CHAPTER 8

COMPILER DESIGN

The process of developing programs from their specifications is described
in chapter 10. This chapter discusses the special problem of using a de-
notational language definition in the design of a compiler. In particular,
the examples show that a VDM definition can be used to justify a mapping
from the source language to sequences of instructions of the object ma-
chine. Such a mapping can then be used as a specification of the trans-
lation process: the techniques of chapter 10 being applicable to the de-
velopment of a translator. One can see such a compiler design approach as
isolating the use of the semantics to the first stage. As normal with
such proposals, the top-down description is an over-simplification: it
provides a documentation structure rather than a constraint on thinking.
The examples are taken from the language of chapter 4. The proofs are not
given at a very formal level.

This chapter is a rewritten version of [Jones 78c]. Other relevant ref-
erences are [McCarthy 67a, Lucas 68a, Jones 7lal (this last paper con-
tains further references to the early Vienna work in this area), [Jones
76a, Milne 76a, Morris 73a] and [Mosses 76a].

253

254

Introduction...eoee.....

Expression Evaluation
Expression Evaluation
Expression Evaluation
Location References

Location References

VDM AND PROGRAMMING LANGUAGES

CONTENTS

©®© 0026000600000 006e08 00

Language.ssveveveon. .

Target Machine......

Code Sequences.......

Language............

Target Machine......

eeeeeee

COMPILER DESIGN 255

8.1 INTRODUCTION

A definition of a language is written in terms of semantic objects (e.g.
state) which are abstract in the sense that they possess only properties
which are essential to the semantics. The first task in compiler design
is to choose how these objects are to be represented on the target ma-
chine. Just as in conventional "data refinement" the representation is
likely to have extra information, necessary to manipulate data efficient-
ly, which are not present in the abstraction. In the ideal case, the re-
presentation can be related to the abstraction using a "retrieve function"

(chapter 10 contains a detailed explanation of data refinement proofs).

The semantics of the language can be redefined in terms of the chosen re-
presentation. The proof of correctness of this alternative definition is

given by relating it to the original semantics as shown in Fig. 1.

definition o —g i !

o
prog retr] retr

map mo B mo !

Fig. 1l: First Stage of Compiler Correctness

The original definition maps abstract programs into state transformations
(0, ¢! are members of the abstract states). The chosen state representa-
tion (mo, mo' as typical members) is related to the abstract state by a
retrieve function (retr). It is necessary to establish that this diagram
commutes in the sense that the state transformation on the representation
states is the same, when viewed under the retrieve function, as that on

the abstract states. This form of justification should be decomposed to
treat one language "concept®™ at a time.

At the end of the first stage, it is known what transformations are to
be made in the target machine for particular language constructs. The
next task is to choose sequences of target machine instructions which
realize these transformations. Given an understanding of the semantics

of the object machine instructions, the correctness of a translator spec-
ification is illustrated in Fig. 2,

256 VDM AND PROGRAMMING LANGUAGES

This shows that the state transformations which are required on the ob-
ject machine should be identical with the effect of the sequences of ob-

ject machine instructions generated. Once again, such an argument must be
decomposed.

map

prog/’__\nw._A_-—-_.mo ,
object
trans sequence machine
of semantics
instructions

Fig. 2: Translator Correctness

The understanding of the object machine would not normally have to be re-
corded in a complete formal semantics. However, for an unconventional ma-

chine, it may be necessary to record assumptions on its architecture in
terms of a state.

As with most descriptions of "top-down" design, the above is a simplific—
ation. It would clearly be unwise to choose a representation of the state
without considering the instruction set of the target machine. Such a
lack of foresight could result in choosing transformations which couid
only be realized inefficiently on the object machine. Clearly, a compiler
designer will often sketch "instruction sequences” for sample programs
as one of the first attempts to understand the translation problem. The
structure described above is, then, one for presenting clear documenta-

tion (including correctness argument) rather than a constraint on think-
ing.

Compiler design documentation thus breaks into three major parts. The de-
sign of the object time environment solves the problem of representing
abstract state objects (e.g. mappings) on the chosen object machine. This
"object machine" may be an extension of the hardware to include commonly
required service routines. The choice of the (extended) machine instruc-
tions to achieve the required transformations gives rise to a transla-
tor specification. The development of the translator itself is not cov-
ered here but is discussed in Chapter 9,

COMPILER DESIGN 257

The program as so far described would only be practical Ffor very small
languages. For an actual programming language, it is essential that the
design is decomposed so that different "language concepts” can be treated
independently. This desirable separation is not fully formaiized. However,
the monolithic proof of [Jones 76a] has been decomposed to consider the

following concepts separately:

i) Expression evaluation
il) Location reference
iii) Environment handling
iv) Statement sequencing
v) Input/Output

The first of these concepts has been described by several authors and is
presented as the first example below. The example gives the opportunity
to discuss the topic of different forms of optimization. Location refer~
ence and Environment handling have often been grouped together as in
[Henhapl 70a]. The former concept provides the second example in this
chapter and shows how an implementation might resolve non-determinacy in
the specification. Environment handling (or "reference to automatic vari-
ables") has been extensively studied by the Vienna group (see [Lucas 68b,
Henhapl 70a, Jones 71la]). Statement sequencing is discussed in [Zimmerman
70a] & [Bjdrner 78al. Input/Output -- as always the poor relation -- is
not normally the subject of papers because of the reliance on details of

the chosen operating system interface.

8.2 EXPRESSION EVALUATION - LANGUAGE

The denotational semantics of expression evaluation avoids the issue of
allocation of space for intermediate values. This is quite proper in the
semantics, but it is an important issue which must be resolved in the
design of the object time state. The parts of the language of chapter

4 which are of concern here are given by the following abstract syntax:

Assign 2 Varref Exzpr

Expr = Infizexzpr | Rheref

Infixexpr :: FExpr Op Expr

op = Intop | Boolop | Comparisonop
Rhsref :: Varref

Varref ceI1d [Exprt]

Sealartype = INT | BOOL

258 VDM AND PROGRAMMING LANGUAGES

ing this language concept are being used. The detailed list of operators
is not discussed. Thisg relies on the tacit assumption that the target
machine has an adequate set of instructions. If, for example, there were
no division instruction, the control of temporaries for the expanded code
would probably have to be considered here. Another "interface" to the ex-
pression evaluation concept is the calculation of addresses for elements
of arrays (see below): although this can be set aside, the implications
for the use of temporaries must be considered here., It is for this reason

that the use of array references on the left of assignment statements is

included in the language fragment.

The relevant semantic objects (again taken from chapter 4) are;

STATE r: STR:STORE ...

STORE = SCALARLOC # [SCALARVALUE]
SCALARVALUE = Bool | Int

ENV = Id % DEN

DEN = Loc | ...

Loc = ARRAYLOC | SCALARLOC
ARRAYLOC = Nat" ? SCALARLoOC*

Elements of ARRAYLOC are one-one mappings and their domains form a rect-
angle:

rect: Nat® o (Nat*)eset
The relevant semantic functions are:

Mimk-Assign(vr,e)](p) A
def 1 : Mloclvr](p);
def v : Mlel(p);

STR ¢ = ¢ STR + [I » p]

M[mk~Infixexpr(el,op,eZ)](o)
def vi1 : Mlell(p);
def v2 : M[e2](p);
return(Mlop](vi,v2))

fie

M[mkahsref(vw}](p} A (def 1 : Mloclvr](p); contents(l))

COMPILER DESIGN 259

Mloc[mk-~Varref(id,sscl)](p) A

if sscl=nil then return(p(id))

else let aloc = p(id) in
def esscl : <M[ssell1]](p) | teindssscl>;

if =(esscledomaloc) then error else return(aloec(esscl)))

contents(l) A def v : (¢ STR)(1);

if v=nil then error else return(v)

There are two places above where a program can be in error in a way
which cannot be detected statically. In both cases, the design chosen
below does not detect the error. This is a design decision and has noth-
ing to do with the development method. Those who consider the decision
too dangerous to be acceptable might choose to outline an alternative

design.

8.3 EXPRESSION EVALUATION - TARGET MACHINE

The representation of store (as a byte string) is discussed in the sec-
ond example below. Here this problem is avoided by showing the STORE in
its abstract form. What cannot be postponed is providing space for the
temporaries which are implied by let vi in the semantics. In a typical
von Neumann computer such temporaries are most conveniently stored in
registers. The initial development assumes that there are "enough" such
registers and the problems posed by a paucity are discussed as optimiza-
tion. With some care in the description, it is possible to leave open the
possibility that the same registers are used for other purposes (e.q.
address calculation). The use of registers is, however, assumed to be

on "stack" basis.
The state of the target machine is then:

STATEy :: STR: STORE ...
REGS: (Regno wm SCALARVALUE)

In order to defer decisions about address calculation, a function is as-

sumed which computes locations given store references and registers:

§r: STOREREF x (Regno it SCALARVALUE) - SCALARLOC

260 VDMANDPROGRAMNHNGLANGUAGES

In a machine with registers and store there are likely to be a range of
instructions. Taking something like an IBM System/360 as a model, there
might be register to register, register to store, and store to store

instructions.

As is observed above, the specific instructions available have a great
influence on the way in which the (alternative) definition based on
target machine states is defined. Had there been three address instruc-
tions available, a different transformation would have been defined.
The case distinctions given here are rather coarse and give rise +to
somewhat pessimistic code; the subject of optimization is considered

below. A function for choosing new registers is defined:

newreg: Regno-set - Regno

newreg(rs)=r > (pepg)

- cf. [Jones 76al for all cases):

Mc[mk-Assign(vr,e)J(G,rs) A
def (ref,re’) : MCZoc[vr](G,rs);
if SCTP[vr] = INT then let nr = newreg(rs') in
MCtgi[e](G,nr,rs');
def 1 : sr(ref,g REGS) ;
STR := ¢ STR + [1 & (¢ REGS)(nr)]

else ...

MCtgi[mk—Infixexpr(el,op,eZ)](d,r,rs) A
Let nr = newreg(rsy{r}) in
MCtgilell(68,m,rs);
MCtgile2](6,nr, rsu{n));
REGS := ¢ REGS + [p MLopl((e REGS)(7r), (¢ REGS) (n»r))]

MCtgi[mk~Rhsref(vr)](6,r,rs) .y
def (ref,rs’) : MCZoc[vr](G,rs);
def 1 ! sr(ref,c REGS);
REGS := ¢ REGS + [p » contents(l)]

These functions use a dictionary which provides statically determinable
information about identifierss

COMPILER DESIGN 261
§ € DICT = Id g DICTINF

The retrieve function which relates the semantic objects here with those

of the definition is of type:
retr: DICT x STATEm + ENV x STATE
with:
retr(8,om) A (retrENV(8,REGCS(om)),retrSTATE (om))

retrENV: DICT x (Regno i SCALARVALUE) - ENV
retrSTATE: STATE, + STATE

The details of these functions need not be given here. The overall re-

sult to be shown for assignment statements is:

((p,0) = retr(6,om)) > (let om' = MC[asen](6§,rs) (om) in

let o' = Mlassnl(p)(a) in

(o' = retrState(om’)) A regs(rs,om,om’))

where rege is a predicate which checks that two states agree over a
given register set:

regs(rs,om,om') = REGS(om)|rs = REGS(om')|re
This predicate is used to define the stack nature of register use.
Consulting the ¥ and MC semantics for assignment statements, it is clear
that something must be assumed about the computation of locations. In
addition to the obvious properties requiring that Fig. 1 commutes and

the location "corresponds" the overall proof requires that no registers
are "freed":

{p,0)=retr(8,om) > (let (om',ref,rs')

= MClocl[vr](8§,rs)(om) in
let (o', 1) = MloclvrI(p) (o) in
o' = retrSTATE(om') A re < rs' A
1 = sr(ref,REGS(om') | ra’) A regs(re,om,om’))

This assumption documents one of the interfaces of the expression eval-

uation language concept. A related property about expression evaluation

262 VDM AND PROGRAMMING LANGUAGES
itself is required to prove the overall result about assignment. T is:

((p,0)=retr(6,om) A ~(res) a (SCTP[e]=1INT)) >
(let (om’,vm) MCtgilel(8,r,rs) (om) in
let (o',v) Mlel(p)(g) in

o’:retrstate(om’) A v=REGS(om’) (») A regs(rs,om,om’))

i

i

From this, and the fact that:

rs’ > ng

the assignment result follows without difficulty.

The proof of the required result about expressions can be performed by
structural induction over the syntactic structure of Expr. For elements

of Infizexpr, the proof relies on the Preservation of the registers given
the hypotheses:

~(rers)

=(nr ¢ rsu{r})
and the type matching which results from the context conditions.

For elements of Rhsref, the assumption about MCloe and an obvious pro-
berty of retrSTATE are requireqd.

As indicated above, the transformations shown, and thus the implied code,
are "pessimistic". With small expressions the superfluous "LOAD" instruc-

tions becone very wasteful. Consider the following example:

MClx:=a+b](...) A
(def refx : MCloclxz](...);
Qgi refa : MCZoc[a](...);

def la : sr(refa, ¢ REGS);

REGS "= ¢ REGS + [r b contents(la)]

def refb : MCloelb](...);

def 1b ¢ er(refb, ¢ REGS);

REGS = ¢ REGS + [npr contents(lb)];

REGS ‘= ¢ REGS + [» o (¢ REGS) (r)+(c REGS) (nr)];
def 1z : 8&r(refx,c REGS);

STR

It

¢ STR + [1 & (¢ REGS)(r)]

COMPILER DESIGN 263
obviously the sequence ecorresponding to:

RS(LOAD ,nr,refb); RR(4DD,r,nr)
should be combined to use:

RS(ADD, r, refb)
This is an example of a class of optimization which can be defined in a
natural way over the structure of a program. The necessary case distinc-
tion can be defined as follows:

MCtgilmk-Infizexpr(el,op,e2)](6,r,rs) 1y

MCtgilell(6,7r,rs);

if e2eInfixexpr then

(let nr = newreg(rsu{r}) in

MCtgile2](6,nr,rsuir});

REGS := ¢ REGS + [rl » Mlop]((c REGS)(r1), (e REGS)(r2)1))]1)
else

(def (ref,rs') : MClocle2](dict,rs);

def 1 : sr(ref,c REGS);

REGS := ¢ REGS + [r » M[opJ((c REGS)(»r),(ec STR)(L1))])

There are a number of examples of this class of optimization: [Jones 76a]
shows a similar approach to handling comparison in conditional statements

and the ubiquitous: T /= x + ¢ type of assignment could be handled in

the same way.

There are other classes of optimization which are better handled by an
extra, equivalence preserving, pass. An example of this class is the al-
location of actual registers to the "virtual" registers allocated by MC.

The development of such translator structure is discussed in Chapter 9.

8.4 EXPRESSION EVALUATION -~ CODE SEQUENCES

The previous section redefined the semantics of (a part of) the language
on a more baroque state. The correctness argument shows that this and the
original language semantics correspond. It is now possible to proceed to
the step invisaged in Fig. 2. In this simple example the transforma-

tions match obvious machine instructions. Thus:

264 VDM AND PROGRAMMING LANGUAGES

Instr = RR | RS | 55

RR *: (LOADREGISTER | op) Regno Regno
RS #: (LOAD | STORE | op) Regno Storeref
SS 2 (MOVE | ...) Storeref Storeref

tions is given by:

MC[mk-RR(op,r1,r2)] A
if op = LOADREGISTER then

REGS := ¢ REGS + [r] (¢ REGS)(r2)]

else if op « Intop then

REGS := ¢ REGS + [r7 MLop]((c REGS)(r1),(c REGS)(r2))]
else

MC[mk-RS(op,r,sref)] A
def 1 : sr(sref,g REGS) ;
tf op = STORE then STR := ¢ STR + [l » (¢ REGS)(n)]

else if op = LOAD then REGS := ¢ REGS + [p & contents(l)]
else ..,

It is a straightforward task to rewrite to M semantic
rations. (But the reader

S using these ope-
should bear in mind the warning given above

that a careless choice of transformations may only be realizable by very

inefficient sequences of instructions.) For example, the final version

of MCtg becomes:

Ttgi[mk~1nfixexpr(el,op,eZ)](d,r,rs) A

MCtgi[elJ(G,r,rs);

if e2 « Infizexpr then
(let nr = newreg(rsylr}) in
MCtgi[eZ](G,nr,rgu{r});
MCImk~RR(op,r,nr)])

else
(def (ref,rs’) : MClocl[e2](68, rs);
MC[mk-RS(op,r,ref)])

The correctness of this transition Ttgi can be checked by expansion to
agree with MCtg1{.

Having reached the stage of machine-like operations, it is now possible

COMPILER DESIGN 265

to reinterpret the T functions: rather than mapping programs into func-
tions, they can now be viewed as mapping into sequences of instructions.
Tt should be observed that there are two sorts of case distinctions made
in the 7 function. The static distinction like e2eInfizexrpr and dynamic
distinction like the value of the Boolean expression in a conditional
statement. The static distinctions depend on the text alone and govern a
form of macro-expansion into the required instruction sequences. This
view results in a specification of a mapping from (abstract) programs

to sequences of instructions.

The total translator should, of course, not rely on programs being given
in a convenient tree form. The task of relating the forms to something
like "reverse Polish" is a simple case of data refinement. Suppose that

the concrete syntax for the internal form of expression is:

Texpr = TIinfexzpr | Ivarref
Iinfizexpr ::= TIexpr Texpr Op
Ivarref = e

The relevant retrieve function:
retrExpr : ITexpr - Expr

This can be defined by a standard stack algorithm. In order to sketch

how this would work a function
convert: (Ivarref | 0p)* x Ezpr* - Expr

is defined which must initially be called with a Ffirst argument which
satisfies the concrete syntax of Iexpr and a second argument which is an

empty list.

convert(tokenl, stack) A
if hdtokenleOp then
let e2 = hdstack in
let el = hdtlstack in
convert(ﬁztokenl,<mk—Expr(el,ﬁgtokenl,ez)>‘££££stack)
else

convert(ﬁi#oken2,<ﬁg tokenl>"stack)

If the actual infix expressions were to be taken as input, one of the

266 VDM AND PROGRAMMING LANGUAGES

"two stack" algorithms could be used o express the retrieve function,
In this case there would be more than one representation for each ab-
stract tree. ¥or an indication of how this method of documentation an

interface works for a large language 1like PL/I, see {Weissenb8ck 75a].

8.5 LOCATION REFERENCES - LANGUAGE

—= = AUN REFERENCES S22euaby

cerns the computation of locations. 1t illustrates both data refinement
and the resolution of non-determinacy in the semantics.

The part of the language of interest concerns the declaration of vari-

ables. The relevant abstract syntax definition from chapter 4 is:

Blocxk 2ios=delm:(Id g Type) ...
Type :: Sealartype [Expr+]
Sealartype = INT | BOOL

The relevant semantic objects are:

STORE
ARRAYLOC

i

SCALARLOC @ USCALARVALUE]
vat® o scararcoc

It

where members of ARRAYLOC are one-to-one mappings whose domain forms a

rectangle of natural numbers. The relevant semantic functions are:

MImk-Block(delm, cee)J(p) A ...
def o' : p + ([id o Mldelm(id)](p) | idedomdelm] v ...);

always (let scloes = ... in
STR = ¢ STR \ seloes; ...) in ...

M[mk-Type(sctp,bdZ)](p) A
1f bdl=nil then (def leSCALARLOC - dom ¢ STR;
STR = ¢ STR y [1 »» nill;
return(l))

else (def ebdl : ceog
tf <o then epponp

else (let aleARRAYLOC §:t: domal = rect(ebdl) A
is—disjl(<nnga2,d0m eSTR>J ;
STR = ¢ STR v [sel » nil | sclerngall;

returnfal)))

COMPILER DESIGN 267

Mloelmk-Varref(id,ssel)](p) A
if sscl=nil then return (p(id))

else (let aloec = p(id) in
def esscl : <M[sscll[i]](p) | icindssscl>;

if -(esscledomaloc) then error else return(aloc(esscl)))

Locations are constrained only in some respects by this ¥ semantics. Care
is taken in the semantics of Type to define a non—-deterministic choice of
SCALARLOCs. Although particular implementations will presumably provide
a deterministic algorithm for selecting locations, the algorithm is not
precisely determined by the semantics. (Strictly, this has 1lifted the
whole definition from denotations which are functions to relations as de-
notations. The fact that the actual choice does not affect the outcome of
a program could be formally proved.) The advantage of this freedom can
now be felt. Here the chosen implementation reuses locations in a "stack"
style; alternative implementations could always select new locations or
ot could perform dynamic garbage collection. Fach such implementa-
tion could be shown to be a different specialization of the choice given
in the M semantics. If, on the other hand, the semantics had prescribed
a choice function, it would be necessary - for some implementations -

to become involved in a cumbersome equivalence proof.

8.6 LOCATION REFERENCES - TARGET MACHINE

The standard von Neumann machine architecture does not support mappings
as general as those used in "Store". The representation chosen here is
of a byte string. Furthermore, not all Sealarvalues require the same
amount of space. Here, integers are allocated four bytes (aligned on a
four-byte boundary) and Boolean values one (whole!) byte. Arrays are
mapped so that left-hand indices vary most rapidly. Array locations are
represented by a base value and a list of multipliers. The bytes are
used as a stack with a stack pointer (PTR) to indicate the next, unused,

byte. Scalar locations are modelled by natural numbers which, in machine

terms, are indices into the byte string.

By defining only constraints on the use of store (beyond the stack point-
er), it is possible to have freedom for other information to be inserted
in the stack. This freedom could be used to store a "display" and/or a
"static chain" (cf.[Henhapl 70a]). Another implementation decision mwade

here is to ignore the checking of subscript range. The semantics defines

268 VDM AND PROGRAMMING LANGUAGES

it to be on error if the subscript is out of bounds -- this leaves an im-
plementation free to do as it pleases. (A different implementation which

avoided the danger of computing addresses outside on array could equally

well be proved correct.) Thus:

STATE, :: STR: Byte® ...
PTR: Nat

SCALARLOC = QNat

ARRAYLOC),, :: e-base: Nat)

s-multe:Nat*

There are obvious constraints which prohibit variables from overlapping.
In a normal data refinement proof (cf. chapter 10) the next step would
be to relate the representation to the abstraction by a retrieve func-
tion. In the current example, this is not possible because the represen-
tation lacks some of the information in the abstraction. In particular,
the maximum bound information is not stored with the values. This in-
formation would have been required only to support the elided test. There
are two possible ways of handling such a problem: TJones 76a] followed
[Lucas 68a] in using "ghost variables". Here, a relation between ab-

straction and representation is used rather than a retrieve function:

Rstore € (SCALARLOC =t SCALARVALUE) x Byte+
Rstore(sm,bl) = sm = [1 value(l,type(l),bl) | ledomsm]

type: SCALARLOC - Scalartype
value: SCALARLOC x Scalartype x Byte* + SCALARVALUE

Ealoc(arZoc,mk-ArrayZocm(b,mZ)) =

arloe = [ggel v arref(b,ml,ssecl) | sscledomarloe]
arref(b,ml,seel) = b + sum(1,lenml ml[i]+ssecll1i])
The semantics, expressed in terms of STATE, etc. is:
MCImk-Block(delm, ...)](p) A

o s o

def oldp : ¢ PTR;

def o Dp + ({id w MCldelm(id)](p) | tdedomdelm] v ...);
always (PTR := oldp; +..)

in (e..)

COMPILER DESIGN 269

MC[mk-Type(sctp,bdl)](p) &
if bdl=nil then if sctp=BOOL
then (def leNat s:t: 1 > ¢ PTR;
PTR := [+1;
return(l))

else (def leNat g:t: 1 > ¢ PTR A mod(1,4)=0;
PTR := 1+4;
return(l))
else (def ebdl : ...;
if sctp = BOOL then (def leWat srt: 1 > ¢ PTR ~ I;
let ml = mults(ebdl,1) in
PTR = I+arref(1,ebdl,ml)+1;

return mk-4Arrayloem(l,ml))

else ...)

Notice that the check on valid bounds has been omitted. Furthermore,
there should strictly be a check on the exhaustion of store - this has

not been shown here. The other functions are:

mults(ubdl,m) A if len ubdl=1 then <m>
else (let tml=mults(tlubdl,m) in
<hdtlubdl * hdtml> " tml)
fors

MCloe[mk-Varref(id,ssecl)](p)
in the scalar case, the address must be located and the array case the
base address and multipliers used by arref to compute the address of the
element. The addresses and multipliers would actually be located via a

"display".

The MC semantics can be seen to conform to the constraints in the M se-

mantics from the following observations:

- locations. chosen beyond the stack pointer (PTR) are disjoint Ffrom

existing locations
- consistency (non-overlap etc.) is preserved

- array locations correspond (under Raloec) to one:one mappings with

rectangular domains.

