FORMAL SPECIFICATION
and

SOFTWARE DEVELOPMENT

" DINES BJORNER

Technical University of Denmark
and Danish Datamatics Centre

and

CLIFF B. JONES

The Univérsity, Manchester, England

in collaboration with:

Derek Andrews
Elizabeth Fielding
Wolfgang Henhapl

Peter Lucas
Hans Henrik Lévengreen
and

Joseph E. Stoy

Intemational

Prentice/H Il*—r— §
e 45___«
= =

ENGLEWOOD CLIFFS, NEW JERSEY LONDON NEW DELHI
SINGAPORE SYDNEY TOKYO TORONTO WELLINGTON




Library of Congress Cataloging in Publication Data
Bj¢rner, D. (Dines, 1937—
Formal specification and software development.

Bibliography: p.
Includes index.
I. Electronic digital computers—Programming.
2. Programming languages (Electronic computers) I. Jones,

C. B. (Cliff B.), 1944— I1. Title.
QA76.6.B575 1982 001.64°2 82-7656
ISBN 0-13-329003-4 AACR2

British Library Cataloguing in Publication Data

Bj¢rner, D.
Formal specification and software development.
1. Computer programs 2. Software compatibility
I[. Title 11. Jones, C.
001.64°25 QA76.6

ISBN 0-13-329003-4

©1982 by PRENTICE-HALL INTERNATIONAL, INC.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the prior permission of Prentice-Hall
International Inc.

For permission within the United States contact Prentice-Hall, Inc., Englewood Cliffs
N.J.07632.

3

ISBN 0-1.3-329003-4

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LTD., Sydney
PRENTICE-HALL CANADA, INC., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTEAST ASIA PTE., LTD., Singapore
PRENTICE-HALL, INC., Englewood Cliffs, New Jersey
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

10987654321

Printed in the United States of America



FORMAL SPECIFICATION
and

SOFTWARE DEVELOPMENT



Prentice-Hall International
Series in Computer Science

C.A. R. Hoare, Series Editor

Published

BACKHOUSE, R.C., Syntax of Programming Languages: Theory and Practice
de BAKKER, J.W., Mathematical Theory of Program Correctness

BIPRNER, D. and JoNEs, c.B., Formal Specification and Software Development
DROMEY, R.G., How to Solve it by Computer

DUNCAN, F., Microprocessor Programming and Software Development
GOLDSCHLAGER, L and LISTER, A., Computer Science: A Modern Introduction
HENDERSON, P., Functional Programming: Application and Implementation
JONES C.B., Software Development: A Rigorous Approach

REYNOLDS, J.C.,, The Craft of Programming

TENNENT, R.D., Principles of Programming Languages

WELSH, J. and ELDER, 1., Introduction to Pascal, 2nd Edition

WELSH, J. and McKEAG, M., Structured System Programming



To
TONY HOARE
on the occasion of his being elected

a Fellow of the Royal Society



PREFACE

Part 1

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

Part 11:

CHAPTER 4:

CHAPTER §:

CHAPTER 6:

CHAPTER 7:

CHAPTER 8:

CHAPTER 9:

ix

CONTENTS

FORMAL SPECIFICATION META-LANGUAGE

Main Approaches to Formal Specifications 3
Peter Lucas

The Meta-Language 25
Cliff Jones

Mathematical Foundations 47
Joseph E. Stoy

VDM AND PROGRAMMING LANGUAGES 83

Modelling Concepts of Programming Languages
Cliff Jones

More on Exception Mechanisms 125
Cliff Jones

ALGOL 60 141
Wolfgang Henhapl & CIiff Jones

Pascal 175
Derek Andrews & Wolfgang Henhapl

Compiler Design 253
Cliff Jones

Rigorous Development of Interpreters & Compilers
Dines Bjgrner

Vil

85

271

02 o



Part IIL:

CHAPTER 10:

CHAPTER 11:

CHAPTER 12:

CHAPTER 13:

Postcript

VDM AND OTHER SYSTEMS 321

Program Design by Data Refinement 323
Elizabeth Fielding & Cliff Jones

Stepwise Transformation of Software Architectures 353
Dines Bjgrner

Formalization of Data Models 379
Dines Bjgrner and Hans Henrik Lovengreen

Realization of Database Management Systems 443
Dines Bjgrner

457

Bibliography and References 459
Glossary of Notation 489

Index 497

viii



PREFACE

People today use an enormous number of ‘systems’ ranging in complexity from
washing machines to international airline reservation systems. Computers are used
in nearly all such systems: accuracy and security are becoming increasingly essen-
tial. The design of such computer systems should employ development methods as
systematic as those used in other engineering disciplines. A systematic develop-
ment method must provide a way of writing specifications which is both precise
and concise; it must also include a way of relating design to specification.

A concise specification can be achieved by restricting attention to what a
system is to do: all consideration of implementation details is postponed. With
computer systems this is done by: a) building an abstract model of the system —
operations being specified by pre- and post-conditions; b) defining languages by
mapping program texts onto some collection of objects whose meaning is
understood; c) defining complex data objects in terms of abstractions known from
mathematics. Ths last topic, the use of abstract data types, pervades all work on
specifications and is necessary in order to apply the ideas to systems of significant
complexity. The use of mathematically based notation is the best way to achieve
precision.

A design generates a number of sub-components and a way of combining
them. These sub-components must be specified. Ultimately sub-components satis-
fying these separate specifications will be combined to form a system which
should satisfy the overall specification. If all the specifications are precise enough,
it is possible to prove that a design step is correct: that is, it fulfils the original
specification. This is done before the sub-components have been implemented.
Such proofs of correctness are of particular importance in the early stages of a
design because any mistakes made then are likely to be particularly expensive to
detect and correct later.

The early stages of design frequently involve choosing machine representa-
tions for abstract data objects. For this reason, special emphasis is given to proofs
of data refinement (also called object transformation).

The lowest level of design for computer systems is often called ‘coding’, this
is distinguished from the earlier design stages only by the fact that the sub-
components required are all available in the language or support software being
used, and techniques are available to prove that the code meets the module
specifications. This description is somewhat oversimplified: design is by no means
a strictly ‘top-down’ activity, but in order to be understandable, the eventual
documentation must be presented in a top-down structure.

The work on specifications of large systems was at the outset prompted by
the need for formal definitions of programming languages. John McCarthy
argued for the provision of such definitions (a more complete historical
background, with references, is given in chapter 1 of this book). The size of the
PL/I language prompted the attempt to apply to it some of the ideas on formal

X



R

language definition, and in the mid 1960’s a definition of the PL/I language was
developed in the IBM Laboratory at Vienna. This definition used ‘operational
semantics’ and the overall approach became known as the ‘Vienna Definition
Language (VDL).

Christopher Strachey’s group in Oxford University developed the concept of
‘denotational’ or ‘mathematical semantics’. In the early 1970’s, prompted by
Hans Bekic, this new approach was adopted by the Vienna group: the more recent
work of the group is thus based on the denotational approach. Some confusion
has, perhaps, been caused by the decision to refer to the new work as the ‘Vienna
Development Method’ (whose initials, VDM, are too like those of the other
work). The meta-language used in VDM was known internally as ‘META-IV’: it is
denotational in approach. VDM is, however, more than just a formal definition
language: as the name implies it is a complete systematic development method.
The other part of the background to the VDM work is provided by the work on
program development methods of people such as Bob Floyd, Peter Naur, Tony
Hoare, Robin Milner, Niklaus Wirth and Edsger Dijkstra. In particular the idea
of ‘data refinement’ (or object transformation) is a key component of VDM.

There is emerging an increasing acceptance of the need for formal specifica-
tion and design techniques. VDM is a systematic development method which has a
wide variety of applications; it has been, and is being used in major companies
and courses on it have been given throughout Europe. Even within the confines of
this book, actual programming languages and database systems are discussed.

The aim of this book is to provide a source document for both industrial
application of, and for post-graduate courses on, VDM. The only knowledge
assumed of the reader is that of set and logic notation. The book is divided into
three major parts. General ideas, and in particular the meta-language, are covered
in the three chapters of part I. Part II is concerned with use of the VDM on pro-
gramming languages; other applications are considered in part III. (Recent work
on parallelism is mentioned only via references in this book.)

The parts and chapters are connected by ‘link material’ which provides the
context for the individual contributions, gives further reference and provides hints
on alternative ways to read the book.

We should like to acknowledge help from the following people. Gordon
Plotkin reviewed two versions of the whole book; Tony Addyman, Stephen Bear,
Ian Cottosr, Chris Kirkham and Ann Welsh each reviewed various chapters. The
typists, Annie Rasmussen and Birte Skovlund did a superb job in entering extremely
difficult manuscripts. Finn Hansen prepared the artwork. The Danish Datamatics
Centre provided the word processing system. Jorgen Fischer Nilsson, Bo Stig
Hansen, Jan Storbank Pedersen, and Lennart Schultz worked on early versions of
chapters 12 and 13. We should also like to thank the contributors without whom
this volume would have been impossible. Finally Ron Decent and many others at
Prentice-Hall International were most helpful in the final stages of the preparation

of this book.
D.B.

C.B.J.






