CHAPTER 2

THE META-LANGUAGE

Chapters 2 and 3 are both concerned with the meta-language ("META-IV")
in general; chapter 4 provides more motivation by showing how features
of the meta-language are used in the denotational definition of program-
ming languages. Readers who are new to semantic definitions are advised
to read this chapter rather quickly and then use it as a reference after
studying chapter 4. Those readers who are familiar with the Oxford work
on denotational semantics will be struck by the large number of combina-
tors used in "META-IV". The need for the extra "syntactic sugar" results

from the definition of large systems.

The only knowledge assumed is of elementary set and logic notation --
thus, chapters 1-4, 14, and 15 of [Lipschutz 64a] would serve as adeq@%te
preparation. Lambda notation is introduced as a way of defining func-
tions in general and cowmbinators in particular. The notation for de-
scribing and manipulating objects is also described. The mathematical

foundations of these concepts are reviewed in the next chapter.

A programmer's view of the meta-language is given in [Bjdrner 78c]. (This
chapter is a replacement for [Jones 78al].) Other related work includes
that of the "Z" group [Abrial 80*], CLEAR [Burstall 77a, Burstall 80a],

and several projects at SRI (Stanford Research Institute, Menlo Park,
Ca., USAa).

25

N

FORMAL SPECIFICATION META-LANGUAGE

CONTENTS

Denotational Semanticsg.......c....‘..¢,....'.

I Y

Functions,..,.,.°...s.....o...........

R T T S 1

Combinators.....,.....................

MR I I T T 37

Logic Notation.,,.....................

R I I T T I

Objects............,.......a.....,....

Defining Objects.......,.................

R I T I T S &)

On Non—Determinism..g.........................

R I T T T Sr Y £

THEMETA-LANGUAGE 27

2.1 DENOTATIONAL SEMANTICS

Chapter 1 introduces the fundamental ideas of denotational semantics: in
order to define the semantics of some set of objects (L), a meaning func-
tion (M) is written which maps elements of I, to some understood set of
denotations (DEN); the structure of the elements of [is exploited in
the rule that ¥ should derive the denotation of structured elements of
L (only) from the denotations of their components. Thus the meaning func-

tion is of type:

M: L - DEN
and is defined by cases over the structure of [.
An example can be made of the definition of binary numerals {some nota-—
tion is used in the examples which is defined only later in the chapter -
it should, however, be clear enough to communicate the general idea). The
binary digits are simply symbols and this fact can be emphasized by using
rather clumsy names:

Bindigit = 0SyYM | 15YM

A binary numeral can either be a composite object or simply a digit:

Binnumeral = Bincomposite | Bindigit

A composite object is made up of two parts the first of which is a nu-
meral and the second a digit:

Bincomposite :: Binnumeral Bindigit
The natural numbers can be used as denotations:
Vato = {0,1,2,...}

Thus the meaning of binary numerals is to be defined by a function of

type:
M: Binnumeral - Nat0

This function can be defined by cases. For composite objects:

28 FORMAL SPECIFICATION META-LANGUAGE

M[mk—Bincomposite(n;d)] A MInJ«2 + M[d]

Notice that this function builds the denotation (i.e. value) of the com-
posite from the denotations of its components as required by the denota-

tional method. The denotations of digits are given as follows:

MLOSYM] = ¢
ML1SYM] = 1

Most definitions require a more complicated set of “understood Denota-
tions". In particular, systems or languages normally require denotations

which are functions over states. Thus, for a simple language:

M: Lang -+ TR
TR = STATE 3 STATE

(The distinction between total and partial functions is marked by super -
imposing a tilde on the arrow of the latter). Tt is, then, necessary to

use notation for the creation and manipulation of functions: this is the
topic of the next section.

2.2 FUNCTIONS

An example of the familiar style of function definition is:

flx) Ax xax+ 2

When the argument and result sets are not obvious from context, a type

clause can be written:

f: Nat0 - Nato
The use of conditional expressions in function definitions is familiar
from many programming languages. For example, a function which yields

the maximum of two integers is:

max: Nat0 X Nat0 - Nat(Q

maz(z,y) A if xy then y else x

The "application" of a function (D + R) to an element of its argument set

THEMETA-LANGUAGE 29
(D) yields an element of the result set (R), thus:

f(3) =11
max(2,4) = 4

For various reasons, functions will frequently need to be recursive. A
simple example of a function definition for square shows that the famil-

iar style of presenting function definitions can be used:

square: Nat0 =+ Natl

square(n) A if n=0 then 0 else square(n-1) + 2%n - 1
(Although the use of square within its own definition is familiar to pro-

grammers, 1t i1s necessary to consider below exactly what such a "defini-

tion" means).

But, when writing a denotational semantics definition, there will also be
two further needs. Because of the need to create and manipulate functions
as objects, a notation for unnamed functions is required. The “Lambda
calculus" [Church 4lal] is such a notation. The function named f above can
be defined:

Ax.x*x + 2

This is an expression for the function. If it is required to name the

function, it is possible to write:

f=Ax. x*z + 2
But the expression can be used without providing a name. For example,
just as f can be applied to arguments, the unnamed function can Dbe ap-

plied to values:

{Ax.xxx+2)(3) = 11
(A .xxx+2) (1+3) = 18

The form of such a "lambda expression”" is:
Az K

in which z should be a name and E an expression (normally involving zx).

30 FORMAL SPECIFICATION META-LANGUAGE

The whole expression denotes the function which maps any argument to the

value obtained by evaluating % when z equals the argument value.

Lambda expressions can be written which fulfil the need to create func-

tions. Thus:
Ay (Ax.x¥zty)

denotes a function which, for example, can be used to create the function
considered above.

(Ay-(Ax.x*x+y)) (2) = Ax.o*zss

Functions of more than one argument (e.g. mazx above) can be reduced, by

a process known as "Currying", to the simpler form:
Ax,y Elxz,y) = Az Ay Elx,y)

Thus maxz can be defined:
max = Ax,y. if x<y then y else x

In addition to defining functions whose values may be functions, lambda

expressions can be written which take functions as arguments. For example:
twice Aferzf(f(x))

Ax.square(square(x))

1

16

twice(square)

il

(twice(square)) (1)

(twice(square))(2)

The ability to define functions which take functions as arguments (known
as “functionals") opens up a new way of understanding recursive "defini-
tions"™. The definition of gquare given above can be viewed as an equation

with square as an unknown (just as the quadratic:
2%x*%9 = 14 - 3%z

is an equation with =z as an unknown). If a npew function is defined:

1= Af.xn.ii n=0 then 0 else f(n-1) + 9%y - 1

THEMETA-LANGUAGE 31
then square must be a solution to the equation:

square = H(square)
The fact that such solutions exist (and the choice of the "least fixed
point" solution) is discussed in chapter 3. Also in need of mathematical
foundations are the types of functionals. Chapter 3 explains why the
familiar view of the set of all functions must be restricted when con-
sidering functions which take themselves as arguments.
In this chapter, the lambda notation is used on the assumption that it
is sound (i.e. that the foundations are given). This section closes with
some examples of the use of the rather general functions in the defini-
tion of programming languages.
(The first of these examples illustrates a use of recursion where proper
"domains" -- see chapter 3 -- are required as denotations. In the Binnum-
eral example above, recursion was controlling a macro-expansion-like def-
inition and the denotations could be ordinary sets.)

If a "while" statement is built according to the following syntax:

While :: Expresston Statement

Statement = Assign |...| While
then a meaning function might be defined of type:

M: Statement —+ STATE 3 STATE

For this simple example it is assumed that expression evaluation causes

no side-effects and that:
MX: Expression - STATE % Bool

where the defined elements of Bool are:
{true, false}

A recursive function can then be used to define the while case for M:

32 FORMAL SPECIFICATION META-LANGUAGE

M{mk~While(b,s)](state) Y
let wh = Ag.(let by = MX[b](c) in

if bv then wh(Mls](c)) else o) in
wh({state)

The inner let introduces an abbreviation which is used in the following
expression. The outer let introduces a name for a value which is defined
recursively: some authors emphasize this by writing letrec. The possibil-
ity that the loop fails to terminate for some states is reflected by show-

ing (with a tilde: ™) that the function is partial.

An example of the need for functions which take functions as arguments
is found in languages which permit procedures to take procedures as ar-
guments. The denotation of a procedure might be:

~

Proeden = Argument™ - STATE 3 STATE

Arguments corresponding to "by value" arithmetic parameters might be num-
bers; those corresponding to "by reference" parameters might be locations;:
but the arguments corresponding to procedure parameters must be elements
of Proeden. Both of the issues raised here are considered Ffurther in

chapter 3.

2.3 COMBINATORS

It would be possible to write out complete language definitions using the
lambda notation. Meaning would be defined by a translation into a large
lambda expression. For small languages, this is sometimes done. For lar-
ger languages, a much more readable definition can be given by using

some "combinators" which correspond to commonly used ways of combining

function values. For example, given functions:
f: D1 -+ D2
g: D2 -+ D3

then their "composition" is:

9°f = Ax.g(f(z))

Notice that f is applied first. Thus:

THE META-LANGUAGE 33
gef: DI - D3

Since this is defined in terms of the Lambda calculus, no new foundation
problems are introduced: the combinators simply provide a more perspicu-

ous notation for writing a lambda expression.

One of the differences between definitions written by the "Oxford" and
"Vienna schools", in the greater use of combinators by the latter. This
difference has, at least in part, resulted from the fact that the Vienna
group faced the task of defining rather large languages and systems. Just
as in programming, the larger the final text the greater the justifica-
tion for defining concepts of general use. Because the combinators can
be {(and are in this section) defined in terms of ILambda calculus, this

difference between the two schools can be seen to be superficial.

The order of composition is the reverse of that which is frequently na-
tural in a semantic definition. It is therefore convenient to define a
combinator in which the first operand is applied before the second. This

"semicolon" combinator is such that:
f: p1 - p2
g: D2 - D3
fig = geof
Thus:
f;g: D1 - D3
In particular, where both operands are of type STATE - STATE, so is their

combination. This can be used, for example, within the definition of the

meaning of a while construct given above to write:
if bv then (M[e];wh) else Igrarr
where Igpspp is the identity function on states.
A small extension to the same example shows the desirability of another
combinator. Suppose expression evaluation is allowed to create side-

effects, then the type of the expression meaning function would be:

MX: Expression -+ STATE 5 STATE x VAL

34 FORMAL SPECIFICATION META-LANGUAGE

The use of the semicolon above has removed the need to write the ¢ for
part of the definition: how can this be extended to the whole definition

with the above type for Mx? A "define" combinator can be given:

f 2 DI = D2 x D3

e(x) > D2 - D4, reD3
(def x: f;e(z)) : DI - D4

(def x: f;elx)) = f;(ro,z.e(z)(c))

In particular:
(defx:_;mj: (STATE3STATEXVAL)x(VAL*STATEgsTATE)*(STATEzSTATE)

The association rules for - and x are that x binds more strongly than -

and is associative, and that - is right associative. Thus:
4 x B +C +D xE 1is the same as: (4 x B) -+ (C =+ (D x E})

The complete definition of the meaning of the while construct can now be

given:

M{mk-While(b,s)] A
let wh = (def bv: MX[b];
iﬁ bv Z]’L_Q_L’L_ ML e];wh elsg ISTATE) z:_?’l_ wh

The elimination of parameters (i.e. state, o) corresponding to states in

this example has made the definition clearer. The difference is even

more significant on larger examples.

Some cases of such a transformation may determine a value without chang-
ing the state. The return combinator can be used to promote a simple
value to a transformation. Thus for veVAL:

~

retgzg v STATE 3 STATE x VAL

The conditional used in the definition of the while statement is also a
simple combinator. It should be noticed that this use is "dynamic" in
the sense that the result is determined by a value which is created hy
one of the transformations. There are other uses of conditionals which
depend only on the "static" text whose denotation is being defined. An-

other useful static combinator is for. Thus in defining the meaning of

THEMETA-LANGUAGE 35

a list of statements in a compound statement:

Statement = Assign | Compound | ... | While

Compound :: Statement™
it is possible to write:
M[mk-Compound(el)] A for i=1 to lensl do M[sl{i]]
Rather than using recursion, as in:
M{mk~Compound(el)] A
_‘é_f; lensl=0 the?}_ IsraTE _
else M[hdel];M[mk-Compound(tlsl)]

A similar static expansion can be used for def:

def vil: <M[alli]] | I<i<lenal>; ... vl ...

is the same as:

au

ef vil: Mlall1]];
ef vli2: M[all2]];

|

o

"

Qn
®
-

vin: Mlalllenalll];

vl = <vl1,v12,...,vIn> in .e. VL ...

|

A Y
©
o

|

A language or system without any exception type constructs could be def-
ined using only the above combinators. The handling of exception con-
structs presents problems for the denotational method precisely because
the effect of an exception cuts across the structure over which the de-
notations are supposed to be constructed. The archetypal construct in
this area is the goto statement. The difficulty, is to provide a deno-
tation for simple statements which can be used to derive the denotation
for sequences of statements. The definition of goto statements provides,
in chapter 4, the motivation for the exit approach used in VDM. Chapter
5 contrasts and connects this approach with the "“continuations" used by
the Oxford school. Here, the combinators relating to the exit approach

are defined for reference. Readers should probably skip the remainder of

this section at first reading.

36 FORMAL SPECIFICATION META-LANGUAGE

The basic idea is to use denotations which are capable of reflecting the
exception. The result of applying the denotation to a particular state
is a state plus an exception indication: a nil value indicates the lack
of an exception whereas information about the exception is given in non-
nil values. Combinators are defined which simplify the move from trans-

formations of type:
T = STATE & STATE

to ones which can reflect any abnormal result:
TR = STATE 3 STATE x T ABNORMAL]

The set ABNORMAL is chosen to fit the system being defined: here only the
distinction between nil and non nil is of importance. The basic exit com-
binator causes a non nil value to be returned with an unchanged state.
Thus:

VeEABNORMAL
exit v: TR

exit v = Ao.(0,v)

The handling of non nil abnormal values is defined by a tixe combi-

nator. For:

m: ABNORMAL 7 TR
f: TR

then:

(tize m in f): TR

(tize m in f) = (let »

I

(Ao,a.if acdomm then r(m(a)(c))

else (o,a)) in rof)

The semicolon combinator is redefined to reflect the need to propagate

abnormal returned values. With:

f: TR
g: TR

then:

THEMETA-LANGUAGE 37

fig: TR
(f59) = (ho,a.if a=nil then g(o) else (ov,a))°f

Similar changes are made to the def combinator. Where a simple transform-
ation (T) occurs in a context of an exit transformation, it is automatic-
ally interpreted as returning a nil abnormal component. Thus:

f: STATE S5 STATE
is interpreted, in appropriate contexts as:
Ao.(f(o),nil)
One other combinator relating to exit trausformations takes:

f: STATE 3 STATE
g: TR

to give:

(always f in g) : TR
(alwaye f in g) = (ro,a.(f(c),a))og

The combinators given in this section are not a fixed set for the neta-
language. Others may be defined in the same way 1if there is a need. This
collection suffices however for the language definitions given in this
book. Certain others are used in the "systems definitions" in part ITT

- they are defined in the "Glossary of Notation".

2.4 LOGIC NOTATION

The symbols to be used for the propositional operators are - (not), A
(and), v (or), > (implies), = (equivalence). The operators have Dbeen
given in decreasing order of priority.

The truth values are:

Bool = {true,false}

The quantifier symbols are VvV (universal) and 3 (existential). Quantified

38 FORMAL SPECIFICATION META-LANGUAGE

expressions will normally be bounded. For example:

(VxeNat) (is-even(2*zx))
(3x€{11;12,13})(is—prime(x))

The careful use of bounds can avoid using operators on values for which

they are not defined. Thus we write:
(YeeInt-{0})(p(1/x))

rather than:
(V) (x+0 > p(1/z))

Where bounded quantifiers are insufficient, conditional expression can be

used. For example:
if x=0 then q(y) else p(1/z)
rather than:

=0 A q(y) v 30 A p(1/z)

2.5 OBJECTS

Thus far in the discussion of semantics the structure of the states has
not been considered. Given the careful foundations which are provided
for general functions, it would be possible to view most semantic objects
as functions. For example, store can be viewed as a function from loca-
tions to values - even a subset of some given set can be viewed as a
function from the given set to the set of Boolean values. Such a view
would, however, limit the operations which can be applied. The domain of
a function is, for example, undecidable in general and it would not be
obvious that it was sound to write an expression involving the domain of
store. For this reason, authors of VDM specifications carefully distin-
guish "sets", "maps", and "listg" from more general functions. Objects to
be used in definitions are restricted as follows: "sets" are finite and
contain only distinguishable elements (not functions for example): "maps"
are finite functions which are constructed in ways which ensure that

their domains are apparent; "lists" are also finite.

THEMETA-LANGUAGE 38

The class of all finite subsets of some given set ¥ is written:

X-set

Notice that if X is infinite, this is a proper subset of the power set

since only finite sets belong to the class X-sget.

The operators involving sets are shown in the "“ADJ" diagram in fiqure 1.
These diagrams {(cf. [Goguen75a]) show the types in ovals and fix the type
of each operator by the arcs. (The subset operator, e.g. is between two

operaunds each of type set and yields a Boolean result.)

(X-get)-set

Fig. 1: Set operators
Notice that the distributed union operator is written:
union 55 = {e | (35¢S5)(ees)}
The shorthand for a set of integers is:
{1:4} = {kernt | i<k<g)

The basic sets used in this book are:

{1 = empty set

Bool = {true,false}

Nat = {1,2,...}

Vato = {0,1,2,...}

Int = {.ou,=1,0,1,...}

40 FORMAL SPECIFICATION META-LANGUAGE

The class of functions which satisfy the constraints of maps are defined:

D g R

with obvious extensions for domains which are Cartesian products. One-~one

maps are marked:

D w R

The operators involving maps are shown in figure 2.

Fig. 2: Map operators

The empty map is written:
r]
Other maps can either be written explicitly:
law b, b e, ¢» a]
or implicitly:
ezl | 2el1:431 = [1 » 1, 2 2, 3w 6, 4~ 24]

Application is written exactly as for functions.

THEMETA-LANGUAGE a4

Assuming domain and application (over the domain) are understood, the

remaining operators can be defined. The range of a map is:

ragh = [M(d) | dedomm}
The map "overwrite” operator is defined:

MI + M2 = [d v (if dedomM2 then M3(d) else M1(d)) | de(domMi u domi2)]
Map "union" is only defined if the domains of the maps are disjoint. Its
definition is otherwise the same as for overwrite. The advantage of using

a separate operator for this special case is that it is commutative. A

map can be "restricted":

i

M 15 =1[dwMd) | de(domtt n 5)]

or a set of domain elements can be removed:
M\S=[dw M(d) | de(domM - 5)]

The merge operator provides a distributed form of map union. Assuming:
(Vmp,mgems) (my=mg v dommyndomme=1{})

then mergems gives the map whose domain is the union of the domains of

the individual maps and whose results match that from the appropriate in-

dividual map.

Lists (or Tuples) could be viewed as maps from a set of natural numbers.
Reasoning about lists can, however, be aided by providing operators which
are intuitively obvious. The list operators are shown in figure 3, next
page. The class of all finite lists is defined by X* and all non-empty
lists by x7.

Here again taking two operators (len and application) as basic makes it

possible to define the others. The set of indices of a 1list is:
indelL = {1:7enl}
The set of elements in a list is:

elemslL = {L[1] | ieindsL}

42 FORMAL SPECIFICATION META-LANGUAGE

Fig. 3: List operators

The first element in a list is given by:

hdL = L[1]
The list remaining when the head has been removed is given by:
L' = tlL > lenL' = lenL-1 A (VieindsL')(L'[1] = L[i+1])

Notice that neither the head nor the tail operators are defined on the
empty list. Concatenation of two lists is defined:

L = L1"Lg >
lenl, = lenLl + lenL2 A
(VieindeLl)(L[i] = L1[1]) A
(VieindeL2) (L[i+lenl1] = Lo[1])

Distributed concatenation is defined:

conell = if LL=<> then <> else hdLL * cone(tlLL)

2.6 DEFINING OBJECTS

In writing a specification, both elementary and structured objects are

required. Most of the ways of structuring objects (classes of maps, etc.)
are given above. Thus 1if:

THE META-LANGUAGE 43
M = Int g Bool
then:
{01,012 +» true 1,0 2 » false, 7+ true 1} c ¥
An "abstract syntax" notation is given below. "Elementary objects" are
those whose structure is of no interest for a particular specification.
These can be elements of Token or Quot. Token is an infinite set of ob-
jects whose representation is not exposed: the identifiers in a program-
ming language would normally be treated as tokens. Where there is a need

to enumerate specific elementary objects, quotations are written as se-

quences of underlined (usually upper-case) letters (e.g. A, ABC, LABEL).
The most extensive object definitions to be written are for "abstract
syntax". It 1s therefore suggestive to make the rules look similar to
concrete syntax {(e.g. BNF notation). Thus:

Stmt = Assn | Goto
(Notice that this is a simple, nondiscriminated, union.) Similarly, the
convention of using square brackets for an optional element is adopted.
Thus:

Ix1=2xv {nil}

The nil object showing absence of the optional X.

Because of the use in abstract syntax, there is a need to build “"record"

type composite oﬁ@% ts which have inhomogenous fields. For example:
Assign :: Varref Expr

defines that any element of the set of objects named 4ssign has two com-

ponents, the first of which is an element of the set named Varref and

the second an element of the set named Expr. The set of elements of a

class defined by a ‘“constructor" rule 1is, for the above example:

Assign = [mk-Assign(vr,e) | vreVarref A ecExpr}

The constructor function:

44 FORMAL SPECIFICATION META-LANGUAGE

mk-Assign: Varref x Expr - Assign

can be thought of as installing a hidden flag which ensures that sets
defined by different (constructor) rules are disjoint. Formally, it is
sufficient to know this uniqueness property without showing how the
elements are flagged. (The use of such constructor rules obviates the

need to have a disjoint union operator.)
Given constructed objects, it is frequently necessary to decompose them.
One way of doing this is by writing the constructor in a "left-hand-side"

position (i.e. on the left of a definition or as a parameter). Thus:

let mk-Aesign(vr,e) = ¢ In cvv @ ous v ...

defines vr and e to have the values of the appropriate components of the
(previously defined) value g.

As an additional convenience the components of a constructed object can

be named. For example:
Assign :: s-lhe:Varpef s-rhs:Expr

These "selector" names can be used as functions to obtain the components

of a constructed object. Thuss

s-lhs: Assign -+ Varref

s-rhe: Assign - Expr

s-lhe(mk~Assign(vr,e)) vy

[
M

s-rhe(mk-Assign(vr,e))

The constructor rules and definitions which use Y-get etc. can be used
recursively: in any such use the valid objects are all finite instances

satisfying the (syntactic) equations.

Where a state is itself a constructed object, it is permissible to use

the selector names 1like variables in an assignment combinator. Thuss

(F1
({F1

i

e(g_Fl)): STATE - STATE
efe F1)) = Ao.(mk—STATE(e(Fi(o)),FZ(o),co.))

I

THE META-LANGUAGE 45

Notice that the use of the reference on the right hand side of the assign-
ment is marked with a contents (¢) operator. This is more explicit than
in programming languages where the use of a name has a different meaning

depending on context.,

2.7 ON NON-DETERMINISM

Non-determinism is something which need be considered in many specifica-
tions. For example, in most programming languages (including ALGOL 60)
the order of access to variables within expressions is not defined.

Thus in:
a + (b + ¢)

the variables can be accessed in any one of six orders. Notice that
order of access is separate issue from the order in which the operators
are applied. The problem is that if some sub-expressions include refer-
ences to functions which cause side-effects, the value of the variables
might differ depending on the order of access. Why should the designers
of a language leave such an odd non-determinism unresolved? It is reason-
able to assume that this was done to permit optimization like common sub-
expression elimination. There is a warning that users of ALGOL should
not write programs which depend on a particular order. But then there
are also many languages which contain features which deliberately intro-
duce nondeterminism (cf. "guarded commands" in [Dijkstra 75a]). One ap-
proach to the semantics of non-determinism is to use relations on states
as the denotations (cf. [Park 80al], [Jones 8lal). This approach cannot,
unfortunately, be extended to cover procedures which can take themselves
as arguments. An alternative approach is to use "power domains" (cf.
[Plotkin 76al, [Smyth 76al). The topic of specifying non-deterministic

systems 1is not covered in this book.

There is, however, some non-determinism used in the specifications given
below. In certain places it can aid the proof of correctness of an im-
plementation to show that the result is not affected by a particular
choice. For example, the choice of a free store location should not be
fixed by the specification. Even to hypothesize a choice function re-
quires fixing what influences the choice. Showing the possible results
makes it easier to show that an implementation is correct. Strictly,

however, each such non-deterministic choice should be accompanied by a

46 FORMAL SPECIFICATION META-LANGUAGE

proof that the non-determinism has no effect on the overall outcome., This

is necessary to justify the use of functional (rather than relational or

power) domains.

