CHAPTER 3

MATHEMATICAL FOUNDATIONS

The need to be sure that the semantics of a language are precisely under-
stood applies to the meta-language. Indeed, if the meta-language is not
adequately defined, all attempts to employ it may be wasted. Chapter 2
uses some extremely powerful concepts. In particular, recursive functions
defined in Lambda notation and the self-application of functions need
detailed mathematical foundations. These foundations were, in fact, lack-
ing when Christopher Strachey and Peter Landin first used Lambda notation
to define programming languages. The mathematical problems were Ffirst
solved by Dana Scott. Scott has gone on to offer several mathematical
models: the treatment here gives an outline of the recent "neighborhood"
approach. A pedagogic treatment of the general problem can be found in
[stoy 77a].

Readers who are less interested in mathematics than their use in defining
semantics, might choose to omit reading this chapter. If they are con-
cerned with defining systems where there is no recursion, this could be
done quite safely. Readers involved in the definition of programming lan-
guages should, however, be aware of the problems involved and are recom-

mended to read at least the first two sections.

47

48

3‘8

FORMAL SPECIFICATION META-LANGUAGE

CONTENTS

Introduction..............., S oo e s e
Basic Problems.......... © e e ot e o s oo o ae e s e e

3.2.1 Circular Definitions.....,...........

3.2.2 TFixed POintS.eeeesaon.. e oo e s ce s o e

3.2.3 Self-Application and the Existence of
Infinitary Objects......,...................
3.3.1 Neighborhood Systems.....ooevivnn...,
3.3.2 Elements.............................
3.3.3 Finite Elements.........ooiivununn...
3.3.4 Changing the Token Sets......... e e
3.3.5 Permissible Functions......oeuvuen...
3.3.6 Continuity...........a..o.oq,o,.,,.,.
3.3.7 Function Spaces as Domains....cooov.s,
Least Fixed Points...b.........o.‘b.c.,.....

New Systems from 1O K

3.5.1 Product Spaces.......o...a.a.‘,..a....

3.5.2 Sum Spaces.....o.....................
3.5.3 The “"Strict" Versions..veeevenonanss.
Recursive Domain Equations....vevvvuennnn.,.
An Alternative Approach to Domain Equations.
3.7.1 Computability of Domains and Mappings
3.7.2 Retracts.............................
3.7.3 A Universal Domain...ceveninnnnnnn..
Application to VDM, e i e
3.8.1 Primitive Domains............ e eenas
3.8.2 Compound Domains....coveiiinnnnnnn...
3.8.3 Sum Domains.........................,
3.8.4 Abstract Syntax.s it iiiieiinninnnn...
3.8.5 Functionsg...................Q.,,...,
3.8.6 Sets..........,.......,...,o..,,..,,.
3.8.7 Lists.v.......,.....,...,......o..c..

3.8.8 Maps......,....,......,....uo...,.o..

© 09 06605800 0 88

© 905 80908 06 00

® s 0 a0 o e
L ° o

..........
* e e 000006 0

% 0 0090 0 0

* %0 020086 0 ¢

6 ¢ 5 20008 8 o

* e e % e300 @

ooooooo

. .49

.49

.51
+ .52
.. 54

..56
«+57
.58
+ 60
«a62

«0 64

.0 .65

. .66
» + 66
.67

70
.0 71
e 72

e 74

s .76

.. 78

e 79
« 80

o080

MATHEMATICAL FOUNDATIONS 48

3.1 INTRODUCTION

The VDM meta-language, presented in this book, is intended to be used as
a vehicle for rigorous mathematical reasoning about systems specified
with it. In this chapter we aim to examine sowe of the problems that seemn
to arise when we use it for this purpose, and to indicate how they may be

resolved.

It might be hoped that this kind of study would play a subsidiary part
in a course of training in the use of VDM. After all, a knowledge of
the formal construction of the real numbers by Dedekind cuts is hardly
essential before undertaking everyday arithmetical calculations. For
this hope to be fulfilled we must provide some kind of guarantee that
every grammatical construct in the notation means something sensible in
the mathematical framework on which the notation is based ~-— or, at the
very least, some simple rules of thumb about what to avoid (such as
division by =zero in the real number example). For the most part we
shall in fact be able to give the appropriate guarantees, so that someone
who writes a specification in this language can be assured that he is
indeed specifying something -though not necessarily what he intended,

of course.

The foundational work on which the apparatus of denotational semantics
rests was principally done by Dana Scott. The present chapter will be
largely devoted to an introduction to his theory: for a fuller account

readers must be referred to [Scott 8la].

3.2 BASIC PROBLEMS

3.2.1 Circular Definitions

The first problem we must face concerns circular definitions. These a-
rise not only in the semantics of recursive procedures (or data struc~
tures) but also for any constructs which involve looping. For example,

we may wish to define the while-loop in such a way that
"while B do 8" = "if B then (S; while B do s)" (1)

In the VDM language this same idea might be expressed (as in section 2
of chapter 2) as follows

50 FORMAL SPECIFICATION META-LANGUAGE

MImk~-While(b,s)](state) A (2)
(let wh = Ao.(let bv=MX[b](c) in if bv then (M[s](c)) else o) in
wh(state)

(Notice that (2) uses Church's A-notation [Church 41a], which was also

described in chapter 2.)

Example (1), since it is circular, is not « priori a definition at all.

It is in effect an equation which we must try to solve for the value of
"while B do S"

and similarly in (2) the circular "definition" of the function wh(s) is

an equation which we must try to solve for wh. However, the mere fact

that we can write an equation does not quarantee that it has a solution:

for example, in arithmetic the equation

Or, to take another example, consider the following recursively defined

function.
flz) = 1f z=0 then 1 eclse if x=1 then f(3) else f(xz-2) (3)

We have to solve this for f+« The solution which would naturally occur

to most computer scientists is
{ 1 if x is even and =z >0
flz) = { (4)
{ undefined otherwise
But another solution is

flz) = 1 (for all x) (5)

and so is

MATHEMATICAL FOUNDATIONS 51

{ 71 if = is even and =z >0
flx) = { a if is odd and z > 0 (6)
{

b otherwise

for any values of a and b. Thus part of the job of our theory is to
guarantee the existence of solutions to any such circular equational
definitions we need to write, and to tell us which solution is to be
understood as the meaning of the "definition" when the solution is not

unique.

3.2.2 Fixed Points

Using A-notation we may rewrite our equations in the form

f=H8(f)

where H is a A-expression. For example, (3) might now become

£ = H(f) (7)
where

H = Ag.Ax.if =0 then 1 else if x=1 then g(3) else g(z-2)

Now our search for a solution of the equation becomes a search for a

fixed point of #; i.e., a value which is mapped by # to the same value.

In most of our work these values will be functions themselves {(notice
that # above is a function of a function), but simpler functions may

have fixed points too.

Examples of Fixed Points

Considering integers and functions on them:

a fixed point of Ax.x is =
a fixed point of Ax.8-x 1is 4
a fixed point of Ax.x is any integer
a fixed point of Ax.x+! does not exist.

Considering more general functions:
fixed points of Ag.hx.if x=0 then 1
else if x=1 then g(3) else g(x-2)
are the functions defined in (4), (5) and (6).

Fig. 1 Examples of Fixed Points

52 FORMALSPENHCANONNETA&ANGUAGE

3.2.3 Self-Application and the Existence of Domains

The other main problem which we wish our theory to settle for us con-
cerns the existence of the various value spaces we might define. Some

of these seem unlikely. For example, consider the function (introduced
in chapter 2)

twice(f) A Xz .f(f(xz))
The argument of twice is itself a function: thus, for example (twice
square)3 = square(square(3)) = 81. So far S0 good. But what are we to
make of

((twice twice)square)3?

Obviously (at one level) this works out to be

((Ax.(twice(twice x)))square)3s

i

(twice(twice square))3s

It

(twice square)((twice square)3)
81"* ~ 43046721

But notice that in this calculation the function twice was applied to
itself. Another example of such self-application is afforded by the
following definition of the factorial function

al(b,x) A if z=0 then 1 else xxb(b,z-1)

Factorial(y) A a(a,y)

Notice carefully that this involves no recursion: g is defined solely in
terms of its parameters, and Factorial is defined solely in terms of its
barameter y and the previously defined a: a, however, is required to

take itself as an argument.

This kind of example is quite permissble in many programming languages.

For example, chapter 2 mentions
PROCDEN = (VALUE | PROCDEN)™ o STATE 3 STATE

and remarks that the arguments in some particular Argument-1ist which

corresponds to procedure parameters nust be elements of PROCDEN itself.

MATHEMATICAL FOUNDATIONS 53

Other languages might allow commands to be stored. A command is a value

in the domain

STATE - STATE
and
STATE = LOC -+ VAL

where VAL is the domain of storable values, here including commands. So

once again we have a circular domain definition.

Why should the circular definition of domains present any more of a pro-
blem than the circular definition of functions, already discussed? Let
us consider a simpler case. Let F be a set of functions whose domain is

G, another set of functions, and whose range is the set with the two ele-

ments ¢ and 1. So
F=2¢- (0,1}

Now if ¢ has n elements it is easy to see that F will have 2" elements:
that is to say, the number of elements in F will always be greater than
the number in ¢, and this remains so even when ¢ contains infinitely many
elements (this is Cantor's theorem). So even in this simple case there

is no space of functions F such that
F=7F+{0,1}.

If the right hand side of this equation denotes all the functions from

F to {0,1} it will necessarily have too many elements.

Until we can resolve these difficulties we have no right to use any cir-
cular definitions, of functions or of domains, in our discussions. This
would very much restrict our treatment of programming languages, but it
would be necessary, in order to avoid the risk that we were talking non-
sence by referring to things that could not possibly exist. Fortunately,
however, these difficulties can be resolved, and in the remainder of this

chapter we shall outline how this may be done.

Strictly speaking, perhaps, our investigation should proceed in two pha-
ses. First we should work out what is the minimal set of properties our
system should have in order for the things we wish to do with it to be

possible. Then secondly we should see if we could construct a system (a

54 FORMAL SPECIFICATION META-LANGUAGE

"model") satisfying all these properties. That would avoid the danger
of ending up with a system which had unnecessary constraints. Here, how-
ever, we shall begin inventing a model at once - taking care, though,
that all the assumptions we make are reasonable requirements for a theo-

ry of computations.

3.3 INFINITARY OBJECTS

Functions provide one example of a class of infinitary objects, objects
which can contain an infinite amount of information -- in this case the
mapping for every element of an infinite domain. Infinitary objects
cannot be handled explicitly within a finite machine. Instead we have to

be satisfied, on each occasion, with a finite approximation to the

object which will nevertheless be adequate for that particular occasion.
The same situation arises with other infinitary objects, such as real
numbers. We cannot write down 1 completely, because it would go on for
ever; but we can always choose a finite approximation (25 decimal places,
say) good enough for some particular occasion. All we can actually do
with a function (that is, a mapping) is apply it to various arguments;
and in a finite time we shall only be able to apply it to finitely many
arguments. So in any particular execution of a program our knowledge of
a function will be confined to the results it has given for just one
particular finite set of arguments - that one particular finite approx-
imation to the function is all that is relevant to that particular oc-
casion. (We do not know in advance, of course, which particular subset
we shall require for any particular execution -- that is why we represent
the function by an algorithm, a procedure capable of generating any sub-

set, though only ever a subset, as required.)

This is the general idea that we shall exploit: a theory about computing
with infinitary objects must handle them as the limits of sets of finite
approximations, so that in any particular computation one of these ap-
proximations will be adequate in itself. We now embark on the construc-

tion of such a system of elements.

3.3.1 Neighborhood Systems

We shall regard an approximation to an object as specifying the attri-
butes that the object might actually possess. So let A be a set of such

attributes, which we shall call tokens . We shall not have to WOrry

MATHEMATICAL FOUNDATIONS 55

too much about what atom of information a single token represents: we

shall only be concerned with collections of such tokens, subsets of A.

A neighborhood system over A is the family of those subsets of A which

might possibly represent approximations to our objects. A particular

member of this family, a neighborhood can be thought of as containing

just those attributes which are not yet ruled out, and which might still
apply to the object -- it might perhaps be thought of as a region of

"possibility space”.

There are two constraints on this family. In the first place, before any
any computation has taken place no tokens will have been ruled out, so
the whole set A is itself a neighborhood. Secondly, consider a pair of
neighborhoods ¥ and Y. These might, of course, be approximations of two
quite different objects, with nothing in common; alternatively it might
be possible to regard them as two approximations of the same object. This
will certainly be possible if there is a third neighborhood, 7, in the
system such that 2 c X and Z c Y. In this case, then, we insist that
there be a neighborhood corresponding precisely to the information con-
tained in just ¥ and Y taken together, since Y and Y together rule out

all tokens which are not in their intersection. So we formally state

Definition 1: A family D of subsets of a given set A is called a neigh-

borhood system over A if

1. AeD;
2. whenever X,Y,%7¢D and g < XnY, then XnY ¢ D

Notice that a smaller neighborhood represents a better approximation.

Fig. 4

56 FORMAL SPECIFICATION META-LANGUAGE

Let us look at two simple examples. In the first (Fig. 2) there are two
tokens and three neighborhoods. FEither we have no information, or one
of the tokens has been ruled out. In the next (Fig. 3) we have added two
more tokens; notice that this does not require us to add any more neigh-
borhoods -- the new system has precisely the same configuration of neigh-
borhoods (under the set inclusion relation) as the previous one. However,
if we choose to add neighborhood {3} to the system, the rules force use

to add {2,3} too, and we have the system shown in Fig.4.

Fig. 5

In the other example (Fig. 5), the completely determined objects corre-
spond to sequences of length two made up of zeroes and ones. The neigh-
borhood labelled 4, for example, encapsulates the approximation that the

sequence begins with a zero.

3.3.2 Elements

We stated earlier that an element was to be regarded as the limit of a
set of approximations. We now formally identify an element with the sub-
family consisting of all those neighborhoods which could correspond to
its approximations. That is to Say, we are never going to be concerned
about which particular sequence, of better and better approximations, is

chosen from this sub-family. More precisely we have

Definition 2: The elements of a neighborhood system D are those sub-

families xc<D where

1. Aex;
2. Xex and Yex implies XnY ¢ «,

3. whenever Yex g2§.XE}eD, then Yezx.

MATHEMATICAL FOUNDATIONS 57

The third of these conditions, for example, says that whenever any par-
ticular neighborhood is a member any neighborhood corresponding to a
worse approximation will also be a member. The collection of all the

elements of D is written as |D| and is known as a domain.

In the first of our examples (Fig. 2) there are three elements, as fol-

lows
{{o,11}, {{o, 1}, {11}, {{o,1},{o}}.

The first modification of this (Fig.3) similarly has just three elements:
{{o,1,2,3}}, {{0,1,2,3},{0,2,31}, {{o,1,2,3},{1,2,3}};:

the other version, however, with its extra neighborhoods (Fig.4), has

extra elements as follows:

{{o,1,2,31}, ({o,1,2,3},{0,2,3}}, {{o,1,2,3},{1,2,3}}
{{o,1,2,3}.{0,2,3},{1,2,3},{2,3}},
{{o,1,2,3},{0,2,3},{1,2,3},{2,3},{3}}

In the other example there is an element corresponding to each of the

tokens; it consists of all the neighborhoods containing that token.

3.3.3 Finite Elements

Each neighborhood of any neighborhood system determines a partial ele-
ment, containing that neighborhood and all those corresponding to worse
approximations. More precisely

Definition 3: For XeD the element upto X is defined by

upto X = { Y | YeD A Xcy }

These elements are called the finite elements of the domain |D|. The re-

maining elements, the infinitary ones, do not themselves correspond to
particular neighborhoods, but must be regarded as the limits of infinite

sets of neighborhoods.

Notice that the finite elements are dense in |D|, in the sense that for

each z in |D]

Wy

58 FORMAL SPECIFICATION META-LANGUAGE

z = union { upto ¥ | Xezx }.

So every element of |p] is uniquely determined by its finite approxima-

tions.,

Notice also that if XcY then upto ¥ 2> upto Y. If zcy, x is less defined

than y. In this case we say that gz approximates y and often writes this

relation as

Notice that every domain has a least defined element ({A}), which we
call L (pronounced "bottom"). If a domain also has elements maximal with
respect to the approximation relation they are called total elements.
In our first example, for instance, there are two such maximal elements
(and the only other element is i). This domain, in fact, with two fully
defined elements, is the one usually taken to model the truth values:

in VDM we would call it Bool, with elements

U, true, fatse}
Moreover, this example easily extends to a larger one, equally useful.
Instead of just two tokens, 0 and 1, take all the natural numbers, and
let the neighborhoods be the complete set of tokens (of course) and all
the singleton subsets. The domain thus produced has, together with l, a
countably infinite number of completely defined (maximal) elements; this
domain will be what VDM calls Nat. If we rename the elements appropriate-
ly, the same domain -- or, if the reader prefers, an isomorphic copy --
will do duty for Fat0 and Tnt too. (More precisely speaking, a domain
comes with some associated primitive operations to give it some extra
structure, and it is these which will distingui&h Wat, Wat0, and Int --

even though these three domains are isomorphic as neighborhood systems.,)

3.3.4 Changing the Token Sets

In our previous two examples the tokens corresponded respectively to the
total elements and to all the elements. This is by no means a necessary
feature. For example, Suppose we are constructing a domain whose elements
are intended to correspond to integer sets, and where the approximation
ordering is to be the same as the set inclusion ordering. We could take

the integers themselves as +the tokens and, informally, understand the

MATHEMATICAL FOUNDATIONS 59

presence of token n in a neighborhood to convey the property that the
integer n is not a member of the set we are approximating. Thus the
finite element corresponding to the neighborhood in Fig. 6 would be {1}.
Fig. 7 gives slightly more of the structure of this neighborhood system.
It will be seen that although the tokens are countable, there are uncount-
ably many partial elements; but there is only one total element, the

complete set of integers.

Fig. 7

We remarked earlier that the exact nature of tokens in a neighborhood
system was not crucial: the important thing was the neighborhoods then-
selves. We illustrate this by showing how, given any nejighborhood
system, we can construct an isomorphic system (that is one with an iso-
morphic domain of elements structured by the approximation relation and,
indeed, an isomorphic system of neighborhoods structured by set inclu-
sion) with different tokens. For example, if D is a neighborhood Sys—

tem, for any XeD we define
(¥ = { 2 | XexelDn! }

It can be shown that the family of sets like [X¥] itself forms a neighbor-
hood system and, moreover, that the domain determined by this new system
is isomorphic to that of the old one. Tt will be seen that the tokens

of the new system are the elements of the old one, and so are isomorphic

with the elements of the new system too.

60 FORMAL SPECIFICATION META-LANGUAGE
Alternatively, define

downto X = { ¥ | YeD A vex }
It can be shown that this family of sets, too, forms a neighborhood
system determining a domain isomorphic to the old one. 1In this case the
tokens of the new system are the neighborhoods of the old one, and thus

correspond to the finite elements of either domain.

3.3.5 Permissible Functions

We must next consider how to treat functions between domains of elements.
Remember that an actual computation about infinitary objects must be con-
ducted solely in terms of their finite approximations. Thus at any stage
in the computation of the application of a function to an infinitary
argument (another function, perhaps), the argument will be represented
only by an approximation, a neighborhood, and we shall require the func-
tion to specify similar approximations for the result. That is to say,
for neighborhood systems Dp and D7 we shall regard a function f between
the corresponding domains as a binary relation between the two families
of neighborhoods.

It is reasonable to require this relation to satisfy certain properties.

In the first place, before the computation starts we have no information

about either the argument or the result, which moves us to demand
AofA1

Moreover the relation must be consistent, in the sense that

Xfy and xfy! imply Xf(¥ n ¥')

Finally, the relation should exhibit a property called monotonicity. That

is to say, an improvement in the approximation to an argument may not
cancel any definite information we already have about the result. More-
over, whenever any particular neighborhood is specified by the relation

as an approximation to the result then any worse approximation must also
be speficied. More formally this means that

if X'<Xx, XfY and Ye¥' then x'fr’

MATHEMATICAL FOUNDATIONS 61

Definition 4: A relation satisfying all these properties is called an

approximable mapping.

It can easily be seen that any approximable mapping between neighborhood
systems determines a function between the corresponding domains of ele-

ments. For all xelDOI we define
flx) = { Y | YeD A (3Xex)(XxfY) }

Conversely, each function on elements determines the original relation

on neighborhoods, which is given by
XfY <=> Y € f(upto X)
This two~way correspondence justifies us in using the same letter for

the function and the relation. Notice that the function is also monoton-

jic

xcy always implies f(z)<f(y)

As an example, Fig. 8 tabulates all the approximable maps from Bool to
Bool, listing them both as relations on neighborhoods and as functions on

elements.

Tokens: b = {0,1}

Neighborhoods: A, 4 = {0}, B = {1}

Elements: I =1{a}, true = {4,4}, false = {4,B}

1. Afa Afa BfA 1 1 1

2. AfA AFA BfA AfA 1 true |

3. AfA AFA BFA AfB 1 false |

4. AfA Afn BfA BfA 1 1 true

5. AfA Afb Bfa BfB 1 1 false
6. AfA Afb Bfb AfA Bf4 1 true true

7. AfA Afb Bfb AfA BfB 1 true false
8. AfA Afh Bfa AfB Bfa 1 false true

9. AfA AfA BfA AfB BfB 1 false false
10. Afa Afps Bfa AfA BfA AfA true true true

11. AfA AfA BfA AfB BfB AfB false false false

Fig. 8 Approximable Maps from Bool to Bool

62 FORMALSPEﬂHCAﬁONMETALANGUAGE

3.3.6 Continuity

Although we have been regarding neighborhoods as corresponding to finite
approximations of elements, sometimes it 1is convenient to think of the
elements themselves as approximating each other. We therefore need to
be able to characterize those sets of elements which are in some sense

tending to a limit. The appropriate concept is that of a directed set.

Definition 5: A non-empty set 3, partially ordered by a relation <, is

directed if, whenever Z,YyeS, z<z and y<z for some 2e8.

Notice that z is not necessarily the least upper bound of z and Y. A

chain of elements
x_l,xg,:rg, ooy Ly o0
in which Tpixy,7 for all n, is a simple example of a directed set.

If S is a directed set of our particular kind of elements (ordered by the
relation c), then it is easy to show that

union { = | zes }
is itself an element. Using more technical jargon, we may say that do-

mains are closed under directed unions.

Now, if f:p-p' is approximable and Scipl is a directed set of elements,

we can also easily show that
flunion { =z | zes }) = union| flz) | zes }

That is to say, the functions determined by approximable mappings are
continuous: they preserve directed unions. This is an important proper-—
ty, giving rise to important techniques for proving properties of our
specifications. There is a One-one correspondence between continuous

functions on elements and approximable maps between neighborhood systems.

3.3.7 PFunction Spaces as Domains

We make one further remark about approximable mappings. Suppose D, and

D7 are neighborhood systems. Let us construct a further system, in which

MATHEMATICAL FOUNDATIONS 63

the tokens are the approximable mappings between Dp and D; and of which
the neighborhoods are the finite non-empty intersections of sets given
by

Tx,yl={r | xfy }

where XYeDj and YeD;. It can be shown that this system 1is a neighborhood
system, and its elements correspond uniquely with the approximable map-
pings between D, and D; (it is this that moved us to call the mappings

approximable in the first place).

Fig. 9

Fig. 9 shows an example of this construction, for the system correspond-
ing to the approximable mappings from Bool to Bool: the mappings are de-
noted by their numbers in the 1list given in Fig. 8; notice that the
neighborhood [4,B) "wraps round, and appears at both edges of the figure.
The neighborhoods shown by dashed lines correspond to the “finite inter-

sections” mentioned in the construction.

As a further example, consider the mappings from WNat to Nat. In this sSys-
tem, assuming that the tokens and elements of Nat are given corresponding
enumerations, the neighborhood [{1},{3}] (for example) contains all the

functions which map 1 to 3. The neighborhood

C{1}, {337 n C{2},{4}]

64 FORMAL SPECIFICATION META-LANGUAGE

contains all the functions which map 1 to 3 and 2 to 4. Thus the complete
family of neighborhoods in this system has members for all finite maps
from Vat to Nat - that is, those which map only a finite number of inte-
gers to anything other than l. The remaining functions correspond to in-
finitary elements of the function space. Similarly, if we carry out the

construction for

(Nat =+ Nat) -+ (Nat - Nat),
H
the neighborhoods correspond to finite maps of finite maps: that is to
say, in all cases the neighborhoods themselves correspond exactly to what

may actually be computed in finite time.

All this indicates that (provided that we confine ourselves to approxi-
mable mappings, which we shall henceforth do) Ffunction spaces between
domains can be considered domains in their own right. We may therefore

now begin to consider functions of functions within our framework.

3.4 LEAST FIXED POINTS

In an earlier example of a recursive function definition (3) we noticed
that when there was a choice of solutions of the fixed point equations

it was the least defined solution (4) we required. We now show that such

a least fixed point always exists. That it to say, if f: D - D is ap~-

proximable, there is a least z such that flx)=x.

Let us consider how such an z might be approximated. A is always a neigh-
borhood of any z, and if ¥ is one neighborhood and xfY, then Y will be
another neighborhood. This suggests that

x = { X | XeD o AF"X, for some neNat }

might be a candidate for our required x. We now show that this guess 1is

correct.,
According to our suggestion, X ¢ 2z if for some n there exists a sequence
X0s X715 veesXy

where X,=4 and X,=X. such. that Xiin+js We must prove first that the g

MATHEMATICAL FOUNDATIONS 85

formed in this way is an element of [Dl. Now A ¢ z (consider sequences
of length 1); and since f is approximable, X ¢ z and X < Y together im-
ply that Yex. It remains to prove that if Yex and Yex then (¥nY)ex.
First we note, since AfA, the two sequences of neighborhoods relating &
to X and to Y can be made of equal length by prefixing enough As to the
shorter one. We also note that if yfv and U'fv'! are consistent, then
(UnU'")f(VaV'). Thus taking intersections element by element of our two

sequences we see that (XnY)ex.

Having shown that z is a valid element, we must show that it is the least
fixed point of f. We notice that if XYer and XfY then Yex, so flx)cxz . In-
deed, x is the least such element (since any other must contain A and
hence all of z too). But, since f is monotonic, f(ftz))ef(z);: so f(x) is
itself another such element, and hence zcf(x). Combining these twg‘re—
sults we have x=f(x) as desired, and we have already seen that z is the

least element with this property.

We have thus shown that if we confine ourselves to neighborhood systems,
and to functions determined by continuous mappings, then we can assume
that recursive function definitions always specify the least solution
of the corresponding fixed point equation, secure in the knowledge that
such a least solution exists and is unique. So there is a function

fiz: (Ipl = Ipl) -+ |pl]

which maps any function f: Ipl - Ip| to its least fixed point. fix may
be defined by

fiz(F) = unionl F*(1) | new }
and fix can itself can be shown to be an approximable mapping.

We have thus sketched out how the first of our two problems may be solved.

We now turn to the other.

3.5 NEW SYSTEMS FROM OLD

We have already seen one way in which a neighborhood system may be con-
structed from two others - the space of approximable mappings from one

system to another is a neighborhood system in its own right. We now

66 FORMAL SPECIFICATION META-LANGUAGE

mention one or two other methods for constructing new neighborhood Sys-

tems from old.

3.5.1 Product Spaces

Suppose D, and D; are neighborhood systems over Ap and Ay, and suppose
Ap and Ay are disjoint (if they were not we could, of course, tag all

the tokens in some way to make them so). Then we define

Do x Dy = [Xuy | Xepy a Yeny)
This can easily be seen to be a neighborhood system itself, over boudy;
each neighborhood has a contribution from one neighborhood of Dp and from
one of D;. It has elements which may be written <x,y>, where xe!DOI, and
yelpsl, defined by

<e,y> = [XuY | Xex a Yey }

Thus the elements of this system correspond to pairs of elements drawn

from the given systems. The ordering of these elements behaves as ex-
pected
T,y < <xl,y'> = gex! A oyoy! (8)
The selector functions may be easily defined too: if z - <x,y>, then
r={Xelngl l xuvia; ez} = {3, bo 1 2 e 2}

i

trelpgl lYvageasl) = {z4 by 1 2 ¢ 5}

All this indicates that the cartesian product of two domains is a domain

too.

3.5.2 Sum Spaces

Once again, let Dp and D; be neighborhood systems over the disjoint sets

Ap and A7. Define
Dy + Dy = DOUDZ U {Aoqu}

This, too, is a neighborhood system again over boubdy; each of its ele-

ments, apart from the new minimal one {AouAj}, corresponds to an ele-

MATHEMATICAL FOUNDATIONS 67
ment of either |D)| or |p;|. This correspondence is given by the functions

ing: Izl = Ipg + Dyl
out;: 1Dy + Dyl - D1

where 7 ¢ {0,171}, defined by

inglzy) = x5 v {ag v Ayl
ezl xelpgll v {ag} (9)

i

out;(zx)

This system, then, corresponds to the disjoint union of the two given

domains: the partial ordering is inherited from the two components.

3.5.3 The "Strict" Versions

We can give the following alternative versions of the preceding two con-

structions.
IDglelpy | = {aguaqs}l v { xuy | Xepy-{ay} a YeDy-{a7}}
IDglelDs | = (aguas} v € x | xeDp-{ag)) v { v | YeDy~{aq}}

The effect of these variations is to reduce the number of elements in the
constructed domains. In the Ffirst case, IDy & Dy] contains no elements
<x,y> for which z or y (but not both) is the minimal (Least defined)
element of the respective component domain: the pairing function defined
in (8) takes all such elements to the minimal element of the new domain
(I, which is also <],1>). 1In the second case, |D, ® Dy | contains no se-
parate elements corresponding to the minimal elements of the component
domains: in; (for each i) maps each to the minimal element of the sum
domain. This disjoint construction, with the minimal elements identified
in this way, is sometimes known as the coalesced sum, as distinct Ffrom
the the separated sum given earlier. Which version of the sum or product
domain construction is required depends on the particular circumstances
(though VDM does not provide separate notation for both) . We shall
have more to say about this when we come to apply this work to the VDM

notation more specifically.

3.6 RECURSIVE DOMAIN EQUATIONS

We have now discussed the three principal ways of combining given domains

68 FORMAL SPECIFICATION META-LANGUAGE

into bigger structures - by forming product, sum or Ffunction spaces.
(There are, of course, other constructions, but they are not too relevant

to VDM.) So we now know how to interpret an equation such as

Val = Bool + Int + (Int x Int)

provided Bool and Int have been defined (they were discussed in examples
above). We must now consider equations in which a domain is described

circularly, as in the following example
Tree = Int ® (Tree Q Tree)

From this equation we may infer, for a start, that there is an element
of Tree corresponding to each element of Int, and to every pair of ele-
ments of Tree. This structure (together with the actual Int -+ Tree and
(Tree x Tree) - Tree functions specifying the correspondence) would a-
rmount to an algebra of trees. But we shall require more. An algebra
might associate (for example) two diffevrent pairs of trees (<4,B> and

<B,4>, say) with the same element of Tree. We shall forbid such “con-
fusion". The fact that we have written a domain equation is meant to
imply that the two sides are to be isomorphic: two elements of the do-
main are to be identified only if they arise from the same structure of
components. FEven this is not enough, however, to specify a unique solu-~
tion of the equation. The domain Tree (for example) might include ex-
tra elements which, though their presence does not invalidate the domain
equation, are not essential for a solution. We therefore forbid such
"junk" elements, too. Elements are to exist in the domain only if their

existence is required (not merely permitted) by the defining equation.

An example of unnecessary elements for our particular equation is af-

forded by infinite trees, such as
Ty<1,<1, o0u>>>

The presence of such trees would not invalidate our equation, but they
are not required by it; so they are not present in the particular solu~
tion we have in mind. Notice, though, that if we had used the alterna-
tive (uncircled) versions of the domain construction operators some in-
finite trees (those which are the limits of their finite approximations)
would have been part of the solution too. For example, all the elements

of the sequence

MATHEMATICAL FOUNDATIONS 69

J_’ <1’.l_>’ <13<13_L>>; <jj<1’<1’]_>>>j e
will be present, and therefore (since, as we have seen in section 3.3.6,
domains are closed under directed unions) their least upper bound will
also be present, and this is the infinite tree we have mentioned - other-—
wise our solution would not be a domain at all. The use of the strict
operators (in particular &), however, will ensure that any attempt to
produce a tree containing L will in fact produce iAitself; thus no (non-
trivial) finite approximations of infinite trees are in the domain Tree,
and neither are the limitpoints. Another way to see the difference be-
tween the two versions of Tree may be to consider what is the least so-

lution of the equation
x = <],x>

in the two domains - it will be i in the strict version, but the infi-
nite tree in the other. (Notice that the version for which infinite trees
are present by necessity may nevertheless have solutions which include
other "junk" elements -- an example would be the domain which also in-

cluded infinite trees of Boolean atoms.)

The particular kind of solution that interests us ("no confusion, no

junk™, in Burstall's phrase) corresponds to the initial algebra and is,

in the sense which we have outlined, the unique minimal solution of the
equation. We now have the obligation of showing that an initial solu-
tion exists for any such equation. One way of doing this is, firstly,

to define the implicit partial ordering on domains.

Definition 6: D is subsystem of E, written "D sub E", (and the corre-
sponding domains are in the subdomain relationship) if
D and E are both neighborhood systems over the same set
of tokens and

1. D c E;
2. whenever X,Y ¢ D and XnY ¢ E, then XnY € D

That is to say, D is a "smaller" family of neighborhoods, but neighbor-

hoods in it are consistent whenever they are consistent in %.

Then we consider

70 FORMAL SPECIFICATION META-LANGUAGE

T(X) = Int & (X Q X)

as defining a "function", T, from the class of domains (into itself), and
we define what it means for such a "function" to be monotonic and contin-

uous. Then if we have a token set A such that
{8} sub r({4})

we can show that the required initial solution of
D = T(D)

is given by
D = union T"({A})

Notice that {4} is the minimal neighborhood system over A, and if it is
a subsystem of T({A}) then the whole sequence of systems will be over
the same set A. (Of course this is no more than the barest of possible
outlines - strictly speaking, for example, T is not only a function on
the class of domains but has to do the right thing to the approximable
mappings on those domains too. The neatest way to say it properly is in
the notation of category theory, making T a functor, and the interested

reader will find it all in [Scott 8lal.)

3.7 AN ALTERNATIVE APPROACH TO DOMAIN EQUATIONS

In a sense we have now dealt with all the problems outlined in section
3.2. We have shown that, under constraints which hold for the cases
with which we are concerned, solutions exist for our circular definitions
both of functions and of domains themselves, and we have discussed how
it is always the minimal solution +that interests us in particular. We
choose, however, to approach the matter of domain equations from another
direction. The point is that the methodology for which we are seeking
to provide the foundations is to be used for specifying computer lan-
guages and systems; so, if possible, we should try to keep track of
whether what we are specifying is computable. We must therefore extend
our treatment to take computability into account, and we shall find that

the alternative approach will allow us to do so more easily.

MATHEMATICAL FOUNDATIONS 71

3.7.1 Computability of Domains and Mappings

We recall that the basis of this model is that the neighborhoods repre-
sent the finite approximations to our finitary or infinitary values: so
it is with neighborhoods that we actually compute. 1In order that these

computations with neighborhoods be possible, we require the neighborhood

system to be effectively presented - that is to say, we require neighbor-
hoods inside the machine (or on paper) in such a way that the necessary
calculations can be carried out. This in turn means that there must be
no more than countably many neighborhoods, so that we may think of then
as indexed by the natural numbers (that is, we may think of a typical
neighborhood as X, for some natural number n): More than this is needed,
however: for we must be able to tell which neighborhoods are which, and
how they relate to each other, in an effective way. The formal require-

ments are spelled out in the following definition.

Definition 7: A neighborhood system D has an effective presentation

(or "D is effectively presented") if

D= { Xy | new 1},

where the two propositions

(3keN) (XpcX, A Xy<X,), and XpoXpy = X1

are recursively decidable (in m,n and k,m,n respectively).
Elements, and particularly infinitary elements, are thought of as the lim-
its of their finite approximations. So all we have a right to expect,
when computing a particular element, is that any particular approximation

to that element will be produced sooner or later. That 1is to say

Definition 8: An element z of an effectively presented domain is said to

be computable if the set
{ new | Xyex }
is recursively enumerable.

In a similar way we define what it means for an approximable mapping to

be computable.

72 FORMAL SPECIFICATION META-LANGUAGE

Definition 9: An approximable mapping f: ¥ =+ Y, where Y and Y are ef-

fectively presented, is computable i1f the relation
Xnf ¥
is recursively enumerable in m and 7.

The reader unfamiliar with recursive function theory need not be too con-
cerned to study the details of these definitions. Suffice it to say that
they express our requirements using the standard apparatus, and that when
they overlap with the standard theory (for example, when they are applied
to the domains of integers and integer functions) they are precisely com-
patible. We may now go back over our previous working, and check that we
can find effective presentations for the domains we have introduced, such
that any "primitive operations” specified for any particular domains - or
any operations defined for families of domains - are computable in terms
of that presentation. In this summary the only example we have explicitly
mentioned is fiz (this is, incidentally, the only fixed point operator
which is in general computable). We should check that our domain con-
structors (x, + and so on) produce domains which are effectively present-
ed whenever the constituents are (that is to say, we can work out algor-
ithms for the necessary calculations with the new neighborhoods given
those for the constituent domains). WNote, too, that a function is com-
putable, considered as an approximable mapping, Jjust when it is comput~

able considered as an element of the function space domain.

We now give a method for finding solutions to domain equations that bet~

ter allows us to keep track of this notion of computability.

3.7.2 Retracts

Our new programme for finding solutions of domain equations involves ex-
ploiting the subdomain relation sub. Our plan is to find the solution of
any domain equation as a subdomain of one particular "universal" domain
which contains them all. One convenient way to characterise a particu-
lar subdomain of a given domain is as the range of some function; an
even better plan is to confine our attention, if we can, to functions
which are idempotent (that is to say, which are the identity function on
their range, so that their ranges and fixed-point sets coincide). Such a
function is called a retraction, and its range set a retract, of the

given domain.

MATHEMATICAL FOUNDATIONS 73

Definition 10: A retraction of a neighborhood system F is an approxi-

mable map a: F - E such that

aa = a
Now to relate retractions and their retracts with subdomains, we note
that if D sub E, then there exists a pair of approximable maps relating

the two domains, namely 4: D =+ F and j: E -+ D defined as follows

i(x) = { v | YeE n (3Xex)(X<y) }
y n D

i

Jly)

These two maps are known as a projection pair; note that

J°i = Ip and i°j < Ip

If we look more closely at this last-mentioned 1°7, which may alterna-

tively be defined as the approximable mapping a given by the relation

X a 2 <=> (3YeD)(X<¥<Z),
we see that it is a retraction, since

aa = 19j°i°4 = {°5 = q,
and, moreover, that |p] is isomorphic to the fixed-point set of a. To
show this last point, we note, on the one hand, that for any x ¢ !Dl}
i{x) is an element of a's fixed-point set, since

ali(x)) = i°j°i(z) = i(x);

and, on the other hand, that for any fixed point y of a there is an ele-
ment of |D|, namely j(y), such that

t(ilyl)) = y

So 71 sets up a 1-~1 correspondence between the fixed-point set of g and
the domain [D| which (since 7 and J are both monotonic) is an isomorph-

ism under the c ordering.

Notice that not every retraction corresponds to a subdomain of the given

74 FORMAL SPECIFICATION META-LANGUAGE
domain in this kind of way. We call a retraction a of 7 a projection if
ac Igp

and we call it a finitary projection if its fixed-point set is indeed

isomorphic to a subdomain. The finitary projections of & are just the

functions a which satigfy

alz) = { Y | YeF A (3Xex)(X a X & X < y)}

3.7.3 A Universal Domain

Our final step in this development is to produce a domain which is "uni-
versal” in the sense that any required domain may be found as one of its
subdomains. There are many possible candidates - even if we confine our-
selves to domains which are effectively given - a convenient one uses as

its tokens the rational numbers in the half-open interval [0,1), where
[rue) = {qge @ | »r<q< g}

We define the system U over [0,1) to have as neighborhoods all non-empty

finite unions of intervals

[r,8) where 0<r<s<l
This can easily be seen to be effectively given. This system [is uni-
versal in that e€very countable neighborhood system D is a subsystem of
U and, moreover, if D is effectively given the relevant projection pair
(and hence the associated retraction) is computable.
Next we find isomorphic versions of our favourite primitive domains as
subdomains of U. Bool, for example, may be found as the neighborhood
system

{[O,l).[O,l/Z),[l/Z.l)}
giving rise to the domain

t{to, 1}, {r0,1),[0,1/2)},{[0,1),01/2,1)}}

The reader might care to define a suitable retraction function for this

MATHEMATICAL FOUNDATIONS 75

domain (remember that when applied to any element of U it must produce an
element corresponding to an element of Bool, and those particular ele-
ments must be mapped to themselves), and perhaps also for a suitable ver-

sion of the domain of integers as a subdomain of U.

Finally we must cover the constructors for compound domains. First we
note that (because they are effectively given) U x U, U + U, U - U are
themselves sub-domains of U, and so we can assume the existence of pro-

jection pair functions
Ty U x U »U and Jy: U > U X U

and similar functions for the other forms of construction. (When we came
actually to design a suitable pair of functions i, and Jy we would
have to take care to make the tokens corresponding to the two subdomains
disjoint -- perhaps by mapping them to [0,1/2) and [1/2,1) respectively).,

Now for any a,b € U =+ I, define
a x b= i x.<alxl0]),b(x[1])>)°F

where z[0] and z[1] are the two components of z whenever z is a pair, and

| otherwise. Similarly, we may define
a +b =1, °xrf.bofog)oi,

and so on for the other constructions. If g and b are finitary projec-
tions then so are a x b, a =+ b etc. and their fixed-point sets are iso-
morphic to the domains obtained by applying the corresponding domain
constructor to the domains characterised by a« and b. This programme may
be continued: an important step is to show that if f is a function such
that f(a) is a finitary projection whenever g is, then fiz(f) is also a

finjitary projection.

Thus, instead of working with the domains themselves, we may work in-
stead with their finitary projections. Since, if a and b are finitary
projections of U

Dg sub Dp just when ach,

this new view is isomorphic with the old. So we may now think of a re-

cursive domain equation as defining the domain given by the correspond-

76 FORMAL SPECIFICATION META-LANGUAGE

ing recursively defined finitary projection: both equations specify the
minimal solution (just as we understood circular domain equations to do
in the earlier approach), but now we know when the resulting domains
are effectively given and accordingly appropriate vehicles for specify~

ing a computation.

3.8 APPLICATION TO VDM

We must finally discuss how these notions map onto the VDM matalanguage
that is the subject of this book. This is partly a notational change -
our notation up to now has been very similar to Scott's. For example, VDM
uses domain names such as State, unadorned with bars, to denote families

of elements which we have denoted, up to now, by |Statel.

3.8.1 Primitive Domains

The primitive domains of VDM correspond to systems we have already discus-
sed. We should remember, however, that these systems are structures con-
sisting of a neighborhood system and a number of primitive operations, in
terms of which we could define all other operations involving elements of

the domain. For example, the non-negative integers (the domain VDM calls

Nat0) could be defined as the structure
<N,0,pred,suce, zero>

where N is the countably infinite system introduced in section 3.3.3.
Other numeric domains (such as I'nt and Nat) would correspond to similar,
but different structures. The truth-value domain, Bool, would have its
own family of operators including, for any other domain D, the condi-

tional combinator
Cond: Bool x D x D - D.

The other primitive domains (domains of Quotations (Characters), or of

explicitly enumerated elements - such as the domain {CLUBS, HEARTS, SPADES,

DIAMONDS}, for example) have their own families of operators too: these
often consist merely of an equality test, sometimes together with some

ordering relation.

For all these structures we must check that we can first define suitable

MATHEMATICAL FOUNDATIONS 77
enumerations of their neighborhoods, and then define the primitive opera-
tors as computable functions in terms of these enumerations. This pre-

sents no problem for the domains we have discussed.

3.8.2 Compound Domains

Our job for the compound domains is very similar - we must provide enu-
merations for the neighborhoods (in terms of the enumerations for the
component domains), and definitions for a sufficient set of primitive o-
perators. We should also clarify what properties (if any) we need to as-

sume about the component domains in our construction.
Many of the domain constructions require little discussion. The construc-
tion for product spaces, for example, has been sufficiently described,

and the VDM notation is the same as used in this chapter.

3.8.3 Sum Domains

For sum spaces the VDM notation is 4 | B. In many cases this is best re-
garded as equivalent to our 4 & B; for example, in the specifications of
syntactic domains (where, of course, the sum domain notation is used to
give alternatives for nodes in the parse tree) we do well to rule out the
infinite parse trees that would be elements of our domain if we used the
non-strict versions of the sum and product operators. Occasionally,

though, the other version is appropriate. For example, consider a se-

mantic value domain defined to be
Val = Int | Bool | Proc

Here Proc is supposed to be a domain of procedure values, presumably
functions from parameter lists to some appropriate space; so its mini-
mal element will be the function mapping all parameter lists to L. This
is indeed the least-defined procedure, but it must not be confused with
the minimal element of Val itself. lVaZ is such that any attempt to
evaluate it will fail to terminate - in our terminology, no neighborhood
will be produced in the enumeration of neighborhoods except for the triv-
ial neighborhood (A) conveying no information beyond the fact that the
value is an element of Val. The minimal procedure, however, is at least
a procedure, and as such might be passed around as a parameter to other
procedures or whatever; it is only when it is applied to a parameter

list that a non~terminating computation might be expected to result.

78 FORMAL SPECIFICATION META-LANGUAGE

(In fact this point does not arise in the language given in Chapter 4 -

the only place where it might is in the definition of the domain Den by

Den = Loc | Labden | Procden

but in this case since lProcden is the only element that can ever arise

there is no real need to distinguish it from any other.)

The best rule of thumb in deciding whether the strict or the non-strict
constructions are required is probably to use the strict versions when-
ever the component domains are all flat (that is, they contain only max-
imal elements and l): this will result in a new domain which is also
flat, thus avoiding extra complication which is almost always unneces-
sary. When a component domain has a richer structure, however, or al-
ternatively when the construction is part of a circular definition of a
domain that is to include infinitary elements, the non-strict versions
are usually the appropriate ones to use. Note, however, that this is
merely a rule of thumb, and often more careful analysis is required. Even
in the example we discussed in section 3.6, the various different choices
for the operators result in domains which are quite different, and would
be appropriate for list systems with quite different semantic properties.,
Donahue and Cartwright (in [Donahue 82al) discuss just this taxonomy for

a comparison of various definitions of "lazy evaluation”.

3.8.4 Abstract Syntax

We must now discuss the difference between the use of "=" and of ".:" as
the defining operator in a domain equation, since either may be used,
particularly when a product domain is being defined. 1In fact there is
nothing abnormal about the "=" operator; in particular, if two domains
are defined wusing this Operator with the same right hand sides the do-
mains will be identical. The "::" operator, on the other hand, always
defines a domain together with a family of named constructor and selector
functions, and names for the test functions which are implicitly defined
when the domain is used in sum domain constructions with others. Thus the
difference between the two operators is basically one of associated

naming conventions.

3.8.5 Functions

The VDM notation for function spaces corresponds closely to ours, though

MATHEMATICAL FOUNDATIONS 79

an additional distinction may be made, between a domain of total Ffunc-—
tions and one containing partial functions too. Since this is well known
to be an uncomputable distinction, we regard it as making no difference
to the domain, which will be the same in either case: it is merely a mat-
ter of more or less informal comment, indicating that those writers who
use both symbols in their definitions are, when they use the "total" ver-
sion, perhaps prepared to prove that the functions they are defining are
total. (The vagueness of this remark is intentional, since in practice

some authors tend to use the plain arrow for the unrestricted class.)
3.8.6 Sets

The notation provided for specifying set domains in VDM is so general
that it is possible to define domains which are not effectively presented
and for which some of the operators provided in VDM are uncomputable.
For example, unless it is possible to tell effectively whether two ele-
ments of a set are equal it will not be possible to compute the set's
cardinality. We therefore allow as elements of set domains only finite
sets, of elemehts of some flat domain (but excluding l). Since the car-
dinality function card must, as usual, be monotonic, the domain of sets
must be ordered in such a way that sets of different cardinalities are
incomparable: the set domain, in fact, is a flat domain too. If the do-
main of members is countably infinite (no effectively given flat dowmain
can be uncountable), the set domain will be yet another domain isomorph-
ic to the domain of integers, as can be seen by considering the stand-
ard representation of sets as bit patterns, and regarding them as binary
numbers. This representation technique immediately suggests a strategy
for formulating the details of the neighborhood system and the primitive
operations, and for defining a suitable projection pair, to allow such
set domains to be viewed as subdomains of our universal domain . When
this is worked out, it will be seen that the construction makes use of
more properties of the component domain than any previous one (it will,

for example, rely on its flatness).

It should be remarked that other kinds of domains of sets are also some-
times used in denotational definitions (though not, as yet, in the VDM
notation). One example is the domain of sets of possible results of non-
deterministic computations. The theory of these "powerdomains" is quite
different from that for the mnuch simpler domains we are considering
here -~ for example, such domains need not necessarily be effectively

given (the computer, after all, produces only one of the set of possible

80 FORMAL SPECIFICATION META-LANGUAGE
results). For a discussion of the wvarious forms of powerdomain see
[Plotkin 76a] or [Smyth 76a]. or (for the kind which does fall inside

the framework of neighborhood systems) [Scott 8la].

3.8.7 Lists

One possible way of constructing a domain of A-lists, where 4 is some

domain, is as the initial solution to the equation

L = L ® (AQr5).

It is straightforward to define the appropriate set of primitive opera-

tors in terms of thisg domain.

3.8.8 Maps
Maps in VDM are finite functions on flat domains. Moreover, given a map,

it is possible to compute the element of a set domain containing the ele-
ments for which the function is defined, implying that maps defined on
sets of different cardinality are incomparable.

One possible way to provide a construction for map domains is to proceed
by representing a map as a pair, consisting of the set on which it is
defined together with an approximable mapping of the usual kind. All the
VDM operators involving maps are then straightforward, except possibly
for those involving the range. For example. if m is a map from 4 to B,
rng m is allowable only if a domain may be defined for elements of & (see
above); even then, rng m will be computable only if m Thappens to be a

total map on its domain.

Maps in VDM, however, are most frequently (though certainly not always)
used in definitins where the members of their range sets are known to be
elements (excluding 1) -of some flat domain. Then the map domain is flat
too, and none of the problems just described arises. Thus, for example,

Cchapter 4 section 8 contains the definition
STORE = SCALARLOC it [SCALARVALUE]
where

SCALARVALUE = Bool | Int

MATHEMATICAL FOUNDATIONS 81

and SCALARLOC is also a flat domain. We see that STORE, too, is flat and,
and, therefore, so is the domain of states in that definition (since

State is a product of Store together with other flat domains) .

The discussion of this section may seem to be calling for some fairly
conventional programming, albeit in terms of neighborhoods. It should be
remembered that the object of such exercises is to check that the domains
being considered can be effectively presented, and that they can be pro-
vided with an adequate set of computable primitive operators. This does
not in any way prejudice any decision about how an actuial implementation
might represent the elements of any domain. It does, however, provide
us with quarantees on the following points which would otherwise, if

necessary, have to be proved explicitly.

1. The domains may be used in recursive definitions of other effect-

ively given domains;

2. the domains may be used as the basis for the specification of Ffunc-

tions which we may reasonably expect to implement on a computer,

