CHAPTER 4

MODELLING CONCEPTS OF
PROGRAMMING LANGUAGES

The design of the meta-language (known as "META-IV") used in VDM is mo-
tivated here by considering programming language concepts which are to
be formally defined. In particular, the combinators which are introduced
in chapter 2 are shown here to provide readable definitions of language
concepts like block structure and goto statements. Although programming
language definition was the first use of META-IV, part ITI shows that
most of the meta-language applies to the specification of other systems,
The individual language concepts are collected together to form a mini-
language whose complete definition is given in section 4.10. Alternative

ways of handling exception constructs are discussed in the next chapter.
This chapter is a rewritten version of [Jones 78c]. Similar motivations

for denotational semantic definition techniques are given in [Tennent
80al] and [Gordon 79a].

85

86

4.1 Introduction........
4.2 ExXpressions.........
4.3 Store Changes.......
4.4 Composite Statements
4.5 Scope...ciiunnin...
4.6 Recursive Procedures

4.7 Exceptions..........

4.8 Storage Model...
4.9 States..........
4.10 A pPefinition....

4.11 Non-Determinism.

°

CONTENTS

VDM AND PROGRAMMING LANGUAGES

R R R I I -

R I I A - I

R ¥
T N * X
Srreseicosresassssessso.l03
St e s ceoccarccesnsnaesns.l04
ST e e cecoctcoctcscanssesslll
R A B I
MR B Y |

R R T T SIS, B3 |

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 87

4.1 INTRODUCTION

This chapter introduces many of the basic concepts of programming lan-
guages and, for each such concept, shows how it can be defined using
denotational semantics. The emphasis is on the underlying model required
although the metalanguage used to present these models is that used
throughout this book. The concepts have been selected so as to motivate
features of the metalanguage. For this reason, it might appear that each
new language feature requires some extension of the metalanguage. In
the definition of a full language (e.g. chapter 6) the features of the

metalanguage are used far more intensively.

4.2 EXPRESSIONS

The denotational method defines semantics by mapping the objects to be
defined to some known objects. The objects which are the target of this
mapping are referred to as "denotations" and are assumed to be already
understood. The essence of this chapter is to show the different deno-
tations used to define various concepts of programming languages. A
language whose constructs are expressions requires only simple denota-

tions and will provide a useful introduction to the denotational method.

Objects to Meaning

be defined Funetion Denotations

Fig. 1 The Denotational Method

Fig. 1 illustrates the denotational approach to defining semantics. The
first task is to fix the class of objects whose semantics are to be def-

ined. For a small finite language, it is possible to do this by enumer-

ation.

88 VDM AND PROGRAMMING LANGUAGES

Fig. 2 enumerates all of the Boolean expressions which can be constructed
with an implication sign and the Boolean constants. The next part of the
th€ general method requires choosing a set of objects to use as denota-
tions. For the language of Fig. 2 this can be the Boolean values and
the mapping of expressions to denotations is given in the same figure by

enumeration.

Language Denotation
false > false true
false > true true
true o false false
true > true true

Fig. 2 Semantics of Implication with Constants

For infinite, or even very large, languages it is not possible to define
the class of objects of interest by enumeration. The strings of such a
language are normally defined by syntax rules and the structure created
by such a syntax is used in fixing the semantics. Fig. 3 gives an ab-
stract eyntax of an (infinite) language of logical expressions. The no-
tation used is that for describing objects discussed in chapter 2. The

valid expressions are any finite objects matching this recursive def-

inition.

Boolexpr = Boolinfizexpr | Negation | Booleconst
Boolinfizexpr :: Boolexzpr Boolop Boolexpr

Negation :: Boolexpr

Boolconst = true | false

Boolop = AND|OR|IMPL|EQUIV

Fig. 3 Abstract Syntax of Logical Expressions

What denotations are to be used for the logical expression language? The

same set of Boolean values will suffice:

Bool = {true,false}

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 89

The mapping from the language to the denotations can be given by a func-

tion of type:

M: Boolexpr - Bool

There are different ways of presenting such functions. Because the lan-
guage involved is small, it will be clearest to provide a definition for

each case separately. Thus:

M[mk-Boolinfizexpr(el,op,e2)] A
let v1 = M[el] in
let v2 = M[e2] in

i

cases op:
AND -+ if vi then v2 else false,
OR + 1f vl then true else v2,
IMPL -+ if vl then v2 else true,
EQUIV -~ if vl then v2 else (if v2 then false else true)

M{mk-Negation(e)] A let v = M[e] in if v then false else true

The mapping for the constants is the identity. This actually shows that
the objects contained in the expressions of Fig.3 are, in part, semantic
objects. This could easily be avoided by choosing some syntactic repre-

sentation for the semantic objects.

Looking at the definition of ¥ it is clear that the semantics are built
up over the structure of the syntax. This corresponds to a rule of the
denotational method that the semantics of a compound construct should be
derived (only) from the semantics of its components. It is perhaps this
rule more than anything else which distinguishes between denotational
and operational semantics. The point could be Ffurther emphasized by

redefining:

MImk-Boolinfixexzpr(el,op,e2)] A Mlopl(M[el1],M[e2])

Mﬁ}ND]:g Av1,v2.(if vl then v2 else false)

etc. Notice that, although ¥ is defined recursively, there is no need to
introduce domains (cf. chapter 3): since no fixed-points are taken; a set
of defined values is adequate to define the denotations.

90 VDM AND PROGRAMMING LANGUAGES

Fig.3 contains an abstract syntax. This term is used to distinguish it
from the normal form of (concrete) syntax which is concerned with the
strings of symbols of the language. The advantage of an abstract syntax
is that it can provide a smaller class of objects which are more clearly
structured as a basis for the semantic definition. Objects corresponding
to an abstract syntax can often be represented in many ways by character
strings. Although this becomes more apparent in languages with richer
sets of abbreviations angd defaults, the points can already be seen in
the language of logical expressions. A Backus-Naur Form (BNF) definition
would have to show the possibility of bracketing subexpressions as a
way of defining priority of operators. The abstract syntax also makes
it possible to avoid issues of representation; the BNF definition would
have to choose a specific way of showing a negation. The correspondence
between (concrete) strings and (abstract) trees is also part of the def-
inition of the language. Although this book tends to focus on semantics,
it is clear that both BNF and the concrete/abstract relationship are

part of a full definition of a system.

Expressions in programs are not usually restricted to constants and oper -
ators. It is normal to have some form of reference to variables. Thus

the definition of Boolexpr might be extended with:

Boolexpr = ... | Varref
Varref 22 Id

It is clear that an expression of this extended language does not denote
a simple Boolean value. What is denoted will depend, in general, on the
values of the various variables. A first step in choosing the denotations
is to recognize the concept of a store which associates identifiers with

values. Using a mapping, this can be written as:
STORE = Id @ Bool

This leads naturally to the idea of a denotation which is a function

from stores to values. Thus:
M: Boolexpr - (STORE - Bool)
M[mk—BooZinfixexpr(el,op,eZ)](0) A

Mle1l(o) in
Mle2](c) in M[op](v1,v2)

let vl
tet v2

I

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 91

M[mk-Negation(e)](o) A let v = Mle](o) in if v then false else true
M{mk-Varref(id)J(c) A o(id)
(The problem of ensuring that the stores have values for all necessary
variables is postponed until more realistic languages are considered.)

Writing the store parameter everywhere can become tedious and it is

necessary below to find a way of avoiding having to do so.

4.3 STORE CHANGES

The dependence of the value of an expression on the values of variables
has been defined by using functions as denotations. The next step is to
consider language constructs which change the store and here again func-
tional denotations will be required. The assignment statement is the
obvious way of changing the store. (In fact, the read/write nature of
the von Neumann computer architecture has influenced much more than just
programming languages. Operating systems and data management systems
are built around the notion of a changeable store. Only the enthusiasts
of a functional programming style resist this notion (e.g. [Burge 75a,
Backus 78a, Henderson 80al).)

The abstract syntax of assignment statements is defined by:

Assign :: Id Expr

The denotation of such statements is to be a store to store function:

M: Assign - (STORE -+ STORE)

i

M{mk~Assign(id,e)](c) A let v

Mlel(o) in o + [id » v]

It is interesting to notice how the different uses of identifiers are

brought out by the definition. In the source language assignment:

the occurrence of ‘x'

on the right hand side of the assignment denotes
the value of the variable whereas the occurrence on the left denotes the

"address" which has to be modified. This is seen by comparing the uses

82 VDM AND PROGRAMMING LANGUAGES

of the 7d in the semantic function for Assign and in that given above for
Varref. The introduction of t&ocations below will provide a mechanism
for making the distinction between left and right values of variables

more explicit.

The use of functional denotations is not only a natural result of the de-—
notational method. It has the further advantage that the functions are
familiar objects with known methods of manipulation. The task of defining
the meaning of a sequence of assignments can be performed by using func-
tional composition of the denotations of the individual assignments.
Thus:

Ml: Assign* - (STORE - STORE)

MLL<>] B Igrogpg
Milal] & MI[tlallem[hdal]

Notice that the denotation of the empty list of statements 'is the iden-

tity function on stores. It would have been equivalent +to write:
ML[<>](c) = ¢ or: ML[<>] = Aco.0

The denotation for a non-empty list is given by composition: composing
two functions of type Store to Store gives a denotation of the correct
type. Composition is a "combinator" which makes it possible to build up
expressions without having to write all of +the arguments. A tasteful
choice of combinators will do much to aid the readability of definitions.

Expanding the meaning of the functional composition used above, gives:
Mil[all(c) = MU[tlalJ(M[hdall(c))

The need to do one thing followed by another is familiar from program-

ming. If a (semicolon) combinator is defined:
F1;f2 = Xo.(f2(f1(c)))

then the definition can be restated as:
ML[al] A M[ﬁgal];MZ[EAaZ]

This is more natural for a programmer to read. There is no danger of

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 23

circularity in the use of a combinator which might be the same as the
(syntactic) symbol used in the language to be defined providing the com-
binators are themselves defined formally in terms of mathematical con-

cepts.
It is also quite safe to define a for combinator which provides the ob-
vious (static) expansion into a sequence of semicolon compositions. The
definition of Ml can then be rewritten:

Mllal] A for i=1 to lenal do M[al(i]]

Thus given:

MIx:=x+1] = Ao.(oc + [x mo(x)+1])
M{x:=x-2]

il

Ao.lo + [x mo(x)=-217)
then:

MIU[x:=x+1;x:=x-2;x:=x+1]

= M{X:=x+1];M[xe=x~2];M[xs=x+1]

= Ao (M[xe=x+1](ro' M[x:=x~2](M[x:=x+1](c"')))(c)
= A0 M[X:=x+1](M[xs=x-2](M[X:=x+1](c)))

= ACM[X:=x+1](M[x:=x~2](0 + [x > o(x)+1]))

= ACM{X:=x+1](0 + [x 1 o(x)+1-21)

= A0.0 + [xm o(x)-1+11]

= AC .0

= IgroRE

The need for another combinator becomes apparent if the expression lan-
guage is erftended to permit function invocation. It should be clear that
the possibility of side effects in such a language complicates the deno-
tations of expressions. In general the evaluation of an expression yields

both a changed store and a value. Thus, for such a language:
M: Expr -+ (STORE - STORE x Bool)
Without combinators, it would be necessary to write:

M{mk~Assign(id,e)](c) A

let (o',v) = M[e](o) in

o' + [id » v]

$i~

94 VDM AND PROGRAMMING LANGUAGES

M[mk—BooZinfimexpr(el,op,92)](0) A
let (o',v1) = Mlel](s) in
let (o",v2) Mle2](o') in (a",Mlop](vi,v2))

il

it

A def combinator can, however, be defined:
(def v: fi1; fo(.ov.u.)) = Ao.(let (o',v) = fi(g) in f2(..ove..)(6'))
Using this combinator the definitions can be written:
Mimk-Assign(id,e)] A def v: M[e]; assign(id,v)
assign(id,v)(qg) Ao+ [idw v]
M[mk—BooZinfixexpr(ez,op,62)] A
def vi: Mle1];
def v2: M[e2];

return(Mlopl(vi,va))

The vetﬁzﬁ, combinator elevates a pure value to an object of appropri-
ate type:

return(v) = Ao.(o,v)

It should be noted in passing that the definitions given for expressions

define the order of evaluation of sub-expressions.

4.4 COMPOSITE STATEMENTS

The sequential composition discussed above is the simplest of the tech-
niques provided in most programming languages for building composite
statements. Only slightly more complicated is the conditional statement.
The abstract syntax might be written:

If :: Expr Stmt Stmt

The semantics which are +to be defined are firstly to evaluate the ex-
pression to a Boolean value and then to use the function corresponding
to the denotation of the appropriate statement. Given a value veB0O0OL a

combinator can be defined:

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 95

if v then f1 else f2 = Ao.(if v then fi(c) else f2(o))

This combinator combines two functions from stores to stores to yield a
function of the same type. The semantics of the conditional construct in

the language can then be defined:
Mimk-Tf(e,th,el)] A def v: Ml[e]; if v then M[th] else M[el]

(The reader should try expanding the combinator definitions and check
that the resulting semantics of the conditional is a function from stores
to stores.) Once again a combinator (if) has been used which is similar
to a construct of the language to be defined. The use with a value rather
than an expression was simpler than the feature being defined and the

same combinator 1is now used +to define a more involved construct,

One iterative construct found in programming languages is the "while

statement”. Its syntax is:
While :: Expr Stmt
Its semantics can be given by:

MImk~While(e,s)]

A
let L = (def v:

Mle]; if v then (M[e];L) else Igpopp) in I

The definition of L is recursive. Assuming I to be of the appropriate

type one might write:

Mlel: STORE -+ STORE x Bool
M[s]: STORE -+ STORE
(M[s];L): STORE -+ STORE
ISTORE STORE ~ STORE

(def v: Mle];
if v then (M[e];L) else Igpopp): STORE - STORE

The recursion in the definition of [is exactly the sort which has been
explained in chapter 3: it is here that the denotations must be domains.
The definition of [denotes the least fixed point of the recursive equa-
tion. There is, however, a factor to be considered which has not occurred
above. Such functions will only be partial. To see this it is only nec-

essary to ask what denotation to associate with a loop which (for some

96 VDM AND PROGRAMMING LANGUAGES

starting stores) fails to terminate. Thus the type of the semantic func-

tion for the iterative construct is:
M: While ~+ (STORE 3 STORE)

The syntactic definitions given above permit arbitrary nesting of the

composite statements. Thus the syntax rule for statement is:
Stmt = If | While | Assign

A consequence of this is that the partial nature of the denotations in-
herit, so that:

M: Stmt ~ (STORE 3 STORE)

Block~structured programming languages employ the notion of the scope of
a variable. Many other systems have ways of binding different values to
names at different times so the way of handling scope is of general in-
terest. Furthermore, the need to restrict the class of objects to be def-
ined, which is handled here by "context conditions", occurs in nearly

all definitions.

Suppose that the programs of some language fit the following abstract

syntax:
Program :: Stmt
Stmt = Block | call | 4ssign
Block *¢ 8-vars:Id-set s-proem:(Id # Proc) s-body:Stmt*
Proe $: s-parml:Td” s~body:Stmt
Call f: s-proc:Id s-argl:Varpef®
Assign :: Varref Boolexpr
Varref 2 Id
Boolexzpr = Boolinfizexpr | Rheref | Booleconst
Rhesref :: Varref

The language still has only one type of variable (say Boolean), but var-
iables are now either declared in the s-vars part of a block or are names

of parameters within procedures. The statements which comprise the bodies

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 97

of blocks or procedures should use only identifiers which have been de-
clared. It is well-known that context-free syntax rules cannot capture
such constraints. The abstract syntax definition is essentially context-
free and some way of defining which programs are valid is required. One
possibility is to insert suitable tests into the definition of the se-
mantic functions. Since this would lengthen that part of a definition
which is anyway long, this proposal is rejected. Instead the class of
objects of interest will be restricted as a separate task. Rather than
adopt one of the exotic syntax schemes like two-level grammars (cf.[van
Wijngaarden 75al), the restriction is defined here by a predicate (WF).
Those objects which satisfy the "context conditions" are said to be

"well-formed” or "“valid".

The intent, then, is to define a predicate:
WEF: Program j Bool

This is defined using a (recursive) sub-function:
WF: Stmt - Staticenv -+ Bool

The static environment 1is a mapping which contains information about

declared names:

Staticenv = Id g Attribute
Attribute = BOOL | Proctype
Proctype :: Nato

With only one variable type, the context conditions are easy to define.
In particular, the only information required about a procedure is the

number of its arguments.
WE[mk-Program(s)] & WF[eJ([])

WF[mk-Block(vars,proem,sl)](p) A : L
vars n domproem = {} A ‘ |
(Vperngproem) (WF[pl(p)) A
(let p' = p + ([id '™ BOOL | idevars] u

Lid & ATTR[proem(id)] | idedomproem]) in
(Vecelemssl)(WF[a](p')))

5

S8 VDM AND PROGRAMMING LANGUAGES

WFP[mk-Proe(pl,b)](p) A
(Vi)jeindspl)(pZ[i]=pZ[j]3i=j)A
(WELb](p+Lplli] » BOOL | icindespl])

ATTR[mk-Proe(pl,b)] A mk-Proctype(lenpl)

WE[mk-Call(pid,al)]l(p) A
pidedomp A pl(pid)eProctype a . :
(A9 S N A 1
(let mk-Proctype(n) = p(pid) éﬁ_éﬁﬁgl:n)gﬁé&ézﬁ%ykﬁ‘

{These context conditions prohibit recursion - this restriction is re-

moved below.)

In practice, some of the rules can be mechanically generated and need
not be written out. For example, there is no need to write that the
wellformedness of the assignment statement depends (with the same envi-
ronment) on that of the variable reference and expression. This leaves,

then, only:

WE[mk~Varref(id)](p) A idedomp A p(id)=BOOL
It is now necessary to turn to the question of providing semantics for
the well-formed programs of the language. So far the store has directly
associated values with identifiers. But now it is possible to have pro-

grams like:

begin Boolean a,b,c;

begin Boolean a; ... end:

begin Boolean b; ...

@®
o
Qi

end

The scope rules ensure that not only do the two declarations of 'a' in-
troduce different variables, but also that execution of the first inner
block cannot affect the value of the outer variable named 'a‘'. In this
case it would be possible to define the semantics in terms of the sim-
ple store by systematically changing identifiers in the program so as to
avoid name c¢lashes. This is, however, a patch and, as so often with
patches, will not work in the general case. Consider the following pro-
gram fragment in which parameters are assumed to be passed by reference

{or location):

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 39

begin Boolean a;

procedure p(x,y); x:=aty;
»o. spla,a); ...

end

Within the procedure 'p', all of the identifiers 'a', 'x', 'y' refer to

the same entity. The necessary model introduces an abstraction of the
machine address which the implementation would associate with the entity.
This abstraction is called here a (scalar) location. The problem of hav-
ing different uses of the same identifier can now be solved by associat-
ing different locations with the identifier at different times. Sharing
can be defined by associating different identifiers with the same loca-—
tion as in fig. 4. The association between identifiers and locations is

recorded in an environment and STORF now associates values with locations:

ENV
STORE

il

Id @ SCALARLOC
SCALARLOC & Bool

il

It is now necessary to decide how the environment is to be handled in
semantics. Placing it in the store causes a number of problems and it
serves the purposes of the definition far better to treat the environ-

ment as a parameter used in determining the (store to store) denotation.
Thus:

ENV STORE

\
/

a

x la va

y

Fig. 4: The Use of Locations

M ¢ Stmt - ENV - STORE 3 STORE
ENV = Id 3 DEN
DEN = SCALARLOC | ...

STORE

n

SCALARLOC g [Bool]

The semantic functions can now distinguish clearly between the places

where a left hand denotation (i.e. location) and a right hand denotation

1CO VDM AND PROGRAMMING LANGUAGES
(i.e. value) are required.

Mlmk-Assign(vr,e)](p) b def 1: Mloelvr](p);
def v: Mle](p);
assign(l,v&f

Mloc: Varref - ENV - SCALARLOC
Mloe[mk~Varref(id)](p) A p(id)

assign(l,v) A Ao.o + [1 » p]

The parts of the expression semantics all require the extra environment

argument. The interesting case is:
M[mk—Rhsref(vr)](p) A def 7: Mloclvr](p); contents(l)
contents(l) A Ao.o(1)

New locations must be associated with all declared identifiers in a block.
Locations are considered to be new if they are not in the domain of the
store. Given this technique it is necessary for the newloe function to
reserve an identifier even before it is assigned a value. This is a-
chieved by associating the identifier with the nil object. Subsequent
development of an implementation (cf. chapter 8) has to show that some
particular way of choosing locations satisfies the specification being
constructed here. For this reason the constraints on, among other things,
locations should be minimized. The set SCALARLOC is an arbitrary in-
finite set of objects. The function newloe chooses an arbitrary free
location. In order to show that a stack implementation is possible (but
not to prescribe it) all locations corresponding to local variables
should be deleted from the store after the block semantics have been

determined. Thus:

M[mk~BZock(vaﬁs,procm,BZ)](p) A

def p' : p + ([4id & newloce() | idevars] u
{id » ... | idedomproem]);

for i=1 to lensl do MLel[i1](p');
epilogue(rng(p’ lvars))

newloce()(o)=(c',1) > ~(ledomo) A o'=gul[l » nil]

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 101

epilogue(ls) = Ao.o\ls

The environment is a map (i.e. a restricted function). Chapter 3 shows
that passing such maps as arguments to semantic functions is quite safe.
This provides the basis of the definition method. It may, however, be
useful to give a less mathematical view of environments before turning
to the subject of procedures. The for combinator can be viewed as a
technique for defining a static or macro-expansion of the text. Essential-
ly it provides a way of generating an expression with semicolon combina-
tors which one would naturally associate with a program containing a
sequence of statements. The environment can be viewed in a similar way .

Consider the following expansion:

M{begin integer a,b; a:=a+b end]([])

= def la: newloc();
def 1b: newloe();
Mla:=a+b](la » la, b ~»Llb]l);
epilogue({la,lb})

= def la: ... ; def 1b: ... ;
def va: contents(la); def vb: contente(lb);
asstign(la, (va+vb));

epilogue ...

The environment argument has been completely eliminated in the expansion.
The final expression is the one which one might write down for the pro-
gram in giving an informal explanation. The role of the environment is
to avoid the problem of naming the locations for an unknown number of

new identifiers.

The ellipsis points relating to procedures in the semantics for Bloecks
should now be replaced. It is clear that, to agree with what has been

done above, the meaning of a call statement must be:
M: Call - ENV - STORE 3 STORE

A procedure denotation must be generated, and recorded in the environ-
ment, which makes the derivation of the call statement semantics poss-
ible. It would be a mistake to store the text of the procedure because
of the choice of most programming languages to bind names to the text-—

ual (or static) environment. Thus in:

102 VDM AND PROGRAMMING LANGUAGES

begin Boolean a;

procedure p ... a ...

~o

begin integer a; ... p ... end; ...

end

the invocation of 'p' from the inner block must give rise to a reference
to the Boolean variable 'a'. In order to bind the identifiers in the text
of the procedure to the appropriate locations, the procedure denotation

is made into a function as follows:

DEN = ... | PrROCDEWN
PROCDEN SCALARLOC™ - STORE 3 STORE

it

The outer argument to this function is a list of locations. Thus it can
be seen that parameter passing 1is to be by location (or reference).

This gives rise to:

Mimk-Call(pid,al)](p) A
Lot f = plpid) in
Let locl = <Mlocl[alli]](p) | ieindsal> in f(loel)

Procedure denotations are to be functional and their generation can be

defined by:

M{mk-Proc(pl,s)](p) A
let f(ZocZ)=(£gE'p”=p +[plli]l » loelli] | ieindspl] in
M[s](p')) in
f

This function is used in defining the denotation of a block:
def p'" ¢ p + (oo u [4id » Mlproem(id)J(p) | idedomproem])

It should, by now, be clear that the use of an abstract syntax is simpli-
fying the definition by avoiding representation details of a language.
When faced with a large language or system, there is considerable scope
for choice in "how abstract” the syntax should be. Clearly, minor syn-
tactic variants (e.q. abbreviations or default values) should be sub-
sumed. It is also obvious that constructs with different semantics can-

not have the same abstract representation. These extremes do not, how-

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 103

ever, provide a clear rule for deciding when to abstract (e.g. the prob-

lem of factored declarations in Pascal).

4.6 RECURSIVE PROCEDURES

The definition of recursive procedures requires no new features in the
meta-~language but it does warrant some words of explanation. The con-
text condition given above for blocks explicitly prohibits the direct
call by a procedure of itself. All that is necessary to permit such
calls, or to admit mutual recursion among procedures, is to use the in-

tended environment in checking the well-formedness of procedures. Thus:

WE[mk-Block(vare,proem,sl)](p) A

vars n domproem = {} A
(let p' = p + ([id » BOOL | idevars] U

Tid H-ATTR[Erocm(id{E | idedomproem]) in
(Vperngproem) (KF[pl(p')) a
(Vseelemssl)(NF[s]l(p')))

A similar change will suffice to extend the semantic equations so that

the recursive case is covered:

M{mk-Block(vars,proem,sl)](p) A
def o' : p + ([id » newloe()) | idevars]
Lid » Mlproem(id)I(p') | idedomproem]);

But this recursive use of the extended environment (in creating the ex-
tended environment) requires some comment. Mathematically, there is no
difficulty: chapter 3 explains how the least fixed point of recursive
equations can be found and the ordering on functions can be used to def-
ine one on environments. In programming terms, it is also easy to ac—
cept that the denotations will be available by the time they are called.
It is, however, possible to provide another explanation using the macro-

expansion view discussed above. Consider:

M[begin procedure pl;...p2...:

procedure p2;...pl...P2...;
eeeple.. end] ([1)

e

104 VDM AND PROGRAMMING LANGUAGES

= let p" = T[plw» Ml...p2...7(p"),
P2 M[...pl...p2...7(p")] in
ML oo.pleooJ(p")

If names are introduced to stand in place of the procedure denotations

this becomes:

let pdenl = ... pden2 ... in
let pden2 = ... pdenl ... pden2 ... in
oe. pdenl ...

The environment has been eliminated and has thus removed the recursion
which was causing concern. There remains a recursion on the (names of)
procedure denotations but this is the recursion on functions from stores
to stores which has occurred elsewhere. The environment can therefore be
viewed as a part of the process of expanding a program into an {expres-

sion for the) denotation of a program.

4.7 EXCEPTIONS

There are a number of concepts in systems which permit the definition of
exceptional sequencing: the ‘goto' statement in languages, exception
traps or error handlers in both languages and other systems and the def-
inition of the effect of some errors. There is often heated controversy
about the wisdom of such features. It is not the intention here to enter
into such debates. Providing a definition method is capable of defining
such features, it becomes a tool with which one can compare alternative

approaches. The purpose here is to show how the denotational approach

can define various forms of goto' statements. Other chapters in this
book apply the same model to other exception handling problems. It is

possible to envisage '

goto' statements of varying degrees of generality
and the implications on the definition are studied here. The simplest
form serves to introduce the general idea. A program might restrict its
use of 'goto' statements to defining the flow of control within a single

phrase structure. Thus:

begin stl; labl:st2; st3; goto lab2; st4; lab2:goto 1labl end

An abstract syntax which covers this case is:

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 105

Program :: Namedstmt™

Namedstmt :: e-lab:[Id] s-body:Stmt
Stmt = ... | Goto

Goto 20 Id

It is clear that some space of denotations is required for named state-
ments, but what is this to be? The meaning of a simple named statement
might be given by:

M: Namedstmt -+ ?

However, the denotational approach requires that the denotation of a list
of such statements be derived (only) from their individual denotations.
The problem is that it is precisely the fact that a "goto" statement
appoints a successor (which is not a component) that has to be captured
as its semantics. There are two ways of providing a denotational defini-
tion: exits and continuations. These approaches are compared in the
next chapter, here the exit approach is described. The basis of the
exit approach is to extend the transformations, which are used as de-

notations, so that they can carry an indication of abnormal termination.
Thus:

TR = STORE 3 STORE x [ABNORMAL]

The effect is to elevate the abnormal sequencing to something which is
anticipated; the cost is that denotations become more difficult to com-
pose but combinators are provided below which ameliorate this problem.
The second component of the range of a transformation is nil in the case
of normal return; but will contain some indication of what is to be done
next in the abnormal case. The choice of the ABNORMAL values depends on
the system being defined. For the current language it will be sufficient

to use the labels themselves. Thus:

TR = STORE 3 STORE x [I1d]

The meaning of a 'goto' statement can be given by:

MImk-Goto(id)] A Ao.(o,1d)

The meaning of a 'goto' statement is to leave the store unchanged but to
appoint an explicit successor. The meaning of, for example, an assignment

statement is to change the store and to signal normal return:

106 VDM AND PROGRAMMING LANGUAGES

M{mk-Assign(vr,e)] A

Ao.{let 1 = Mloelvr]o in
let v = Mle]o in

assign(l,v)(o),nil)

The next problem to be resolved is the combination of two transforma-
tions to yield another of the same type. If the first transformation
yields a nil abnormal component, then the second transformation is to be
composed with the store to store part of the first. Alternatively, if
the first transformation yields an abnormal return, this must be propa-

gated. Thus, formally:

ML: Namedstmt™ -+ TR

ML[<>] A MAo.(o,nil)

Mi[nsl] A (ro,a.if a=ntl then MU[tlnsl](o) else (o,a))e
Ml s-body(hdnsl)]

For the program shown above:
M[st4]

M{lab2:goto labl]
Ml[st4;lab2:goto labl]J

il

Ao.(f(c),nil)
Ad.(0,labl)
Ao.(f(o),1labl)

i

It

etc. The final problem is to show how the abnormal return values are
handled. The meaning of any label is the transformation determined by
beginning execution at that label. If such a transformation ends with an
abnormal exit, the meaning of another label must be composed with that

transformation. Since ‘goto' statements can be used to define loops, it

is convenient to make this trap (see » below) recursive. Thus:

M[mk-Program(nsl)] A

let p = [id » Ml[sel(id,nsl)] | idedlabs(nsl)] in
let r = Ao,a,£f>aeggmp then v(p(a)(o)) else (o,a) 1in
roMLlInel]

Where:
dlabs(nsl) A {id!(aieindsnsl)(s—Zab(nsl[i]):idAid¢Q££)}

sel(id,nsl) selects the subsequence of nsl whose

first statement is labelled with id.

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 107

(It has been assumed here that context conditions have established that
each label occurs as the name of at most one statement and that ‘goto’
statements refer only to valid labels.) It is interesting to note that
the recursion in » can again be eliminated by macro expansion. The
above definition is the one required but it is clouded by the explicit
mention of stores etc. A group of combinators can be defined which

greatly ease the task of understanding a definition. Thus:
exit a = ho.(o,a)

An object, say t, of type STORE to STORE is automatically interpreted

as a transformation if required by context:
t = Ao.(t(c),nil)

The 'semicolon' combinator is redefined to give the semantics used above:
t1;t2 = (Ao,a.if a=nil then t2(o) else (o,a))ot1

The "trapping" effect is achieved by the tize (exit backwards) combi-

nator:

(tixe m in t) o let p = m in

o~
M
o
3
il

(Ao,a. if aedomp then r(p(a)(c))

else (c,a)) in
The use of these combinators permits the earlier definition to be re-
written as:

M mk-Program(nel)] A
tize [id » Ml[sel(id,nel)] | idedlabs(nsl)] in Ml[nsl]

ML[<>] A Isrtorr
Mllinel] A M[s-body(hdnsl)];ML[tlnsl]
MImk-Goto(id)] A exit(id)

Thus, the semantics of the example given at the beginning of this sec-

tion is:

108 VDM AND PROGRAMMING LANGUAGES

tize [labl » MZ[<st2,st3,goto 1ab2,st4,goto labl>],
lab2 = Ml[<goto labl>]] in
MZ[<stl,st2,st3,goto lab2,st4,goto labl>]

Little change is required to define a language in which 'goto’ state-

ments can leave (and thus close) static phrase structures. Thus with:
Block :: s-body:Namedstmt*

it is only necessary to ensure that the epilogue semantics are per formed

even on abnormal block termination. Thus for:

begin ...
begin ... goto lab .., end;
eee lab:
end
M[mk-BZock(vars,procm,nsl)](p) A
def o' ¢ .. ;
(ho,a.(epilogue(...)(c),a))o°
(tize [id » Mllsel(id,nsl)](p') | tdedlabs(nel)] in
Mi[nsll(p'))

Again a combinator can be defined:
always t1 in t2 = (Ao,a.(ti1(c),a))ot2
The always combinator can then be used to give:

M[mk—BZock(vara,procm,nsZ)](p) A
def p' & ... ;
always epilogue(...) in
(tize [id » Mi[sel(id,nel)](p') | idedlabe(nsl)] in
Mllnell(p'))

Some languages permit 'goto’ statements to branch into a phrase struct-
ure. Thus, in ALGOL 60:

begin goto lab; ... ;if p then lab:stl else st2; ... end

is valid. The CPL language [Barron 63a]l even allowed ‘goto’ statements

into loops and Dblocks. The definition of such a language can use the

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 109

same transformations but must define cue functions which determine the
appropriate starting point. Cue functions occur in the next chapter and

their use in ALGOL 60 is shown in Chapter 6.

Languages in which "goto" statements can terminate dynamic objects like

procedures present a further complication. Consider:

begin procedure p; ... goto lab; ... ;

end

The dynamic invocation of 'p' can be closed by the 'goto' statement.
Y

There are two problems which are closely akin to those treated above
with variables. Firstly there might be other instances of the same label
occurring in the environment of the call of 'p' - ALGOL 60 regquires the
“goto" to ignore such labels in the dynamic environment and to locate
that instance of 'lab' in the static (textual) environment of 'p'. This
problem might be resolved by making static changes to identifiers to
make them unique. This solution would, however, not work for a language
in which procedures can be passed as parameters across recursive calls.
In this case it is necessary to have a precise indication of the activa-
tion in question. In the case of variables, new locations are chosen
with respect to the domain of the store. For labels, a new set of Acti-
vation identifiers is introduced and appended to label denotations.
These Label denotations are stored in the environment. Thus the defini-

tion might be written:

*
Bloeck fi ... s-proem:(Id g Proec) s-body:Namedstmt
TR = STORE 3 STORE x [LABDEN]
LABDEN :r AID Id
AID An infinite set
ENV = Id m DEN
DEN = e« | PrROC | LABDEN
PROCDEN = SCALARLOC™ x AID-set - TR

M: Block -+ ENV - AID-get - TR

110 VDM AND PROGRAMMING LANGUAGES

M[mk—BZoak(°°,3proam;n31)](p)(cas)
let aide(AID-cas) in
def o' ¢ p + (c..u

[id W mk-LABDEN (aid,id) | tdedlabs(nsl)] J;
always epilogue(...) in
(tize ... in

Milnsl]l(p')(cas v {aid}))

e

Mimk-Goto(id)I(p)(cas) A exit(p(id))

The set (cas) of current activation identifiers must be passed along the

dynamic calling sequence and a convenient way of doing this is shown be-

low.

It is possible to prove useful results about such a definition. The most
important such theorem shows that, for well-formed programs with ‘goto*
statements referring only to statically Xknown labels, there ‘is no way
that a (dynamic) jump can lead to an inactive or closed piece of text.
This is true of ALGOL 60 even with procedures and labels being allowed
as parameters. Even the 'switch' declaration is so0 constrained as to
preserve the property. This important property is, however, lost as soon
as (unconstrained) label or procedure variables are allowed. ALGOL 68
[van Wijngaarden 75a] manages to keep the 1id on this Pandora's box by
syntactic rules. PL/I [ECMA 76a] is less inhibited. The need to define
which such uses are in error, gives rise in [Beki& 74al to a new entity

which keeps track of the active activations.

As mentioned above, there are other aspects of systems which can be con-
veniently defined using exits. The most prevalent class of such fea-

tures is error handling. Three types of errors must be distinguished:

(i) for some system, it'might be required that certain diagnostics are
to be produced by any implementation, such error handling becomes

part of the system definition 1ike any other feature.

(ii) for many systems which are to be implemented more than once, there
are some user ervors for which it is thought unwise to constrain
the implementation treatment (for example referencing uninitializeqd

variables in a programming language).

(iii) any misuse of the meta-language which makes the definjtion meaning--

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES it

less (for example mismatch of arguments and parameters to semantic

functions) must clearly be avoided.

It is the second category of error which remains to be discussed. The
definition must show that certain use leads to an error but leaves open
what action follows the error. Some implementations may check and produce
a useful diagnostic; others may omit the necessary checking code and just
run on after the error. The definition 1is essentially stating further
constraints on the domain of valid inputs but, unlike context condi-
tions, invalidity is in general only detectable dynamically. The error
situations where further computation is undefined are indicated in the

definition by writing:
grror

The semantics being the same as:
exit(error)

with the additional rule that no tize can trap such an exit value. Exam-
ples of the use of egrror occur below in the handling of input, reference
to variables and evaluation of subscripts. It might be argued that the
presence of features which result in undetected errors makes a system
dangerous to use. Once again, no position is taken on this (pragmatic)
issue here: the definition method provides a way of indicating and

checking for such "features".

4.8 STORAGE MODEL

In the STORE above, only one type of variable has been considered; fur-
thermore only scalar variables are allowed. Some modest extensions can
now be considered. The syntax of a block can be extended to permit

declarations of different types of variable:

Block :: s-delm:(Id j Sealartype)...
Sealartype = INT | BOOL

Clearly the range of store must be extended to permit the storage of ap-
propriate values. Thus:

112 VDM AND PROGRAMMING LANGUAGES

STORE = SCALARLOC g [SCALARVALUE]
SCALARLOC = Infinite Set
SCALARVALUE = Bool | Int

The environment is also suitably extended. If variables of either type
are to be passed (by location) as parameters, type checking must be in-
cluded. Different languages vary as to whether this checking can be
done statically or dynamically. A dangerous lacuna can result from pas-
sing procedures as parameters: ALGOL 60 loses type control: Pascal re-
tains it but introduces a restriction; ALGOL 68 erects a whole structure

of types in order to give a complete solution.

The other extension of the storage model to be considered here is the

treatment of arrays. The syntactic extension is:

Bloek :: s-delm:(1d g Type) ...
Type :: Scalartype [EFxprt]

A non-nil subscript list defines the dimensions of an array. A nil sub-
script list being used to indicate scalar variables. A check must be
made on block entry to establish that all expressions evaluate to posi-~
tive integers. What is to be done with STORE? This depends on other
language features. If arrays are always handled as a unit, the structure

of the array value can be made part of store:

STORE = LOC & VALUE
VALUE = SCALARVALUE | ARRAYVALUE
ARRAYVALUE = Intt o LSCALARVALUE]

Alternatively, if elements of arrays are to be passed (by location) as
arguments to procedures, then locations themselves must become struct-

ured objects. Thus:

STORE = SCALARLOC % [SCALARVALUE]
ENV = Id @ DEN

DEN = ARRAYLOC | SCALARLOC
ARRAYLOC = Int* o scararroc

(Notice that members of ARRAYLOC are one-one mappings.) This is the com~

bination of features defined below. Dynamic checking of array bounds is

also indicated.

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 113

The treatment of records is similar to arrays (cf. chapter 7). Some lan-
guages require more basic extensions. In particular, some of the PL/I
features need an implicit characterization of locations (see [Bekié& 71b,
74al) .

4.9 STATES
The traunsformations considered above have been concerned only with STORE.
The main criteria for choosing to place entities in the domain and range
of transformations is that they can be both read and written. It is for
this reason that the environment is treated separately. Certain language
features prompt the need for further state components and these are han-
dled by wusing structured objects (STATE) in the domain and range of

transformations.

One language area requiring more state components 1is input/output state-~
ments. Suppose the language includes the notion of one input (read only)
and one output (write only) "file". If the only values which can be han-

dled by input/output are integers the state becomes:

STATE :: STR:STORE 1IN:Int® oUT:Int*
TR STATE 5 STATE x [LABDEN]

il

Creation of an initial state and disposal of the final state is illus-
trated below. The final combinators +o be given here provide clearer

reference to components of the state. Thus:

[}

IN := e
e IN

Ao .mKk-STATE(STR(c),e,0UT(c))
Ao ..IN(o)

then (using the syntax of the next section):

Mimk-In(vr)Ji(p) &
if ¢ IN=<> then error
else (def v: hd e IN;
def 1: MloelvrI(p);
STR := STR + (7 » v];
IN := tl ¢ IN)

3
t

114 VDM AND PROGRAMMING LANGUAGES

4.10 A DEFINITION

——

The definition of a small language illustrating all of the points made
in this chapter can now be given. The main static and dynamic semantic

functions are split under the syntactic objects; auxiliary functions are

collected at the end of the section.

Abbreviations

Names of sets are abbreviated as indicated in {talics:

Boolean operator
Constant parameter
declaration procedure
denotation reference
environment right hand side
expression statement
identifier transformation
integer variable
location

The following type clause abbreviations (7) are used:

M: D => ~ M: D - 7Tp
M: D => R Y M: D > STATE 3 (STATE x [LABDENT x R)

Static Environment

The validity of an abstract program with respect to context conditions
is defined by the WF function. This function creates and uses a static
environment which contains attribute information. This same Staticenv
is used by the 7P function which determines the types of expressions

etc, (Attr is defined in the section on procedures below.)

Staticenv = Id g (4ttr | LABEL | Procattr)
Procattr :: Attr*

Certain obvious steps have been taken to shorten the WF functions given
below. For example, if:

@ 12 @7 92 .. 9y

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 115

then a rule {or part of a rule) of the form:

WF[TI'IK—Q(QJ,QZ, ,,,3Qn)](senv) A
WE[Qq](senv) A WF[Qg9l(senv) A ... A WF[Q,](senv)

is omitted.

Semantic Objects

The state for this simple language contains the values for the (scalar)
locations, the set of activation identifiers in use and the input and

output files:

STATE :: STR: STORE
AIDS: AID-set
IN: Int”
OUT: Int™
STORE = SCALARLOC i [SCALARVALUZ]
SCALARLOC Infinite set
SCALARVALUE = Bool | Int
AID Infinite set

The denotation of (local) identifiers are contained in an environment

which is a parameter to the meaning function ().

ENV = Id & DEN

DEN = LOC | LABDEN | PROCDEN

Loc = SCALARLOC | ARRAYLOC

ARRAYLOC = WNat® 3 SCALARLOC where aleARRAYLOC>(3nl)(domal=rect(nl))
LABDEN . :: s~aid:AID s-lab:Id

PROCDEN = LOC* = TR

Transformations reflect possible abnormal termination:

TR = STATE 3 STATE x TLABDEN]

Programs

Program :: Stmt

116 VDM AND PROGRAMMING LANGUAGES

WELmk-Program(s)] A WF[s]([])
type: Program - Bool

comment the empty environment passed to the context condition for

statements reflects the fact that there are no (global)
variables,

MImk-Program(s)](inl) A
let statep = mk~STATE([],{},inl,<>) in
OUT(M[B]([])(stateo))

type: Program - Int> o Int®

comment the only result of executing a program is its output

list of values - the state transition is purely local.

Statements

Stmt = Block | I1f | while | call | Goto |
Assign | In | out | NULL

Within this section the following types are to be assumed unless other-
wise stated,

WE: Stmt - Statiecenv - Bool
M: Stmt -+ ENV -+ TR

Block :: s-delm:Id i# Del s-proem:1d i Proe s-body:Namedstmt "

WF[mk—BZock(chm,procm,nsl)](senv) A
let labl = contndli(nsl) in
is-uniquel(labl) A
is-disjointl(<g£gﬁglabl,Qgﬂprocm,ggﬂdclm>} A
(let lenv Lid » ATTR[delm(id)] | idedomdelm]
Lid » ATTR[proem(id)] | idedomproem]

[<d » LABEL | ideelemsiabl]
let renv = senv \ domlenv

™~
[
o+
3
®
=
<
i

senv + lenv
(Vdclezggdclm)(VF[chJ(ﬁenv)) A
(Vproceiggprocm)(WF[proe](nenv)) A

(Vnseelemsnsl)(WF[ns](nenv)))

s Is

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 117

comment renv is used for declarations because local variables
should not be used in defining array bounds - use of nenv

for procedures shows that (mutual) recursion is permitted

in the language.

MImk-Block(delm,proem,nel)](env) A
def cas: ¢ s-aids;
let aid € (AID - cas) in
s-aide := ¢ s-aids v laid};

def nenv: env +

(Tid » M[delm(id)](env) | idedomdeilm] u
Lid =» M[proem(id)J(nenv) | idedomproem] U
[id = mk-LABDEN(aid,id) | tdeelemscontndll(nsl)]);

always epilogue(domdelm,aid) v «ws)
in (tize [mk-LABDEN(aid,id) M sel(id,nel)](nenv)

| ideelemscontndll(nsl)] in
Mlnel](nenv))

note: declarations, procedures and epilogue are defined after the

remaining statements.

Namedstmt :: s-mm:0Id] s-body:Stmt
Minsl](env) A

for i = 1 to lennsl do M[s-body(nsll[<i])](env)
type: Namedstmt® - ENV =»
If :: s~test:Expr s-th:Stmt s-el:Stmt
comment the Dbranches of the conditional cannot Dbe labelled.
WF[mk-If(e,th,el)](senv) A TP[e](senv) = mk-Scalarattr(BOOL)
M{mk-If(e,th,el)](env) p

def b: M[e](env);

if b then M[th](env) else Mlel]l(env)

While :: e-test:Expr s-body:Stmt

WF[mk-~Whilele,s)]({senv) A TP[e](senv)zmk—ScaZarattr{BOOL)

118 VDM AND PROGRAMMING LANGUAGES

M{mk-While(e,s)](env) 4

let wh:(ggi veMlel(env); if v then Ml{s](env);wh
in wh

else Igppg)

comment wh is defined recursively.

Call :: s-pn:1d s-app:Varref®

WE[mk-Call(pid,apl)](senv) A
pidedomsenv a senv(pid)eProcattr a

(let mk-Procattr(fpl) = senv(pid) in
Lgﬁqpl:égﬁfpl A (Vieindsfpl)(TP[apl[i]](senv):pr(i)))

comment the actual parameters must match the formal parameter type
M[mk—CaZZ(pid,apZ)](env) A
def loel: <M[apl(i)](env) | I<i<lenapl>;
let f = env(pid) in
f(loel)
comment creation of procedure denotations is shown in the handling
of Procedure below.
Goto :: s-lab:Id

WE[mk-Goto(lab)](senv) A labedomsenv a senv(lab)=LAREIL

M[mk-Goto(lab)](env) A exit (env(lab))

Assign :: s-lhs:Varref e8~rhs:Expr
WP[mk-Assign(lhs,rhs)](senv) L TP[rhe](senv)=TP[lhe](senv)

Mlmk-Assign(lhs,rhs)](enp)

fje=>

def loe : M[Ths](env);
def v 2 MlrhsJ(env);
STR f= ¢ STR + [loc » v]

MODEUJNGCONCEPTSOFPROGRAMWHNGLANGUAGES 119
In :: s-var:Varref
WF[mk-In(vr)J(senv) A TPl[vr](senv)=mk-Sealarattr(INT)

Mimk-In(vr)](env)

>

def inl: ¢ IN;
else (def loc : MlvrJ(env);
IN = tlinly;
STR f= ¢ STR + [loe » hdinl])

Out :: s-val:Expr
WE[mk-Out(e)J(senv) A TPle](senv)=mk-Scalarattr(INT)

Mmk-Out(e)](env) A def v : Mlellenv);

OUT := ¢ OUT <v>
MINULL] (env) A Torarg
Declarations
Del = Secalardel | Arraydel
Sealardel :: Scalartype
Arraydel ©¢ s-sctp:Sealartype s-bdl:Exprt
Scalartype = INT | BOOL

ATTR: Del -+ Attr

ATTR[mk-Scalardel(sectp)] A mk-Secalarattr(sctp)
ATTR[mk-Arraydel (sctp,bdl)] A mk—Arrayattr(sctp,égzbdl)
WF[mk~Arraydel(getp,bdl)](senv) A

(Vbdeelemsbdl)(TP[bd](senv)=mk—ScaZarattr(INT))
type: Arraydel - Staticenv - Bool

Mlmk-Sealardel(setp)](env) A def uloes : dom ¢ STR;
let le(SCALARLOC - ulocs) iﬁ

STR := ¢ STR v [1 » nil];

return(l)

120 VDM AND PROGRAMMING LANGUAGES

epilogue(ids,aid) (env) A
let scloecs = {env(id) | ideids env(id)eSCALARLOC} u
union {rnglenv(id)) | ideids env(id)eARRAYLOCY in
STR := ¢ STR \ scloecs;
AIDS := ¢ AIDS - {aid}

type: Id-set x AID - ENV - TR

M[mk~Arraych(sctp,bdl)](env)_A
def bdvl : <M[bdl(i)](env) | 1<i<lenbdls;
1f (3icindsbdvl) (bdvi(i)<1) then error
else (def uloes : dom e STR;

let aleARRAYLOC be s.t. is—disjointl(<ulocs,rngal>) A

domal = reet(bdvl) in
STR := ¢ STR = [sel nil | seclerngall;
return(al))
type: Del =+ ENV => LOC
Procedures
Proec i: e-fpl:Parm” s-body:Stmt
Parm 2 s-mm:Id s-attr:Attr
Attr = Secalarattr | Arrayattr
Sealarattr :: Scalartype
Arrayattr :: s-sctp:Scalartype s-bdinf:Nat

ATTR[mk-Proe(fpl,s)] A
mk-Procattr(<s-attr(fpl(i)) | 1<i<lenfpls)
type: Proc - Procattr

WF[mk-Proc(fpl,s)](genv) A
ie-uniquel(<s-nm(fpl(i]) | I1<i<lenfpl>) A
(let menv=sgsenv + Us—-nm(fplli]) » s~attr(fpll[i1]) | ieindefpl] in
WF(s)(nenv))

M{mk-Proc(pl,s)](env) A
let flal)=(let nenv = env + [e-nm(pi[i]) v alli] | teindspl] in
ML s](nenv))
in f

type: Proec -+ ENV - PROCDEN

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES 121

comment note that it is the environment of the declaring block (sta-

tic) which is used as the basis for nenv

Expressions

Expr = Infixexpr | Rhsref | Const
In this section functions, unless otherwise stated, are of types:

WF: Expr -+ Staticenv = Bool
TP: Expr - Staticenv - Attr

M: Expr -+ ENV => SCALARVALUE
Infixzexpr :: Expr' Op Ezxpr
Op = Intop | Boolop | Comparisonop

WF[mk-Infizexpr(el,op,e2)](senv) A
opelntop a TP[eZ](senv):TP[ez](senv):mk-Scalarattr(lgz) 1%
opeBoolop a TP[eZ](senv):TP[eZ](senv}=mk~ScaZarattr(EQQ&)v
opeComparisonop A TP[eJJ(senv)=TP(eZ)(senv)=mk~ScaZarattr(;ﬁ!)

TPImk-Infizexpr(el,op,e2)](senv) A

if opeIntop then mk-Scalarattr(INT) else mk-Scalarattr(BOOL)
M{mk-Infixexpr(el,op,e2)](env) A def vi : Mlell(env);
def v2 : M[e2](env);
return Mlop](vi,v2)
M for the various operators yields their meaning:

M: Op — (SCALARVALUE x SCALARVALUE - SCALARVALUE)

Rhsref :: Varref

Varref :: s-nm:Id s-bdp:[Expr*]
WF[mk~Rhsref(vr)](senv) A TP[vr](senv)eScalarattr

TP[mk-Rhsref(vr)](senv) A TP[vr](senv)

122 VDM AND PROGRAMMING LANGUAGES

WE[mk-Varref(id,bdp)](senv) A
tdedomsenv A senv(id)eAttnr A
(bdp=nil a eenv(id)eScalarattr) v

(senv(id)edrrayattr

(let mk-Arrayattr(sctp,dim) = senv(id) in
lenbdp = dim A

(Vbdeelemsbdp)(TP[bd](senv):mk—ScaZa%attr(INT)))))
type: Varref -+ Staticenv - Bool

TP[mk-Varref(id,bdp)](senv) A

if senv(id)eScalarattr then senv(id)

else if bdp+nil then (let mk-Arrayattr(sctp, bdi)

= senv(id) in
mk—ScaZarattP(sctp))
else senv(id)

type: Varref - Staticeny - Attr

MImk-Rheref(vr)](eny) A def loe: Mlvr](env);

def v: (e STR)(loe);

if v=nil then error else return(v)

———

comment note how the location is evaluated by access to store be-

cause the right hand side contexts require values.

Mimk~Varref(id,bdp)](env) Y
tf bdp=nil then return{env(id))

else (let aloe = env(id) in

def eescl: <M[bdp(i)](env) | 1<i<lenbdp>;

if ~(esscledomaloc) then error elee returnf(aloc(esscl)))
type: Varref - ENV => LoC

Const = Intconst | Booleconst

TP: Intconst — Staticeny - {mk~ScaZarattr(INT}}

TP: Boolconst -+ Staticenp - {mk—ScaZarattr(BOOL)}

¥ function is an identity for constant.

MODELLING CONCEPTS OF PROGRAMMING LANGUAGES i23

Auxiliary Functions

contndll: Namedstmt®™ -+ 1d*

yields the list of those identifiers used as s-nm part of the
elements of the given statement list

is-uniquel: X* - Bool
indicates if a list contains unique elements (i.e. no dupli-~

cates)

ts~-disjointl: (anet)* + Bool

indicates whether the sets in the list are pairwise disjoint

rect: Nat® - (Nat*)-set

generates the set of valid indices within the given bounds

sel: Id x Namedstmt™ - Namedstme*
pre~sel(id,nel) A idecelemscontndll(nsl)
returns the sublist whose first statement has id as a label

providing that the arguments satisfy the pre-condition.

4.11 NON~-DETERMINISM

It is observed above that this language definition fixes the order of
evaluation of sub-expressions. This is in keeping with the decision to
minimize the discussion of non-determinism in the current bodk. On the
other hand, non-deterministic selection has been deliberately built
into the selection of new locations and activation identifiers. The
definition is showing that the particular choice made is irrelevant in
the sense that it would not affect the overall outcome of the program.
If, however, some particular choice were defined, it could make it
more difficult to prove some implementations correct. Although admit-
ting this non-determinism is useful for implementations, it would be
unnecessarily confusing to employ relational or power domain denota-

tions (cf. [Jones 8lal, [Plotkin 76a]) to cope with this problem,

