification of (UK) traffic lights:

Light = Colour-set
Colour = {RED, GREEN, AMBER}

limit the possible values with a data type invariant.

Exercise 5.1.4 Suppose a hotel requires a system which stores information about room
numbers. Floors are numbered 1 to 25 and rooms are numbered 0 to 63. Define a
composite objeckoomno and an invariant to reflect the facts that:

e there is no floor numbeis3;
e levellis an open area and has only room nuniher

o the top five floors consist of large suites and these are numbered with even integers.

Exercise 5.1.5 Write expressions corresponding to the element&loft pictured in
Figure 5.2. Use a function to insert a new tailt{) into the first of these objects. Define
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a (recursive) functiomjoin which places one list at the end of (i.e. in thieposition) of
another.

Exercise 5.1.6 This exercise develops the form of list closer to those known in LISP
as ‘dotted pairs’. Define a set of objeciR{ist) which have fields namechr and cdr;

these fields can contain either integers or lists. Define one function which gathers the set
of numbers in such an object and another function which sums all of the numbers.

Exercise 5.1.7 (*) Given

S=T
inv (s)& -

then:

(Vse S-p(s) & (Vse T imv-S(s) = p(s))
(Fs€ S-p(s)) & (Fse T inv-S(s) A p(s))

Explain this using de Morgan’s law.

5.2 Structural induction and invariants

Creating induction rules

Recursive definitions of composite objects define infinite sets of (finite) objects; induc-
tion rules are needed to prove properties of such sets. Induction rules are given above for
natural numbers and sets. For composite objects, in contrast, there is no single induction
rule. Instead, it is necessary to generate an induction rule for each recursively defined
class of objectsStructural inductionprovides a way of generating the appropriate in-
duction rules.

The fact that such induction rules exist depends on the finiteness of objects which
satisfy recursive type definitions. As with the other induction rules, those for structural
induction relate to the ways in which objects are generated.

Axiom 5.1 For Liist of the preceding section the appropriate induction rule is:

p(nil);
hd € N, tl € Llist, p(tl) & p(mk-Llistel(hd, tl))

[ Liist-ind | I € Liist - p(l)

Inspection of this example, should make clear how induction rules are generated for
recursively defined objects. The basis comes from the non-recursivenil®.case(s)
and the induction step from the recursive case(s).
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To illustrate how the induction rule can be used, some proofs about the following
function can be performed:

ldbl : Llist — Llist

ldol(t) &
cases t of
nil — nil,
mk-Llistel(hd, tl) — mk-Llistel(2 x hd, ldbl(tl))
end

Lemma 5.2 A simple property to prove is that:
l € Llist = 2xlsum(l) = lsum(ldbl(l))
The proof is shown on page 121.

Exercise 5.2.1 Using the definitions above (including Exercise 5.1.5 on page 118),
prove by induction:

Ll € Llist & lsum(ljoin(l,k)) = lsum(l) + lsum(l)

Exercise 5.2.2 Give an induction rule foPllist (as in Exercise 5.1.6 on page 119).
¢ Define a functiorfiatten which places the elements offdlist into a Liist.
e Provell € Pllist & sumli(ll) = lsum(flatten(ll))

Wheresuml! is the function defined in Exercise 5.1.6.

Invariants in recursive definitions

In order to present more interesting examples of proofs, invariants are now added to
recursive definitions. Chapter 8 addresses the problem of finding representations of ab-
stract objects like sets and maps (see Chapter 6): it is necessary to create such represen-
tations either because the abstractions are unavailable in the implementation language
or to enhance the efficiency of an implementation. One example is finding representa-
tions of sets. The sets d¥ords required in the spell-checking application is a particular
example studied below. Here, the problem of representing a set of natural numbers is
considered. A large set of numbers can be stored in a binary tree to facilitate efficient
updating and checking. Suctbaary tree

e has two (possiblyil) branches and a number at each node;

e is arranged so that all numbers in the left branch of a node are less than (and all
numbers in the right branch are greater than) the number in the node;
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from [ € Llist
1 2xlsum(nil)
=0 lsum
2 = [sum(nil) lsum
3 = Isum(ldbl(nil)) ldbl
4  from hd € N, tl € Llist, 2 * lsum(tl) = lsum(ldbl(tl))
4.1 2 % lsum(mk-Llistel(hd, tl))
= 2% hd + 2 x lsum(tl) lsum,N
4.2 = 2% hd + lsum(ldbl(tl)) ih4
4.3 = [sum(mk-Llistel(2 x hd, ldbl(tl))) lsum
infer = [sum(ldbl(mk-Llistel(hd, ldbl(tl)))) ldbl
infer 2 % lsum(l) = Isum(ldbl(l)) Llist-ind(3,4)
Lemma 5.2:lsum

from It, rt € Setrep, mv € N,

1 from i < mw

Lemma 5.3

inv-Node(mk-Node(lt, mv, rt)), i € retrns(mk-Node(lt, mv, rt))

1.1 retrns(mk-Node(lt, mv, rt)) = retrns
retrns(it) U {mv} U retrns(rt)
1.2 i # mu hl
1.3 i ¢ retrns(rt) h,inv-Node,h1
infer i € retrns(lt) 1.1,1.2,1.3
2 (i < mo)
infer i < mv = i € retrns(lt) =-1(2,1)
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e is balanced to increase efficiency.

The relevant data structure is defined:

Setrep = [Node]

Node :: It : Setrep
mv : N
rt : Setrep
inv (mk-Node(lt, mv, rt)) &
(Vv € retrns(lt) - lv < mv) A (Yrv € retrns(rt) - mv < rv)
A function which retrieves the set of numbers in a tree is:

retrns : Setrep — N-set
retrns(sr) 2

cases sr of

nil —{}

mk-Node(lt, mv, rt) — retrns(lt) U {mv} U retrns(rt)
end

The invariant captures the second requirement above; the third requirement is discussed
in Exercise 5.2.4 on page 123. Notice that writing the invariant Witkle requires that

it applies toall occurrences olNode within the tree, not just the root. If this were not
done the invariant would have to be a recursive function; moreover, proofs involving
Nodes would be more complicated.

Lemma 5.3 The invariant results in the following simple Lemma abdiides:

= i € retrns(mk-Node(lt, mv, rt))
: i <mv = i€ retrns(lt)

The proof is shown on page 121. Notice how the fact that the antecedent is defined is
used in order to prove that the implication holds.

A function which checks whether a number is in such a set representation can be
defined. Direct definitions are being used here rather than implicit specifications. This
is often the case as design steps tackle implementation details.

Assuminginv-Node is true, a function which tests whether values arfdtrep can
be defined:
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isin :N x Setrep — B
isin(i,sr) &
cases sr of

nil — false,
mk-Node(lt, mv, rt) — if i = mv
then true

else if © < muv then isin(i, lt) else isin(i, 1)
end

Axiom 5.4 The induction rule foiSetrep is:

p(nil);

mv € N, It, rt € Setrep,

inv-Node(mk-Node(lt, mv, rt)), p(lt), p(rt) F
p(mk-Node(lt, mv, rt))

trep-ind
I@ sr € Setrep = p(sr)

This can be used to prove:

Lemma 5.5
1 € N; sr € Setrep
L5.

isin(i,sr) < i € retrns(sr)

A proof is shown on page 124.

Exercise 5.2.3 Define a function which inserts a number int¢'@rep and prove that

the function preserves the invariant (it will be necessary to conjoin a property about the
result in order to make the induction work). Do not bother to preserve the ‘balanced
tree’ property (yet).

Exercise 5.2.4 (*) Define a function which deletes a number fron¥@rep and show
that the function preserves the invariant and has the expected effect on the set of num-
bers. (Deletion is significantly harder than insertion.) Do not, in the first attempt, try to
preserve the ‘balanced tree’ property.

The property of a tree being (height) balanced has not been formalized yet. Write a
suitable invariant. Use this to give an implicit specification of a delete function which
does preserve the property.



124

5 Composite Objects and Invariants

from i € N, sr € Setrep

1 —isin(i,nil) isin
2 retrns(nil) ={} retrns
3 i ¢ retrns(nil) Set,2
4 dsin(i,nil) & i€ retrns(nil) <-1(1,3)
5 from mv € N, It,rt € Setrep, inv-Node(mk-Node(lt, mv, rt)),
(isin(i, lt) < i€ retrns(lt)), (isin(i,1t) < i € retrns(rt))
51 r<muVi=mvVi>mu N
5.2 from i = mv
5.2.1 isin(i, mk-Node(lt, mv, rt)) isin,h5.2
5.2.2 i € retrns(mk-Node(lt, mv, 1)) retrns,h5.2
infer isin(i, mk-Node(lt, mv,1t)) < <-1(5.2.1,5.2.2)
i € retrns(mk-Node(lt, mv,rt))
5.3 from i < mv
53.1 isin(i, mk-Node(lt, mv, rt)) < isin(i,lt) h5.3;sin
5.3.2 i € retrns(lt) < L5.3,ih5,h5.3
i € retrns(mk-Node(lt, mv, rt))
infer isin(i, mk-Node(lt, mv, rt)) < & -trans(5.3.1,ih5,5.3.2)
i € retrns(mk-Node(lt, mv, rt))
5.4 from i > muv
7 similar”
infer isin(i, mk-Node(lt, mv,1t)) <
i € retrns(mk-Node(lt, mv, 1))
infer isin(i, mk-Node(lt, mv, rt)) < V-E(5.1,5.2,5.3,5.4)
i € retrns(mk-Node(lt, mv, 1))
infer isin(i, sr) < i € retrns(sr) Setrep-ind(4,5)

Lemma 5.5
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5.3 States and proof obligations

Satisfiability

The process of design proceeds, normally in several stages, from specification to im-
plementation. At each stage of design, a claim is being made that the design coincides,
in some way, with what has gone before — for example some piece of code satisfies a
module specification. In an informal development method, such claims are often only
implicit; they are not capable of formalization since the specifications, etc. are informal.
In the rigorous approach, such claims are made explicit: they give rigetd obliga-

tions Such proof obligations are in the form of sequents to be proved. The formality
of the specification makes these proof obligations quite precise. The level of detail to
be employed in a particular proof depends on judgement — thus the method is rigorous
rather than completely formal. The virtue of recognizing proof obligations is to ensure
that issues like satisfiability are not overlooked and to provide a hook for extra formality

if required.

Even when specifications alone are considered, there are proof obligations. 1t is
possible to write implicit specifications which cannot be satisfied. For example, a post-
condition can be written which requires a number such that it and its successor are even,
or a function can be specified to produce the ‘largest prime number’.

Proof obligation 5.6  The proof obligation o$atisfiabilityrequires that, for any function
or operation, some result must exist for each valid input. For example, for:

f(i:D)d: R
pre-f: D — B
post-f: D x R — B

the condition is:
Vd € D - pre-f(d) = 3r € R- post-f(d, )

This states that there must existawhich satisfies the specification. It is, however, the
case that the need to establish satisfiability can frequently be discharged with a minimum
of work.

Theorem 5.7 For example, the appropriate sequent for proof obligation 5.6 fopthe
function of Section 3.2 is:

r€RF 3reR-abs(m—r) <1072

This expression is obviously true. Since, however, this is the first proof which requires
3-1, its form is shown (notice how the bound variables substituted for th8.141):
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fromz € R

1 3141¢R R
2 abs(m—3.141) <1072 R
infer 3r € R- abs(m — r) <1072 3-1(2)

Theorem 5.7 pi

Even in the case of some of the more complex explicit function definitions given above,
the satisfiability proof obligation is straightforward.

Theorem 5.8 For example, the square function requires:
ieNF IreN.r=q?

Which is obviously true from knowledge of the natural numbers.
Some appreciation of the need for satisfiability can be seen from an example where
it does not hold. Suppose that square root were specified so as to require:

VieN-IrteN-rt2 =i
This is obviously not true, as can be shown by a simple counter example:
—3IrteN-r?2=2

There are cases where the satisfiability proof obligation is not at all obvious and it is
no easier to prove than simply creating the implementation. In such cases, the proof
obligation should be used as an item on a checklist in a review and — given a strong
feeling that it is satisfied — work on the implementation should proceed.

It must be kept in mind that type information interacts with the pre- and post-
conditions when considering satisfiability. Thus an operation with a pre-condition of
z < 2 and a post-condition of = z — 2 is satisfiable for integers (or reals) but not
wherez is constrained to be a natural number.

Such satisfiability constraints carry over in an obvious way from functions to op-
erations. Since it is only necessary to fix an order for the parameters of the pre- and
post-conditions when they are taken out of their context.

Influence of invariants

Invariants — which are a part of the type discipline — also play a part in satisfiability. An
operation which has write access to a variable of tijagec, must not generate a value
like mk-Datec(366,1923).
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Proof obligation 5.9 No operation specification must be written which rules out all
valid elements oDatec. So:

OP (i:D) o: R
ext wr dt . Datec
pre p(i, dt)

post ¢(i, dt, o, dt)

must satisfy:

Vi € D, dt € Datec -
pre-OP (i, dt) = Jo € R, dt € Datec - post-OP (i, dt, o, dt)

Examples involvingSetrep or Partition behave in exactly the same way and it
should now be clear why emphasis was placed on invariant preservation lemmas when
these objects were introduced. The concept of satisfiability provides a way of identifying
rules for different contexts. In each case, the requirement is to see that a specification
does not preclude all possible implementations.

The idea of recording the external variables of an operation makes it possible to avoid
mentioning any irrelevant variables. There is an obvious way in which an operation can
be used in a state which has, at least, all of the required external variables. There is, of
course, also a requirement that the types match. A’statie be defined as a composite
object and can have an invariant. The satisfiability proof obligation for an operation
which is to be used in such a state must reflect the invariant on that state. Consider the
example, from Section 4.4, which controls information about people. The state could
be:

World :. male . Name-set
female . Name-set
married . Name-set

inv (mk-World(m, f, e)) 2 is-disj(m,f) N e C (mU f)

No operation which has only read access to the state can disturb the invariant. However,
the operation:

BIRTHM (n: Name)

ext wr male . Name-set,
rd female : Name-set

pre n ¢ (male U female)

post male = male U {n}

5Section 9.1 introduces the module concept which binds operations together with a specific state.



128 5 Composite Objects and Invariants

poses a non-trivial satisfiability proof obligation.
Theorem 5.10 The basic form is:

Vn € Name, ‘w € World -
pre-BIRTHM (n, male(‘w ), female(w)) =
Jw € World -
post-BIRTHM (n, male(‘w ), female(‘w ), male(w)) A
female(w) = female('w ) A married(w) = married (w )

The two final conjuncts come from the fact that the externals showsthai’HM cannot
change these values. The $8brid is constrained bynv- World such that:

World = {mk-World(m, f,e) |
m, f, e € Name-set A\ inv- World(mk-World(m, f,e))}

Proofs about quantifiers ranging over such set comprehensions are discussed in Exer-
cise 5.1.7 on page 119. From the equivalences there, it can be seen that the proof obli-
gation becomes:

Vn € Name, /ﬁ,?,? € Name-set -
inv- World (mk- World('m, f ,“¢)) =

(pre-BIRTHM (n,m, f) =
dm € Name-set - L L
inv- World (mk- World(m, f ,°e))Apost-BIRTHM (n,'m, f ,m))

Using Lemma 1.20 (page 25) and the usual translation into a sequent, the proof is
shown on page 129. It is not normally necessary to produce such formal versions of
satisfiability proofs. It is done here by way of illustration.

The role of invariants on states can perhaps best be visualized by considering them
as some form of global (or ‘meta’) pre- and post-condition: an invariant on a state is
an assertion which can be thought of as having been conjoined to the pre- and post-
conditions of all operations on that state.

This raises the question of why it is thought worth separating data type invariants.
There are three main arguments:

¢ for consistency checking;
e to guide subsequent revisions; and

e to ease implementation.

It is not possible to prove formally that a specification matches a user’'s wishes since
these latter are inherently informal but the more that can be done to postulate and prove
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A
from n € Name, /ﬁ, f ,7 € Name-set

1 from is-disj(7, )N T C(MUT)Ang (muUT)

11 ‘m U {n} € Name-set h,u
1.2 is-disj (7 U {n}, T) h1,h1js-disj
1.3 TCc@muinluf) hiy
14 mU{n}="muU{n}
infer 3m € Name-set- 3-I(~-1(1.2,1.3,1.4),1.1)
is-disj(m, ?) Ae C(mU 7) Am=mU{n}
infer is-disj(7, )AE C (MU T)And (MUT) =  =-I
dm € Name-set-
is—disj(m,/f_) Ae C(muU ?) Am="mU{n}

Theorem 5.10BIRTHM

theorems about a specification, the greater is the chance of discovering any unexpected
properties of the chosen specification. Thus the obligation to prove results about in-
variants can be seen as an opportunity to increase confidence in the consistency of a
specification.

The techniques described in this book were originally developed in an industrial
environment. The sort of application considered was rarely stable; specifications often
had to be updated. Recording data type invariants is one way in which the authors of
a specification can record assumptions about the state on which their operations work.
An explicit assumption, and its attendant proof obligation, are likely to alert someone
making a revision to an error which could be missed if the reliance were left implicit. The
task of showing that representations are adequate for abstractions used in specifications
is addressed in Section 8.1. It should, however, be intuitively clear that the search for
representations is facilitated by limits to the abstraction.

Long invariants can provide a warning. Different states with different invariants can
be used to define exactly the same behaviour of a collection of operations. How is one
to choose between alternative models? Although there are these advantages in recording
invariants, it is also true that their presence — or complexity — can provide a hint that a
simpler state model might be more appropriate. This point is pursued below when other
data-structuring mechanisms are available. But it is generally true that a state with a
simpler invariant is to be preferred in a specification to one with a complex invariant.
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The process of designing representations frequently forces the inclusion of redun-
dancy; typically, this might be done to make some operation efficient. Such redundancy
(e.g. a doubly-linked list) gives rise to invariants. Thus, as inSheep example above,
more complex invariants do tend to arise in the design process.

As can be seen, data type invariants provide information about any single state which
can arise. They do not provide information about the way in which states change (e.g. a
constraint that a variable does not increase in value). Knowledge about single states
(e.g.fn = t!in the factorial example used in Exercise 3.4.4 on page 84) and between
states (e.g. the greatest common divisoi ahd; is the same in each succeeding state)
both have parts to play in the implementation proofs of Chapter 10. In specifications
themselves, however, it is data type invariants which are most useful.

Exercise 5.3.1 Write out the satisfiability proof obligation (without proof) for:
e double (cf. Exercise 3.2.1 on page 57);
e choose (cf. Exercise 3.2.3 on page 57);

e mult (cf. Exercise 3.2.6 on page 60).

Exercise 5.3.2 Outline the proof of the first part of Exercise 5.3.1 — this is very simple
but shows the overall idea.

Exercise 5.3.3 Exercise 4.4.3 on page 105 can be specified in (at least) two ways. The
different models are distinguished by their invariants. Document the invariant used in
answering that exercise and prove that the operations are satisfiable with respect to it.
Then find another model and record its invariant.

Data types

The notion of data type is very important in modern programming methods. The view
taken in this book is that data typecharacterizes a behaviour. Thehaviouris the
relationship between the results of the operators of the data type. The importance of
this relationship is that a value is exposed in other, more basic, data types. Thus, in the
World example abovelyame is taken as a basic type and the behaviour of the operations
can be observed via their inputs and outputs.

Clearly, if one knows all about the behaviour of a data type, one need know nothing
else in order to use the data type. The fact that it is realized (or implemented) in some
particular way is unimportant. For the specification of the operations around’siné!
example BIRTHM, etc.) the choice of the specific state is an artifact of the specifi-
cation. This focuses the discussion on how data types can be specified. For interesting
data types, the behaviours are infinite and it is clear that they have to be specified other
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than by enumeration. Section 9.4 shows how the properties themselves can sometimes
be used to form a specification. The approach followed in the body of this book is to
specify data types via models. Not only is a particular composite object (containing
sets) chosen as the model fdforid, but also the map objects in the next chapter can be
modelled by sets of pairs. Thimodel-orientechpproach appears to be appropriate for

the specification of larger computer systems. There are some dangers in the approach
and these are discussed in Section 9.3. Basically, the model must be seen as a way of
describing the essential behaviour and implementation choices must be avoided.

There is another distinction about data types which is worth clarifying since it often
confuses discussions about their specification. Data types like sets or integers have op-
erators which are purely functional in the sense that their results depend only on their
arguments. In contrast, the results of operations (in an example like the calculator of
Section 3.4) depend on the state. This distinction is made here by referfungctmnal
data typesandstate-based data type# the main, the specifications of computer sys-
tems are state-based data types. In the model-oriented approach to specifications, the
states themselves are built using functional data types (e.g. sets).

A model-oriented specification of a state-based data type comprises:

e a definition of the set of states (normally including invariants);
¢ a definition of possible initial states (often exactly one); and

e a collection of operations whose external variables are parts of the state: these
operations must be satisfiable.

Section 9.1 describes a fixed concrete syntax for presenting a whole data-type specifica-
tion. This is not used in the body of this book because of the wish to focus on concepts
rather than details of syntax. In a state-based data type, the history of the operations plays
a part in governing the behaviour. Even so, the behaviour can be seen as the essence of
the data type. The model is a convenient way of defining the behaviour. To a user of
the data type, internal details of the state are important only in so far as they affect the
observable behaviour. Those details which are not made visible by operations should be
ignored®

5Section 3.4 explains why one operation cannot, as such, be used in the specification of another. It is,
however, clear that the separation provided by data types is very useful in structuring specifications. There
is, therefore, a need to be able to use, in some way, even state-based data types in the specifications of
others. This topic is taken up in Section 9.1.
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Map Notation

If you are faced by a difficulty or a controversy in
science, an ounce of algebra is worth a ton of
verbal argument.

J. B. S. Haldane

Functions define a mapping between their domain and range sets — a result can be com-
puted by evaluating the expression in the direct definition with particular arguments sub-
stituted for the parameter names. Their definitions use powerful concepts which make
it — in general — impossible to answer even simple questions about functions such as
whether they yield a result for some particular argument value. When a mapping is
required in a specification, it is often sufficient to construct a finite map; the virtue of
explicitly recognizing the more restricted case is that more powerful operators can be
defined. The maps which are described in this chapter are, however, similar to func-
tions in many respects and the terminology and notation adopted reflects the similarities.
The differences result from the fact that the argument/result relationship is explicitly
constructed for maps. Building a map is like building a table of pairs; application of a
map requires table look-up rather than evaluation of a defining expression. Furthermore,
whereas functions are defined by a fixed rule, maps are often created piecemeal.

Access to information via keys is very common in computer applications and poses
significant implementation problems. A powerful abstract notation for maps provides a
crucial tool for the construction of concise specifications. Consequently, maps are the
most common structure used in large specifications.

133
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6.1 Notation

Representing equivalence relations

In order to provide an introduction to the notation, a specification is shown — in terms of
maps — which defines the same behaviour for the operations as that for the equivalence
relation problem in Section 4.4. It should be remembered that elemeNtfav¥e to be
separated into partitions; partitions can be merged by @& ATE operation; another
operation makes it possible to find tlieROUP of elements in the same partition as
some given element. In the definition to be given here, the property of being in the same
partition is captured by a map: equivalent elements are mapped to the same partition
identifier (the set of which i$’id). The required map type is defined:

Partrep = N — Pid
Thus the partition:

{{3,6}, {5}, {7.2,1}}
might be represented by a tableNfPid values:

3 pidl
pidy
pudy
pids
pids
pids

NN OO

A linear presentation omap values can be used: individual pairs are known as
mapletsand the elements are separated by a special arrothe collection of pairs is
contained in set braces. Thus:

{3+ pidy, 6 — pidy,5 — pidy, T +— pids, 2 — pids, 1 — pids}

The map is shown as a set of maplets or element pairs. Their order is unimportant and
a natural model for finite maps is a finite set of ordered pafthitrary sets of such
pairs would, however, be too general. In order for maps to be used with a function style
of notation, they must satisfy the restriction that no two pairs have the same left-hand
value. In other words, a map representaany-to-onenapping.

The information about variables, etc. for thdROUP operation can be rewritten:

GROUP (e:N) r:N-set
ext rd m . Partrep
pre - -

post - --
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The post-condition must require that the setontains all elements which map to the
samePid ase. Application of a map is just like function application and the same
notation is used. Thugost-GROUP is:

r={e e |m(e)=m(e)}

Completing the post-condition — and writing the pre-condition — requires that the domain
of the map be known because the definition of a map fixes the maximum set of values
and each instance of such a map value has a dordain)(which is a subset of the
maximum set. Using this operator, the specificatiod:@O UP can be completed:

GROUP (e:N) r: N-set

ext rd m . Partrep

pre e € dom m

post r = {e’ € domm | m(e’) = m(e)}

The post-condition of th& Q UATFE operation must describe haw changes. There
is a mapping override operatoy) (Wwhich enables pairs from its second operand to take
precedence over any pairs from its first operand for the same key — thus:

{a—1,b—2}it{a—3,c—4}={a—3,b—2,c— 4}
It would be possible to write ipost-EQUATE:
m="mt{er — m(e)}

but this would be wrong! By changing only one key, other members oéthpartition
would not be updated (and the transitivity property would be lost). A comprehension
notation, like that for sets, can be used for maps. The correct specificatiof GA TE

is:

EQUATE (el:N,egzN)
ext wr m : Partrep
post m = m 1 {e— m(ex) | e € domm A ‘m(e) = m(e)}

The second operand of the override contains all pairs from the old valuewhich
have the same key as did in the old value ofn.

The initial value ofPartrep is defined to be the empty mapi, = { }.

Continuing in this way would result in there being two specifications of the equiva-
lence relation problem. Chapter 8 introduces the methods by which one can be shown
to model the other. (The choice of the namertrep was made to suggest its being
a representation aPartition.) Chapter 11 takes a variant of this problem through the
process of data reification (and operation decomposition down to code).

Now that the collection of data type constructors is larger, it is necessary to spend
more time considering which model best suits the task to be specified and this is taken
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up in Section 9.2. Abstraction is interesting — but not always easy.

Operators

The remainder of this section takes a closer look at the notation for maps. Maps are
associations between two sets of values; within a pair (maplet), the key and value are
separated by-; a map value contains a collection of such pairs where no two pairs have
the same first element. For example:

{1—-1,2—4,-1—1,0— 0}
The pairs can be written in any order within the braces:
{1—-1,2—4,-1~1,0—~0}={-1—1,0—0,1—1,2+— 4}

Map values can also be defined by comprehension in a way which reflects the fact that
maps are simply sets of pairs. Thus:

{i—i2eNxNJic{-1,...,2}}
is the same map value as above. The general form is:
{z—flz) e X XY |p(z)}

But, since it is normally obvious, the constraint is frequently omitted. Such expressions
must be written so as to generate only fihileaps. With care, one can also write map
comprehension as:

{r—=ylaqlz,y)}

but, in order to be able to look up values, it is essential thdbes not associate two
differenty values with the same value.
The examples which follow use the values:

my ={aw—1,c—3,dw— 1}, mg ={bw 4,c+— 5}

The domain operator yields, when applied to a map value, the set of first elements of the
pairs in that map value. Thus:

dommy = {a,c,d}

dommg = {b, ¢}
and for the empty map:
dom{} ={}

This restriction is required — as with other objects — to admit induction.
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f,U

@ \o @

Figure 6.1 ADJ diagram of map operators

A map value can be applied to a value for which it is defined (is in the set given by
dom) —thus:

mi(a) =1
ma(c) =5
and for maps defined by comprehension:

m={z — f(z) [ p(x)} Ap(z0) = m(w) = f(0)

Given an understanding of these operators, all other map operators (see Figure 6.1 for
the ADJ diagram) can be defined.

The set of values on the right of the pairs contained in a map can be determined by
the range operator:

mgm; = {1,3}
rmgme = {4,5}
mg{}={}

which is defined:

mgm = {m(d) | d € domm}
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Notice that, as a result of the many-to-one property, for any map value
cardrng m < carddom m

The map override operator yields a map value which contains all of the pairs from
the second (map) operand and those pairs of the first (map) operand whose first elements
are not in the domain of the second operand. Thus:

mitmg={a—1,b—4,¢c—5dw— 1}
metm ={a—1,b—4,¢c—3,d— 1}

mi{t=m={}tm

The types of all of the map operators can be read from Figure 6.1; map override is
defined:

ma T mb2
{dw
(if d € dom mb then mb(d) else ma(d)) |
d € (dom ma Udom mb)}

Notice that the domain of the second operand can contain elements which are not in the
domain of the first operand.

The override operator is not commutative. When the domains of two map values are
disjoint, the values can be combined by a union operator:

mpgU{a— 7} ={a—T7,b—4,¢c— 5}

for which:
is-disj(dom ma,dom mb) = ma U mb = mbU ma

The definition of map union is identical with that for override, so:
is-disj(dom ma,dom mb) = ma U mb = mat mb

The advantage of identifying — with a distinct operator — the special case of disjoint
domains is that the commutativity property can be used in proofs. Remember, however,
that the union operator is undefined if the domains of the operands overlap.

The union symbol is used in two distinct contexts. Strictly, set union and map union
are two different operators. The same symbol is used because of their similarity. Such
overloading is familiar both in mathematics and in programming languages. For exam-
ple, Pascal uses the same plus operator for integer and real numbers (as well as for set
union!).

A restriction operator<) is defined with a first operand which is a set value and a
second operand which is a map value; the result is all of those pairs in the map value
whose first element is in the set value. Thus:
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{a,d,e} <m; ={a—1,d— 1}
{}am ={}
s<a{}={}

Map domain restriction is defined:

s<am 2 {d—m(d)|de (sNndomm)}
and for any map:

(domm)<m =m

Similarly, a domain deletion operatog), with the same type as restriction, yields
those pairs whose first elements are not in the set:

{a,d, e} s mi = {c+ 3}
Map deletion is defined:

sam & {dw— m(d)|de (domm—s)}
and for any map values:

{}am=m
ma T mb = (dom mb< ma) U mb

A type whose values are to be maps each with maximum domaind maximum
rangeR is defined by:

T=D™R

Any value of typeT' is a map whose (finite) domain issabsebf D and whose range is
asubseof R. Thus:

{a,0} = {1,2}
denotes a set of maps whaslementsre:

{}{a—=1}{a— 2} {b— 1}, {b— 2},
{a—1,b—1},{a— 1,02} {a— 20— 1}, {a— 2,b— 2}

Thus:
{a—1,b—2} € ({a,b} = {1,2})

It should be clear from this example that the type (givenay) defines the maximum
possible domain for a map. The domain operator determines the domain set of a partic-
ular map value. Thus:
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dom {b 2} = {b} C {a, b}
dom{} ={} C {a,b}

Because of the restriction that maps be many-to-one, the inverse of a map is not —in
general — a map. Only if a map @e-to-onds its inverse also a map. Although it is
needed less, this type can be shown by:

DR
where:
(D <™ R)={m € (D = R) | is-oneone(m)}

is-oneone : (D "+ R) — B
is-oneone(m) £ cardrngm = carddom m

meD SR
then the inverse, which is defined:
mt={r—d|dedommAr=m(d)}
is of type:

mteRIESD

Exercise 6.1.1 Given:

m ={a—z,b—y,c—x}
mg ={br— z,d — z}

what is the value (if defined) of:

my(c)
dom my
rng my
mi ()

my T me
my T
m1 U me

{a,e} <m
{da 6} < mg
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Exercise 6.1.2 Complete the following expressions: are arbitrary maps):

my T (mg T mg) = (mq tmg)? ma
dom (m1 J[ mg) 7m 7 ? mo
rng (my T mg) =7

dom{z — f(z) | p(z)} =

rg (my T mg) 7 (rng my U rng my)

Exercise 6.1.3 Sketch a map value=( Floor —— Roomno-set) which shows which
rooms are on which floors of the hotel mentioned in Exercise 5.1.4 on page 118.

Exercise 6.1.4 The reader should now look back at the introductory example of the
equivalence relation specification built dturtrep. To check the understanding of the
way maps are used:

e Specify, onPartrep, the ELS and A DD operations of Section 4.4.

e Reformulatepost-EQUATE in a way which leaves open the choice of whether
the key ofe; or ey is used in the update.

e Respecifytha7ROUP andEQUATE operations (as in Exercise 4.4.6 on page 108)
to take sets as arguments.

A model of maps

In the description of the notation given above, all of the operators are defined formally
exceptdom andapplication the other operators are defined in terms of these two. The
reliance on explanation by examples can also be eliminated for these basic operators.
The general style of specification in this book is to provide a model for any new data
type; the model being defined using data types which are already understood. Maps
can be defined in this way. The essence of the definition is to find a model for ordered
pairs. If a pair is formed by the functiom and first and second are functions which
decompose a pair, the key properties are:

first(pr(a,b)) = a

second(pr(a,b)) =b

(pr(a,b) =pr(c,d)) & (a=cAb=d)
Either of the data type constructors from the preceding chapters can be used to construct
a suitable model. Using composite objects, for given typesnd R:
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Pair @ first D
second : R

This satisfies the required properties with:
pr(a,b) 2 mk-Pair(a,b)

Notice that, by choosing the selectors appropriately, the decomposition functions come
automatically.

It is also possible to model pairs solely in terms of sets — though this takes some
thought. In order to be able to decompose the pair and to obtain the uniqueness property,
it is necessary to define:

pr(a,b) 2 {{a},{a, b}}

There is a problem with namiAghe results of the decomposition functions. This is
overcome here by writing implicit specifications:

first (p: Pair) v: D

post {v} € p

second ( p: Pair) v: R

post Ju € Up - p = {{u},{u, v}}

If the reader finds these definitions contorted, a few moments should be spared trying
out values like:

pr(1,1)

Either of these models suffices and only the properties of pairs are important. A map can
be modelled by a set of pairs in which no two elements have the gamealue:

Map = Pair-set
inv (s) 2Vp1,pa € 8- p1 = po V first(p1) # first( p2)
It is then straightforward to define:
domm = { first(p) | p € m}
Application is again defined implicitly but, because it is an infix operator, this is written:
m(v) =r = Ip € m-v = first(p) A\ r = second(p)

All of the map notation has now been defined in terms of other types and thus, in
some sense, it could be avoided by writing everything in terms of one of the models of

2Here again, the iota operator could be used in a direct definition.
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Pair. As subsequent examples show, however, the map notation is one of the main tools
for achieving concise specifications and it is much more convenient to use the special
operators.

Exercise 6.1.5 In the text of the chapter, operators likeg andU are defined in terms
of dom andapplication Redefine all of the map operators directly in terms of sets of
pairs (use the composite object modelrafir).

6.2 Reasoning about maps

Map induction

As with other data types, the interesting proofs about maps require induction. It would be
possible to conduct such proofs by using set induction on the domain of the map. Rather
than do this, specific induction rules are given for maps. As above, these rules rely on
the operators which generate finite maps. The ones chosen are very like those for sets.
The empty map{(}) is a map and there is a (ternary) operatoy Which inserts one new
pair into a map (its signature i€? x R x (D % R) — (D % R)). A few detailed
points are worth making here. The ‘pun’ ¢r} being both the empty set and the empty
map should cause no confusion. It would be more confusing to index each value with
its type (although they are coded differently in thgXsource files!). Furthermore, the
insertion operatord) is used only in the definitions of — and proofs about — the normal
map operators: the specifications in Section 6.3 and subsequent chapters use the normal
operators which are introduced in the previous section.

The generators provide an intuitive representation for any finite map:

{dr—nr}to(..0{}
The absorption and commutativity properties are slightly different from those for sets.
Axiom 6.1 Of two insertions for the same key, only the outer one has effect:

deD;r,meR; meD "R

@{dn—>r1}®({dr—>r2}®m):{d»—>7’1}®m

Axiom 6.2 However, for different keys, insertions can be commuted:

E dl,dQED;T'l,?“QER;mED&R; dl%dg
-comm
{dy—n}O{{d—mnrntom)={d—nrn}o{d—r}cem)

The intuitive representation given above is, therefore, not unique.
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Axiom 6.3 (Map-ind) More important for the current purpose is the fact that the full
induction rule reflects the absorption:

p({});
deD,recR, me (D" R), p(m), d¢ domm -

[Map-ind] p{d—r} O m)
Map-ind m e (D R) F p(m)

Thus it is necessary to prove that a property holds for the empty map and that it inherits
over insertion in order to conclude that the property holds for any map. The final hypoth-
esis of the induction step shows that any map can be generated with no key occurring
more than once. However, one of the operators which is discussed below is the domain
operator; in proving its properties the final hypothesis is not used.

Map application is defined over the generators. The rules are given here less formally
than for sets (i.e. types are not shown as antecedents in the inference rules — they are
suggested by the choice of identifiers).

{d—r}om)(d)=r
dp € domm + d; 7& dy = ({dl — T} ® m)(dz) = m(dQ)

These rules do not permit the empty map to be applied to any value.

Proofs about override
The override operator can be defined in terms of the generators.

Rule 6.4 (-b) The base case:
m € (D - R)

Mt =

Rule 6.5 (f-7) The induction case:

deD;rcR; m,me (D" R)

IEmlT({dHr}@mg):{dHr}Q(mleg)

It is worth noticing that, in the case of set union, the first operand is the one which

is analyzed by the cases of the definition. Here, it is necessary to analyze the second
argument because of the priority given to values of the second operandi-iThde
essentially decomposes the second operand and generates a series of inserts around the
first operand. This process could generate a string of insertions with duplicate keys (one
instance coming from each operand). In conjunction with the — limited — commutativity

of insertion, these can be eliminated by the absorption rdg«;) for keys given above.
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from m € (D - R)
1 {ri{r={} i-b
2 fromdeD, reR, me(D-"5R), {}tm=m
2.1 {}t1{d—r}om)
={d—=r}o({}im) -

infer ={d—r}om ih2

infer { } tm =m Map-ind(1,2)
Lemma 6.6

Lemma 6.6 The first proof about maps (see page 145) shows that the empty map is
absorbed also when used as left operand of override.

Lemma 6.7 (f-ass) The associativity of override:

m1, mg, m3 € (D - R)

[t-oss} my 1 (m2 T mg) = (ma T mg) T ms
is also proved on page 146.

From the development of sets, the next property to consider is commutativity. It
is made clear in Section 6.1 that override is not commutative. Consulting the proof of
the property for set union (see page 97), it can be seen that the lack of this property for
override results from the restriction placed on the commutativity of insewognm).

Lemma 6.8 A useful result is:

m1, mg € (D - R); is-disj(dom my,dom my)

L6.8
m1 T me = mp Umg

Proofs about the domain operator
The definition of the domain operator can also be given in terms of the generators.

Rule 6.9 (dom-b) The basis:

ot Gom (7= 1)
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from my, mg, mg € (D > R)
1 mf(met{})

=my T mg T-b
2 = (m1 T ma) T{} 1-b
3 fromdeD, reR me (D R),

my T (mg fm)=(my{me)Tm

3.1 myt (mat ({d— r}®m))
—mit({d — r}© (ma tm) i
3.2 ={d—r}e(mf(mgTm)) -1
3.3 ={d—r}o((m1Tme)tm) ih3
infer =(mpTme) T ({d—r}em) -1
infer my T (ma 1 mz) = (m1 T ma) t mg Map-ind(2,3)

Lemma 6.7:7-ass

Rule 6.10 (dom-i) The inductive step:

deD;reR; me (D R)
@d om({dw—r}®m)={d} Udomm

Notice how the insert case relies on the absorption property of set union.

Lemma 6.11 The relationship between the domain and override operators:

mi, Mg € (D UL R)
L6.11
dom (mq T mg) = dom my U dom mey
is proved on page 147.
The development of the results for maps is — given an understanding of the proofs
about sets — routine. A number of further results are considered in the exercises.

Exercise 6.2.1 The proofs in this section are presented in less detail than in earlier
chapters. In particular, note all of the line numbers are referenced. To show that the
process of completing such proof sketches is made possible by their overall structure,
complete the details of the proof of Lemma 6.7 on page 146.

Exercise 6.2.2 Define, in terms of the generators for maps, the map operatgrs; (
andu). It will prove convenient for Exercise 6.2.3 to analyze the first operand when
writing the last definition.
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from my, my € (D - R)
1  dom(m;tf{})

= dommy -0
2 =dommy U{} L4.5
3 = dom m; Udom { } dom-b

4 fromdeD,rcR, me (D" R),
dom (my T m) = dom my Udom m

4.1 dom (my t ({d — r} ©® m))
=dom ({d — 7} ® (my T m)) -1
4.2 =dom (my t m) U {d} dom-i
4.3 = dom m; Udomm U {d} ih4
infer = dom m; Udom ({d — r} ® m) dom-i
infer dom (my T mg) = dom m; U dom my Map-ind(3,4)
Lemma6.11

Exercise 6.2.3 Prove (showing any necessary assumptions):

{}am={}

mU{}=m

(m1 Umg)Umg =mg U (mgUmg)

{d—r}o(mUm) =mU{d— r}oms)

(This splits out the equivalent of the lemma used in set union.)
mi1 U moe = mo U my

m1 T me =my Umg

Exercise 6.2.4 (*) Develop further results about map operators including links to ap-
plication.

Exercise 6.2.5 (*) Prove the properties of Exercise 4.4.5 on page 108 about the equiv-
alence relation specification on tiiRarirep model.
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6.3 Specifications

Bank example

Itis claimed above that maps are the most ubiquitous of the basic data types. In order to
indicate why this is so, a simple bank system is specified: the need to locate information
by keys is typical of many computing applications. The example is also just complicated
enough to rehearse some arguments which must be considered when choosing a model
to underlie a specification. This is done on the level of alternative states before the
operations are specified in detail.

The customers of the bank to be modelled are identified by customer nunilaens (
accounts are also identified by numbers:(o). One customer may have several ac-
counts whose balances must be kept separately. A customer has an overdraft limit which
applies to each account — a credit in one account cannot be set against a debit elsewhere.

There are, then, two sorts of information to be stored for each customer: the relevant
overdraft and the balance information. Both pieces of information can be located by
maps whose domains are customer numbers. But should there be one map or two?
There are advantages in either solution. Separating the maps into:

odm: Cno = Ouverdraft

m
acm: Cno — ...

makes it possible for some operations to reference (in #xeiclause) only one of the
maps. With separate maps, however, there is the need to define a data type invariant
which requires that the domains of the two maps are always equal. The need for this
invariant is avoided by using one map to composite objects:

Bank = Cno — Acinf
Acinf 2 od : Owverdraft

ac : Acno = Balance
inv (mk-Acinf (od, m)) 2 Vacno € domm - —od < m(acno)

Overdraft = N

Balance = Z

Invariants, as seen above, can complicate the satisfiability proof obligation. Itis therefore
worth avoiding gratuitous complexity and the second model is used’here.

30nce the material in Chapter 8 on relating models is understood, it is possible to work with more than
one model in the case where advantages of different contending models are desirean(taee one’s
cake and eat it'!).
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Before considering other general issues raised by this specification, some minor
points about interpretation should be cleared up. B@tlrdraft and Balance con-
cern sums of money. The temptation to treat these as real numbers should be resisted.
Although most currencies do have fractional pafitss an unusual balance! The frac-
tions are there for human use and a whole number of the lowest denomination is clearly
appropriate in a computer systetalances can be negative — it is necessary to choose
how to show overdrafts. The decision here can be seen clearly from the invariant on
Acinf (representing the overdraft information as a minimum balance would be a possi-
bility which would avoid a minus sign).

A larger and more general point surrounds the uniqueness of account numbers. Most
banks make account numbers unique to a customer. An invariant can be used to show
that no two different customers can have the same account number:

Bank = Cno = Acinf
inv (m) &

Venoy, cnog € domm, -
cnoy # cnoy = is-disj(dom ac(m(cnoy)),dom ac(m(cnoz)))

However, this suggests that the account information could be organized in a totally dif-
ferent way. Consider:

Bank 1 am : Acno - Acdata
odm : Cno - Owverdraft
inv (mk-Bank(am, odm)) &
Vmk-Acdata(cno, bal) € rng am - cno € dom odm A bal > —odm(cno)

Acdata :: own : Cno
bal : Balance

The invariant is not too complex and the many-to-one relationship between accounts and
customers has been fitted naturally onto a map. This model looks plausible enough to
justify attempting some operation specifications.

The operation to introduce a new customer into the system can be specified:

NEWC (od: Overdraft) r: Cno
ext wr odm : Cno —= Overdraft

postr%dom%Aodm:%U{rHod}

Notice that this operatioallocatesthe new customer number. It is also worth observ-
ing that bothpost-NEWC' andinv-Bank rely on the LPF. Since many map operators
are partial, the reliance on the non-strict propositional operators is even greater than in
earlier chapters.
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An operation to introduce a new account is:

NEWAC (cu: Cno) r: Acno
ext rd odm : Cno —= Ouerdraft,
wr am : Acno = Acdata
pre cu € dom odm
post r ¢ dom am A am = am U {r — mk-Acdata(cu,0)}

Both of the foregoing operations trivially preserve the invariants. A simple enquiry
operation is:

ACINF (cu: Cno) r: Acno — Balance
ext rd am : Acno % Acdata
post 7 = {acno — bal(am(acno)) | acno € dom amAown(am(acno)) = cu}

The chosen model stands up to the test of defining these operations. Things are rarely
so easy and it is only the restriction to a very simplified system which gives this slightly
unrealistic outcome. In large specifications, the writer must be prepared to revise the
underlying model. Time spent in ensuring that the state matches the problem can lead to
a vastly clearer specification than results from simply using one’s first guess.

There is also another trade-off which is worth mentioning here. As richer sets of
operations are required, it often becomes tempting to add redundant information into
the state to shorten their specifications. This redundancy would of course result in fur-
ther data type invariants and is to be avoided. It is in general better to define auxiliary
functions which extract the necessary information from a minimal state.

Exercise 6.3.1
For the banking system specify operations which:

e close an account;

e remove a customer;

e transfer money between accounts;
e change an overdraft limit.

What changes need to be made to the model if each account has a separate overdraft
limit? The informal descriptions of each of these operations can be interpreted in differ-
ent ways — record any assumptions which are made in formalizing the specification.

Specifying bags

The next specification is of a different type. The preceding section showed that maps can
be modelled on other types. Here, another type is modelled on mayey ometimes
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known as amultise) can contain multiple elements but the order of elements is not
preserved. Bags thus share the unordered property with sets and the possibility to store
duplicates with sequences. The model of a bag (over somg)sst

Bag =X 5 N;

This can be viewed as associating the multiplicity with each element which has a non-
zero multiplicity. The initial object — the empty bag — is:

bo={}

Clarity can be heightened in this specification if an auxiliary functiepd) is identified
to compute (possibly zero) multiplicities.

mpc : X X Bag — N
mpc(e,m) £ if e € domm then m(e) else 0

The operation which shows how many occurrences of an element are in a bag is
specified:

COUNT (e: X) e:N
ext rd b : Bag
post ¢ = mpc(e, b)

An operation to update a bag is specified:

ADD (e: X)
ext wr b : Bag

post b = B T{e— mpc(e,?) + 1}

Exercise 6.3.2 Specify an operation to remove an occurrence of an element from a bag
and show that it is satisfiable. (Hint: notice the rangé3a§).

Describing virtual storage

As an example of the use of maps in describing a feature of machine architecture, the
concept known asirtual storeis considered. A virtual store is one which provides
multiple users each with an apparent addressing space larger than the real store which
is actually available to the user — perhaps even larger than the real store of the whole
machine. This is achieved by paging inactive portions of store onto a backing store with
slower access. The penalty is, of course, that a reference to a page which is not in fast
store must be delayed while the page fault is handled.

This specification provides a good example of how abstraction can be used to explain
concepts in an orderly way. The first step is to obtain a clear understanding of the basic
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role of store. This has nothing, as yet, to do with virtual store. The following should be
easily understood by the reader:

Store = Addr = Val

RD (a: Addr) v: Val
ext rd s : Store
pre a € doms

post v = s(a)

There is an overhead in a virtual store system: the current position (i.e. in fast or slow
store) of each addressable value has to be tracked. In order to reduce this overhead,
addresses are grouped into pages which are always moved between levels of store as a
unit. The Addr set has not so far been defined. It is now assumed to contain a page
number and an offset (i.e. position within its page) amtkge mapsOffset to Val:

Addr . p . Pageno
o . Offset

Page = Offset — Val
inv (m) & dom m = Offset

The invariant {nv- Page) records that the domain of any particular ¢ (Offset ——
Val) is a subset 0Dffset. The virtual store system can now be defined to have front and
backing stores, each of which contain pages:

Vstore :: fs : Pageno — Page
bs : Pageno — Page
inv (mk-Vstore(fs, bs)) 2 is-disj(dom fs,dom bs)

The read operation can be respecified WGstore. At this level, the concept of page
faulting is introduced by showing that the relevant page must h& after the read
operation. Any consideration of a specific algorithm (e.g. least recently used) to choose
which page to move out is deferred. The post-condition only shows that no pages are
lost and leaves open how much paging activity occurs. This non-determinism is being
used as an abstraction to postpone design decisions.

RDVS (a: Addr) v: Val

ext wr fs : Pageno — Page,
wr bs : Pageno — Page

pre p(a) € (dom fs U dom bs)

post fs U bs = /E U bs A p(a) € domfs Av = fs(p(a))(o(a))
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car cdr
b c
car cdr car cdr
5 d 2
car cdr
3 7

Figure 6.2 LISP list

There are systems in which a very clean abstraction can be given of nearly all of the
functionality but where some detail distorts the final model. If one is involved in design-
ing such an architecture, one can use this as a prompt to check whether the complexity
could be avoided. If an established architecture is being described, there is no choice
but to accept the extra complexity in the final model. This virtual store system pro-
vides a basis for an example. Virtual store systems in actual computers need many extra
features: it is often possible to lock pages into fast store; some operations might allow
access to values which cross the page boundaries. In such a case, it is good practice to
record the simplified versions so as to convey the basic concepts. For some architectures
this process of approximating to the final functionality can require several stages but can
enormously help the comprehension of systems whose entire ‘architecture’ is opaque.

LISP-like lists

Chapter 5 introduces various forms of lists as occur in list-processing languages. The
most LISP-like of these is shown (cf. Exercise 5.1.6 on page 119) as:

Pllist = [Node]
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Node . car : Pllist UN
cdr : Pllist UN

This fails to reflect the possibility — which exists in most dialects of LISP — that sub-
lists are shared. Handling this possibility is an example of the need to introduce an
intermediate link. Thus, one model which covers sharing is:

Lispl 2 1 @ Lisplist
nm : Nid = Node
Lisplist = [Nid)
Node :: car . Lisplist UN
cdr @ Lisplist UN

Given the basic idea of intermediate links, there are various ways in which it can be
employed. It would, for example, be possible to define:

Lisp2 = carrel : Nid " (Nid UN)
cdrrel :© Nid " (Nid UN)

Figure 6.2 pictures a structure. The two possible representations are:

mk-Lispl(a,{a — mk-Node(b, c¢),
b — mk-Node(5, d)
¢ — mk-Node(d,2)
d — mk-Node(3,7)

)
mk-Lisp2({a — b,b+— 5,¢c+— d,d — 3},
{a—c,c—2,b—d,d—T})

)

The drawback of the second is the need for a relatively complicated invariant.

Well-founded relations

Sections 4.4 and 6.1 (and Chapter 11) address various representations of equivalence
relations. General relations cannot be represented so compactly. The obvious model for
general relations oveb is sets ofPairs.

Rel = Pair-set

Pair o f © D
t D
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Such a relation is said to be ‘ovér’ because both the domain and range elements are
chosen from that set. The claim that a particular pair/@f €lements stand in th&

relation is writtene; Re;. These more general relations also have interesting properties:
the topic ofwell-foundednessffects several examples below and has a key part to play in
the proof obligations (cf. Chapter 10) for loop constructs. It is therefore worth spending a
little time on the topic. Intuitively, a well-founded relation is one which has no loops. For

R to be well-foundedgeRe must obviously be prohibited but so also must any indirect
loops like e; Res and ea Rey. In order to capture this with a predicate, one might try to
trace along the relation collecting the elements that are encountered. This can be done
but some care is necessary in order to make sure that the function does not become
undefined in precisely the cases where the invariant should be false. Of the alternative
approaches, the most straightforward is to require that, in any non-empty subset of the
(potential) domain of the relation, there must be an element which is not related to an
element in that subset. Thus:

Vs C D -
s#{} = Jees-—(Je €s-eRe)

Observe that:
{mk-Pair(i,i —1) | i€ N}

is well-founded (oveN), as also is:
U{{mk-Pair(i,j) | j e NAj <i}]|ie N}

The concept of well-foundedness plays a significant part in other branches of math-
ematics and it is interesting to compare the above definition with the more common
mathematical definition:

= (3f:N—=D-VieN-f(i)Rf(i+1))

This is a direct way of stating that there must be no infinite descending paths but it does
require the use of higher-order quantification over functions.

Exercise 6.3.3 (*) An alternative model for relations (ove?) is to view them as:
Rel = D ™5 D-set

Define the concept of well-foundedness over this model.

Other applications

Exercise 6.3.4 Repeat Exercise 4.4.3 on page 105 using a map as a state:

Studr = Studnm " {YES, NO}
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What is the advantage of this state?

Exercise 6.3.5 Write the specification of a system which keeps track of which rooms
people at a conference are in. Assume that operattdR8/VE, MOVE and WHO
(giving all names in a given room) are automatically triggered.

Exercise 6.3.6 Assume that a state is available for a hotel system which shows the set
of possible room numbers and the current occupancy:

Hotel :: rooms . Roomno-set
. m
occupancy : Roomno — Name

inv (mk-Hotel(rms, occ)) & dom occ C rms

Specify some useful operations such as allocating a room, checking out and determining
if there are empty rooms.

Exercise 6.3.7 A simple ‘bill of materials’ system uses a database which, for each
assembly, keeps track of the immediate components or sub-assemblies required in its
construction. In this first — simplified — system, no attempt is made to record the number
of each component required. Some way is needed of distinguishing basic components
(no sub-assemblies). An ‘explosion’ can trace recursively from some assembly down to
its basic components.

e Define a suitable data type with invariant for the bill of materials. (Hint: use
well-founded relations.)

e Define a function which shows all sub-assemblies and components required to
produce some given assembly.

¢ Define a function similar to the preceding one which yields only the basic compo-
nents required.

e Specify an operation (sayy HEREUSED) which looks up in the database all of
the assemblies which need a given part number as an immediate component.

Exercise 6.3.8 (*) Write a specification for a bill of materials system which counts the
number of required components. Obviously, the basic data type must include the number
of components per part. Furthermore, the required number of parts must be computed by
multiplying the number of assemblies required by the number of components. This, and
the requirement to sum such counts, will best be achieved by developing some theory of
such maps.

Exercise 6.3.9 (*) Specify some operations relating to a database for an employment
agency. The database should record people and their skills (more than one per person) as
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well as the required skills for available jobs. Operations should include showing people
suitable for jobs and various updates.
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7

Sequence Notation

Various models of the same objects are possible,
and these may differ in various respects. We should
at once denote as inadmissible all models which
contradict our laws of thought. We shall denote as
incorrect any permissible models, if their essential
relations contradict the relations of the external
things. But two permissible and correct models of
the same external objects may yet differ in respect
of appropriateness. Of two models of the same
object ... the more appropriate is the one which
contains the smaller number of superfluous or
empty relations; the simpler of the two.

Heinrich Hertz

The concept of a sequence is both familiar to programmers and something whose ma-
nipulation is very intuitive — almost tactile. The notation developed in this chapter is,
however, abstract in the sense that useful mathematical properties, rather than implemen-
tation efficiency, are taken as guidance to the choice of operators and their definitions.
As a consequence, a specification written in terms of this sequence notation will need to
be subjected to design steps (i.e. data reification) before it can be used as the basis for a
program.

The basic collection of specification notation (sets, composite objects, maps and
sequences) is completed by this chapter. It is possible to specify large systems with
the help of such a tool kit; on the other hand, careful thought has to be given to the
choice of an appropriate model for an application since the range of choices is now

159
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wide. Section 7.3 explores some interesting examples of such specification choices.

7.1 Notation

Sequences can be viewed as maps with a restricted domain. The advantage in recog-
nizing sequences as a special case is that operators, such as concatenation, which are
natural for sequences can be defined.

Modelling queues

The description of the notation itself is, as in previous chapters, preceded by an intro-
ductory example: this specification concerns queues. Operations are to be defined, for
this first-in-first-out data structure, which enqueue, dequeue, and test whether a queue
is empty. The state must record the collection of elements which are in the queue. It
is possible for multiple occurrences ofigel to be present and the order of elements is
clearly important. These are exactly the properties of sequences. Thus:

Queue = Qel*

The queue element§el are not further defined.Queue is a type whose values are
sequences of)el. The initial queue object is an empty sequence — sequence brackets
are square — thus:

Q0 =[]

The operator for forming larger sequences from smaller ones is concatenajidBdth
operands of a concatenation operator must be sequences so the post-condition of the
engueue operation has to use a unit-sequence containing the new element:

ENQUEUE (e: Qel)
ext wr ¢ : Queue
post ¢ =" " [e]
This operation requires no pre-condition. In contrast, it is only possible to remove an el-

ement from a non-empty queue. A pleasing symmetry witti- ENQUEUFE is shown
by the following specification:

DEQUEUE () e: Qel
ext wr ¢ . Queue

pre q # []

post ‘7 =[] "¢
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(X% dconc ‘/ X len R N
> >

£l N

Figure 7.1 ADJ diagram of sequence operators

hd

Alternatively, the post-condition could be written:
g=tg Ne=hdq

This shows the operators which yield the first element — or head — of a sequerce (
and the rest of a sequence — or tail — after its head is remdyed(
The operation which can be used to check whether a queue is empty is specified:

ISEMPTY () r:B
ext rd ¢ . Queue
post r < (leng =0)

The operator which yields the length of a sequehag (s used in a comparison to check
for an empty sequence.
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Sequence operators

The first topic to be considered in the more formal treatment of sequence notation is the
creation of sequence values. As is indicated above, these are written in square brackets.
With sequences, both the position of values and the occurrence of duplicate values is
important, thus:

[b, a] # [a, b]
[a,b] # [a, b, b]
The examples which follow use the sequences:
s1=1b,b, ]
s2 = [a]
The length operator counts the number of (occurrences of) elements in a sequence, thus:

lensy, =1
lens; =3

and for the empty sequence:
len[] =0

The signatures of the sequence operators are shown in the ADJ diagram in Figure 7.1.

Sequences can be applied to valid indices — the validity of indices can be determined
via the length operator indexinghas the properties:

seX*N1<i<lens = s(1)e X

51(1) = 51(2) =)

All of the other sequence operators can be defined in termisnofind indexing.
These two basic sequence operators can be defined if the sequence type is viewed as a
particular form of map:

Sequence = N; —= X

inv (s)23n € N-doms={1,...,n}

Thus:
len s = carddom s

and sequence indexing is simply map application. The set of valid indices to a sequence
is given by its domain but a special operatoki) is defined:
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indss = {1,...,lens}

inds s; = {1,2,3}

inds so = {1}

inds[] ={}

The collection of elements contained in a sequence can be determineddiynibe
operator. Naturally, the set which results from this operator loses any duplications of
elements:

elemss = {s(i) | i € inds s}
elems so = {a}
elems s; = {b, ¢}

elems[]={}

Equality over sequences must take account of the position and duplications of elements
and cannot, therefore, be defined in terms ofdbas operator. Instead:

Sa =8y < lens, =lensy, AVi € indssg - sq(i) = sp(7)
Sequence values can bencatenatedi.e. joined together) by:

concat (sq: X*, sp: X*) rs: X*
post lenrs = len s, + len s; A
(Vi €indssq - 15(i) = sq(7)) A (Vi € indssp - rs(i + len sg) = sp(1))

But this is written as an infix operatos (™ s, rather tharconcat (s,, s)). Thus:

Notice that concatenation is neither commutative nor absorptive. A distributed con-
catenation operator is also available which concatenates all of the sequences within a
sequence of sequences. This is defined by a recursive function:

dcone : (X*)* — X*
dconc(ss) £ if ss =] then [] else (hd ss) " dconc (tl ss)

This is written as a prefix operataddonc ss rather thandconc(ss)). Thus:
dconc [s1,[], s2, s2] = [b, b, ¢, a, a]
The head of a non-empty sequence is given by:

hd (s: X*) r: X
pre s # [
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post 7 = s(1)
Notice that this operator yields the fislemenbf a sequence whereas the tail operator
yields a sequence:

tl(s: X*) rs: X*

pre s # []

post s = [hds] " s

Both are treated as operators and are thus written in the keyword fount without paren-
theses:

hds; = b
hdsy = a
tlsy = [b, c]
t|82:[]

A useful operator for extracting a contiguous sub-sequence (frimm — inclusive)
of a sequence is:

subseq (s: X*,i:Ny,j:N) rs: X*
prei<j+1Ai<lens+1Aj5<lens
post dsy, 8 € X* -

lens; =i —1Alensy=lens—jAs=s" 15 s

Although it rather overloads the parenthesis symbdiseq(s, i, 7) is written ass(, ..., 7).
The pre-condition of this operation is chosen to permit the extraction of empty se-
guences:

51(2,...,2) = [b]
s1(1,...,3) =1[b, b, c]
s1(1,...,0) =]
s14,...,3) =]

The reader should study the other boundary conditions of this operator. Notice that:

lenrs =lens — (i — 1+ (lens — 7))
=(j—i)+1

Amongst other useful properties, careful consideration of such end cases simplifies the
construction of a delete function:

del(t,i) 2 t(1,...,i—1)" t(i+1,...,lent)

A sequence typeX*, defines values of the type to be any finite sequence all of whose
elements are members &f. Thus, if X = {a, b, ¢}, members ofX* include:
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[]
S1
la, a,a,a,a,a

Because of the possibility of duplicates, the number of potential sequences is infinite
even when the base set is finite. The tyfie¢ excludes the empty sequence but is
otherwise the same ag*.

Exercise 7.1.1 Which of the following expressions is true (in general)?

sa (857 8e)=1(sa ) Se
—~ —~

Sa Sp = Sp Sa
—~

Sa H = Sa

VY
Sa Sa = Sa

Exercise 7.1.2 What is the value of each of the following?

tl[a, b]

len [[a, ], [a, b]]
hd [a]

tl[a]

hd [[a, b], [¢]]

elems [a, b, a]

elems [{a}, a,[a], a]
[a] [a]
[a] " [[0]]
Exercise 7.1.3 In each of the following three cases, identify a possible value for a
sequence which satisfies the properties:

len s, # card (elems s,)
hd s, = [b],hd tl s, = {1}, tltls, = [b]
tlsc = [hd s.]

Exercise 7.1.4 Define a function which determines whether a sequence has only one
occurrence of each of its elements. Specify a function which, given a set, lays it out as a
sequence without duplicates — in a random order.

Exercise 7.1.5 It is often useful to be able to locate things within sequences (i.e. to
determine indices where values are located). Specify a function which show all indices
where a value can be found:



166 7 Sequence Notation

alloces: X* x X — Ni-set

Specify a function which gives the first index where a value can be found assuming that
it does occur:

firstoce: X* x X — Ny
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Specify a function which locates (the first contiguous occurrence of) one sequence within
another:

locate: X* x X* — N
such that:

locate([a,

a,b 2
locate(]b, b], [a, a,b,a]) =0

Exercise 7.1.6 In the text of this chapter, operators like concatenation and tail are de-
fined via the more basic operators length and application. Redefine all of the sequence
operators directly in terms of the map model.

7.2 Reasoning about sequences

Sequence induction

The theory of finite sequences is strongly related to that of (finite) sets. As the reader
should by now expect, the genesis of the theory is the generator functions — here they are
the empty sequencé¢]f and a constructor functiore¢ns) whose signature i¥ x X*

— X*. The function to insert an element into a sequence is called (rather tharo)
because the name is familiar from list-processing languages. Thus sequence values can
be created by:

cons(ey, -+ (cons(en,[])) )

Whereas with both sets and maps, different terms built from the constructors correspond

to the same value, the expressions built from sequence constructors stand in one-to-one
correspondence with the values. For sets and maps, properties were given which showed
that certain terms were equal; no such properties need be given for sequences. The
distinction between the theory of sequences and that of sets is that any properties which

rely on the commutativity and absorption®fdo not carry over to sequences.

Axiom 7.1 (Seg-ind) The induction rule for sequences is, apart from the changes of
symbols, the same as the first one given for sets:

p([D);
ee X, te X", p(t) F p(cons(e,t))

[ Seq-ind ] te X* F p(t)

This induction axiom — as with those above — relies on the finiteness of individual se-
guence values.
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Proofs about operators

The definition of concatenation (over the constructors) is essentially a translation of that
for set union:

Rule 7.2 ("-b) Basis:

§=S

Rule 7.3 ("-i) Induction:

Ij e€ X; s1,89€ X*

cons(e,s1) sy = cons(e,s1  s2)

It should therefore be obvious that the following two lemmas hold.
Lemma 7.4 Concatenation absorbs empty sequences on the right:
seX*

s 1=1]

L7.4

Lemma 7.5 (" -ass) Concatenation is associative:

— 81,82, 83 € X
-ass (

51 /\82) /\53 = 8 /\(82 /\83)

The proofs of these are simple transliterations of the corresponding ones for sets. The
next properties which are developed for set union are commutativity and absorption.

These proofs rely on the corresponding properties of the insertion operator and do not
therefore carry over to concatenation. In general:

cons(a, cons(b, s)) # cons(b, cons(a, s))
cons(a, cons(a, s)) # cons(a, s)

A lemma which is used in later chapters is:

Lemma 7.6 The elements collected from the concatenation of two sequences are the
union of the elements of the two sequences.

@ S1,82 € X*
— elems (s; ~ s2) = (elems s;) U (elems s5)

The definitions of the other operators are left to the exercises.

Axiom 7.7 (Seq-ind2) Once these are defined, a restatement of the induction rule for
sequences is possible. The two forms of the rule correspond to the option of defining
induction over the natural numbers in terms of eithwetc or pred.
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p([]);
__te Xt pt) F op()
Seg-ind2 = X?* = p(t)p

Exercise 7.2.1 Write out the proofs for Lemmas 7.4 — 7.6.

Exercise 7.2.2 Only concatenation is defined in the text of this section. Define the
operatorden, application,hd andtl over the constructors. Prove some useful results
like:

Vs1,80 € X* - len(s; ™ s2) = len sy + len sy
Vs e X*-s=][]V cons(hds,tls) =s
Reversing sequences
A definition of a function which reverses a sequence is:

rev:X* — X*
rev(s) 2 if s =[] then [] else rev(tls) " [hd s]

Its properties can be given by the two rules.

Rule 7.8 The basis:

[rev-b f——e—
=T

rev =

Rule 7.9 The inductive step:

4 eeX; seX*
Tev-1

rev(cons(e, s)) = rev(s) " [e]

Rule 7.10 ltis useful to define unit sequences as an abbreviation:

R7.10 [ ceX

e] = cons(e,[])

Lemma 7.11 An obvious property ofrev is that applying it twice to any sequence
should yield the original sequence.

L7.11 s€ X

rev(rev(s)) = s
A frontal attack on this result yields a messy proof. The identification of two preliminary
lemmas (see page 170) gives rise to a more readable presentation (see page 171).
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frome e X
1 rev([e])
= rev(cons(e,[])) R7.10
2 =rev([]) " [e] rev-i
3 =1[]""[e] rev-b
infer = [e] b
from s1,8 € X*
1 rev([]]” s2)
= rev(sq) b
2 = rev(sz) " [] L7.4
3 = rev(sy)  rev([]) rev-b
4 fromee X, te€ X* rev(t™ s)=rev(sy)  rev(t)
4.1 rev(cons(e,t) " s2)
= rev(cons(e t7s9)) L
4.2 =rev(t” ) [e] rev-i
4.3 = (T’G’U(Sg) rev(t )) [e] ih4
4.4 = rev(sz) " (rev(t) " [e]) “ass
infer = rev(sz) " rev(cons(e,t)) rev-i
infer rev(s; " s2) = rev(se) " rev(s)) Seq-ind(3,4)
Lemmas onev

Exercise 7.2.3 Specify the functiornrev by a post-condition using quantifiers and in-
dexing. Sketch the argument that applying twice acts as an identity function on
sequences.

A palindromeis a word (e.g. ‘dad’) which is the same when it is reversed. Define a
palindrome by properties over the indices and prove that the result of apphirtg a
palindromep is equal top.

Exercise 7.2.4 (*) Another alternative specification etv could characterize the split
point implicitly and not fix that only the head is moved on each recursive call. Exper-
iment with the development of results about such a definition. This should show that
being more abstract often results in a clearer exposition.
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from t € X*
1 rev(rev([])) = rev([]) rev-b
2 rev(rev([])) =] rev-b
3 fromee X, te X*, rev(rev(t)) =t
31 rev(rev(cons(e, t)))
= rev(rev(t) " [e]) rev-i

3.2 = rev([e]) " rev(rev(t)) Lemma-b
3.3 =[e] Tt Lemma-a,ih3

infer = cons(e, t) -
infer rev(rev(t)) = ¢ Seg-ind(2,3)

Lemma 7.11xrev is its own inverse

7.3 Specifications

Specifying sorting

The task of sorting provides an obvious application for the sequence notation. Suppose
records are to be sorted whose structure is:
Rec 0 k : Key
d . Data

The fact that a sequence of records is ordered in ascending key order can be defined:

1s-orderedk : Rec* — B
is-orderedk(t) £ Vi,j€indst-i<j = k(t(i)) < k(t(4))

For compactness, the ordering relation on keys is writteecause the ordering rela-
tion is transitive, it is equivalent to write:

is-orderedk(t) & Vie{l,...,lent—1}-k(t(i)) < k(t(i+1))

Notice how the rule about universal quantification over an empty set conveniently covers
unit and empty sequences. Accepting, for the moment, some intuitive notion of permu-
tation, the specification for the sorting task can be written:

SORT ()

ext wr rs . Rec*
post is-orderedk(rs) A is-permutation(rs, s )
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Defining the concept of one sequence being a permutation of another is an interesting
exercise. Clearly, if the sequences can contain duplicates, it is not enough to check that
their rangesdlems) are equal. Nor does it cover all cases to check bothandelems.

One possibility is to writés-permutation as a recursive function which, in the recursive
case, locates and removes the element at the head of one sequence from wherever it is
in the other. Such a definition is rather mechanical for a specification and would not be
easy to use in subsequent proofs. A direct model of the idea of counting occurrences can
be given using bags. Thus:

bagof : X* — Bag
bagof (t) 2 {ew card{i €indst|t(i) = e} | e € elemst}

Then:

is-permutation : X* x X* — B
is-permutation(sy, s3) 2 bagof(s1) = bagof (s2)

Another possibility is to think of a permutation as inducing a one-to-one map between
the two sequences:

is-permutation(sy, s2) 2
lens; = len sy A
Im e N; <25 N, -
domm = rngm =indss; AVi € inds sy - s1(7) = s2(m(7))

It is not possible to argue convincingly that one of these is better than the other for all
purposes. Itis, however, likely that the last one would be of more use in developing a the-
ory of sequences. For the sorting program itself, the only propertiés @frmutation
required for most internal sorts are reflexivity, transitivity and the fact that swapping two
elements creates a permutation. It is clear that these properties follow easily from the
latter definition ofis-permutation.

The specification ofORT is non-deterministic in that the final placing of two dif-
ferent records with the same key is not determined. This reflects the fact that the sorting
task is described as bringing the records into key order. There are applications where a
stable sort is required in which records with the same key preserve their relative order
from the starting state. The specification can be modified to cover this requirement by
simply adding an extra conjunct g@st-SORT whose definition is:

is-stable : Rec* x Rec* — B
is-stable(sy, s2) 2 Vkey € extractks(sy) - sift(s1, key) = sift(so, key)

The keys required are defined by:
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extractks : Rec* — Key-set
extractks(s) & {k(r)|r € elemss}

The sub-sequence diecs with a given key can be defined:

sift : Rec* x Key — Rec*
sift(rs,key) 2 ifrs =]
then []
else if k(hd rs) = key
then [hd rs] " sift(tl rs, key)
else sift(tl rs, key)

Priority queues

The introductory example in Section 7.1 specified a simple first-in-first-out queue. An-
other form of queue which is used in computing systems relies on a priority to govern
which elementis dequeued. This example provides a basis for a discussion of the choices
to be made in constructing a model. Assume that there is some givEBnisetty which,

for conciseness, is assumed to be ordereelbyrhen items in the queue might be de-
fined:

Qitem . p . Priority
d : Data

Perhaps the most obvious model for the queue type itself is:

Qtp = Qitem*

where the data type invariant (say;orderedp) would require that the priority order
holds in the sequence. This would permit the operation for adding elements to the queue
to be specified:

ENQ (it: Qitem)
ext wr ¢ © Qtp
post Ji € inds g - del(q, 1) = TN q(i) =it

Recall that the invariant can be thought of as being conjoined to the pre- and post-
conditions. Itis then clear that the post-condition combines two of the techniques used to
achieve concise specifications. The existentially quantified expression works back from
the result to the starting state — thus providing a simple description of insertion. The
(implied) conjunction ofis-orderedp with that expression captures the required specifi-
cation by stating two separate properties.
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The specification as it stands does not constrain the placing of queue items with equal
priority. Providing this matches the requirements, the next question to ask is whether the
sequence model given is the most appropriate. Why are the queue items ordered in the
state? Presumably because it makes the dequeuing operation easy to specify! But this is
not really a convincing argument. In fact an alternative specification could be based on
sets (or, if duplicate records have to be handled, bags). Thus:

Qtps = Qitem-set

The EN(Q operation simply adds its argument to the state andthé) operation locates

one of the elements with lowest priority number. With the limited repertoire of opera-
tions, it is difficult to say which is the better model, but the set model is more abstract
and might be preferred.

If, however, it is required to preserve the arrival order of queue items with the same
priority, it is clear that the set model cannot support the intended semantics. On the other
hand, itis easy to see how to extend the post-conditidivef), as defined on sequences,
to ensure correct placement. The sequence model is, however, not the only one which
would cover the ordering requirement. TR () operation is easier to specify if the
gueues for each priority are separated:

Qtpm = Priority — Data*

Some decisions have to be made in this model about whether each priority always has a
(possibly empty) sequence associated with it. But, on balance, the map model is the best
fit to the operations. The complete set of operations would have to be agreed before a
final decision were made. (One could envisage operations which force consideration of

the queue as a whole — for example, operations which manipulated the priorities.)

Exercise 7.3.1 Complete the operation specifications for enqueuing, dequeuing, and
testing for empty for all three of the models discussed in the text for priority queues.

Exercise 7.3.2 A stack is a last-in-first-out storage structure.

e Specify an (unbounded) stack with operations®arSH, POP andISEMPTY
also show the initial stack object.

e As above, but assume a bound (€24) on the contents of a stack; specify an
additional operatiodSFULL.

e As above but, instead of makinQUSH partial, arrange that pushing an element
onto a full stack loses the oldest element!

e Another form of stack which has attracted some interest is known as ‘Veloso’s
Traversable Stack’. This stack — in addition to the normal operations — can be
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READ from a point indicated by a cursor; the cursor cariiieSET to the top of

the stack or move@OWN one element; the norm&OP and PUSH operations

can only be performed with the cursor at the top of the stack but the operations
preserve this property. Specify this form of stack.

Ciphering

Another example in which some thought must be applied to the choice of model is a
specification for a cipher machine. Many children play games with coding messages by,
for instance, changing letterto b, b to ¢, etc. Such a cipher is called monoalphabetic
and is very susceptible to cryptanalysis (code breaking) by measuring the frequency of
letters. A more sophisticated polyalphabetic (or Viges) coding is somewhat more se-
cure. The idea of substituting one letter by another is extended so that different letters of
the original message (plain text) are coded under different translations. In order that the
enciphered message can be deciphered, the appropriate transliterations must be known
or be computable. One way to achieve this is to have a table of translation columns each
headed by a letter; a keyword is then agreed andtthétter of the keyword indicates

the column under which thah letter of the message is to be (or was) ciphered; the key-
word can be replicated if it is shorter than the message. A table for a restricted alphabet
could be:

SN e oS
L O OO

o e

Cc

The plaintextacab is coded under keywordbc to abbb:

plaintext alclalb
keyword al|b|cl
cipheredtext a | b | b | b

A simple frequency analysis of letters will no longer disclose the coding table since, on
the one hand, different letters are translated to the same letter and, on the other hand, the
same plaintext letter can be translated to different letters.

How is this polyalphabetic cipher to be specified? The regular appearance of the
table above might tempt one to describe the coding by index arithmetic on a sequence of
twenty-six letters. There are two reasons to resist this particular temptation: the regular
tables are only a subset of the possible tables, and anyway the index arithmetic becomes
very confusing. The best model of an individual column appears to be a map from letters
to letters. As is discussed below, it is necessary that such a map be one-to-one. Thus:
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Mcode = Letter < Letter

inv (m) 2 dom m = Letter

The invariant ensures that there is a translation for each letter.
The whole (polyalphabetic) table can be defined:

Pcode = Letter = Mcode

inv (m) £ dom m = Letter

In practice, it is obviously desirable th&code stores differentVcodes for each letter
— this requirement is not, however, enshrined in the invariant. A function which defines
the (polyalphabetic) translation of messagkunder keyk! is:

ptrans : Letter x Letter x Pcode — Letter
ptrans(kl, ml, code) £ (code(kl))(ml)

The remaining hurdle, before the specification can be written, is to choose a repre-
sentation for the keyword. The obvious model is a sequence of letters. The problem
of sufficient replications then becomes a manipulation of indices which is made slightly
messy by the fact that the sequences here are indexed from one. (The alternative, to
index all sequences from zero, turns out to be just as inconvenient in other cases.) Here,
indexing from zero is simulated by:

Key =N % Letter
inv (m)23n €N-domm ={0,...,n}

This ensures that &ey is non-empty. It could be argued that the keyword should be
replicated in the state but this is not done here since it appears to make the task of
designing representations unnecessarily tiresome. The final specification is then:

CODE (m: Letter*) t: Letter*
ext rd ¢ : Pcode,
rd k£ : Key
post lent = lenm A
let [ = mazs(domk) + 1 in
Vi €indst - t(i) = ptrans(k(: mod 1), m(3), ¢)

The specification oDECODE is written as a mirror image of that fafODE.

DECODE (t: Letter*) m: Letter*
ext rd ¢ : Pcode,
rd k£ : Key
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post lenm = lent A
let [ = mazs(domk) + 1 in
Vi €indst - t(i) = ptrans(k(i mod 1), m(7), ¢)

This shows clearly that the task &iECODE is to recreate the input t6ODE. Itis
possible, from this requirement, to deduce the need for the invariad @de. The
correct decipherment of messages can be stated (omitting all of the quantifiers):

post-CODE(m, ..., t) A\ post-DECODE(t,...,m') = m=m/

Inspecting the two post-conditions it is clear that the lengthmoind m’ must be the
same and thus the question is pushed back to whethets is one-to-one. The function
ptrans simply selects a (determined)code in either case and thus it can be seen that
Mcode must be a one-to-one map in order to prevent, for someo different letters
m(i) andm( j) from giving the same translatiar).

Exercise 7.3.3 The German cipher machine which was known as ‘Enigma’ achieved
polyalphabetic substitution but was constructed with a reflecting property (hev#s

coded as thenn was coded ag). This meant that the operator performed the same
operation whether coding or decoding a text. What changes does this make to the speci-
fication given above?

Exercise 7.3.4 Specify an operation which has access to a set of file names (character
strings). Given the prefix of a file name as input, the operation should yield the set of
matching file names.

Exercise 7.3.5 Develop operators, predicates and a theory for sequences which are (not
necessarily contiguous) sub-sequences of other sequences in the sense that the former
can be within the latter (e.da, b, ¢ is a sub-sequence 4, c, a, d, b, ¢, a, b]). Re-

fine the notation by writing specifications of a number of tasks (e.g. a function which
merges two sequences, a function which finds the ‘longest ascending sub-sequence’ of a
sequence of natural numbers).

Exercise 7.3.6 (*) A formal model of the (English) children’s game of snakes and lad-
ders can be based on sequences. Design an appropriate state and specify some operations
(e.9.MOVE).

Exercise 7.3.7 (*) Define an abstract syntax (cf. Section 5.1) for expressions of propo-
sitional logic (there are some interesting points to be decided upon). Write a function
which determines, in classical two-valued logic, whether an expression is a tautology.
Implication and equivalence operators can be expanded out using their definitions. In
Disjunctive Normal Form (DNF) expressions are reduced to a form which is a disjunc-
tion of conjunctions of (possibly negated) literals ). Define a function which converts
arbitrary propositional expressions into DNF. In terms of this limited structure define an
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efficient algorithm for tautology checking.

Consider the changes required to handle the LPF (cf. Section 3.3) used in this book
and define a function which checks LPF propositional sequents for validity. Design an
abstract syntax for proofs in the propositional calculus. There is considerable scope for
experiment here and it is worth considering the need for relations. Define an abstract
syntax for formulae of the predicate calculus and functions to determine the free vari-
ables of a logical expression and to apply systematic substitution.

Exercise 7.3.8 (*) Develop the state for a relational database system. Unless the reader
is an expert in this area, an actual system should be used as a reference point. Focus the
work on building a model for the storage of, and the type information for, relations.



8

Data Relification

More than anything else mathematics is a method.
Morris Kline

It should be clear that the construction of a formal specification can yield greater under-
standing of a system than is normally possible before implementation is undertaken. On
larger examples the process of constructing the formal specification can also prompt con-
sideration of questions whose resolution results in a cleaner architecture. Itis, therefore,
possible that the work involved in producing a formal specification would be worthwhile
even if the ensuing development were undertaken using informal methods. But the re-
maining chapters of this book present another exciting avenue which is opened up by
formal specification: a formal specification provides a reference point against which a
proof can be constructed. A proof can show that a program satisfies its specification for
all valid inputs. Clearly, no real proof could be based on an informal description whose
semantics are unclear. The idea that programs can be proved to satisfy formal speci-
fications is now well-documented in scientific papers. More interestingly, it has been
shown that a design process can be based on formal specifications. The essence of such
a design process is to record a design step with a series of assumptions about subsequent
development (i.e. specifications of sub-components) and then to show that the design
step is correct under the given assumptions. Once this has been done, the assumptions
(specifications of the sub-components) are tackled. It is a crucial property of the devel-
opment method presented here that each subsidiary task in development is isolated by
its specification. Without such a property of isolation, a development method is open
to some of the worst risks of testing: errors are detected long after they are made and
work based on such mistakes must be discarded when errors are detected. The isolation

179
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property is sometimes callemmpositionality

There are a number of ways in which the above description is over-simplified. Firstly,

a development hardly ever proceeds strictly top-down. But, even if one is forced to back-
track, the eventual design will be made clearer by documentation presented in a neat
hierarchy. Sub-components can also be developed bottom-up; but such sub-components
will be used safely only if they are accompanied by formal specifications. Another issue
which could be taken with the over-simplified description is the level of formality to be
used in the design process. Any design step generates a proof obligation. Such proof
obligations can be discharged completely formally and some proofs are shown below
in detail. Once one knows how to conduct such proofs, the level of formality can be
relaxed for most steps of design. The formal structure provides a way of giving more de-
tail when required. A knowledge of the formal structure will itself minimize the danger

of mistakes. It is, however, clear that more confidence is justified in a machine-checked
formal proof than an outline correctness argument.

The process of design can be seen as making commitments. The data representation
chosen is a commitment which the designer makes based on an understanding of the
required operations and their relative frequencies of use. The method outlined here is
not intended to help make such choices. Design relies on invention. Such invention has
been ‘automated’ only in very narrow areas. What is provided is a notation for recording
designs and the proof obligations necessary to establish their correctness (rather than
their optimality). Experience has shown that the formal structure does aid designers by
clarifying their choices but the case for the rigorous approach should never be construed
as claiming that the design process can be automated.

The style of formal specification proposed in the preceding chapters uses (abstract)
models of data types and implicit specification by pre- and post-conditions. High-level
design decisions normally involve choosing the representation of dkta reifica-
tion' involves the transition from abstract to concrete data types and the justification
of the transition. At the end of this process, the data types are those of the imple-
mentation language but the transformations are still defined implicitly (i.e. by pre- and
post-conditions). Operation decomposition — described in Chapter 10 —is the process of
choosing, and justifying, a sequence of transformations which can be expressed in the
implementation language.

In choosing the data types for a specification, the aim is that they should be as ab-
stract as possible. Although this notion is not made precise until Section 9.3, the reader
should by now have a general feel for avoidance of unnecessary details in a state. The
proof obligations given in Sections 8.1 and 8.2 relate to the special case where ‘bias’

!The term reification is preferred here to the more widely-used word ‘refinement’. Michael Jackson
pointed out to the author that the latter term is hardly appropriate for the step from a clean mathematical
abstraction to a messy representation dictated by a particular machine architectu@ontiee Oxford
Dictionary defines the verb ‘reify’ as ‘convert (person, abstract concept) into thing, materialize’.
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increases at each step of reification. This is a very common special case: designers make
commitments — commitments which reflect special properties of the application and of
the implementation machine. These commitments give rise to redundancy, complexity
(e.g. of invariants) and efficiency! Thus the data types which result from reification tend
to require long descriptions and give rise to complex operation specifications. The ex-
amples in Chapters 4 to 7 include descriptions of data types which arise in design. For
example, the choice of one form of binary tree is motivated by noting that it can provide
a representation of a set. In general, a representation (of one data type) is just another
data type — as such it can be described by the data structuring devices used above.

The key to relating an abstract data type and its representation is a ‘retrieve’ function
— this concept, and the first of the proof obligations, is introduced in Section 8.1. The
proof obligations which concern the operations are explained in the succeeding section.
Section 8.3 discusses the problems of predefined interfaces and presents some larger
examples.

8.1 Retrieve functions and adequacy

Establishing a link between states

Given a specification, a designer chooses a representation which reflects implementation
considerations. The notion ehtisfactionprovides a criterion by which the correctness
of the choice of representation can be judged. The proof obligations, which are explained
here and in Section 8.2, are based on a satisfaction relation for which an implementation
must exhibit an acceptableehaviour (These proof obligations reflect an extremely
common special case of data reification; Section 9.3 reviews some alternatives.) In these
proof obligations, it is possible to separate some questions about the reification of the
state itself from consideration of the operations which are associated with the states.
Suppose that some specification uses ddbegd) as in Exercise 5.1.1 on page 117.
A representation might be chosen which packs the date into two iybets for the day,
4 bits for the monthy bits for the year — this last allowing an increment frorto 127
to be added to some notional base date). One could fix the relation between elements of
Date and the bit representation by a relation. The relation would be one-to-one, and this
should suggest to the reader that a function could be used to record the relationship. In
this simple example, there is no obvious reason to prefer one direction or the other for the
function — more guidance comes from considering an example like the use of a binary
tree to represent a set. The set might have been chosen in the specification because
its properties were appropriate to the application being specified; a binary tree might
be chosen as a representation so that a test operation could be performed efficiently for
large volumes of data. In this example, each abstract set value has more than one possible
representation as a tree. The relation between abstraction and representation values is
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abstraction
retr
representation

Figure 8.1 Retrieve function

one-to-many. Clearly, a one-to-many relation can be treated as a general relation. But
there is also the possibility that it is treated as a function (from the ‘many’ to the ‘one’).
Is the reverse situation likely to arise? If different abstract values correspond to one
concrete value, it is intuitively obvious that such values could have been merged in the
abstraction. So, in the situation where the objects used in the specification were abstract
enough, the many-to-one situation would not arise. Working with relations can lead
to rather heavy notation. Here, the opportunity to avoid this heaviness is taken. The
relationship between abstract values and their representations is expressed by a function
from the latter to the former (e.g. from binary trees to sets). Because such functions can
be thought of as regaining the abstraction from among the implementation details, they
are calledetrieve functions.

The spell-checking specification of Section 4.1 is based on:

Dict = Word-set

Assuming that the dictionary is large, the designer is faced with the problem of choos-
ing a representation which makes efficient searching possible. Many facets of efficiency
must be considered: the choice must reflect not only algorithms but also storage usage
— wasted store could cause excessive paging and subvert the performance of a represen-
tation which was chosen to support some particular algorithm. Here, some alternative
representations are considered. The first is chosen for pedagogic, rather than implemen-
tation, reasons. Suppose the dictionary is represented by a sequence without duplicates:
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from d € Dict

1 [] € Dicta Dicta
2 retr-Dict([]) =1} retr-Dict, elems
3 3Jda € Dicta - retr-Dict(da) = { } 3-1(1,2)
4  from d € Word-set, w ¢ d,

dda € Dicta - retr-Dict(da) = d

4.1 from da € Dicta, retr-Dict(da) = d
41.1 elemsda = d h4.1retr-Dict
4.1.2 w ¢ elems da h4,4.1.1
4.1.3 da " [w] € Dicta Dicta, 4.1.2, is-uniques
4.1.4 elems (da " [w]) = elems da U {w} L7.6
4.1.5 retr-Dict(da " [w]) = d U {w} 4.1.1,4.1.4 retr-Dict
infer Je; € Dicta - retr-Dict(e;) = d U{w} 3-1(4.1.3,4.1.5)
infer Je; € Dicta - retr-Dict(e;) = d U {w} 3-F(h4,4.1)
infer 3da € Dicta - retr-Dict(da) = d Set-ind(h,3,4)

Theorem 8.2: adequacy @ficta

Dicta = Word*

inv (ws) 2 is-uniques(ws)

The one-to-many situation mentioned above is shown clearly here — to each abstract
set withn words, there correspond different possible sequence representations. The
relationship between the representation and abstraction is easily expressed:

retr-Dict : Dicta — Dict
retr-Dict(ws) 2  elemsws

Here, retr- Dict can be said to be retrieving the abstract set from among the irrelevant
ordering information of the sequence values.

Proof obligation 8.1 One straightforward property which is required of retrieve func-
tions is that they b#otal. In this case there is no doubt abautr- Dict since theslems
operator is total on sequences. In some cases, however, it is necessary to tighten an in-
variant on the representation in order to ensure that the retrieve function is defined for
all values which can arise.
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Adequacy

It is intuitively clear that there should be at least one representation for any abstract
value. This property is embodied in thedequacyproof obligation which, for the case
of Dicta is shown in the following lemma.

Theorem 8.2 There must exist at least one sequence (without duplicates) which can be
retrieved onto any possible set value:

d € Dict + 3da € Dicta - retr-Dict(da) = d

The result here is obvious and the proof on page 183 is given only for illustration.
In the majority of cases, the adequacy proof obligation can be discharged by an
informal, constructive argument. For example:

Given any finite set, its elements can be arranged into a sequence by taking
them in an arbitrary order — choosing each element once ensures that the
representation invariant is not violated.

Proof obligation 8.3 Figure 8.1 illustrates the idea behind the adequacy proof obliga-
tion; the general form (foretr: Rep — Abs) is:

Va € Abs - 3r € Rep - retr(r) = a

Strictly, a representation is adequate — or not — with respect to a retrieve function. When
the retrieve function in question is clear, the qualification is omitted.

Intuitively, a retrieve functioh can be seen as providing an interpretation of the
representation. In the initial example, two bytes are interpreted as a date. In the case of
the sequence of words, the retrieve function interprets it as the unordered/set of
such a sequence could just as well have represented the current book (where the order of
the words is believed to be important).

Understanding a proof obligation is often made easier by considering cases where it
fails. The attempt to represent dates in two-bytes discussed earlier in this sectitn is
adequate because the limitation of the representation was not matched by the abstraction
which put no limit (e.g. 1900-2027) on the possible years. Clearly, proof obligations are
likely to uncover genuine errors only on larger examples — such failures are discussed
below. With Dict and Dicta, however, a simple illustration can be given: suppose that
the specification had been based on the sequetizeesa) and the implementation on
sets Qict). Even with this reversal of roles, a retrieve function could be given:

2Technically, the retrieve function is a homomorphism between the carrier of the representation and
that of the abstraction. The retrieve function can also be seen to induce an equivalence relation on the
representation: two elements are considered to be equivalent if they are retrieved onto the same abstract
value. This is a key concept for the proofs of the operations: the proof obligations in Section 8.2 require
that the induced equivalence relation is respected.
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retr-Dicta: Dict — Dicta

For example, the function could deliver a sequence sorted in alphabetical order. But the
representation would not be adequate because there would be elements of the specifi-
cation state (e.g. unordered sequences) for which there was no corresponding set. Al-
though the example is, in some sense, just a restatement of the need to avoid ‘bias’ in a
specification, it should give some feel for why adequacy is a useful check. In more real-
istic examples, there are two likely causes of inadequacy. The obvious one is that some
combination of values has been overlooked. This is clearly what the proof obligation is
intended to uncover, and the situation must be remedied by redesigning the representa-
tion. The other way in which adequacy might fail is if the invariant on the abstraction is
too loose: values might satisfy it which never arise as a result of a sequence of opera-
tions. If such values cannot be represented in the chosen design, the adequacy failure is
only a technical issue. The invariant in the specification can be tightened (satisfiability
must be rechecked) and the design can then be pursued.

More dictionary representations

The notions of retrieve functions and adequacy can now be applied to a more realistic
design for the spell-checking specification. One way to provide for efficient searching
is to split the dictionary into sections by word length; each such section is then stored
in alphabetical order. As words are scanned from the text to be checked, their length is
computed. The relevant dictionary section can then be located via a table and the word
to be tested sought in the selected section. The search can use a technique known as
‘binary search’ (cf. Section 10.3), which is efficient because it relies on the order.

A series of distinct design decisions are embodied in this description. A record of
the first design decision can be given in terms of the following objects:

Dictb = Section*
inv (sl) 2Vi € indssl-Vw € sl(i)-lenw =i

Section = Word-set

Word = Letter™

Notice that, in order to describe the invariant, it has been necessary to say more about
Words than in the specification. The retrieve function required here is:

retr-Dict : Dictb — Dict
retr-Dict(sl) & Jelemssl
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Here again there is no difficulty with totality, since both distributed unioneds are
total; adequacy can be established by a simple constructive argument:

the empty set can be represented by an empty sequence of sections; the way
of representing a neWord depends on whethdiords of the same length
already occur in théictb value; if so, the new word is placed in the set; if

not, theSection sequence is extended (if necessary) with enffastions

and the newlWord is placed in a uniSection at the appropriate place in the
Section sequence.

The next step of development might again be a reification of &aetion onto a
sequence. The final steps would concern the decomposition of operations specified by
post-conditions onto the envisaged binary search algorithms.

The choice of representation is the crucial decision made by a designer to achieve
efficiency: no amount of clever coding can restore performance squandered on ill-
conceived data structures. Equally, correctness is vital. Representation decisions are
normally made early in design. Errors made at this stage can be eradicated only by re-
peating the work based on the mistaken decision. It is, then, very important to make
careful checks at this stage. The documentation of a retrieve function requires little
effort and experience shows that this effort often uncovers errors. Similarly, outlining
an adequacy argument for the representation of a state is not onerous and may uncover
serious errors. Here the state alone is being considered; the proof obligations in Sec-
tion 8.2 must be undertaken for each operation of the data type. It is therefore harder
to justify the work of completely formal proofs for the operation proof obligations. It
is, then, fortunate that experience has shown that these proof obligations are less likely
(than adequacy) to uncover important errors.

The preceding representation required that a whole word be scanned before any
searching could be done. A student project on this example proposed a way of using
each letter as it is scanned. The initial proposal was to use Pascal arrays indexed by let-
ters; the values stored in such arrays were to be pointers to other arrays; all of the arrays
were allocated on the heapil pointers were to be used to mark where words ended.
Using map notation, it is possible to represent this by nesting maps as follows:

Dicte = Letter — Dicte
The word set:
{la,n,d],[a,n,t]}
can then be represented by:

{a={n={d—{}t—{}}}}

Notice how the lack, for example, of any word beginning witis shown by the absence
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of this letter from the domain of the outer map.

But one must also notice that this representation is not adequate (with respect to any
retrieve function)! There is, for example, no way of adding a wordinte which is a
prefix of an existing word (considés, n]). On realizing this, the students had to add an
indicator to each array (in Pascal, a record is used with a Boolean value and the array of
pointers as its fields) — here:

Dicte . eow : B
map : Letter — Dictc

The retrieve function required is defined by recursion:

retr-Dict : Dictc — Dict

retr-Dict(mk-Dictc(eow, m)) 2
U] " w | w € retr-Dict(m(l))} | | € domm} U
if eow then {[]} else {}

The reader should experiment with this retrieve function in order to understand the dis-
tinction in the second case of the set union. From this understanding it is possible to
provide an invariant foDictc.

Exercise 8.1.1 This exercise continues the spell-checking problem:

¢ In terms of some particular programming language, discuss the efficiency — espe-
cially storage requirements — éfictb and Dictc.

e Define a representation in which all words with the same first letter are collected
into a set, each such set is the range element of a map from the first letter. Write a
retrieve function and argue the adequacy of the representation.

Exercise 8.1.2 Document the relationship between the state given in Exercise 4.4.4 on
page 105 and that given in the text of Section 4.4 by writing retrieve functiohstim
directions.

Exercise 8.1.3 Consider the set of objeci&list described in Section 5.1 and the se-
guences of Chapter 7. In which directions can retrieve functions be written?

Exercise 8.1.4 Explain the binary treesSetrep) of Section 5.2 as representations of
sets by using retrieve functions, and present an adequacy proof.

Exercise 8.1.5 Many encodings are used for integers. A binary numeral can be thought
of as a sequence of symbols — show how a (hatural number) value can be associated
with such a symbol sequence by providing a retrieve function. The sign-and-magnitude
representation of integers used in some computers reserves one bit for the sign and the
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remaining bits in a word are used as above — again, explain this relation with a retrieve
function. The ones-complement representation essentially stores, for negative numbers,
the bit-wise complement of the positive number — here again, explain the relation by a
retrieve function (remember that all zeros or all ones represent the number zero).

Exercise 8.1.6 Consider the abstract state:

State . as . X-set
bs . X-set

X =A{1,..,n}
(for somen) and a representation:
Arep = B*

in which it is intended to use one ‘bit’ for each number. Write a retrieve function and
either proveArep to be adequate or show how it fails to be and suggest an invariant on
State which ensures that the representation is adequate.

8.2 Operation modelling proofs

Section 8.1 gives some examples of the way in which design steps of data reification give
rise to complex data objects. This complexity reflects the move from data objects which
are chosen to match the task being specified to representations which can be efficiently
implemented. Efficiency might require redundancy (e.g. doubly-linked lists or extra
copies) and this results in lengthier invariants. Turning now to the operations: in general,
representation detail forces operation specifications to be more algorithmic; for example,
neat post-conditions on the abstraction might give way to recursive functions on the
representation. As the examples below illustrate, post-conditions are more concise than
code — but the closer the representation is to the data types of programming languages,
the more complex will be the specifications. This is, of course, precisely the reason
that overall functional specifications should be written in terms of abstract data types.
But the time has come to look at the proof obligations associated with the modelling of
operations.

Modelling in the function case

An abstract specification consists of a set of states, the initial states, and operations. The
preceding section has shown how the states themselves are reified. The next design task
is to respecify the operations on the chosen state representation. The format of such
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Figure 8.2 Function modelling

operation specifications is standard. Thus¢dheECK WORD operation of Section 4.1
would be respecified oPicta of the preceding section by:

CHECKWORDa (w: Word) b:B
ext rd dict . Dicta
post b < i € indsdict - dict(i) = w

This operation omicta has to be shown to exhibit the same behaviouwW A% CK WORD

on Dict. It is easier, however, to picture the proof obligations which arise in the case of
functions than operations. Figure 8.2 shows an (abstract) funttimrer elements ofl;

an alternative way of performing such a mapping is to find a corresponding element of
R (assume, for now, thattr is one-to-one so that its inversep is a function), apply a
functionf, on R, and then map this back tb by applyingretr. The functionf,. models

fa if the alternative mapping is the same fgdor all values in the domain of,. This

could be written:

Va € A-retr(fr(rep(a))) = fa(a)

The essence of this is to require thids behaviour is the same as thatfpf
A neater way of presenting this (which avoids the need for the invergg:is to
require:

Vr € R - retr((fr-(r)) = fa(retr(r))
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But this only works in the case that the representation is adequate: the universally quan-
tified statement would be true for an emgity This transition then shows why adequacy
is important and prepares the way for the rules required for operations.

Proof obligations for operation modelling

The proof obligations needed for operations have the same motivation as those for the
functional case but have to cope with two complications. Firstly, operations themselves
are partial (cf. pre-condition) and non-deterministic (cf. post-condition); secondly, re-
trieve functions are normally many-to-one and thus their inverses are not functions. The
basic proof obligations fapperation modellingollow.?

Proof obligation 8.4 The domain rule is:

Vr € R - pre-A(retr(r)) = pre-R(r)

Proof obligation 8.5 The result rule is:

V7, reR-
pre-A(retr(T)) A post-R(‘7, 1) = post-A(retr(‘T), retr(r))

These rules can be extended in an obvious way to cope with inputs and results of
operations since these do not get changed by reification: it is the behaviour — as seen via
the inputs/outputs — which is preserved by reification. One way of comprehending the
resulting proof rules is to think ofiewing the behaviouof the operations on the repre-
sentation via the retrieve function. The second of these proof obligations is known as the
result rule This can be seen as requiring that any pair of states ipdhie R relation
must — when viewed under the retrieve function — satisfyzihve- A relation. An im-
plementation should not be rejected for an unnecessarily wide pre-condition, nor should
it be forced to perform any particular (e.gost-R) computation outside the required
domain. Thus the first conjunct of the antecedent of the implication limits the proof
obligation to those states which — when viewed under the retrieve function — satisfy the
abstract pre-condition. The result rule requires that, although defined on different states,
the operationg? and A model the same behaviour.

The explanation of the result rule argues against requiring too much of the operations
on the representation. It must, however, be remembered that the specification of the op-
erations on the representation consist of two parts. The result rule ensures that the post-
condition is not too wide; thelomain rule(first above) requires that the pre-condition
of the operation on the representation is not too narrow. So, if the pre-condition of the

3The validity of the proof rules given here relies on the adequacy of the representation. The concept of
viewing under the retrieve function can be formalized by requiring that representation operations respect
the equivalence relation induced on the representation states by the retrieve function.
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abstract operation is true of a retrieved state, the representation state must satisfy the
pre-condition of the representation operation.

Theorem 8.6 For the first example in the preceding section, the sequent form of the
domain obligation 8.4

ws € Dicta, w € Word +
pre-CHECKWORD (w, retr-Dict(ws))
= pre-CHECKWORDa(w, ws)

is vacuously true because the operation on the representation is total.

Theorem 8.7 Noting that the pre-condition of the abstract operation is aise, the
sequent form of the result obligation (8.5) becomes:

ws € Dicta, w € Word, b € B
post-CHECKWORDa(w, ws, b) =
post-CHECKWORD (w, retr-Dict(ws), b)

which follows from:

ws € Word*, w € Word, b € B F
(b & Jicindsws-ws(i) =w) = (b & w € elemsws)

Thus, CHECKWORDa can be said to modelHECKWORD. Strictly, this state-
ment is with respect taetr- Dict but, here again, the qualification can normally be
omitted without confusion.

The ADDWORD operation changes the state and can be modelled by:

ADDWORDa (w: Word)
ext wr dict : Dicta
pre =3¢ € inds dict - dict(i) = w

post dict = dict " [w]

Theorem 8.8 Its domain rule becomes:

ws € Dicta, w € Word +
pre-ADDWORD (w, retr-Dict(ws)) = pre-ADDWORDa(w, ws)

This is proved on page 192.

Theorem 8.9 It is often convenient to expand out the definitions. The result rule be-
comes:

/UTS, ws € Dicta, w € Word +

w ¢ elemsws A ws = ws  [w] = elemsws = elems ws U {w}
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from ws € Word*, w € Word
1 from w ¢ elems ws

infer ~ 37 € indsws - w = ws(i) elems
2  O(w ¢ elems ws) €,h
3 w¢elemsws = —3i €indsws - w = ws() =-1(2,1)

infer pre-ADDWORD (w, retr-Dict(ws)) = pre-ADDWORDa(w, ws

Theorem 8.8: domain rule fot DDWORDa

from ws, ws € Word*, w € Word

1 from ws = ws  [w]

11 elems ws = elems ws U elems [w] L7.6(h1)

infer = elems ws U {w} elems
2 S(ws=ws " [w]) ~h
infer ws = ws " [w] = elemsws = elemsws U {w} =-1(2,1)

Theorem 8.9: result rule fad DDWORDa

Which is, again, straightforward (cf. page 192).

Thus ADDWORDa modelsADDWORD. If these are the only operations, the
reification has been justified and attention can be turned to the next step of development.

If defined, it is also necessary to show that the initial states correspond — with respect
to the retrieve function. The proof is straightforward in this case and is shown explicitly
only on examples where the initial states are less obvious.

In large applications of the rigorous approach, there are likely to be several stages of
data reification: when the data objects have been refined to the level of the machine or
language constructs, operation decomposition is carried out. In either case, the composi-
tionality property of the development method requires that the next step of development
relies only on the result (e.d2icta, etc.) of this stage of development and not on the
original specification.
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Modelling proofs for the other dictionary representation

The operations on the second dictionary representation are addressed in Exercise 8.2.1
below. The third dictionary representation given above is more interesting. In this case,
the initial state is worth special consideration.

Theorem 8.10 The proof obligation for initial states is (witketr- Dict: Dictc — Dict):
dictcy € Dicte + retr-Dict(dictey) = dicty

This can be satisfied with:
dictco = mk-Dictc(false, { })

The specification oCHECK WORDc¢ must be written in terms aDicte. A spec-
ification which used the retrieve function would make little real progress in design. To
avoid such insipid steps of development, one could use a function:

1s-inc : Word x Dictc — B
is-inc(w, mk-Dictc(eow, m)) 2
w =[] A eow V
w # [] Ahdw € domm A is-inc(tl w, m(hd w))

Theorem 8.11 The modelling proof relies on the lemma:
w € Word, d € Dictc + is-inc(w,d) < w € retr-Dict(d)

This can be proved by structural induction.
In fact, a theory ofDictc can be developed. A function which inserts words is:

insc : Word x Dictc — Dictc
insc(w, mk-Dictc(e,m)) &
if w=1[]
then mk-Dictc(true, m)
else if hd w € domm
then mk-Dicte(e, m t [hd w — insc(tl w, m(hd w))])
else mk-Dictc(e, m U [hd w +— insc(tl w, mk-Dictc(false, { })])

Lemma 8.12 The relevant lemma here is:

@ w € Word; d € Dictc
— retr-Dict(insc(w, d)) = retr-Dict(d) U {w}
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Buffer pools and non-determinism

In the spell-checking example, all of the operations are deterministic. The buffer pool
example of Section 4.4 exhibits non-determinism. The abstract buffer pool is shown as:

Bid-set
Suppose this is modelled by:
Bufl = Bid*
inv (1) 2 is-uniques(l)
Clearly this is an adequate representation with respect to the retrieve function:

retr-BUF' : Bufi — Bid-set
retr-BUF (bidl) 2  elems bidl

The model ofOBTAIN can be specified:

OBTAIN1 () res: Bid
ext wr us . Bufl

pre us # ||
post us = [res] " us

The domain proof obligation is straightforward.
Theorem 8.13 That for the result becomes:

/@E,us € Bufl; res e B -
retr-Buf (us) # { } AN us = [res] " us =
res € retr-Buf (us) A retr-Buf (us) = retr-Buf (us) — {res}

Notice that a proof of this result relies on the invariantiaffi.
Thus OBTAIN 1 resolves the non-determinism (WBTAIN and exhibits an acceptable
behaviour.

Exercise 8.2.1 The spell-checker application can be used to show that the proof obli-
gation given in this section caters for non-determinism in representation operations. Re-
specify ADDWORDa to insert the new word anywhere in the sequence and show that
the revised operation specification moddl®BDWORD. Specify operations to work on
Dictb of the preceding section and show that they model those of the specification in
Section 4.1.
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Other applications

Two models are in some sense equivalent if retrieve functions can be written in both
directions. There is, in fact, a one-to-one correspondebeéwveen elements of both
models. It can be useful to build a specification around two or more equivalent models.
For example, one model may require a minimal invariant, while another may offer a
state with many sub-components, thus shortening the specifications of operations which
affect only some of the sub-components. In such a case, two models should be used and
the appropriate retrieve functions given. This is an alternative to the creation of extra
functions which define alternative views of one basic model.

Exercise 8.2.2 Exercise 4.4.2 on page 105 introduces a security tracking application.
Define a representation in terms of sequences; provide retrieve functions and adequacy
proofs; specify operations on the sequences; and prove that they model those on the
abstract state.

Exercise 8.2.3 Exercise 4.4.3 on page 105 and Exercise 6.3.4 on page 155 use two
different states for the same family of operations. Show that the specification based on a
pair of sets can be thought of as a reification of that based on a map (expand and check
the proof obligations for the state and the operations).

Exercise 8.2.4 It is easy to specify operations which allocate elements onto two dis-
tinct sequences. If there is not a reasonable upper size bound for at least one of the
sequences, the representation in a normal linearly addressed store presents problems.
Such a situation arises with the stack and heap in some programming languages. One
well-known technique is to reserve a large contiguous area for both sequences and to
allocate their space from opposite ends of the space. Describe the abstract problem and
its solution using two models and show that one is a reification of the other (consider the
initial state).

Exercise 8.2.5 Section 6.3 includes a discussion of virtual store showing abstract and
implemented models. Justify the correctness of the development in terms of the proof
obligations of this chapter.

Exercise 8.2.6 Complete the development begun in Exercise 8.1.4 on page 187 by
specifying and justifying the operations Satrep (consider the initial state).

8.3 Exercises in reification

This section presents a larger exercise in data reification and, as well as this development
from abstraction to representation of the sort discussed above, it indicates the way in

4They are isomorphic.
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which the same techniques can be used to handle interfaces which are predefined in
a project. Although many people argue that systems should be developed top-down —
thus developing interfaces as part of the design process — many large systems are in fact
split by setting some concrete interface decisions very early. The problem of working
to a predefined interface is also often faced by developers who design an addition to an
existing system.

Binary tree representations

Section 5.2 shows that a form of binary tré®e4rep) can be used to store representa-
tions of sets. The advantage of the binary tree representation is that it facilitates efficient
search and update operations: the number of search steps is proportional to the loga-
rithm — base 2 — of the number of elements, provided the tree is balanced. A great many
computer applications rely in some way on large associations between keys and data.
An extended form of binary tree can be used to provide similar performance advan-
tages for representations of such maps. In contrast to those used for set representations
(cf. Setrep), these trees have nodes which contafdeg/ Data pair.

The top-level specification of a map froReys to Data is made trivial by the avail-
ability of suitable base objects. Thus:

Kdm = Key — Data
The initial object inKdm is: mg = { }. Operations can be defined:

FIND (k: Key) d: Data
ext rd m : Kdm

pre k € domm

post d = m(k)

INSERT (k: Key, d: Data)
ext wr m : Kdm

pre k ¢ domm

post m = m U {k — d}

DELETE (k: Key)
ext wr m . Kdm
pre k € domm

post m = {k}<s'm

The maps Kdm) can be represented by:
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Mrep = [Mnode]

Mnode . It . Mrep

mk : Key
md : Data
rt . Mrep

inv (mk-Mnode(lt, mk, md, rt)) &
(Vik € collkeys(lt) - Ik < mk) N\ (Vrk € collkeys(rt) - mk < k)

Where:

collkeys : Mrep — Key-set
collkeys(t) 2

cases t of

n|| - {}7

mk-Mnode(lt, mk, md, rt) — collkeys(It) U {mk} U collkeys(rt)
end

A small theory of theMrep type can be developed. Some lemmas which are stated
here without proof are:

Lemma 8.14 The functioncolikeys is total:

t € Mrep

L8.14 collkeys(t) € Key-set

Lemma 8.15 Left and right sub-trees contain, because of the invariant, disjoint sets of
keys:

615 mk-Mnode(lt, mk, md, rt) € Mnode
— is-prdisj (collkeys(lt), {mk}, collkeys(rt))

where:

is-prdisj: X-set x X-set x X-set — B

Lemma 8.16 The valuemk shows which sub-tree to search:
mk-Mnode(lt, mk, md, rt) € Mnode;
L8.16) k € collkeys(mk-Mnode(lt, mk, md, rt))
— (k <mk = k € collkeys(lt)) N (mk < k = k € collkeys(rt))

The retrieve function is:
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retr-Kdm : Mrep — Kdm
retr-Kdm(t) £ cases ¢ of

nil —{}
mk-Mnode(l, k, d, r) — retr-Kdm(l) U {k — d} U retr-Kdm(r)
end

The totality of this retrieve function relies on Lemma 8.15. The adequadyrep can
be argued in a way similar to the proof fSetrep in Section 5.2.

Lemma 8.17 Another useful lemma is:

517 t € Mrep
[LB.17] dom retr-Kdm(t) = collkeys(t)
This example is developed in Section 10.4 where the induction rule (A10.1) is given.

Exercise 8.3.1 (*) B-trees are generalizations of binary trees. The order ($apf a

B-tree limits the branching at each node and can be chosen to achieve efficient transfers
from backing store. Any (non-root) node of a B-tree has betwéemd2 N elements; in

leaf nodes, these elements are pairs of key and data; for intermediate nodes, the elements
are pointers to other nodes — as with binary trees, keys which guide the search are also
stored at intermediate nodes. (A full description can be fourithi Ubiquitous B-tree

by D. Comerin ACM Computing Surveys, Vol.11, No.2, pp121-137.) Write descriptions

of B-trees on several levels of abstraction.

Exercise 8.3.2 (*) Hashing provides an alternative way of storing information for rapid
searching. A hash function map&ys to a subset of natural numbers. If the hash func-
tion were one-to-one, this would simply be a computed address where the information
(KeylData) is stored. Hash functions are, in fact, many-to-one and the interesting prob-
lems concern the handling of collisions where two or méies are mapped to the
same hash address. (Much of the subtlety in developing hashing techniques for particu-
lar applications concerns the minimization of collision — these aspects are not of concern
here.) Describe on two levels of abstraction the general idea of hashing where records
with colliding keys are placed in the ‘next gap’.

Exercise 8.3.3 (*) A graph consists of a set of nodes and arcs. An abstract represen-
tation considers an arc as an ordered pair (of node identifiers) and the whole graph as a
set of arcs. Document this abstract description and define simple operations to test if an
arc is present and to add an arc.

Two possible representations are:

e atwo-dimensional array (where each dimension is indexed by the node identifiers)
which records whether or not the relevant pairs are linked by an arc;

e a one-dimensional array of pointers (indexed by the node identifiers) to linked
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lists of records; the non-link information in each record is the identifier of nodes
to which arcs are present.

Document and justify these two representations at sensible levels of abstraction.

Handling fixed interfaces

The method of developing from an abstract type to a more concrete representation should
be clear. There are, however, situations in software development where a concrete in-
terface definition is one of the reference points in a development. There is nothing
essentially wrong with this situation, and the remainder of this section shows how the
data reification ideas can still be applied. The problems wbétoccur with interface
descriptions are legion. Firstly, interfaces are often recorded with far too much syntactic
detail. Information on physical control blocks is sometimes described at the bit and byte
level. This militates against the modern programming ideas of abstract data types. Use
of such detail can lead to efficiency but almost certainly results in systems which are not
maintainable. Many very large systems have made the mistake of fixing bit/byte details
and an enormous penalty has resulted. In spite of the fact that this mistake is so serious,
it is not the purpose of the current book to preach ideas which have long been standard
practice in better organized development groups. Here, it is necessary to show only how
the data reification ideas can help avoid the problem. An even more common failing
is the lack of semantics in interface descriptions. In contrast to the excessive syntactic
detail, the actual meaning or effect of fields in an interface is often suggested by no more
than the field names. The programming language Ada is in danger of perpetuating this
problem by using the term ‘interface’ to describe something which only has the power
to define syntactic (procedure) interface questions.

Faced with a fixed concrete interface in a development, there is a series of steps
which can be used to clarify an interface and to record the understanding. These steps
are:

1. write an (abstract) data type with only the essential information content;
2. record the semantics with respect to this abstract interface;
3. relate the (given) concrete details to the abstraction with a retrieve function.

These steps cannot, in large applications, be performed strictly sequentially: there is a
constant interplay between them.

A major application in which the author was involved concerned the development
of a compiler for the PL/I language. The interest was in the back-end (object time
organization and object code) issues and it was decided to take over the front-end (parser
and dictionary building) of an existing compiler. The text interface had a fairly obvious
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linearized version of the parse tree (see Exercise 8.3.5 on page 202). Variable references
in the text were represented (among other things) by pointers into the dictionary. The
dictionary had been designed for compactness and was a mass of special cases. The
documentation was quite good on byte values but the main part of the semantics had to
be deduced from examples. The proposal to follow the plan set out above was met with
some scepticism as to whether the time was available. Only the impossibility of getting
the interface under intellectual control in any other way convinced the group. (Some of
the material is available as a technical report — see [Wei75].) The effect was certainly
worthwhile from this point of view alone.

Here, a simpler — but equally representative problem — is considered. A paper by
Henderson and Snowdon — see [HS72] — includes the following introduction of a prob-
lem:

A program is required to process a stream of telegrams. This stream is
available as a sequence of letters, digits and blanks on some device and can
be transferred in sections of predetermined size into a buffer area where it
is to be processed. The words in the telegrams are separated by sequences
of blanks and each telegram is delimited by the word ‘ZZZZ'. The stream
is terminated by the occurrence of the empty telegram, that is a telegram
with no words. Each telegram is to be processed to determine the num-
ber of chargeable words and to check for occurrences of overlength words.
The words ‘ZZZZ’ and ‘'STOP’ are not chargeable and words of more than
twelve letters are considered overlength. The result of the processing is to
be a neat listing of the telegrams, each accompanied by the word count and
a message indicating the occurrence of an overlength word.

A number of questions are unresolved by this text and some computing scientists
have used this as a criticism of the text as a specification. Although this is not an excuse,
far worse documents are used as the basis of far larger systems. The debate is, however,
sterile, and here the text is treated as an indication of requirements. One important by-
product of the proposed method for addressing interfaces is that it is likely to expose
many of the lacunae. Questions on the text fall into two broad areas. Questions about
the effect (semantics) of the operations include:

e Are overlength words to be truncated in the output?

e How are overlength words to be charged?

What output is to be printed for overlength words?

Does the count for overlength really not count digits?

Is a report required for the empty telegram?
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e What error handling is to be provided?
Some of the questions about how the information is represented are:

e What is the meaning of ‘delimit'?

What is the meaning of ‘sequence’ (e.g. zero occurrences)?

What determines the buffer size?

Can words span blocks?

What is an ‘empty’ telegram?

What is a ‘neat listing’?
e Are leading spaces allowed in records?

It is not difficult — in this case — to find a suitable abstract description of both the
input and output:

Input = Telegram™
Telegram = Word*

Word = Character®
Character = Letter U Digit

Output = Report*
Where Telegram and Word are non-empty sequences; bt 7, Z, Z| ¢ Word; and:

Report :: tgm : Telegram
count . N
ovlen : B

This abstraction ignores the details of the blanks which delimit words or the special
words used to terminate telegrams. The required meaning is given by:

ANALYZE (in: Telegram™) out: Report*
post len out = len in A
Vi € inds in - out(i) = analyze-telegram(in(7))

analyze-telegram(wordl) &
mk-Report(wordl, charge-words(wordl ), check-words(wordl))
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charge-words(wordl) &
card {j € inds wordl | wordl(j) # [S,T,0,P]}

check-words(wordl) £ FJw € elems wordl - len w > 12

This has shown how the process of recording such a description can be used to
document the interpretation of open semantic questions. For this author, it was also
the way of generating the list of questions about the requirements. The next step is
obviously to face the other part of the problem, which is the representation details. The
representation can be viewed as:

Inputr = Block*
Block = Symbol*

Symbol = Character U {BLANK }

The specification is completed by documenting the relationshipitr to Input
via a retrieve function. Here, this is left as an exercise. The important message of this
approach to interfaces is both the value for uncovering imprecision and the ability to
record precisely the chosen understanding. The documentation can also be an aid in
implementation: separate data types can be readily identified.

One of the reasons that the Henderson and Snowdon paper has evoked so much
interest is their description of how one error got into their design. Not only was this
error avoided by the development based on the abstract specification given here, but also
other errors were uncovered in the program given in the original paper.

Exercise 8.3.4 Write a retrieve function for the input to the telegram analysis problem.
Fix a representation for output and document its relationship to the abstraction.

Exercise 8.3.5 (*) Choose a simple linear form (e.g. reverse Polish) for an expression
language and document the relationship to a tree form for expressions.

Exercise 8.3.6 (*) A syntax-directed editor permits a user to enter, at a terminal, a
program by placing information into an abstract syntax tree. The current content of a
program (and the identification of holes) is displayed by an ‘unparsing scheme’ which
relates concrete to abstract syntax. Such syntax-directed editors are table driven in that
the abstract syntax and projection schemes are stored as data. Describe the general idea
of syntax-directed editors.
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More on Data Types

Everything should be made as simple as possible,
but not more so.
A. Einstein

The material in this book is, in spite of using VDM, not specific to that notation. A
reader interested in the ideas — but working with another notation — should have had no
difficulty in following the concepts presented. When one wishes to employ tools to han-
dle specifications, it is necessary to become pedantic about syntax. Whereas formulae
can be linked by text in a textbook, a framework of keywords is needed by a mechanical
parser. The first two sections of this chapter discuss further aspects of VDM notation as
defined by the British Standards Institution (BSI) committee (BSI IST 5/50). Section 9.1
develops the material on abstract data types by showing how modules can be used as a
unit of encapsulation. Section 9.2 describes notation for specifying exceptional condi-
tions. Since the module notation is one of the parts of the BSI work which is marked
as tentative (see [BSI89] — the essential parts of which are reproduced in Appendix F),
only an outline is provided. There should be no difficulty in filling in the details when
the standard is finally frozen in this area.

A number of more subtle points about data types are also considered in this chap-
ter. The approach described above is to define the data types in terms of models. This
model-oriented approach presents some danger of overspecification. In particular, mod-
els can be biased towards certain implementations. A test for bias is given in Section 9.3
together with some general proof rules for data reification. Section 9.4 presents an al-
ternative way of specifying data types: the property-oriented approach is shown to be
well-suited to basic types; the applicability of this approach to the sort of data types

203
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required in larger applications is also reviewed; a comparison with the model-oriented
approach is included along with an attempt to define appropriate roles for the two ap-
proaches.

9.1 Modules as data types

This section outlines notation which binds a model and a collection of operations to-
gether into amodule Such modules (with import/export lists governing what can be
used across the interfaces) make it possible for one module to rely on another in a con-
trolled way. It is important to understand that the concept of modules in a specification
language is intended to help form a specification; it is not intended to provide a guide to
the implementations. There are several reasons for this caveat. The most obvious one is
that the implementation might need to adopt a different structuring in order to achieve
acceptable performance.

Module notation

The basic module notation is very simple. Keywords are used around a module as fol-
lows (the example of bags from Section 6.3 is used to introduce the notation):

module BAG

end BAG

Thought of as a collection of a state description — possibly some auxiliary functions —
and a collection of operations, one can see the use of the following keywords:

module BAG

definitions
types

state

end ;
functions

operations

end BAG
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The need to define the interface of a module leads to keywords for (in this case) export
lists:

module BAG
exports
types

Bag
operations

definitions

end BAG
Putting this structure around the material in Section 6.3 yields:

module BAG
parameters types X
exports
types
Bayg
operations
COUNT: X 2N,
ADD: X 5
definitions
types
Bag = X - Ny;
state
State of b: Bag
init (mk-State(by)) 2 by = { }
end ;

functions

mpc : X X Bag — N
mpc(e,m) £ if e € domm then m(e) else 0

operations

COUNT (e: X) e:N
ext rd b : Bag
post ¢ = mpc(e, b)
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ADD (e: X)
ext wr b : Bag

post b = B T{e— mpc(e,?) + 1}

end BAG

One important property of data types is the possibility which they offer to ‘close off’
one piece of work so that it can be used in another. One manifestation of the separation
property — in the case of state-based data types — is the ability to change the internal
details of one data type without needing to change any data type which uses it. This
can be achieved only if the behaviour of the operations within the used type remains
the same: insulation is given only against changes to internal details. But, providing the
change is to an equivalent specification in the sense that sequences of its operations yield
the same results in the externally visible types, it is true that an operation using it will
itself preserve its original behaviour. Thus, given the definition of the moBulé,
objects of typeBag can now be used in other data types. Such objects can, however,
only be manipulated by the exported operations and the internal representafan of
could be changed without affecting the data types whichBi$€&'. The next subsection
explains how the exported operations can be used.

The insulation provided by data types is a valuable property, but it certainly does not
justify making every component of every state into a separate data type. Taste in the
selection of data types comes both from consideration of their likely reuse and of their
representing coherent concepts. This latter consideration has to be judged on whether
the operators present a clear theory.

Operation quotation

In a programming language, the exported operations of one data type would be invoked
in another data type as procedures. VDM's operations are like procedures in that they
change a state. Although this fact has been seen to be very useful in constructing spec-
ifications of systems, it does present a difficulty when operations in a new data type are
to be defined by predicates in terms of an existing data type. It would be meaningless
just to ‘call’ such operations from within, say, a post-condition. The use of operations
in one (state-based) data type from another is facilitategumgingtheir pre- and post-
conditions. That is, their ‘effect’ is shown by using their post-conditions with appropri-
ate arguments (and their applicability is shown by using their pre-conditions in the same
way). Looking at the definition oBA G, the explanation of the signatures of pre- and
post-conditions given in Section 3.4 shows that the following are intended:
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pre-COUNT: X x Bag — B
post-COUNT: X x Bag x N x Bag — B
pre-ADD: X x Bag — B

post-ADD: X x Bag x Bag — B

Using these truth-valued functions, and:
mit-Bag: — Bag

it is easy to define a module for a data type which uBds> to build a collection of
bags:

module MBAG
imports

exports

definitions
types
Mbag = D = Bag;
-- The bags can be stored in a map indexed by elemenis of
state
State of m: Mbag
init (mk-State(mo)) 2 mp = { }
end ;
operations

-- An operation which enlarges the collection of bags could be specified:

MNEW (w: D)
ext wr m . Mbag
pre w ¢ domm

post m = ‘m U {w + init-Bag()}
-- Counting within a bag can be shown by quotation:
MCOUNT (w:D,e: X) ¢:N

ext rd m . Mbag
post post-COUNT (e, m(w), c)
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-- An operation which adds an element to a stated bag is:

MADD (w: D, e: X)
ext wr m : Mbag
post 3b € Bag - post-ADD(e, m (w),b) Am = 'm t {w — b}

end MBAG

Remember that the specification of these three operations is insulated from any reformu-
lation of the specification oBag itself. This ability to adapt with such changes is the
essential feature of a module notation.

Annotating specifications

It is obvious that formal specifications for large systems are likely to be long. The
formal description of the PL/I language contains about 120 pages of formulae. Care and
preparedness to rewrite parts of such a specification can make the model itself far easier
to understand. The tasteful use of natural language annotations can also make it much
easier for a reader to begin to understand a large formal specification. There are several
possible styles of annotation:

e in-line comments — as in programming languages;

e numbered formulae lines with annotations which relate to line numbers placed
after each block of formulae;

e careful decomposition into abstract data types with text introducing each such
separate concept.

The first of these options (marked by is used in the example above. For this textbook,
the third option has been used in preference to a somewhat heavy alternative with:

annotation

end annotation

which is possible in the BSI syntax. It is likely that the development of appropriate
machine support will make a form of the second approach much more attractive.
Compiler dictionary example

The idea of quoting the post-condition of one operation in the specification of another is
most often used for applying operations to parts of a state. The following specification
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is a case where this is used in a way which neatly separates (state-based) data types. A
compiler dictionary can be used to record attribute information about identifiers. Many
texts on compiler writing refer to such a dictionary as a ‘symbol table’. Information is
added to a local dictionary when the declarations of a block are processed, and this in-
formation can be looked up when code is to be generated for the statements in the block.
In a block-structured language like ALGOL, the declaration information for different
blocks must be kept separately. The attributes of a non-local identifier must be found
by looking in the local dictionaries for outer blocks, but the appropriate declaration is
always the one in the closest surrounding block. Here, it is assumed that the compiler
is one-pass and that entering (and leaving blocks) causes the creation of empty (and the
destruction of) local dictionaries. The reader should have no difficulty in specifying such

a system as one module. Here, the specification is presented by first defining a module
with the operations on the local dictionaries.

module LDICT
parameters types Id, Attribs
exports operations
STOREL: Id x Attribs -,
ISINL: Id > B,
LOOKUPL: Id > Attribs
definitions
types
Ldict = Id == Attribs:
state
State of ld: Ldict
init (mk-State(ldy)) 2 ldy = { }
end ;
operations

STOREL (i:Id, a: Attribs)
ext wr ld : Ldict
pre i ¢ dom Id

post ld:ﬁu{i'—»a}

ISINL (i: 1d) r: B
ext rd Id : Ldict
post 1 < 4 € domld

LOOKUPL (i: Id) r: Attribs
ext rd Id : Ldict
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pre i € domld
post r = ld(i)

end LDICT

The definitionLdict can be regarded as a state-based data type whose module can be
used in the definition of the main operations.

module CDICT
parameters types Id, Attribs
exports operations

ENTER: () >,

LEAVE: () 5,

STORE: Id x Attribs >,

ISLOC: Id > B,

LOOKUPC: Id > Attribs
definitions
types

Cdict = LDICT .State*;
state

State of cd: Cdict

init (mk-State(cdy)) 2 edy = []
end ;

STORE (i: Id, a: Attribs)
ext wr c¢d : Cdict
pre cd # [] A pre-STOREL(i, a,hd cd)

post 3ld € Ldict - post-STOREL(i, a,hd cd, Id) A ed = [1d] " tl ed

ISLOC (i:1d) r:B
ext rd cd : Cdict

pre cd # []
post post-ISINL(i,hd cd, )

LOOKUPC (i:Id) r: Attribs

ext rd cd : Cdict

pre 3j € inds cd - pre-LOOKUPL(i, cd( 7))

post let k = mins{j € N | pre-LOOKUPL(i,cd(j))} in
post-LOOKUPL(i, cd(k), )
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ENTER ()
ext wr cd : Cdict

post ¢d = [init-Ldict()] " cd

LEAVE ()
ext wr cd : Cdict

pre cd # []
post cd = tl cd

end CDICT

As explained above, quoting the pre- and post-conditions makes it possible to change
the internal detail of.dict without having to changé'DICT .

File stores

The next example, as well as making use of operation quotation, also illustrates the ex-
tent to which the state model of a specification can be used to investigate the possibilities
of an architecture. It is possible to discern the architecture of a system without reading
the whole description. With experience, the underlying state-like objects of a definition
can be understood to define the overall architecture. In the (120 page) PL/I description,
the so-called ‘semantic objects’ occupy about five pages. A clear understanding of this
material ties down many facets of the language without having to read all of the fine
detail. Here, the importance of the state is shown by the development of a series of vi-
gnettes of file systems. Suppose — for all of the definitions — the internal structure of a
file is of no interest. (AFile might be an unstructured sequence of bytes or it might have

a richer structure. In the latter case, it could be treated as a separate data type.) If files
are to be accessed, they must be named. Thus the state of the most trivial file system is:

Trivfs = Name — File

It would be possible to define arange of operations on this state {BHATE, DELETE,
COPY); but it is more interesting to observe what cannot be done. It is obvious from
the properties of maps that no two different files can have the same name. If two users
wish to have separate name spaces, the state of this file system is not rich enough. This
observation can be made without an exhaustive search of operation specifications or — as
here — even before the effort is expended to write such definitions.

It is not difficult to extend the state in a way which permits nested directories. For
example:

Nestedfs = Dir
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Dir = Name - Node

Node = Dir U File

This allows separate users to utilize the same name in the way/that'™ directo-

ries support. Here again, operations could be specified on this state; but one can also
see what still cannot be done in any system based on this state. In particular, it is not
possible to share the same file via two different name paths. Here sharing is taken to
imply that if a user changes the file by one path, the change will appear when the file is
accessed via another path. There is a standard way of establishing such sharing patterns
in specifications and that is to introduce some intermediate link, or surrogate, (here afile
identifier —Fid). Thus:

Sharedfs :: root : Dir
filem : Fid = File

Dir = Name = Node

Node = Dir U Fid

It is now clear, from the state above, that files can be shared in the sense that different
paths can lead to the same file identifier.

Having developed a plausible state, some operations are given. An operation to show
the contents of a directory is:

SHOW () m: Dirstatus

extrd d : Dir

post m = {nm  (if d(nm) € Dir then DIR else FILE) |
nm € dom d}

Dirstatus = Name — {FILE, DIR}
An operation to create a new directory is:

MKDIR (n: Name)
ext wr d @ Dir
pre n ¢ dom d

postszU{nH{}}

Once more, a somewhat optimistic pre-condition is given. A way to avoid this and
indicate exceptions is described in the next section.
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It is then possible to quote these operations in order to form other, more global,
operations such as:

Path = Name*

SHOWP ( p: Path) m: Dirstatus
ext rd d : Node
pre d € Dir A
(p=1I1V
p#[] A hdp € domd A pre-SHOWP(tl p, d(hd p)))
post p =[] A post-SHOW (d, m) V
p # [] A post-SHOWP(tl p, d(hd p), m)

The claim being made here is that the state can convey a great deal of useful infor-
mation about a system. This is, of course, only true where the state is well chosen. An
alternative state for the system above is:

Sharedfs :: access : Path — Fid
filem

A state which has basically this form is chosen by Carroll Morgan and Bernard Sufrin
in their contribution to [Hay87]. It is instructive to compare this with the earlier state.
The most obvious comment is that this would complicate the definitighHgd . It is

also clear that there would have to be a complicated invariant on this state. This having
been said, it is possible to define all of the operations on such a state. What is left is
the observation that this second state conveys a much less clear picture of the intended
system than the first state shows.

In specifying even moderately sized systems, one must be prepared to discard pos-
sible states as it becomes clear that some operations or invariants become inconvenient.
In this way the state comes to be the essence of the specification, and can then provide
much insight.

The point about the knowledge derivable from a well-chosen state can also be made
by counter-example. The ECMA/ANSI specification of PL/I is based on a formal model.
As with the the Vienna definition ([BBH74]), the state is given formally and is rather
short. However, it contains many sequences but no sets since there was some feeling
that sets might be too abstract for the standards organization! On checking, one finds
that no use is made of the order of some of these sequences. To know which sequences
do convey essential order one has to inspect the remaining 300 or more pages of the
definition. Thus information which could have been made clear in the state is dispersed
over the whole definition.

The reference to standards activities presents an appropriate point to contrast the
terms ‘specification’ and ‘description’. Although the former term has been used in this
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book, it should be noted that it really relates to an official status; the term ‘description’ is
often the more appropriate one. Itis, of course, the hope of the author that it will become
ever more frequent for standards committees to adopt formal specifications.

Exercise 9.1.1 A very simple diary reminder system can be specified around:
Diary = Date — Task*

Specify an operation which addsiask for a givenDate (do not assume that thRate
is already in theDiary). This operation should then be quoted in the specification of an
operation for a given user in a state:

Diarysys = Uid — Diary

Exercise 9.1.2 (*) Exercise 9.1.1 introduces a trivial diary system. Write down a rea-
sonable list of requirements and then develop (using separate data types and combining
them) a specification of a realistic computer-based diary manager.

9.2 Exceptions

Some of the operation specifications given in this book have overly restrictive pre-
conditions. It is pointed out, in earlier chapters, that this might well be realistic for
operations which are used within a system: essentially, the environment of the opera-
tions ensures that the pre-condition is fulfilled. There are, however, operations which
might be invoked in a way which makes such restrictive pre-conditions unrealistic. This
section introduces some notational extensions which can be used to egceqtions

It is worth introducing the extended notation by considering the effect of trying to
avoid it. Suppose it were wished to make the) UEUE operation of Section 7.1 total
in the sense that it did not have the pre-condition given there. It would be possible to
write:

DEQUEUE () e: [Qel]
ext wr ¢ : Queue
pre true

post ‘¢ #[|A'T =[] gV
‘T=[ANT=qAe=nil

Here, the return of theil value is taken to indicate an error.
It would also be possible to base the specification on the signature:

DEQUEUE() e:[Qel] err: QUEUEEMPTY]

There are several observations which can be made about this approach. Perhaps the most
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obvious problem is that the specification of the normal case can become submerged in
detail. But, this may not be the worst problem. This style of specification forces deci-
sions about how errors are to be shown. In some programming languages (e.g. Pascal)
it might be necessary to return an extra result, or a distinguished value, in order to indi-
cate an exception; but there are languages (e.g. PL/I, Ada, ML) which contain explicit
exception mechanisms. As far as possible, it is worth postponing commitments to imple-
mentation languages. It should certainly not be necessary to choose an implementation
language in order to record a specification.

The requirements for exception specifications thus include the ability to separate
exceptional cases from the normal and an avoidance of commitment as to how exceptions
are to be signalled.

BSI-VDM has adopted one possible notation which adds error clauses to operation
specifications. In general, the format becomes (where;thee logical expressions):

OP (i:Ti) r: Tr

extwrv . Tv

pre p

post 1o

errs CONDy: ¢y — 1
CONDQZ Co — 1)

The condition names({OND;) can be taken to be the name of the exception: how this
is returned is a matter for the implementation. Leaving aside the name, the specification
can be explained by its translation to:

OP (i:Ti) r: Tr

extwrov @ Tv

prepVc Ve

post pArgVerAry Ve Anr

Some consequences of this translation should be noted. Firstly, the pre-condition is
effectively widened by the conditions on the error clauses. Secondly, the form of the
given post-condition is, in general, non-deterministic: if betrand ¢, are true, either
exception can be signalled and the corresponding state transformation can occur. Even
if both the normal case and an exception can arise, this translation does not fix the effect.
In practice, it is wise to make the normal and exception conditions mutually disjoint, but
there are advantages in not determining which of several exceptions should occur since it
leaves an implementation some freedom to choose the order in which tests are made. If
it is important which exception is signalled, the conditions can again be made mutually
exclusive.

The above example could now be written:
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DEQUEUE () e: [Qel]
ext wr ¢ : Queue

pre ¢ # []
post ¢ =[e] ¢
errs QUEUEEMPTY: ¢ =[] — ¢ = ‘¢ A e = nil

A very common special case is where the exceptions do not cause a state change. This
is, in fact, a very desirable property of a system. It is possible to further economize on
notation by recognizing this special case.

Exercise 9.2.1 Rewrite the specification of Exercise 4.4.2 on page 105 using the ex-
ception notation.

Exercise 9.2.2 Write the exception specifications (where appropriate) for the stack ex-
amples given in Exercise 7.3.2 on page 174.

Exercise 9.2.3 (*) Extend the specification of the file system given in Section 9.1

so that operationd/KDIR and SHOWP handle exceptions. Now that the exception
notation is understood, it is reasonable to define other operatiofismondfs. Consider

new features (e.g. security/authority, stored path names) and show how these affect the
state. In all operation definitions, attempt to use operation quotation to separate the data

types.

9.3 Implementation bias in models

The remainer of this chapter addresses special issues about the concept of data types.

Biased model of queues

The concept oimplementation biags most simply introduced by example. Section 7.1
begins by introducing a specification of a queue based on olfjzetge. A specification
which defines the identical behaviour is:

Queueb . s . Qel*

¢ N
inv (mk-Queueb(s,i)) 2i <lens
init go = mk-Queueb([],0)

ENQUEUE (e: Qel)
ext wr s © Qel*
post s = 5 [e]
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DEQUEUE () e: Qel
extrd s : Qel*,
wri N
pre 1 <lens
posti="7 +1Ae="5(i)

ISEMPTY () r:B
ext rd s : Qel*,

rds @ N
post r < (i =lens)

The model in this specification keeps unnecessary history of the queue and this is intu-
itively wrong. This intuitive concern can be made more formal by considering retrieve
functions. A retrieve function can easily be constructed in one direction:

retr- Queue : Queueb — Queue
retr-Queue(mk-Queueb(s, 1)) 2 s(i+1,...,lens)

Thus:
retr- Queue(mk- Queueb([a, b, ¢, d],1) = [b, ¢, d]

But a retrieve functiortannotbe constructed in the other direction because the unnec-
essary history information cannot be found@meue. This discloses why the problem
is referred to as ‘implementation bias’. Using the reification proof obligations given
in Sections 8.1 and 8.2, thQueueb model is biased towards (proving correct) imple-
mentations which retain at least as much information. An implementation which keeps
even more history (e.g. the exact order®lWQUFEUE/DEQUEUE operations) can be
proved correct: a retrieve function can be constructe@ieueb.

It is important to realize that the behaviour of the operationg)aaueb is the same
as that onQueue. Thus it is possible to show that the operations on the former model
those on the latter. It is only the acceptability of i@acueb model as a specification
which is being challenged. As an implementation, its behaviour is as required.

The bias of theQueueb specification is a criticism of a specific model. Is it also
an indication of a weakness of the model-oriented approach to specification? There are
certainly some computer scientists who have argued in this direction. The proof rules
shown below permit even a biased model to be used as a starting point for development.
More importantly, it is normally possible to avoid bias. Moreover, it is possible to prove
that bias is absent.
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A test for bias

The problem which is to be avoided is that an implementation is invented such that a
retrieve function from its states to those of the specification cannot be constructed. This
itself cannot serve as a test of a specification since it requires consideration of possible
implementations. The problem with the storage of unnecessary history information in

Queueb can, however, be described in another way: the information is unnecessary
precisely because it cannot be detected by any of the available operations. The following
definition is therefore given:

A model-oriented specification is based on an underlying set of states. The
model is biased (with respect to a given set of operations) if there exist
different elements of the set of states which cannot be distinguished by any
sequence of the operations.

In terms of the example above, there is no way of distinguishing between:
mk-Queueb([a, b, c], 1) and mk-Queueb([b, c],0)

The precision of this test makes it possible to use it as a proof obligation. A model is
sufficiently abstracfto be used as a specification) providing it can be shown to be free
of bias.

It is important to realize that the bias test is relative to a particular set of operations.
The Queue model of Section 7.1 is unbiased for the collection of operations given there.
However, for a different set of operation3ueue is a biased model. For example, if the
DEQUEUE operation were replaced by one which only removed, but did not show, the
removed value:

REMOVE ()

ext wr q . Queue
pre ¢ # []

post ¢ = tl 7

there is no operation which could distinguish between the queues:
[a,0]  [b,a]  [c,d]

An unbiased modélfor this collection of operations is a natural number which records
the number of elements in the queue. Furthermore, itA&/OVE operation is entirely
discarded, the only distinction which can be detected is between empty and non-empty
queues. A sufficiently abstract model for this restricted set of operations is a single
Boolean value.

! Another term which is used in connection with bias is ‘full abstraction’. A specification can be said to
be fully abstract (with respect to a given set of operations) if it is not biased.
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The test for bias was discovered after many model-oriented specifications had been
written. Since then, it has been applied to a number of specifications which were writ-
ten without its guidance. The experience is that very few specifications were found to
have been biased. Even those which were revolve around rather subtle problems. It is
therefore not envisaged that this proof obligation need normally be discharged in a for-
mal way. The concept of sufficient abstractness is more likely to be useful in general
discussions about alternative models. One cause of failure is where an invariant on the
specification state has been overlooked. It must be understood that there is not a unique
sufficiently abstract model for any particular application. Different models can pass the
bias test. With such a class of models, it will be possible to construct retrieve functions
in either direction between any péir.

Among the class of unbiased models, some are more complex than others. Consider,
for example, a problem in which a set can be used to define the needed operations. A
model based on a list is likely to be biased — state values might, for instance, store a
history of the order of operations which cannot be detected. It is, however, possible to
reduce the equivalent states to single values by adding an invariant. If the elements of a
list are required to be in a particular order (e.g. numeric order), there is then a one-to-one
correspondence between the lists (with invariants) and sets. The restricted lists are not
biased — but the model is certainly more complicated.

This appears to suggest another criterion for the choice of models: in general, it is
better to choose a state which minimizes the need for invariants. There are, however,
exceptions to this guideline, and the reader is reminded of the discussion in Section 8.3
about the use of more than one isomorphic model. One such model may have a mini-
mum invariant while another might be more complicated; if the more complicated model
makes some operations easier to define, it can pay its way.

All of the above comments about bias relate to the choice of models for specifica-
tions. Reification certainly brings in bias. In fact, the commitments which are made by
the designer are intended to introduce implementation bias. At each successive step of
data reification, the range of models (which can be justified using retrieve functions) is
intentionally reduced. The designer’s goal is to arrive at a final, single implementation.

More general proof rules

The remainder of this section is concerned with proof rules for handling development
from biased specifications. There are two reasons for what may appear teolte-a

face Firstly, bias may occur by accident. Although the point is made above that the
investment of rewriting specifications (even several times) is likely to pay off in clarity,
not all industrial environments are prepared to accept this austere advice. It is shown

2Technically, the unbiased models form an isomorphism class — they partition the possible behaviour
histories into equal sets.
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below that there are ways of handling development from biased specifications. Some
users of formal methods may choose to employ the more general reification rules.

The other reason for presenting ways of handling the more general situation is that
there are places where a specification which is technically biased should be used! The
most common situation where (technical) bias is justified is when the full extent of the
set of operations is unknown. Michael Jackson presents examples in his books (see,
for example, [Jac83]) in which attempts to tailor the state too closely to a particular
collection of operations makes subsequent extension all but impossible. It is argued in
Section 8.3 that the state represents the essence of the operations. When the operations
are not a fixed collection, the state must be chosen to be the essence of the application
itself. The extent to which this rather vague goal is achieved, will govern the difficulty
of subsequent modifications.

There are some cases where a biased state can lead to a clearer specification than an
unbiased one. Such cases are rare. An example is forming the average and standard de-
viation of a collection of values. An obvious specification first stores all of the numbers;
to avoid bias, a specification has to rely on subtle properties of the definitions.

There is one more case where the state of a specification has more information than
that of correct implementations. This is the most technical of the cases. It is some-
times necessary for the state of the specification to contain information which defines
the range of non-determinacy. An implementation which resolves the non-determinism
in a particular way may need less information in the state. A representative example of
this situation can be built around a symbol table. A specification can use the state:

Symtab = Sym — Addr

Addr =N
A non-deterministic operation to allocate addresses is:

ALLOC (s: Sym) a: Addr
ext wr t . Symtab
pre s ¢ domt

post agérng?/\t:?U{SHa}

An implementation of this specification can use:
Symtabrep = Sym*
inv (t) & is-uniques(t)

with:

ALLOCT (s: Sym) a: Addr
ext wr t : Symtabrep
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pre s ¢ elemst

postt:/?/\[s]/\azlent
An attempt to use the reification rules of Chapter 8 may lead to the retrieve function:

retr-Symtab : Symtabrep — Symtab
retr-Symtab(t) 2 {t(i)— i|i €indst}

But this clearly shows thatymtabrep is not adequate: any value S8fmtab with gaps

in the allocated addresses cannot be represented. The need to provide a general model
in the specification was to express the potential non-determinacy; the decision to yield
particular addresses in the implementation renders this information redundant.

One way of handling this situation is to generate a special proof obligation for steps
of development which reduce non-determinacy in this way. Although straightforward,
this avenue is not pursued here since the more general proof rule covers this somewhat
rare case.

It has been made clear that the behaviour of a data type is what is to be specified and
verified. But there are steps of reification which cannot be proved correct by the rules
of Chapter 8 even though the putative implementation manifests the same behaviour as
the specification. Thus, it is clear that the given rules are too weak in the sense that
they are sufficient but not necessary. Although they cover a very large percentage of the
development steps which one is likely to meet, it is useful to know the more general rule.

The key to the more general rule is to realize that the retrieve function can revertto a
relation. The proof rules of Chapter 8 capitalized on the one-to-many situation brought
about by the lack of bias. If this restriction no longer applies, the many-to-many situation
can be represented by:

rel: Abs x Rep — B

Suppose the biase@ueueb from the beginning of this section were to have been used
in a specification; the relation tQueue (now taken as an implementation!) could be
recorded by:

rel- Queue : Queueb x Queue — B
rel-Queue(mk-Queueb(l,i),s) 2 I(i+1,...,lenl)=s

With the more general rules, there is ho adequacy proof obligation. The domain rule is
similar to that of Chapter 8:

rel-Queue(qb, q) N\ pre-OPA(qb) = pre-OPR(q)

Notice thatOPA works onQueueb and OPR on Queue. The result rule is:
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rel—Queue(%, TN pre-OPA(/(E) A post-OPR(‘q ,q) =
dgb € Queueb - post-OPA(qb, qb) N rel-Queue(gb, q)

Proofs using these results are left as exercises. In general, they become more difficult
than proofs using the rules of Chapter 8, if for no other reason than the appearance of
the existential quantifiet.lt is also necessary to handle initial states — the rule should be
obvious from the corresponding rule in Chapter 8.

There are other ways of handling situations where bias occurs in the specification.
In early work on formal development of compilers, Peter Lucas (see [Luc68]) showed
how ghost variablegan be erected in the implementation state. These variables initially
retain any redundant information but can be disposed of once there are no essential
references to them.

Exercise 9.3.1 Justify Queueb as an implementation with respect to thacue speci-
fication given in Section 7.1.

Exercise 9.3.2 Design an implementation of the queue operations which retains the full
history of the queue. Since this is even more information than is contain@ddmneb, it

is possible to use the (biase@).cueb operations as a specification. Sketch a justification
which illustrates this fact.

Exercise 9.3.3 Justify Queue as an implementation of the specificati@aeueb — since
this latter is biased, the more general proof rule of this section must be used.

Exercise 9.3.4 Write a biased specification of a stack (cf. Exercise 7.3.2 on page 174).

Exercise 9.3.5 The first conjunct ininvp (Section 4.2) bars an empty set from a parti-
tion. One reason for needing this is the equivalence relation specification mentioned in
Section 4.4. Discuss the problem in terms of bias.

Exercise 9.3.6 Outline the proof of the operatioALLOC for the Symtabrep repre-
sentation ofSymtab. The proof obligation will have to use the more general rule.

Exercise 9.3.7 (*) Itis standard practice to define the rational humbers as a pair of
integers. Set up such a model and define some functions (e.g. addition of rationals).
Discuss the problem of bias in this, functional, context.

9.4 Property-oriented specifications of data types

The preceding section should have allayed any fears about being forced into overspec-
ification in the model-oriented approach. But the concern has been fruitful in that it is

31t is, however, the existential quantifier in the result rule which ensures that this more general rule
covers the sort of non-deterministic situation which arose in the symbol table example.
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one of the stimuli which have led computer scientists to develop a way of specifying
data types without using a model at all. The idea goes back to the concept of a data type
being a pattern of behaviour. Tipeoperty-orientedapproach to specifying data types
defines properties of these behaviours by a series of equations.

This section does not aim to provide a course on the property-oriented approach:
it only explores the presentations, given in Chapters 4 to 7 above, for the basic data
types, and discusses the role of property-oriented specifications in data types required in
applications.

Properties of collections

It has already been seen that the generators for sequences, etc. present a convenient
basis for proofs. In Chapter 7 the generating operators are giémad cons (X x X*
— X*). There, these generators are closed off by an induction rule; in a property-
oriented specification, the induction rule is subsumed byirkerpretation which is
ascribed to the equations.

The properties of concatenation can be given by the equations:

[17t=t
cons(e,t1)  ty = cons(e,t; ~ to)

Viewed innocently, the equalities in these equations indicate that terms of one form can
be rewritten into another form. In thieitial interpretation, the objects denoted by terms
are equal exactly when the terms can be proven to be equal from the equations. This
appears to be a very plausible position but it is not the only one possible. In fact, the
consequence that inequalities can be established only by showing that a term cannot be
deduced is extremely aggravating.

The reader should remember that Chapter 4 introduced the set constr{igtars (
by equations which, apart from the symbols, are identical to those given for sequences.
But clearly the sets denoted by the terms:

1O (20 {}) and  eo(a0(eo{})

should be equal. In the initial interpretation, it is necessary to add extra equations in
order to ensure that term equality defines object equality. The need for these equations
can be avoided in the alternative final interpretation of such equations. fintién-
terpretation objects are assumed to be equal unless the terms which they denote can
be proved unequal. The normal way to show that terms are unequal is by using some
external (already understood) type. In the final interpretation for sets, there would be

“What is referred to here as the ‘property-oriented approach’ is known in the literature under a variety of
different names: ‘(equational) presentations of algebras’; ‘the axiomatic approach’ (viewing the equations
as axioms); or everthealgebraic approach’.
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no need to add the absorptive and commutative equations.férwould, however, be
necessary to add some operators in order to prevent the complete collapse of the value
space. In this case the membership operator could be used (see below).

To make these points clear, the specification of three data types (sequences, bags and
sets) are considered under the two interpretations. A useful concept in this discussion
is a term algebra. Given some set of operatorstéhm algebrais the set of all terms
which can be generated such that each application respects the types. (This set of terms
could be formalized using an abstract syntax.)

With the types:

null: Colln
©®: X x Colln — Colln

the initial model of Colln is exactly the sequence values. In fact, the term algebra
of these generators can be thought of as providing a model on which other operators
(e.g. concatenation) can be defined. The initial interpretation of these equations is a
natural match for sequences. The operatdof type Colin x Colln — Colln) which
satisfies:

null+c=c
(e®c)+ec=e®(c1+ )

automatically becomes sequence concatenation.

The same generators can be used for the bags, but here the term algebra for the
operators above needs breaking into equivalence classes. Since bags do not have the
concept of the order of their elements, any terms which differ only by position denote
the same objects. This fact can be captured by the single equation:

e1O(e20b)=e0 (e 0b)

This equation can be used (cf. Section 4.2) to show the commutative properties of bag
operators defined over these generators (e.gn bags becomes union). In some sense,
the initial interpretation is not such a good match for bags. The values now correspond
to sets of terms. One possibility is to think of choosing a representative member of each
equivalence class (e.g. relying on some ordering over the elements).

For sets, the equivalence classes have to be made yet coarser. The necessary effect
can again be achieved by adding one more equation:

e®(e®s)=e®s

One can picture what has been done by considering the set of all possible terms formed
from null/® and partitioning this set into equivalence classes as indicated by the equa-
tions defining the commutativity and absorption®f To each such (infinite) set of
terms, there corresponds one set value which is denoted by each of the terms.
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In the final interpretation, the equivalence classes of terms are as coarse as possible.
Thus, the final interpretation comes closest to matching sets. However, there is nothing
about the generating operators which prevents even the terms:

e1 @ null null

from being treated as equal. The danger is that all terms are in one equivalence class.
This is avoided by adding an operator which yields values in another type. For sets, an
appropriate operator is membership. Equationssf¢of type X x Colin — B) which

show:

- (e € null), ec(e®s), ecs = ec(Os)

result in the appropriate algebra.

For bags (cf. Section 6.3), the equivalence relation on terms must be made finer.
This can be done by replacing the membership operatorawitht (of type X x Colin
— N), where:

count(e,null) =0
count(ey, (e2 ® b)) = count(er, b) e1 # ey
count (e, (e1 © b)) = count(er,b) + 1

The equivalence class so defined still has:
e1 © (e2 ® 1) e2 ® (e1 © 1)

in the same partition since they cannot be proved unequal. To tlelke behave, in the
final interpretation, like sequences, one could hdd Colln — X) with:

hd(e®c)=e

There are then at least two interpretations of a set of equations. Clearly, if specifications
of data types are to be given by properties, the interpretation must be defined.

Implementation proofs

The choice of interpretation is closely related to the question of how one shows that an
implementation is correct with respect to a property-oriented specification. The obvious
approach to such proofs might be to check that all terms which are in the same equiv-
alence classes denote the same value in the implementation. Chapter 8 shows that, in
an implementation, there may be several representations for the same abstract object.
The equality of terms cannot, therefore, be used as the criterion for the correctness of
implementations.

The (equivalence classes of) terms are, however, the basis for such implementation
proofs. Where, as for sequences, the equivalence classes contain exactly one term, it is
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possible to use a style of implementation proof similar to that of Chapter 8 (i.e. based
on retrieve functions). In the case that the equivalence classes contain more than one
element, another technique is required. The basis of this technigue is to define a homo-
morphism from the set of terms to the implementation. This is like a retrieve function in
reverse. It can always be constructed (at least in the deterministic case) since the term
algebra is the finest possible partition. The proof obligation is, then, to show that the
equivalence classes represented by the equations are respected.

Scope of alternative methods

The remainder of this section considers the extent to which the property-oriented ap-
proach can be applied to specifications of applications. Property-oriented specifications
are given by a signature part and a set of equations.sigmaturedefines the syntactic
information about the functions. Theguationdix the semantics of the functions. (For
the sake of definiteness, the initial interpretation is assumed.)

Just as the factorial program is a standard example for program proof methods,
the stack is the standard example for data type specifications. The signature part of a
property-oriented specification is:

init: — Stack

push: N x Stack — Stack
top: Stack — (N U ERROR)
remove: Stack — Stack
isempty: Stack — B

Several comments are in order. The standard texts on algebra consider functions rather
than (what are called in this book) operations. It is possible to generalize functions to re-
turn more than one result and then operations can be viewed as functions which receive
and deliver an extra (state) value. Here, the operallG® (cf. Section 7.3) has been
split into two functions (i.etop, remowve). Another restriction is that functions are de-
terministic. Thus, the post-condition idea does not have an immediate counterpart here.
Nor, at first sight, do the pre-conditions and their role in defining partial functions. There
is a considerable literature on the algebraic treatment of errors in algebraic presentations
of data types. In this section, special error values are used.

The semantics of the stack functions are fixed by the equations:

top(init()) = ERROR

top( push(i,s)) =i
remove(init()) = init()
remove( push(i,s)) = s
isempty(init()) = true
isempty( push(i, s)) = false
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Only the first and third of these equations should require comment. The third is some-
what artificial in that it extends the domain@fmove to avoid introducing an error value

for stacks. The first shows when it is not possible to generate a natural-number result
from top.

When the restrictions implied by the comments above are acceptable, one might
prefer a property-oriented to a model-oriented specification because a definition without
a model would appear to avoid problems like implementation bias. As is shown below,
however, it is not always straightforward to find a property-oriented specification.

The reader would have no difficulty in providing a model-oriented specification of
the above stacks. Nor would there be any difficulty in showing the changes required
to define a queue. The signature of the property-oriented specification is also easy to
change:

mit: — Queue

eng: N X Queue — Queue
first: Queue — N

deq: Queue — Queue
isempty: Queue — B

The changes to the equations are, however, less obvious. Clearly:

first(eng(e, init())) = e

but this covers only half of the corresponding stack equation (the second above). The
remaining case must be specified:

first(enq(e1, eng(ez, q))) = first(eng(ez, q))
A similar split is required for:

deq(enqg(e, init())) = init()
deg(eng(er, enq(ez, q))) = enq(er, deg(eng(ez, q)))

This second equation is particularly disappointing since it has the feeling of recreating
the queue in a very operational way, whereas a state automatically defines an equivalence
over the histories. In fact property-oriented specifications can be thought of as being
built on models. The model is the term algebra of the generating functions. This, in
some sense, has more mathematical economy than introducing a separate model. But
predetermining the model in this way has the disadvantage that it is sometimes less
convenient than others. For stacks the model is convenient; for queues it is less so.

Itis also possible that the generating functions do not provide an unbiased model. An
example can be constructed for the integers widmd succ (as for the natural numbers)
and a generahinus operator: there are then many terms corresponding to each negative
number.
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The generators can be taken as guidance to the equations which are needed. The spe-
cific choice of equations is, however, a task requiring some mathematical sophistication.
For example, sets could be introduced via the union operator and its properties. Another
example is apparent if one considers the wide range of axiomatizations of propositional
calculus.

There are also some technical points which must be considered. A set of equations
(axioms) must be shown to be consistent and compld@teere are also data types which
cannot be characterized by a finite set of equations (Veloso’s stack — cf. Exercise 7.3.2
on pagel74 —is an interesting example).

Rather than criticize the property-oriented approach, the intention here is to deter-
mine the correct roles for property-oriented and model-oriented specifications. It would
be useful if all of the data types which were to be used in other specifications were given
property-oriented specifications. This, basically, has been done in Chapters 4 to 7. The
advantages of this approach include its firm mathematical framework, which is partic-
ularly needed to define type parameterization. Such specifications should, however, be
constructed with great care and — at least — checked by a mathematician. The model-
oriented approach can, in contrast, be used relatively safely for specifications of applica-
tions which are to be implemented (e.g. a database system). The state model itself can
provide considerable insight into a system and makes it possible to consider operations
separately. Given an understanding of the concept of implementation bias, it should be
possible to provide model-oriented specifications which are sufficiently abstract.

A number of examples above have shown how properties can be deduced from a
model-oriented specification. Such properties can be used as a check against the intuitive
requirements for a system. This section shows that sets of properties can be completed
in a way which elevates them to a property-oriented specification. This book adopts the
position that the effort required to do this is rarely justified for applications. (The re-
spective roles suggested here correspond closely to those for denotational and axiomatic
semantics of programming languages.)

Exercise 9.4.1 Present a property-oriented specification of maps.

Exercise 9.4.2 The first person to introduce the idea of abstract syntax was John Mc-
Carthy. Make-functions (as they are called here) and selectors were presented by their
properties. Experiment with this idea on some abstract syntax.

Exercise 9.4.3 Itis possible to characterize the equivalence-relation specification by a
property-oriented specification. Write an appropriate signature and set of equations.

50r to define a non-trivial class of models.
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Operation Decomposition

| feel that controversies can never be finished ...
unless we give up complicated reasonings in favour
of simple calculations, words of vague and
uncertain meaning in favour of fixed symbols ...
every argument is nothing but an error of
calculation. [With symbols] when controversies
arise, there will be no more necessity for
disputation between two philosophers than between
two accountants. Nothing will be needed but that
they should take pen and paper, sit down with their
calculators, and say ‘Let us calculate’.

Gottfried Wilhelm Leibniz

In spite of the discussion of alternative approaches in Section 9.4, the main approach in
this book uses specifications which are built around abstract states with a collection of
operations each specified by pre- and post-conditions. Chapter 8 describes techniques
by which abstract objects (particularly states) are reified onto data types which are avail-
able in the implementation language. After such reification the related operations are,
however, still only specified: their pre- and post-conditions say what should be done but
not how to do it. Post-conditions are not, in general, executable. The procegsrat
tion decompositionlevelops implementations (for operations) in terms of the primitives
available in the language and support software.

The control constructs (e.gehile) which are used to link the primitive instructions
can be thought of as combinators. The specific combinators available vary from one
programming language to another. Here fairly general forms of the main combinators for

229
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structured coding are employed. It is interesting to note that this is the first place in this
book that there is a clear commitment to procedural programming languages. Although
operations are introduced in Section 3.4, all of the ideas of using abstract objects could be
employed in the specification of functional programs and the data reification techniques
could be applied to the arguments and results of functions.

The placing of this material on operation decomposition reflects the fact that it ap-
plies to the later stages of the design process. Other textbooks treat this material at far
greater length — normally at the expense of adequate discussion of data abstraction and
reification.

As the reader should by now expect, the process of operation decomposition gives
rise to proof obligations. Section 10.1 introduces the proof obligations and Section 10.2
exhibits a style in which programs can be annotated with their correctness arguments.
There are similarities between such texts and the natural deduction style of proof used
in the preceding chapters. Ways in which these ideas can be used in the development
of programs are discussed in Section 10.3 and this approach is further developed in
Section 10.4 where an alternative rule for loops is given.

10.1 Decomposition rules

A specified operation might be decomposed intatdle loop. The body of the loop
might, in a simple case, contain a few assignment statements; in larger problems the body
can be an operation whose specification is recorded for subsequent development. Thus
operation decomposition is normally an iterative design process. The decomposition
rules show the conditions under which combinations of proposed code and specifications
of sub-components provide correct decompositions of a given specification: the rules
facilitate showing that a design step is correct.

When a design is presented as a specific combination of (specified) sub-problems it
becomes important to identify the precise nature of the claims that can be made at this
stage of development. The need is for development methods which have the property
that implementations which satisfy specifications of sub-components can be composed
S0 as to satisfy the specification of a system without further proaforpositionake-
velopment method permits the verification of a design in terms of the specifications of its
sub-programs. Thus, one step of development is independent of subsequent steps in the
sense that any implementation of a sub-program can be used to form the implementation
of the specification which gave rise to the sub-specification. In a non-compositional de-
velopment method, the correctness of one step of development might depend not only on
the fulfilment of the specifications of the sub-components but also on their subsequent
development.
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Sequential decomposition

Consider the following specification (in order to introduce the new concepts simply, the
initial examples in this chapter use only arithmetic variables; later sections pick up some
of the non-numeric applications from earlier chapters):

MULT

ext wr m,n,r . Z

pre true

post r = mxn
A designer might decide that the overall task would be easier if one of the variables were
definitely positive so that a loop could be designed which counted up to that value. It
might also be a design decision to copy — possibly negated versions of — the varniables
andn into new variables (the method for introducing new variables is not discussed in
this first step). The design step could be recorded as the sequential composition of two
new operations:

MULT: COPYPOS; POSMULT

The two operations are specified:

COPYPOS

ext rd m,n 1 Z
wr mp,nn . Z

pre true

_
n

postOSmp/\mp*nn:/ﬁ*

POSMULT
extrd mp,nn . Z

wr r 1 Z
pre 0 < mp

post r = W * nn
Hopefully, a few minutes inspection of these specifications should give the reader a
feeling that the design step is correct. This concept is made completely formal be-
low. But, before looking at the proof rules in detail, it is worth making explicit what
is being claimed in such a design step. The given task is to produce a program which
satisfies the specificatio®M ULT (i.e. for all variables of the appropriate type which
satisfypre-MULT, the program must terminate and the initial/final states must satisfy
post-MULT). If the whole development were done in one step, the designer would
claim that the presented program had this behaviour. A proof of such a big step might
be difficult but could theoretically be written (providing the program is indeed correct!).
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Here, it is assumed that the designer is more circumspect: in fact, this ‘designer’ oblig-
ingly makes a step of development for each inference rule which has to be covered.
The decision to impleme/ ULT by a composition oCOPYPOS andPOSMULT is
equivalent to the claim that, given any code which satisfies their specifications, the com-
bination of such code must satisfy the specificatiomntLT.! The reader’s earlier,
intuitive, check of the decompaosition should have observed:

¢ the first operation can be applied in (at least) the states in whi€H.T is ex-
pected to work: compargre- COPYPOS with pre-MULT,

¢ the second operation can safely be applied in the states which result from execut-
ing the first operation: compagee- POSMULT with post-COPYPOS (in fact,
pre-POSMULT records thenterfacebetweenCOPYPOS and POSMULT);,

e the composition of the effects of the two operations achieves the required effect of
MULT: comparepost-COPYPOS/Ipost-POSMULT with (recognizing which
states are referred tepst-MULT .

This could be recorded in a proof rule which looked like:

Sy sat ( prep, posty); S sat -+

._I :

: (S1; S2) sat - --

But these rules are made much easier to read by writing the assertio$ shtisfies a
particularpre/post as:

{pre} S {post}

This useful shorthand has no other meaning than$hatclaimed, for all states which
satisfypre, to bring about a state transition which satisfiest.> (Notice that the use of
braces here has nothing to do with set notation: they are employed as comment delim-
iters.) Using thestiplesthe inference rule for sequential composition can be stated:

E {pre1} S1 {prea A post1 }; {prea} S2 {posta}
! {pre1} (S1; S2) {post | posta}

The notion of satisfaction used, a denotational semantics, and proofs that the decomposition rules are
consistent with the denotational semantics are all discussed ifetieher’'s NotesFurthermore, each of
the programming constructs has been shown to be monotone in the satisfaction ordering which justifies the
claim to compositionality.

2This is closely linked to the so-called ‘Hoare-triples’ introduced in [Hoa69]. Notice, however, that
‘total correctness’ is required here (i.e. termination for all states satisfelgand that the post-condition
here is a predicate of two states. It is for this reason that VDM cannot use the Hoare rules and — more subtly
—that VDM’s post-conditions hook initial, rather than prime final, values.




10.1 Decomposition rules 233

Where the composition of two post-conditions is defined:
posty | posts & 3o; € X 'postl(?,oi) A posty(04,0)

(The generalization to longer sequences is straightforward.) For the example above:
{pre-MULT} (COPYPOS; POSTMULT) {post-MULT'}

follows because:

pre-MULT < pre-COPYPOS
pre-POSMULT is a conjunct ofpost-COPYPOS
post-COPYPOS | post-POSMULT
& Imp;,nn; - mp; knn; = M x T AT = mp; x nn
= post-MULT

Section 10.2 shows that it is not normally necessary to write such proofs in as great
a level of detail as has been done for this initial example. But the reader should be aware
of the advantages of such formal rules: the decomposition rules are like the rules for
the logical operators in that they provide a completely sound basis, whose proofs can be
mechanically checked, for the claim that particular design steps are correct.

Decomposition into conditionals

Having brought out most of the general points about decomposition inference rules in the
discussion of-1, the other rules can be more easily covered. To illustrate the introduc-
tion of conditional statements, it is assumed that the next step of design is to decompose
COPYPOS as follows:

COPYPOS:if 0 < m then TH else EL

where:
TH
ext rd m,n  Z
wr mp,nn . Z
pre 0 < m
postOﬁmp/\mp*nn:/H*ﬁ
EL
ext rd m,n  Z
wr mp,nn @ Z
pre m <0
post()gmp/\mp*nn:/m*ﬁ
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There is, however, a danger here which results from the generous interpretation of logical
expressions given in LPF. The logical expressions in the pre-conditions are now to be
used in code; this is only valid if they are defineg) (in the programming language —

this is the third hypothesis of the decomposition rule:

1] {pre A test} TH {post}; {pre A —test} EL {post}; pre = §;(test)
— {pre} (if test then TH else EL) {post}

It is not difficult to see that:

{0 <m} (mp:=m;nn:=n) {post-TH}
{m <0} (mp:= —m;nn:= —n) {post-EL}

The actual rules for assignment are given in Section 10.2.

Weakening triples

This ‘decomposition’ of COPYPOS must appear rather strange: even by the standard
of this pedagogic example, the step is rather insipid and the actual code would be more
clearly foreshadowed if the designer specified the putative sub-components:

TH
extrd m,n  Z
wr mp,nn . Z
pre true
post mpz%/\nnz?
EL
ext rd m,n  Z
wr mp,nn . Z
pre true
post mp = —“mAnn=-"1

Although this does not then directly fit th& I rule, it ought to be possible to prove it

to be a valid design. (Remember that the claimed decompositigrCd? YPOS has

to satisfy the former specification for any code which satisfies the specificatichg of

and EL only in the context off 0 < m then TH else FL.) This situation is handled

by a rule which claims that anything which satisfies a specification necessarily satisfies
a weaker one:

pres = pre; {pre} S {post}; post = posty
{pres} S {pOStw}

weaken
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Notice that a ‘weaker’ specification is one with a narrower pre-condition or a wider post-
condition. In either case, the implication could be just an equivalence thus changing only
the other part of the specification. The reader should check that, forf@tand EL,

the second specification given above is the stronger and the ‘insipid’ one can be inferred
by weaken providing information about the state prior to an operation is available in the
post-condition. This inheritance of information can be formalized with the rule:

{pre} S {post}
[P T Cpre} 8 {re A post}

wherepre is like pre except that all of its free variables have been hooked.

Introducing blocks

Clearly, the real work of the initial decomposition 8/ ULT remains to be done in
designingPOSMULT. Its development will introduce a loop and, at this first attempt,
a local variable is first defined to control the loop. Thus:

POSMULT:
begin vart:=0; r:=0; LOOP end
Where:
LOOP
extrd mp,nn . Z
wr t, T 4

prer=txnn At < mp
post r = mpxnn At = mp

To see that this decomposition is correct it is necessary tougeen to get ¢ = OAT =
0ANO0 < mp = pre-LOOP):

{t=0Ar=0A0<mp} LOOP {post-LOOP}
and:-I to obtain?

{t=0N0<mp} r:=0;LOOP {post-LOOP}
The introduction of the block is justified by:

[block1] {prenv=c} S {post}

{pre} begin var v:=¢e;S end {Jv - post}

Which gives:

3The meaning of the assignment should be obvious; a formal rule is given is the next section.
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{pre-POSMULT} POSMULT {post-POSMULT'}

Decomposing into loops
The actual introduction of the carefully prepared loop construct:

LOOP:
while ¢t # mp do
(t:=t+1; r:=r+nn)
is now somewhat of an anti-climax! The intuitive process of convincing oneself that this
satisfiespre- LOOP/post- LOOP should cover the following points:

¢ the body of the loop keeps the assertios ¢ x nn true;

¢ the negation of the test condition ¢ mp) conjoined withr = t x nn, and the
knowledge thainp andnn are read-only, justifiegost-LOOP;

¢ the loop terminates: this follows from the fact that mp initially and, because
of the test, remains true after any number of iterations coupled with the fact that
increasingt and holdingmp constant must eventually result in the test evaluating
to false.

The actual rule while-I) which is given below can be seen as a consequence of an
unfolding of a while loop into a conditional. Thus if:

WH = while test do S
then (withskip as a null statement which changes nothing):

WH = if test then (S; WH) else skip

If inv is the condition which remains true at each iteratiarfar is a post-condition for
S, andiden for skip, then an overall post-condition for the loop could be proved by the
conditional rule as follows:

{inv A\ = test} skip {inv A —test A iden}
{inv A test} (S; WH) {inv A\ — test A sofar}
inv = §(test) -
{inv} if test then (S; WH) else skip {inv A = test A (sofar V iden)}

The first hypothesis follows from the meaningskip. The second hypothesis is true
providing:

{inv A test} S {inv A sofar}
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and the relationofar is transitive (i.e sofar | sofar = sofar) and well-founded: this
follows by induction on the well-founded orderirgfar.

This unfolding idea is provided only to introduce the rule, formally,whée-1 rule
requires that a loop invarianirfv: & — B) is identified which limits the states which
can arise in the computation and that a relatiarfdr: X' x X' — B) is given which holds
over one or more iterations of the loop; technically the requirement to@ir | sofar
= sofar) is stated by saying thavfar must betransitive It is also necessary to ensure
termination and this can be done by ensuring thatstyar is well-founded(cf. the
discussion in Section 6.3) over the set definedray The rule then is:

mu A test} S {inv A 31 = 0;(test
thile—l {mv}{mv est} S {inv A sofar}; inv 1(test) sofar is tuf

while test do S end {inv A = test A (sofar V iden)}

The decomposition of OOP given above can be seen to be an instance of this rule with:

myv & r=txnn At < mp
test < t# mp
sofar < ?<t
(sofar V iden) <

T <t
In this, as in most cases, well-foundedness is easy to exhibit by identifying some ex-
pression fnp — t) which decreases at each iteration and is bounded below. The body
satisfies:

{r = tsxnnAt < mpAt # mp} t:=t+1;7:=r+nn {r=txnnAt < mpA\t <t}
Finally:
inv A (sofar V iden) A = test = r=mp*nnAt=mp

Notice the role played by the external clausel@ddOP: the fact thatmp andnn are
read-only enables many assertions to be simplified. Without thefa;r would also
need to recordnp = mp A nn = nn.

An alternative development

One of the advantages claimed for VDM’s post-conditions which are truth-valued func-
tions of two states is that they facilitate the specification of operations which modify
their input values. This advantage carries over to the inference rules presented above
(and, more particularly, to that of Section 10.4). A demonstration of this is obtained by
an alternative development 8f ULT which provides practice with the formal use of the
inference rules.

Sincem andn can be overwritten (cf. the externals clause of the given specification
of MULT), an implementation which is adumbrated by:
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MULT: MAKEPOS; POSMUL
is possible, with:

MAKEPOS
extwr m,n . Z
pre true
postOﬁm/\m*n:%*/ﬁ
POSMUL
ext wr m,n,r . Z
pre 0 < m
post r = mxn
Notice that, although somewhat similar ROSMULT above, the new operation can
change the values af onn. The actual details of these justifications are left as exercises
(see Exercises 10.1.1 and 10.1.2 on page 239).
The development oPOSMULT needed a local variable. The need for a temporary
variable is avoided by overwriting the valuendn. POSMUL is developed directly into
the loop:

POSMUL:
r.=0;
while m # 0 do
(m:=m-—1;, r:=r+mn)

The termination argument for this loop is even simpler than that above. The loop invari-
ant shows thatn is never made negativev < 0 < m and the relation is well-founded

by showing that the value of. decreases at each iteration ). The freedom has
been left (and is exploited in Exercise 10.1.4 to give a more efficient algorithm) to change
the value ofr. Since this is not actually used in this first algorithm, a constraint ()

is added to the relation. It is, observe, no longer possible to capture the function of the
loop by some invariant clause like = ¢ x nn. The essence of the loop must now be
captured in the relation by noting that the value of the expressiom x n is unchanged

by executing the body of the loop: what gets added ¢ts removed from the product.
Thus:

L— L L— L L—
sofar & r4+mxn=1r +m*xn An=nAm<m

Notice thatsofar is transitive. Here again, the detailed justification is deferred to an
exercise on page 239. The result in Exercise 10.1.3 is not exactly what is required for
post-POSMUL but remember thaPOSM UL’s implementation begins with the initial-
ization of r to zero. Intuitively the reader should be able to see that this provides the key
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result: the required rule igre. Thus:

{0<mAr=0} LOOP {r="7+'m*n}t
{0<mAr=0} LOOP {7 =0Ar=T +mx*n}

f0<m}r:=0{0<mAr=0An=nAm="m}

{0<mAr=0} LOOP {r=m=xn}F
{0<m}r:=0;LO0OP {r="m +n}

conclude the development.

The use of the inference rules in this section has been rather pedantic so as to make
clear how they can be used formally. The next section indicates how annotations of
(evolving) designs can rely on the inference rules; this opens a less formal route to
documenting justifications which is akin to the level of rigour which has been sought in
the natural deduction proofs in this book. Finally, Sections 10.3 and 10.4 show how the
inference rules can actually help with choosing specifications of sub-components during
the design process.

Exercise 10.1.1 Justify the first step of the alternative development\o/LT using
the;-I rule.

Exercise 10.1.2 The development oM AKFEPOS to a conditional is straightforward
except that one of the branches is an identity: in the mould set by the discussion of
COPYPOS, present two developments &fA KEPOS.

Exercise 10.1.3 Usewhile-1 to prove:
{0<mYwhilem#0do(m:=m—1;r:=r+n){r=7T +ms*n}

Exercise 10.1.4 Both the initial and the alternative algorithms fdfULT take time

proportional tom to compute multiplication. Clearly this is inefficient. The specification

of POSMUL has been written so that it is easy to develop an algorithm that takes time

proportional tologom. For the code:

r:=0;
while m # 0 do
(while is-even(m) do
(m:=m/2; n:=n=x*2)
ri=r4+mn; m:=m-—1)

Prove that the outer loop provides a correct step of development (Hint: compare with the
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version in the text). Then witinw asl < m andsofar asmn='m * n Am < 'm
prove that the inner loop is a valid step.

Exercise 10.1.5 Develop an algorithm for integer division according to the following
specification:

IDIV

ext wr m,n,q : N

pre n # 0
postlﬁ*q+m:/ﬁ/\m</ﬁ

Use the proof rules of this section to justify each step of decomposition.

Exercise 10.1.6  Just as with the material on logic, it is possible to develop derived rules
for programming constructs. Loops are often easier to understand if they are viewed
together with their initialization rather than viewing the initialization and the loop as
being composed by the rujel. Develop a derived rule for initialized loops (such rules
—in a clumsier notation than used in this book — were given in [Jon80].)

10.2 Assertions as annotations

The preceding section introduced and exemplified the decomposition proof rules at a
very detailed level. This can be compared with the presentation of the inference rules
for logic in Section 1.3; subsequent use of these rules in the ensuing chapters has be-
come more relaxed. The rules are the final recourse while most proofs are at the level of
sketches whose detail is provided only in case of doubt. This section shows that annotat-
ing programs with assertions can provide the same sort of sketch. Section 10.3, however,
shows that the proof rules for operation decomposition can significantly aid the design
process and might be used quite formally for this reason.

Figure 10.1 displays the final program for the second versiol 6T.7 as devel-
oped in the preceding section. It should be clear how this relates to the detailed infer-
ences of the earlier presentation. Such annotated programs are far easier to review in
walkthroughs or inspections than uncommented code. Not only do the assertions record
the programmer’s intentions; they also provide precisely stylized comments which can
be checked against the code by using the inference rules.

The reader might well feel a strong link between annotated programs of this sort and
the from/infer presentations of natural deduction proofs. It is certainly fair to think of
bothfrom and pre as hypotheses and offer and post as goals; what is between them
is — in both cases — a form of deduction. Furthermore, the link could be made more
obvious if the inference rules used in the steps of Figure 10.1 were shown; that this
is not necessary results from there being only one rule per construct. But, in the case



10.2 Assertions as annotations 241

MULT:
wr m,n,r:Z
pre true
pre true
if 0 <mthen (m:= —m;n:= —n)
postOSm/\m*n:/ﬁ*/ﬁ
)
pre 0 < m
r:=0;
pre 0 < m
while m # 0 do
inv0<m
(m:=m-—1;r:=r+n)
sofar r+msxn=T +m*xn Am<m
postrz?—i—/ﬁ*ﬁ
postr:/ﬁ*/ﬁ
postr:%*T

Figure 10.1 Annotated program for multiplication

of annotated programs, some extra care is required in the handling of variable names.
Notice, for example, that the post-conditien= m * ‘7 of the code developed from the
specification ofPOSMUL refers to the values o andn beforer : =0 is executed,

while the same formula as the overall post-condition refers to the values of the variables
when execution oM ULT begins. This is emphasized by the indentation. Furthermore,
theinv/sofar assertions — written to annotate theile construct — play a threefold part

in while-I: discharging the hypothesi$i@v A test} S {inv A sofar}), the step from

inv A= test A (sofar V iden) tor = ‘7 +m * ., and the check that the pre-condition

of the whole loop justifiegnv.

As experience with this style of annotation increases, the amount which actually
needs to be written diminishes. In the extreme, the absolute minimum is to record the
pre- and post-conditions of each procedure. These provide the essential documentation
of its specification. But, apart from the oft-repeated argument that — because of the
formal framework — more detail can be provided if it is needed to convince readers,
the author should be prepared to record enough to help future readers (which might
well include the author after many months of separation from the text). The British
mathematician Alan Turing made this point very graphicaiyjth a comparison to the

4This was in a paper published, incredibly, in 1949 — see [MJ84] for a discussion of his proof method.
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1 3 7 4
5 9 0 6
6 719
4 3 37
7T 7 6 8

26 10 4
3 2 3

Figure 10.2 Turing’s addition example

simple addition in Figure 10.2: if the carry digits are recorded, the task of checking can
be separated into four disjoint tasks whereas, without the carries, the whole sum must be
checked.

Figure 10.1 represents the final code but the annotation idea can be used to record
intermediate stages of development. On such a simple example, this is less convincing
but Figure 10.3 gives an indication of what can be done. The ideal is to have a computer-
based support system which could work at a level of design like that in Figure 10.3
and facilitate (generate proof obligations, etc.) proof of that level of design; it could
then separate the specifications of the sub-operations showing only their specifications
to the programmer developing the respective code. Furthermore, when all is complete,
the system could gather the code for compilation (and present any level of annotation
selected by a subsequent reader). References to such systems can be found in [Lin88,
JL88].

Assignment statements

At the level of detail suggested here, it is not normally necessary to reason very for-
mally about the basic building blocks of procedural programming. The obvious rule for
assignment statements is:

E}{true}ac::e{gv:?}

The so-called ‘frame problem’ has been referred to above. To state that variables
other than that on the left-hand-side of the assignmematahange either requires
some extended notation to describe state identity over a set of variables, or — as here —
can be defined:

. =-pres z does not occur free Iy
{E} z:=¢e{E}
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MULT:
wr m,n,r:Z
pre true
MAKEPOS
wr m,n:Z
pre true
postOSm/\m*n:/ﬁ*/ﬁ
POSMUL
pre 0 < m
post r ‘m
%

A
= n

L
post r = m

*
n
Figure 10.3 Annotated design

Notice that this relies on the assumption that the programming language does not allow
different references to refer to the same variable. This property has been ensured by
stating that all parameters are assumed to be passed by value.

Exercise 10.2.1 Present the design atOSM UL from Exercise 10.1.4 on page 239 as
an annotated program.

Exercise 10.2.2 Present the design of the program from Exercise 10.1.5 as an annotated
program.

10.3 Decomposition in design

The preceding section introduces the decomposition proof rules by showing their use on
given programs. This section shows how the proof obligations can be used to stimulate
program design steps. An obvious example of the way in which a proof rule can help a
designer’s thinking about decomposition is given by the rule for sequence — the assertion
pres fixes an interface between the two sub-operations.

It is, however, important that the reader is not led to expect too much from this idea.
Design requires intuition and cannot, in general, be automated. What is offered is a
framework into which the designer’s commitments can be placed. If done with care,
the verification then represents little extra burden. Even so, false steps of design cannot
be avoided in the sense that even a verified decision can lead to a blind alley (e.g. a
decomposition which has unacceptable performance implications). If this happens, there
is no choice but to reconsider the design decision which led to the problem. Once again,
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what is being offered is a framework into which a final design explanation can be fitted.
This section aims only to show that the need for verification can also help the design
process.

Searching

The outline annotations of the preceding section can be used, together with the associated
proof rules, as an aid to the design process. As a first example, consider the task of
searching for some valuein a vectory; if the value is found a flag is set arids to

contain a (not necessarily unique) indexitsuch thatv(i) = e; if the value is absent,

the flagfound is to be set tdalse. The specification can be written:

SEARCH

ext rd v . EI*
rd e . Kl
wr ¢ N
wr found . B

pre true

post checked(v, e, i, found)
where:

checked : (El*) x ElxNxB — B
checked(v,e,i,f) 2 fAv(i)=eVfAe¢elemsv

An obvious approach to the design is to iterate over the indicesvith the variable
1 and exit if and when a suitable index is found. This suggests a loop invariant which as
well as constraining, asserts thathecked is true for the initial ¢(1, ..., )) part of v:

inv i <lenwv A checked(v(1,...,1),e,1i,found)

Since the major variables are read-only, the invariant expresses most of what is going
on in the loop. The loop relation need only provide evidence of termination: well-
foundedness dén v — i is established with:

A .
sofar 1 < 1

which is obviously transitive. The loop test needs to be such that the conjunction of its
negation with the loop invariant yieldsst-SEARCH:

—test A i <lenwv A checked(v(1,...,17), e, i, found) - checked(v, e, i, found)
With test as— found A i < len v this follows because test A i < len v gives:

found vV i =lenw
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pre true
pre true
found : = false;
1:=0;
post ¢ < lenv A checked([], e, i, found)
while = found A ¢ < lenv do
inv i <lenwv A checked(v(1,...,1),e, 1, found)
BODY
sofar 7 < i
post checked(v, e, i, found)

Figure 10.4 Summary of first design step

which, when distributed over the disjunctiondhecked(v(1, ..., ), e, i, found), gives:

found AN v(i) = e V = found A e ¢ elems v

The last step needed in the design is to establish the invariant: this is simply done
by settingi to 0 andfound to false. Thus the summary of the design step can be written
as in Figure 10.4. Code which achieves the preservation of the invariant and which also
respects the loop relation is:

i:=1i+1; if v(i) = e then found : = true;

Binary search

The SEARCH problem as specified has poor performance for large vectors but a small
change makes a much faster algorithm possible. If frequent searches of this sort were
necessary it would be worth trying to ensure thad kept in order:

Ordv = El*
inv(v) & is-ord(v)

Then the specification becomes:

BSEARCH

ext rd v : Ordv
rd e . Fl
wrind N
wr found . B

pre true

post checked(v, e, ind, found)
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This could — if efficiency were ignored — be realized by the development above, but
could also be implemented bybénary search The first steps of this design again show
the advantage of thinking about loop constructioninig'sofar pairs. The basic concept
is to move two indicesn andn so that they delimit the yet-to-be-checked portior of
The loop invariant is, in spirit, very like that f&#fEA RCH; it is only longer because of
the need to constrain both indices and to define the checked area:

inv 1 < mAn <lenvAchecked(v(1,...,m—1)"v(n+1,...lenv), e, ind, found)
Here again, the (transitive) loop relation only has to ensure termination:
sofar (n —m) < (‘m —'m) V found

The loop test needed to ensuyrest-BSEARCH is — by very similar reasoning to
that used above:

= found Am < n

So, not surprisingly, the first design step is very like that in Figure 10.4 (the initialization
setsm to 1 andn to lenv). The interest is INBODY. Figure 10.5 shows the next
stage of design. The overall pre- and post-conditions are formed from the loop invariant
and relation in an obvious way. The next level of design is also shown. The process
of picking an index (roughly midway between andn) is left as an under-determined
specification. The task of adjusting the search area (after possibly sgiting) is
written as nested conditional statements. If this design were the subject of an inspection,
the author might be called on to justify that — for example — the big stepsetained
checked(1,...,m—1)in post-BODY: itis precisely here that the invariant erwould

have to be mentioned in addition tdind) < e.

Sorting

The obvious territory to explore after searching — with the development method at hand
—is that vast area of knowledge about sorting algorithms. Partly because this is covered
so thoroughly elsewhere (see [Dro87] for a recent paper with useful references), but also
because most algorithms fail to illustrate what is important about VDM’s post-conditions
of two states, this foray is limited. The task of sorting is discussed in Section 6.3; the
main points are collected as:

SORT
ext wr v : Rec®
pre lenv > 1

post is-ord(v) A is-perm(v, V)
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BODY
pre 1 <m <n<lenvAe ¢elemsv(l,...,m—1)Ae ¢ elemsv(n+1,...,lenv)
PICKIND
ext rd m, n:N
wr ind: N
pre m < n
post m < ind < n
if v(ind) = e then found : = true
else if v(ind) < e then m:=ind +1
else n:=1ind -1
post1<mAn<lenvA
checked(v(1,...,m —1) " v(n+1,...,lenv), e, ind, found) N
(n—m<n —'mV found)

Figure 10.5BODY for BSEARCH

It is exactly here that, were a longer discourse planned, a theory of ordered sequences
and permutations might be undertaken. This work is left to a (starred) exercise but, rather
than expand out the definitions, propertiessbrd andis-perm are identified below as
needed.

The simplest approach to internal sorting appears to be to have an increasing group
of ordered elements at one end of the vector. Using an indexnark the end of this
area suggests a loop invariant:

inv1<i<lenvAis-ord(v(l,...,1))

Unlike the searching task above, it is of the essence of internal sorting that the major
data structure changes. The loop relation then is used both to ensure that a permutation
of the original values is retained and to establish termination:

. 4— L— .
sofar is-perm(v, v ) A 1 <1

This sofar is transitive but — since the fact is less obvious — the reader should check
the fact. The invariant is easily established by setiitg 1 (notice the sequence is non-
empty) since it is a property @f-ord thatitis true for any unit sequence (i:€1, ..., 1)).

A loop test condition which, combined with both the invariant and the (reflexive closure
of the) relation, give®ost-SORT is i # len v (or i < lenv). The comments thus far
give the outer structure shown in Figure 10.6 wheteas been written as a constant for

len v. The body of the loop clearly has to preserve the loop invariant and respect the
loop relation. Given the test, it is safe to increadsy 1 and still respect the first clause
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SORT
ext wr v: Rec*
pre lenv >1
var i: N
1.=1;
while ¢ # n do
inv1<i<nAis-ord(v(l,..., 1))
SBODY1
sofar is-perm(v, v) AT < i

A

post is-ord(v) A is-perm(v, v )

Figure 10.6 Development of insertion sort

of the invariant. The second conjunct is clearly more interesting. The obvious element
to absorb intov (1,..., i ) (toformwv(1,..."7 + 1) orv(1,...,i)) is that located at

‘0 ( + 1) but the invariant is only satisfied if it is correctly placed. It seems reason-
able to postpone the issue of how this is achieved to the next step of development. The
post-condition ofSBODY 1 therefore defines the movement af(i) to some position

(j) in v and fixes the constancy (or limited movement) of the rest of

SBODY1
ext wr v : Rec*
rdi @ N
pre is-ord(v(1,...,i)) A1 <i<mn
post i = 1 + 1 Ads-ord(v(1,...,4)) A
Jje{1,...,i}-

del(‘v, i) = del(v,5) AV (i) = v(})

Two significant points can be drawn from this material. Firstly, notice howishe-d
andis-perm naturally slotted into the loop invariant and relation respectively. Secondly,
the use of a specification f&§#BODY 1 has made it easy to fix one design decision
(which element to absorb) and postpone another — the algorithm by which it is to be
placed in its correct position. (In fact, one should really say ‘an acceptable position’
since — in the presence of duplicates — the algorithm is under-determined.) This algo-
rithm could now be developed into a ‘straight insertion’ or, if there are more elements,
the binary search idea presented above can be used to achieve a ‘binary insertion’ with
slightly better performance.

As mentioned above, it is not the intention in this chapter to reproduce the wealth
of material published on sorting as illustrations of the use of the decomposition rules in
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design. However, in order to prompt interested readers in this direction, one further class
of sorting strategies can be mentioned. Algorithms which find the correct final placing
of an element need an additional clause in the loop invariant which records the fact that
the sequencev] is split around a point:

split : Rec* x N — B
split(v,i) 2 Vje{l,...;i} -Vee{i+1,....n} - v(j) < ov(k)

Exercise 10.3.1 Complete the development ¢iBODY to, at least, a simple inser-
tion routine. Continue the development of an algorithm with the property that it places
elements in their final position.

Exercise 10.3.2 (*) Pursue the development of some non-trivial sorting algorithms
using the method described in this section. In particularjmis@ofar pairs in the design

of loops and attempt to make only one design decision per step and, if possible, develop
different algorithms from the same intermediate step to show their family likeness.

Integer division

Part of the interest in the developments from the specificatid®(R T is the fact that
the programs have to overwrite A development from the specification given in Exer-
cise 10.1.5 on page 240 wallows in this sort of overwrite and offers a challenge for clear
exposition. The intuition behind the algorithm is the way in which mechanical calcula-
tors performed division. For the specification on page 239,shifted (i.e. multiplied by
10%) until it is larger thanm; after shifting one place back, subtraction is performed until
the next step would cause the evolving remaindernito go negative; this is repeated in
each of the remaining— 1 positions.

So, in the first step of development, the interface between left-shiftus and
right-shifting (RS) is mediated by:

10¢ divides n A m < n

The variableq also has to be initialized to 0 and this task can also be givehSto
Generalizingpost-RS in a way which should by now be familiar, the reader should
easily be able to verify the first step of development as shown in Figure 10.7. The
exact form ofpre- RS is not contained impost- LS but the first conjunct of the former
is a consequence of the latter. The remaining information in ‘7 107 is used in
post-LS | post-RS to show (using-I) that the value of: reverts over the composition
of the two operations to its value before their execution. Notice#hat m over LS
because it only has read access.

The development oLS is straightforward (cf. Figure 10.8) but it is interesting to
note that the design of the loop is controlled entirely by the loop relation with the invari-
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IDIV
ext wr m, n, q,4: N
pre n # 0
LS
ext rd m: N
wr n,q,i:N
pre n # 0
post n =" *10" Am<nAqg=0
RS
ext wr m, n, q,i: N
pre 10° divides Tﬂ\m <n
postn="n /10" An%xq+m=
post/ﬁ*q+m:ﬁ/\m</ﬁ

4 A
n sk + mAm<n

q

Figure 10.7 First step of integer division

LS
ext rd m:N

wr n, q,4:N
pre n #0

q:=0;7:=0;

while n < m do

inv true

(n::n*io;i::i+1)

sofar nx10 © =" x10° AR < n

post n="n *10' A\m <nAqg=0

Figure 10.8LS development for integer division

ant offering no constraint. (Notice that the argument algosit0 is not fully formalized.)
Surprisingly, the first step of development B is simple (see Figure 10.9): the

loop relation is derived by generalizing the first conjunctpofi- RS, conjoining this

with an unchanged second conjuncipofi- RS and finally a term to ensure termination.

The loop invariant is exactlyre-RS. It is not difficult to see how to describe one step

of right shiftingi : = 7+ — 1 and the attendant changes:(= n/10; ¢ : = ¢ * 10) to re-

establish the loop relation. The key problem is how to re-establish the second clause of

the loop invariant. The task of so doing is pushed on to the yet-to-be-develdpédr.
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RS
ext wr m, n, q,4: N
pre 10° divides n A m < n
while 7 # 0 do
inv 10° divides n A m < n
it=i—1;n:=n/10;q:=qx10

INNER
ext rd n: N
wr m, q¢: N
pre n # 0
post n*q+m:Z*7+/ﬁ/\m<n
sofar n/10 = 7 /10 Y Ansxq4+m=n%q +mAi< v

post n4+ n/10% Ankxq+m="nxq¢ +mAm<n

Figure 10.9R.S development for integer division

INNER
ext rd n:N
wr m, q: N
pre n # 0
while n < m do
inv true
m.:=m — n;

Figure 10.10 Design of NNER for RS

Here again, the design step is not difficult. The loop relation comes naturally from
post-INNER and the loop invariant isrue (see Figure 10.10). Gathering the final code
from Figures 10.7-10.10 yields a short program. It is, however, one which a reader is
unlikely to make any sense of without the aid of assertions. It is particularly interesting
how the tendency to overwrite variables appears to force more reliance on loop relations
at the expense of loop invariants.

Exercise 10.3.3 Provide annotated code for both versions of the factorial program in
Section 3.4 (one in the body of the section, the other in Exercise 3.4.4 on page 84).
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10.4 An alternative loop rule

Strictly the while-I rule is powerful enough to prove any result needed about while
loops?® There are, however, pragmatic grounds for presenting the alternative rule given
below. Recall that one of the objectives of the operation decomposition rules given in
this book is to cope with post-conditions of two states. This they do; they have even
been shown above to deal naturally with programs which overwrite the initial values
of some variables. But there is something unnatural in the waystifat has to be
defined in some examples. Consider again Figure 10.1 on page 24fhr—contains
r+m=xn = T + m * n. The fact that the essential operation — multiplication

in this case — appears on both sides of the equality is disturbing. It is needed because
while-I essentially relies on relating the state afteloop iterations back to the initial
state. If, instead, the relational predicate relates states after some arbitrary number of
loop iterations to the final state of the loop, it is possible to write:

L L L
r=1r 4+ mx*xmn

This neatly expresses the intended function of the whole loop if one considers the situa-
tion after zero iterations.

It might appear to be excessively pernickety to introduce another decomposition rule
for while statements just to avoid a repeated multiplication sign but this is a difficulty
which can become more serious with larger examples. As is shown below, the alternative
rule also functions very well when used in the design process.

If the analysis via conditional statements which was done in Section 10.1 is followed,
the reader should obtain a good grasp of the alternative rule. Here again, assume:

WH = while test do S
In order to show that:
{inv} WH {toend}
is true, the analysis of the conditional unfoldingidtH gives:

{inv A = test} skip {toend}
{inv A test} (S; WH) {toend} F
{inv} if test then (S; WH) else skip {toend}

The first of these requirements is adopted as a hypothesighibf-72. The second
requirement must again rely on inductionSltonservegnu, itis sufficient to prove that
{inv A test} (S; WH) {toend} holds under the assumption th@hv} WH {toend}

is true. The termination of the loop is assured providshgeduces some value which is
bounded ininv. The final rule is then:

SPeter Aczel (Manchester University) has provided a completeness proof in an unpublished note.



10.4 An alternative loop rule 253

pre 0 < m
while m #£ 0 do
inv0<m
(m:=m-—1,r:=r+n)
toend r =T + m*n
postr:?—kﬁ*/ﬁ

Figure 10.11 Alternative rule faPOSM UL annotation

{inv N\ — test} skip {toend};
{inv A test} S {inv};
. {inv} WH {toend} F {inv A test} (S; WH) {toend}
[whie-12] {inv} while test do S {toend}

The hypotheses of this rule are more complicated thawfide-7, but it is the simplicity

of the conclusion which is the key to its usefulness in design. It naturally prompts the

designer to think of the loop for sa§OSMUL as computing- : = r + m * n and then

to convert this to a predicate of two states and to compute the other predicates needed.
The annotated code fa*tOSMUL is shown in Figure 10.11. As before, it is impor-

tant to see that each of the stepsuifile-72 is established. Thus:

{0<mA=(m#0)}skip{r=7T+m=n}
{0<mAM#O0} (m:=m—1;r:=r+n){0<m}

and:

{0<m} WH{r=7T+mxn} F
(0<mAmM#0} (m:=m—1;r:=r+nWH){r=7T +m="n}

must all be true as must the fact that the meaning of the body of the loop is well-founded
over the states defined bywv.

The integer division problem introduced in Exercise 10.1.5 on page 240 and pursued
in Sections 10.2 and 10.3 provides another illustration of the uséhid-12. The an-
notated inner loop of the program is shown in Figure 10.12. Notice it is now natural to
state the specification and development in terms @hd mod .

Binary trees

As a further example of a decomposition proof, the binary tree problem is picked up
from Section 8.3. An exercise offers the challenge of developing a loop-based solution
to the problem. This subsection explores how a recursive program can be developed. In
particular, the topic of parameter passing ‘by reference’ (‘by variable’, ‘by location’) is
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INNER
pre n # 0
q:=0;
pre n # 0
while n < m do
inv true
m.:=m-—mn;q.=q+1
toend g= ¢ +m =" Am="m mod
postqz?—i—ﬁ;/ﬁ/\m:/ﬁmodﬁ
post g=m + n Am=m mod n

Figure 10.12 Simple algorithm for integer division

considered. Recall (cf. Section 3.4) that sharing has been avoided so far by insisting that
the parameters to operations themselves are passed by value. Particularly in the case of
recursion, this mode is sometimes unacceptable for performance reasons. The develop-
ment of this example shows that the effect of ‘by location’ parameters can be simulated
with external variables. No formal rules are given here but the overall argument is pre-
sented so that the recursive program is easy to create.

The development ofetrep in Section 5.2 employs recursive functions (g.gn)
which can be used in the specifications of operations. The disadvantage of this approach
is that it does not lend itself to the form of recursion which is intended in the recursive
program. In particular, the code to be presented here uses location parameters. Rather
than mirror the development dfetrep, quotation of post-conditions is used in the de-
velopment ofMrep:

Mrep = [Mnode]

Mnode . It . Mrep

mk . Key
md : Data
rt . Mrep

inv (mk-Mnode(lt, mk, md, rt)) &
(Vik € collkeys(lt) - lk < mk) A (Vrk € collkeys(rt) - mk < k)

The (read-only) search operation is specified:

FINDB (k: Key) d: Data
extrd t . Mrep
pre k € collkeys(t)
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post let mk-Mnode(lt, mk, md, rt) =t in
k=mkANd=mdV
k < mk A post-FINDB(k, lt,d) Vv
mk < k A post-FINDB(k,rt, d)

The proof thatFINDB satisfies the specificatioRIND uses — in addition to Lem-
mas 8.16 and 8.17 — the following induction rule.

Axiom 10.1
p(nil);
mk € Key, md € Data, It,rt € Mrep, p(lt),
inv-Mnode(mk-Node(lt, mk, md, rt)), p(rt)

@ p(mk-Mnode(lt, mk, md, rt))
. t € Mrep + p(t)

The insertion operation oflrep is specified:

INSERTB (k: Key, d: Data)

ext wr t . Mrep

pre k ¢ collkeys(t)

post 7 = nil A t = mk-Mnode(nil, k, d, nil) V
/7 € Mnode N | L L
let mk-Mnode( It ,mk, md, rt) = t in

k< mkA

3t € Mrep - .

post-INSERTB(k, d, It , It) A t = mk-Mnode(lt, mk, md, 7£) V
mk < k A

drt € Mrep -

post-INSERTB (k, d, ﬁ, rt) Nt = mk—Mnode(/E, mk, md, rt)

This completes the development of operationg/fiap which can now be taken as a
specification of the next step of design. The tree-like objecfgafy cannot be directly
constructed in a language like Pascal. Instead, each node must be created on the heap;
nested trees must be represented by pointers. Pascal-like objects can be defined by:

Root = [Ptr]

Heap = Ptr — Mnoder
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Mnoder :: lp : [Ptr]

mk . Key
md . Data
rp @ [Ptr]

It is clear that theHeap relation should be well-founded (cf. Section 6.3) and that all
Ptrs contained inMnoders should be contained in the domain of tHeap. The retrieve
function can then be defined:

retr-Mrep : Root x Heap — Mrep
retr-Mrep(r,h) 2
if 7 =nil
then nil
else let mk-Mnoder(lp, mk, md,rp) = h(r) in
mk-Mnode(retr-Mrep(lp, h), mk, md, retr- Mrep(rp, b))

The function:
collkeysh: Root x Heap — Key-set

is an obvious derivative ofollkeys.
The find operation ofleap is specified:

FINDH (k: Key) d: Data
extrd p . Pir,
rd h : Heap
pre k € collkeysh( p,h)
post let mk-Mnoder(lp, mk, md, rp) = h(p) in
k=mkANd=mdV
k < mk A post-FINDH (k,lp, h,d) V
mk < k A post-FINDH (k,rp, h, d)

This is fairly simple because the pointer can be passed by value and is thus a read-only
external variable. In the insert operation, the pointer can be changed in the case that a
new node is created. Thus, in addition to the obvious write access on the heap itself, the
pointer is shown as an external variable to which the operation has read and write access.
In the actual code, this is achieved by using a parameter passed ‘by location’.

INSERTRH (k: Key, d: Data)
ext wr h : Heap,

wr p . Ptr
pre k ¢ collkeysh(p,h)
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post p =nilAp §édom/ﬁ/\
h = h U{p — mk-Mnoder(nil, k, d,nil)} Vv

D # il A
let mk-Mnoder(lp, mk, md,%) =h (?) in
k < mkA

(3hi € Heap, lp € Ptr -
post-INSERTRH (k,d, h, lp, hi, lpi) A
h=hit{p = ph(p)lp—Ipi)y Ap="p)V
mk < k A
(3hi € Heap, rp € Ptr -

post-INSERTRH (k, d, ., 75, hi, rpi) A
h=hit{p = ph(p),rp—rpi)y Ap="p)
The Pascal equivalent of the data objects there is:

type Ptr =T Binoderep
Binnoderep =
record
Ip: Ptr
mk: Key
md: Data
rp: Ptr
end

The FINDBH function can be coded (with auxiliary functiof@dbhn and depth for
the assertions) as shown in Figure 10.13.

Exercise 10.4.1 Consider the two programs given for factorial in Exercise 10.3.3 on
page 251. One of them can be proved more convenientlyw¥itle- 72 than withwhile-1

as used: write this as an annotated program. What happens if you try to reformulate the
other one withwhile-72.

Exercise 10.4.2 (*) Continue (down to code) the development of B-Trees started in
Exercise 8.3.1 on page 198.

Exercise 10.4.3 (*) Worite one or more versions of programs to sum the elements in a
vector. Experiment witlwhile-7 andwhile-72

Exercise 10.4.4 (*) Develop a loop version of the binary tree example of the last
subsection.
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function FINDBH (k: Key)d: Data
ext rd rt: Ptr, rd h: Heap
pre k € collkeysh(rt, h)

var p: Ptr;

begin

pi=rt

pre k € collkeysh( p, h)
while k # p T mk do
inv k € collkeysh(p,h)

with p T do
if k< mk

thenp:=1p
else p: = rp;

10 Operation Decomposition

rel findbhn(k,p) = findbhn(k, p) A depth(p) < depth(p)

post p = findbhn(k, p)

FINDBH : = p | md
post d = md( findbhn(k, rt))
end

Figure 10.13 Development ¢tIND
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A Small Case Study

Formalization is an experimental science.
Dana Scott

The main purpose of this chapter is to pull together the strands of the development
method presented in the book: one example is used to indicate the text to be created for
specification, design of data structures (and verification thereof), and design of code (and
its verification). There is no pretension as to size in calling this a ‘case study’. Clearly,
textbooks are not the ideal receptacles for industrial size applications. (Apart from any-
thing else, this author’s own experience in industry convinces him that a medium more
dynamic than a printed book would be required!) This example has purposefully been
chosen to be small so as to explore all of the stages of a development. The compan-
ion case studies book [JS90] includes significant fragments of larger problems and the
Teacher’s Notesontains a host of references to industrial use.

A subsidiary purpose of this chapter is to develop a (slightly mixed) analogy on the
roles of proof in mathematics and in the design of computer systems. It is made clear
above that one should not talk about a program ‘being correct’ but only of its ‘satisfying
a (formal) specification’. The obvious analogy then is to regard the claim that a program
satisfies its specification as the statement of a theorem and to regard all of the intervening
stages of development and the detail of discharging the relevant proof obligations as the
proof of the theorem. Many objections can be raised to this attempted analogy. Here,
three main differences with theorems and proofs in mathematics are considered. Firstly,
including the code in the statement of the theorem results in texts which are large when
compared with whole papers — if not books; they certainly bear no relation to the length
of the statement of mathematical theorems. Secondly, the proof — which is even larger —

259
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is denied the structure (of lemmas, etc.) beloved of mathematical presentations. Thirdly,
there is almost no precedent in mathematics for proofs at the level of detail used even in
this chapter.

A different analogy is needed. It is perhaps more appropriate to regard the speci-
fication as the statement of a theorem that an implementation exists. The (multistage)
development is then a proof of this claim. This naturally leads one to view the choice
of steps of development as the major decompositions of the argument. This comparison
gives a much more realistic estimate of the amount of intellectual effort required to find
the proper joints at which to break a problem.

What then is to be made of the sorts of detailed proofs which occupy so much of
this book? Clearly, there is a pedagogic need to begin work on proofs with easily un-
derstandable examples. Furthermore, it is precisely the hindrance of the low level of
detail required which can be ameliorated by the development of ‘theories of data types’
as illustrated below. But it would still be useful to have a mathematical analogy for a
task which does appear to occupy so much time in formal program development. It is
perhaps (and this is where the analogy becomes mixed) useful to compare intermediate
steps of design such as the creation of a loop — together with its invariant and relation
— with integration in calculus; this naturally prompts a comparison between the detailed
use of a proof rule and the differentiation with which careful mathematicians check their
integrand. This analogy gives a rationale for the level of (somewhat shallow) detail re-
quired in discharging proof obligations and emphasizes the need for mechanical support.
It is the intention in this chapter, however, to use less formal proofs for the algorithms
themselves than for the data type theories.

11.1 Partitions of a fixed set

Partitions revisited

The task for which an implementation is sought in this chapter is a variant of the ‘equiv-
alence relation’ problem used in Chapters 4, 6 and 8. The changes from the set of oper-
ations used above both present new interest and open the way to a particularly efficient
implementation.

The set of operations might be motivated by the need to keep track of equivalent
component numbers in a manufacturing environment. Equivalences over some fixed set
X are created by aRQUATFE operation and pairs of;, e; € X are tested for equiva-
lence byTEST; initially, the whole set ofX is present but no two unequal elements are
considered to be equivalent.

This section introduces the objectBdit) which are used in the Section 11.2 as the
basis of the operation specifications.
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Part = (X-set)-set
inv (p)2 Up =X Nis-prdisj(p) AN{} ¢ p
Remember that:

is-prdisj : (X-set)-set — B
is-prdisj(ss) 2 Vsi, s € 558 = so V is-disj(s1, 52)

is-disj : X-set x X-set — B
is-disj(s1,82) 2 siNsy={}

Notice that the first conjunct afwv- Part is an addition to the invariant faPartition
of earlier chapters; it expresses the fact that the equivalence relations considered in this
chapter are over some fixed set.

Some lemmas
As well as the objects themselves, some theory is developed.

Lemma 11.1 The finest partition ofX is the set which contains unit sets each of which
contains one element df.

[EEHY {{z} |z € X} € Part

A proof of Lemma 11.1 is given on page 262. This lemma is straightforward and the
proof is not given very formally. Of more interest is the proof that merging sets within
a partition yields a partition. (A similar result was suggested, but not proven, in Sec-
tion 4.2.) With a truth-valued functioft X-set — B the merging is achieved using:

merge : Part x (X-set — B) — Part
merge(p,t) £ {se€p|-t(s)U{U{s € p|t(s)}}

Lemma 11.2 The claim that merging preserves the property of being a partition can be
written:

@ p € Part; t: X-set — B; 3s € p - t(s); p’ = merge(p,t)
: p’ € Part

A proof is given on page 263. Notice how the third hypothesis is needed at step 19 to
ensure that empty sets cannot arise tpging false on all sets.

Pursuing the analogy about steps of development, the level of abstraction in this step
has been useful to establish key properties of the final program.
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from definitions
1 {{z} |z € X} e (X-set)-set Set
2 Uiz} |2z e X}

={z|ze X} Set
3 =X Set
4  is-prdisj({{z} |z € X}) is-prdisj, Set
5 se{{z}|zeX} & JreX s={z} Set
6 VeeX- -{z}#{} Set
7 {rE{{zr |z e X} 5,6
infer {{z} |z € X} € Part 1,3,4,7Part

Lemma 11.1

11.2 Specification

The operations

Having constructed the theory &rt, it is now a simple task to specify the equivalence
relation problem.

The initial partition is the ‘finest’ in which no two unequal elements are considered
to be equivalent:

po={{z} |z X}

Lemma 11.1 shows that € Part.
The equivalence of elements is tested by:

TEST (e1: X,e2: X) r:B
ext rd p : Part
post r < dse€p-{e,ea} Cs

Since this operation has only read accesg,tis satisfiability relies only on the type
correctness ofost- TEST: this is trivial to see.

The operation which records im that elements have been equated (and which re-
flects the consequences thereof) is more challenging. Its specification is:

EQUATE (e1: X, e2: X)
ext wr p : Part
postp={scpledshed¢stU{U{scD|ecsVecs}}
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from t: X-set — B, p € Part, 3s € p - t(s), p’ = merge(p)
1 ={sep|~ts)}U{Us € p| ()} h.merge
2  pe (X-set)-set h,Part
3 {sep|-t(s)} € (X-set)-set 2,hSet
4 Uf{sep|t(s)} e X-set 2,hSet
5 {U{sep]t(s)}} € (X-set)-set 4,Set
6 p' € (X-set)-set 1,3,55et
7 Uy

—Ufs €p | ~t(s)} DU € p | t(s)}} 1
: —Uls ep|~ts)} UULs € p | £(5)) et
9 =U{sepl-tls)iu{sep]|i(s)}) Set
10 =Up Set
11 =X h,Part
12 is-prdisj(p) h,Part
13 is-prdisi{s € p | = t(s)}) 12,is-prdisj
14 is-prdisi({U{s € p | t(s)}}) is-prdisj
15 Vse{sep|-t(s)}- is-disj(s,{U{s €p|t(s)}}) 12is-prdisj
16 is-prdisj(p’) 1,is-prdisj,13,14,15
17 {}4p h,Part
18 {}¢{sep|—t(s)} 17 Set
19 U{sepl|tls)}#{} 17,Set,h
20 {}¢{Ulsep|ts)}} 19,8t
21 {1¢yp 1,18,205¢t
infer p’ € Part Part,6,11,16,21

Lemma 11.2
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1
2

3

3.1
3.2
3.2.1

3.2.2
3.2.3

3.24

3.3

infer

—rvVr
from —r
infer =V (p="7)
from r
Jsep -{e, e} Cs

from e1, e0 € X, 7,]) € Part, r € B,
post-TEST (e1, e, ?, 1), post-EQUATE ey, ez, ?,p)

from s, € T,{el, ea} C sq

is-prdisj ()

Vs, € P - sp = sq Vis-disj({e1, e2},s)  3.2.1,h3.2is-prdisj

p

:{3€T|5#5a}u

(Uls €7 5= )
:{SE p ‘S#Sa}u{sa}

infer =7
=D
infer =r VvV (p="p)
—rVi(p="p)

Lemma 11.8

h,B
Vv-1(h2)
h,h3post-TEST

h,Part

post-EQUATE ,h3.2,3.2.2

Set

h3.2Set
3-E(3.1,3.2)
Vv-1(3.3)
V-F(1,2,3)

Lemma 11.2 can be used to show t#a) UATE is satisfiable by observing that €

s V ey € s (whose negation by de Morgan'’s lawseis¢ s A ez ¢ s) can be used in place
of ¢ which must be true for one or mosee p because of the invariant which ensures

that all elements of are present in a set. It follows, therefore, that:

Theorem 11.3 FEQUATE is satisfiable.

V'p € Part, e, e; € X - Ip € Part - post-EQUATE ey, ea, 7,]))

This specification, following the opening analogy, is the statement of a theorem that

an implementation exists. The task now is to find an efficient one.
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Properties of the specification

As has been done with examples above, it is useful to check that the formal specifications
of these operations satisfy intuitively acceptable properties. One might’show:

Theorem 11.4 Any element is equivalent to itself in any partition:
post-TEST (e, e2,p,7) F eg =€ = 1

Theorem 11.5 In the initial state, such trivial equalities are the only tests which yield
true:

p={{z} |z € X}, post-TEST (e1,e2,p,7) F r = (e1 = e2)

Theorem 11.6 Property 11.4 is called ‘reflexivity’; ‘symmetry’ can be expressed by:

post-TEST (e1, e, p, 1), post-TEST (ez, e1,p,1) F 14 < 13

Theorem 11.7 In a similar way, the fact that the recorded relation is ‘transitive’ in any
state can be expressed by:

post-TEST (e, e2,p, 14),
post-TEST (ez, e3, p, 1),
post-TEST (e, e3,p, 1) F

Ta NTp = T¢

Theorem 11.8 The fact that equating two equivalent elements does not change the state
is expressed:

post-TEST (e1, ea, D, 1), post-EQUATE (e, e, p,p) F =1V (p="7p)

Proofs of the above results rely on fairly routine expansion of the definitions; as an
example, Lemma 11.8 is proved on page 264.

Theorem 11.9 The fact thatFQQ UATFE does record the transitive consequences can be
written:

post-TEST (e1, €3, P, 7a),

post-EQUATE (es, e3, 7, p),

post-TEST (e1, e3,p, 1)
Tq = T

Type information such 8%, p € Part; e; € X; r; € B has been omitted in all of these rules.
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3 7 5
6 2 1

Figure 11.1 Fischer/Galler Trees

11.3 Atheory of forests

The Fischer/Galler idea

The description in Section 6.1 usBsrtrep. Viewed as a specification, there is no worry
about efficiency. But, as an implementation, the searching impligditt EQUATE

would be unacceptable for large collections of elements. The map provides fast response
to TEST operations but nott&Q UATE. The need to implement equivalence relations
over very large collections of data has given rise to considerable research. The aim is
to find a way of implementing botfTEST and EQUATE efficiently. The technique,
known after the names of its authors as the Fischer/Galler algorithm, employs a clever
data structure in order to achieve efficiency. The basic idea is that equivalent elements
should be collected into trees. These trees can be searched from any element to find a
root. Two elements are equivalent if, and only if, they have the same roots. These trees
— cf. Figure 11.1 — are unlike those formed from recursive abstract syntax definitions:
there, the essential operations are to break up the trees into their sub-components. To
EQUATE two elements it is necessary only to ‘graft’ the root of one element onto some
point in the tree of the other element. Notice that it is essential that the grafted tree is
taken by the root so that all equivalent elements are carried over.

A map model

The basic idea then is to use a representatio of~ X. There is a decision to be

made about how the ‘roots’ are to be represented. Two alternatives are to make root
elements map to themselves or to leave them out of the domain of the map. Either
choice has advantages and disadvantages and some experimentation is needed to select
the approach which results in the clearest presentation: although they are isomorphic, the
choice between them affect the presentation of the theory. Representing root elements by
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mapping to themselves makes the map total and obviates the need for a case distinction
in post-EQUATE.? Marking roots by their absence from the domain of the map makes

it easier to discuss its well-foundedness and it is this choice which is followed here.
Therefore, the set of roots can be determined by:

roots : (X % X) — X-set
roots(m) £ X —domm

But how do we know there are roots, or more generally, how do we know that there
are no ‘loops'? After all,{1 + 2,2 ~— 1} € (N - N). Such loops would make

it impossible to locate the roots of arbitrary elements. What is needed here is a notion
of ‘well-foundedness’ that says the relation is such that one cannot follow its links for
ever. There are several ways of expressing this fd@ae approach is to say that for all
non-empty subsets of the domain of the map there must be at least one element which is
mapped to an element not in the set:

Vs Cdomm-s#{} = Jecs-m(e)¢s

(Note that a slight liberty with notation is taken here WatC X - p(s) can be rewritten
asVs € (X-set) - p(s).) If any set of maplets (including the unit set) were to represent
a loop, their domain would be anwhich prevented the above universal quantification
from holding. The above formulation is perfectly usable but a higher-level of expression
can be achieved if the same basic idea is expressed as:

Vs Cdomm-s#{} = —(mg(s<m)Cs)

Lifting this definition to the relational view simplifies some of the proofs which follow.
Thus, formally:
Forest = X 5 X
inv (m)2&Vs Cdomm-s#{} = —(mg(s<am)Cs)

It is then possible to define:

root : X X Forest — X
root(e,f) £ if e € roots(f) then e else root( f(e),f)

That this function is total oveForest (but not over arbitraryX —— X) follows from
the invariant.
The emptyForest is:

fo={}

2This representation was used in [Jon79] and by several other authors.
3For general functiong: X — X the constraint is often expressed in mathematics books by saying that
there must not exist a function N — X such thatf (¢(i)) = g(i + 1) for all .
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and satisfiesnov- Forest because the only C dom { } is { } which vacuously satisfies
the implication.

A theory of forests

Of more interest is the way in which trees are grafted onto each other to define new
Forests from old. It is pointed out above that the effect Bf)UATFE can only be
achieved if the root of the tree to be grafted is found; trees will remain shorter if the
graftis also made onto the root of the other tree. Since this also simplifies the reasoning,
updates for this special case are considered (but see Exercise 11.5.1 on page 278).

Lemma 11.10 The key result is:

L1110 f € Forest; {ri,m} Croots(f); ri#m; f= f U{r — m}
. f € Forest

The proof given on page 269 is argued at the element level. (Notice-thatdom f

follows from the fact that is a root; thug is intended to be Iike? € Forest except
that r; has been grafted onte.) The level of reasoning in subsequent proofs can be
heightened by defining:

collapse : Forest — (X % X)
collapse(f) 2 {ew root(e,f)|e€ X}

The well-definedness abliapse follows from the totality ofroot over Forests. Notice
that, takingPid = X, this function creates thBartrep of Section 6.1 fromForest.
The collapse function has some interesting properties.

Lemma 11.11 The fact that;

@ Ve € X - (collapse( f))(e) = root(e, f)

follows immediately from its definition.
Another useful function — which finds all elements with a common root — is:

collect : X x Forest — X-set
collect(r,f) & {e€ S| root(e, f)=r}
pre r € roots( f)

This can be seen to be total farots.

Lemma 11.12 The relationship betweetvllect andcollapse should be clear:

f € Forest; r € roots(f)
[L11.12] collect(r, f) = dom (collapse(f) > {r})
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from f € Forest, {r1, 2} C roots( f ), m1 # ro,
f=171 U{nmmn}

1 rn,nreX roots(h)
2 fex X h,Forest
3 r¢dom f roots(h)
4 fex-HX h,1,2,3y
5  inv-Forest( f) h,Forest
6 VsCdomf -s#{} = —(mg(s< f)Cs) inv-Forest,5
7  from s Cdomf
7.1 from s # {}
7.1.1 sC(domf—{m})vmes h7,Set
7.1.2 from s C (dom f — {r})
7121 s<af=s<f h, h7.1.2Map
7.1.2.2 s C dom f h,h7.1.2Map
7.1.2.3 s#{} = —(mg(s< f)Cs)V-E(6,7.1.2.2)
7.1.2.4 ~(mg(s< f)Cs) =_E(h7.1,7.1.2.3)
infer = (rng (s < f) C s) =-subs(7.1.2.4,7.1.2.1)
7.1.3 from r € s
7.1.3.1 ro ¢ dom f roots,h
7.1.3.2 domf =dom f U{r} h,Map
7.1.3.3 19 ¢ dom f 7.1.3.1,7.1.3.2,h
7.1.3.4 s h7.1.3.3,n7
infer = (rng (s < f) C s) h7.1.3,7.1.3.4,/ap
infer = (rng (s < f) C s) V-E(7.1.1,7.1.2,7.1.3)
7.2 5(s#4{}) h7.Set
infers A{} = —(mg(s<f)Cs) =-1(7.1,7.2)
8 VsCdomf-s#{} = —(mg(s<af)Cs) V-1(7)
9  inv-Forest(f) inv-Forest,8
infer f € Forest Forest,4,9

Lemma 11.10
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from f € Forest, {ri, s} C roots(f), r #
1 dom (collapse( fU{ri — r}) > {r2})
= collect(ro, f U {r + 12}) Lemma
2 = collect(r1, f) U collect(ra, f) Lemma
infer = dom (collapse(f) > {ri, r2}) Lemma
from f € Forest, {r1, 2} C roots(f), r # 2
1  from r € roots(f), r# ri, r #2
1.1 dom (collapse( f U {r — m}) > {r})
= collect(r,f U{r — m}) Lemma
1.2 = collect(r, f) Lemma
infer = dom (collapse( f) > {r}) Lemma
infer above
from f € Forest, e € X
1  r=root(e,f)
& ee{eec X |root(e,f)=r} Set
2 < e edom({e— root(e,f) | e X}>{r}) Set
infer < e € dom (collapse(f) > {r}) collapse
Properties otollapse

The operator> is a range restriction defined as:

mr>s2{d— m(d)|dedommAm(d) € s}

A plethora of properties can now be established:

Lemma 11.13

@ f € Forest; e € X
— e € collect(root(e,f),[)

Lemma 11.14

(1114 f € Forest; {r,ri,ra} Croots(f); 11 # 125 7 # 115 T # 12
. collect(r, f U {r| — m}) = collect(r, f)
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Lemma 11.15

[ € Forest; {r1,m2} C roots(f); m # 1o
[L11.15) collect(ra, f U {ry — m2}) = collect(ry, f) U collect(ra, f)

Lemma 11.16

f € Forest; {r1,m2} C roots(f); r # ra
[L11.16) is-disj(collect(ry, f), collect(ra, f))

Lemma 11.17 The preceding can then be raised to th#apse level as follows:

f € Forest; {r,ri,m2} Croots(f); ri #re; v # 115 T F£ 12
[EEEE] dom (collapse( f U {r +— m}) > {r}) = dom (collapse( f) > {r})

Lemma 11.18
[Lii8) f € Forest; {r1,m2} C roots(f); r1 # ry
dom (collapse( f U {ry — m}) > {r}) = dom (collapse( f) > {r1, m2})
Lemma 11.19
@ f € Forest; ec X

r = root(e,f) < e & dom (collapse(f)r>{r})

The proofs are sketched on page 270.

Building such theories is the only way of avoiding having to tackle each proof from
scratch; thigabula rasasituation is a major inhibitor to the use of proofs in program
development. Although only shown to a limited extent in the next section, these lemmas
could support a range of algorithms for thiartition problem and even the use of a
Forest representation for other tasks. Such collections should be built independently of
particular program developments.

Exercise 11.3.1 Do some of the above proofs.
Exercise 11.3.2 An alternative approach could be developed around:

is-before : X x X x Forest — B
is-before(e, d,f) 2
if e € roots(f) then false else if d = e then true else is-before( f(e), d, f)

trace : X x Forest — X-set
trace(e,f) £ if e € roots(f) then {e} else {e} U trace(f(e),f)

Develop a suitable set of lemmas to support the proofs in the next section.
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11.4 The Fischer/Galler algorithm

Adequacy

The data structure of the preceding sectidhr¢st) can now be used to provide a rep-
resentation for theéPart of Section 11.1 and thus a way of modelling the operations in
Section 11.2. As explained in Chapter 8, the first step is to formally relate the two types
with a retrieve function:

retr-Part : Forest — Part
retr-Part(f) 2 {collect(r,f) | r € roots(f)}

Notice that:
retr-Part( f) = {dom (collapse(f) > {r}) | r € roots(f)}

Theorem 11.20 It is then necessary to prove adequacy:
Vp € Part - 3f € Forest - retr-Part(f) = p

Forp € Part, itis clear thatp € (X-set)-set then:
Ut{e = min(s) | e € (s = {min(s)})} | s € p}

is of type (X ™ X) becausenuv-Part guarantees that the setsc p are non-empty
and disjoint; the invarianinv- Forest holds trivially (noticecollapse is an identity on
these squashed trees); ardr- Part gives the required result.
It should now be clear that the restriction{of ¢ p is necessary to ensure adequacy:
the representation has no way of distinguishing between the presence and absence of
anything corresponding to the empty set.

Justifying the operations

Theorem 11.21 It is easy to see that the initial states relate:

fo=1{}
[La2q) retr-Part( fo) = {{z} | z € X}

since allz € X areroots in the empty map.
The TEST operation is now specified as:

TEST (e1: X,e2: X) m:B
ext rd f . Forest
post r < (root(er, f) = root(ea, f))
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This looks straightforward and, picking up our introductory analogy, represents the ma-
jor insight (or, in terms of the analogy advanced at the beginning of this chapter, ‘inte-
grand’); the check requires the detailed work of generating and discharging the relevant
proof obligations. The satisfiability dFEST on Forest is trivial becauseoot is applied

to appropriate arguments. There is no domain rule to be dischargedsnder ST is,

by conventiontrue.

Theorem 11.22 The interesting result is therefore to show:
(3s € retr-Part(f)-e1 € s N ex € s) < root(er, f) = root(e, f)

which is straightforward (given the lemmas) — see page 274.
This concludes the justification faFEST (on Forest). Clearly, more work is to be
expected fotEQUATE. Its specification is:

EQUATE (61: X, €2: X)
ext wr f © Forest

A

post root(ey, f ) =root(ea, f)Nf= [ V
root(ey, f ) # root(ea, f)Nf = f U{root(er, f )+ root(ez, f )}
In fact there is a trap for the unwary here: if the post -condition Were written just as

f= f U{r — r2} it would be possible whenoot (e, f ) = root(ez, f ) to create
loops in theX =~ X and thus violateénu- Forest. It is for this reason that so many of
the lemmas in the preceding section needed the hypothegis.

The satisfiability of EFQUATE on Forest follows immediately from Lemma 11.10.
There is, again, no domain condition to be considered.

Theorem 11.23 The more interesting part of the result proof obligation becomes:

f € Forest, e1,ep € X, p = retr-Part( f ),

r = 7‘00t(61,7), Ty = 7’0015(62,/7)7 r# ek
retr-Part( f U{r — m}) =
{SET\elgés/\eggés}U{U{seT\eles\/eQES}}

This proof is given on page 274.

The definition ofpost-EQUATE is overspecific in that it would be possible to graft
the trees in the other order. A non-deterministic specification could be constructed in
order to avoid this commitment. It would even be possible to graft the root of one tree
onto some arbitrary point in the other. There is, however, a considerable incentive to
keep the trees as short as possible. That is, the depth of any branch of the tree must
be kept as low as possible. This follows from the use of/the function in both of
the main operations. It would be ideal if trees could be kept to a maximum depth of
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from f € Forest, e;,e0 € X
ds € retr-Part(f)-e1 € sNex € s
< s € {collect(r,f) | r € roots(f)}-e1 € sANex €s retr-Part
infer < root(er, f) = root(e, f) Lemma

Lemma 11.22

A A

from f € Forest, e1,e; € X, ‘p = retr-Part( f ),

L

r1 = root(ey, f ), ro = root(ea, ), T # 12
retr-Part( f U{r — r})

— {dom (collapse(f U {r r m}) > {r}) |
re (Eots(/f_) —{r}} retr-Part,Set

2 = {dom (collapse( f U {le—> ro}) > {r}) |

r € (roots(f ) = {r,m2})}U
{dom (collapse/(_f U{r — n})> {rg}i} Set
= {dom (collapse( f )>{r}) | r € (roots( f ) — {ri,r2})}U
{dom (collapse(? U{r — n})>{r})} L11.17
(

=

w

A A

= {dom (collapse( f )>{r}) | r € (roots( f ) — {ri,r})}U

A

{dom (collapse( f )E{rl, r2})} L11.18
= {s € {dom (collapse( f )>{r}) | r € roots(f)} | e1 & s N ex & s}U

A

{U{dom (collapse( f ) >{r}) | r € roots(f)} |
et €sVey€ s} h,L11.19

infer —{sepledshedsiU{U{scp |e €sV e € s}}retr-Part

N

(631

Result rule forEQUATE on Forest
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one. Irrespectively of the order in whidbiQ UATE is made to graft the trees, they can
become deeper than this ideal. The overall efficiency of the Fischer/Galler algorithm is,
however, very good. The search time is proportional to the average depth of a tree —
rather than the number of elements.

Exercise 11.4.1 Repeat the third part of Exercise 6.1.4 on page 141 on a state using
Forest; also specifyELS but comment on the implementation problem with this opera-
tion.

Exercise 11.4.2 (*) Another representation for the equivalence relation application
would be to have two different data structures. One of these would suppoftAS&
operation and would store the map discussed in Section 6.1; the other would link all
elements in the same equivalence class into a riff/ATE can then locate all keys

in the first data structure which need updating. Specify this development and justify its
correctness.

11.5 Operation decomposition

Pascal data structures

The preceding section has brought the representation close to the level that could be
used directly in a Pascal-like language; this section must show how to achieve the effect
of the post-conditions in terms of primitive operations of the chosen implementation
language. (As in Chapter 10, no particular language is intended but it should be clear
how to translate what is written here into Pascal.) Clearly then code is required for
TEST, EQUATE and to create the initial state. It is convenient also to write a separate
function for ROOT.

Assuming that the typ&’ is a subset oN (X = {1,...,n}), Forests can be repre-
sented in anrray providing there is some way of representingts. Remember that in
Section 11.3 it was decided to denote a root by its not being in the domain of the map.
This is one of the ways in which the convenient mathematical abstraction of Chapter 6 is
more general than the arrays of those programming languages which essentially just pass
on to the programmer the restrictions of addressing from von Neumann architecture. In
this case, however, it is easy to circumvent the difficulty by making the array:

a: array X to Xp
with Xy = {0, ..., n} and redefining:
roots(a) 2 {ie€ X |a[i] =0}

Because of its use abots, the functionroot needs no revision. A new function, which
determines the ‘depth’ or distance from the root is required in the argument below:
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depth(e,a) £ if e € roots(a) then 0 else depth(ale], a) + 1

Although it would be easy to provide, no formal argument about this revised represen-
tation of Forest is given here: the design step is considered to be small enough that
it can be made safely without such formality. Of course, as is always the case in the
development method presented here, it is clear what would need to be done to provide
progressively more formality (i.e. begin witlatr- Forest).

The initialization of the array can be achieved by:

fori=1tondoafi:=0

which achieves the condition thadots(a) = X.

Function ROOT

As mentioned above, it is convenient to separate a function to locate the root of an
element: an annotated program ®OOT is shown in Figure 11.2. A few comments

on its correctness annotations might be helpful. All assertions of the foema have

been omitted becauseOOT only has read access to (Clearly, in a complete support
system it would be necessary to check that such constraints were respected by the code.)
The essence of thehile construct is to compute the root oo toend (in inference rule
while-12) is v = root(v, a). The result of the loop can be combined with therule

and the initializing assignment: = e to justify the overall conditiorv = root(e, a).

The termination of the loop follows from the decrease at each iteration afdié of

v. The fact that this is a natural number (i.e. the tree has no loops) follows from the
invariant.

Remaining code

Given the ROOT function, it is easy to program botfEST and EQUATE. The
annotated code fof’EST is shown in Figure 11.3. It is necessary to note tR&OT
has read-only access#an order to carry forward the information abawtto the second
assertion. This information is also necessary in order to checkitR&tI" respects its
read-only constraint.

The annotated code fadtQ UATE is given in Figure 11.4. Similar observations to
those above about preserving the root assertions hold here. In addition, it is necessary
to comment on the change jvst- EQ UATE from using map union to map override in
defining the relationship betweenand“a . It is a property of maps that the change in
this direction is always valid (cf. Lemma 6.8 on page 145) and it more clearly represents
the change made to the array.

The code presented in this section satisfies the specification given in Section 11.2.
It is far easier to see that this is true having relatedEbeest type to Part than if one
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ROOT(e: X) X
ext rd a:array X to X
assert inv-Forest
begin
var v: X;
pre true
vi=ce¢;
pre true
while af[v] # 0 do
inv depth(v,a) € N
v:=alv]
toend v = 100t (v, a)
post v = root(‘v , a)
post v = root(e, a)
ROOT :=vw
end

Figure 11.2 Annotated code f&#{OOT

TEST(61: )(7 € X) B
ext rd a:array X to Xy
assert inv-Forest
begin
var vy, v2: X;
pre true
v = ROOT(el);
assert v; = root(ey, a)
Ug . = ROOT(EQ);
assert v; = root(ey, a) A vy = root(ez, a)
TEST : = (’01 = 1)2)
post TEST < (root(er,a) = root(ez, a))
end

Figure 11.3 Annotated code farEST
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EQUATE(e1: X, e2: X)

ext wr a:array X to Xj

assert 1nv-Forest

begin

var vy, vo: X;

pre true
vi . =ROOT (e, a);
assert v; = root(ey, a)
vy =ROOT (e, a);
assert v; = root(e1, a) A va = root(ez, a)
if v # wvothen afv1] 1 =y

post root(er, a) # root(ey, a) Aa = "a T{v — n}V
root (e, a) = root(ey, a) A a = ‘@

end

Figure 11.4 Annotated code f&tQUATE

attempts to read the code alone. Thus, to pick up the analogy from the beginning of
this chapter, the major steps of specification, representation choice and code present the
overall proof of the theorem that an (efficient) implementation exists; the lemmas and
loops are like integrands whose value is cross-checked by detailed proofs of the created
proof obligations. Even here, the weight of this burden would be shared when the results
in the theories were used in other algorithms.

Exercise 11.5.1 (*) Short bushy trees take less steps to search than tall thin ones. Itis
for this reason that the graft is performed onto the root,ofather than onta, itself.
Convince yourself that, even so, the algorithms given above can — with worst case data
— result in tall thin trees. Develop a modification B)UATE which compresses the

tree each time it is traced back to its root. (A presentation of this algorithm is given
in [Dij76]. The theories presented in this chapter have been used in a variety of other
justifications including the design of a concurrent tree compression routine in [Jon83].)

Exercise 11.5.2 (*) Repeat the whole development of Sections 11.3-11.5 using a forest
representation with loops at the roots.
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Postscript

If we try to solve society's problems without
overcoming the confusion and aggression in our
own state of mind, then our efforts will only
contribute to the basic problems, instead of solving
them.

Chogyam Trungpa

The decision to write a personal postscript to this book was partly prompted by my in-
volvement in a panel discussion on Social Responsibility at the TAPSOFT conference
in Berlin. Computer systems are now so widely used that computer scientists must
consider where they stand on issues relating to the systems they build. We should not
expect others to accept our judgements, but we should provoke discussion and be pre-
pared to accept criticism. A crucial issue is the reliance being put on computer systems.
The probability of random (physical) hardware errors has been decreased significantly
over the last twenty years, but software (and hardwaes)gnerrors persist. One clear
personal responsibility is not to oversell our ideas. This postscript attempts to put the
proposals made in this book into a slightly wider context.

One must first recognize that there are many problems associated with the devel-
opment of computer systems. Some of these problems have nothing at all to do with
specifications (formal or otherwise).

The material relating to specifications in this book attempts to show how mathemat-
ical notation can be used to increase the precision of a specification. The mathematical
notation can, when used with care, achieve conciseness of expression as well as preci-
sion. | believe that these ideas are important. But a major issue relating to specifications

279
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is whether they match the user’s requirements. The idea of proving properties of formal
specifications is proposed above. But it is also conceded that this can never ensure a
match with the, inherently informal, requirements. One can argue that this match can
only be tested in the same way in which a scientific theory is tested. It is also possible
to claim that Popper’s arguments for refutability are a support for formality on the spec-
ification side of the comparison — and experience supports this claim. But the fact that
there is no way of proving that a system matches the user’s requirements should force us
to consider, in every system with which we are involved, the danger of a mismatch.

The material in this book relating to design aims to provide developers with ways to
increase their confidence that the systems they create satisfy the specifications. This must
be a part of a software engineer’s training. With machine-checked proofs, an enormous
increase in confidence would be justified, but it must be understood that nothing can
ever provide absolute certainty of correctness. The same is, of course, true of physical
systems. Designing a system requires comparing probabilities of error in different sub-
systems.

There is a great danger associated with people’s perception of new concepts. If
improved methods are used to tackle the same sort of problems previously handted by
hocmethods, the systems created could be far safer. If, on the other hand, the improved
methods are used to justify tackling systems of even greater complexity, no progress will
have been made.
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Glossary of Symbols

Function Specification
f(d:D)rR

pre ...d...
post ...d...r...

Operation Specification

OP (d:D) r:R
extrd e : T1,
wr ey . Th
pre ...d...ej...e...
post ...d...el...?g...r . €
Functions
fiDy x Dy — R signature
f(d) application
if ... then ... else ... | conditional
letz=...in ... local definition
Numbers
N, {1,2,...}
N {0,1,2,...}
Z {...,-1,0,1,...}
Q rational numbers
R real numbers
+,—, %, T, < | normal (infix) arithmetic operator
abs (prefix) absolute value
mod (infix) modulus

o
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Logic
B {true, false}
-F negation (not)
Ey N Es conjunction (and)
Ey, E5 are conjuncts
EyV E» disjunction (or)
Ey, F» are disjuncts
B = B implication
E, antecedentEs consequent
Ey & FE> | equivalence
Vo € S+ E | universal quantifiet
dz € §- E | existential quantifier
Jlz € §- E | unique existence
I' - FE sequent
I' hypothesisE conclusion
r inf |
5 inference rule
Ey o .
5 bi-directional inference rule

Composite Objects

nil
mk-N(...)
s1(0)

(o, 81— 1)

compose
omitted object
generator
selector
modify a component

Lwith all of the quantifiers, the scope extends as far as possible to the right; no parentheses are required

but they can be used for extra grouping.
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Glossary of Symbols

Sets
T-set all finite subsets ofl"
{t1,t,...,t,} | setenumeration
{} empty set
{z € S|p(z)} | set comprehension
{t,...,5} subset of integers (fromto j inclusive)
te s set membership
t¢ S -(teS)
S1 C Sy set containment (subset of)
S1 C So strict set containment
SN Sy set intersectioR
S1 U Sy set union
S1— S set difference
Uss distributed union
card § cardinality (size) of a set

Maps
D™ R finite maps
DR One-one map
domm domain
rng M range
{di — ri,dy — m2,...,d, — 1,} | map enumeration
{} empty map
{d— f(d)e DxR|p(d)} map comprehension
m(d) application
m~ map inverse
s<Im domain restriction
s<gm domain deletion
m >t range restriction
my T mo overwriting

2Intersection is higher priority than union.
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Sequences
T* finite sequences
T+ non-empty, finite sequence
len s length
[t1,t2,...,t,] | SEQUENCE enumeration
[] empty sequence
517 s concatenation
dconc ss distributed concatenation
hd s head
tls tail
inds s indices
elems s elements

$(iy...y7)

sub-sequence

2S

Appendix A
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Glossary of Terms

Absorption An operator is absorptive if op = = z for all valid operands.

Abstract syntax An abstract syntax defines the structure of objects. The term was first
used in the description of programming languages where objects which are defined
abstract away from the details of the concrete syntax which has to include syntactic
clues for parsing: in the abstract syntax only the necessary information content is
present. The semantic definition of a language is normally based on its abstract

syntax.

Abstraction The process of excluding unnecessary details so as to focus attention on
the essential aspects of a system, problem, etc.

Adequacy The adequacy proof obligation — which is used in data reification — estab-
lishes that there is at least one representation for each abstract value.

ADJ diagram An ADJ diagram provides a graphical representation of the signatures of
the operators of a data type.

Antecedent The left-hand side of an implication is its antecedent.

Application A function or map is applied to an element in its domain; the result is an
element of the range.

Associativity An operator is associativeif op (y op z) = (z op y) op z for all valid
operands.

Backus-Naur Form (BNF) BNF is the notation used to define the concrete syntax of
ALGOL 60; BNF or some variant thereof is now used in most language descrip-
tions.

Bag A bag (also known as multiset) is an unordered collection of values where values
can be contained more than once (thus it is possible to count the occurrences).

285
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Basis In an inductive proof, the basis is the subsidiary proof that the required expression
is true for the minimum element (or minimal elements) of the set of values.

Behaviour The behaviour of a data type determines (for a functional data type) the re-
sult of its operators and functions or (for a state-based data type) of its operations.
In particular, for a collection of operations the behaviour is the relationship estab-
lished between the inputs and outputs of the operations — these are the externally
visible effects while the state changes are hidden from the user of the operations.

Bias Seeimplementation bias.
BNF SeeBackus-Naur Form.
Body The body of a quantified expression is that expression following the raised dot.

Bound identifiers In a quantified expression the bound identifiers are those appearing
after the quantifier; all free occurrences of the identifier in the body of such an
expression are bound in the overall quantified expression. There are other ways
of binding identifiers — for example, the names corresponding to the values of
parameters and external variables are bound within an operation specification.

Cardinality The cardinality of a finite set is the number of elements contained in the
set.

Commutativity An operator is commutative if op y = y op z for all valid operands.

Complete An axiomatization is complete with respect to a model if all statements which
are true in that model can be proved from the axioms using the rules of inference.

Composite objects Composite objects are tagged Cartesian products; they are created
by make-functions.

Composite type A composite type defines a set of composite objects.

Concatenation The concatenation operator creates a sequence from the elements of its
two (sequence) operands; the result contains the elements of the first sequence
followed by the elements of the second.

Conclusion In a sequent, the conclusion is the logical expression on the right of a turn-
stile.

Concrete syntax The concrete syntax of a language defines the set of strings which
form sentences of the language. One notation for defining a concrete syntax is
BNF.
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Conjunction A logical expression whose principal operator is ‘and) (s a conjunc-
tion.

Consequent The right-hand side of an implication is its consequent.

Constraint The constraint of a quantified expression fixes the type of the identifier(s)
bound by the quantifier; it governs the values over which the variable(s) ranges.

Contingent A logical expression is contingent if there are contexts in which it evaluates
to true while in others it evaluates talse.

Contradiction A logical expression is a contradiction if there is no context in which it
evaluates tarue.

Data reification Abstract objects are reified to chosen representations in (the early stages
of) system development from a specification. Chapter 8 describes how data reifi-
cation steps are made in VDM.

Data type A data type is a set of values together with ways of manipulating those val-
ues; functional data types (e.g. natural numbers or sequences) have operators or
functions whose results depend only on their arguments; state-based data types
are manipulated by operations whose result is affected by and whose execution
affects a state.

Data type invariant A data type invariant is a truth-valued function which defines a
subset of a class of objects.

Decidable A logical calculus is decidable if an algorithm exists which can determine,
for any expression of the calculus, whether the formula is true or not.

Decomposition Seeoperation decomposition.

Definition (direct) A direct definition of a function provides a rule for computing the
result of applying the function to its arguments.

Derived rule Derived rules are conclusions from an axiomatization of a theory which
can be used in constructing further proofs.

Difference The difference of two sets is the set containing exactly those elements of the
first set which are absent from the second.

Disjoint sets Two sets are disjoint if they have no common elements; a collection of
sets is pairwise disjoint if any two (different) sets in the collection are disjoint.

Disjunction A logical expression whose principal operator is ‘or) (s a disjunction.
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Distributed union The distributed union of a set of sets is the set containing exactly
those elements of the sets which are themselves elements of the operand.

Distributivity An operator ¢pa) is said to left distribute over another operatosk) if,
for all valid operandsg opa (y opb z) = (z opa y) opb (z opa z); and con-
versely for right distribution.

Domain The domain of a function (map) is the set of values to which the function (map)
can be applied.

Equations The equations of a property-oriented specification provide the semantics of
a data type (without giving a model).

Equivalence An equivalence is a logical expression whose principal operator is an
equivalence symbok¢).

Equivalence relation An equivalence relation is a relation which is reflexive, symmet-
ric and transitive.

Equivalent Two logical expressions are equivalent if they yield the same value for all
possible values of their free variables.

Exception The specification of exceptions can be separated from the normal pre- and
post-conditions as shown in Section 9.2.

Existential quantifier An existential quantifier{) can be read as ‘there exists (one or
more)’.

Final interpretation The final interpretation of a (property-oriented) specification is
one in which values are considered to be equivalent if and only if their denoting
expressions cannot be proved to be different by deductions from the equations.

Formal language A formal language is one which has precise syntax and semantics.

Formal proof A formal proof is one in which all steps are stated precisely and com-
pletely; thus a formal proof can be checked by a computer program.

Free variables The free variables of an expression are the identifiers which occur in the
expression but are not bound (e.g. by a quantifier).

Full abstraction A specification is fully abstract if it is not biased (with respect to a
given collection of operations).

Function A function is a mapping between two sets of values (i.e. from elements in the
domain to elements in the range).
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Functional specification A functional specification defines the intended input/output
behaviour of a computer systemvhatthe system should do.

Generators The generators of a type are the functions which can, in suitable combina-
tions, generate all values of the type (él@ndsucc for the natural numbers).

Hypothesis A logical expression on the left of a sequent is (one of) its hypotheses.

Implementation bias A model-oriented specification is biased (towards certain imple-
mentations) if equality on the states cannot be defined in terms of the available
operations; in other words, there are two, or more, state values which cannot be
distinguished by the operations. (See Section 9.3 for a fuller discussion.)

Implication An implication is a logical expression whose principal operator is an im-
plication sign &).

Implicit specification An implicit specification characterizeghatis to be done with-
out (if possible) saying anything abdubwthe result is to be achieved.

Indexing The application of a sequence to a valid index is called indexing; it yields an
element of the sequence.

Induction rule An induction rule is an inference rule which facilitates proofs about
infinite classes of (finite) objects; typically, there is a base case and an inductive
step to be proved.

Induction step In an inductive proof, the inductive step shows that the required expres-
sion inherits over the successor function for the type.

Inductive hypothesis In the induction step of an inductive proof, the induction hypoth-
esis is the assumption of the required property from which its inheritance has to
be proved.

Inductive proof An inductive proof is one which uses the induction principle for a type.

Inference rule An inference rule consists of a number of hypotheses and a conclusion
separated by a horizontal line; an appropriate instance of the conclusion is justified
if corresponding matches can be made with the hypotheses. A bi-directional rule
can also be used from bottom to top.

Initial interpretation The initial interpretation of a property-oriented specification is
one in which values are considered to be equivalent if, and only if, their denoting
expressions can be proven to be equal from the equations.
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Intersection The intersection of two sets is the set containing exactly those elements
contained in both sets.

Invariants Seedata type invariant or loop invariant.

Logic of partial functions (LPF) LPF is a logic which copes with undefined terms.
The rules of this logic are given in Appendix C.

Loop invariant A loop invariant is basically just a data type invariant which defines the
subset of states which can arise at the head of a loop construattike

LPF Sedogic of partial functions.

Make-function Each composite type has an associated make-function which forms ele-
ments of the type from elements of the sets of values for the fields of the composite
object.

Map Map values define a finite (many-to-one) relationship between two sets; the map
can be applied to elements in its domain to find the corresponding element in the
range.

Maplet The ordered pairs of an explicitly given map are written as maplets with the two
values separated by a small arrowy

Model oriented A model-oriented specification of a data type defines the behaviour of
its operators in terms of a class of objects known as its state; this state is a ‘hidden’
type in the sense that it is not a part of the visible behaviour of the operations.

Model theory A model theory for a calculus associates its formulae with a collection
of mathematical objects.

Module A module in BSI-VDM combines a state with a collection of operations; such
modules correspond to data types.

Modus ponens Modus ponensgs an inference rule which fromfy = E») and F;
justifies E.

Monotone A function is monotone with respect to some ordering if its application re-
spects that ordering.

Multiset Seebag.

Natural deduction Natural deduction is a particular style for presenting formal proofs
in propositional and predicate calculus: inference rules for the introduction and
elimination of each operator are given.
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Negation A negation is a logical expression whose principal operator is ‘ro}. (

Non-determinism An operation whose specification permits more than one result for a
particular argument is said to be non-deterministic.

Operation The term ‘operation’ is used for a program or piece thereof (often a proce-
dure); an operation depends on and changes external variables (its state).

Operation decomposition Operations are decomposed into constructs which combine
operations (e.gwhile loops); proof obligations to check operation decomposition
are given in Chapter 10.

Operation quotation Operations of one module (data type) can be used in the specifi-
cations of another module by quotation of pre- and post-conditions.

Operator Common functions are written as infix or prefix operators in order to shorten
expressions and make the statement of algebraic properties clearer.

Partial function A partial function is one which is not defined for all of the values
indicated in the domain part of its signature; the values to which it can be safely
applied are defined by a pre-condition.

Partition A partition of a setS is a set of pairwise disjoint subsets &fwhose union
isS.

Post-condition The post-condition of a function or operation is a truth-valued function
which defines the required relation between input and output.

Power set The power set of a sét is the set of all subsets ¢f.

Pre-condition The pre-condition of a function is a truth-valued function which defines
the elements of the domain of a partial function (operation) for which the existence
of aresult is guaranteed. The pre-condition of an operation defines the state/inputs
to which the operation can be applied.

Predicate A predicate is a truth-valued expression which may contain free variables.

Predicate calculus The expressions of the predicate calculus are built up from truth-
valued functions, propositional operators and quantifiers.

Proof obligations Claims such as ‘this piece of code satisfies that specification’ give
rise to proof obligations; if formal notation is used, these proof obligations are
sequents to be proved.

Proof theory A proof theory for a calculus provides a way of deducing formulae; de-
ductions begin with (instances of) axioms and use the given rules of inference.
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Proper subset One set is propersubset of another set if it is a subset and if the second
set contains some elements absent from the first set.

Property oriented A property-oriented specification of a data type consists of a signa-
ture and a collection of equations.

Proposition An expression which, in classical logic, has the value true or false; in LPF,
propositions can be undefined by virtue of undefined terms.

Propositional calculus The expressions of the propositional calculus are built up from
propositions and the operators A, V, =, <; laws relate expressions and form a
calculus.

Quantifiers Symbols of the predicate calculus:for all’, 3 ‘there exists (one or more)’,
3! ‘there exists exactly one'.

Quoting The specification of one data type can be made to depend on the specification
of another by quoting the pre- and post-conditions of its operators.

Range The range of a function is a specified set which contains the results of function
application.

Recursive definition (abstract syntax) A recursively defined abstract syntax defines a
class of finite, but arbitrarily deeply nested, objects by using the name of the class
being defined within its definition.

Recursive definition (function) A recursive definition of a function is one in which the
name of the function being defined is used within the definition.

Reflexivity A relation R is reflexive if, for allz, (z,z) € R.

Reification Reification is the development of an abstract data type to a (more) concrete
representation.

Relation A relation can be viewed as a subset of the Cartesian product of two sets.
Many of the relations of interest in this book (e.g. equivalence relations) are such
that the same sefX() constitutes the domain and range; such relations are said to
be ‘on X"

Retrieve function A retrieve function relates a representation to an abstraction by map-

ping the former to the latter. Retrieve functions provide the basic link for data
reification proofs.

Rigorous arguments A rigorous argument outlines how a proof could be constructed;
the reason for accepting such an argument is the knowledge of how it could be
made formal.
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Satisfiability The use of implicit specification gives rise to a proof obligation known as
satisfiability: for all acceptable inputs there must be some possible result.

Satisfy (specification) An implementation is said to satisfy a specification if, over the
range of values required by the (pre-condition of the) specification, the implemen-
tation produces results which agree with the (post-condition of the) specification.

Satisfy (truth-valued function) Values satisfy a truth-valued function if its application
to those values yields the valtie.

Selectors The selectors for a composite type can be applied to values of that type to
yield values of the components.

Semantics The semantics of a language are its meaning.

SequenceA sequence is an ordered collection of values in which values can occur more
than once; elements are of a specified type and the sequence itself is of finite size.

Sequent A sequent consists of a list of logical expressions (the assumptions), followed
by a turnstile, followed by another logical expression (its conclusion); it is to be
read as a claim that, in all contexts where all of the assumptions are true, the
conclusion can be deduced.

Set A set is an unordered collection of distinct objects.

Set comprehensionA set can be defined by set comprehension to contain all elements
satisfying some property.

Signature The signature of a function gives its domain and range.

Specification Strictly, a precise statement of all external characteristics of a system used
here as a shorthand for ‘functional specification’.

State A state is a collection of variables; the state of a state-based data type is such that
the externals of all of its operations have compatible names and types with the
state.

Structural induction Structural induction provides a way of generating induction rules
for composite types.

Subset One set is a subset of another set if all of the elements of the first set are con-
tained in the second. A set is thus a subset of itself.

Sufficiently abstract A model-oriented specification is said to be sufficiently abstract
if it is not biased towards some particular implementations.
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Symmetry A relation R is symmetric if, for allz andy, (z,y) € R = (y,z) € R.
Syntax Seeabstract syntax/concrete syntax.

Tautology A logical expression which evaluatesttae for any values of its constituent
propositions is a tautology.

Term Atermis an expression involving constants, identifiers and operators; such aterm
denotes a value.

Transitivity A relation R is transitive if for allz, y andz, (z,y) € RA (y,z) € R
= (z,z) € R.

Truth table A truth table is a tabular presentation of truth values which can be used
either to define propositional operators or to verify facts about propositional ex-
pressions.

Truth-valued function A truth-valued function is one whose range is the truth val-

ues B).

Turnstile The turnstile £) symbol is used to record that the conclusion can be deduced
from the hypotheses.

Union The union of two sets is the set containing exactly the elements contained in
either (or both) sets.

Universal quantifier The universal quantifier{) can be read as ‘for all’.
VDM SeeVienna Development Method.

Vienna Development Method (VDM) VDM is the name given to a collection of nota-
tion and concepts which grew out of the work of the IBM Laboratory, Vienna. The
original application was the denotational description of programming languages.
The same specification technique has been applied to many other systems. Design
rules which show how to prove that a design satisfies its specification have been
developed.

Well-founded A well-founded relation is one in which there are no infinite descending
chains.
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Rules of Logic
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E1:>E2

Ey
1 = ko

vt}

F1 N Ey

e

it
b E1 <~ E2

seX; E(s/x)
[31] dr e X - E(x)

z€X F —E(z)

(=31 - (Jz e X E(x))

reX F E(z)
[v-1] Ve e X - E(z)

seX; 7 E(s/x)
w1 -~ (Vo e X - E(x))

ByV---VEy; E FE - B, b E

V-E
E
A-E El/\'E';AE" 1<i<n
- V-E ~(By V-V B 1<i<n
~E

~(ByA--NEy); =B F E; ~E, - E

= A- E
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i & Es
FiNEy NV —FELAN—Ey

q

;

~—-I/E
_\_|E

dee X -E(z); ye X,E(y/z) b Eq

3-F
Ey

H

y is arbitrary

~(JzreX-E); seX
—E(s/x)

-3-FE

Vee X -E(zx); se X
E(s/z)

@

_‘(VI eX- El(fb)), Yy <€ X,‘!El(y/l‘) F By
Ey

-V-E y is arbitrary

Ei; =By

contr

:

Ey Vv Ey
Ey Vv Ey

V-comm

F

Ey N Es
Eys N Eq

F

A-comm

(El V EQ) V Ej
Ey Vv (E2 vV E3)

- E

By A (EQ A Eg)
(E1 VAN EQ) A B3

E

El\/"'\/Ei\/"‘\/En; Ei HFE
Ev.---VEV-.-VE,

V-subs

ExN---NE;N---NE,; B, F F
ELN---ANEN---NE,

N

A-subs
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Ei Vv Es N\ Es
(E1 V EQ) A (El V Eg)

V A-dist |

El/\(EQ\/Eg)
EyNEyV By N By

AV-dist |

EyV Ey

- E1 A= By

ﬁ(El/\EQ)
- BV - Ey

A-deM

- (dr e X E(x))
( Ve e X - E(x)

3-deM

- (Vz € X - E(z))
| dr e X -—E(x)

V-deM

B = E

=-contrp 7 — Y

D_l 19 Ei VvV E, = Ej
' (El = E3)/\(E2 = Eg)

E1 = (E2 = Eg)
EiNE, = Ej

L1.20¢
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Properties of Data

D.1 Natural numbers

p(0);

— neN, p(n) - p(n+1)
neNF p(n)

p(0);

N-ind n €Ny, p(n—1) F p(n)
@ neNF p(n)

@RGN, (YmeN-m<n = p(m)) + p(n)

neNF p(n)

D.2 Finite sets

e, e € X; s € X-set

e} S ao) = a0 (@oy

c€ X; sc X-set
e®(e®s)=e0s
p({ });

@ e€ X, se X-set, p(s) F ple®s)
et-in s € X-set F p(s)
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p({ });

@ s€ X-set, ec s, p(s—{e}) F p(s)
e s € X-set F p(s)

U] Uil ={}

s € X-set, ss € (X-set)-set
Ij U(s®ss) =sUlUss

€ X-set

4 sU{}=s

-
w1
w
1

81, 82, 83 € X-set
(81 U 82) Usy=sU (82 U 83)

/|

U-ass

81,8 € X-set
81U S = 89U 81

U-comm
s € X-set
sUs=s

s € X-set

-{}ﬂsz{}

ee€ X; 51,5 € X-set; e € s

~
T (e@s)Nsy=e0 (51N s)

E e € X; 81,8 € X-set; e ¢ s
a (e®s1)Ns2=s1NS$

s € X-set

LA 0=0

S1, 82, 83 € X-set

@(SlﬂSQ)QSQJ,:Slﬂ(SQﬂSg)

ey
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s € X-set, ss € (X-set)-set
Ij U(s®ss)=sUlUss

9] ss1, 882 € (X-set)-set
— U(s =Usst U ss2

(ss1U ss2)

s € X-set

e € X; 51,5 € X-set; e ¢ s
e
(e®s1)—s2=¢€e® (51— $2)

@ e € X; 81,8 € X-set; e € so
-i
(e®s81) —s2=38 — %

@—'EIeEX-eE{}

E el,e9 € X, s € X-set
i
e1€(ea®s) & eg=e Ve Es

D.3 Finite maps

deD;r,meR, meD-5R

e T o (i nlom = {deniom

@ di,d€D; r,ms€R;, me D5 R; d # dy
-comm
{dl — 7’1} ® ({dg — ’FQ} ® m) == {dQ — 7’2} ® ({dl — 7’1} ® m)

p({});
deD,reR, me (D" R), p(m), d¢ domm

p({d —r}©m)

I:Map—md me (D" R) F p(m)

€ (D™ R)
L g y—
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: dED;rER;ml,mQE(DﬂR)
o T (a7 @ ms) = (drs 7} © (mr )

my T (ma T mg) = (m1 T mg) T mg

o o (T=1)

T dom ({d — r} ® m) = {d} Udomm

sED—_set
Bl Ty

—s€D-set; mc (D" R);deD;rcR;d¢s

L] sA{d—r}om)=s<m
[<-i]

_s€D-set; mc (D5 R); deD; rcR;dcs
sA{d—r}tom)={d—r}o(s<am)

sED—_set
L=

IjsED—set; me(D-"R);dcD;rcR; d¢s
< sa({d—rlom) ={d—rto(sam)

s€D-set; mc (D5 R);deD;rcR;dcs
se{d—r}om)=sam

<-4

] my, mp € (D = R); d € D; r € R; is-disj({d} U dom my,dom my)
-7
{d—r}om)Umy={d— r}O (m Umy)
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dom (my T mg) = dom m; U dom my

5 mi, Me, M3 € (D LN R)
@ (m1Um2)Um3:m1U(m2Um3)

my, mg € (D ﬂ>R)

Um-comm
i m1 Ume = mo U my

m1, mg € (D - R); is-disj(dom my,dom my)
m1 T me = mp Umg

L6.8

D.4 Finite sequences

p([]);
—ec X, te X p(t) F p(cons(e,t))
[Seq-ind] te X* F p(h)
p([]);

te Xt p(tlt) F p(t)

Seg-ind2 teX* F p(t)

§=S

Ij e€ X; s1,89€ X*
-4

cons(e,s1) sy = cons(e,s1  s2)

[ass | 51, 82,83 € X*
-ass ( —~ —~ —~ Z

S1 82) 83 = 81 (82 83)
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1,89 € X*
176 b2

elems (s1~ "s2) = (elems s1) U (elems s2)

e =T

eeX; seX*
rev(cons(e, s)) = rev(s) " [e]

rev-1

s e X*
rev(rev(s)) = s

L7.11
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Proof Obligations

E.1 Satisfiability

Functions:

Vd € D -pre-f(d) = 3r € R - post-f(d, )
Operations:

Vo € X pre-OP('c) = 3o € X - post-OP('7 ,0)

Remember the role of invariants in such proofs.

E.2 Satisfaction of specification

Functions:
Vd € D -pre-f(d) = f(d) € RApost-f(d,f(d))
Operations:

Vo ex.
pre-OP('o) =
(3o e x-(a,0)e OP)A
(Voe %-(o,0) e OP = post-OP('7,0))

E.3 Data reification

Adequacy:

Vae A-Ire R-retr(r) =a
Initial state:

retr(ry) = ag
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Domain:
Vr € R - pre-A(retr(r)) = pre-R(r)
Result:

V?, reR-
pre-A(retr(‘7)) A post-R(‘7, 1) = post-A(retr(‘T), retr(r))

E.4 Operation decomposition

E{true}x::e{x:?}

. =-pres z does not occur free IV
{E} z:=¢e{E}

E {pre1} S {prea A\ posty }; {prea} So {posta}
7 {prer} (S1; S2) {posts | posta}

(1] {pre A test} TH {post}; {pre A —test} EL {post}; pre = &(test)
= {pre} (if test then TH else EL) {post}

sofar is twf

[while-1 | {inv A test} S {inv A sofar}; inv = §;(test)
T Tinu} while test do S end {inv A — test A (sofar V iden)}

Thiock 7] {pre Nv=e} S {post}

{pre} begin var v:=¢;S end {Jv - post}

pres = pre; {pre} S {post}; post = post,
{pres} S {post,}

weaken

{pre} S {post}
P T pre} 8 {re A post}
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Syntax of VDM Specifications

This appendix contains parts of the ‘Mathematical Syntax’ for those parts of VDM used
in this book. It is derived from [BSI89] but, since that document is still evolving, some
predictions as to its final form have been made. In some cases, alternatives present
in [BSI89] have been removed because they are not used in this book.

The proposed concrete representation for the BSI VDM specification language is
defined by a context-free grammar which conforms to the BSI standard for grammars
which is described by means of a BNF notation which employs the following special

symbols:

meta identifier

the concatenate symbol

the define symbol

the definition separator symbol (lower precedence than

concatenate)

enclose optional syntactic items

enclose syntactic items which may occur zero or more

times

single quotes are used to enclose terminal symbols
non-terminal symbols are written in lower-case letters

(possibly including spaces)

terminator symbol to denote the end of a rule

used (within brackets) to describe a range of terminal sym-

bols, e.g. (‘a’..'z’,/A..'Z" ). Note that ‘, in this context

means ‘and’, not ‘concatenate’.
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F1

F.2

F.3

Appendix F

Documents

document = modules
| definitions ;

modules = modulef module} ;

Modules

module = module’, identifier, interface, definitionsehd’, identifier ;

Interfaces

interface = [module parametefs
import definition lisf,
instantiation instance list

export module signatuye

module parameters =parameters’, module signature ;
import definition list = imports’, import definition,{ *,’, import definition } ;
import definition = from’, identifier, ‘', module signature ;

instantiation instance list = instantiation’, instantiation instance,
{*/, instantiation instance ;

instantiation instance = identifiens’, instance ;
export module signature =exports’, module signature ;
module signature ={ signatures ;

signatures = type signatures
| value signatures
| function signatures
| operation signatures ;

type signatures = types’, type description{ ‘,’, type description} ;

type description = name
| type definition ;
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value signatures = values’, value description{ ‘;, value description} ;
value description = name list, ', type ;

function signatures = flinctions’, function signature,
{"*), function signature} ;

function signature = name list, ‘", function type ;

operation signatures =operations’, operation signature,
{*,, operation signature ;

operation signature = name list, ‘', operation typesing’, name ;
instance = identifier, ‘(’[substitution, *)’, module signature ;
substitution = substitutd,‘,, substitute} ;

substitute = identifier,~’, name ;

F.4 Definitions
definitions = [definitions’, definition block,{ [*;’ ], definition block}] ;

definition block = type definitions
state definition

value definitions
function definitions
operation definitions ;

Type definitions
type definitions = types’, type definition,{ [';’ ], type definition} ;

type definition = identifier, ‘=", type|invariant
| identifier, ", field list, [invariang
| identifier, is not yet defined ;

type = bracketed type
| type name
| basic type
| quote type
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| composite type
| union type

| settype

| seqtype

| map type

| function type

| optional type

| product type

| type variable ;

bracketed type = ‘(, type, )’;

type name = name;

basictype = B’ |‘N" |‘Ny’ | ‘2" | 'R’ ;

guote type = quote literal ;

composite type = compose’, identifier, ‘of’, field list, ‘end’ ;
field list = field,{ field } ;

field = [identifier, ], type ;

union type = type,|’, type;

settype = type, ‘-set’;

seq type = seqO type
| seqltype;

seqO type type,**;
seql type = type,*’;

map type = general map type
| bijective map type ;

general map type = type/-’, type ;

bijective map type = types"—’, type ;
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function type = type,~’, type
|0 =" type;

optional type = T, type, ‘';
product type = type,x’, type;
type variable = ‘@’, identifier ;

is not yet defined = i§’, ‘ not’, ‘ yet’, ‘ defined’ ;

State definitions

state definition = state’, identifier, ‘of’, field list,
[invariant, [initialization], ‘end’ ;

invariant = inv’, invariant initial function ;
initialization = ‘init’, invariant initial function ;
invariant initial function = pattern2’, expression ;
Value definitions
value definitions = values’, value definition,{ [';' ], value definition} ;
value definition = identifier}'=", expressioh [, type] ;

Function definitions

function definitions = functions’, function definition,
{[%"], function definition} ;

function definition = function heading, function body ;

function heading = function signature heading
| function colon heading ;

function signature heading = identifier, ‘", function type,
identifier, parameter lisfidentified ;

function colon heading = identifier, parameter type listentifier type paif;
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parameter type list = parameter typéqarameter types ;

identifier type pair = [identifier, “’], type ;

parameter types = ‘([pattern type pair ligt ‘)" ;

pattern type pair list = pattern list, ‘., typg,’,’, pattern list,"’, type } ;
parameter list = parametersparameters ;

parameters = ‘(’[pattern lis}, ¥)’;

function body = explicit function
| function post ;

explicit function = 2, expression| pre’, expressionh;
function post = [‘pre’, expressioly ‘post’, expression ;

Operation definitions

operation definitions = operations’, operation definition,
{['], operation definitior} ;

operation definition = operation heading, operation body ;

operation heading = operation signature heading
| operation colon heading ;

operation signature heading = identifier, ‘", operation type, identifier,
parameter listidentifier ;

operation type = type: %', [typd
0L [typd

operation colon heading = identifier, parameter type list,
[identifier type pail, externals ;

operation body = operation post;
operation post =['pre’, expressiofy ‘post’, expression/exceptions;

externals = external, var informatiofiyar information} ;
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external = éxternal’ | ‘ext’;
var information = mode, state name list, ‘', type ;

mode = tead’ | ‘write’

‘rd | fwr';

state name list = namég,’,, name} ;
exceptions = errors, error list ;
errors = errs’ | ‘errors’;

error list = error{ error} ;

error = identifier, ', expression,—~’, expression ;

F.5 Expressions

expression list = expressiof\,,, expression} ;

expression = complex expression
| unary expression
| binary expression
| general quantified expression
| iota expression
| setexpression
| sequence expression
| map expression
| record expression
| apply expression
| simple expression
| literal
| names;

Complex expressions

complex expression = let expression
| if expression
| cases expression ;

let expression = lét’, equal definition list, in’, expression ;
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if expression = if’, expression, then’, expression{ elsif expressior},
‘else’, expression ;

elsif expression = elseif’, expression,then’, expression ;

cases expression =cdses’, expression, ‘', cases expression alternatives,
['}, others expressidn‘end’ ;

cases expression alternatives = cases expression alternative,
{), cases expression alternatiye

cases expression alternative = case pattesgxpression ;

others expression =others’, * —’, expression ;

Unary expressions

unary expression = prefix expressiomap inverse ;

prefix expression = unary operator, expression ;

unary operator = 4+’

‘dom’
3 rng! ;

|
|
|
|
|
|
|
| ‘P
|
|
|
|
|
|

map inverse = expression!*;
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Binary expressions

binary expression = infix expressioset range expression ;

infix expression = expression, binary operator, expression ;

binary operator = +’

NN

y

<XV VAANEC

IV VA A

set range expression ={’; expression, ‘/,‘...", "/, expression,}’ ;
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Quantified expressions

general quantified expression = quantified expression
| exists unique expression ;

guantified expression = quantifier, bind list, expression ;

quantifier = V'

=
bind list = bind,{ ‘,, bind } ;

exists unigue expression =3!", bind, *-’, expression ;
bind = setbind ;

setbind = patterng’, expression ;

iota expression = (', bind, ‘-’, expression ;

Set expressions

set expression = set enumeration
| setcomprehension;

set enumeration = {}’ | ‘{’, expression list, }";

set comprehension ={" bind, *

', expression, } ' ;

Sequence expressions

sequence expression = seguence enumeration
| sequence comprehension
| subsequence ;

sequence enumeration =]’

‘[, expression list,|" ;

sequence comprehension = ‘[, sequence apply,eéxpression, [,
expression, ‘|’ ;

subsequence = expression, ‘(’, expression, ‘;, ‘...’ ‘), expression, ‘)’ ;
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Map expressions

map expression = map enumeration
| map comprehension ;

map enumeration = {}’

‘{’, maplet list, ‘}’ ;
maplet list = maplet{ *;, maplet } ;
maplet = expression—’, expression ;

map comprehension ={", maplet, ‘c’, expression,|’, expression,}" ;

Record expressions

record expression = record constructor
| record modifier ;

record constructor = ‘mk-’, name, ‘([expression ligt )’ ;

record modifier = [, ‘(’, expression, record modification,
{ record modificatior}, )’ ;

record modification = identifier’, expression ;

Apply expressions

apply expression = function apply
| sequence apply

| map apply
| field select;

function apply = expression, ‘(Jexpression ligt *)’ ;
sequence apply = expression, ‘(’, expression, ‘)’ ;
map apply = expression, ‘(’, expression list, )’ ;

field select = identifier, ‘(’, expression, *) ;

Simple expressions
simple expression = bracketed expression ;

bracketed expression = ‘(’, expression, ‘)’ ;
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F.6 Names
names = nameoldname ;
name list = name{‘’, name} ;

name = { identifier, ‘.’ }, identifier ;

e

old name = identifier ;

identifier = mark,{ mark| digit | prime| hyphen} ;
mark = letter| greek ;

prime = ';

hyphen = *-’;

greek = (a'..'2");

(* Any component of an identifier except the first mark can also be either a subscript
or a superscript. *)

F.7 Literals

literal = undefined literal
| nil literal
| Boolean literal
| numeral
| character literal
| textliteral

| quote literal ;

undefined literal = dndefined’ ;

nil literal = ‘nil’;

Boolean literal = true’ | ‘false’;

numeral = natural numbelf,x10’, integer literal (* as a superscript 1) ;

integer literal = '+’

‘—’], natural number ;
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F.8

F.9

natural number = digit{ digit } ;

digit = ‘0’ |1’ |2 |3 |4 |5 |6 |7 |8 |9;
character literal = *, char, " ;

text literal = ™', meta string, "’ ;

meta string = { char} ;

char = "™ | character — (") ;

quote literal = distinguished lettef,distinguished lette} ;
upper case letter = (‘A ..'Z");

lower case letter = (‘a’..‘z");

distinguished letter = (&' .. '2’) ;

odd character = (* to be defined *) ;

character = upper case lettdower case lettefdigit | odd character ;

letter = upper case lettéfower case letter ;

Patterns

pattern list = patterry *;, pattern} ;

pattern = pattern identifier
| match value
| record pattern ;

pattern identifier = identifief‘-";
match value = ‘(’, expression, )’ ;

record pattern =[namé, ‘(, [pattern lis}, )’ ;

Comments

comments = brief comment ;

brief comment = =-’, character{ character}, new line character ;
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Index of Functions and Operations

abs, 31, 51, 58-60 dconc, 163
absprod, 31 DECODE, 175
ACINF, 150 del, 164
ADD, 78, 107, 151, 206 DELETFE, 196
add, 62, 66 depth, 276
ADDWORD, 87 DEQUEUE, 160, 214, 216, 217
ADDWORDa, 191 DIVIDE, 78
ALLOC, 220 divides, 32
ALLOCr, 221 double, 57, 77
ANALYZE, 201
analyze-telegram, 202 EL, 233, 234
arbs, 49 FELS, 107

ENQ, 172
bagof, 171 ENQUEUE, 160, 216
BIRTHM, 127 ENTER, 211
BODY, 82 EQUATE, 108, 135, 262, 273
BSEARCH, 245 extractks, 172
charge-words, 202 f,49,51, 281
check-words, 202 FACT, 81
checked, 244 FIND, 196
CHECKWORD, 86 FINDB, 255
CHECKWORDa, 189 FINDH, 256
choose, 57 first, 142
CODE, 175 foo, 55, 56
collapse, 268 GOD. 83
collect, 268 ged, 49

collkeys, 197 greatereq, 39

concat, 163 GROUP, 107, 134, 135
conv, 57
COPYPOS, 231 hd, 163

COUNT, 151, 205
IDIV, 240
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INIT, 82

insc, 193

INSERT, 196
INSERTB, 255
INSERTRH, 257
inv-Datec, 111, 116
- Partition, 100
1s-before, 271
18-common-divisor, 32
1s-disj, 93, 261
1s-even, 32
is-hexable, 32
is-inc, 193
1s-leapyr, 33

1s-odd, 32
is-oneone, 140
1s-orderedk, 170
1s-permutation, 171
is-prdisj, 100, 261
is-prime, 36
is-stable, 171
ISEMPTY , 161, 217
isin, 123

ISINL, 209

ISLOC, 210

ldbl, 120

LEAVE, 211
less-than-three, 32
lessthan, 35
LOAD, 77
LOOKUPC, 210
LOOKUPL, 210
LOOP, 82, 235
lsum, 117

MADD, 208
MAKEPOS, 238
MARMALE, 104
MARRIAGE, 105
maz, 48, 58
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mazxs, 47, 48
MCOUNT, 207
merge, 101, 261
MKDIR, 212
MNEW, 207

mpc, 151, 205
MULT, 231

mult, 60, 61

multp, 61, 62, 66, 68

NEWAC, 150
NEWC, 149
NEWFEM, 104
norm-temp, 111, 112

OBTAIN, 104
OBTAIN1, 194
OP, 79, 127, 215, 281

pi, 52,53
POSMUL, 238
POSMULT, 231
post-idiv, 33
post-sqrt, 33
post-sub, 33

pr, 142

ptrans, 175

RD, 152

RDVS, 152

rel- Queue, 221
RELEASE, 104
REMOVE, 218
retr-BUF', 194
retr-Dict, 183, 185, 187
retr- Kdm, 198
retr-Mrep, 256
retr- Part, 272
retr-Queue, 217
retr-Symtab, 221
retrns, 122
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rev, 168
root, 267
roots, 267, 275

5,139
SBODY1, 248
sem, 51
SEARCH, 244
second, 142
SETUP, 103
SHOW, 78, 212
SHOWP, 213
sift, 172

stgn, 59

SORT, 170, 246
split, 249

sq, 65

square, 31
STORE, 210
STOREL, 209
sub, 50

subp, 50, 68, 69, 73
subseq, 164
sumn, 65

t, 101

TEST, 262,272
TH, 233, 234
tl, 163

trace, 271
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Index of Types

Acdata, 149
Acinf, 148
Addr, 152, 220
Arep, 188

Bag, 151
Balance, 148
Bank, 148, 149
Block, 202
Bufi, 194

Character, 201

Date, 117
Datec, 113, 116
Day, 113
Diary, 214
Diarysys, 214
Dict, 182
Dicta, 183
Dictb, 185
Dicte, 187
Dicte, 186
Dir, 212
Dirstatus, 212

Forest, 267

Heap, 255
Hotel, 156

Input, 201
Inputr, 202
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Kdm, 196
Key, 175

Lispl, 154
Lisp2, 154
Lisplist, 154
Llistel, 117

Map, 142
Mcode, 174
Mnode, 197, 254
Mnoder, 256
Mrep, 197, 254

Name, 113
Nestedfs, 212
Node, 122, 154, 212

Output, 201
Overdraft, 148

Page, 152
Pair, 142, 154
Part, 261
Partition, 116
Partrep, 134
Path, 213
Pcode, 175
Pliist, 153

Qitem, 172
Qtp, 172
Qtpm, 173
Qtps, 173
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Queueb, 216

Rec, 170
Record, 115
Rel, 154, 155
Report, 201
Root, 255

S, 119

Section, 185
Sequence, 162
Sharedfs, 212, 213
State, 188

Studz, 155
Symbol, 202
Symtab, 220
Symtabrep, 220

T, 139
Telegram, 201
Trivfs, 211

Vstore, 152

Word, 185, 201
World, 127

X, 188

Year, 113
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absorption, 94, 97, 143-145, 163, 166,
167, 224

abstract syntax, 114, 228

abstraction, xii, 81, 85, 86, 136, 151—
153, 182

adequacy, 184, 186, 187, 190, 221

ADJ diagram, 90, 113, 137, 162

ADJ group, 90

annotated program, 240

annotations, 208

antecedent, 3

application (of a function), 29

application (of a map), 137, 144

application (of a sequence), 162

arbitrary, 41

architecture, 179, 211

argument (of a function), 29

associativity, 6, 13, 17, 19, 22, 92, 95,
97, 145, 167

auxiliary function, 150

B-tree, 198

bag, 151, 171, 224

basis, 94, 119

behaviour, 130, 134, 181, 189, 190, 194,
206, 216, 217, 221

bias, 203, 216, 218, 220, 227

binary tree, 120

BNF, 114

body, 34

Boole, G., 3

Boolean value, 3, 4, 71

bound identifier, 34
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bound variable, 38, 40
boxed proof, 11, 13
BSI, xi, 203, 208

cardinality, 90

cases, 111

classical logic, 72

commutativity, 2, 6, 15, 70, 92, 94-97,
138, 143-145, 163, 166, 224

complete induction, 67, 99

completeness, 72

composite object, 109, 113, 115, 119

compositionality, 180, 192, 230

concatenation, 160, 163, 167, 223, 224

conclusion, 6, 11

concrete interface, 199

concrete syntax, 14, 114, 202

conditional expression, 6, 31, 57

conjunction, 3, 11, 20, 70

consequent, 3

constraint, 34, 35

contingent expression, 5

contradiction, 5

contrapositive, 26

data reification, 180, 192, 195, 199, 219

data reification (general rules), 221

data type, 130, 203, 206

data type invariant, 100, 105, 116, 120,
126, 128, 130, 148, 150, 172,
185, 213, 219

data types, 209

de Morgan'’s laws, 24, 38, 42, 119
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decidable, 8

Dedekind, R., 29

deduction theorem, 7, 24, 25, 72
derived rule, 13, 14, 16, 19, 40, 54
design, 243

design process, 179

development method, 259
difference (set), 89, 98

direct definition, 31, 45, 51, 53, 73, 122
disjoint, 93

disjunction, 3, 6, 10, 14, 70
distributed concatenation, 163
distributed intersection, 93
distributed union, 89, 96, 97
distributivity, 6, 23, 30, 43, 92, 96, 97
domain (of a function), 29

domain (of a map), 136, 139

domain rule, 190

domain rule (general), 221

double negation, 15

efficiency, 76, 83, 86, 120, 182, 185,
186, 188, 199, 239, 246, 264,
266

Einstein, A., 203

elements (of a sequence), 162

empty map, 136, 143

empty sequence, 162, 166

empty set, 88, 93

equality, 73

equality (of sequences), 163

equality (of sets), 90

equations, 226, 228

equivalence, 3, 8, 14, 26, 70, 87

equivalence relation, 106, 134, 154, 260

equivalent expressions, 3

exception, 214, 215

excluded middle (law of), 25

exclusive or, 8, 27

existential quantifier, 34, 41

General Index

exists unigue, 38
external variable, 77

final interpretation, 223, 225

finite object, 88, 117, 119, 136, 166
formal methods, xi, 100

formal proof, 9, 51, 52

formal specification, 1, 208, 279
frame problem, 82, 242

free identifier, 32, 34, 111

free variable, 2, 40

full abstraction, 218

function, 29, 133

generator, 61, 93, 94, 143, 166, 223, 224
ghost variable, 222

Haldane, J. B. S., 133
hashing, 198

head, 161, 163
Henderson, P., 200
Hertz, H., 159

Hoare, C. A. R,, ix, 232
Hoare-triples, 232
hypotheses, 6, 11

idempotence, 96, 97

implementation, 219

implication, 3, 8, 24, 25, 70

implicit specification, 45, 46, 48, 50, 51,
60, 67, 77, 83

implies, 3, 14

indexing, 162

indices, 162

induction, 63, 66

induction rule, 63, 99, 119, 144, 166,
167

induction step, 119

inductive proof, 64, 93, 119, 143

inductive rule, 94

inference rule, 10, 11, 73, 74
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inference rule (bi-directional), 15
initial interpretation, 223

initial state, 79, 160, 192, 193, 222
interface, 196, 204, 205
intersection, 89, 97

Jackson, M. A., 180, 220
judgement, 4, 6, 8
Jung, C. G., 109

Kline, M., 179

Leibniz, G. W., 229

length (of a sequence), 162

let, 31, 111

logical expression, 34

logical value, 3

loop invariant, 237, 238, 244, 246, 247
LPF, 71, 149, 234

Lucas, P., 222

machine architecture, 151

maintenance, 199

make-function, 109, 110, 113

map, 134, 136, 139, 148

map comprehension, 135, 136

map deletion, 139

map induction, 143

map inverse, 140

map restriction, 139

map union, 138

maplet, 134, 136

mathematical logic, 1

mathematics, 259, 260

McCarthy, J., 1, 228

membership, 90, 98

model, 153, 159, 172, 174, 204, 208,
219, 228

model theory, 9

model-oriented specification, 131, 141,
203, 217, 227, 228
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module, 79, 204-210
modulus, 30

modus ponens, 24
monotone, 71, 74
Morgan, C., 213
multiple quantifiers, 36
multiset, 151

naming conventions, 115

natural deduction, 10, 12, 13,17, 19, 54,
230, 240

natural numbers, 61, 63, 66

negation, 3, 70

non-determinism, 67, 83, 104, 171, 190,
194, 215, 220, 273

Oakley, B., xi

one-to-one map, 140

operation, 77, 204

operation decomposition, 180, 230, 252
operation modelling, 190
operation quotation, 206, 208, 211
operator, 2, 30

operator precedence, 4, 91
ordered pair, 141

ordering relation, 71

overloading, 138

override, 135, 138, 144, 145
overspecification, 203, 222

palindrome, 169

parameter, 111

partial function, 47, 68, 72, 74

partition, 100, 106

performance, 196, 204, 243, 245, 254

permutation, 171

Popper, K., 280

post-condition, 33, 47, 48, 50, 60, 77,
80, 172, 188, 206, 229, 237

power set, 88
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pre-condition, 47, 50, 52, 55, 58, 68, 78,
214, 215
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