CHAPTER 13

REALIZATION OF DATABASE MANAGEMENT SYSTEMS

This chapter continues the application of vDM to database applications.
As explained above, the various architectures correspond to Programming
languages. The implementation of the architecture corresponds to an in-
terpreter or, in cases, to a compiler. Just as VDM can be used to justify
the design of an interpreter or compiler with respect to the definition
of the language, this chapter briefly illustrates how a database manage-
ment system implementation can be related to the specification of a data
model. Implementations of both hierarchic ang network architectures are
discussed in this chapter; some of the standard (for example HDAM) IMS
representations are discussed for the former. Thisg Cchapter again illus-

trates the concepts of object transformations reviewed in chapters 10

443

444 VDM AND OTHER SYSTEMS

CONTENTS
13.0 Introduction,...........,. ceee. S e e e e, ceee « .. 445
13.1 Hierarchical Database Management Systems...,... e, coe . 445
13.1.1 Abstract IMs Data Part..,..... Tttt reresesi i, ., ,.445
13.1.2 Hierarchical Sequential Access Methods, HsaM..,,.. .. c..446

Tape Formatting..447

13.1.3 Hierarchical Direct Access Methods, HDAM.............°.449

The Child/Twin Pointer Scheme, HDAM i 450

The File Pointer Scheme, HDApr trreretiiiee, .., 45]

13.2 Network Database Management Systems...,..

REALIZATION OF DATABASE MANAGEMENT SYSTEMS 445

13.0 INTRODUCTION

In this last chapter we shall briefly roundoff the ideas of chapters 10,
11 and 12. We illustrate the transition from some of the formal, archi-
tecturally abstract database data models of chapter 12 towards more con-
crete specifications of the database lanagement systems (DBMS) which im-—

plement these models. We exemplify only the object transformations in-

volved. Chapter 10 has amply exemplified the related operation trans-
formations. And we display aspects of only hierarchical and network da-

tabase systens.

13.1 HIERARCHICAI, DATABASE MANAGEMENT SYSTEMS

We assume a slightly different data model than the one illustrated in
section 12.2.1. And we focus attention only on the data part of the data
model. (That is: we omit consideration of the catalogue part.) This sub-
section presents four models, one abstract and three concrete (HsAM,
HDAM¢ , HDAMﬁp). First we restate the abstract model. This model is con-
sidered an abstraction of an appropriate part of IBMs IMS DBMS. IBM does
not deliver abstractions. IBM delivers concretizations. In fact IBM of-
fers three variants of IMS. These are referred to as the hierarchical
sequential access method (HSAM), the hierarchical direct access method

(ADAM) with child-twin pointers ADAMi¢, and HDAM with file pointers
HDApr .

13.1.1 Abstract IMS Data Part

Informally an IMS data part, DP, is abstracted as follows: A DP consists
of a number of uniquely named physical database records, P, with names
in F. Each p counsists of an ordered sequence of segments, §. Each seg-
ment, S, has three components: a sequence field which is an integer, a
number of other uniquely named fields (of some type), and a data part.
(The 1last component description refers to what is being defined. From

this recursion, then, stems the 'hierarchy'.)
L. P = 7 gp
2. P = g*

3. S i: Int (Sn m VAL) pp

Within a giveu data part there is, according to the above informal and

448 VDM AND OTHER SYSTEMS

formal descriptions, no ordering among the uniquely (F) named physical

database records,

13.1.2 Hierarchical Sequential Access Methods, HSAM

In IMS, not just in its HSAM version, but in general, there is an order-

ing among the Ps of any DP. Tt is straightforward to model such an or-

dering:

4. PPhgam = (F Pheam! ™

5. Phsam = Shaegm*

6. Sheam @ Intg (Sn it VAL) DPysam

7.0 is—wf~DPh8am(dp) A

.1 te~unique(<s-F(dp[i]) | 1 2t < len dps)

.2 A (Y(,pdbr) ¢ elems dp)

.3 (mG—Shsam(,,dp') € elems pdbr)

.4 is-wf'-DPhgam(dp')
8.0 retr-pP(dp) A Uf » retr-p(pdbr) | (fspdbr)eelems dp]
9.0 retr-PDBR(sl) 4 <retr-S(slfi]) | 1 < ¢ < len si>

———

10.0 retr-S(mk—Shsam(i,svm,dp))

fl=

mk—S(i,svm,retr—DP(dp))

There is almost an inverse to the retrieve, or abstraction, functions.
That is there is an injection relation (}) .

ind=DP (mk=DPpgqm(dp)) A (F,ind-SL(dp(£f))) | f ¢ dom dp>
type: DP b DPhgum

inj-P(sl) A ING-Spgam(€L0i7) | 1 i < len gl>
type: S* b p

inj~S(mk-S(i,svm,dp) A mk-Shsam(i,inj-FVAL(svm),inj-DP(dp))
type: S $ Shesam

ing-FVAL (svm) 4 <(5,v) | sedom VM A v=gvm(s)>
type: (Sn g VAL) b (sn vap)+

REALIZATION OF DATABASE MANAGEMENT SYSTEMS 447

Tape Formatting

The HSAM organization is well-suited for, and conceived of in connection

with, storing data parts on a magnetic tape. The hierarchical structure:

-*'n"

7 e
\

l:l
2P

Fig. 1

~~ omitting important details, thus is basically "stored" as:

AIBIC|IDI|E]|F|ag HIT[J]K]|L

That is as the concrete object:

<(f1,
<mk-S(a,
<(fg,
<mk-S(..eB...),
mk-S(c,
<(fy4s
<mk—S(...D...)>),
(fs5,
<mk~S{. Bl
mk—S(...F...)>)>)>),
(fz,
<mk-S(q,

<(f6':
Smk=S (.. M.o..),
mk ~ S(o..I..n)

mk - S(»..J..,)>)>)>)>),
mk=S(...K.\.),

mk~S(,.nL...)>)>

448 VDM AND OTHER SYSTEMS

[Here we have abbreviateqd Sheam into S, and the Ssequence field integer
and other field values into one (lower case roman) component.] The proo-
lem we wish to briefly consider isg that of designing a concrete linear
representation of pp objects. RBasically that problem is always one of
representing the abstract syntax for DPhsam by a concrete, e,q, BNF,
grammer Danf. Sequence (Shsam*) of objects are usually BNF-"program-
med" as left- or right-recursjive Structures; but we do not care whether
it is left- or right—leaning. In this "exercise" ywe decide to design the
linear representation as a fully ‘"bracketeg" Structure using marked

parantheses and marked comma delimiters:

DPpy s = DP< FPilep,r [DP, Filepne }* >pp |
Filepy s = F(Fname , PDBRpyp)FE
PDBRbnf = SL< SegListbnf >LsS

fi

Seglistp,pe ::= Segm { sL, Segm }* f

Segmpy ¢ fi= S Intgsvar s, DPppr)S

(Here we have lumped into one object, IntgSVAL, the Sequence field inte-
ger and other segment field values.) The previously shown abstract object
Now can be given the linear representation below:
De< F(f7 £,
St slas,
o< B 5 £,
SL< S(.-. B ...)S sI,
S(es,

< F(fy £,
SIS S(e+. D ...)8 >Ls)F D,

F(fs £,

R e e i visndidalll 2

St< s(g s,
o< F(fp £,
SL< S{.ev H ...)S s1,,

S(... I ...)s 8L,

S(eev J ...)8 IS)JF >PD)S 518)F >PD)S SI,,

___..-._._‘«..._.._.._.,_.__._....__._____.-__.

S(.e. k -+.)S 8L,
S(... L +++18 >LS)F >pp

In un-indented, i.e,. non-structured textual form the above becomes:

REALIZATION OF DATABASE MANAGEM ENTSYSTEMS 449

Rlii.ﬂfzﬁ.sli_ia&.miﬂfgﬁﬂiﬂ'“’? +2)8 SL, S(¢ s, Dp<
Eif4£r_§£i§_(°~9~°°L§3§§l§2&§if5&§_¥:i§i°°-5°wl§lﬁﬁ
E.E’BléL@E&ﬂfséLiﬁs_(gs_fPﬁiF_(fsﬁﬂiﬂ-”H°'°.)___S__L
S(eee I i)s 8L, S(... 4 ~~l§2£§l§i§’2l§i&§l§l€9§i”° K ...)s
SLe S(--- L «..)8 >1S)F >pp

Using conventional sSyntax analysis tools one can easily generate a parser
which reads such strings and, by means of suitable, simple actions con-
nected to appropriate productions, effects the operations of mk- or &~

function decomposition as used in our various elaboration functions of

€.9. section 2.2 of chapter 172.
13.1.3 Hierarchical Direct Access Methods, HDAM
———== IzElarchical ———= ==X35 Hethods A

The ordering relation Suggested by the physical juxtaposition relation
of magnetic tape offsets, or addresses can, however, be achieved inp
other ways., The DP part of segments, in the abstract g, as well as in
the sequential Sheam: models, can be considered as being contained in
Segments. Containment Wwill now be replaced by designation. That is:
Proper parts of gsegments will contain pointers to pp Sstructures, ang
these together with "proper™ components will be Physically allocated to
any storage fragment. "Proper" components of Segments will be thoge not

involving parts., The Eollowing Figure shoulg illustrate our point:

450 VDMAND OTHER SYSTEMS
Several pointer Oorganizations are possible. The above embodies a notion
of the "left® pointer designating (1) the "next segment" within a “seg-
ment list", (2) the "“first seégment of the next (twin) brother/sister
segment list", or (3) the "parent segment" . The "right" pointer of any
segment designates a "Firgt" child segment, if any.

Instead of having a pointer designating a child segment of some such

first child file, we permit segments to individually designate the
"first" segment of all children files:

Fig. 4

These two organizations will now be formalized.

The Child/Twin Pointer Scheme, HDAM..

DP,4 s: L Per 1 (per & F) STC,,

STGay = Ptr g Sat

Sat i U PPR 1 (Intg(sn i VAL)) [pPtr]
PTR = NsPtr | TwPtr | papep

NsPtr :: Pty

TwPtr :: pPtr

PaPtr :: ptp

The particular object shown earlier now has the following HDAMn+ repre-
sentation:

REALEATKNVOFDATASASEMANAGEMENTSYSTEMS 451

mk=DP 1 (pys
i T R N T Pg " f3. b oo £l
[pg = mk=S ot (mk-NsPtr(py), sPb/) s
Py mk—SCt(mk—NsPtr(pc), snil),

pq + mk~Sct(mk—Tthr(pe),

a
b

Pe = mk~Sct(mk—Tthr(pg), c ,p4),
d ,ntl),
e

Do = mk—Sct(mk—NsPtr(pf), snil),
pPf > mk-Sct(mk—PaPtr(pe), £ ,nil),
Pg mk—Sct(mk-PaPtr(pa), g ,py/),
Py = mk—Sct(mk~NsPtr(pi), h ,nil),
pi = mk~Sct(mk-NsPtr(pj), i,nil),
pj mk—Set(mk—PaPtr(pg), J .nil),
Py = mk-Sct(mk—NsPtr(pz), k ,nil),
Py > mk=S,p(nil, 1 ,nil)])

Exercise: We leave it, as a non-trivial exercise, for the reader to def-
2a=rlise

ine the inv—DPct and retr-pp functions.

The File Pointer Scheme, HDApr

DPgy 2r (F g Ptr) STGCpp
STGfp = Ptr & Sfp
Sfp re [PEr] (Intg(sn w VAL)) (F 3z Ptr)

—- and now the object representation is:

mk-DPpr, ([f; » palslp, » mk-S¢,(pg, a)[ngpb:ngpg])s
Pp > mk=S¢p(pe, b, [1),
Pe © mk=-Sg,(nil, c L op g, Fsop, 1),
Py H-mk-Sfp(Qiz, a,],
Py mk-Sfp(pf, e, [1,
pf mk—Sfp(QiL, £, 01),
Pg H-mk—Sfp(Qié, 9 ,Lfgmpy 1),
py, mk—Sfp(pi, h, []),
P H»mk—Sfp(pj, i, [1),
Pj > mk=Sep(nil, 3, [7),
Pk ™ mk=Spen(pr, %k, [),
p; = mk-Sfp(gié, 1, 0171

Exercise: Formulate the inv~Dpr and retr-DP functions.

452 VDM AND OTHER SYSTEMS

The "inverse" of the retr-pp function, a So0~called injection function,
= J=ction

can be constructed, It is not “an exact” inverse. TItg type is relation-

als
type: tnj-DPp,: DP DPp,
It satisfies:
(vdp ¢ DP)(retr-DP(inj~Dpr(dp)) = dp)
but not:
(Vdpfp € Dpr)(inj~Dpr(retr~DP(dpfp)) = dpfp)
We design our inj—Dpr in stages, bottom up. First we define;

type: alloe: »> (L - % ptp)
type: Allocate F-get - (L 15 (F it Ptr))

alloe() A (def p e Pty dom ¢ Stg;
Stg := ¢ Stg y [p»undefined];
return(p))

Allocate(fs) A if fs = {})
then []
else (Lt f ¢ fo in
def p: alloe();
def m: Allocate(fs - {r}s;
return(Lif » pl v m]))

The model now is imperative:

del Stg := [] type STCpp;
b) = [(Stg m STGrp)

type: inj-Dpr: DP » (% + % (F it Ptr))

inj~Dpr(dp) A
(def m: AZZocate(Qg@ dp);
for all fedom dp do inj-Spr(dp(f))(m(f‘),m,ﬁéy;
return(m))

REAUZATKN@OFDATAEASEMANAGEMENTSYSTEMS

injnSpr(sZ)(OP»PPsSJ A
zjj: Sl=<>

then if pp=nil then I

else Stg := ¢ Stg + Lpp = 5]

else (if pp=nil

then I
else (let mk—Sfp(giz,r,m) = & in

Stg := ¢ Stg + [pp = mk—Sfp(cp»r,m)]);
let mk-S(i,vm,dp) = hd sl in

def m : inj—Dpr(dp);
def np P LL tL sl=<> then nil zlse alloe();

ing-SEpp,(tL sL)(np,ep,mk=Sp, (nil, (1, om),m)))

type: inj—Spr: S* = ((Ptr x L Ptr] x [Spp 1) = (2 -+ %))

13.2 NETWORK DATABASE MANAGEMENT SYSTEMS

We no expand on section 12.3.1. The data model was e

PSPg :: (Fid g Ro-set)(Sid gy ((Fid x Fid) (R, 4 Ry-set)))

We focus on just one "arrow", i.e. "DBTG-set":

.

Fig. 5

As a DSD object it is represented by:

mk-DSD(Lf; » {a,b,e,d,e,g} ,
fg > {x,y,Z,u:v,w,q,T',t}],

Lo » ((F1,f3),Teslz,y,2),0 o {u,v11)7)

454 VDM AND OTHER SYSTEMS

We note a seeming duplication of objects: TYs2,Y,V,¢, and e,in both file
objects and "DBTG-sats"g,

For the purposes of the development in this section we redraw the above

example, ascribing a "pbox" to each record:

f1a b c d e g
] [[[]] []
(A A f_‘**—\
f,
O O O O D[tJDD]
q r X y b4 u v w

We think, in a Ffirst step of development, of the "boxes" as allocated to
disjoint storage cells. Fach such record cell jis uniquely designated by
a pointer. Thus the Rp-set part of the files component, i.e, (Fid &
R-set), is itself realized by a map: (Ptr m R). The (Rp & Rp-set) compo-
nent of the "DBTG-get" component, i.e. the braces of the above fiqgure,

is in this tentative, "triai" stage of development, realized as follows:

with each owner record In the domain of (RO @ Rp-set) is associated

a pointer field to a potential arbitrary "firse" member record (in the
range of that map). ang to each member record is associated a pointer
field to a potential "next" member record:

f
1 a b [d e g
f2 |
70 70 AFECVE0 70 wesh) g
q r X y z t u v w

Fig. 7

REAUZATKN@OFDATABASEMANAGEMENTSYSTEMS 455

This tentative implementation corresponds to a Domain definition of the

realized DSDO:

DSy t: FILES; SETS,
FILES; = (Fid @ (Ptr g Ry))
SETS4 = (sid g (Fid x Fid))
Ry 22 RO Per]

-~ with the above illustrated 0gp object being represented by

mk-DSD 4 (T f7 =1 Pg = mk-R;(a,nil), pq ' mk-Ry(d,nil),

Pp = mk-R;(b,nil), Pe ™ mk-Ri({e,p,),
Pe = mk-Ry(c,p,), Pg > mk-R;(qg,nil)],

fg w1 Pq & mk=Ryi(q,nil), Pg = mk=R;(t,nil),
Pp > mk~Rl(r,Q£1), 29 H-mk~Rz(u,Q££),
Pg = mk-R;(x,nil), Pp > mk=-Ry(v,p,),
Py @ mk=Ri(Y,pz), py = mk-R;(w,nil),
Dy mk-?z(z,py) 11,

Ls > (f7,F9) 1)

But there is a proolem, in fact three, the above realization is con-
strained: (A) it only permits at most one "arrow" incident upon or eo-
manating from a file, (B) it makes the representation of records of any
file dependent on their possibly partaking in some "DBTG-set", and (C)

it does not permit the Ooverlapping, or sharing of member records.

To solve all three problems at once we propose another realization. We

first show an example of what the realization results in:

fy
a b c d e g

L] L] L]]

a[]
-

[]
=[]

456 VDMANDOTHERSYSTEMS

We then explain the realization with reéspect to the previous "tentative"
(but insufficient "realization") in terms of some surgical "operationsg"
(1) we have cut away, Ffrom the owner and member records their pointer
fields:; (ii) we have then made these pointer parts into "recordg" them-
selves, (iii) joining to the New pointer fields containing pointers
"back to" the owner, respectively the member records they were separated
from. Now [(B)] owner- and member record representations are independent
Of the "DBTG-setg" they potentially partake of. Now [(a)] any file may
take part in several "DBTG-setg", In fact [(cC)]: to each such "DBTG-get"
(or "arrow") there is exactly ome pointer Constellation ag illustrated

above, and shown "sandwicheg" between the two files.

The Domain specification becomes:

DSDy f4 PILESy x sprs,

FILESy = (Fid & (pPtp w R

SETS9 = (Sid g ((Fid x Fid) x OWN x MBR))
oWy = Ptry & OR

MBR = Ptry a MR

OR 7 Ptr, x Ptr,

MR c0 [oPery, 1 x Ptr,

-~ with the above illustrated pgp object being representeq by:

mk-DSDg(T fq T Pa "> 3 pp > b, p,» c
Pd™ s pe = e, pg g 7,
For Upgra, p.or, Pe ™ X, Py = ¥,p, > oz,
bt »t, p, + u, Py = v, py w11,
[s = ((fl,fg),
lop, = mk»OR(pc,mpg),ope P mk~0R(p,,nil)],
[mp, - mk—MR(mpy,pg),mpy > mk-MR(mpx,py),
mp, mk-MR(Qii,px),mpu H»mk~MR(mpw,pv),
mp,, mk—MR(Qié,pw)])])
We have illustrated a stage of development ; from the abstract psp to the
pointer-based, more concrete DSDg . Subsequent development steps could
now allocate all records: file records and owner and member pointer
records of all files and all "DBTG~sets/arr0ws" in one pointer-based
storage medium. Models of the CODASYL/DBTGC notions of "areag" and “"cur-
rent-of" can, and probably should, bhe entered into our development before

doing such an ultimate concretization,

