CHAPTER 9

RIGOROUS DEVELOPMENT OF
INTERPRETERS AND COMPILERS

This chapter again tackles the problem of compiler development. The lan-
guage considered is SAL, a Simple Applicative Language, which is not that
simple: it handles functions as values - including such delivered out of
their defining scope. Thus it illustrates the so-called FUNARG property
[Moses 70a, Weizenbaum 68a]. The intermediate steps use imperative con-
structs of the meta-language (e.g. declarations) which are described in
the Glossary of Notation. The example is used to illustrate the step to
compiling algorithms and uses 'attribute semantics'. (The chapter is a

rewritten, abbreviated version of [Bijdrner 77b].)

271

272 VDM AND PROGRAMMING LANGUAGES

CONTENTS

9.1 Introduction“.,.,..........,...‘...............u...,..° «e.273
9.2 Informal Description of SAL..,...........,.........e.uaoa ,,,,,,,, 274
Syntax.......e.aa..,.,................................e..aooee...274
Semantics......,.b................

e e e i e, 275

9.3 Interpretive Semantics Definitions.....................,,(I—IV)..275

cresoeses276
9.3.2 PFirst-Order Applicative Semantics............(II).Q...,...277

9.3.1 Denotational Semantics............... cesresaa(T).

9.3.3 Abstract State Machine Semantics...,.........(III).,a.,..,280
9.3.4 Concrete State Machine Semantics.............(IV)O....V...284
9.4 Compiling Algorithms & Attribute Semantics.....................=.293
9.4.1 A Target Machine & A Compiling Algorithm..........(V-VI)..294
csesessee204

Compiling Algorithm......,,.................,(VI)..n.ee...296
cees e300
9.4.3 Another Attribute SemanticS........... ceere s (VIII).o.....307

Compiler Structures................... L T T T B B

Target Machine.........................‘.....(V).

9.4.2 An Attribute Semantics.g...eo......... (vir).

Compiling Correctness.........,..,.........................,G...9314

Summary...,.......,b..,..................

M B B

9.8 Bibliography..a..,.,a..,....,....,.........‘...............,.,..,319

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 273

9.1 INTRODUCTION

Starting with a denotational semantics definition of a simple applicative

language, SAL, we systematically develop the specifications of a compiler
for SAL. We do so by presenting, in a unifying framework -- and steps of
increasing concretization -- the commonly known semantics definition

styles of the 1960's and 1970's:

i. denotational semantics
ii. first-order functional semantics
iii. abstract state machine operational semantics
iv. concrete state machine operational semantics
V. attribute semantics.

The first four semantics styles are euployed in the definition of an

interpetive semantics, whilst the fifth style is engaged in the final

description of a compiling algorithm. The target machine for which the

compiler is to generate code is likewise interpretively defined.

The double aim of this chapter is to advocate a different approach to the
teaching of compiler design; and to illustrate that the spectrum of seman-
tics definition methods of the 1960s fit into a development hierarchy.
The main content of the chapter is seen as the exemplification of a dis-
ciplined software development methodology, especially as applicable to
programming language design and compiler development, and the demonstra-
tion of its feasibility. The implied, derived and constituent aspects of
the chapter are then these: the design of a hierarchy of meta-languages
for expressing levels of abstraction and concretization: and the place-
ment in a proper context, blending and exploitation of a number of seem-
ingly diverse software techniques. These latter include the conscious

choice and/or mixture of levels of representational and operational ab-

straction, configurational (bottom~up) and hierarchical {(top~down) ab-

straction, and functional (applicative) versus state (imperative) pro-

gramming.

We believe, seemingly contrary to all textbooks on compiler design, that
the very initial stages of any compiler development must concentrate
first on precise descriptions of the source and the target languages; to
be followed by a precise description of the compiling algorithm. That is:
of the compiler's input/output relation: source program texts into target

code sequences. We also believe that an activity such as the one whose

274 VDM AND PROGRAMMING LANGUAGES

initial steps have bheen outlined above, can be meaningfully embedded

within a more generally applicable software development ethodology.

The borderline between modelling the Source language abstractly for pur-
poses of language design and compiler and program development are these:
the language designer e€xperiments with different models in attempts to
understand, discover, purify, generaligze and simplify language con-
structs. The compiler developer uses the final abstraction document asg
a basis for implementation of the compiler, And the source language
Programmer refers to the mathematical semantics definition when proving

correctness of source pPrograms, In this paper we shall exemplify only
the compiler developer's view.

9.2 INFORMAL DESCRIPTION OF SAL

Syntax:

SAL is a simple applicative language. Tts brograms are €xpressions.
There are eight expression categories:

Constants k

Variables id

Infiz expressions el + e2

Conditional expressions if et then ec else ea
Simple Let Blocks (let id = eq in eb)
Recursive Functions (letrec g(id) = eg in eb)
Lambda Functions Ald.ed

Applications ef(ea)

(Most of our elaboration functions, incidentally, will be expressed in a
simple language like SAL.) Blocks with multiple definitions can be "mim~
icked" by multiply nested simple (Let) blocks. Multiple, mutually re-

cursive functious, however, cannot be explicitly defined other than
through the use of formal function arguments,

Data Types:

Constants stand for Natural numbers, Booleans, etc, The infix operators

are then the usual ones: ADDition, SUBtraction, AND etc,

mGOROUSDEVELOPMENTOFWHERPRETERSANDCOMPmERS 275
Comment ¢

SAL may seem awfully trivial to those who are used to programming with an
ample supply and type variety of assignable variables —-- but its realiza-
tion illustrates most of the more intricate aspects of interpreter, that
is runtime code, and compiler design. The main reason for this should be
seen in SALs ability to yield FUNction VALues out of their defining scope
(that is the so-called FUNARG property [Moses 70a, Weizenbaum 68al). In
addition, our development concentrates on implementing the block-struct-—

ure and function invocation aspects.
Semantics:

SAL programs express only three kinds of VALues: Natural numbers, truth
valued Booleans, and FUNction VALues, that is objects which are functions
from VALues to VALues, these again including FUNctions, etc.. The DENota~
tion, that 1is VALue, of a variable identifier, 'id’', is that of the
possibly recursively defined) defining expression: ‘ed‘ (respectively:
'YAg.Aid.ed') of the lexicographically youngest incarnation, that is the
"outwardgoing" statically closest containing block. Y is the fixed point
finding function which when applied to 'Ag.rid.ed' yields the "smallest"
solution to the equation: 'g(id)=ed', in which 'g' occurs free in 'ed'.
Infix and conditional expression VALues are as you expect them to be.
The VALue of a block is that of the expression body, 'eb', in which all
free occurences of the 'id' of a let, respectively the 'g' of a letrec,
block header definition have been replaced (or: substituted) by their
VALues. That is: ‘ed' is evaluated in an environment, env', which is
exactly that extension of the block-embracing environment, env, which
binds 'id' (respectively ‘g') to its VALue, and otherwise binds as enyp.
The VALue of a lambda-expression, ‘Aid.ed', is the FUNction of ‘'id' that
'ed' denotes in the environment in which it is first encountered, that is

defined. Finally: the VALue of an application, ‘ef(ea)', is the result
of applying the FUNction VALue that ‘ef’ denotes to the VALue denoted oy

L]]

ea .

9.3 INTERPRETIVE SEMANTICS DEFINITIONS

Four styles will be given. 1In the first definition we express the seman-
tics of SAL in terms of mathematical functions. Thus the semantics of a

compound syntactic object is expressed as the (homomorphic) Ffunction

276 VDM AND PROGRAMMING LANGUAGES

that is as functional composition) of the semantics of the individual,
proper components, The denoted functions are themselves expressed in
terms of so-called semantic domains, and these are again functional. The
remaining definitions are increasingly more ‘computational', that is can
best be understood as specifying sequences of computations given an

input, that 1is an initial binding of variables to their meaning.

The last, fourth, interpretive definition "unzips" user-defined functions
by permitting a compiletime macro-expansion of the definition, pre-proces-—~
sing SAL program-defined functions into lgggi/gggg "bracketed" meta-lan-
guage texts, and calls of these functions into (branch and }ink—likg)
gotos to such texts. The principles of properly saving, updating (that
is "setting-up") ang restoring (that is “taking-down" & "re-installing")
calling and defining environments form a more detailedq version than any
of the preceding definitions, and of otherwise published accounts of this

so-called static (environmentally preceding) and dynamic (call) activa-
———== ‘=lrironmentally preceding Y catl) activa
tion chain mechanisms.,

9.3.1 Denotational Semantics (1)

Without much Ffurther ado we now present the first in a series of seven

specifications of Sar (£~EY,YL—VIII).

I.1 Syntactic Domains

(1) Prog = Expr (7) Let :: Id Expr Expr
(2) Expr = const | yar | Infiz | Cond (8) Ree :: 14 Lamb Expr

| Zet | Rec | Lamp | Appl (9) rLamb :: 14 Expr
(3) const :: Int (10) 4ppr :: Expr Expr
(4) var rr Id (11) 1d < Token
(5) Infix :: Ezpr Op Expr (12) op = ADD | suB | AND
(6 cond - Expr Expr Expr I

I.2 Semantic Domains

i

(13) Exv Id 3 VAL
(14) var Int | Bool | rypy
(15) FUN = vaL 3 var

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 277

I.3 Elaboration Functions

(16) type: eval-prog: Prog - VAL

(17) type: eval-expr: Expr -+ (ENV - VAL)
(1B) type: eval-fun: Lamb - (ENV - FUN)
16. eval-progle] A eval-exprle]([])

18. eval-fun[mk-Lamb(id,e)Jenv A Aa.eval-exprle](envtlid » al)

17. eval-exprlejenv A

.1 cases e: mk-Const(k) -+ k,

) mk-Var(id) + env(id),

.3 mk-Infixfel,o,e2) - (let v1 = eval-exprlellenv,

.4 v2 = eval-exprl[e2]env in

.5 cases o: ADD+v1+v2,SUB-+01-v2,...)),

.6 mk-Cond(t,c,a) + if eval-expr[tlenv

.7 then eval-expr[cjenv

.8 else eval-expr{alenv,

.9 mk-Let(id,d,b) *+ (let env'=env+[id » eval-expr[dlenv] in
.10 eval-expr[blenv’),

11 mk-Rec(g,d,b) + (let env'=envtlg » eval-funldJenv'] in
.12 eval-expr[blenv’),

.13 mk-Lamb(,) -+ eval-funle]env,

.14 mk~Appl(f,a) » (let fun = eval-expr[flenv,

.15 val = eval-exprlalenv in

.16 if 1e~FUN(fun)

.17 then fun(val) else undefined

9.3.2 First-Order Applicative Semantics (11)

By a first-order applicative semantics definition we mean one whose se-

mantic domains are non-functional, but which is still referentially
transparent. Hence, if we were given, as a basis, a denota tional seman-
tics we would have to object transform its functional components into
such objects which by means of suitable "simulations® can mimic the es-
sential aspects of the denotational definition. In the case of SAL two
kinds of objects are to ve transformed: ENV = Id # VAL and, among
VALues: FUN = VAL 3 VAL. The former objects were constructed by means of

expressions:

278 VDM AND PROGRAMMING LANGUAGES

I.18. env’ = env + [id » q]
I1.17.9 env’ = env 4+ [id o eval-exprldlenv]
I.17.11 env' = env + [g eval-funldjenv']

I1.18. Aa.leval-exprle](eny +[id i al))

We shall not motivate the transFformation choices further (see TReynolds
72al), nor statei@eneral derivation principles, but rather present the
transformed objects as "faits-accomplis": ENV objects, which are MAPs
(#), as Ewv: objects of the tuple type, with extensions accomplished
in terms of concatenations ("), and functional application (()) as direct-
ed, linear searches (Look-up1). The mathematical functions, fun, denoted
by lambda-expressions are then realized asg so-called closgggi -~ these
are 'passive' structures, which pairs the expression, d, to be evaluated,
with the defining environment, env’, so that when fun is to be applied,
fun(val), then a simulation of slos with the transformed counterpart,
arg, of val, is performed: applyl(clos,aryg).

Instead of now presenting the more concrete, first-order functional ela-
boration functions we first present arguments for why we believe that our

choices will do the job. Those arguments are stated as retrieve functions,

retr-ENV and retr-VAL, which apply to the transformed objects and yield
the more abstract "ancestors" from which they were derived. We next
observe that the definition is still functional, as was the denotational.
All arguments are explicit, there is no reference to assignable/declared
variables. aAnd we finally note that we cannot, given a specific expres-
sion, e, ‘'stick' it into the ml-eval-expr (together with an initial,
say empty environment) and by macro-substitution eliminate all references
to ml-eval-expr. The reason for this "failure" will be seen in our

"stacking” closures whose subsequent application requires ml-eval-expr.

II.1 Syntactic Domains - as in I.1

IT.2 Semantic Domains

(1) ENVI = JIdVal* (4) REC reId Lamb
(2) IdVAL = SIMP | REC (5) VAL = Int | Bool | cros
(3) SIMP 22 Id VAL (6) CLOS :: Lamb ENVI

mGOROUSDEVELOPMENTOFWﬂERPRETERSANDCOMPHERS 279

IT.2,1 Retrieve Functions

(7) type: retr-ENV: ENVI - ENV
(8) type: retr-VAL: VALI - VAL

7.0 retr-ENV(envi) A
1 if envi=<>
.2 then [1,

-3 else

.4 (let env = retr-ENV(tl envl) in

.5 cases hd envl:

.6 mk-SIMP(id,vall) - env + [1id » retr-VAL (vall)],

.7 mk-REC(g,d) + (let env' = env + (g eval-funldlenv'] in
.8 env'’)))

8.0 retr-VAL(vall) A
-1 cases valil: (mk-CLOS(l,envi) - eval~-funl{l](retr-ENV(envi)),
.2 T =+ vall)

IT.2.2 Auxiliary Function

(9) type: look-upl: Id x ENVI - VAL1

9.0 look-upi(id,envi) A

1 if envi=<>

.2 then undefined

.3 else cases hd envi: mk~SIMP(id,vall) - vall,

.4 mk-REC(id,lamb) - mk-CLOS(lamb, envl),
.5 T + look-upl(id,tl envl)

II1.3 Elaboration Functions

(10) type: mi-eval-prog: Prog 3 VALI
(11) type: mi-eval-expr: Expr -+ (ENVI S VAL1)
(12) type: applyl: CLOS x VAL1 3 VALI

10.0 mi-eval-progle] A ml~eval-exprle](<>)

11.0 mi~eval-exprle](envi) A

.1 cases e: mk-Const(k) -+ k,

o2 mk-Var(id) + look-upl(id,envi),

280 VDMANDPROGRAMMWGLANGUAGES

.3 mk-Infix(el,o,eg) - (let v1 = m1~eval—expr[el](envz)’

.4 V2 = ml-eval-expr[e2](envi) in
.5 cases o:

) ADD -+ vi1+v2, SUB - VIi-v2,...)),

.7 mk~Cond(t,c,a) +if ml~eval-expr[t](envi)

.8 then ml-eval-ezprlc](envi)

.9 else m1~eval—expr[a](env1),

.10 mk-Let(id,d,b) » (let v = ml-eval-expr[d](envy) in
.11 let envi' = <mk-SIMP(id,v)> "env] in
.12 m1~eval—expr[b](envl')),

.13 mk-Rec(g,d,b) + (let envi’' = <mk-REC(g,d)>"envi in
.14 m]—eval-expr[b](env]’)),

.15 mk~Lamb(,) * mk-CLOS(e,envi),

.16 mk-Appl(f,a) + (let clos = ml-eval-expr[f](envi),

.17 arg = ml-eval-expr{al(envi) in
.18 applyl(clos,arg))

12.0 applyl(clos,arg) A
1 cases clos:

) mk~CLOS(mk-Lamb(id,d),pZ) + (let p1’=<mk~SIMP(id,arg)>Ap1 in

.3 mz~eval~empr[d]{p2')),
.4 T + undefined

9.3.3 Abstract State Machine Semantics (111)

By an abstract state machine semantics we understand a definition which

typically employs (globally) declared variables of abstract, possibly
higher-level, type. It expresses the semantics (not in terms of applica-
tively defined, "grand" transformations on this state, but) in terms of
statement sequences denoting a computational process of individual,

"smaller" state transformations.

bally declared variable, env2, thereby removing these arguments from the
elaboration function references. Ry doing so we must additionally mimic
the meta-language's own recursion capability which is exploited e.qg. in
lines I1.11.3-4,7-9, ... Thus the type of env2 is to become a stack of
stacks, that is: ENV2=ENV1*, where ENVI=Idval*. Each cenv? element is
that stack of Id's and their values, which when looked-up properly (cf.
retr~ENV) reflects the bindings of the so-called “lexicographically young-

est incarnations” of each identifier in the static scope, that is:

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 281

in going outwards from the identifier use through embracing blocks to-
wards the outermost program expression level. As long as no let or rec
defined function is being Applied, the ‘env2' will contain exactly one
ENVI element. As soon as a defined function is Applied, the calling en-
vironment is dumped on the ‘env2' stack. On its top is pushed the EFvI

environment current when the function was defined.

In addition we choose to mechanize the recursive stacking of temporaries
(e.g. I1.11.3-4, 10, 16~17) by means of a global stack, S7K. We could
have merged STK into FENV2, but decide not to at present. Hence this ab-
stract machine definition also requires Ffurther decomposition of the
look-upl operation. As before, we state our beliefs as to why we think
the present development is on a right track, by presenting retrieve func-

tions.

The abstract state machine semantics definition is said to be operational,

or to be a mechanical semantics definition, since it specifies the mean-

ing of SAL by describing the operation of a machine effecting the compu-
tation of the desired value. Such definitions rather directly suggests,
or are, realizations. They do not possess, or involve, implicit, imple~
mentation language processor controlled, but explicit state machine se-
mantics definer determined allocation and freeing. We refer to: *, re-
spectively tl. The allocation and freeing is of otherwise recursively
nested (that is stacked) objects. The definition, however, still requires
the presence, at run-time, of m2-eval-expr (I1I1.23.8). It still cannot be
completely factored out of the definition for any given, non-trivial ex-
pression. Thus there still cannot be an exhaustive, macro-substitution
process which completely eliminates the interpretive nature of the def-
inition. The reason is as before: CLOSures are triplets of a function
definition bound variable, id, a function 'body', d, and the recursive,
defining environment, env2’'. Together they represent, but are not, the
function, fun (I1.18). It mnust instead be mimicked; hence the required

presence of m2-eval-expr.

ITI.1 Syntactic Domains -~ as in I.1

IT1.2 Semantic Domains

(1) ENV2 = ENV1* (5) REC :: Id Lamb

(2) ENV1 = Idval* (6) VAL1 = Int | Bool | CrLos
(3) Idvat = s1MP | REC (7) cros :: Lamb ENvVi

(4 stMp :: 1d VAL1 (8) srx = VALI*

282

VDM AND PROGRAMMING LANGUAGES

(9) z = fenv2 m ENV2) u (stk g STK)

IIT.2.1 State Initialization

(10) del env2 := <<>> type ENV2,

(11) stk = <> type STK;

I1I.2.2 Retrieve Functions

(12) type: retr-ENVI: T - ENVI retr-ENVI() A hd ¢ env2
(13) type: retr-VALI: 3 - VALI retr-VALI() A hd ¢ stk
ITT.2.3 Auxiliary Function

(14) type: look-up2: I1d - (% 5 n)

14.0 look-up2(id) A

.1 (trap exit() with I in
.2 for j=1 to len hd ¢ env2 do
.3 cases hd ¢ enva[gj]:
o4 mk-SIMP(id,val2)
.5 * (stk := <val2> ~ ¢ stk;
.6 exit),
.7 mk~REC(id,e)
.8 + (def env2’ : <(hd ¢ env2)[k] | § < k < len hd ¢ env2s;
.9 stk := <mk~CLOS(e,env2')> * ¢ stk;
.10 exit)
.11 r -1I);
.12 error)
ITTI.3 Elaboration Functions
(15) type: m2-eval-prog: Prog -+ (% 3 % VAL1)
(16) type: m2-eval-expr: Expr » (% 3 %)
15.0 m2-eval-progle] A (env2) := <<>>;
o1 m2-eval-exprle];
.2 env2 = tl ¢ env2;
.3 return(hd ¢ stk))
16.0 m2~eval-Const[mk=Const(k)] 4 stk := <k>"¢ stk

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 283

17.0 ma2-eval-Varlmk-var(id)] A look-up2(id)
18.0 m2~eval-Infixlmk-Infix(el,o0,e2)] A

.1 (m2-eval-exprlel];

o2 m2-eval-exprle2];

.3 stk ¢= <hd tl ¢ stk cases o: ADD —+ +, SUB =+ -,... hd ¢ stk>

.4 " tl tl ¢ stk)

19.0 m2-eval-Cond[mk-Cond(t,c,a)] A (m2-eval-expr[t];

.1 def b: hd ¢ stk;

.2 stk := tl ¢ stk;

.3 if b then m2-eval-exprlec]

.4 else m2-eval-exprlal)
20.0 m&-eval-Lamble] A stk := <mk-CLOS(e,hd ¢ env2)> " ¢ stk
21.0 m2-eval-Let[mk-Let(id,d,b)] A

.1 (m2-eval-expr[d];

) env2 = <<mk-SIMP(id,hd ¢ stk)> * hd ¢ env2> * ¢l ¢ env2;

.3 stk = tl ¢ stk;

.4 m2-eval-expr[b];

.5 env2 := <tl hd ¢ env2> " t1 ¢ env2)

22.0 m2-eval-Reclmk-Rec(g,d,b)] A

.1 (env2 := <<mk-REC(id,d)> * hd ¢ env2> * t1 ¢ env2;

.2 m2-eval-expr[b];

.3 env2 := <tl hd ¢ env2> " tl ¢ env2)

23.0 m2-eval-Applimk-Appl(f,a)] A

.1 (m2-eval-exprlal;

.2 m2-eval-expr[f];

.3 if 18-CLOS(hd ¢ stk) :

.4 then (def mk-CLOS(mk-Lamb(id,e'),envz’) : hd e stk;

.5 env2 := <<mk-SIMP(id,hd tl ¢ stk)>"env2'>"c env2;

.6 stk = tl tl e stk;

.7 m2-eval-exprle'];

.8 env2 := tl ¢ env?2)

.9 else error)

284 VDMANDPROGRANWMNGLANGUAGES

9.3.4 Concrete State Machine Semanticsg (1v)

By a concrete state machine semantics we understand a definition which
again exploits globally declared variables, but now of more concrete,
efficiently realizable type. We shall in particular mean such forms

which model, or rather closely exhibit, the actual run-time structure

of for example such objects as activation stacks, but such that the def-

inition is still interpretable within, at this time, an extended meta-
language. It 1is observed that the borderline between the definition
styles is smooth, and thus that too rigid delineations serve no purpose.
In the abstract state machine semantics of SAL we observe a number of
storagewise inefficient object representations; these are caused almost
exclusively by our choice to stay with the CLOSure representation of
FUNctions as first derived in sect. 9.3.2. Closures "drag" along with
them, not only the function body text, but also the entire defining
environment. This generally results in extensive duplication of dynamic
scope information being kept "stored" in ENVZ2. The basic object trans-
formation objective therefore, of this development step, is now to keep
only nonredundant environment information in the transformed activation
stack. We shall achieve this by "folding" the ENV2 stack of ENVI stacks
"back into" a tree structured activation stack (STG). Bach "“path" from a

leaf to the root signifies a chain of dynamically preceding activations,

with one of these chains signifying the current, all others those of
defining, environment chains of FUNARG functions. Each chain is static-
ally and dynamically linked, corresponding to the subchain of environ-
mentally preceding, lexicographically youngest, that is most recent,

incarnations of statically embracing blocks; respectively the complete

chain of dynamically (call/invocation) preceding activations. Our def-
inition thus entails a complete, self-contained description of a common-
ly used variant of the so-called DISPLAY variable referencing scheme

first attributed to Dijkstra [Dijkstra 62a]. We can, however, only

succeed in achieving this realization of activations if, at the same
time we refine (¢LOSures into pairs of resulting program label points,
Ifet, and defining environment activation stack pointers, ep. From Lfet
we are able to retrieve the [Lambda expression, and from ¢ep we are able

to retrieve the defining environment.

Compiler~Compilers:

To realize this goal we also, in this step, refine (Lo0Sures by macro-

expansion compilation of Sal texts, g, into extended meta-language texts.

WGOROUSDEVELOPMENTOFWHERPRETERSANDCOMPHERS 285

texts., It is thus we have chosen here to introduce, somewhat belatedlyi
but - we think =~ in an appropriate context, the issue of viewing a meta-
language expressed definition of some source language construct as spec-
ifying a compilation of source language texts into meta-language texts.

By a meta-language, macro-substitution, compiled (interpretive) semantics

we basically understand a definition in the meta-language not containing
any references to specifier defined elaboration functions. We shall,
however, widen the above to admit forms, which contain such references,
but where these now are to be thought of as references to elaboration

macros, hence implying a pPre-processing stage, called compiling, prior

to interpretation of ‘pure® meta-text, that is metatext free from ref-
erences to specifier defined functions. We are given input source texts
in the form of arguments to elaboration functions. To achieve an extended
meta-language definition, which can be so macro-expanded, recursive def-
initions of objects (like for example env'’ 1.17.9) and Ffunctions mnust
be eliminated. We do so either by taking their fixed points, or by
"unzipping" them into mechanical constructions. Taking fixed points,

for example results in:

let env' = Yrap.(env + [id - eval-expr(d)p])
but that doesn't help us very much when we come to actual, effective rea-
lizations on computers - it is, or may be, beautiful in theory, but "cost-
ly"™ in practice. Even though computers may be claimed to possess fixed
point finding instructions, Y, they would have to be general enough to
cater for the most complex case. Instead we unravel each individual use
of recursion separately, and so-far by hand. In the case of env’ by
providing suitable stacks, pointer initializations and manipulations. The
guiding principle being: to derive, from the wore abstract definition, to
each occurrence of an otherwise recursive definition a most fitting, ef-
ficient and economical realization. In the next five subsections (A-B-C-
D-E) we now go into a characterization of the resulting definition at
this stage. Again we present it as a *fait-accompli", leaving to other
treatments the formulation of (and partial, theoretical support for)

the general derivation techniques applied.

The definition represents two intertwined efforts: the further concreti-
zation of fun—time objects, here the ENV2 stack into the % complex, and
the further decomposition of elaboration function definitions so that we
can come to the point where references such as m3-int-Expr, can be suc-

cessively eliminated.

286 VDM AND PROGRAMMING LANGUAGES

A: The Environmentally Preceding Activation (EPA4) & Variable Referencing

Scheme, and the Run-Time State

The ENVZ and STK of IIT is merged into the separately allocated DS4s {Dy~
namic Storage Areas) of S7¢. These are chained together: dynamic chains
by ¢P (for: Calling Pointer), lexicographic chains to (defining) youngest
incarnations by FP (for: Environment Pointer). The exact functioning of
this EP4 scheme is precisely described by the formulae. Hence it will not
be informally described here. Our objective in presenting the formulae
(IV.1-1v.32) is twofold: (1) to indicate a stepwise refinement process
which leads to their derivation and the possibility now of a correctness
proof with respect to a Ffar shorter definition, and (2) to show that,
even when starting with the concrete, which most textbooks unfortunately
still do, and then invariably only very incompletely, one can indeed

achieve a complete yet terse formulation.

B: Macro-Expansion

A conditional (cond) expression, for example, results in all of the
text corresponding to IV.26.1,4-5 ©being generated first, in a pre-pro-
cessing 'compile’ stage. A simple Let defining block expression, for
example, results in all of the text corresponding to V.27.1,.3 being
expanded before any elaboration. Etcetera. Thus lines IV.21.1, -28.5,.12,
-31.4 etc., do not denote themselves, that is run-time references to m3-
int-Expr, but the text resulting from similar expansions. One may choose
to do likewise for the auxiliary functions Pop and Push, or one may wish

to keep these as standard run—-time routines.

C: Realization of CLOSures

Note the Ree or Lamb cases: 'letrec g(id)=d in b' respectively: 'Aid.id"*.
Upon evaluation of a Reec or a Lamb their defined function bodies, d, are
not elaborated (until actually 4Applied). Since we have decided to macro-—
expand these texts "in-line" with the text in which they were defined,
and since we are not to execute this text when otherwise elaborating the
two definition cases, we shall (1) Label their expansions, (ii) label the
text immediately following these expansions, (iii) precede the expansion
with a (meta-language) GOT0 around the thus expanded text, (iv) and ter—
minate the expanded text itself with a GOT0 intended to return to the cal-
ler, who, it is expected, "dropped" a suitable return gddress in a global
'Ra’ branch label register before G0ing TO the label of the expanded

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 287

function text. All this is "performed” in functions IV.30, respectively
Iv.29. So what is left in the EPA of the former CLOSures? The answer
is: just the "barebones". Enough to reconstruct (that is retrieve) the
id, the d, and their defining environment: the former two from Lab(fect),
the environment from e'p' (Iv.3.4, 1vV.30.8). Thus, in this definition,
a function CLOSure has been realized as a FOT pair: (fet, ptr). This
solution closely mirrors the way 1in which procedures are realized in

actual programming language systems.,

D: The Compiler State

We observe that Labele had to be generated for each Lamb, Appl and Reec
(actually its Lamb part), and since we describe only once (in IV.30 and
IV.29) what meta-language text to be generated, that is how to schematic-
ally elaborate these, we shall have to view the formulae (IV.21-31) as
subject to (as already mentioned) a two stage process: the 'compiler'
stage which macro-expands the SAL program into "pure" meta-text, and the
"interpreter' which executes the expanded text. Thus 11 lines of the
formulae, namely those with lower case let and def, are 'executed’' at

compile-time, all diet (in DICT) objects are likewise compile-time com-

puted, and all references to m3- functions are eliminated by the compile-
time macrosubstitution process already mentioned. All upper-case LET and
DEFs, are then to be executed at “run-time", that is in the interpreter

stage. Thus the abstract compiler, whose "working behavior" will not be

formalized in this paper, performs three actiouns: it generate labels;
it computes, distributes and uses dictionaries; and it generates META-
IV texts. Whereas in ENVI and ENV2 VALues of ids were explicitly paired
with these, in DS4s only the VALues are left, but in fixed positions (VR).
Consider any variable, <d. It is defined at block depth =, and uniquely
so. And it is used, for example at block depth In, where: 0 < n <in .
The DICT components serve exactly this singular purpose (at least in
this sample definition): for all ids in some context, to map them into
the static block depth, n, at which they were defined. Since the statie
chain also touches exactly the embracing blocks, In-n denotes the number
of levels one has to chain back to get to the VALue corresponding to id
(1Iv.24.4). In fact, that is the whole, singular purpose of the static
(EP) chain. Since it is furthermore observed (1Iv.24.1) that the only
place dict is used, is in the compile stage, any reference to diect is
seen also to be eliminated. Finally observe, that the unique label ob-
jects denoted by Ifet, lbyp and lret shall be substituted into respect-
ive uses (IV.30.4,.8; IV.30.3,.7; IV.29.9,.11).

288 VDM AND PROGRAMMING LANGUAGES

E: Execution

The result of of executing a SAL program is to be found on top of the tem-
porary list (IV.19.2), about which we can assert a length of exactly one
in line (IV.21.2)! So m3-int-Fxpr places (m3-pushes) the result of any
expression elaboration on top of the current DSA's 7L -- with the working
register, Ur, invariably holding this result too at the instance of push-
ing. A simple [et Fxpr is executed by first finding the VALue of the lo-
cally defined variable, td, in the environment in which the Let is en-
countered. Then a new activation is set up to elaborate the body, b, of
the Let. Working register Ur is used to store the result temporarily
while the activation is terminated, but not necessarily disposed ofEf.
The result is pushed on the T of the invoking activation's DS4A. Since
the VALue so vyielded might be a function which was “concocted" by the
activation just left, and since that FunCTion may depend on its locally
defined Variable VALues, we cannot, in general, dispose of the activa-
tion. This “story" then shall account for our use of the (--) dashed
line around the reclamation of STorage shown in (IV.31.9, IV.28.17). The
yielded FunCTion VALue would be (realized as) a pair: mk-FCT(Llfet,ptr)
where ptr is a pointer to that, or a contained, activation. This is a-
gain the FUNARG situation previously mentioned. By not disposing (IV.31.9)
of the DS4 we are later able to "reactivate®" the FunCTion defining activa-

tion. We leave it to the reader to "exercise" remaining aspects of the
definition.

IV.1 Syntactic Domainsg —- as in I.1

IV.2 Semantic Domains

IV.2.1 Run-Time State Components

(1) Tt = (Stg z STG)
(Cp @ [Ptrl) u (Ep a [Ptr])
(Br u [2b11) 'y (Ra 3 [Lb11)
(Ur w [VAL2Y) u (Wr 3 [vaL2])

= 1=

|c

(2,3,4) P,EP,CP = [ptr]

(5,6) BR,RA = TILbl] (11) wvr = [varz]
(7) STG = Ptr m DSA (12) 71 = V4L2*
(8,9) Ptr,Lbl < Token (13) VAL2 = TInt | Bool | FoT

(10) DSA ! CP EP RA VR TI (14) FCT ¢ BR EP

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS

Initial State

i= [ptr o mk-DSA(nil,nil,nil,nil,<>) 1, type STG,

(15) LET ptr € Ptr;
(16) DCL Stg
Cp ;= ptr
Ep = ptr
Br = nil
Ra = nil
Ur,Wr := nil
IV.2.2 Compiler State
Global: (32) Te
(33) del Ls
Local: (34) LN
(35) DICT
IV.3 Elaboration Functions

Function Types:

(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)

(18)
(19)

(20)

m3~int-Prog: Prog
m3-int-Expr: Expr
m3~int-Const: Const
m3-int-Var: Var
m3-int-Infix: Infiz
m3-int-Cond: Cond
m3-int-Let: Let
mi-int-Ree: Rec
m3~-int-Appl: Appl
m3-int-Lamb: Lamb
md~int-Block: Expr
m3-Pop: ref VALZ
m3-Push: ref VAL2
make-Lbl:

Ls p Lbl-set

{} type Lbl-set;
Nat
Id @ Wat
+ ((Xe-Xe)
((DICT x LN) = ((Ze-+Ze)
((DICT x LN)
((DICT x LN) -+ ((Ze-Xe)
((DICT x LN) =+ ((Ze-+Ze)
((DICT x LN) =+ ((Ze-Ye)
((DICT x LN) —+ ((Ze-Iec)
((DICT x LN) -+ ((Ze-Xe)
((DICT x LN) - ((Ze-Ze)
((DICT x LN) - ((Ze-Xe)
((DICT X LN) + ((Ze-%e)
-+ (Lt-Lt)
-+ (LE-Zt)

+ (Ze-Ze)

type [Ptr],
type [Ptr],
type BR,
type R4,

type [VAL2];

(Lt=+3t))

(TSt-+xt)))
(Tt=3t))

(Lt=X%t)))
(Zt-=Zt)))
(Lt-It)))
(Lt=5t)))
(Lt-3t)))
(TZt-=3%t)))
(Zt-%t)))
(LE-%t)))

289

290 VDM AND PROGRAMMING LANGUAGES

Iv.3.1 Auxiliary Functions

Run-Time Functions:

18.0 m3-Pop(ref) A

.1 {DEF mk-DSA(e,e,a,v,tZ) (e Stg)(e Cp);
) Stg := ¢ Stg + e Cp mk—DSA(c,e,a,v,Ei tl)];
.3 ref := hd tl)

19.0 m3-Push(ref) A

.1 (DEF mk—DSA(c,e,a,v,tZ) 2 (e Stg)(e Cp);
.2 Stg := ¢ Stg + e cp = mk-DSA(c,e,a,v,<£ ref> * t1)7)

Compile~-Time Functions:

20.0 make-1bl() A

.1 (def leLbl\e Ls;

.2 Ls := ¢ Ls y {1};
.3 return(l))

1V.3.2 Compile/Execute Functions

21.0 m3-int-Progle] 4
.1 (m3—int~Expr[eJ([],0);
.2 Ur := hd(s-TL((e Stg)(e Cpl));
.3 ¢ Ur)

22.0 mS-int-Expr[e](dict,Zn) A

.1 i8~-Cons(e) - mS—int-Const[e],

o2 te-Var(e) -+ m3-int~Var[e](dict,Zn),
.3 is-Infiz(e) - m3-int-Infix[e](dict,Zn),
4 i8-Cond(e) = m3~int—00nd[e](dict,ln),
.5 ig-Let(e) -+ m3-int—Let[e](dict,Zn),
.6 i8-Rec(e) - mS—int-Rec[e](dict,ln),
.7 ig-Lamb(e) - m3-int—Lamb[e](dict,Zn),
-8 is-Appl(e) mg—int-AppZ[e](diet,Zn)

4

23.0 m3~int-Const[mk-Const(k)]J 4
o1 Ur := k; m3-Pusgh (Ur)

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 291

24.0 m3~int-vVar[mk-Var(id)](dict,in) A
.1 (let n = diet(id) in
Ep := ¢ Cp;
FOR i=1 T0 ln-n DO Ep := §-EP((c Stg)(e Ep));
Ur := s-VR((¢ Stg)(c Epl);
m3-Pugh(Ur);

Ep := ¢ Cp)

S b WwN

25.0 m3~int-Infix[mk-Infix(el,o,e2)](dict,ln) A

.1 (m3-int-Exprlel](dict,ln);
m3-int-Exprle2](dict,iln);
m3-Pop(Ur);
m3-Pop(Wr);
Ur := ¢ Ur (cases o: ADD - +, SUB + =,...) ¢ Wr;
m3-Push(Ur))

DN Ut b WwN

26.0 m8~int-Cond[mk-Cond(t,c,a)](dict,in) A
.1 (m3-int-Expr[t](dict,iln);

) m3-Pop (UL},

.3 IF ¢ Ur

.4 THEN m3-int-Exprle](dict,in)
-5 ELSE m3~int-Exprlal(dict,ln))

27.0 m3-int-Let{mk-Let(id,d,b)](dict,1ln) A
.1 (m3-int-Expr{d](dict,in);
.2 m3-Pop(Ur);
.3 m3-int-Block[b](dict + [id » In+1],1n+1))

30.0 m3-int-Lamb[mk-Lamb(id,d)J(dict,1n) Iy
.1 (def 1fet : make-1bl(),

.2 Lbyp : make-1bl();

-3 GoTo 1lbyp;

.4 LAB(Lfct);

.5 m3-int-Block[d](dict + [id In+11,ln+1);
.6 GOTO ¢ Ra;

.7 LAB(lbyp):

.8 Ur = mk-FCT(lfet,c Cp);

.9 m3~Push (Ur)})

292

VDM AND PROGRAMMING LANGUAGES

31.0 m3~inthZock[b](dict}Zn) A

.1
.2

W N o s ow

.13
.14
.15
.16

.17

.18

(DEF ptr e Pty - dom ¢ Stg;

Stg ‘= ¢ Stg u [ptr mk-DSA (¢ Cp,c Ep,c Ra,¢ Ur,<>)];
Cp,Ep := ptr;

m3~int~Expr[b](diat,Zn);

mé&-Pop(Ur);

Ep = 6-EP((c Stg)(e Cp));
Ra = 6-RA((c Stg)(e Cp));
Cp = 8-CP((ec Stg)(e Cp));

Stg := ¢ stg\{ptr};

m3-Pugh(Ur))

mS—int~Rec[mk—Rec(g,mk-Lamb(id,d),b)](dict,ln) 4
(def Llfet: make-1b1(),
lbyp: make-1bl();
GOTO lbyp;
LAB(lfet):
m3~int-Bloek{d](diect + Lg » In+1,4d B Iint2],lnt2);
GOTO ¢ Ra;
LAB(lbyp):
DEF ptrePtr\dom ¢ Stg;
Ur mk-FCT(cht,ptr);
Stg ¢ Stg u [ptr = mk-DSA(¢ Cp,c Ep,e Ra,c Ur,<>)7;
Cp,Ep := ptr;

it

i

m3~int-Expr[b](dict + (g » Int1],ln+1);
m3-Pop(Ur);

Ep = §-EP((c Stg)(e Cp));

Ra r= s-RA((c Stg)(e Cp));

Cp := s~CP((c Stg)(e Cp));

Stg := ¢ stg\{ptr};

m3~Pugh(Ur))

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 293

32.0 m3~int-Applimk-Appl(f,a)i(dict,in) A
<1 (def lret: make-1bl();
o2 mE~int-Exprlal(dict,ln);
-3 m3~int-Expr[fl(dict,ln);
.4 m3-Pop(Ur);
.5 IF i8-FCT(¢ Ur)

.6 THEN (Br := s-BR({c Ur);
.7 Ep := &-EP(¢ Ur);
.8 m3-Pop(Ur);

.9 Ra := lret;

.10 GOTO ¢ Br;

<11 LAB(lret):

.12 1)

:13 ELSE ERROR)

9.4 COMPILING ALGORITHMS AND ATTRIBUTE SEMANTICS

In this section we shall arrive at a specification of SAL in terms of

the combination of two separate definitions: a compiling algorithm which

to any SAL construct specifies its translation, not into the meta~lan-
guage, but into actual ("physically existing") machine code; and a suit-

ably abstracted definition of the target machine architecture, that is

its semantic domains (working registers, condition code, storage, input/
output etc.) and instruction repertoire: formats and meaning. The struct-
ure of the section is as follows: in subsect. 9.4.1 we give the pair of
definitions: target machine, TM, and the compiling algorithm form SAL
to TM. The latter 1is directly derived from +he last, concrete defini-
tion of SAL in sect. 9.3.4. 1In subsect. 9.4.2 we then restate the com-
piling algorithm of sect. 9.4.1, but now in terms more familiar to af-

fecionados of attribute semantics. And in sect. 9.4.3 we give a similar

attribute semantics definition of a compiling algorithm from SAL into
TM. This latter algorithm is based on the separation of activation and
temporary stacks first shown in the abstract machine of sect. 9.3.2.
The purpose of showing the attribute semantics 1is to demonstrate,
finally, how such are formally derivable from denotational semantics
definitions. The reason why we state two independent attribute sematics

definitions is to illustrate the distinctions between synthesized and

inherited attributes, and their relation to questions about single- and

multipass compilers. The latter will be discussed in sect. 9.5,

294 VDM AND PROGRAMMING LANGUAGES

9.4.1 A Target Machine and 2 Compiling Algorithm (V-VI)

== THE TARGET MACHINE, TM (V)

V.l Syntactic Domains

(1) Code = [ng*

(2) 1ms = sim | st | rinm | £d | Pet | Jmp |
Cip | Mov | adj | per | Unp | P | ...

(3) Sim :: Adr (Int | Bool | ...)

(4) st : Adr Reg Natl

(5) Lim :: peg (Int | Bool | b1 | ...)

(6) r1d :: Reg Natl Adr

(7) Fet :: Reg Op (Reg | adr)

(8) op = ADD!SUB!MPYIDIVIANDIQEINOT!XORILowILEglgglggglgglgggl...

(9) Jgmp ¢ (LB | Reg)

(10) cjp :: Reg Cmp (rvt | ...

(11) ¢mp = TRUE | FALSE | ZERO | worrcT | ...

(12) pr :: (Reg | Quot)

(13) 4dyj ! Reg Int

(14) Mov :! Reg Reg

(15) pek :! Reg Reg Reg

(16) unp 1! Reg Reg Reg

(17) Reg = Wat1

(18) adr !: Base Digpl

(19) Base = Reg

(20) Displ = rInt

(21) b1 c Token

V.2 Semantic Domains

(22) =m = (8tg @ STG) uy (Reg @ REG) u (Out @ our) U ...
(23) sT¢ = Loc z var

(24) REG = Wat » var

(25) vaL = Int | Bool | b1 | zoc | rer

(26) Loc = rInt

(27) rcT :: bl LocC

(28) our = yaAr*

==~ leaving a number of-machine components undefined.

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 295

Global State Initialization:

i

(29) del stg := [i - undefined | -2**8cicg**e] type STG,
{30) Reg := [1 - undefined | -2**”<i<2**”] type REG;

V.3 (Micro-Program) Elaboration Functions

(31) type int-code: code + (I o Iy)
(32) type int-insl: Ins® (Wati > (I » o))
(33) type int-ine: Ins + (I > In)
(34) type eval-adr: Adr » (I~ Ip)

31.0 int~codele] A

.1 (tize [1b1 » int-inelle'](i) | (let o' = ¢”<mk-LbL(ERROR}> in
.2 t = (Ajeindse')(e'[§1=1b1)] in
.3 int-inslle](1))

32.0 int-inslle](i) &

.1 if i>lene then I

else (int—ins[cfi]];int~insl[c](i+1))

33.0 int-inslins] A

.1 caseg ins:

.2 mk-Lbl(1bl) + I,

.3 mk-Sim(a,k) » (def ea : eval-adrla];

.4 Stg '= ¢ Stg + [eam k1),

.5 mk-St(a,r,n) =+ (def ea : eval-adrla]l;

.6 for i=0 to n-1 do

.7 Stg := ¢ Stg + [(eati) » (¢ Reg)(r+i)]),
.8 mkLim(r, k) * Reg := ¢ Reg + [r » k],

.9 mk-Ld(r,n,a) =+ (def ea : eval-adr[al];

.10 for i=0 to n-1 do

.11 Reg := ¢ Reg + [(r+1) & (e Stg)(ea+i)]),
.12 mk~Fet(r,o0,ar) - -

.13 (def v : is-Adr(ar) - (e Stg)(eval-adrlar]),

.14 T (c Reg)(ar);

.15 cases o: ADD + Reg := ¢ Reg + [r (¢ Reg)(r)+v],

.16 SUB =+ Reg := ¢ Reg + [r r» (¢ Reg)(r)-vl,

.17 “ee -

.18 HI -~ Reg := c Reg + [r > (e Reg)(r)>v],

.19 oes),

296

.34
.35
.36
«37
.38
-39
.40
.41
42
.43
.44

mk-Jmp (1)
mk-~Cdp(r,e,1)

mk~Adg(r, i)
mk-Mov (r1,r2)
mk-Pek(r,1,a)

mk~Upk(1,a,r)

mk-Pr(rq)

—+

—

VDM AND PROGRAMMING LANGUAGES

exit(l),
if cases c¢: TRUE =+ (¢ Reg)(7r),
FALSE =+ ~(¢c Req)(r),

NOTFCT ~ ~is-FCT((e Reg)(r)),
ZERO = (¢ Reg)(r)=0,

LIRS

then (is-Lbl(1) - exit(l),

T ~+ exit((c Reg)(l)))
else 7T, _
Reg := ¢ Reg + [p = (¢ Reg)(r)+i],
Reg := ¢ Reg + [r7 » (c Reg)(r2)],

if ie~Lbl((c Reg)(1)) A 18~L0C((ec Reg)(a))
then (def f: mk=FCT((c Reg)(l),(c Reg)(a))
Reg := ¢ Reg + [r > f])
else exit(mk-Lbl(ERROR)),
if is-FCT((g Reg)(»))
then (éﬁﬁ 17: swLbZ((g Reg)(r)),
d : e-LoC((e Reg)(r));
Reg = cReg + [l 2 amql])
else ggig(mk~Lbl(§§§Qg)),
(def q : is~Reg(rq) - (c Reg)(rq),
T *org;
Out := ¢ Out®<g>),

34.0 eval-adr{mk-Adr(b,d)] A

.1
.2
.3
4
.5
.6
.7

-~= THE COMPILING

(def i1

(¢ Reqg)(b);

if ZTe-LocCc(il) v te~Int(i1)

then (let ea

if -2°

= d+il in

< ea < 428

then return(eaq)
elge exit(mk-LbZ(ERROR)))
else exit(mk—LbZ(ERROR))}

ALGORITHM

rd

Having now examined the target machine, TM, architecture, that 1is the

semantics of the machine language, independently of SAL, we now turn

the specification of what Code to generate for each SAL construct.

to
We

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 297

are seeking a definition, e-prog, ¢~expr, etc., which again is to be
understood in Fjust one, the compiling phase, way. DICTionaries are used
as before, and so is LN. An extra (compiletime) object is passed to
any macro invocation of C—-eTpr. It represeunts the current stack index
to the target machine realization of the TLs of DSAs. Since storage
cannot (in general) be reclaimed when a Block body VALue has been
computed, and since in this version we have decided to stick with the
merge of the control information of the activations (CP,EP,RA) not only
with local VARiable (VR), but also with temporaries (7L), we shall have
to set aside, in linear storage, the maximum amount of storage cells
needed in any expression elaboration, and let that be the over-cautious
realization, at this stage, of 7. To that end a crude cowmpiler function,
depth, is defined. It computes the number of tempcraries, de, needed to
compute any expression, but takes into account that embedded Lets and
Recs lead to new activations for which separate stacks, 7L, are set aside.
We say that depth is crude since optimizing versions are easy to formu-
late, but would, in this example, lead to an excessive number of formulae
lines. The disjoint DSAs of the previous (IV) definition are now map-
ped onto a linear ('cell') storage. FEach ‘new' DSA realization consists

of 4 + de cells: (P, EP, RA, VR, respectively TL.

VI Compiling Algorithm

VI.1 Compiler Domains

VI.1l.1 Syntactic Domains -—-

1
|5
=
bt

].

VI.1.2 Compiler Components

(1) % = Ls 5 Lbl-set
(2) prcr = 1d 5 LW
(3) LN = Fato

(4) LBl < Token | ERROR

V1.2 Auxiliary Compiler Functions

(5) del Ls := {ERROR] type Lbl-set;
(6) type: make-~1bl: + (%4 » Eq x Lb1)

(7) type: depth: Expr -+ Natl

298 VDM AND PROGRAMMING LANGUAGES

6.0 make-TbLl() A

(def leLbl -¢ Ls;
Ls := ¢ Ls v {1};

return(l))

7.0 depth(e) 4
cases e
mk-Consgt() =+ 1,
mk-Var() + 1,

+

mk~Infix(el,e2) mam(depth(e]),depth(e2)) + 1,

mk-Cond(t,c,a) - Qgg(depth(t),depth(c),depth(a)) + 1,

mk-Let(,d,) =+ depth(d),

mk-Ree(,,) + 1,

mk~Lamb(,) + 1,

mk-Appl(f,a) * maz(depth(f),depth(a)) + 1

VI.3 Translator Specifications

VI.3.1 Global Constant Definitions

(8) let p =0,
(9) ep =1,
(10) ra = 2,
(11) vr,pmyu, § = 3,
(12) top = 4,
(13) br = 5,
(14) t = 4,
(15) error = ERROR;

VI.3.2 Compiling Specifications

(17) type: c-prog: 2] * (Eo =+ Iy x Inms*)
(18) type: c-const: o STK -+ Ing*

(19-27) type: c-expr: © DICT LN STX - (Ec + To x Ins*)

where 6 stands for the syntactic category name, i.e.: e-prog > © =prog,

c~-expr > 9 =expr, etc.

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS

(17)

c-Proglelh
(def lexit : make~lbl();
let de = depth(e) in

<mk-Lim(p,0),
mk-Lim(ep,0),
mk-Lim(top,t+de)>"
c-Exprlel(L1,0,¢t)"
<mk-Ld(u,1,mk-Adr(p,t)),
mk-Pr(u},
mk-Jmp(lexit),
error,
mk-~Br(error),

lexit>)

(18)

e-Const{mk-Const(k)I(stk)h
<mk~Sim(mk-Adr(p,stk), k),
mk-Lim(u, k) >

(20)

c-Infix[mk—Infix(el;o,eZ)](G,Zn,stk)g

(e-Exprle2](§,1ln,stk)”
e-Expr[el](6§,1n, etk+1)"
<mk-~Ld(u,1,mk-Adr(p,stk+1)}
mk-Fet(u,o,mk-Adr(p,stk)),
mk-St(mk-Adr{p,stk),u,1)>)

(22)
c-Zamb[mk—Lamb(id,d)](G,Zn,stk)g
(def 1fet: make-1b1();
lbyp: make-1bl();
<mk-Jmp(lbypl,
lfet>"

e-Bloek[d](§+[id+In+11,1In+1, stk)

<mk-Jmp(ra),

Lbyp,

mk-Lim(u,lfet),
mk-Pek(u,u,p),
mk=-St(mk-Adr(p,stk), u,1)>)

299

(19)
e-Var[mk-Var(id)J(6,1ln, stk)A
(let n = 6(id) in
def lloop: make-1bl(),
lload: make~1bl();
<mk-Lim(F,In-n),
lloop,
mk~Cdp(J,ZERO, lload),
mk-Ld(ep,1,mk-Adr(ep,ep)),
mk-Adj(j,-1),
mk-Jmp(Llloop),
lload,
mk-Ld(u,1,mk-Adr(ep,vr)),
mk-St(mk-Adr(p, stk),u,1),
mk-Mov(ep,p)>)

(21)
c-Cond[mk—Cond(t,c,a)](d,ln,stk)é
(def lalt: make-1bLl(),
lout: make-1bl();
e~Expr[t](8,1ln,stk)”
<mk-Ld{u,1,mk-Adr(p,stk)),
mk-Cjp(u, FALSE, Zalt)>"
e~Exprlel(§,In,stk)”
<mk-Jmp(lout),
lalt>"
e-Exprlfal(§,ln,stk)”
<lout>)

(23)
c-appllmk-Appl(f,a)J(68,1n,8tk)A
(def lret: make-1bl();
e-exprlal(8,ln, stk)”
e-expr[f1(6,1n, stk+1)"
<mk-Ld(u,1,mk-Adr(p,stk+1)),
mk-Cgjp(u, NOTFCT, error),
mk-Unp(br,ep,u),
mk~Lim(ra,lret),
mk-Ld(pm,1,mk~Adr(p,stk)),
mk-Jmp(br),
lret>)

300

(24)

c-Let[mk—Let(id,d,b)](G,Zn,stk}g
(e~Expr(d](S,1in, stk)"
<mk—Ld(u,1,mk—Adr(p,stk))>“

c—BZock[b](d+[id+ln+1],Zn+1,stk)

(26)
c—BZock[bZ](G,Zn,stk)é
(let dbl = depth(bl) in
<mk—St(mk—Adr(top,p),p,t),
mk—Mov(p,top),
mk-Mov (ep, top),
mk-A4dj(top, t+dbl)>"
e=Bxpr[bl](6,1nt1,¢t)"
<mk~Ld(u,1,mk~Adr(p,t)),
mk—Ld(p,t—],mk~Adr(p,p)),
mk—St(mk—Adw(p,stk};u,1)>)

(27)
c—Expr[e](S,ln,stk)A
(is-Congtle] - c-Constle](stk),

is-Varle] -+ c-Var[e](d,Zn,stk),
ie-Infixle] » c—Infix[e](G,Zn,stk),
ie-Cond[e] c-Cond[e](G,Zn,étk),

9.4.2 An Attribute Semantics (Vi)

——

VDM AND PROGRAMMING LANGUAGES

(25)
c-Rec[mk~Rec(g,Zf,b)](6,Zn,stk) A

(let mk-Lamb(id,d) = Lf in
def 1fet: make-1bl(),
lbyp: make-1bl();
let db = depth(b) in
<mk-Jmp(lbyp),
Lfet>"
e-Block[d](§ + [g»ln+1,id»ln+2],
Int+2,stk)
“<mk—Jmp(ra),
Lbyp,
mk-Lim(u,cht},
mk—St(mk—Adr(top,p),p,t-Z),
mk—Pck(u,u,top),
mk~St(mk-Adr(top,u),u,1),
mk~Mov(p, top),
mk~Mov(ep, top),
mk-~4dj(top, t+db)>"
e=Fxpr[b](6 + [g>ln+1],int1)"
<mk—Ld(u,1,mk~Adr(p,t)),
mk—Ld(p,t-z,mk—Adr(p,p))’
mk—St(mk—Adr(p,stk),u,1)>)

ie~Let[e] *e-Letle](§,1In,stk),
is-Reele] * c-Recle](8,1ln,stk),
te-Lamb[e] * e-Lamble](§,1n,stk),
te-Applle] - e-Appllel(8,1ln,stk))

By an attribute semantics definition of 2 source language 1is normally

understood a. set of (usually concrete, BNF) syntax rules defining the

source language's character string representations; an association of so-

called attributes to each syntactic category (that is distinct rule);

and to each pairing of a left-hand side (or: non-terminal) with a right-

hand side alternative, a set of action clusters, one per attribute as-
~ ——= == 2Ltion clusters

sociated with non-terminals of either the leftor the right-hand sides.

The action clusters are statement sequences, and their purpose is to as-

sign values to the attributes. The meaning of such an attribute semantics

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 301

definition is as follows: consider a source text and its corresponding

(*annotated') parse tree. To each tree node allocate an attribute vari-

able corresponding to each of the attributes of the node category. Then
compute the values of these according to the attribute semantics defini-
tion action clusters. Two extreme cases arise: the value of an attribute
is a function solely of the attribute values of the immediate descendant,
or ascendant-node(s). We say that the attribute is synthesized, respect-
ively inherited. Obviously nonsensical attribute semantics definitions
can be constructed for which their computation for arbitrary or certain
parse trees is impossible due for example to circularity. Some such pos-
sibilities, for example that of circularity, can, however, be statically

checked, that is without recourse to parse trees.

We first choose the same basic realization as up till now, but, for sake
of notational variety, and perhaps also your increased reading ability,
express the compiled target code in "free form". Hence the meaning 1is

1

intended to be identical, down to individual computation sequences.
The reader will otherwise observe a close resemblance betweén this, and
the immediately preceding definition. In fact their only difference is
one of style. Either could equally rightfully be called an attribute

semantics.

Annotations

A concrete, BNF-like grammar is given below. To each category is then
associated a small number of attributes. The depth attribute, d, com-
putes, as did the depth function (VI.7), the maximum length of the tem-
porary list - and does so bottom-up; hence it is a synthesized attribute.
The stack, level number and dictionary attributes: stk, In, diet are all
passed down from the parse tree root, and are thus inherited. Finally
the code attribute is synthesized and stores the generated (odetext
strings. We have not shown a formal (say BNF-) grammar for these strings,
but really ought to have done. Subsect. VIT.3 finally gives the actual

action cluster rules for each grammar rule/production.

Note:

Note also our distinction, in VII.3 formulae between ttalie and roman
formulae text parts. The latter denotes Code-text to be generated, the

former auxiliary quantities whose values are to be resolved in the code

attribute computation process. Thus in for example VIT.8.4 ede is to

VDM AND PROGRAMMING LANGUAGES

be computed and its arabic numeral representation then to be inserted
Similarly for lines VII.B8.10, 10.5 and 10, where appropriately roman
unique label identifiers are to be inserted in lieu of the Ztalie label
identifiers. The result of @ parse tree computation is finally accumu-
lated in code of the root node.

VII Synthesized and Inherited Attribute Semantics Compiling Algorithm

VIT.1 Concrete BNF-like Grammar

(1) Prog sr= ExXpr

(2.1) Expr te= k
.2 = id
.3 1= (Fxpr + Expr)
.4 = if Expr then Expr else Expr fi
.5 te= let id = Expr ; Block end
.6 = rec g = Lamb ; Block end
o7 t= Lamb
.8 ?3= apply Expr (Expr)

(3) Block se= Expr

(4) Lamb 1= fun (id) = Block end

where we have abbreviated the classes of identifiers, constants and ope-
rators to just id, k and +.

VII.2 Node Attributes

(5) Prog code type Code-text synthesized
{(6) Expr eode type Code-text syntheeized
Lamb In type Nat inherited
dict type Id it Nat Inherited
stk type Natl inherited
d type Natl synthesized
(7) Block code type Code-text synthesized
in type Nat inherited
diet type Id @ Nat inherited

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 303

VII.3 Action Cluster Rules

(8) Progp ::= Expre
.1 def lexit: make-1b1();
.2 aodep ;= "R{p] := 0;
.3 Rlep] := 0;
.4 R{top]l := t + cde;
.5 "“ecode, ™"
.6 R{ul := cs[cRlpl + ¢1;
.7 Out := cR[ul;
.8 goto lexit;
.9 lerr:
.10 Out := ERROR;
.11 lexit:
12 "
13 Ing 2= 05
<14 dict, := [1;
<15 stky, = ¢;
(9) Expre ::= k
.1 de =13
.2 codeg := "S[cRIpl+ cetk,] := k;
.3 Rlul := k;

(10) Expre ::= 1id
.1 def 1loop: make-1bl(),

.2 lload: make~1bl();

.3 de = 1;

+4 code, := R[]j] i= clng - edicty(id);
.5 Lloop:

.6 if cR[3] = 0 then goto 1load;

.7 Rlep] := cS[cRlep] + epl;
.8 R[3] := cR[3T1 - 1;

.9 goto lloop;

.10 lload:

.11 Rl ul := cS[cRlep] + vrl;
12 SLcRlp] + ¢stk,] := cR[ul;

.13 Rl ep] := cRlpl;

.14 "

304 VDM AND PROGRAMMING LANGUAGES

(11) Expre ::= (Exprel + Expre2)
1 de '= max(edel,cde?) 4+ 1;
22 Ilngy,lngy r=elng;
.3 6tkyo i= cstky;
.4 tkgy = cstky, + 1;
5 dictyy,dictyy = cdicty;
-6 code, := ccode,y *
.7 ccodeyy °
.8 “Rlu] := cS[cRlp] + cetk,];
.9 Rl u] 2= cRlu] + cS[cRrRlp] + cstk,y];
.10 S[crlp] + estky] 2= cR[ul;
<11 "
(12) Bxpre ::= if Exprt then Exprc else Expra
.1 def lalt: make-1bl(),
.2 lout: make-1b1();
.3 de ‘= maz(edy,edy,edy) + 1;
.4 Ing,ing, lng i= clng;
=5 etky, stky, stky, i= cetky;
.6 dictt,dietc,dicta = edicty;
-7 codey, := ccode; *
.8 "Rlul := cS[cRlp] + estk,y];
.9 if -cRlul then goto lalt;
.10 "“code, ""
-11-.14 goto lout; lalt: "“cecode, “" lout:
.15 "3

(13) Expre ::= let id = Exprd ; Blockbh end

1 d, = edp;
.2 ing i= clngg
.3 lnyp = clng + 13

.4 stky = cstky;

-5 dietg := edict,;

-6 dicty := edict, + [id & clng + 17;
-7 codey, := ccodey "

.8 Rlul := cS[cRIp] + estk,1;
.9 "“ecodep™"

) i

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS

(14)
.1
.2
.3
.4
.5
.6
.7
.8
.9
.10
.11
.12
.13
.14
.15
.16
17
.18
.19
+ 20
.21
22
«23
<24
<25
+26
.27

. 28

(16)
.1
N
.3
-4
.5

Expre ::= rec g = fun (id) = Blockd end ; Blockb
def 1fet: make-1bl(),
Lbyp: make-1bl();
dg i= 1
Ing i= clng + 25

iny 2= elng + 1;

dicty := edicty, + [g » In+1,id o In+21;
dicty := edict, + [g » ln+11;
codey, := "qgoto lbyp;
Lfet:
"“ecodey™ "

goto cRlral;

lbyp:

Rl u] := Lfet;

R[u] := mk-FCT(cR[ul,crR[top]);
S[cRl top] + p] := cR[p];

S[crR[top] + ep]l := cRlep];
S[cRltop] + ral := crR[ral;
SleRltop] + vrl := cR[ul;

Rlp] := cRltopl;

Rlep] := cRltop];

R[top] := cRltop] + (tted,);

"“ecodep™"

Rlep] := cS[cRlp] + epl:
Rlra] := cSlcRlp] + ral;
R[u] := cS[cRlp] + t1;
Rlp] := cSlerlp] + pl;

SLeRfp] + estk,] := cRlul;

.
>

Expre ::= Lambl

2y
i

e i=edy;

~
3
o~
i

= ¢clng;
stky = cstky;
dicty := edicty;

codey, := ceodey;

end

05

306

(15)
-1
.2
.3
.4
.5
.6
.7
.8
.9
.10
.11
.12
.13
.14

(17)
.1
o2
.3
.4
.5
.6
.7
.8
.9
.10
.11
L12
.13
.14
.15
.16
.17

(18)
.1
.2
.3
.4
.5

Lambe ::= fun (id) = Blockb end
def lfet make-1b1(),
Lbyp make-1b1();
dg '= 13
inyg = clng + 1;
dicty := cdict, + [id & clng + 17;
code, := "goto Ibyp;
Lfet:
"“ceodep™"
goto cRlral;
lbyp:
Rl u] := Llfet;
Rlul
S[crRIp] + ¢stkgyl = cR[u]
Expre ::= apply Exprf (Expra)

VDM AND PROGRAMMING LANGUAGES

:= mk~FCT(cRlul,cRlp]);

def lret : make-1bl();

dg ‘= maz(ede,ed,) + 1;

Ing,lng = clng;

stk, = cstky;

stky = cstky, + 1;

dictf,dicta i= edict,;

codeg, := ccodey, ™"
ceodep™™
R[ul := cS[cRlp] + (cstket+1)];
IF NOTFCT(cR[ul) THEN GOTO Zerr;
Rlbr] := s-Ibl (cR[ul);
Rlep] := s-LOC(cRlul);
Rlral := lret;
Rlpm] := cS[cRlp] » cetk,1;
GOTO cRlbr];
lret:

Blockd ::= Expre

In, = clny + 1;

dict, := cdicty;

stky, = t;

codep := "S[cR[top] + p] := cRlpl:

S[cRltop] + ep]

:= cRlep]

o
7

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 307

.6 SlcrR[top] + ral] := cRlral;

.7 S[cRltop] + vr] = cRlul;

.8 Rlp] := cKltop]:

.9 Rlep] := cRlp];

.10 Rl top] := cRltop] + (t+ed,);
.11 "“ecodey, ™"

.12 RCelp := cSLcRlp] + epl;
.13 Rlra] := cSlcRlpl + ral;
.14 R{u] := cS[cRlp] + ¢1;
.15 Rl p] := cS[cRlp] + pJ;
.16 STcrRlp] + estk,] := cRlul;

.17 "3

9.4.3 Another Attribute Semantics (viiI)

The language defined by the concrete BNF grammar given in 9.4.2 (VII.1)
for SAL is both bottom-up and topdown analyzable. That didn't matter

very much in section 9.4.2, since attribute variable value computations
still required the presence of the entire parse tree before any Code-
text could be generated. Iun this section we present an attribute seman-
tics specification of another compiling algorithm, which, based on a
top-down parse process, is capable of generating Code-text simultaneous-—

ly with parsing. Again we shall not argue how we choose a/the solution.

Instead we ask you to recall the twin stack abstract machine of section
9.3.3. Now all DSA realizations fit exactly into four (t¢) positions: (CP,
EP, RA, VR) with temporaries allocated to a global, contiguous stack,
STK's direct implementation. Since SAL is simply applicative (it permits
for example no GOTOs) this poses no special problems as concerns correct
indices into stack tops. The STK has been realized in 'core' "below"
the activation stack: think of the target machine addressing being
"wrapped around" zero address to maximum available core storage address
- and you get a scheme which was very common in the earlier days on
mono-processing. One crucial, final note: to cope with known Code-text

to be "delay"~generated a global ‘'attribute' (also) called code, is in-

troduced. 1t is treated as a stack. Push corresponds to concatenation,
pop to taking the head off -- leaving the tail. Pushing occurs for

all Code-texts known when recognizing the initial prefix string, as
one does in top-down analysis, of a composite expressing: if, let, rec,
apply, (and fun. Popping of one part occurs when any expression has

been completely analyzed: %, id, £i, end, end, end,), and end, respect-

ively.

308 VDMANDPROGRAMNHNGLANGUAGES

VIII 1Inherited Attribute Semantics Compiling Algorithm

VIII.1 Syntactic Domaing —- as in VII.l

VIIT.2 ©Node & Global Attributes

(5) Expr 1In type Nato inherited
Lamb diet type Id @ Nat0 inherited
Block

(6) Prog code type Code~text stack
print type Code-text output

VIIT.3 Attribute Rules

(7) Progp ::= Expre
.1 def lexit: make-1bl();
.2 print "R[p] = 0;

.3 Rlep]l := 0;

.4 Rl top] := ¢;

.5 Rstk] := ~1;",

.6 code := <"R[u] := csi~17;
.7 Out := cR[ul;

.8 goto lexit;

.9 lerp:

.10 Out := ERROR;

.11 lexit: ">;

.12 Zne 2= 0;

(8) Expre ::= k
.1 print "S[ngstk]] := k;
.2 Rl u] = k;
.3 Rl stk] := cRlstk] + 1;
.4 ""hd ¢ code;

e
.5 code := tl ¢ code;

(9) EXpr ::= id
.1 def lloop : make~1bl(),
.2 Lload : make~1b1();

«3 print "R[3] := elng - (edict,)(id);

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS

.5
.6

<3

«10
<11
.12

(11)
.1
.2
.3
.4
.5

o7
.3

.10
.11
«12
.13

lLloop:

if cR[3] = 0 then goto lload;
Rlep] := cS[cRlep] + epl;

R[jT := cr[3]
goto Lloop
lload:

Rlu]

_1;

:= cS[cRlep] + vr];

SLcrRlstk]] := crR[ul:

Rl stk]

li

cRlstk] - 1;

Rlep] := crlp]:

""hd ¢ code;

code := tl ¢ code;

Expre ::= (Exprl + Expr?)

Ingy,lngg = clng;
dictgy,dictyg := cdicty;
code p= MR
<"R[u] := cS[cRlstk]];
R[u] := cRlu] + cS[cRlstk]
Rl stk] := cRlstkP + 1;

S[cRlstk]1] :

cRlul;

">"ccode;

Expre ::= if Exprt then Expre else Expra fi

: make-1b1(),
: make-1bl();

def lalt
lout

Ing,lng,Ilng, = clng;

dicty,dict,,dict, := cdiety;

code =

|l>

:= cS[cRlstk]];
R[stk] := gR[stk] + 1;
if -cR[ul then goto lalt;

A

<"goto lout;

lalt:

">‘~

<Mlout:

>“ccode;

+ 17;

309

310

(12)
.1
.2
.3
-4
.5
.6
.7

(13)
.1
.2
.3
.4
.5
.6
.7
.8

.10
.11
.12
.13
.14
.15
.16
.17
.18
.19
«20
.21
«22
«23
.24
.25
.26
.27
.28

LXpre ::=
Ing = clngy;

Iny, = ¢clng, + 1;

dicty := edicty;

dicty := edict, + [id » elng

<"R[U]
Rl stk] := cRlstk]

A

")

<MU"s>Teeode;

Expre ::= rec g =

def 1fet : make-1bl(),
lbyp : make~1bl();

Ilng = elng + 2;

Ing = clng + 15

dicty := edict, + [id o clng

dicty := ediet, + [g » elng,

print "goto lbyp;

Lfet:
"5

code := <"goto cRlral;
Lbyp:
R u] 1=
Rlu] g==
S[cRltop] + p] :=
S[cRltop] + ep] :=
S[cRl top] + ra]l :=
SCcRltopP + vr] :=
Ripl] :=
Rlep] t=
Rl top] :=

II>A<"

Rlep] r=
Rlra] 1=
Rl u] 2=
Rlp] =
SLerl stk]] =
Rl stk] 2=

">"ccode;

fun (iq)

VDMANDPROGRANMMNGLANGUAGES

let id = Exprd ; Blockb end

+ 17;

:= cS[{cRlstk]1]:

+ 1:

= Blockd end ; Blockb end

+ 2,9 elng + 11;
+ 11;

Lfet;
mk~FCT(cR[ul,cR[top]);
cRlpl;

cRlep];

cRlral;

cRlul;

CRltop];

cRl top];

cRltop] + ¢;

cSleRlp] + epl;
cSlcRlp] + ral;
cSlcRrRlpl + ¢£7;

cSlerRlp] + pl;

cRlul;

cRlstk] + 1:

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 311

(14) Expre ::= Lambd

o1 Ing o= elng;
:2 diectq := edicty;
(15) Lambe ::= fun (id) = Blockd end
.1 def Llfet : make-~1bl(),
.2 Lbyp : make-1bl();
.3 ing = ¢elng + 1;
-4 diety := cdicty + [id » cln, + 11;
.5 eode = "goto cRlral;
.6 Lbyp:
.7 Rl u] := Ifet;
.8 R u] s = QE:FCT(gR[u],gR[p]);
.9 SCeR{stk]] := cRJul;
10 Rl stk] := cRlstk] - 1;
.11 ">"ceode;
12 print “goto lbyp;
.13 Lfet:
.14 "

(16) Expre ::= apply Exprf (Expra)

.1 def lret : make-1bl();

$2 Ilnp,ing = elng;

3 diatf,dicta ;= cdicty;

4 code p= oMU
.5 <"R[ul := cS[cRlstk] ~ 17:

.6 if NOTFCT(cR[ul)

.7 then goto Zerr;

.8 Rlbr]l := s-Lbl(cR[ul);

.9 Rlep] := s-LOC(cR[ul):;
10 Rlral := Llret;

.11 RLpm] := cS[cRlstk]];
12 R[stk] := cRlstk] - 2;
13 goto cRlbr];

.14 lret:

.15 ">%ecode;

312 VDM AND PROGRAMMING LANGUAGES

(17) Blockd ::= Expre
.1 Ing c=elny, + 1;
2 dict, := edicty;
»3 print "S[cRltop] + pl := cR[p];
.4 S[cRltop] + ep] := cRlep];
.5 SlcrRltop] + ral := cRiral;
.6 S[cRltop] + vr] := cR[ul;
.7 R(p] := cRl top];
-8 Rlep] := cRltop];
.9 Rl top] := cRltop] + ¢;
.10 "
«11 code := <"R[ep] := cS[cRlp] + ep]l;
.12 Rlral := cS[cRlp] + ral;
.13 R1u] := cS[crRlp] + ¢1;
.14 R[pj := cS[cRip] + pl;
.15 S[cRlstk]] := cRlul;
.16 Rl stk] := cRlstk] + 1;
.17 ">"ceode;

9.5 COMPILER STRUCTURES

From the compiling algorithm specifications of section 9.3.2-3 we can
now read properties other than just the source text input vs. target
machine code output itself. Thus the compiling algorithm determines

first level structures of the compiler itself. That is, it answers ques-

tions such as: "Is it a two, or can it be a single-pass compiler?";
"What information is put in the dictionary, and when?"; "How 1is the
dictionary realizable: as part of the intermediate text of a multi-pass
compiler, with the dictionary components ‘scattered: over this inter-
mediate text; or necessarily as a 'global' component, ‘'disjoint' fron

any intermediate text or parse tree?".

Single- and Multi-Pass Compilers

If all attributes can be computed in a synthetic manner then a single~
pass compiler based on a bottom-up parse can always be realized. This is
SO since any deterministic language can always be so (in fact LR(K))
parsed. Similarly, if the language can be top-down (for example LL(K))
parsed (possibly using some recursive descent method), and a compiling

algorithm given by a purely inherited attribute semantics, then a single-

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 313

pass compiler is again possible. If, however, as for example suggested
by our first SAI, attribute semantics compiling algorithm (9.3.2), some
attributes, like the local, temporay list stack pointer, and the block/
body level number, and dictionary, are inherited, while others, the max-
imum local stack depth and the generated code, are synthesized, then a
multi-pass compiler with at least two passes cannot be avoided. If the
inherited and synthesized attributes of such a compiling algorithm sole-
ly derive from constants emanating from respectively the root and leaves,
then a two-pass compiler can result. This is in fact the case with the
VI and VII specifications. The exact minimum number of logical, that
is intrinsically required, passes, is a function of the semantics and
syntax of the language - with the semantics property eventually showing
up in the intricate web-like relationships between synthesized and in-
herited attributes. Of course: silly, unnecessarily complicated, at-
tribute semantics, that is such as those involving nonintrinsical combin-
ations of inherited and synthesized attribute value computations, would
then indicate a higher (minimum) number of passes than strictly required.
Only calm scrutiny, a careful analysis and a complete mastering of the
language semantics and specification tools will eventually lead to

optimal realizations.

SO what is then the difference between the two compiling algorithms: VIT
and VIIT? One leads to a two-pass—-, the other to a single-pass compiler
for one and the same language (semantics). Is not a minimum pass compiler
always to be preferred? Well, the gain in compilation speed in the lat-
ter has been obtained at the expense of slower execution speed, since —-
as in usually the case with pure, stack-oriented execution -- a temporary
stack index, R[stk], must now be dynamically adjusted: at the worst once
per 'popping', and once per 'pushing'. This being in contrast to the
fixed-offset addressing possible by our two-pass compilation, which - in

turn - causes possibly excessive storage to be (pre-)allocated.

Compiler Object Realizations

Whilst the purpose of ‘mapping' the denotational semantics into succes-
sively lower-order, increasingly more concrete/intricate semantics defini-
tions, was one of eliminating higher-order, functional objects -- as well
as the run-time presence of elaboration routines -- we now suddenly see
the re-appearance, in for example the attribute semantics definitions, of
higher order objects: the functional dictionaries, and even the (non-

functional, but) varying string length (Code-text) obobjects. The input/

314 VDM AND PROGRAMMING LANGUAGES

output relationships of a compiler have been specified. WNow we mustc
object transform abstractly described compiler objects, and operation
decompose the likewise implicitly specified primitive Ooperations on

these., 1In fact, we must also take issue, at long last, with the in-

ternal realization of abstract SAL programs. But note this: nothing has
been lost in postponing this decision till now. On the contrary: we may
now be able to design exactly that internal representation which hest
suits the code-generation parse~tree walking algorithm. The techniques
of 'mapping® such abstractions into concrete implementations using meth-
ods akin to those of this papers' specialized, run-time structure~ori-

ented ones, will not be further dealt with here.

9.6 COMPILING CORRECTNESS

Time has finally come to take issue with the problem of correctness. 1In
this section we shall illustrate only one such proof. Wwe prove that the
development I - II 1is correct. Subsequent development stages are proved
correct using essentially the same technique, but becoming, first increa-

singly more cumbersone (to report and read), and with III - IV also some-
what more complex,

Correctness Criterion:

-— Theorem (Thm)

(Venv ¢ ENV, Venvl < ENV1)
retr-ENV(envl))

> (Ve ¢ expr)(eval-exprlelenv

(env

i

= retr-VAL(ml-eval-exprfe](envi)))
Annotation:

For all such abstract, env, and concrete, envl, environments which corre-
spond, it shall be the case that evaluating any expression, e, using the
abstract interpreter on env will yield the same value as is retrievable

from evaluating that same expression e using the more concrete interpret-
er on envl.

The statement of this criterion, as well as its actual, detailed proof,

is new.

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 315

The structure of Thm can be pictured:

retr-ENV

(o]
eval-exprle] l ml-eval-exprle]
o

retr-VAL

It is derived from the general idea of ‘simulation’ of one program by

another (executing one algebra on another).

Proof 9§ Correctness

Our task of proving that mI-eval-expr (in the sense of the criterion a-
bove) does the same, to any expression, as eval-expr, that is delivers
comparable results, can be broken into two steps. Firstly we plan the
proof. We look for a strategy, a proof technique, which, with the least
amount of effort, will achieve the proof. Secondly we carry through the
actual details of all parts of the proof, as structured in the first
step above. The strategy to be followed here is that of proof by struct-
ural induction. That is: since the criterion calls for all expressions,
we naturally look for a way of proving it for a finite set of repre-
sentative examples. The selection of these is guided by the structure
(and alternatives) of the syantactic domain abstract syntax, and by the
corresponding structure and alternatives of the elaboration functions.,
The structure of the semantic domains here play a 1lesser rdle (than
might otherwise be the case -- for for example III - IV). The abstract
syntax for expressions determined the major structure of the elaboration
functions, as is natural for denotational semantics definitions. There-
fore we shall now structure the proof according to the cases of alter-
native syntactic categories, and by induction due to the recursive

definition of Ezpr.

Legend:

Thm., abbreviates ‘'theorem', Asm. ‘assumption', Im. '‘lemma‘', QED

'proved’'; the lemma is displayed after the proof.

316

case l: e = mk-Const(k)
1. eval-exprimk-Const(k)](env)
2. mz-eval~expr[mk—00n3t(k)](envz)
3. retr-VAL (k)
case 2: e = mk-Var(id)
0. assumption: eny = retr-ENV(env])

1. eval-exprmk-Var(id)](env)
ml-eval-exprimk-Var(id)](env1)
retr—VAL(Zook-upZ(id,envl))

case 4: ¢ mk-Cond(t,c,a)

0. assumption: env retr-ENV(envl)

1. eval—expr[mk-Cond(t,c,a)](env)

il

i

VDMANDPROGRAMWHNGLANGUAGES

Thm.,
env(id)
look~up(id,envi)
env(id) Im., 0QED.
Thm.

if eval-exprlt](env)

then eval-expriec](env)
else eval-exprlal(eny)
2. m1~eval-expr[mk-00nd(t,c,a)](envz) = if ml-eval-expr[t](env])
then mi-eval-expre](envi)
else mi-eval-exprlal(envi)
3. induction hypothesis Thm.
-1 eval-expr{t](env) ~ ml-eval-expr[t](envi)
<2 eval-exprfe](env) ~ ml-eval-exprlc](envi)
«3 eval-exprla](env) ~ ml-eval-exprla](env])
4. ml-eval-expr[t](envl) ¢ Bool
5. eval-expr{t](eny) = mi-eval-expr[t](envi)
6. subcase 1
-0 eval-expr[t](env) = true Asm,
.1 eval-expr[mk—Cond(t,c,a)](env) = eval-exprlel(env)
.2 mZ—eval-empr[mk—Cand(t,c,a)](envz) = ml-eval-exprlc](envi)
-3 8.1 =28.2 follows from 5.2 QED.
7. subcase 2 -~ as 6, QED.
case 5: e = mk~Lamb(id,d)
0. assumption: eny = retr-ENV(envi) Thm .

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 317

1. eval-expr{mk-Lamb(id,d) Jenv

H]

eval-funlmk-Lamb(id,d)Jenv
2. mi-eval-expr{mk~Lamb(id,d)J(envi) mk~CLOS (mk~Lamb(id,d) ,envl)
3. retr-VAL (mk~CLOS (mk-Lamb(id,d) ,envi)
eval-funlmk-Lamb(id,d)](retr-ENV (envl))

o2 = eval-fun[mk~Lamb(id,d)Jenv

QFED follows from 2. = 5.2

il

et
i

case 6: ¢ = mk-Appl(f,a)

0. assumption: env = retr-ENV(envl)
1. eval-expr[mk-Appl(f,a)Jenv = (eval-expr[flenv)(eval-exprialenv)
2.0 mil-eval-exprlmk-Appl(f,al)l(envi)

.1 = (let clos = ml-eval-expr[f]l(envi),
.2 arg = ml-eval-exprlal(envl) in
.3 applyl(elos,arg))
3. induction,hypothesis Thm.

.1 eval-expr[flenv ~ mi-eval-expr[f](envl)
.2 eval-exprlalenv ~ ml-eval-exprla](envl)

4.0 eval-expr[flenv ¢ FUN > Asm.
(Imk-Lamb(id,d),3env'’ ¢ ENV)
) (eval-expr[flenv = eval-fun[mk-Lamb(id,d)](env)

The above should be expressed in terms of a "recursively defined
predicate”, see [Milne 77a, Tennent 82al]. The idea of that pre-

dicate transpires, however from the above & below predicates.
—-- Considering only a "good" case:

5.0 mi-eval-expr[fllenvl) ¢ CLOS >
.1 (...,3envl! < ENVI)
.2 (env' = retr-ENV(envi'))
.3 Aml-eval-expr[mk-Lamb(id,d)](envi') = ml-eval-expr{f](envi)

6. ml-eval-expr{mk-Lamb(id,d)](envi")
mk-CLOS (mk-Lamb(id,d),envi ')
ml-eval-expr[f](envl)

ot
il

o2

.3 = ¢alos

Il

318 VDM AND PROGRAMMING LANGUAGES

7. applyl(elos,aryg)
10 = appZy](mk-OLOS(mk~Lamb(id,d),env]’),arg)
= (let envi” = <mk-SIMP(id,arg)>"enp7’
ml-eval~exprld](envi”))

N
o2

8. (eval-expr[f]env)(evaZ—expr[a]env)
1= evaZ~fun[mk—Lamb(id,d)](env’)(eual-...f
+2 = Ar.(let env" = env' + [{d o al in |..-exprfajenv)
eval—empr[d]env"){eval—empr[a]env)
3 = (let env" = env' + [id s eval-exprlajenv];

eval-expr[dienv”)

9. env” = retr-ENV(envi") follows from:
.1 retr-ENV(envl') = enp!
<2 A envi" = <mk-SIMP(id,arg)> "envi’
<3 A env” = env' 4 [id > eval-exprlaleny]
4 A arg = ml-eval-expr[al(envi)

.5 A retr-ENV definition

«6 A eval-exprlaleny = retr-VAL (arg)

10. induction,hypothesis:

-1 eval-exprldjenv” ~ ml~-eval-expr{d](envi") Thm .

11. QFD then follows

case 7: ¢ = mk—Rec(g,mk~Lamb(id,d),b)

0. assumption: eny = retr-ENV(envi)
1. evaZ—expr[mk-Rec(g,mk—Lamb(id,d},b)]env
2. = (let env' = env + fg » evaZ~fun[mk—Lamb(id,d)]env] in

eval-expr{blenv!)
3. m]—eval—expr[mk-ﬁec(g,mk-Lamb(id,d},b)](envz)
4. = (let envi' = <mk—REO(g,mk~Lamb(id,d))>“envz in
ml-eval-expr[b](envi’))
5. envl' = retr-ENV(env') follows from:
env + [g = eval-funlmk~Lamb(id,d)Jenv']
<mk-REC(g,mk-Lamb(id,d))> envi
3 retr-ENV(envl)
.4 A retr-ENV(envi')
6. (5) = eval-expr[blenv!

env’

il

it

1
o ? A envl’

A env

il

= retr-VAL(mZ—evaZ—expr[b](ean’)’ QED.

RIGOROUS DEVELOPMENT OF INTERPRETERS AND COMPILERS 319

Lemma
(env=retr-ENV(envl)) > (Videdom env) (env(id)=retr-VAL(Look-upl(id,envl)))

The lemma is (for example) proved by induction on the length of envi. Two
cases form the basis step: the SIMPle and the RECursive header. We leave

the proof as an exercise.

9.7 SUMMARY

We have shown the systematic derivation, from a denotational semantics
definition, of an implementation of a Simple Applicative Language fea-
turing both a block-structure and the procedure concept. The derivation
proceeded in a number of increasingly concrete, more detailed, run-time-
oriented styles, Hence we were able to illustrate how run-time structures
such as DISPLAYs could be orderly developed, eventually proven correct.
The various definition styles were basically those current during the

1960's, and we have thus shown how they relate,

9.8 BIBLIOGRAPHY

Chapter 1 surveys the roots of denotational semantics definitions. Our
example language, SAL, is taken from [Reynolds 72al, as is the next stage

of development.

The first first-order applicatiye semantics was that of LISP1.5 [McCarthy
62bl. (A denotational semantics study of LISP 1.5 was carried out by
Gordon {Gordon 73al.) The 1960's saw further exercises in first-order
functional semantics, notably among which we find the IBM Vienna Lab.
series of PL/I definitions: ULD versions 1,2,3: [ULD66, ULD68, ULD69],
Reynolds' GEDANKEN [Reynolds 70a), and the sketches of Lockwood Morris
[Morris 70al]. Common to all, however, is the fact that none were derived
from other semantic definitions (except perhaps in an intuitive sense
those of [Morris 70al); but marked the only available ‘abstraction'.
The present derivation of SAL.T into SAL.II is essentially that of

CReynolds 72a], the statement of the retrieve functions and the (proof
of the) theorem (sect. 9.6) is ,however, new.

Abstract state machine semantics definitions were first reported by

320 VDM AND PROGRAMMING LANGUAGES

Landin [Landin 64a], and received their full development with the IBM
Vienna Lab. series of PL/I definitions, ULD versions 1,2,3 (Qniversial
Lanuage Descriptions, as expressed in the so-called VDL, Vienna Defini-
tion Language [ULD66, ULD687, ULD69]. Whereas Landin's definition of an
even simpler applicative expression lanquage, AE, than SAL was also
paired with a denotational definition, no attempt was then reported on
proving their 'equivalence', let alone deriving the former systematically
from the latter. Landin's mechanical version was since referred to as
the SECD, §tack/§nvironment/gontrol/Qump, machine specification style,
since the structure was amenable to a variety of language definitions.
The VDL based definitions fuLD6s, ULD68, ULD69, Lauer 68a, Zimmerman
69a, Allen 72a’ too, were free-standing, in that no abstract model was
used as a departure point. The recent PL/I ANS/ECMA standards proposal
[ANST 76a] is basically a derivative of the ULD/VDL style of Semantics,
as also explained in [Beech 73a]. [Lauer 73a - Hoare 74a, Marcotty 76a]
presents examples of abstract state machine semantics, with [Lauer 73a ~
Hoare 74a] proving equivalence among several wvariants of these and

also axiomatically stated versions.

Historically attribute semantics originated with E.T. Irons' work on
ALGOL 60 compilers - and we still find that the technique is mostly used
in compiling algorithm specification, including statically checkable con-
text condition/constraint testing. In contrast hereto: +to specify the
semantics of a source language one usually introduces a parse tree 'walk-
ing' function which in addition to the local attributes, also work on,

that is manipulate, global objects, thus effecting desired computations.

Attribute semantics definitions received their purifying, individualizing
treatment from Knuth, Lewis/Stearns/Rosenkrantz, Wirth/Weber and others;
Irons started the whole thing [Irons 6la, Irons 63a, Wirth 66b, Knuth 68a,
Knuth 7la, Lorho 75a, Neel 74a, Bochmann 76a, Wilner 72a, Kennedy 74a].

The idea of proving correctness "by commuting diagrams", that is by simu-
lating one machine by another was reported by [McCarthy 67a, Landin
72a, Milner 7la-b, Weyhrauch 72a, Morris 73a, Lucas 72a, Goguen 75a,
Goguen 78a], see also [Jones 80c, Ganzinger 80a, Gaudel 80a], and many
others. The subject of compiler correctness proving is currently under
intense study.

The idea of deriving target machine codes from source language specifica-

tions is reported in [Dommergaarad 80a, Wand 80bc, Wand 82b, Mosses 8lal.

