CHAPTER 5

MORE ON EXCEPTION MECHANISMS

This chapter concerns the specific concept of exception constructs such
as goto statements. The material is of narrow interest (the main point is
the statement of a number of equivaleunce theorems) and many readers might

choose to omit reading this chapter.

There are two ways of defining exception-like constructs in the denota-
tional style: the Oxford group use so-called ‘continuations'; chapter 4
describes the ‘'exit' approach mostly used in VDM. This difference is
perhaps the most substantive issue between the two groups. This chapter
defines one 1language in the most extreme forms of the two styles and
proves that the two definitions are equivalent. In fact the proof given
here and the discussion in [Bjgrner 80b] show that the distinction is not
as absolute as might appear at first sight. It should also be mentioned
that VDM is not restricted to the exit style.

This chapter is a rewritten version of [Jones 78b] and uses different

proof steps. Other relevant papers are [Reynolds 72a] and [salie 80a].
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5.1 INTRODUCTION

The difficulty of providing a denotational definition of the ‘goto’
statement is that its effect cuts across the phrase structure of the lan-
guage. The denotational rule, however, requires that ouly the denotations
of components are to be employed in determining the denotations of com-
pound phrases. The resolution of this difficulty lies in choosing appro-
priately rich domains as denotations. The Oxford approach 1s to use
functions of higher order than normal transformations. These Ffunctions
between transformations ("continuations™) are explained below. Nothing
in the Vienna approach precludes the use of continuations. But, hased
on earlier work, the Vienna group have preferred to use the ggiﬁ model
(explained in chapter 4) where this is adequate. exits are, in fact,
weaker than continuations and one of the justifications of this choice

is Strachey's own principle of "parsimony in definition tools".

This chapter is built around a small language fragment. The language has
been chosen to illustrate the main points at issue while keeping the
proof relatively straightforward. Definitions using both exits and con-
tinuations are given and a proof that the two definitions are equivalent
is outlined. The key to this proof is the intermediate definitions used.
These are interesting in their own right since they show that there is
not only one difference which distinguishes the exit and continuation mo-
dels. The analysis of these subsidiary decisions shows different possibi-

lities for definitions. Other variations are considered in [ Bidrner 80b].

Either definition approach has been shown to be capable of defining the
major high-level languages like ALGOL 60 and PL/I. The choice between
the approaches must, therefore, be made on other, pragmatic, grounds.
Several factors relevant to this choice are pointed out in the course of

this chapter.

5.2 THE LANGUAGE

The problems of escape mechanisms in general can be well illustrated by

the 'goto
of the essential features of that of chapter 4. What is a 'block' in the

statement. The language used for the comparison is a selection

full language is called here a ‘compound' statement because the declara-
tion of variables is not treated. 'Goto' statements which enter phrase

structures are not allowed in the language but the definition tool re-
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quired to define this is illustrated in the proof. The proof in [Jones
78b] does include ‘cue functions' in the language definition. Labels

are assumed to be unique throughout the program. The abstract syntax is:

Program rr Stmt

Stmt = Compound | Goto | Assign
Compound r: Namedstmt™

Namedstmt 2 [Id] s-body:Stmt

Goto croI1d

Assign :: Varref Expr

The context conditions are as 1in Chapter 4 (mutatis mutandis) with the
additional constraint that labels are unique throughout the program.

Use is made of:
dlabs: Namedstmt™ - Id-set

A new function to collect all (rather than just the direct) labels is
defined: ‘

lLabs: Stmt - Id-set
labs[mk~Goto(id)]
Zabs[mk-Assign(uf,e)]
labs[mk~Compound(nsl)]
contndli[nsl]

A {id}
A {3}

A
U gﬁigﬁ{Zabs[s—body(nsl[i])]lieéﬁéﬁnsl}

The function from chapter 4 which selects a portion of a list based on
an identifier is extended to cover labels which are not direct. The re-
sult is a sub-list of the argument where the given identifier is in the
(indirect) labels of the head of the list:

sel: Id x Namedstmt® - Namedstme*
pre-sellid,nel] = idelabs[nsl]

The semantic definition given in this section follows that in chapter
4. The domain STATE can be taken as given and its detailed structure
can be hidden behind a function:

assign: Varref x Expr - STATE 3 STATE

The advantage of insisting that 1labels be globally unique 1is that no
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Aetivation identifiers are required in the definition. Thus necessary

transformations (called Xtr to 1link them to the exit definition) are:
Xtr = STATE 3 STATE x [Id]

The semantic functions are derived from those in chapter 4 in an obvious
way. Once again, X is used to identify the definition approach. The def-
inition given here uses the exzit combinators. These are expanded and the

types of all functions shown explicitly in the next-but-one section.
X[mk-Program(s)] A Xls]

X[mk-Compound(nsl)] A
tize [id » XLl[sellid,nsl]] | idedlabslnel]] in Xllnsl]

Xll<>] A Isryrg
Xllnel] A X[s-body(hdnel)];X1[tlnsl]
X[mk-Goto(id)] A exit(id)

X[mk-Assign(vr,e)] A assign(vr,e)

It is a property of this definition that the only "goto" exits which are

not resolved by X are to non-local labels. Thus:
(X(el(a) = (a',a)) > ((a=nil) v ~(aelabsls]))

It follows from the context condition, which requires that all labels
are defined, that:

(X{mk-Program(s)J(s) = (o',a)) = (a=nil) v -(aelabs[s])

The fact that all labels are handled in this way could be formalized by
writing:

X[mk-Program(s)] A (ANo,a.0)°x[e]

reducing the Xtr to an object in:

STATE 5 STATE
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One of the advantages of an exit-style definition is the way in which
the effect of exits is automatically 1localized. It is clear that any
compound, with only local branches, has one of the simpler transforma-—

tions as its denotation.

A further effect of the use of erit combinators is that the impact of

the ‘'goto

semantics' for ALGOL 60 ([Allen 72a]) shows how the use of the exit con-

statement on the definition is limited. An early 'functional

cept can permeate a complete definition without the use of combinators.

5.3 CONTINUATIONS

The alternative and more widely used approach to the definition of ex-
ception constructs is to use ‘continuations'. These were invented inde-
pendently by F.L.Morris [Morris 70a] and C.Wadsworth [ Strachey 74al. As
with the exit approach, continuations resolve the problem of conforming
to the denotational rule by complicating the domain of the denotations,
Technically the idea is to move from simple transformations:

TR = STATE 5 STATE
to the higher order:
TR - TR

In order to clarify which definition method is being used at any time,
this chapter uses:

CONT = STATE 5 ANS
CTR = CONT - CONT

The use of the answer domain (4NS) is explained in the proof - the reader
can equate it to STATE in this section.

The idea behind these higher-order functions is that the "“total trans-
formation" is defined in the context of a "remaining transformation".
Thus:

C: Stmt -+ CTR
cls]{e} S

fje>
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(Parameters of continuation type are traditionally enclosed in braces
rather than parentheses - this aid to readability 1is preserved here.)

Both © and ' are members of:

STATE 3 STATE
The meaning of s, where & is to be done next, is ©'. 'Goto' statements
will actually be given a denotation which shows the passed continuation

being ignored; they do, however, require denotations for labels to be

stored in an environment:
ENV = Id & CONT
Thus the actual semantic functions (with ¢ for continuation) become:
c: Stmt - ENV » CTR
Clmk-Program(s)] A
let p = [id » Crest[id,s](p){ISTATE} | idelabs(g)] in
Clellp) {Igpapp}
Which is of the type:
Program -+ STATE 3 STATE
Then:
Cllnel]

9
C[s—body(@énsl)](p){Cl[zknsl](pJ{9}}

Clmk-Compound(nsl)]
Cll<>](p) {8}
Cllnsl](p) (8}

= > e

which is of type:

Named-stmt™ > ENV -+ CTR

Clmk~Goto(id)I(p) {8}
Clmk-Assign(vr,e)](p) {0}

A p(id)

A ©%assign(vr,e)

The function which is used to derive the continuation for the "rest" of
the execution from a particular label is only used for compound state-

ments:
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Crest[id,mk«Compound(nSZ)](o){9} A
if idedlabs(nsl) then Cllsel(id,nsl)](p) {0}
else (let rl = sel(id,nsl)in

Crest[id,s~body(@ér1)](p){CZ[ELPZ](D){G}})

Which is of type:
Id x Compound + ENV + CTR

The reader who finds this whole definition back to front is to be sympa-
thized with. The proponents of the continuation approach will offer re-

assurance that this way of thinking eventually becomes natural.

Once the initial difficulties of adjustment are overcome, there remain

some concerns about continuation definitions.

The label denotations stored in the environment all represent the effect
of starting execution at that label and continuing to the end of the
whole program. The result of this is that the denotation of a block with
no non-local 'goto' statements is still of type:

ENV ~ CTR

Since the environment is computed at the program level, the denotation
is not closed in the way it is with exits (nil label returned). What
appears to be lost in the definition is the fact that the continuation
used to develop the denotations for the labels in a block is the same as

the continuation for statements in the block.

There is another potential problem which does not manifest itself in this
language.,

The need for epilogue type action is discussed in chapter 4; it is clear
how such transformations are composed with the denotation of a block
using the exit approach: such transformations do not fit naturally with
the continuation approach. The difficulty is that the denotation of a
label (in so far as the number of blocks to be closed is concerned) has
to vary from one block to another. Although somewhat messy, it is in fact
possible to compose such actions onto label denotations even in a contin-
uation definition (see [Bijprner 80b]l).
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5.4 PROOF PLAN

The preceding two sections each offer definitions which the remainder of
this chapter shows to be ‘equivalent'. Formally the result is that the
X and the M semantics give the same transformation (as the denotation)

for any {valid) program.

Careful analysis of the two definitions shows that the overall dissimi-—

larity can be divided into three areas:

(i) In the continuation definition, the denotation which is associated
with a label via the environment reflects the effect of starting
execution at that label and continuing to the end of the entire
program. The exit definition, however, provides denotations for
labels which reflect only the transformation corresponding to the
execution from the label to the end of its corresponding compound

statement.

(ii) The mode of generating the denotations in the two approaches dif-
fers: continuations are built up from a remaining continuation
composing "backwards"; in the exit definition the composition 1is

"forwards" from the label.

(iii) The continuation definition passes the denotations of labels in the
environment whereas the meaning of labels is used in the ezit def-
inition (by the tize combinator) at the level of the compound state-

ment.

The proof method to be used is to make these changes singly and to show
that each of the definitions is equivalent in the required sense. The
overall result obviously follows by transitivity. The first contribution
to making the semantics appear more similar is to expand the combinator
definitions used in the exit version. Thus what follows is simply a re-

writing of the exit definition expanding the combinators of chapter 4.
Xlmk-Program(s)] A X[s]
As indicated above, this can be shown to give a result of type:

STATE 5 STATE x {nil}
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The main semantic functions are of type:
X: Stmt -+ Xtp

X[mk-Compound(nsl)] A

let p = [id » Xifsel(id,nsl)] | idedlabs(nsl) ] in
let r = Ao,a.if aedomp then r(pfa)(s)) else (o,a) in
r°Xil/nsl]
X1l[<>] A Ao.(c, nil)
XlInsl] A (Xo,a.if a=nil then XU tlnsll(c) else (5,a))o

¥l s~body(hdnel)]

X[mk-~Goto(id)]

fle>

Ac.(o,id)

X[mk~Assign(vr,e)] A Ao.(assign(vr,e)(o),nil)

5.5 EXITS HANDLED GLOBALLY

One of the arguments used in favour of the exit style definition is the
way in which the effect of ‘goto' statements can be localized to the
conmpound statement in which the label occurs. Tt is, however, possible
to write a definition in which the handling of exits is done globally.
This is a first step towards the overall equivalence and also provides
an opportunity to illustrate 'cue-functions'. The name cue has Tbeen
used because these functions are prompted to begin execution at a par-
ticular label. Here they are used to create a transition (of Y¢r) from
the label to the end of the whole program. In general, cue-functions can

be used in defining languages which permit 'goto' statements to enter
phrase structures.

The F semantic functions given here are of the same types as the corre-

sponding X functions.

Elmk-Program(s)] A
let p = [id » Feuelid,s] | idelabs(s)]
let r = Ao,a.if aedomp then r(o(a)(s)) else (o,a)
r°{s)

s s
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Elmk~Compound(nsl)] A Ellinsl]

El[<>] A Aoolo,nil)

Ellnsl] A (No,a.if a=nil then El[tinsl](q)
else (0,a))°E[ s-body(hdnsl)]

Elmk-Goto(id)] A Ao.(o,id)

E[mk-Assign(vr,e)] A Ao.lassign(vr,e) (o), nil)

Fcuelid,mk-Compund(nsl)] A
if idedlabs(nsl) then Ellsel(id,nel)]
else (let rl = sel(id,nsl) in
(No,a.(if a=nil then EL[tlrl](q)
else (0,a))e
Ecuelid, s-body(hdrl)]

This definition can be shown +to be equivalent to the ¥ semantics.

The first step is to relate the two definitions of Compound statement
semantics by a lemma. The intention is to show that the ¥ semantics are
the same as the F semantics providing an extra ecit trap is placed around

the latter. This relies on a hypothesis about the p argument used in the
trap:

(Videlabe(epd))
(p(id) = FEeuelid,epd]) =
(let r = Xo,a.(if aecdomp then »(p(a)(s)) else (v,a)) in
r°Elepd])
= X[ epd]

This lemma can be proved by induction on the depth of nesting of Compound

statements. It is an immediate corollary of the lemma that for (valid)
Programs:

Elmk-Program(s)] A X[mk-Program(s)]

This follows since the hypothesis of the lemma is discharged by the def-
inition of p in F.
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5.6 CONTINUATIONS WITHOUT AN ENVIRONMENT

The next step brings in a continuation-like treatment of 'goto' state-
ments. That is, the second difference listed in the section on "Proof
Plan" is resolved in the direction of building up label denotations by
composing from the back. In order to achieve this an extra (continuation)
argument has to be passed to the D semantic functions. In this defini-
tion, however, label denotations are not passed in an environment. Fur-
thermore, the objects which are passed and returned are not "normal" con-
tinuations: the freedom of defining the result of CONT to be 4ns is used
here to give:

D: Stmt -+ XTR + XTR
Thus:
Dlmk-Program(e)] 4
let r=Ao,a.if aclabs(s) then r(Deuelid,s]){ro.(c,nil)} (o)
else (o,a) in

reD(s){ro.(o,nil)}

DEmk-Compound(nsl)J{e} A Dl(nsl){e}

Di[<>] {8} A e
Dllnsl]{s} A Dl s-body(hdnsl)]{Dl[tinsl]{6}}
DImk-Goto(id)] (8]} A Ao.(o,id)

DImk-Assign(vr,e)]{6} A Ac.8(assign(vr,e)(c))

Deuel id,mk-Compound(nsl)]{e} 1y
if idedlabe(nsl) then Di[sel(id,nsl)]{e}
else (let rl = sel(id,nsl) in
Deuelid, s-body(hdrl)I{Dl[t1r1]{0}})

This definition can now be shown to be equivalent to the F semantics of
the last section. As with the proof in that section, it is convenient
to separate a lemma. This lemma states that the Dl semantics with an

(continuation) argument @ is equivalent to EI with & used after it in the
case of normal exit:
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(Ao,a. if a=nil then ©(0) else (0,a))°Elinsl] = Dllnsl]{e}

This lemma is again proved by induction on the depth of compound state-
ments. But, since a subsidiary induction is required, the basis 1ig
sketched here. For the basis, it is assumed that no elements of nsl are
compound statements. It is then possible to use induction on the length

of nsl. If nsl is empty:

(Ko,aaéf_azgil then 8(c) else (0,a) JORL[<>] = Ao.(8(c))
= Q
Dll<>]{e}

i

If nsl is not the empty list a case distinction is required. Assume:
s~body(hdnsl) e Goto

Elmk-Goto(id)] = Ao.(o,id)

Ellfnsl] = (Ao,a.if a=nil then Elltlnsl](c) else (0,a))°E[mk~Goto(id)]
= }\Oo(c,id)
(Ao,a.ii a=ntl then ©(v) else (o,a))°Fllnel] = Aoo(o,1d)
Dllnsl]{e} = D[mk—Goto(id)]{DZ[EEnsZ]{G}}
= }\Oo(o,id)

Now, the only other possibility is that:
s~body(hdnsl) e Assign

Elmk-Assign(vr,e)] = Ao.(assign(vr,e)(c),nil)

Ellnel] = (ho,a.if a=nil then El[tlnsl](o) else (o,a))
°Elmk-Assign(vr,e)]
= (Aa.EZ[ELnsZ](assign(vr,e)(0)))
Dilnsll{s} = D[mk~Assign(vr,e)]{DZ[Eénsl]{e}}

ro DL tlnsl {8} } (assign(vr,e) (o))

which, by induction hypothesis:



138 VDM AND PROGRAMMING LANGUAGES

¥
i

Ao (Ao,a.if a=nil then ©(0) else (o,a))°

Elltlnsl](assign(vr,e) (o))

it

(No,a.if a=nil then ©(c) else (6,a))°Ellnsl]

Here again, the main result is a corollary of the lemma: for programs

which are (Compound statements:

DImk-Program(mk-Compound(nsl))]
= let r = ... éﬁ_ropl[nsl]{xa.(o,gié)}
= let r = ... in ro(x(o,a).(o,gii})°El[nsZ]
= let r= ... in r°Ellnsl]

= E[mk-Program(mk-Compound(nsl))]

5.7 NORMAL CONTINUATIONS

As the reader may have noticed, the names of the semantic functions have
been progressing back through the alphabet. The remaining task is to
establish the connection between the D semantics of the preceding

section and the original continuation semantics (c).

Here again, it is convenient to separate a lemma which relates pI and
Cl. With:

cons = Aid.Ao.(0,4id)
the statement of the lemma is:

reDlnel]l{8} = Clinsl](rocons){ros)}
which shows that in order to perform r after the (D1) meaning of nsil,
it is necessary to compose r both with the passed continuation and with
the environment entries. The proof follows the same pattern as that of

the lemma in the preceding section. The final result can then be shown

as follows:

Dl mk-Program(mk-Compound(nsl))]

= let r= ... in roDlnsl]{Ac.(0,nil)}
= let r= ... in Cllnell(rocons) {rorg.(o,nil)}
= let p =[4d » Crestlid,nsl](p){Ao.(o,nil)} | tdelabs(nsl)] in

Cllnsll(p) {ro.(o,nil)}
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Since it has been shown above that the transformation always vyields a
nil second component, it is only necessary to make a systematic change

to reduce the 4A¥S domain to STATE and gets
Clmk-Program(mk-Compound(nsl))]

This concludes the chain of equivalence proofs:

A few remaining comments can be made about the comparison of the two def-
initions, X and ¢. The limitation of the current proof should be clear-
ly understood. Two language definitions have been shown to be equivalent.
This does not show that the two approaches (i.e. exits and continua-
tions) are equivalent. In fact, it would appear that definitions using
exits are less powerful in that they cannot (readily) be used to define
features like coroutines where the essence is to pass a a ‘continuation.
There would appear to be an argument that a language definition is made
more perspicuous if the domains exactly match the power of the language
and this argument has been used to justify the choice of exits to def-
ine "goto"~like exceptions. It should at least cause some hesitation to
those who insist that "standard" semantics implies the use of continua-
tions. An advantage of definition by continuations is that the 4dnswyer
domain can be used to yield some final result other than (or as well as)
the state. For example, [Gordon 79a] delivers the output file in this
way. The definition of ALGOL 60 in Chapter 6 somewhat clouds the pos-
sible operations on output files. This deficiency can readily be over-

come by a simple redefinition of the combinators.

One of the purposes of a formal definition is to provide a criterion for
the correctness of implementations. Proofs have been based on both

styles of definition but no detailed comparison has yet been published.






