GLOSSARY OF NOTATION

Elementary Data Types

Boolean...490

A I IS K+ Yo
Quotation Values.....................’..........................490

Arithmetic...............................

Token Values..490

Composite Data Types
Sets..'...491

Tuples (Lists)..491

R Y. L]

Maps...

Trees...492

Abstract Syntax....................

M I T T 1 X

Function Definitions..................

R I I R L X

Applicative....Combinators...494

Imperative.....Combinators.................

MR I T . X ¥.

Structured.....Combinators..............

HR I L+ 1

Exit...........Combinators................. ..495

.
.
-
.
.
.
.
.
*
-
.
0
-
-
.
"
-
-
.
-
.
-

Overloaded Symbols......................

R I I . T -+

489

480 GLOSSARYOFNOTANON

Boolean
Bool = {false, true)} 37
- negation 37
A and 37
v or 37
> implies 37
= equivalent to 37
Y for all 38
3 there exists 38
3. there exists exactly one
A unique description: (Ax)(P(x)): the
unique z such that P(x); if non-exist-
ing or not unique, then unde fined
Arithmetic
Int = {... 5=2,=1,0,1,2, ...} 39,76
Vato = {0,1,2, ...} 39,76
Nat = {1,2,3, ...} 39,76
with the usual operators: 4+, -, * o, /, **, < <, =,

. * % . .
¥, 2, >, etc.; / is integer division, eéxponentiation

Quotation Values

Quot Set of enumerated specification specific ele- 43,76

mentary objects, €.g. LABEL, AND, NULL, ...

= equal to
* different from
Token Values
Token Set of specification specific elementary 43

objects whose representation is not ex-

posed.

= equal to

$ different from

GLOSSARY OF NOTATION 491
Sets 39,79

-get Set forming operator; defines all finite

subsets of given set.

{az,ag,..,,an} Explicit enumeration
{a | Pra)} Implicit formation

laeSet | Pra)} Implicit formation

€ membership
~e non-membership
U union
n intersection
- difference {sometimes: \)
c proper inclusion
< inclusion
= equal to
¥ different from
card cardinality
unton distributed union
Tuples (Lists) 41,80

Tuple (or list) forming operator; defines

all finite tuples whose elements are from

+ the given set, * generates empty tuple, *+
does not.
“d754ag9, ... ap> Explicit enumeration
<f(<) | P(i)> Implicit formation - where order defined
hd head (sometimes: k) 42
tl tail (sometimes: t) 42
index (rarely: ())
len length {sometimes: 1) 42
iﬁii index set, indices (sometimes: ind) 41
elems elements 41
- concatenation 42
= equal to
* different from

cone distributed concatenation 42

492

Maps

fit

laj,aq, ... 2y]
Ld = f(d)lp(d)]

merge

Trees

mk-

GLOSSARY OF NOTATION

Map forming operator; defines ail finite

maps between given sets, K denerates

only one-to-one maps.

Explicit enumeration

Implicit formation

application

composition

merge

override extend (sometimes: 4+)
remove (with)

restrict to

domain

co-domain, range

equal to

different from

distributed merge

Tree forming operator; defines mk-4(t)
trees,where 4 is the given left operand
identifier, and ¢ is any object denotedq

by the right operand domain expression.

Tree forming domain operator; defines

cartesian product, un-named trees.

Named tree constructor function name
prefix. mk—A(bz,...,bn) constructs 4
named trees; assumes: 4: Bix.«..xB, with
bieBs, (¢1,«.crcp) consructs anonymous

trees; implies (C1XeeoxCp), with CieC s

Selector function name prefixes;8~8-,s~0k

J
selects Bj, respectively Cr objects.

equal to

different from

40,80
40

40

40
40

41
41
41
41

41

41

44,78

66,67

44,78

44,78

GLOSSARY OF NOTATION

Abstract Syntax

-get
* 4

i i

$2

j=

L1

18-

Function Definitions

AX.e

fla) A B(a)

tgge: A4 =+ B
f: 4 > B

type: f: 4 + B

}
}
}

493
42,78
Domain equations; = gives the name 4 to 43,78
the set of objects denoted by g,
gives the name 4 to the set of tree 43,78
mk-4(e) tree objects, where ¢ is any ob-
ject in domain 7.
—— see under Sets above 39
~— see under Tuples above 41
=~ see under Maps above 40
—= see under Trees above 66,77
(total) functions3 28-32,78-9
partial functions§ 28-32,78-9
|
Map domain merging
Optional domain forming operator; def- 43
ines domain of gi&en set union {n{1}.
Non-discriminatedfunion forming domain 43,66, 77
operator. g
Domain membershipftest predicate name
prefix, is-4(0) borresponds to: oed.
' 78
Function from z domain to domain of e 29-30
values. f
|
f: function name,| g argument(s), B(a) 28
is any clause: st?ment Or expression
(sometimes A or just = is dsed).
|
three synonymous kype expressions
j
used only in typel expressions; defines 114

state usage: 4 => B is thus equal to
44 (X5 (8 xp))

494 GLOSSARY OF NOTATION

Applicative Combinators

let id=e in b Block expression; defines all free occur-
rences of id in B as bound to e. Non-re-
cursive lets correspond to: (Aid.b)(e).

fla) Function application

Imperative Combinators

del v:=e type D declaration of assignable variab-
le: v

[contents operator; applied to a 113
variable ('v'), ¢ v defines its

contents.

vV = e assignment 113
R statement composition 33,92,107
def id:e; s imperative let clause 34,94
while e do s while loop

for i=m to n do S(1) iterative loop; steps in ordered

sequence from static lower bound

m to static upper bound n.

%
(o}
3
S
o~
o3

eeSet do S(e) iterative loop; steps in arbitra-

|
|

ry sequence with ¢ ranging over

static set Set.

return(v) raises pure value to "imperative 34,94

value": (Av.xo.(0,v))

Structured Combinators

if t then ¢ else a If-then~else clause

by » ey, oo by + ¢, n-way if-then-else clause

GLOSSARY OF NOTATION 495

casee ep: n-way cases selector clause

8] T Clsvees ey 2 cy

Exit Combinators

trap id with E(id) Non-recursive exit stopper

in B
aZwags E(id) in B Non-recursive exit filter 37,108

tize [a+b | P(a,b) 1 Recursive exit stopper 36,107

in B
exit exit causer =-- no value passing 36
extt(e) exit causer -- with value passing 36,107

Overloaded Symbols (for references, see above)

+, + integer addition -~ map extension

| domain union -~ map restriction

- integer subtraction —-- set difference

* integer multiplication —- tuple domain former

X integer multiplication -- cartesian domain forwmer

U set union —-= map merge

~+ function domain former -- conditional clause delimiter
[] map object delimiter ~— optional domain former

r 7 tuple index operator ~= syntactic argument delimiter

= equality between any object pair

* in-equality between any object pair

