GLOSSARY OF NOTATION

Hiementary Data Types
Boolean490
Arithmetic490
Quotation Values490
Token Values490
composite para Types
Sets
Tuples (Lists)491
Maps491
Trees492
Trees492 Abstract Syntax492
Abstract Syntax
ApplicativeCombinators
ImperativeCombinators
StructuredCombinators
StructuredCombinators494
Exit
495

Boolean

Bool	$= \{ false, true \}$	37
		37
-7	negation	
٨	and	37
V	or	37
ے	implies	37
222	equivalent to	37
A	for all	37
Ε	there exists	38
3 :	there exists exactly one	38
Δ	unique description: $(\Delta x)(P(x))$: the	
	unique x such that $P(x)$; if non-exist-	
	ing or not unique, then undefined	

Arithmetic

with the usual operators: +, -, *, \times , /, **, <, \le , =, \pm , \ge , >, etc.; / is integer division, ** exponentiation

Quotation Values

Quot Set of enumerated specification specific ele- 43,76 mentary objects, e.g. <u>LABEL</u>, <u>AND</u>, <u>NULL</u>, ...

equal to

different from

Token Values

Token Set of specification specific elementary 43 objects whose representation is not exposed.

equal to

different from

41

42

42

different from distributed concatenation conc

elements

equal to

concatenation

B. 4 _		
<u>Maps</u>		40,80
त्ते	Map forming operator; defines all finite	4.0
	maps between given sets, # generates	40
Ħ	only one-to-one maps.	40
$[a_1, a_2, \ldots$. , a_n] Explicit enumeration	
$[d \mapsto f(d)]$	P(d)] Implicit formation	40 40
()	application	- 4
o	composition	
U	merge	32
+	Ottown / 3	41
\	remove (with)	41
	restrict to	41
dom	domain	41
<u>rng</u>	co-domain, range	
diagram manage	equal to	41
‡	different from	
merge	distributed merge	41
Trees		41
::	Tree forming operator; defines $mk-A(t)$	
	trees, where A is the given left operand	44,78
	identifier, and t is any object denoted	
	by the right operand domain expression.	
×	Tree forming domain operator; defines	
	cartesian product, un-named trees.	66,67
m k =	Named tree constructor function name	
	prefix. $mk-A(b_1,,b_n)$ constructs A	44,78
	named trees: assumes A	
	named trees; assumes: $A: B_1 \times \cdots \times B_n$ with $b_i \in B_i$. (C1)	
	$b_i \in B_i$, (c_1, \ldots, c_m) consructs anonymous trees; implies $(C_1 \times \ldots \times C_m)$, with $c_i \in C_i$.	
S-		
υ-	Selector function name prefixes: $s-B_j$, $s-C_k$	44,78
	selects B_j , respectively C_k objects.	•
==	equal to	
+		

[#] different from

		700
Abstract Syntax		42,78
		12,70
A = E	Domain equations; = gives the name A to	43,78
	the set of objects denoted by E ,	43,70
	2 • • • • • • • • • • • • • • • • • • •	
A :: E	:: gives the name A to the set of tree	43.70
	mk-A(e) tree objects, where e is any ob-	43,78
	ject in domain E .	
-set	see under Sets above	
*, +	see under Tuples above	39
त्तं तं	see under Maps above	41
X	see under Trees above	40
→	(total) functions	66,77
~	partial functions	28-32,78-9
U	Map domain merging	28-32,78-9
	including	
[]	Optional domain forming operator; def-	
	ines domain of given and	43
	ines domain of given set union $\{\underline{nil}\}$.	
•	Non-discriminated union 5	
	Non-discriminated union forming domain operator.	43,66,77
is-	Domain membership	
	Domain membership test predicate name	
	prefix, $is-A(o)$ corresponds to: $o \in A$.	
Function Definitions		
		78
$\lambda x \cdot e$	Function from	
	Function from x domain to domain of e values.	29-30
	, aracy.	
$f(a) \triangle B(a)$	f: function name	
	f: function name, a argument(s), $B(a)$	28
	is any clause: stament or expression	
$\underline{type}: A \rightarrow B $	(sometimes Δ or just = is used).	
$f \colon A \to B $	throe garage	
$\underline{type}: f: A \rightarrow B $	three synonymous type expressions	
	used only in	
= >	used only in type expressions; defines	114
	state usage: $A \Rightarrow B$ is thus equal to	
	$A \rightarrow (\Sigma \rightarrow (\Sigma \times B))$	

34,94

Applicative Combinators

 \underline{let} id=e \underline{in} b Block expression; defines all free occurrences of id in B as bound to e. Non-recursive \underline{let} s correspond to: $(\lambda id.b)(e)$.

f(a)

Function application

mperative Combinators		
dcl v:=e $type$ D	declaration of assignable variab- le: v	
<u>c</u>	contents operator; applied to a variable ('v'), \underline{c} v defines its contents.	113
v := e	assignment	113
;	statement composition	33,92,107
<u>def</u> id:e; s	imperative <u>let</u> clause	34,94
while e do s	while loop	
$\underline{for} \ i=m \ \underline{to} \ n \ \underline{do} \ S(i)$	iterative loop; steps in ordered sequence from static lower bound m to static upper bound n .	

for all $e \in Set \stackrel{do}{do} S(e)$ iterative loop; steps in arbitrary sequence with e ranging over static set Set.

return(v)

raises pure value to "imperative value": $(\lambda v \cdot \lambda \sigma \cdot (\sigma, v))$

Structured Combinators

if t then c else a If-then-else clause $b_1 \rightarrow c_1$, ... $b_n \rightarrow c_n$ n-way if-then-else clause

$$\frac{\mathit{cases}}{e_1} \, \stackrel{e_0:}{\rightarrow} \, c_1, \ldots, \, e_n \, \stackrel{\rightarrow}{\rightarrow} \, c_n$$

Exit Combinators

$\frac{trap}{in}$ id $\frac{with}{n}$ $E(id)$	Non-recursive exit stopper	
always $E(id)$ in B	Non-recursive exit filter	37,108
$\frac{tixe}{in \ B} [a \mapsto b \mid P(a,b)]$	Recursive exit stopper	36,107
<u>exit</u>	exit causer no value passing	36
exit(e)	exit causer with value passing	36,107

Overloaded Symbols (for references, see above)

+, +	integer addition map extension
j	domain union map restriction
-	integer subtraction set difference
*	integer multiplication tuple domain former
×	integer multiplication cartesian domain former
U	set union map merge
→	function domain former conditional clause delimiter
[]	map object delimiter optional domain former
ГЈ	tuple index operator syntactic argument delimiter
=	equality between any object pair
‡	in-equality between any object pair